1
|
Fu W, Fang Y, Wang T, Lu Q, Wu J, Yang Q. Low-Protein Diet Inhibits the Synovial Tissue Macrophage Pro-Inflammatory Polarization Via NRF2/SIRT3/SOD2/ROS Pathway in K/BxN Rheumatoid Arthritis Mice. Inflammation 2024:10.1007/s10753-024-02145-9. [PMID: 39292325 DOI: 10.1007/s10753-024-02145-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/24/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disorder characterized by pain, swelling, stiffness, and impaired function. Attenuating inflammation is a crucial objective in RA management. Diet and nutrition are believed to influence RA symptomatology, with a low-protein diet being one potential nutritional strategy, although its underlying mechanisms remain to be fully elucidated. In this research, serum derived from arthritic transgenic K/BxN mice was administered to naive mice to establish a K/BxN rheumatoid arthritis model. Physiological assessments and histological staining were performed to evaluate joint pathology. (Enzyme-linked immunosorbent assay) ELISA was used to measure inflammatory cytokines. Flow cytometry and immunofluorescence were applied to characterize macrophage phenotypes. Transcriptomic analysis elucidated molecular pathways under the effect of a low-protein diet and verified by immunoblotting. Mitochondrial reactive oxygen species (ROS) was detected by Mito-SOX. Protein expression was silenced through the application of siRNA transfection. Our results indicate that a low-protein diet significantly alleviates disease symptoms and decreases pro-inflammatory cytokine levels in synovial fluid. Furthermore, this dietary intervention inhibits M1 macrophage polarization while promoting a shift towards the M2 phenotype. Transcriptomic analysis revealed that the beneficial effects of the low-protein diet in alleviating rheumatoid arthritis are closely linked to the NRF2 pathway. In vitro, low protein treatment can promote the activity of NRF2 via inhibiting the ubiquitin mediated proteolysis and activate the NRF2/SIRT3/SOD2 pathway to inhibit the production of ROS, which will further inhibit the M1 macrophage polarization. NRF2 knockdown can abolish the effects of low-protein treatment, indicating that the inhibition of M1 polarization and the anti-inflammatory response induced by low-protein treatment are dependent on NRF2. In summary, our findings propose that low-protein diet can inhibit synovial macrophage M1 polarization via activating NRF2/SIRT3/SOD2 pathway to reduce mitochondrial ROS production. This mechanism effectively decreases synovial inflammation and alleviates RA symptoms.
Collapse
Affiliation(s)
- Weicong Fu
- Department of Orthopedics, Affiliated Jinhua Hospital, Zhejiang University School of Medicine: Jinhua Municipal Central Hospital, No.365, Renmin East Road, Wucheng District, Jinhua City, 321000, Zhejiang Province, China
| | - Yinfei Fang
- Department of Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine: Jinhua Municipal Central Hospital Hospital, Jinhua, 321000, Zhejiang, China
| | - Tianbao Wang
- Department of Orthopedics, Affiliated Jinhua Hospital, Zhejiang University School of Medicine: Jinhua Municipal Central Hospital, No.365, Renmin East Road, Wucheng District, Jinhua City, 321000, Zhejiang Province, China
| | - Qinglin Lu
- Department of Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine: Jinhua Municipal Central Hospital, Jinhua, 321000, Zhejiang, China
| | - Junqi Wu
- Department of Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine: Jinhua Municipal Central Hospital Hospital, Jinhua, 321000, Zhejiang, China
| | - Qining Yang
- Department of Orthopedics, Affiliated Jinhua Hospital, Zhejiang University School of Medicine: Jinhua Municipal Central Hospital, No.365, Renmin East Road, Wucheng District, Jinhua City, 321000, Zhejiang Province, China.
- Zhejiang University School of Medicine, Hangzhou, 31009, Zhejiang, China.
| |
Collapse
|
2
|
Yan LS, Cheng BCY, Wang YW, Zhang SF, Qiu XY, Kang JY, Zhang C, Jia ZH, Luo G, Zhang Y. Xuelian injection ameliorates complete Freund's adjuvant-induced acute arthritis in rats via inhibiting TLR4 signaling. Heliyon 2023; 9:e21635. [PMID: 38027703 PMCID: PMC10658240 DOI: 10.1016/j.heliyon.2023.e21635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Background Xuelian injection (XI), a classic preparation extracted from Saussureae Involucratae Herba, has been clinically used to manage rheumatoid arthritis (RA) for nearly twenty years in China. However, the underlying anti-RA mechanism of XI remains unclear. In this study, complete Freund's adjuvant (CFA)-induced acute arthritic model was used to examine the anti-RA effects of XI in vivo. The molecular mechanisms of this action were further investigated using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Methods XI and XI freeze dried powder were characterized by UPLC analysis. CD68 and TLR4 expression in the ankle joints was measured by immunohistochemistry. The secretion of inflammatory mediators was detected by ELISA. The expression levels of TLR4 involved components were measured by Western blotting. The localization of transcription factors was measured by immunofluorescence assay. Results XI treatment ameliorated arthritic symptoms induced by CFA in the ankle joints of rats. The serum levels of inflammatory mediators, including TNF-α, MCP-1, and Rantes were decreased by XI treatment. The elevation of CD68 and TLR4 levels in ankle joints caused by CFA was suppressed by XI treatment. Moreover, XI treatment inhibited the secretion of nitric oxide and prostaglandin E2 in LPS-treated RAW264.7 macrophages. The expression of their enzymes iNOS and COX-2 was also decreased after XI treatment. The production of inflammatory mediators, including TNF-α, IL-6, IL-1β, MCP-1, MIP-1α, and Rantes was reduced by XI treatment in LPS-stimulated RAW264.7 cells. The phosphorylation of p38, JNK, ERK, TBK1, IKKα/β, IκB, p65, c-Jun, and IRF3 was reduced after XI treatment. Additionally, the expression levels of nuclear proteins of p65, c-Jun, and IRF3 were inhibited by XI treatment. Conclusions Taken together, XI possesses potential anti-RA effect and the underlying mechanism may be closely associated with the inhibition of TLR4 signaling. Our findings provide further pharmacological justifications for the clinical use of XI in RA treatment.
Collapse
Affiliation(s)
- Li-Shan Yan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | | | - Yi-Wei Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Shuo-Feng Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Xin-Yu Qiu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Jian-Ying Kang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Chao Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Zhan-Hong Jia
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Gan Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Yi Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, PR China
| |
Collapse
|
3
|
Bekaddour N, Smith N, Beitz B, Llibre A, Dott T, Baudry A, Korganow AS, Nisole S, Mouy R, Breton S, Bader-Meunier B, Duffy D, Terrier B, Schneider B, Quartier P, Rodero MP, Herbeuval JP. Targeting the chemokine receptor CXCR4 with histamine analog to reduce inflammation in juvenile arthritis. Front Immunol 2023; 14:1178172. [PMID: 37822935 PMCID: PMC10562697 DOI: 10.3389/fimmu.2023.1178172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/14/2023] [Indexed: 10/13/2023] Open
Abstract
Introduction Among immune cells, activated monocytes play a detrimental role in chronic and viral-induced inflammatory pathologies, particularly in Juvenile Idiopathic Arthritis (JIA), a childhood rheumatoid arthritis (RA) disease. The uncontrolled activation of monocytes and excessive production of inflammatory factors contribute to the damage of bone-cartilage joints. Despite the moderate beneficial effect of current therapies and clinical trials, there is still a need for alternative strategies targeting monocytes to treat RA. Methods To explore such an alternative strategy, we investigated the effects of targeting the CXCR4 receptor using the histamine analog clobenpropit (CB). Monocytes were isolated from the blood and synovial fluids of JIA patients to assess CB's impact on their production of key inflammatory cytokines. Additionally, we administered daily intraperitoneal CB treatment to arthritic mice to evaluate its effects on circulating inflammatory cytokine levels, immune cell infiltrates, joints erosion, and bone resorption, as indicators of disease progression. Results Our findings demonstrated that CXCR4 targeting with CB significantly inhibited the spontaneous and induced-production of key inflammatory cytokines by monocytes isolated from JIA patients. Furthermore, CB treatment in a mouse model of collagen-induce arthritis resulted in a significant decrease in circulating inflammatory cytokine levels, immune cell infiltrates, joints erosion, and bone resorption, leading to a reduction in disease progression. Discussion In conclusion, targeting CXCR4 with the small amino compound CB shows promise as a therapeutic option for chronic and viral-induced inflammatory diseases, including RA. CB effectively regulated inflammatory cytokine production of monocytes, presenting a potential targeted approach with potential advantages over current therapies. These results warrant further research and clinical trials to explore the full therapeutic potential of targeting CXCR4 with CB-like molecules in the management of various inflammatory diseases.
Collapse
Affiliation(s)
- Nassima Bekaddour
- Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR)-8601, Université Paris Cité, Paris, France
- Chemistry and Biology, Modeling and Immunology for Therapy (CBMIT), Paris, France
| | - Nikaïa Smith
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | | | - Alba Llibre
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | | | - Anne Baudry
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)-S1124, Team Stem Cells, Signaling and Prions, Université Paris Cité, Paris, France
| | - Anne-Sophie Korganow
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) - S1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Rare Autoimmune Diseases Centre National de Référence des maladies auto-immunes et systémiques rares de Strasbourg (RESO), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Unité de Formation et de Recherche (UFR) Medicine, University of Strasbourg, Strasbourg, France
| | - Sébastien Nisole
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 9004, Montpellier, France
| | - Richard Mouy
- Paediatric Haematology-Immunology and Rheumatology Department, Centre de référence des rhumatismes inflammatoires et maladies auto-immunes systémiques rares de l'enfant (RAISE) Reference Centre for Rare Diseases, Hôpital Universitaire Necker, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sylvain Breton
- Paediatric Haematology-Immunology and Rheumatology Department, Centre de référence des rhumatismes inflammatoires et maladies auto-immunes systémiques rares de l'enfant (RAISE) Reference Centre for Rare Diseases, Hôpital Universitaire Necker, Assistance Publique-Hôpitaux de Paris, Paris, France
- Paediatric Radiology Department, Necker-Enfants Malades University Hospital, Paris, France
| | - Brigitte Bader-Meunier
- Paediatric Haematology-Immunology and Rheumatology Department, Centre de référence des rhumatismes inflammatoires et maladies auto-immunes systémiques rares de l'enfant (RAISE) Reference Centre for Rare Diseases, Hôpital Universitaire Necker, Assistance Publique-Hôpitaux de Paris, Paris, France
- Pediatric Immunology-Hematology and Rheumatology Unit, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM U1163, Necker-Enfants Malades Hospital, Assistance Publique - Hôpitaux de Paris (APHP), Imagine Institute, Université Paris Cité, Paris, France
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Benjamin Terrier
- Department of Internal Medicine, National Referral Center for Rare Systemic Autoimmune Diseases, Assistance Publique Hôpitaux de Paris-Centre (APHP-CUP), Université de Paris, Paris, France
| | - Benoit Schneider
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR)-S1124, Team Stem Cells, Signaling and Prions, Université Paris Cité, Paris, France
| | - Pierre Quartier
- Paediatric Haematology-Immunology and Rheumatology Department, Centre de référence des rhumatismes inflammatoires et maladies auto-immunes systémiques rares de l'enfant (RAISE) Reference Centre for Rare Diseases, Hôpital Universitaire Necker, Assistance Publique-Hôpitaux de Paris, Paris, France
- Pediatric Immunology-Hematology and Rheumatology Unit, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM U1163, Necker-Enfants Malades Hospital, Assistance Publique - Hôpitaux de Paris (APHP), Imagine Institute, Université Paris Cité, Paris, France
| | - Mathieu P. Rodero
- Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR)-8601, Université Paris Cité, Paris, France
- Chemistry and Biology, Modeling and Immunology for Therapy (CBMIT), Paris, France
| | - Jean-Philippe Herbeuval
- Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR)-8601, Université Paris Cité, Paris, France
- Chemistry and Biology, Modeling and Immunology for Therapy (CBMIT), Paris, France
| |
Collapse
|
4
|
Srivastava P, Chaudhary S, Malhotra S, Varma B, Sunil S. Transcriptome analysis of human macrophages upon chikungunya virus (CHIKV) infection reveals regulation of distinct signaling and metabolic pathways during the early and late stages of infection. Heliyon 2023; 9:e17158. [PMID: 37408916 PMCID: PMC10318463 DOI: 10.1016/j.heliyon.2023.e17158] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 07/07/2023] Open
Abstract
Macrophages are efficient reservoirs for viruses that enable the viruses to survive over a longer period of infection. Alphaviruses such as chikungunya virus (CHIKV) are known to persist in macrophages even after the acute febrile phase. The viral particles replicate in macrophages at a very low level over extended period of time and are localized in tissues that are often less accessible by treatment. Comprehensive experimental studies are thus needed to characterize the CHIKV-induced modulation of host genes in these myeloid lineage cells and in one such pursuit, we obtained global transcriptomes of a human macrophage cell line infected with CHIKV, over its early and late timepoints of infection. We analyzed the pathways, especially immune related, perturbed over these timepoints and observed several host factors to be differentially expressed in infected macrophages in a time-dependent manner. We postulate that these pathways may play crucial roles in the persistence of CHIKV in macrophages.
Collapse
Affiliation(s)
- Priyanshu Srivastava
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Sakshi Chaudhary
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | | | | | - Sujatha Sunil
- Vector-Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| |
Collapse
|
5
|
Ye X, Holland R, Wood M, Pasetka C, Palmer L, Samaridou E, McClintock K, Borisevich V, Geisbert TW, Cross RW, Heyes J. Combination treatment of mannose and GalNAc conjugated small interfering RNA protects against lethal Marburg virus infection. Mol Ther 2023; 31:269-281. [PMID: 36114672 PMCID: PMC9840110 DOI: 10.1016/j.ymthe.2022.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/28/2022] [Accepted: 09/12/2022] [Indexed: 02/02/2023] Open
Abstract
Marburg virus (MARV) infection results in severe viral hemorrhagic fever with mortalities up to 90%, and there is a pressing need for effective therapies. Here, we established a small interfering RNA (siRNA) conjugate platform that enabled successful subcutaneous delivery of siRNAs targeting the MARV nucleoprotein. We identified a hexavalent mannose ligand with high affinity to macrophages and dendritic cells, which are key cellular targets of MARV infection. This ligand enabled successful siRNA conjugate delivery to macrophages both in vitro and in vivo. The delivered hexa-mannose-siRNA conjugates rendered substantial target gene silencing in macrophages when supported by a mannose functionalized endosome release polymer. This hexa-mannose-siRNA conjugate was further evaluated alongside our hepatocyte-targeting GalNAc-siRNA conjugate, to expand targeting of infected liver cells. In MARV-Angola-infected guinea pigs, these platforms offered limited survival benefit when used as individual agents. However, in combination, they achieved up to 100% protection when dosed 24 h post infection. This novel approach, using two different ligands to simultaneously deliver siRNA to multiple cell types relevant to infection, provides a convenient subcutaneous route of administration for treating infection by these dangerous pathogens. The mannose conjugate platform has potential application to other diseases involving macrophages and dendritic cells.
Collapse
Affiliation(s)
- Xin Ye
- Genevant Sciences Corporation, Vancouver, BC V5T 4T5, Canada
| | - Richard Holland
- Genevant Sciences Corporation, Vancouver, BC V5T 4T5, Canada
| | - Mark Wood
- Genevant Sciences Corporation, Vancouver, BC V5T 4T5, Canada
| | - Chris Pasetka
- Genevant Sciences Corporation, Vancouver, BC V5T 4T5, Canada
| | - Lorne Palmer
- Genevant Sciences Corporation, Vancouver, BC V5T 4T5, Canada
| | - Eleni Samaridou
- Genevant Sciences Corporation, Vancouver, BC V5T 4T5, Canada
| | | | - Viktoriya Borisevich
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Thomas W Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Robert W Cross
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - James Heyes
- Genevant Sciences Corporation, Vancouver, BC V5T 4T5, Canada.
| |
Collapse
|
6
|
Messeha SS, Zarmouh NO, Antonie L, Soliman KFA. Sanguinarine Inhibition of TNF-α-Induced CCL2, IKBKE/NF-κB/ERK1/2 Signaling Pathway, and Cell Migration in Human Triple-Negative Breast Cancer Cells. Int J Mol Sci 2022; 23:ijms23158329. [PMID: 35955463 PMCID: PMC9368383 DOI: 10.3390/ijms23158329] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Angiogenesis is a process that drives breast cancer (BC) progression and metastasis, which is linked to the altered inflammatory process, particularly in triple-negative breast cancer (TNBC). In targeting inflammatory angiogenesis, natural compounds are a promising option for managing BC. Thus, this study was designed to determine the natural alkaloid sanguinarine (SANG) potential for its antiangiogenic and antimetastatic properties in triple-negative breast cancer (TNBC) cells. The cytotoxic effect of SANG was examined in MDA-MB-231 and MDA-MB-468 cell models at a low molecular level. In this study, SANG remarkably inhibited the inflammatory mediator chemokine CCL2 in MDA-MB-231 and MDA-MB-468 cells. Furthermore, qRT-PCR confirmed with Western analysis studies showed that mRNA CCL2 repression was concurrent with reducing its main regulator IKBKE and NF-κB signaling pathway proteins in both TNBC cell lines. The total ERK1/2 protein was inhibited in the more responsive MDA-MB-231 cells. SANG exhibited a higher potential to inhibit cell migration in MDA-MB-231 cells compared to MDA-MB-468 cells. Data obtained in this study suggest a unique antiangiogenic and antimetastatic effect of SANG in the MDA-MB-231 cell model. These effects are related to the compound’s ability to inhibit the angiogenic CCL2 and impact the ERK1/2 pathway. Therefore, SANG use may be recommended as a component of the therapeutic strategy for TNBC.
Collapse
Affiliation(s)
- Samia S. Messeha
- Division of Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (S.S.M.); (L.A.)
| | - Najla O. Zarmouh
- Faculty of Medical Technology-Misrata, Libyan Ministry of Technical & Vocational Education, Misrata LY72, Libya;
| | - Lovely Antonie
- Division of Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (S.S.M.); (L.A.)
| | - Karam F. A. Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (S.S.M.); (L.A.)
- Correspondence: ; Tel./Fax: +1-850-599-3306
| |
Collapse
|
7
|
Tsou PS, Lu C, Gurrea-Rubio M, Muraoka S, Campbell PL, Wu Q, Model EN, Lind ME, Vichaikul S, Mattichak MN, Brodie WD, Hervoso JL, Ory S, Amarista CI, Pervez R, Junginger L, Ali M, Hodish G, O’Mara MM, Ruth JH, Robida AM, Alt AJ, Zhang C, Urquhart AG, Lawton JN, Chung KC, Maerz T, Saunders TL, Groppi VE, Fox DA, Amin MA. Soluble CD13 induces inflammatory arthritis by activating the bradykinin receptor B1. J Clin Invest 2022; 132:151827. [PMID: 35439173 PMCID: PMC9151693 DOI: 10.1172/jci151827] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 04/08/2022] [Indexed: 11/17/2022] Open
Abstract
CD13, an ectoenzyme on myeloid and stromal cells, also circulates as a shed, soluble protein (sCD13) with powerful chemoattractant, angiogenic, and arthritogenic properties, which require engagement of a G protein-coupled receptor (GPCR). Here we identify the GPCR that mediates sCD13 arthritogenic actions as the bradykinin receptor B1 (B1R). Immunofluorescence and immunoblotting verified high expression of B1R in rheumatoid arthritis (RA) synovial tissue and fibroblast-like synoviocytes (FLSs), and demonstrated binding of sCD13 to B1R. Chemotaxis, and phosphorylation of Erk1/2, induced by sCD13, were inhibited by B1R antagonists. In ex vivo RA synovial tissue organ cultures, a B1R antagonist reduced secretion of inflammatory cytokines. Several mouse arthritis models, including serum transfer, antigen-induced, and local innate immune stimulation arthritis models, were attenuated in Cd13-/- and B1R-/- mice and were alleviated by B1R antagonism. These results establish a CD13/B1R axis in the pathogenesis of inflammatory arthritis and identify B1R as a compelling therapeutic target in RA and potentially other inflammatory diseases.
Collapse
Affiliation(s)
- Pei-Suen Tsou
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Chenyang Lu
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.,Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mikel Gurrea-Rubio
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Sei Muraoka
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Phillip L. Campbell
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Qi Wu
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Ellen N. Model
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Matthew E. Lind
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Sirapa Vichaikul
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Megan N. Mattichak
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - William D. Brodie
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jonatan L. Hervoso
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Sarah Ory
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Camila I. Amarista
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Rida Pervez
- Department of Orthopedic Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Lucas Junginger
- Department of Orthopedic Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Mustafa Ali
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Gal Hodish
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Morgan M. O’Mara
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jeffrey H. Ruth
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | - Andrew G. Urquhart
- Department of Orthopedic Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Jeffrey N. Lawton
- Department of Orthopedic Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Kevin C. Chung
- Department of Orthopedic Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Tristan Maerz
- Department of Orthopedic Surgery, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Thomas L. Saunders
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.,Biomedical Research Core Facilities, Transgenic Animal Model Core, and
| | - Vincent E. Groppi
- Center for Discovery of New Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - David A. Fox
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - M. Asif Amin
- Division of Rheumatology and Clinical Autoimmunity Center of Excellence, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
8
|
Liu J, Cheng X, Zheng X, Shi Y, Li C, He Q, Li Y, Chen X. Integrated UPLC-Q-TOF-MS/MS and Network Pharmacology Approach to Investigating the Metabolic Profile of Marein of Coreopsis tinctoria Nutt. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:6707811. [PMID: 35656459 PMCID: PMC9152369 DOI: 10.1155/2022/6707811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 04/02/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022]
Abstract
Marein is the main active compound of Coreopsis tinctoria Nutt., and its main activities include antioxidant, hypoglycemic, and hypotensive. After oral administration of marein, the blood concentration of marein is low. The metabolites of marein have not been reported systematically. In this study, a rapid and systematic method based on ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS) was established to detect metabolites of marein in vivo (plasma and urine) after oral administration and injection. Sixty-one metabolites were identified. The metabolites are formed through a wide range of metabolic reactions, including hydroxylation, glucuronidation, methylation, hydrolysis, and desorption of hydrogen. The liver microsome incubation was further used to investigate the metabolic rate of marein. Network pharmacology was applied to study the targets and pathways of marein and its metabolites. Marein and its metabolites act on the same targets to enhance the therapeutic effect. This research illuminates the metabolites and metabolic reaction of marein and establishes a basis for the development and rational utilization of C. tinctoria. Meanwhile, the analysis of prototype and metabolites together by network pharmacology techniques could provide a methodology for the study of component activity.
Collapse
Affiliation(s)
- Jing Liu
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xuejing Cheng
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xin Zheng
- Beijing Analytical Center-SSL Shimadzu (China) Co., LTD, Beijing 100020, China
| | - Yumeng Shi
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chunxia Li
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qiaoyu He
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yue Li
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaopeng Chen
- State Key Laboratory of Component-Based Chinese Medicine, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
9
|
Xu Y, Yan H, Zhang X, Zhuo J, Han Y, Zhang H, Xie D, Lan X, Cai W, Wang X, Wang S, Li X. Roles of Altered Macrophages and Cytokines: Implications for Pathological Mechanisms of Postmenopausal Osteoporosis, Rheumatoid Arthritis, and Alzheimer's Disease. Front Endocrinol (Lausanne) 2022; 13:876269. [PMID: 35757427 PMCID: PMC9226340 DOI: 10.3389/fendo.2022.876269] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Postmenopausal osteoporosis (PMOP) is characterized by the uncoupling of bone resorption and bone formation induced by estrogen deficiency, which is a complex outcome related to estrogen and the immune system. The interaction between bone and immune cells is regarded as the context of PMOP. Macrophages act differently on bone cells, depending on their polarization profile and secreted paracrine factors, which may have implications for the development of PMOP. PMOP, rheumatoid arthritis (RA), and Alzheimer's disease (AD) might have pathophysiological links, and the similarity of their pathological mechanisms is partially visible in altered macrophages and cytokines in the immune system. This review focuses on exploring the pathological mechanisms of PMOP, RA, and AD through the roles of altered macrophages and cytokines secretion. First, the multiple effects on cytokines secretion by bone-bone marrow (BM) macrophages in the pathological mechanism of PMOP are reviewed. Then, based on the thought of "different tissue-same cell type-common pathological molecules-disease pathological links-drug targets" and the methodologies of "molecular network" in bioinformatics, highlight that multiple cytokines overlap in the pathological molecules associated with PMOP vs. RA and PMOP vs. AD, and propose that these overlaps may lead to a pathological synergy in PMOP, RA, and AD. It provides a novel strategy for understanding the pathogenesis of PMOP and potential drug targets for the treatment of PMOP.
Collapse
Affiliation(s)
- Yunteng Xu
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Hui Yan
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Basic Discipline Laboratory of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xin Zhang
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Junkuan Zhuo
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yidan Han
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Haifeng Zhang
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Dingbang Xie
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xin Lan
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Wanping Cai
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiaoning Wang
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Shanshan Wang
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xihai Li
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Fujian University of Traditional Chinese Medicine, Fuzhou, China
- *Correspondence: Xihai Li,
| |
Collapse
|
10
|
Cutolo M, Soldano S, Gotelli E, Montagna P, Campitiello R, Paolino S, Pizzorni C, Sulli A, Smith V, Tardito S. CTLA4-Ig treatment induces M1-M2 shift in cultured monocyte-derived macrophages from healthy subjects and rheumatoid arthritis patients. Arthritis Res Ther 2021; 23:306. [PMID: 34952630 PMCID: PMC8709961 DOI: 10.1186/s13075-021-02691-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/03/2021] [Indexed: 12/29/2022] Open
Abstract
Background In rheumatoid arthritis (RA), macrophages play an important role in modulating the immunoinflammatory response through their polarisation into “classically” (M1) or “alternatively activated” (M2) phenotypes. In RA, CTLA4-Ig (abatacept) reduces the inflammatory activity of macrophages by interacting with the costimulatory molecule CD86. The study aimed to investigate the efficacy of CTLA4-Ig treatment to induce an M2 phenotype both in M1-polarised monocyte-derived macrophages (MDMs) obtained from healthy subjects (HS) and in cultured MDMs obtained from active RA patients. Methods Cultured MDMs were obtained from peripheral blood mononuclear cells of 7 active RA patients and from 10 HS after stimulation with phorbol myristate acetate (5 ng/mL) for 24 h. HS-MDMs were then stimulated with lipopolysaccharide (LPS, 1 mg/mL) for 4 h to induce M1-MDMs. M1-MDMs and RA-MDMs were treated with CTLA4-Ig (100 μM and 500 μM) for 3, 12, 24, and 48 h. The gene expression of CD80, CD86, and TLR4 (M1 markers); CD163, CD204, and CD206 (surface M2 markers); and MerTK (functional M2 marker) was evaluated by qRT-PCR. The protein synthesis of surface M2 markers was investigated by Western blotting. The statistical analysis was performed by the Wilcoxon t-test. Results In LPS-induced HS-M1-MDMs, CTLA4-Ig 100 μM and 500 μM significantly downregulated the gene expression of M1 markers (3 h p<0.01 for all molecules; 12 h p<0.05 for TLR4 and CD86) and significantly upregulated that of M2 markers, primarily after 12 h of treatment (CD163: p < 0.01 and p < 0.05; CD206: p < 0.05 and p < 0.01; CD204: p < 0.05 by 100 mg/mL). Moreover, in these cells, CTLA4-Ig 500 μM increased the protein synthesis of surface M2 markers (p < 0.05). Similarly, in RA-MDMs, the CTLA4-Ig treatment significantly downregulated the gene expression of M1 markers at both concentrations primarily after 12 h (p < 0.05). Furthermore, both concentrations of CTLA4-Ig significantly upregulated the gene expression of CD206 (after 3 h of treatment; p < 0.05), CD163, and MerTK (after 12 h of treatment, p < 0.05), whereas CD204 gene expression was significantly upregulated by the high concentration of CTLA4-Ig (p < 0.05). The protein synthesis of all surface markers was increased primarily by CTLA4-Ig 500 μM, significantly for CD204 and CD206 after 24 h of treatment (p < 0.05). Conclusions CTLA4-Ig treatment seems to induce the in vitro shift from M1 to M2 macrophages, of both HS-M1-MDMs and RA-MDMs, as observed by the significant downregulation exerted on selected M1 markers and the upregulation of selected M2 markers suggesting an additional mechanism for its modulation of the RA inflammatory process. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-021-02691-9.
Collapse
Affiliation(s)
- Maurizio Cutolo
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, IRCCS San Martino Polyclinic Hospital, University of Genova, Genoa, Italy.
| | - Stefano Soldano
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, IRCCS San Martino Polyclinic Hospital, University of Genova, Genoa, Italy
| | - Emanuele Gotelli
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, IRCCS San Martino Polyclinic Hospital, University of Genova, Genoa, Italy
| | - Paola Montagna
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, IRCCS San Martino Polyclinic Hospital, University of Genova, Genoa, Italy
| | - Rosanna Campitiello
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, IRCCS San Martino Polyclinic Hospital, University of Genova, Genoa, Italy
| | - Sabrina Paolino
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, IRCCS San Martino Polyclinic Hospital, University of Genova, Genoa, Italy
| | - Carmen Pizzorni
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, IRCCS San Martino Polyclinic Hospital, University of Genova, Genoa, Italy
| | - Alberto Sulli
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, IRCCS San Martino Polyclinic Hospital, University of Genova, Genoa, Italy
| | - Vanessa Smith
- Department of Rheumatology, Ghent University Hospital, Ghent, Belgium.,Department of Internal Medicine, Ghent University, Ghent, Belgium.,Unit for Molecular Immunology and Inflammation, VIB Inflammation Research Center (IRC), Ghent, Belgium
| | - Samuele Tardito
- Laboratory of Experimental Rheumatology and Academic Division of Clinical Rheumatology, Department of Internal Medicine, IRCCS San Martino Polyclinic Hospital, University of Genova, Genoa, Italy
| |
Collapse
|
11
|
Li H, Feng Y, Zheng X, Jia M, Mei Z, Wang Y, Zhang Z, Zhou M, Li C. M2-type exosomes nanoparticles for rheumatoid arthritis therapy via macrophage re-polarization. J Control Release 2021; 341:16-30. [PMID: 34793917 DOI: 10.1016/j.jconrel.2021.11.019] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/19/2021] [Accepted: 11/12/2021] [Indexed: 02/08/2023]
Abstract
Imbalance between the activities of pro-inflammatory M1 and anti-inflammatory M2 macrophages in rheumatoid arthritis (RA) induces synovial inflammation and autoimmunity, leading to joint damage. Here we encapsulated a plasmid DNA encoding the anti-inflammatory cytokine interleukin-10 (IL-10 pDNA) and the chemotherapeutic drug betamethasone sodium phosphate (BSP) into biomimetic vector M2 exosomes (M2 Exo) derived from M2-type macrophages. We demonstrate that the loaded exosomes target and reduce inflammation for combined therapy against RA. The in vitro efficiency of the M2 Exo/pDNA/BSP co-delivery system was attributed to the synergistic effect of IL-10 pDNA and BSP, which also promoted M1-to-M2 macrophage polarization by reducing the secretion of pro-inflammatory cytokines (IL-1β, TNF-α) and increasing the expression of IL-10 cytokine. In a mouse model of RA, M2 Exo/pDNA/BSP showed good accumulation at inflamed joint sites, high anti-inflammatory activity, and potent therapeutic effect. The delivery system was non-toxic both in vitro and in vivo. Thus, this system may serve as a promising biocompatible drug carrier and anti-inflammatory agent for RA treatment based on M1-to-M2 macrophage re-polarization.
Collapse
Affiliation(s)
- Hui Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yue Feng
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
| | - Xiu Zheng
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Ming Jia
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Zhiqiang Mei
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yao Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Zhuo Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Meiling Zhou
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.
| |
Collapse
|
12
|
Ao L, Gao H, Jia L, Liu S, Guo J, Liu B, Dong Q. Matrine inhibits synovial angiogenesis in collagen-induced arthritis rats by regulating HIF-VEGF-Ang and inhibiting the PI3K/Akt signaling pathway. Mol Immunol 2021; 141:13-20. [PMID: 34781187 DOI: 10.1016/j.molimm.2021.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 10/10/2021] [Accepted: 11/05/2021] [Indexed: 12/19/2022]
Abstract
Matrine (Mat) is an alkaloid of tetracycline quinazine, and previous studies have demonstrated its specific effect on relieving rheumatoid arthritis (RA). However, the effect of Mat on joint synovial angiogenesis in the pathogenesis of RA has not been elucidated. In this study, body weight, joint swelling, arthritis index (AI) score, histopathological changes, immunohistochemical, and western blot- were used in collagen-induced arthritis (CIA) rats to detect pro-inflammatory factors and, - expression levels of key cytokines and proteins along the hypoxia-inducible factor (HIF)-endothelial growth factor (VEGF)-angiopoietin (Ang) axis and VEGF-phosphoinositide 3-kinase (PI3K) / protein kinase B (Akt) pathway. In vitro experiments were conducted to observe the effect of Mat on the proliferation, migration and lumen formation of RA-fibroblast-like synovial cells (FLS) and human umbilical vein endothelial cells (HUVECs). Results showed that Mat reduced the degree of paw swelling and AI score in CIA rats, joint synovial tissue proliferation, inflammatory cell infiltration, and neovascularization; moreover, it down-regulated the expression levels of inflammatory factors interleukin-1β, interferon-γ, and pro-angiogenic factors VEGF, placental growth factor, HIF-α, Ang-1, Ang-2, Tie-2, and phosphorylation-Akt in the ankle joint of CIA rats. In addition, the in vitro experiments showed that Mat inhibited the proliferation and migration of RA-FLS and inhibited the proliferation and lumen formation of HUVECs. Therefore, Mat exerts an anti-angiogenesis effect by regulating the HIF-VEGF-Ang axis and inhibiting the PI3K/Akt signaling pathway. This inhibits the pathogenesis and improve the symptoms of RA, and may be offered as a candidate drug for the treatment of RA.
Collapse
Affiliation(s)
- Limei Ao
- College of Traditional Chinese Medicine, Inner Mongolia Medical University, Huhhot, 010110, China
| | - Han Gao
- Department of Rheumatology and Immunology, Chifeng Hospital of Mongolian Medicine and Traditional Chinese Medicine, Chifeng, 024000, China
| | - Lifen Jia
- College of Traditional Chinese Medicine, Inner Mongolia Medical University, Huhhot, 010110, China
| | - Shimin Liu
- Department of Urology, Inner Mongolia Autonomous Region Hospital of Traditional Chinese Medicine, Huhhot, 010110, China
| | - Jie Guo
- College of Traditional Chinese Medicine, Inner Mongolia Medical University, Huhhot, 010110, China
| | - Bingzhen Liu
- Department of TCM Rheumatology, Huhhot Hospital of Mongolian Medicine and Traditional Chinese Medicine, Huhhot, 010110, China
| | - Qiumei Dong
- College of Traditional Chinese Medicine, Inner Mongolia Medical University, Huhhot, 010110, China.
| |
Collapse
|
13
|
Ali H, Dong SXM, Gajanayaka N, Cassol E, Angel JB, Kumar A. Selective Induction of Cell Death in Human M1 Macrophages by Smac Mimetics Is Mediated by cIAP-2 and RIPK-1/3 through the Activation of mTORC. THE JOURNAL OF IMMUNOLOGY 2021; 207:2359-2373. [PMID: 34561230 DOI: 10.4049/jimmunol.2100108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/28/2021] [Indexed: 12/22/2022]
Abstract
Inflammatory macrophages have been implicated in many diseases, including rheumatoid arthritis and inflammatory bowel disease. Therefore, targeting macrophage function and activation may represent a potential strategy to treat macrophage-associated diseases. We have previously shown that IFN-γ-induced differentiation of human M0 macrophages toward proinflammatory M1 state rendered them highly susceptible to the cytocidal effects of second mitochondria-derived activator of caspases mimetics (SMs), antagonist of the inhibitors of apoptosis proteins (IAPs), whereas M0 and anti-inflammatory M2c macrophages were resistant. In this study, we investigated the mechanism governing SM-induced cell death during differentiation into M1 macrophages and in polarized M1 macrophages. IFN-γ stimulation conferred on M0 macrophages the sensitivity to SM-induced cell death through the Jak/STAT, IFN regulatory factor-1, and mammalian target of rapamycin complex-1 (mTORC-1)/ribosomal protein S6 kinase pathways. Interestingly, mTORC-1 regulated SM-induced cell death independent of M1 differentiation. In contrast, SM-induced cell death in polarized M1 macrophages is regulated by the mTORC-2 pathway. Moreover, SM-induced cell death is regulated by cellular IAP (cIAP)-2, receptor-interacting protein kinase (RIPK)-1, and RIPK-3 degradation through mTORC activation during differentiation into M1 macrophages and in polarized M1 macrophages. In contrast to cancer cell lines, SM-induced cell death in M1 macrophages is independent of endogenously produced TNF-α, as well as the NF-κB pathway. Collectively, selective induction of cell death in human M1 macrophages by SMs may be mediated by cIAP-2, RIPK-1, and RIPK-3 degradation through mTORC activation. Moreover, blocking cIAP-1/2, mTORC, or IFN regulatory factor-1 may represent a promising therapeutic strategy to control M1-associated diseases.
Collapse
Affiliation(s)
- Hamza Ali
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ontario, Canada; .,Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada.,Faculty of Applied Medical Sciences, Taibah University, Medina, Kingdom of Saudi Arabia
| | - Simon Xin Min Dong
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Niranjala Gajanayaka
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Edana Cassol
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Jonathan B Angel
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ontario, Canada.,Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Medicine, Faculty of Medicine, University of Ottawa, Ontario, Canada; and
| | - Ashok Kumar
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ontario, Canada; .,Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada.,Department of Pathology and Laboratory Medicine, University of Ottawa, Ontario, Canada
| |
Collapse
|
14
|
Szekanecz Z, McInnes IB, Schett G, Szamosi S, Benkő S, Szűcs G. Autoinflammation and autoimmunity across rheumatic and musculoskeletal diseases. Nat Rev Rheumatol 2021; 17:585-595. [PMID: 34341562 DOI: 10.1038/s41584-021-00652-9] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2021] [Indexed: 12/16/2022]
Abstract
Most rheumatic and musculoskeletal diseases (RMDs) can be placed along a spectrum of disorders, with autoinflammatory diseases (including monogenic systemic autoinflammatory diseases) and autoimmune diseases (such as systemic lupus erythematosus and antiphospholipid syndrome) representing the two ends of this spectrum. However, although most autoinflammatory diseases are characterized by the activation of innate immunity and inflammasomes and classical autoimmunity typically involves adaptive immune responses, there is some overlap in the features of autoimmunity and autoinflammation in RMDs. Indeed, some 'mixed-pattern' diseases such as spondyloarthritis and some forms of rheumatoid arthritis can also be delineated. A better understanding of the pathogenic pathways of autoinflammation and autoimmunity in RMDs, as well as the preferential cytokine patterns observed in these diseases, could help us to design targeted treatment strategies.
Collapse
Affiliation(s)
- Zoltán Szekanecz
- Division of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Iain B McInnes
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Georg Schett
- Department of Internal Medicine 3, Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany.,Deutsches Zentrum fur Immuntherapie, Friedrich Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Szilvia Szamosi
- Division of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Szilvia Benkő
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabriella Szűcs
- Division of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
15
|
1,7-Dihydroxy-3,4-Dimethoxyxanthone Inhibits Lipopolysaccharide-Induced Inflammation in RAW264.7 Macrophages by Suppressing TLR4/NF-κB Signaling Cascades. Inflammation 2021; 43:1821-1831. [PMID: 32468498 DOI: 10.1007/s10753-020-01256-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Securidaca inappendiculata Hassk. is a traditional Chinese anti-rheumatic herbal medicine native to southern China. In this study, we identified a possible TLR4 inhibitor from this plant. General effects of its xanthone-rich fraction (XRF) on inflammation in vitro were investigated by immunoblotting experiments performed on lipopolysaccharides (LPS)-treated RAW264.7 cells, and the possible ligand of TLR4 within was screened out by analyzing chemical composition differences of the XRF containing cell culture medium under different inflammatory circumstances. The interaction between ligand and TLR4 was validated by cellular thermal shift assay (CETSA) and molecular docking simulation, and TLR4/NF-κB pathway status was investigated by immunoprecipitation, ELISA, immunofluorescence, dual-luciferase reporter, and immunoblotting experiments. Treatment with XRF resulted in significant decrease in p-p65 and p-JNK, and the signal accounting for 1,7-dihydroxy-3,4-dimethoxyxanthone (XAN) at 12.5 min with mass of 289.29 was greatly decreased in XRF containing medium after LPS stimulus because of enhanced interaction with increased TLR4. CETSA and molecular docking simulation demonstrated that XAN could bind to TLR4 directly on a smooth region adjacent to its contact interface with MD-2. XAN treatment inhibited the dimerization of TLR4 and transcriptional activity of NF-κB in HEK293T cells and decreased p65 accumulation in nucleus and pro-inflammatory cytokines production in RAW264.7 cells receiving LPS treatment. Overall evidences suggest that XAN could be a selective TLR4 inhibitor with potent anti-inflammatory effects. Also, it indicated that xanthone derivatives could have promising clinical application in many immune-mediated inflammations by acting as TLR4 inhibitors.
Collapse
|
16
|
Zhang G, Ma L, Bai L, Li M, Guo T, Tian B, He Z, Fu Q. Inflammatory microenvironment-targeted nanotherapies. J Control Release 2021; 334:114-126. [PMID: 33887284 DOI: 10.1016/j.jconrel.2021.04.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/14/2022]
Abstract
Inflammatory microenvironments (IMEs) are common pathological characteristics and drive the development of multiple chronic diseases. Thus, IME-targeted therapies exhibit potential for the treatment of inflammatory diseases. Nanoplatforms have significant advantages in improving the efficiency of anti-inflammatory treatments. Owing to their improved therapeutic effects and reduced side effects, IME-targeted nanotherapies have recently drawn interest from the research community. This review introduces IMEs and discusses the application of IME-targeted nanotherapies for inflammatory diseases. The development of rational targeting strategies tailored to IMEs in damaged tissues can help promote therapies for chronic diseases.
Collapse
Affiliation(s)
- Guangshuai Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Lixue Ma
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Lijun Bai
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Mo Li
- Liaoning Institute for Drug Control, No. 7 Chongshan West Road, Shenyang 110016, China
| | - Tiange Guo
- Laboratory Animal Department, General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenyang 110016, China
| | - Baocheng Tian
- School of Pharmacy, Binzhou Medical University, No. 346, Guanhai Road, Yantai 264003, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
17
|
Mohammadian Haftcheshmeh S, Khosrojerdi A, Aliabadi A, Lotfi S, Mohammadi A, Momtazi-Borojeni AA. Immunomodulatory Effects of Curcumin in Rheumatoid Arthritis: Evidence from Molecular Mechanisms to Clinical Outcomes. Rev Physiol Biochem Pharmacol 2021; 179:1-29. [PMID: 33404796 DOI: 10.1007/112_2020_54] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic immune-mediated inflammatory disorder characterized by the destruction of the joint and bone resorption. The production of pro-inflammatory cytokines and chemokines, dysregulated functions of three important subtypes of T helper (TH) cells including TH1, TH17, and regulator T (Treg) cells are major causes of the initiation and development of RA. Moreover, B cells as a source of the production of several autoantibodies play key roles in the pathogenesis of RA. The last decades have seen increasingly rapid advances in the field of immunopharmacology using natural origin compounds for the management of various inflammatory diseases. Curcumin, a main active polyphenol compound isolated from turmeric, curcuma longa, possesses a wide range of pharmacologic properties for the treatment of several diseases. This review comprehensively will assess beneficial immunomodulatory effects of curcumin on the production of pro-inflammatory cytokines and also dysregulated functions of immune cells including TH1, TH17, Treg, and B cells in RA. We also seek the clinical efficacy of curcumin for the treatment of RA in several recent clinical trials. In conclusion, curcumin has been found to ameliorate RA complications through modulating inflammatory and autoreactive responses in immune cells and synovial fibroblast cells via inhibiting the expression or function of pro-inflammatory mediators, such as nuclear factor-κB (NF-κB), activated protein-1 (AP-1), and mitogen-activated protein kinases (MAPKs). Of note, curcumin treatment without any adverse effects can attenuate the clinical symptoms of RA patients and, therefore, has therapeutic potential for the treatment of the diseases.
Collapse
Affiliation(s)
| | - Arezou Khosrojerdi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Aliabadi
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shadi Lotfi
- Department of Medical Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Asadollah Mohammadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Amir Abbas Momtazi-Borojeni
- Halal Research center of IRI, FDA, Tehran, Iran.
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
18
|
Yu Y, Wang Z, Yang Q, Ding Q, Wang R, Li Z, Fang Y, Liao J, Qi W, Chen K, Li M, Zhu YZ. A novel dendritic mesoporous silica based sustained hydrogen sulfide donor for the alleviation of adjuvant-induced inflammation in rats. Drug Deliv 2021; 28:1031-1042. [PMID: 34060389 PMCID: PMC8172227 DOI: 10.1080/10717544.2021.1921075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Purpose S-propargyl-cysteine (SPRC), an excellent endogenous hydrogen sulfide (H2S) donor, could elevate H2S levels via the cystathionine γ-lyase (CSE)/H2S pathway both in vitro and in vivo. However, the immediate release of H2S in vivo and daily administration of SPRC potentially limited its clinical use. Methods To solve the fore-mentioned problem, in this study, the dendritic mesoporous silica nanoparticles (DMSN) was firstly prepared, and a sustained H2S delivery system consisted of SPRC and DMSN (SPRC@DMSN) was then constructed. Their release profiles, both in vitro and in vivo, were investigated, and their therapeutical effect toward adjuvant-induced arthritis (AIA) rats was also studied. Results The spherical morphology of DMSN could be observed under scanning Electron Microscope (SEM), and the transmission electron microscope (TEM) images showed a central-radiational pore channel structure of DMSN. DMSN showed excellent SPRC loading capacity and attaining a sustained releasing ability than SPRC both in vitro and in vivo, and the prolonged SPRC releasing could further promote the release of H2S in a sustained manner through CSE/H2S pathway both in vitro and in vivo. Importantly, the SPRC@DMSN showed promising anti-inflammation effect against AIA in rats was also observed. Conclusions A sustained H2S releasing donor consisting of SPRC and DMSN was constructed in this study, and this sustained H2S releasing donor might be of good use for the treatment of AIA.
Collapse
Affiliation(s)
- Yue Yu
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Zhou Wang
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Qinyan Yang
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Qian Ding
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Ran Wang
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Zhaoyi Li
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Yudong Fang
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Junyi Liao
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Wei Qi
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Keyuan Chen
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Meng Li
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China
| | - Yi Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy, Macau University of Science and Technology, Taipa, China.,Shanghai Key Laboratory of Bioactive Small Molecules & School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Wang ZY, Chu FH, Gu NN, Wang Y, Feng D, Zhao X, Meng XD, Zhang WT, Li CF, Chen Y, Wei SS, Ma ZQ, Lin RC, Zhao CJ, Zou DX. Integrated strategy of LC-MS and network pharmacology for predicting active constituents and pharmacological mechanisms of Ranunculus japonicus Thunb. for treating rheumatoid arthritis. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113818. [PMID: 33465444 DOI: 10.1016/j.jep.2021.113818] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ranunculus japonicus Thunb. (short for R. japonicus) is a topically applied herb with the activities of removing jaundice, nebula and edema, preventing malaria, stopping asthma, promoting diuresis and relieving pain. It was firstly recorded in Zhouhou Beiji Fang and has been used for the treatment of malaria, ulcers, carbuncle, jaundice, migraine, stomachache, toothache and arthritis for over 1800 years. AIM OF THE STUDY This study aimed to uncover the potentially effective components of R. japonicus and the pharmacological mechanisms against rheumatoid arthritis (RA) by combing LC-MS and network pharmacology. MATERIALS AND METHODS Firstly, the chemical constituents of R. japonicus were qualitatively identified by UPLC-ESI-LTQ-Orbitrap MS. Then we performed target prediction by PharmMapper, protein-protein interaction (PPI) analysis via String, GO and KEGG pathway enrichment analysis by DAVID and constructed the compound-target-pathway network using Cytoscape. Thirdly, crucial compounds in the network were quantitatively analyzed to achieve quality control of R. japonicus. Finally, the pharmacological activities of R. japonicus and two potentially bioactive ingredients were validated in RA-FLSs (Rheumatoid Arthritis Fibroblast-like Synoviocytes) in vitro. RESULTS Overall fifty-four ingredients of R. japonicus were identified and forty-five components were firstly discovered in R. japonicus. Among them, twenty-seven validated compounds were predicted to act on twenty-five RA-related targets and they might exhibit therapeutic effects against RA via positive regulation of cell migration, etc. Nine potentially bioactive components of R. japonicus which played important roles in the compound-target-pathway network were simultaneously quantified by an optimized UPLC-ESI-Triple Quad method. In vitro, compared to control group, R. japonicus extract, berberine and yangonin significantly inhibited the migration capacity of RA-FLSs after 24 h treatment. CONCLUSION This study clarified that R. japonicus and the bioactive ingredients berberine and yangonin might exert therapeutic actions for RA via suppressing the aggressive phenotypes of RA-FLSs through combined LC-MS technology and network pharmacology tools for the first time. The present research provided deeper understanding into the chemical profiling, pharmacological activities and quality control of R. japonicus and offered reference for further scientific research and clinical use of R. japonicus in treating RA.
Collapse
Affiliation(s)
- Zhao-Yi Wang
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Fu-Hao Chu
- Institute of Regulatory Science for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Nian-Nian Gu
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yi Wang
- Xi' an Manareco New Materials Co. Ltd., Xi' An, 710077, China
| | - Dan Feng
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xia Zhao
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xue-Dan Meng
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Wen-Ting Zhang
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Chao-Feng Li
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yang Chen
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shuang-Shuang Wei
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhi-Qiang Ma
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Rui-Chao Lin
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Chong-Jun Zhao
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Di-Xin Zou
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, 010110, China.
| |
Collapse
|
20
|
Abji F, Rasti M, Gómez-Aristizábal A, Muytjens C, Saifeddine M, Mihara K, Motahhari M, Gandhi R, Viswanathan S, Hollenberg MD, Oikonomopoulou K, Chandran V. Proteinase-Mediated Macrophage Signaling in Psoriatic Arthritis. Front Immunol 2021; 11:629726. [PMID: 33763056 PMCID: PMC7982406 DOI: 10.3389/fimmu.2020.629726] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/29/2020] [Indexed: 11/29/2022] Open
Abstract
Objective Multiple proteinases are present in the synovial fluid (SF) of an arthritic joint. We aimed to identify inflammatory cell populations present in psoriatic arthritis (PsA) SF compared to osteoarthritis (OA) and rheumatoid arthritis (RA), identify their proteinase-activated receptor 2 (PAR2) signaling function and characterize potentially active SF serine proteinases that may be PAR2 activators. Methods Flow cytometry was used to characterize SF cells from PsA, RA, OA patients; PsA SF cells were further characterized by single cell 3’-RNA-sequencing. Active serine proteinases were identified through cleavage of fluorogenic trypsin- and chymotrypsin-like substrates, activity-based probe analysis and proteomics. Fluo-4 AM was used to monitor intracellular calcium cell signaling. Cytokine expression was evaluated using a multiplex Luminex panel. Results PsA SF cells were dominated by monocytes/macrophages, which consisted of three populations representing classical, non-classical and intermediate cells. The classical monocytes/macrophages were reduced in PsA compared to OA/RA, whilst the intermediate population was increased. PAR2 was elevated in OA vs. PsA/RA SF monocytes/macrophages, particularly in the intermediate population. PAR2 expression and signaling in primary PsA monocytes/macrophages significantly impacted the production of monocyte chemoattractant protein-1 (MCP-1). Trypsin-like serine proteinase activity was elevated in PsA and RA SF compared to OA, while chymotrypsin-like activity was elevated in RA compared to PsA. Tryptase-6 was identified as an active serine proteinase in SF that could trigger calcium signaling partially via PAR2. Conclusion PAR2 and its activating proteinases, including tryptase-6, can be important mediators of inflammation in PsA. Components within this proteinase-receptor axis may represent novel therapeutic targets.
Collapse
Affiliation(s)
- Fatima Abji
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Mozhgan Rasti
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | | | - Carla Muytjens
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Mahmoud Saifeddine
- Department of Physiology & Pharmacology, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - Koichiro Mihara
- Department of Physiology & Pharmacology, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - Majid Motahhari
- Department of Physiology & Pharmacology, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - Rajiv Gandhi
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Division of Orthopaedic Surgery, Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada
| | - Sowmya Viswanathan
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,Division of Hematology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Morley D Hollenberg
- Department of Physiology & Pharmacology, University of Calgary Cumming School of Medicine, Calgary, AB, Canada.,Department of Medicine, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - Katerina Oikonomopoulou
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Vinod Chandran
- Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Division of Rheumatology, Department of Medicine, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Department of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
21
|
Antiparasitic Effects of Selected Isoflavones on Flatworms. Helminthologia 2021; 58:1-16. [PMID: 33664614 PMCID: PMC7912234 DOI: 10.2478/helm-2021-0004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 12/07/2020] [Indexed: 01/13/2023] Open
Abstract
Medicinal plants have been successfully used in the ethno medicine for a wide range of diseases since ancient times. The research on natural products has allowed the discovery of biologically relevant compounds inspired by plant secondary metabolites, what contributed to the development of many chemotherapeutic drugs. Flavonoids represent a group of therapeutically very effective plant secondary metabolites and selected molecules were shown to exert also antiparasitic activity. This work summarizes the recent knowledge generated within past three decades about potential parasitocidal activities of several flavonoids with different chemical structures, particularly on medically important flatworms such as Schistosoma spp., Fasciola spp., Echinococcus spp., Raillietina spp., and model cestode Mesocestoides vogae. Here we focus on curcumin, genistein, quercetin and silymarin complex of flavonolignans. All of them possess a whole spectrum of biological activities on eukaryotic cells which have multi-therapeutic effects in various diseases. In vitro they can induce profound alterations in the tegumental architecture and its functions as well as their activity can significantly modulate or damage worm´s metabolism directly by interaction with enzymes or signaling molecules in dose-dependent manner. Moreover, they seem to differentially regulate the RNA activity in numbers of worm´s genes. This review suggests that examined flavonoids and their derivates are promising molecules for antiparasitic drug research. Due to lack of toxicity, isoflavons could be used directly for therapy, or as adjuvant therapy for diseases caused by medically important cestodes and trematodes.
Collapse
|
22
|
Li X, Hou Y, Meng X, Li G, Xu F, Teng L, Sun F, Li Y. Folate receptor-targeting mesoporous silica-coated gold nanorod nanoparticles for the synergistic photothermal therapy and chemotherapy of rheumatoid arthritis. RSC Adv 2021; 11:3567-3574. [PMID: 35424296 PMCID: PMC8694156 DOI: 10.1039/d0ra08689d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/10/2020] [Indexed: 12/24/2022] Open
Abstract
The synergy of photothermal therapy (PTT) and chemotherapy is widely regarded as an effective treatment for complex diseases, such as cancer and inflammation. In this paper, we report the synthesis of a nanoscaled drug delivery system, which was composed of a gold nanorod (GNR) as the photothermal agent and a mesoporous silica shell as the methotrexate (MTX) reservoir, named FAGMs. Due to folate modification on the surface, FAGMs targeted specifically activated macrophages in rheumatoid arthritis (RA). Under 808 nm laser irradiation, FAGMs could kill macrophages by reaching sufficient local hyperthermia with excellent efficiency in the photothermal conversion of GNRs. Meanwhile, internal heating caused hydrogen bond fracture; thus, MTX released rapidly from FAGMs for localized synergistic PTT and chemotherapy. The FAGMs had a mean particle size of about 180 nm and a zeta potential of 14.36 mV. The release rate of MTX from FAGMs in vitro increased markedly under 808 nm laser irradiation. In a cellular uptake study, stronger fluorescence signals were observed in activated macrophages when treated with FAGMs, suggesting that folic acid molecules enabled the enhancement of endocytosis into activated macrophages. In rats with adjuvant-induced arthritis, synergistic treatment excellently inhibited the progression of RA. These results demonstrated that FAGMs could be promising for the treatment of RA.
Collapse
Affiliation(s)
- Xiangyu Li
- School of Life Sciences, Jilin University 2699 Qianjin Street, Changchun Jilin 130012 China
| | - Yufei Hou
- School of Life Sciences, Jilin University 2699 Qianjin Street, Changchun Jilin 130012 China
| | - Xiangxue Meng
- School of Life Sciences, Jilin University 2699 Qianjin Street, Changchun Jilin 130012 China
| | - Ge Li
- School of Life Sciences, Jilin University 2699 Qianjin Street, Changchun Jilin 130012 China
| | - Fei Xu
- School of Life Sciences, Jilin University 2699 Qianjin Street, Changchun Jilin 130012 China
| | - Lesheng Teng
- School of Life Sciences, Jilin University 2699 Qianjin Street, Changchun Jilin 130012 China
| | - Fengying Sun
- School of Life Sciences, Jilin University 2699 Qianjin Street, Changchun Jilin 130012 China
| | - Youxin Li
- School of Life Sciences, Jilin University 2699 Qianjin Street, Changchun Jilin 130012 China
| |
Collapse
|
23
|
Li J, Zhang L, Zheng Y, Shao R, Liang Q, Yu W, Wang H, Zou W, Wang D, Xiang J, Lin A. BAD inactivation exacerbates rheumatoid arthritis pathology by promoting survival of sublining macrophages. eLife 2020; 9:e56309. [PMID: 33270017 PMCID: PMC7714394 DOI: 10.7554/elife.56309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022] Open
Abstract
The resistance of synovial sublining macrophages to apoptosis has a crucial role in joint inflammation and destruction in rheumatoid arthritis (RA). However, the underlying mechanism is incompletely understood. Here we report that inactivation of the pro-apoptotic BCL-2 family protein BAD is essential for survival of synovial sublining macrophage in RA. Genetic disruption of Bad leads to more severe joint inflammation and cartilage and bone damage with reduced apoptosis of synovial sublining macrophages in collagen-induced arthritis (CIA) and TNFα transgenic (TNF-Tg) mouse models. Conversely, Bad3SA/3SA mice, in which BAD can no longer be inactivated by phosphorylation, are protected from collagen-induced arthritis. Mechanistically, phosphorylation-mediated inactivation of BAD specifically protects synovial sublining macrophages from apoptosis in highly inflammatory environment of arthritic joints in CIA and TNF-Tg mice, and in patients with RA, thereby contributing to RA pathology. Our findings put forward a model in which inactivation of BAD confers the apoptosis resistance on synovial sublining macrophages, thereby contributing to the development of arthritis, suggesting that BAD may be a potential therapeutic target for RA.
Collapse
Affiliation(s)
- Jie Li
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of SciencesShanghaiChina
- School of Life Science and Technology, ShanghaiTech UniversityShanghaiChina
- Ben May Department for Cancer Research, The University of ChicagoChicagoUnited States
| | - Liansheng Zhang
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of SciencesShanghaiChina
- Ben May Department for Cancer Research, The University of ChicagoChicagoUnited States
- Institute of Modern Biology, Nanjing UniversityNanjingChina
| | - Yongwei Zheng
- Blood Research Institute, Blood Center of WisconsinMilwaukeeUnited States
| | - Rui Shao
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of SciencesShanghaiChina
| | - Qianqian Liang
- Department of Orthopaedics, Longhua Hospital, Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Weida Yu
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of SciencesShanghaiChina
- School of Life Science and Technology, ShanghaiTech UniversityShanghaiChina
| | - Hongyan Wang
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of SciencesShanghaiChina
| | - Weiguo Zou
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of SciencesShanghaiChina
| | - Demin Wang
- Blood Research Institute, Blood Center of WisconsinMilwaukeeUnited States
| | - Jialing Xiang
- Department of Biology, Illinois Institute of TechnologyChicagoUnited States
| | - Anning Lin
- Ben May Department for Cancer Research, The University of ChicagoChicagoUnited States
- Institute of Modern Biology, Nanjing UniversityNanjingChina
| |
Collapse
|
24
|
Li X, Yu C, Meng X, Hou Y, Cui Y, Zhu T, Li Y, Teng L, Sun F, Li Y. Study of double-targeting nanoparticles loaded with MCL-1 siRNA and dexamethasone for adjuvant-induced arthritis therapy. Eur J Pharm Biopharm 2020; 154:136-143. [DOI: 10.1016/j.ejpb.2020.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 07/01/2020] [Accepted: 07/12/2020] [Indexed: 12/28/2022]
|
25
|
Ding Y, Wang L, Wu H, Zhao Q, Wu S. Exosomes derived from synovial fibroblasts under hypoxia aggravate rheumatoid arthritis by regulating Treg/Th17 balance. Exp Biol Med (Maywood) 2020; 245:1177-1186. [PMID: 32615822 DOI: 10.1177/1535370220934736] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
IMPACT STATEMENT A comparative study of osteoarthritis (OA) and RA mice was implemented to suggest that miR-424 expression was increased in RA, and exosome-miR-424 derived from synovial fibroblasts (SFs-exo) could significantly induce T cells differentiation in which Th17 cells increased and Treg cells decreased via targeting FOXP3. And thus, miR-424 may be a potential therapeutic target for RA.
Collapse
Affiliation(s)
- Yanjie Ding
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China.,Department of Rheumatology and Immunology, Huaihe Hospital of Henan University, Henan, Kaifeng 475000, P.R. China
| | - Laifang Wang
- Department of Rheumatology and Immunology, Huaihe Hospital of Henan University, Henan, Kaifeng 475000, P.R. China
| | - Huiqiang Wu
- Department of Rheumatology and Immunology, Huaihe Hospital of Henan University, Henan, Kaifeng 475000, P.R. China
| | - Qing Zhao
- Department of Rheumatology and Immunology, Huaihe Hospital of Henan University, Henan, Kaifeng 475000, P.R. China
| | - Shufang Wu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
26
|
Liu P, Wang J, Wen W, Pan T, Chen H, Fu Y, Wang F, Huang JH, Xu S. Cinnamaldehyde suppresses NLRP3 derived IL-1β via activating succinate/HIF-1 in rheumatoid arthritis rats. Int Immunopharmacol 2020; 84:106570. [PMID: 32413739 DOI: 10.1016/j.intimp.2020.106570] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/18/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023]
Abstract
Cinnamaldehyde (CA) is an essential component of cinnamon (Cinnamomum cassia Presland), which is often used as a flavoring condiment in beverages, pastries, perfumes, etc. Cinnamon is also used as herbal medicine in China and Southeast Asia to treat rheumatoid arthritis. However, the molecular mechanism is unclear. In this study, we aim to investigate its anti-inflammatory effects against Rheumatoid arthritis (RA) using activated macrophages (Raw246.7) in vitro and adjuvant arthritis rats (AA) in vivo. The results demonstrated that CA significantly reduced synovial inflammation in AA rats, possibly due to suppression of the expressions of pro-inflammatory cytokines, especially the IL-1β. Further investigation found that CA also suppressed the activity of HIF-1α by inhibiting the accumulation of succinate in cytoplasm. As we know, the reduction of HIF-1α nucleation slows down IL-1β production, because HIF-1α activates the expression of NLRP3, which is involved in the assembly of inflammasome and processing of IL-1β. In addition, CA also inhibited the expression of the succinate receptor GPR91, which in turn inhibited the activation of HIF-1α. In conclusions, our results suggested that CA might be a potential therapeutic compound to relieve rheumatoid arthritis progress by suppressing IL-1β through modulating succinate/HIF-1α axis and inhibition of NLRP3.
Collapse
Affiliation(s)
- Panwang Liu
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Jie Wang
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Wen Wen
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Ting Pan
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Huan Chen
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Ying Fu
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Fushun Wang
- Institute of Brain and Psyhological Sciences, Sichuan Normal University, Chengdu, Sichuan 610000, China
| | - Jason H Huang
- Department of Neurosurgery, Balor Scott & White Health Science Center, Temple, TX, United States; Department of Surgery, Texas A&M University College of Medicine, Temple, TX 79409, United States
| | - Shijun Xu
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.
| |
Collapse
|
27
|
De Pasquale V, Moles A, Pavone LM. Cathepsins in the Pathophysiology of Mucopolysaccharidoses: New Perspectives for Therapy. Cells 2020; 9:cells9040979. [PMID: 32326609 PMCID: PMC7227001 DOI: 10.3390/cells9040979] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 02/07/2023] Open
Abstract
Cathepsins (CTSs) are ubiquitously expressed proteases normally found in the endolysosomal compartment where they mediate protein degradation and turnover. However, CTSs are also found in the cytoplasm, nucleus, and extracellular matrix where they actively participate in cell signaling, protein processing, and trafficking through the plasma and nuclear membranes and between intracellular organelles. Dysregulation in CTS expression and/or activity disrupts cellular homeostasis, thus contributing to many human diseases, including inflammatory and cardiovascular diseases, neurodegenerative disorders, diabetes, obesity, cancer, kidney dysfunction, and others. This review aimed to highlight the involvement of CTSs in inherited lysosomal storage disorders, with a primary focus to the emerging evidence on the role of CTSs in the pathophysiology of Mucopolysaccharidoses (MPSs). These latter diseases are characterized by severe neurological, skeletal and cardiovascular phenotypes, and no effective cure exists to date. The advance in the knowledge of the molecular mechanisms underlying the activity of CTSs in MPSs may open a new challenge for the development of novel therapeutic approaches for the cure of such intractable diseases.
Collapse
Affiliation(s)
- Valeria De Pasquale
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy;
| | - Anna Moles
- Institute of Biomedical Research of Barcelona, Spanish Research Council, 08036 Barcelona, Spain;
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy;
- Correspondence: ; Tel.: +39-081-7463043
| |
Collapse
|
28
|
In-depth characterization of a novel live-attenuated Mayaro virus vaccine candidate using an immunocompetent mouse model of Mayaro disease. Sci Rep 2020; 10:5306. [PMID: 32210270 PMCID: PMC7093544 DOI: 10.1038/s41598-020-62084-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
Mayaro virus (MAYV) is endemic in South American countries where it is responsible for sporadic outbreaks of acute febrile illness. The hallmark of MAYV infection is a highly debilitating and chronic arthralgia. Although MAYV emergence is a potential threat, there are no specific therapies or licensed vaccine. In this study, we developed a murine model of MAYV infection that emulates many of the most relevant clinical features of the infection in humans and tested a live-attenuated MAYV vaccine candidate (MAYV/IRES). Intraplantar inoculation of a WT strain of MAYV into immunocompetent mice induced persistent hypernociception, transient viral replication in target organs, systemic production of inflammatory cytokines, chemokines and specific humoral IgM and IgG responses. Inoculation of MAYV/IRES in BALB/c mice induced strong specific cellular and humoral responses. Moreover, MAYV/IRES vaccination of immunocompetent and interferon receptor-defective mice resulted in protection from disease induced by the virulent wt MAYV strain. Thus, this study describes a novel model of MAYV infection in immunocompetent mice and highlights the potential role of a live-attenuated MAYV vaccine candidate in host's protection from disease induced by a virulent MAYV strain.
Collapse
|
29
|
Keewan E, Naser SA. The Role of Notch Signaling in Macrophages during Inflammation and Infection: Implication in Rheumatoid Arthritis? Cells 2020; 9:cells9010111. [PMID: 31906482 PMCID: PMC7016800 DOI: 10.3390/cells9010111] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/18/2019] [Accepted: 12/30/2019] [Indexed: 12/15/2022] Open
Abstract
Notch signaling coordinates numerous cellular processes and has been implicated in many pathological conditions, including rheumatoid arthritis (RA). Although the role of Notch signaling in development, maturation, differentiation, and activation of lymphocytes has been comprehensively reported, less is known about its role in myeloid cells. Certainly, limited data are available about the role of Notch signaling in macrophages during inflammation and infection. In this review, we discuss the recent advances pertaining to the role of Notch signaling in differentiation, activation, and metabolism of macrophages during inflammation and infection. We also highlight the reciprocal interplay between Notch signaling and other signaling pathways in macrophages under different inflammatory and infectious conditions including pathogenesis of RA. Finally, we discuss approaches that could consider Notch signaling as a potential therapeutic target against infection- and inflammation-driven diseases.
Collapse
Affiliation(s)
| | - Saleh A. Naser
- Correspondence: ; Tel.: +1-407-823-0955; Fax: +1-407-823-0956
| |
Collapse
|
30
|
Tu Y, Wang K, Wan JB, He C. Anti-inflammatory effects of Glycine tabacina extract in LPS-stimulated macrophages and collagen-induced arthritis mice. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103528] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
31
|
Pabón-Porras MA, Molina-Ríos S, Flórez-Suárez JB, Coral-Alvarado PX, Méndez-Patarroyo P, Quintana-López G. Rheumatoid arthritis and systemic lupus erythematosus: Pathophysiological mechanisms related to innate immune system. SAGE Open Med 2019; 7:2050312119876146. [PMID: 35154753 PMCID: PMC8826259 DOI: 10.1177/2050312119876146] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/19/2019] [Indexed: 12/21/2022] Open
Abstract
Rheumatoid arthritis and systemic lupus erythematosus are two highly prevalent autoimmune diseases that generate disability and low quality of life. The innate immune system, a long-forgotten issue in autoimmune diseases, is becoming increasingly important and represents a new focus for the treatment of these entities. This review highlights the role that innate immune system plays in the pathophysiology of rheumatoid arthritis and systemic lupus erythematosus. The role of the innate immune system in rheumatoid arthritis and systemic lupus erythematosus pathophysiology is not only important in early stages but is essential to maintain the immune response and to allow disease progression. In rheumatoid arthritis, genetic and environmental factors are involved in the initial stimulation of the innate immune response in which macrophages are the main participants, as well as fibroblast-like synoviocytes. In systemic lupus erythematosus, all the cells contribute to the inflammatory response, but the complement system is the major effector of the inflammatory process. Detecting alterations in the normal function of these cells, besides its contribution to the understanding of the pathophysiology of autoimmune diseases, could help to establish new treatment strategies for these diseases.
Collapse
Affiliation(s)
| | | | - Jorge Bruce Flórez-Suárez
- Reumavance Group, Rheumatology Section, Fundación Santa Fe de Bogotá University Hospital, Bogotá, Colombia
| | - Paola Ximena Coral-Alvarado
- Reumavance Group, Rheumatology Section, Fundación Santa Fe de Bogotá University Hospital, Bogotá, Colombia.,School of Medicine, Universidad de Los Andes, Bogotá, Colombia
| | - Paul Méndez-Patarroyo
- Reumavance Group, Rheumatology Section, Fundación Santa Fe de Bogotá University Hospital, Bogotá, Colombia.,School of Medicine, Universidad de Los Andes, Bogotá, Colombia
| | - Gerardo Quintana-López
- School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia.,Reumavance Group, Rheumatology Section, Fundación Santa Fe de Bogotá University Hospital, Bogotá, Colombia.,School of Medicine, Universidad de Los Andes, Bogotá, Colombia
| |
Collapse
|
32
|
Das M, Deb M, Laha D, Joseph M, Kanji S, Aggarwal R, Iwenofu OH, Pompili VJ, Jarjour W, Das H. Myeloid Krüppel-Like Factor 2 Critically Regulates K/BxN Serum-Induced Arthritis. Cells 2019; 8:cells8080908. [PMID: 31426355 PMCID: PMC6721677 DOI: 10.3390/cells8080908] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/29/2019] [Accepted: 08/15/2019] [Indexed: 01/14/2023] Open
Abstract
Rheumatoid arthritis (RA) is an immune-mediated inflammatory disease, and Krüppel-like factor 2 (KLF2) regulates immune cell activation and function. Herein, we show that in our experiments 50% global deficiency of KLF2 significantly elevated arthritic inflammation and pathogenesis, osteoclastic differentiation, matrix metalloproteinases (MMPs), and inflammatory cytokines in K/BxN serum-induced mice. The severities of RA pathogenesis, as well as the causative and resultant cellular and molecular factors, were further confirmed in monocyte-specific KLF2 deficient mice. In addition, induction of RA resulted in a decreased level of KLF2 in monocytes isolated from both mice and humans along with higher migration of activated monocytes to the RA sites in humans. Mechanistically, overexpression of KLF2 decreased the level of MMP9; conversely, knockdown of KLF2 increased MMP9 in monocytes along with enrichment of active histone marks and histone acetyltransferases on the MMP9 promoter region. These findings define the critical regulatory role of myeloid KLF2 in RA pathogenesis.
Collapse
Affiliation(s)
- Manjusri Das
- Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH 43210, USA
| | - Moonmoon Deb
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Dipranjan Laha
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Matthew Joseph
- Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH 43210, USA
| | - Suman Kanji
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Reeva Aggarwal
- Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH 43210, USA
| | - O Hans Iwenofu
- Department of Pathology, College of Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH 43210, USA
| | - Vincent J Pompili
- Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH 43210, USA
| | - Wael Jarjour
- Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH 43210, USA
| | - Hiranmoy Das
- Department of Internal Medicine, Wexner Medical Center at The Ohio State University, Columbus, OH 43210, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| |
Collapse
|
33
|
Tang TT, Lv LL, Wang B, Cao JY, Feng Y, Li ZL, Wu M, Wang FM, Wen Y, Zhou LT, Ni HF, Chen PS, Gu N, Crowley SD, Liu BC. Employing Macrophage-Derived Microvesicle for Kidney-Targeted Delivery of Dexamethasone: An Efficient Therapeutic Strategy against Renal Inflammation and Fibrosis. Am J Cancer Res 2019; 9:4740-4755. [PMID: 31367254 PMCID: PMC6643445 DOI: 10.7150/thno.33520] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 05/15/2019] [Indexed: 01/13/2023] Open
Abstract
Although glucocorticoids are the mainstays in the treatment of renal diseases for decades, the dose dependent side effects have largely restricted their clinical use. Microvesicles (MVs) are small lipid-based membrane-bound particles generated by virtually all cells. Here we show that RAW 264.7 macrophage cell-derived MVs can be used as vectors to deliver dexamethasone (named as MV-DEX) targeting the inflamed kidney efficiently. Methods: RAW macrophages were incubated with dexamethasone and then MV-DEX was isolated from the supernatants by centrifugation method. Nanoparticle tracking analysis, transmission electron microscopy, western blot and high-performance liquid chromatography were used to analyze the properties of MV-DEX. The LC-MS/MS was applied to investigate the protein compositions of MV-DEX. Based on the murine models of LPS- or Adriamycin (ADR)-induced nephropathy or in-vitro culture of glomerular endothelial cells, the inflammation-targeting characteristics and the therapeutic efficacy of MV-DEX was examined. Finally, we assessed the side effects of chronic glucocorticoid therapy in MV-DEX-treated mice. Results: Proteomic analysis revealed distinct integrin expression patterns on the MV-DEX surface, in which the integrin αLβ2 (LFA-1) and α4β1 (VAL-4) enabled them to adhere to the inflamed kidney. Compared to free DEX treatment, equimolar doses of MV-DEX significantly attenuated renal injury with an enhanced therapeutic efficacy against renal inflammation and fibrosis in murine models of LPS- or ADR-induced nephropathy. In vitro, MV-DEX with about one-fifth of the doses of free DEX achieved significant anti-inflammatory efficacy by inhibiting NF-κB activity. Mechanistically, MV-DEX could package and deliver glucocorticoid receptors to renal cells, thereby, increasing cellular levels of the receptor and improving cell sensitivity to glucocorticoids. Notably, delivering DEX in MVs significantly reduced the side effects of chronic glucocorticoid therapy (e.g., hyperglycemia, suppression of HPA axis). Conclusion: In summary, macrophage-derived MVs efficiently deliver DEX into the inflamed kidney and exhibit a superior capacity to suppress renal inflammation and fibrosis without apparent glucocorticoid adverse effects. Our findings demonstrate the effectiveness and security of a novel drug delivery strategy with promising clinical applications.
Collapse
Affiliation(s)
- Tao-Tao Tang
- Institute of Nephrology, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Lin-Li Lv
- Institute of Nephrology, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing, China,✉ Corresponding authors: Bi-Cheng Liu () or Lin-Li Lv ()
| | - Bin Wang
- Institute of Nephrology, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jing-Yuan Cao
- Institute of Nephrology, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ye Feng
- Institute of Nephrology, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zuo-Lin Li
- Institute of Nephrology, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Min Wu
- Institute of Nephrology, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Feng-Mei Wang
- Institute of Nephrology, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yi Wen
- Institute of Nephrology, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Le-Ting Zhou
- Institute of Nephrology, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Hai-Feng Ni
- Institute of Nephrology, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ping-Sheng Chen
- Institute of Nephrology, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China
| | - Steven D. Crowley
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina, United States
| | - Bi-Cheng Liu
- ✉ Corresponding authors: Bi-Cheng Liu () or Lin-Li Lv ()
| |
Collapse
|
34
|
Du Y, Lu C, Morgan RL, Stinson WA, Campbell PL, Cealey E, Fu W, Lepore NJ, Hervoso JL, Cui H, Urquhart AG, Lawton JN, Chung KC, Fox DA, Amin MA. Angiogenic and Arthritogenic Properties of the Soluble Form of CD13. THE JOURNAL OF IMMUNOLOGY 2019; 203:360-369. [PMID: 31189572 DOI: 10.4049/jimmunol.1801276] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 05/15/2019] [Indexed: 11/19/2022]
Abstract
Aminopeptidase N/CD13 is expressed by fibroblast-like synoviocytes (FLS) and monocytes (MNs) in inflamed human synovial tissue (ST). This study examined the role of soluble CD13 (sCD13) in angiogenesis, MN migration, phosphorylation of signaling molecules, and induction of arthritis. The contribution of sCD13 was examined in angiogenesis and MN migration using sCD13 and CD13-depleted rheumatoid arthritis (RA) synovial fluids (SFs). An enzymatically inactive mutant CD13 and intact wild-type (WT) CD13 were used to determine whether its enzymatic activity contributes to the arthritis-related functions. CD13-induced phosphorylation of signaling molecules was determined by Western blotting. The effect of sCD13 on cytokine secretion from RA ST and RA FLS was evaluated. sCD13 was injected into C57BL/6 mouse knees to assess its arthritogenicity. sCD13 induced angiogenesis and was a potent chemoattractant for MNs and U937 cells. Inhibitors of Erk1/2, Src, NF-κB, Jnk, and pertussis toxin, a G protein-coupled receptor inhibitor, decreased sCD13-stimulated chemotaxis. CD13-depleted RA SF induced significantly less MN migration than sham-depleted SF, and addition of mutant or WT CD13 to CD13-depleted RA SF equally restored MN migration. sCD13 and recombinant WT or mutant CD13 had similar effects on signaling molecule phosphorylation, indicating that the enzymatic activity of CD13 had no role in these functions. CD13 increased the expression of proinflammatory cytokines by RA FLS, and a CD13 neutralizing Ab inhibited cytokine secretion from RA ST organ culture. Mouse knee joints injected with CD13 exhibited increased circumference and proinflammatory mediator expression. These data support the concept that sCD13 plays a pivotal role in RA and acute inflammatory arthritis.
Collapse
Affiliation(s)
- Yuxuan Du
- Division of Rheumatology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109.,Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.,National Center for Clinical Laboratories/Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - Chenyang Lu
- Division of Rheumatology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Rachel L Morgan
- Division of Rheumatology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109
| | - William A Stinson
- Division of Rheumatology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Phillip L Campbell
- Division of Rheumatology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Ellen Cealey
- Division of Rheumatology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Wenyi Fu
- Division of Rheumatology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109.,Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, China; and
| | - Nicholas J Lepore
- Division of Rheumatology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Jonatan L Hervoso
- Division of Rheumatology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Huadong Cui
- Division of Rheumatology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109.,Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110022, China; and
| | - Andrew G Urquhart
- Department of Orthopaedic Surgery, University of Michigan Health System, A. Alfred Taubman Health Care Center, Ann Arbor, MI 48109
| | - Jeffrey N Lawton
- Department of Orthopaedic Surgery, University of Michigan Health System, A. Alfred Taubman Health Care Center, Ann Arbor, MI 48109
| | - Kevin C Chung
- Department of Orthopaedic Surgery, University of Michigan Health System, A. Alfred Taubman Health Care Center, Ann Arbor, MI 48109
| | - David A Fox
- Division of Rheumatology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109;
| | - Mohammad A Amin
- Division of Rheumatology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
35
|
Valiate BVS, Alvarez RU, Karra L, Queiroz‐Júnior CM, Amaral FA, Levi‐Schaffer F, Teixeira MM. The immunoreceptor CD300a controls the intensity of inflammation and dysfunction in a model of Ag‐induced arthritis in mice. J Leukoc Biol 2019; 106:957-966. [DOI: 10.1002/jlb.3a1018-389r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 03/21/2019] [Accepted: 05/10/2019] [Indexed: 12/12/2022] Open
Affiliation(s)
- Bruno V. S. Valiate
- Departamento de Bioquímica e ImunologiaInstituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte Brazil
| | - Rodrigo U. Alvarez
- Departamento de Bioquímica e ImunologiaInstituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte Brazil
| | - Laila Karra
- Pharmacology and Experimental Therapeutics UnitInstitute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem Jerusalem Israel
| | | | - Flavio A. Amaral
- Departamento de Bioquímica e ImunologiaInstituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte Brazil
| | - Francesca Levi‐Schaffer
- Pharmacology and Experimental Therapeutics UnitInstitute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem Jerusalem Israel
| | - Mauro M. Teixeira
- Departamento de Bioquímica e ImunologiaInstituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte Brazil
| |
Collapse
|
36
|
Wang Q, Ye C, Sun S, Li R, Shi X, Wang S, Zeng X, Kuang N, Liu Y, Shi Q, Liu R. Curcumin attenuates collagen-induced rat arthritis via anti-inflammatory and apoptotic effects. Int Immunopharmacol 2019; 72:292-300. [PMID: 31005039 DOI: 10.1016/j.intimp.2019.04.027] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 04/02/2019] [Accepted: 04/12/2019] [Indexed: 10/27/2022]
Abstract
Curcumin is a natural herbal product that has been popularly used to treat autoimmune diseases in China; however, its effects on rheumatoid arthritis and its mechanism are not clear. The main purposes of this study are to explore the therapeutic effects of curcumin on collagen-induced arthritis (CIA) rats and the pharmacological mechanism. In the present study, CIA rats were established by injecting bovine type II collagen. Curcumin and methotrexate were then orally administered daily, and the swelling degree of the hind limb joints was scored every two days. Histopathological changes were observed by hematoxylin-eosin staining. The levels of cytokines (TNF-α, IL-1β, IL-17 and TGF-β) were detected by radioimmunoassay, while the expression of IκBα and COX-2 was detected by Western blot. In addition, cell viability was detected by CCK-8 assay, and the effect of curcumin on macrophage apoptosis was detected by flow cytometry and TUNEL assay. The results indicated that in vivo curcumin attenuated the degree of joint swelling of rats and the further development of joint histopathology. Moreover, it downregulated the levels of cytokines. In vitro curcumin inhibited the degradation of IκBα and reduced the production of COX-2 in LPS-induced inflammatory RAW264.7 cells. Importantly, curcumin significantly induced macrophage apoptosis. In conclusion, in this study, we have demonstrated that curcumin exerts therapeutic effects on arthritis in CIA rats and has a strong pharmacological activity on reducing the inflammatory response in macrophages. Its mechanism may be related to the inhibition of the NF-κB signaling pathway and the promotion of macrophage apoptosis.
Collapse
Affiliation(s)
- Qirui Wang
- Department of Immunology, Medical College of Nanchang University, Nanchang 330000, China
| | - Chanqi Ye
- Department of Immunology, Medical College of Nanchang University, Nanchang 330000, China
| | - Shukun Sun
- Department of Immunology, Medical College of Nanchang University, Nanchang 330000, China
| | - Rong Li
- Department of Immunology, Medical College of Nanchang University, Nanchang 330000, China
| | - Xiaojian Shi
- Department of Vascular Surgery, The First Hospital of Jilin University, Changchun 130000, China
| | - Shuai Wang
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale 85259, United States of America
| | - Xiaoping Zeng
- Department of Immunology, Medical College of Nanchang University, Nanchang 330000, China
| | - Nanzhen Kuang
- Department of Immunology, Medical College of Nanchang University, Nanchang 330000, China
| | - Yulin Liu
- Department of Immunology, Medical College of Nanchang University, Nanchang 330000, China
| | - Qiaofa Shi
- Department of Immunology, Medical College of Nanchang University, Nanchang 330000, China
| | - Renping Liu
- Department of Immunology, Medical College of Nanchang University, Nanchang 330000, China.
| |
Collapse
|
37
|
Lee YG, Lee H, Ryuk JA, Hwang JT, Kim HG, Lee DS, Kim YJ, Yang DC, Ko BS, Baek NI. 6-Methoxyflavonols from the aerial parts of Tetragonia tetragonoides (Pall.) Kuntze and their anti-inflammatory activity. Bioorg Chem 2019; 88:102922. [PMID: 31003077 DOI: 10.1016/j.bioorg.2019.102922] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 12/12/2022]
Abstract
Dried aerial parts of Tetragonia tetragonoides were extracted with 70% EtOH, and the evaporated residue was successively separated into EtOAc, n-BuOH, and H2O fractions. As a result of repeated SiO2, ODS, and Sephadex LH-20 column chromatography, four new 6-methoxyflavonol glycosides (2-4, 8) along with four known ones (1, 5-7) were isolated. Several spectroscopic data led to determination of chemical structures for four new 6-methoxyflavonol glycosides (2-4, 8) and four known ones, 6-methoxykaempferol 3-O-β-d-glucopyranosyl-(1 → 2)-β-d-glucopyranosyl-7-O-(6‴'-(E)-caffeoyl)-β-d-glucopyranoside (1), 6-methoxyquercetin (5), 6-methoxykaempferol (6), and 6-methoxykaempferol 7-O-β-d-glucopyranoside (7). Methoxyflavonol glycosides 2-8 also have never been reported from T. tetragonoides in this study. 6-Methoxyflavonols 5 and 6 showed high radical scavenging potential in DPPH and ABTS test. Also, all compounds showed significant anti-inflammatory activities such as reduction of NO and PGE2 formation and suppression of TNF-α, IL-6, IL-1β, iNOS, and COX-2 expression in LPS-stimulated RAW 264.7 macrophages. In general, the aglycones exhibited higher activity than the glycosides. In addition, quantitative analysis of 6-methoxyflavonols in the T. tetragonoides aerial parts extract was conducted through HPLC.
Collapse
Affiliation(s)
- Yeong-Geun Lee
- Graduate School of Biotechnology and Department of Oriental Medicinal Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hwan Lee
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Jin Ah Ryuk
- Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea.
| | - Joo Tae Hwang
- Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea.
| | - Hyoung-Geun Kim
- Graduate School of Biotechnology and Department of Oriental Medicinal Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Dong-Sung Lee
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea.
| | - Yeon-Ju Kim
- Graduate School of Biotechnology and Department of Oriental Medicinal Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea.
| | - Deok-Chun Yang
- Graduate School of Biotechnology and Department of Oriental Medicinal Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea.
| | - Byoung Seob Ko
- Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea.
| | - Nam-In Baek
- Graduate School of Biotechnology and Department of Oriental Medicinal Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea.
| |
Collapse
|
38
|
Kim YY, Choi J, Choi K, Park C, Kim YH, Suh KH, Ham YJ, Jang SY, Lee KH, Hwang KW. Synthesis and evaluation of thieno[3,2-d]pyrimidine derivatives as novel FMS inhibitors. Bioorg Med Chem Lett 2019; 29:271-275. [PMID: 30522957 DOI: 10.1016/j.bmcl.2018.11.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/16/2018] [Accepted: 11/18/2018] [Indexed: 10/27/2022]
Abstract
Colony stimulating factor-1 receptor (CSF-1R or FMS) and it ligand, CSF-1, signaling regulates the differentiation and function of tumor-associated macrophages (TAMs) that play an important role in tumor progression. Derivatives of thieno[3,2-d]pyrimidine were synthesized and evaluated as kinase inhibitors of FMS. The most representative compound 21 showed strong activity (IC50 = 2 nM) against FMS kinase and served as candidate for proof of concept. Anti-tumor activity alone and/or in combination with paclitaxel was examined via a tumor cell growth inhibition assay and via an in vitro tumor invasion assay using human breast adenocarcinoma cells.
Collapse
Affiliation(s)
- Yu-Yon Kim
- Host Defense Modulation Lab, Collage of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 06974, Republic of Korea; Hanmi Research Center, Hanmi Pharm. Co. Ltd., 550 Dongtangiheung-Ro, Hwaseong-Si, Gyeonggi-Do 18469, Republic of Korea.
| | - Jaeyul Choi
- Hanmi Research Center, Hanmi Pharm. Co. Ltd., 550 Dongtangiheung-Ro, Hwaseong-Si, Gyeonggi-Do 18469, Republic of Korea.
| | - Kyungjin Choi
- Hanmi Research Center, Hanmi Pharm. Co. Ltd., 550 Dongtangiheung-Ro, Hwaseong-Si, Gyeonggi-Do 18469, Republic of Korea.
| | - Changhee Park
- Hanmi Research Center, Hanmi Pharm. Co. Ltd., 550 Dongtangiheung-Ro, Hwaseong-Si, Gyeonggi-Do 18469, Republic of Korea.
| | - Young Hoon Kim
- Hanmi Research Center, Hanmi Pharm. Co. Ltd., 550 Dongtangiheung-Ro, Hwaseong-Si, Gyeonggi-Do 18469, Republic of Korea.
| | - Kwee Hyun Suh
- Hanmi Research Center, Hanmi Pharm. Co. Ltd., 550 Dongtangiheung-Ro, Hwaseong-Si, Gyeonggi-Do 18469, Republic of Korea.
| | - Young Jin Ham
- Hanmi Research Center, Hanmi Pharm. Co. Ltd., 550 Dongtangiheung-Ro, Hwaseong-Si, Gyeonggi-Do 18469, Republic of Korea.
| | - Sun Young Jang
- Hanmi Research Center, Hanmi Pharm. Co. Ltd., 550 Dongtangiheung-Ro, Hwaseong-Si, Gyeonggi-Do 18469, Republic of Korea.
| | - Kyu-Hang Lee
- Hanmi Research Center, Hanmi Pharm. Co. Ltd., 550 Dongtangiheung-Ro, Hwaseong-Si, Gyeonggi-Do 18469, Republic of Korea.
| | - Kwang Woo Hwang
- Host Defense Modulation Lab, Collage of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 06974, Republic of Korea.
| |
Collapse
|
39
|
Batko B, Schramm-Luc A, Skiba DS, Mikolajczyk TP, Siedlinski M. TNF-α Inhibitors Decrease Classical CD14 hiCD16- Monocyte Subsets in Highly Active, Conventional Treatment Refractory Rheumatoid Arthritis and Ankylosing Spondylitis. Int J Mol Sci 2019; 20:ijms20020291. [PMID: 30642076 PMCID: PMC6358965 DOI: 10.3390/ijms20020291] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 12/13/2022] Open
Abstract
Monocytes are pivotal cells in inflammatory joint diseases. We aimed to determine the effect of TNF-α inhibitors (TNFi) on peripheral blood monocyte subpopulations and their activation in ankylosing spondylitis (AS) and rheumatoid arthritis (RA) patients with high disease activity. To address this, we studied 50 (32 AS, 18 RA) patients with highly active disease with no prior history of TNFi use who were recruited and assigned to TNFi or placebo treatment for 12 weeks. Cytometric and clinical assessment was determined at baseline, four, and 12 weeks after initiation of TNFi treatment. We observed that treatment with TNFi led to a significant decrease in CD14hiCD16- monocytes in comparison to placebo, while circulating CD14dimCD16+ monocytes significantly increased. The TNFi-induced monocyte subset shifts were similar in RA and AS patients. While the percentage of CD14dimCD16+ monocytes increased, expression of CD11b and CD11c integrins on their surface was significantly reduced by TNFi. Additionally, CD45RA+ cells were more frequent. The shift towards nonclassical CD14dimCD16+ monocytes in peripheral blood due to TNFi treatment was seen in both AS and RA. This may reflect reduced recruitment of these cells to sites of inflammation due to lower inflammatory burden, which is associated with decreased disease activity.
Collapse
Affiliation(s)
- Bogdan Batko
- Department of Rheumatology, J. Dietl Specialist Hospital, 31-121 Krakow, Poland.
| | - Agata Schramm-Luc
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Poland.
| | - Dominik S Skiba
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Poland.
- BHF Centre of Research Excellence, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8TA, UK.
| | - Tomasz P Mikolajczyk
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Poland.
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK.
| | - Mateusz Siedlinski
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Poland.
| |
Collapse
|
40
|
Li TP, Zhang AH, Miao JH, Sun H, Yan GL, Wu FF, Wang XJ. Applications and potential mechanisms of herbal medicines for rheumatoid arthritis treatment: a systematic review. RSC Adv 2019; 9:26381-26392. [PMID: 35685403 PMCID: PMC9127666 DOI: 10.1039/c9ra04737a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/04/2019] [Indexed: 12/12/2022] Open
Abstract
In this review, we systematically discuss the role of traditional Chinese medicine (TCM) in rheumatoid arthritis (RA) disease treatment. TCM classifies the subtypes of RA through its own theoretical method, which is beneficial for more accurate diagnosis and treatment with Chinese herbal medicines (CHMs) that are more suitable for different syndromes. TCM mainly uses a flexible combination of CHMs to play an important role in RA treatment. The main components of these extracts can be subdivided into alkaloids, flavonoids, triterpenes, saponins and other compounds. Using a platform of transgenic and induced arthritis models, we explore the potential mechanisms of TCM against RA with the help of omics analysis techniques and methods. These mechanisms are mainly CHM and its extracts can inhibit RA patients and experimental animal models, including synovitis, vascular proliferation and bone injury; this involves many biological signal exchange targets and pathways. In conclusion, the role of TCM in RA treatment mainly involves reducing the expression and secretion of pro-inflammatory factors, thus decreasing the degree of abnormal immune response. In this review, we systematically discuss the role of traditional Chinese medicine (TCM) in rheumatoid arthritis (RA) disease treatment.![]()
Collapse
Affiliation(s)
- Tai-ping Li
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- Nanning
- China
- National Chinmedomics Research Center
| | - Ai-hua Zhang
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Jian-hua Miao
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- Nanning
- China
| | - Hui Sun
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Guang-li Yan
- National Chinmedomics Research Center
- Sino-America Chinmedomics Technology Collaboration Center
- National TCM Key Laboratory of Serum Pharmacochemistry
- Laboratory of Metabolomics
- Department of Pharmaceutical Analysis
| | - Fang-fang Wu
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- Nanning
- China
- National Chinmedomics Research Center
| | - Xi-jun Wang
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials
- Guangxi Botanical Garden of Medicinal Plant
- Nanning
- China
- National Chinmedomics Research Center
| |
Collapse
|
41
|
Burbano C, Rojas M, Muñoz-Vahos C, Vanegas-García A, Correa LA, Vásquez G, Castaño D. Extracellular vesicles are associated with the systemic inflammation of patients with seropositive rheumatoid arthritis. Sci Rep 2018; 8:17917. [PMID: 30559453 PMCID: PMC6297132 DOI: 10.1038/s41598-018-36335-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/19/2018] [Indexed: 12/29/2022] Open
Abstract
Patients with rheumatoid arthritis (RA) and autoantibodies, such as rheumatoid factor and those against cyclic citrullinated peptides, are designated as seropositive and have a more severe disease with worse prognosis than seronegative RA patients. Understanding the factors that participate in systemic inflammation, in addition to articular commitment, would allow better treatment approaches for prevention of RA comorbidities and disease reactivation. We evaluated whether monocyte subsets and extracellular vesicles (EVs) could contribute to this phenomenon. Seropositive patients had higher levels of proinflammatory cytokines than those of seronegative patients and healthy controls (HCs); however, this systemic inflammatory profile was unrelated to disease activity. High frequencies of circulating EVs positive for IgG, IgM, CD41a, and citrulline, together with altered counts and receptor expression of intermediate monocytes, were associated with systemic inflammation in seropositive patients; these alterations were not observed in seronegative patients, which seem to be more similar to HCs. Additionally, the EVs from seropositive patients were able to activate mononuclear phagocytes in vitro, and induced proinflammatory cytokines that were comparable to the inflammatory response observed at the systemic level in seropositive RA patients; therefore, all of these factors may contribute to the greater disease severity that has been described in these patients.
Collapse
Affiliation(s)
- Catalina Burbano
- Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia
- Unidad de Citometría de Flujo, Sede de Investigación Universitaria, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia
| | - Mauricio Rojas
- Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia
- Unidad de Citometría de Flujo, Sede de Investigación Universitaria, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia
| | - Carlos Muñoz-Vahos
- Sección de Reumatología, Hospital Universitario de San Vicente Fundación, Medellín, Colombia
| | - Adriana Vanegas-García
- Sección de Reumatología, Hospital Universitario de San Vicente Fundación, Medellín, Colombia
| | - Luis A Correa
- Sección de Dermatología, Departamento de Medicina Interna, Facultad de Medicina, Universidad de Antioquia, Laboratorio Clínico VID, Obra de la Congregación Mariana, Medellín, Colombia
| | - Gloria Vásquez
- Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia
| | - Diana Castaño
- Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia.
| |
Collapse
|
42
|
Snijesh V, Matchado MS, Singh S. Classifying Rheumatoid Arthritis gene network signatures for identifying key regulatory molecules and their altered pathways by adopting network biology approach. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Malemud CJ. Defective T-Cell Apoptosis and T-Regulatory Cell Dysfunction in Rheumatoid Arthritis. Cells 2018; 7:E223. [PMID: 30469466 PMCID: PMC6316166 DOI: 10.3390/cells7120223] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/13/2018] [Accepted: 11/20/2018] [Indexed: 12/25/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, progressive, systemic autoimmune disease that mostly affects small and large synovial joints. At the molecular level, RA is characterized by a profoundly defective innate and adaptive immune response that results in a chronic state of inflammation. Two of the most significant alterations in T-lymphocyte (T-cell) dysfunction in RA is the perpetual activation of T-cells that result in an abnormal proliferation state which also stimulate the proliferation of fibroblasts within the joint synovial tissue. This event results in what we have termed "apoptosis resistance", which we believe is the leading cause of aberrant cell survival in RA. Finding therapies that will induce apoptosis under these conditions is one of the current goals of drug discovery. Over the past several years, a number of T-cell subsets have been identified. One of these T-cell subsets are the T-regulatory (Treg) cells. Under normal conditions Treg cells dictate the state of immune tolerance. However, in RA, the function of Treg cells become compromised resulting in Treg cell dysfunction. It has now been shown that several of the drugs employed in the medical therapy of RA can partially restore Treg cell function, which has also been associated with amelioration of the clinical symptoms of RA.
Collapse
Affiliation(s)
- Charles J Malemud
- Department of Medicine, Division of Rheumatic Diseases, Case Western Reserve University School of Medicine, Foley Medical Building, 2061 Cornell Road, Suite 207, Cleveland, OH 44122-5076, USA.
- Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA.
| |
Collapse
|
44
|
Yi YS. Regulatory Roles of the Caspase-11 Non-Canonical Inflammasome in Inflammatory Diseases. Immune Netw 2018; 18:e41. [PMID: 30619627 PMCID: PMC6312891 DOI: 10.4110/in.2018.18.e41] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/05/2018] [Accepted: 11/11/2018] [Indexed: 02/07/2023] Open
Abstract
Inflammation is an immune response mediated by innate immune cells of tissues, against invading microbes and cellular stress. The hallmark of inflammatory responses is the activation of inflammasomes — multiprotein oligomers comprising intracellular pattern recognition receptors and inflammatory effectors — such as ASC and pro-cysteine-aspartic protease (pro-caspase)-1. Inflammasomes can be classified as canonical or non-canonical, and their activation in response to various ligands commonly induces caspase-1 activation and gasdermin D (GSDMD) processing, leading to caspase-1-mediated maturation and secretion of the pro-inflammatory cytokines IL-1β and IL-18, and GSDMD-mediated pyroptosis through pore generation in cell membranes. Although inflammation protects the host from harmful stimuli, chronic inflammation is a critical risk factor for inflammatory diseases, and several studies have investigated the role of canonical inflammasomes in inflammatory responses and diseases, with emerging studies focusing on the role of non-canonical inflammasomes. This review discusses recent studies on the regulatory roles of the caspase-11 non-canonical inflammasome in the pathogenesis of inflammatory diseases. Additionally, it provides an insight into the development of novel therapeutics based on targeting caspase-11 non-canonical inflammasome and its downstream effectors to prevent and treat human inflammatory conditions.
Collapse
Affiliation(s)
- Young-Su Yi
- Department of Pharmaceutical & Biomedical Engineering, Cheongju University, Cheongju 28503, Korea
| |
Collapse
|
45
|
Liu LL, Liu Q, Li P, Liu EH. Discovery of synergistic anti-inflammatory compound combination from herbal formula GuGe FengTong Tablet. Chin J Nat Med 2018; 16:683-692. [PMID: 30269845 DOI: 10.1016/s1875-5364(18)30108-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Indexed: 01/09/2023]
Abstract
Multi-components in herbal formulae exert holistic effects in synergistic or additive manners. However, appropriate strategies and supportive evidences are still lacking to uncover the synergistic or additive combinations. The present investigation aimed at seeking a screening strategy to identify the targeted combinations in GuGe FengTong Tablet (GGFTT), an herbal formula. Two compounds, belonging to different chemical classes, were combined with different concentration ratios and their anti-inflammation effects were investigated. The most significant anti-inflammatory combinations were evaluated by combination index (CI) method (additive effect, CI = 1; synergism, CI < 1; antagonism, CI > 1). The modulating effects of candidate combinations on pro-inflammatory cytokines and MAPKs signaling pathway were also detected. Two combinations, "biochanin A + 6-gingerol" (Bio-6G) and "genistein + 6-gingerol" (Gen-6G), showed synergistic effects (CI < 1), and Bio-6G was selected for further study. Compared with single compound, Bio-6G could synergistically inhibit the production of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) and the activation of MAPKs signaling pathway in LPS-stimulated RAW264.7 cells. The combined results showed that Bio-6G was a synergistic anti-inflammatory combination in GGFTT. Our results could provide a useful strategy to screen the synergistic combinations in herbal formulae.
Collapse
Affiliation(s)
- Le-Le Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qun Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - E-Hu Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
46
|
Huang JM, Ren RY, Bao Y, Guo JC, Xiang W, Jing XZ, Shi J, Zhang GX, Li L, Tian Y, Kang H, Guo FJ. Ulinastatin Inhibits Osteoclastogenesis and Suppresses Ovariectomy-Induced Bone Loss by Downregulating uPAR. Front Pharmacol 2018; 9:1016. [PMID: 30245631 PMCID: PMC6137085 DOI: 10.3389/fphar.2018.01016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/22/2018] [Indexed: 11/13/2022] Open
Abstract
Recent studies indicate that uPAR acts a crucial part in cell migration and the modulation of bone homeostasis. As a natural serine protease inhibitor, ulinastatin owns the capacity to reduce proinflammatory factors, downregulate the activation of NF-κB and mitogen-activated protein kinases (MAPKs) signaling pathways. Osteoclastogenesis has been demonstrated to be related with low-grade inflammation which involves cell migration, thus we speculate that ulinastatin may have a certain kind of impact on uPAR so as to be a potential inhibiting agent of osteoclastogenesis. In this research, we investigated the role which ulinastatin plays in RANKL-induced osteoclastogenesis both in vivo and in vitro. Ulinastatin inhibited osteoclast formation and bone resorption in a dose-dependent manner in primary bone marrow-derived macrophages (BMMs), and knockdown of uPAR could completely repress the formation of osteoclasts. At the molecular level, ulinastatin suppressed RANKL-induced activation of cathepsin K, TRAP, nuclear factor-κB (NF-κB) and MAPKs, and decreased the expression of uPAR. At the meantime, ulinastatin also decreased the expression of osteoclast marker genes, including cathepsin K, TRAP, RANK, and NFATc1. Besides, ulinastatin prevented bone loss in ovariectomized C57 mice by inhibiting the formation of osteoclasts. To sum up, this research confirmed that ulinastatin has the ability to inhibit osteoclastogenesis and prevent bone loss, and uPAR plays a crucial role in that process. Therefore, ulinastatin could be chosen as an effective alternative therapeutics for osteoclast-related diseases.
Collapse
Affiliation(s)
- Jun-Ming Huang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ran-Yue Ren
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Bao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Chao Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Xiang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing-Zhi Jing
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Shi
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guo-Xiang Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Long Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Tian
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Kang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng-Jin Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
47
|
Luo JF, Shen XY, Lio CK, Dai Y, Cheng CS, Liu JX, Yao YD, Yu Y, Xie Y, Luo P, Yao XS, Liu ZQ, Zhou H. Activation of Nrf2/HO-1 Pathway by Nardochinoid C Inhibits Inflammation and Oxidative Stress in Lipopolysaccharide-Stimulated Macrophages. Front Pharmacol 2018; 9:911. [PMID: 30233360 PMCID: PMC6131578 DOI: 10.3389/fphar.2018.00911] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/25/2018] [Indexed: 12/12/2022] Open
Abstract
The roots and rhizomes of Nardostachys chinensis have neuroprotection and cardiovascular protection effects. However, the specific mechanism of N. chinensis is not yet clear. Nardochinoid C (DC) is a new compound with new skeleton isolated from N. chinensis and this study for the first time explored the anti-inflammatory and anti-oxidant effect of DC. The results showed that DC significantly reduced the release of nitric oxide (NO) and prostaglandin E2 (PGE2) in lipopolysaccharide (LPS)-activated RAW264.7 cells. The expression of pro-inflammatory proteins including inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were also obviously inhibited by DC in LPS-activated RAW264.7 cells. Besides, the production of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were also remarkably inhibited by DC in LPS-activated RAW264.7 cells. DC also suppressed inflammation indicators including COX-2, PGE2, TNF-α, and IL-6 in LPS-stimulated THP-1 macrophages. Furthermore, DC inhibited the macrophage M1 phenotype and the production of reactive oxygen species (ROS) in LPS-activated RAW264.7 cells. Mechanism studies showed that DC mainly activated nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway, increased the level of anti-oxidant protein heme oxygenase-1 (HO-1) and thus produced the anti-inflammatory and anti-oxidant effects, which were abolished by Nrf2 siRNA and HO-1 inhibitor. These findings suggested that DC could be a new Nrf2 activator for the treatment and prevention of diseases related to inflammation and oxidative stress.
Collapse
Affiliation(s)
- Jin-Fang Luo
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.,State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Xiu-Yu Shen
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Chon Kit Lio
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.,State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Yi Dai
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Chun-Song Cheng
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.,State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Jian-Xin Liu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yun-Da Yao
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.,State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Yang Yu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Ying Xie
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.,State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Pei Luo
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.,State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Zhong-Qiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hua Zhou
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.,State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China.,Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
48
|
Xiang L, Hu YF, Wu JS, Wang L, Huang WG, Xu CS, Meng XL, Wang P. Semi-Mechanism-Based Pharmacodynamic Model for the Anti-Inflammatory Effect of Baicalein in LPS-Stimulated RAW264.7 Macrophages. Front Pharmacol 2018; 9:793. [PMID: 30072902 PMCID: PMC6058255 DOI: 10.3389/fphar.2018.00793] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 06/29/2018] [Indexed: 11/13/2022] Open
Abstract
Monitoring of the inhibition of TNF-α, IL-6, iNOS, and NO is used to effectively evaluate anti-inflammatory drugs. Baicalein was found to have good anti-inflammatory activities, but its detailed cellular pharmacodynamic events have not been expatiated by any other study. The inflammatory mediators, including TNF-α, IL-6, iNOS, and NO production in RAW264.7 macrophage induced by LPS, were measured. It was found that these data showed a sequential pattern on time and based on these points a cellular pharmacodynamic model was developed and tested. TNF-α and IL-6 were quantified by ELISA, NO was detected by Griess and iNOS expression was measured by Western blot. The pharmacodynamic model was developed using a NLME modeling program Monolix® 2016R1.1The results showed that baicalein quickly suppressed release of TNF-α in a concentration-dependent manner, and consequently causing the diminution of IL-6 and iNOS/NO. The pharmacodynamic model simulation successfully described the experimental data, supporting the hypothesis that IL-6 and iNOS /NO release after LPS stimulation is mediated by TNF-α rather than LPS directly. The pharmacodynamic model allowed a well understanding of the cellular pharmacodynamic mechanism of baicalein in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Li Xiang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying-Fan Hu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia-Si Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wen-Ge Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chen-Si Xu
- Chengdu Pharmoko Tech LTD corp., Chengdu, China
| | - Xian-Li Meng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ping Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
49
|
Selim ZI, El-Hakeim EH, Omran EAH, Idriss NK, Gaber MA, Ross SV. KIAA1199 Biomarker and Ultrasonographic Findings in Rheumatoid
Arthritis Patients and their Correlation with Disease Activity. AKTUEL RHEUMATOL 2018. [DOI: 10.1055/a-0629-8340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Abstract
Introduction Rheumatoid arthritis (RA) is an autoimmune disease that
affects multiple joints causing joint destruction. KIAA1199 is a novel
angiogenic biomarker derived from fibroblast-like synoviocytes (FLS) it has a
role in acceleration and proliferation of FLS and activation of angiogenic
signaling pathways leading to erosion of cartilage and bone. Musculoskeletal
ultrasound (MUSU) and Power Doppler (PDUS) directly visualizing the synovial
membrane vessels, which is important in providing very early information on the
changes in synovitis activity during the course of the inflammatory joint
disease
Objective To assess the serum level of angiogenic biomarker KIAA1199 in
RA patients and its correlation with MSUS, PDUS findings, and the disease
activity Patients and methods: Fifty RA patients and 40 healthy control persons
age and sex-matched were recruited in this study, KIAA1199 was assessed in the
serum of patients and controls, MSUS and PDUS were done for the wrist, elbow,
and knee joints for all RA patients
Results Serum KIAA1199 level was significantly higher among RA patients
4.36±1.22 ng/dl compared to control group
2.87±0.51 ng/dl (p<0.001). There was a highly
significant correlation between KIAA1199 level and DAS28 (p=0.004), and
there was a significant correlation between the PDUS with KIAA1199 level and
DAS28 (p=0.001, 0.002 respectively) in wrist joints
Conclusion KIAA1199 is a new pathway that enhancing cell proliferation
and angiogenesis. Serum KIAA1199 level may be a useful biomarker for RA
activity, and therapeutic target in RA. PDUS correlates significantly with
clinical findings and novel angiogenic biomarker in RA patients.
Collapse
Affiliation(s)
- Zahraa Ibrahim Selim
- Faculty of medicine Assuit university, rhematology and rehabilitation,
Assuit, Egypt
| | - Eman H El-Hakeim
- Rheumatology and Rehablitation Department, Assiut, Assiut University
Hospital, Egypt
| | - Eman Ahmed Hamed Omran
- Faculty of Medicine, Rheumatology, Rehabilitation and Physical
Medicine, Assiut University, Assiut, Egypt
| | | | | | - Sylvia V Ross
- Rheumatology, Rehabilitation, Physical Medicine, Assuit university,
Assuit, Egypt
| |
Collapse
|
50
|
Cooke EJ, Zhou JY, Wyseure T, Joshi S, Bhat V, Durden DL, Mosnier LO, von Drygalski A. Vascular Permeability and Remodelling Coincide with Inflammatory and Reparative Processes after Joint Bleeding in Factor VIII-Deficient Mice. Thromb Haemost 2018; 118:1036-1047. [PMID: 29847841 PMCID: PMC6191040 DOI: 10.1055/s-0038-1641755] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Vascular remodelling is a prominent feature of haemophilic arthropathy (HA) that may underlie re-bleeding, yet the nature of vascular changes and underlying mechanisms remain largely unknown. Here, we aimed to characterize synovial vascular remodelling and vessel integrity after haemarthrosis, as well as temporal changes in inflammatory and tissue-reparative pathways. Thirty acutely painful joints in patients with haemophilia (PWH) were imaged by musculoskeletal ultrasound with Power Doppler (MSKUS/PD) to detect vascular abnormalities and bloody effusions. Nineteen out of 30 painful joint episodes in PWH were associated with haemarthrosis, and abnormal vascular perfusion was unique to bleeding joints. A model of induced haemarthrosis in factor VIII (FVIII)-deficient mice was used for histological assessment of vascular remodelling (α-smooth muscle actin [αSMA] expression), and monitoring of in vivo vascular perfusion and permeability by MSKUS/PD and albumin extravasation, respectively. Inflammatory (M1) and reparative (M2) macrophage markers were quantified in murine synovium over a 10-week time course by real-time polymerase chain reaction. The abnormal vascular perfusion observed in PWH was recapitulated in FVIII-deficient mice after induced haemarthrosis. Neovascularization and increased vessel permeability were apparent 2 weeks post-bleed in FVIII-deficient mice, after a transient elevation of inflammatory macrophage M1 markers. These vascular changes subsided by week 4, while vascular remodelling, evidenced by architectural changes and pronounced αSMA expression, persisted alongside a reparative macrophage M2 response. In conclusion, haemarthrosis leads to transient inflammation coupled with neovascularization and associated vascular permeability, while subsequent tissue repair mechanisms coincide with vascular remodelling. Together, these vascular changes may promote re-bleeding and HA progression.
Collapse
Affiliation(s)
- Esther J Cooke
- University of California San Diego, Department of Medicine, Division of Hematology/Oncology, La Jolla, CA, USA
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Jenny Y Zhou
- University of California San Diego, Department of Medicine, Division of Hematology/Oncology, La Jolla, CA, USA
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Tine Wyseure
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Shweta Joshi
- University of California San Diego, Department of Pediatrics, Moores UCSD Cancer Center, La Jolla, CA, USA
| | - Vikas Bhat
- University of California San Diego, Department of Medicine, Division of Hematology/Oncology, La Jolla, CA, USA
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Donald L Durden
- University of California San Diego, Department of Pediatrics, Moores UCSD Cancer Center, La Jolla, CA, USA
| | - Laurent O Mosnier
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Annette von Drygalski
- University of California San Diego, Department of Medicine, Division of Hematology/Oncology, La Jolla, CA, USA
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| |
Collapse
|