1
|
Ishioka H, Ghose A, Kingston HW, Plewes K, Leopold SJ, Srinamon K, Charunwatthana P, Ahmed M, Alam AKMS, Tuip-de Boer A, Hossain MA, Dondorp AM, Schultz MJ. The predictive capacity of biomarkers for clinical pulmonary oedema in patients with severe falciparum malaria is low: a prospective observational study. Malar J 2024; 23:320. [PMID: 39448997 PMCID: PMC11515577 DOI: 10.1186/s12936-024-05142-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Pulmonary oedema is a feared and difficult to predict complication of severe malaria that can emerge after start of antimalarial treatment. Proinflammatory mediators are thought to play a central role in its pathogenesis. METHODS An exploratory study was conducted to evaluate the predictive capacity of biomarkers for development of clinical pulmonary oedema in patients with severe falciparum malaria at two hospitals in Bangladesh. Plasma concentrations of interleukin-6 (IL-6), IL-8, tumour necrosis factor (TNF), soluble Receptor of Advanced Glycation End-products (sRAGE), surfactant protein-D (SP-D), club cell secretory protein (CC16), and Krebs von den Lungen-6 (KL-6) on admission were compared with healthy controls. Correlations between these biomarker and plasma lactate and Plasmodium falciparum histidine-rich protein 2 (PfHRP2) levels were evaluated. Receiver Operating Characteristic (ROC) curves were constructed to assess the predictive capacity for clinical pulmonary oedema of the biomarkers of interest. RESULTS Of 106 screened patients with falciparum malaria, 56 were classified as having severe malaria with a mortality rate of 29%. Nine (16%) patients developed clinical pulmonary oedema after admission. Plasma levels of the biomarkers of interest were higher in patients compared to healthy controls. IL-6, IL-8, TNF, sRAGE, and CC16 levels correlated well with plasma PfHRP2 levels (rs = 0.39; P = 0.004, rs = 0.43; P = 0.001, rs = 0.54; P < 0.001, rs = 0.44; P < 0.001, rs = 0.43; P = 0.001, respectively). Furthermore, IL-6 and IL-8 levels correlated well with plasma lactate levels (rs = 0.37; P = 0.005, rs = 0.47; P < 0.001, respectively). None of the biomarkers of interest had predictive capacity for development of clinical pulmonary oedema. CONCLUSIONS IL-6, IL-8, TNF, sRAGE, SP-D, CC16 and KL-6 cannot be used in predicting clinical pulmonary oedema in severe malaria patients.
Collapse
Affiliation(s)
- Haruhiko Ishioka
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
- Division of Infectious Diseases, Jichi Medical University Hospital, 3311-1 Yakushiji Shimotsuke-shi, Tochigi, 329-0498, Japan.
| | | | - Hugh W Kingston
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Katherine Plewes
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Stije J Leopold
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Ketsanee Srinamon
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Prakaykaew Charunwatthana
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Maswood Ahmed
- Chittagong Medical College Hospital, Chattogram, Bangladesh
| | | | - Anita Tuip-de Boer
- Department of Intensive Care, Amsterdam University Medical Center, Amsterdam, Netherlands
| | | | - Arjen M Dondorp
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Marcus J Schultz
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Intensive Care, Amsterdam University Medical Center, Amsterdam, Netherlands
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Long B, MacDonald A, Liang SY, Brady WJ, Koyfman A, Gottlieb M, Chavez S. Malaria: A focused review for the emergency medicine clinician. Am J Emerg Med 2024; 77:7-16. [PMID: 38096639 DOI: 10.1016/j.ajem.2023.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/18/2023] [Accepted: 11/23/2023] [Indexed: 02/16/2024] Open
Abstract
INTRODUCTION Malaria is a potentially fatal parasitic disease transmitted by the Anopheles mosquito. A resurgence in locally acquired infections has been reported in the U.S. OBJECTIVE This narrative review provides a focused overview of malaria for the emergency clinician, including the epidemiology, presentation, diagnosis, and management of the disease. DISCUSSION Malaria is caused by Plasmodium and is transmitted by the Anopheles mosquito. Disease severity can range from mild to severe. Malaria should be considered in any returning traveler from an endemic region, as well as those with unexplained cyclical, paroxysms of symptoms or unexplained fever. Patients most commonly present with fever and rigors but may also experience cough, myalgias, abdominal pain, fatigue, vomiting, and diarrhea. Hepatomegaly, splenomegaly, pallor, and jaundice are findings associated with malaria. Although less common, severe malaria is precipitated by microvascular obstruction with complications of anemia, acidosis, hypoglycemia, multiorgan failure, and cerebral malaria. Peripheral blood smears remain the gold standard for diagnosis, but rapid diagnostic tests are available. Treatment includes specialist consultation and antimalarial drugs tailored depending on chloroquine resistance, geographic region of travel, and patient comorbidities. Supportive care may be required, and patients with severe malaria will require resuscitation. Most patients will require admission for treatment and further monitoring. CONCLUSION Emergency medicine clinicians should be aware of the presentation, diagnosis, evaluation, and management of malaria to ensure optimal outcomes.
Collapse
Affiliation(s)
- Brit Long
- Department of Emergency Medicine, Emergency Medicine, Brooke Army Medical Center, Fort Sam Houston, TX, USA.
| | - Austin MacDonald
- Department of Emergency Medicine, Emergency Medicine, Brooke Army Medical Center, Fort Sam Houston, TX, USA
| | - Stephen Y Liang
- Divisions of Emergency Medicine and Infectious Diseases, Washington University School of Medicine, 660 S. Euclid Ave, St. Louis, MO, USA.
| | - William J Brady
- Department of Emergency Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA.
| | - Alex Koyfman
- Department of Emergency Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, USA
| | - Michael Gottlieb
- Department of Emergency Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Summer Chavez
- Department of Health Systems and Population Health Sciences, Tilman J. Fertitta Family College of Medicine, USA.
| |
Collapse
|
3
|
Poespoprodjo JR, Douglas NM, Ansong D, Kho S, Anstey NM. Malaria. Lancet 2023; 402:2328-2345. [PMID: 37924827 DOI: 10.1016/s0140-6736(23)01249-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 05/22/2023] [Accepted: 06/16/2023] [Indexed: 11/06/2023]
Abstract
Malaria is resurging in many African and South American countries, exacerbated by COVID-19-related health service disruption. In 2021, there were an estimated 247 million malaria cases and 619 000 deaths in 84 endemic countries. Plasmodium falciparum strains partly resistant to artemisinins are entrenched in the Greater Mekong region and have emerged in Africa, while Anopheles mosquito vectors continue to evolve physiological and behavioural resistance to insecticides. Elimination of Plasmodium vivax malaria is hindered by impractical and potentially toxic antirelapse regimens. Parasitological diagnosis and treatment with oral or parenteral artemisinin-based therapy is the mainstay of patient management. Timely blood transfusion, renal replacement therapy, and restrictive fluid therapy can improve survival in severe malaria. Rigorous use of intermittent preventive treatment in pregnancy and infancy and seasonal chemoprevention, potentially combined with pre-erythrocytic vaccines endorsed by WHO in 2021 and 2023, can substantially reduce malaria morbidity. Improved surveillance, better access to effective treatment, more labour-efficient vector control, continued drug development, targeted mass drug administration, and sustained political commitment are required to achieve targets for malaria reduction by the end of this decade.
Collapse
Affiliation(s)
- Jeanne Rini Poespoprodjo
- Centre for Child Health and Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia; Timika Malaria Research Facility, Papuan Health and Community Development Foundation, Timika, Indonesia; Mimika District Hospital and District Health Authority, Timika, Indonesia; Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia.
| | - Nicholas M Douglas
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia; Department of Infectious Diseases, Christchurch Hospital, Te Whatu Ora Waitaha, Christchurch, New Zealand; Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Daniel Ansong
- School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Steven Kho
- Timika Malaria Research Facility, Papuan Health and Community Development Foundation, Timika, Indonesia; Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia; Department of Infectious Diseases, Royal Darwin Hospital, Darwin, NT, Australia
| |
Collapse
|
4
|
Hoffmeister B. Respiratory Distress Complicating Falciparum Malaria Imported to Berlin, Germany: Incidence, Burden, and Risk Factors. Microorganisms 2023; 11:1579. [PMID: 37375081 DOI: 10.3390/microorganisms11061579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
While European healthcare systems face resource shortages as a consequence of the coronavirus pandemic, numbers of imported falciparum malaria cases increased again with re-intensifying international travel. The aim of the study was to identify malaria-specific complications associated with a prolonged intensive care unit (ICU) length of stay (ICU-LOS) in the pre-COVID-19 era and to determine targets for their prevention. This retrospective observational investigation included all the cases treated from 2001 to 2015 at the Charité University Hospital, Berlin. The association of malaria-specific complications with the ICU-LOS was assessed using a multivariate Cox proportional hazard regression. The risk factors for the individual complications were determined using a multivariate Bayesian logistic regression. Among the 536 included cases, 68 (12.7%) required intensive care and 55 (10.3%) suffered from severe malaria (SM). The median ICU-LOS was 61 h (IQR 38-91 h). Respiratory distress, which occurred in 11 individuals (2.1% of the total cases, 16.2% of the ICU patients, and 20% of the SM cases), was the only complication independently associated with ICU-LOS (adjusted hazard ratio for ICU discharge by 61 h 0.24, 95% confidence interval, 95%CI, 0.08-0.75). Shock (adjusted odds ratio, aOR, 11.5; 95%CI, 1.5-113.3), co-infections (aOR 7.5, 95%CI 1.2-62.8), and each mL/kg/h fluid intake in the first 24 treatment hours (aOR 2.2, 95%CI 1.1-5.1) were the independent risk factors for its development. Respiratory distress is not rare in severe imported falciparum malaria, and it is associated with a substantial burden. Cautious fluid management, including in shocked individuals, and the control of co-infections may help prevent its development and thereby reduce the ICU-LOS.
Collapse
Affiliation(s)
- Bodo Hoffmeister
- Department of Pulmonary Medicine and Infectious Diseases, Vivantes-Klinikum Neukölln, 12351 Berlin, Germany
| |
Collapse
|
5
|
Kalkman LC, Hänscheid T, Krishna S, Grobusch MP. Fluid therapy for severe malaria. THE LANCET. INFECTIOUS DISEASES 2022; 22:e160-e170. [PMID: 35051406 DOI: 10.1016/s1473-3099(21)00471-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 06/14/2023]
Abstract
Fluid therapy is an important supportive measure for patients with severe malaria. Patients with severe malaria usually have normal cardiac index, vascular resistance, and blood pressure and a small degree of hypovolaemia due to dehydration. Cell hypoxia, reduced kidney function, and acidosis result from microcirculatory compromise and malarial anaemia, which reduce tissue oxygenation, not hypovolaemia. Hence, aggressive fluid loading does not correct acid-base status, enhance kidney function, or improve patient outcomes, and it risks complications such as pulmonary oedema. Individualised conservative fluid management is recommended in patients with severe malaria. Physical examination and physiological indices have limited reliability in guiding fluid therapy. Invasive measures can be more accurate than physical examination and physiological indices but are often unavailable in endemic areas, and non-invasive measures, such as ultrasound, are mostly unexplored. Research into reliable methods applicable in low-resource settings to measure fluid status and response is a priority. In this Review, we outline the current knowledge on fluid management in severe malaria and highlight research needed to optimise fluid therapy and improve survival in severe malaria.
Collapse
Affiliation(s)
- Laura C Kalkman
- Centre of Tropical Medicine and Travel Medicine, Amsterdam University Medical Centre, Department of Infectious Diseases, University of Amsterdam, Amsterdam, Netherlands; Centre de Recherches Médicales en Lambaréné, Lambaréné, Gabon
| | - Thomas Hänscheid
- Instituto de Microbiologia, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sanjeev Krishna
- Centre de Recherches Médicales en Lambaréné, Lambaréné, Gabon; Clinical Academic Group, Institute for Infection and Immunity, and St George's University Hospitals NHS Foundation Trust, St George's University of London, London, UK; Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Martin P Grobusch
- Centre of Tropical Medicine and Travel Medicine, Amsterdam University Medical Centre, Department of Infectious Diseases, University of Amsterdam, Amsterdam, Netherlands; Centre de Recherches Médicales en Lambaréné, Lambaréné, Gabon; Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany; Masanga Medical Research Unit, Masanga, Sierra Leone; Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
6
|
Abstract
Supplemental Digital Content is available in the text. OBJECTIVES: To identify the epidemiology and outcome of adults and children with and without sepsis in a rural sub-Sahara African setting. DESIGN: A priori planned substudy of a prospective, before-and-after trial. SETTING: Rural, sub-Sahara African hospital. PATIENTS: One-thousand four-hundred twelve patients (adults, n = 491; children, n = 921) who were admitted to hospital because of an acute infection. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Demographic, clinical, laboratory data, danger signs, and the presence of sepsis (defined as a quick Sequential Organ Failure Assessment score count ≥ 2) at admission were extracted. Sepsis was observed in 69 adults (14.1%) and 248 children (26.9%). Sepsis patients differed from subjects without sepsis in several demographic and clinical aspects. Malaria was the most frequent type of infection in adults (66.7%) and children (63.7%) with sepsis, followed by suspected bacterial and parasitic infections other than malaria. Adults with sepsis more frequently developed respiratory failure (8.7% vs 2.1%; p = 0.01), had a higher in-hospital mortality (17.4% vs 8.3%; p < 0.001), were less often discharged home (81.2% vs 92.2%; p = 0.007), and had higher median (interquartile range) costs of care (30,300 [19,400–49,900] vs 42,500 Rwandan Francs [27,000–64,400 Rwandan Francs]; p = 0.004) than adults without sepsis. Children with sepsis were less frequently discharged home than children without sepsis (93.1% vs 96.4%; p = 0.046). Malaria and respiratory tract infections claimed the highest absolute numbers of lives. The duration of symptoms before hospital admission did not differ between survivors and nonsurvivors in adults (72 [24–168] vs 96 hr [72–168 hr]; p = 0.27) or children (48 [24–72] vs 36 [24–108 hr]; p = 0.8). Respiratory failure and coma were the most common causes of in-hospital death. CONCLUSIONS: In addition to suspected bacterial, viral, and fungal infections, malaria and other parasitic infections are common and important causes of sepsis in adults and children admitted to a rural hospital in sub-Sahara Africa. The in-hospital mortality associated with sepsis is substantial, primarily in adults.
Collapse
|
7
|
Hoffmeister B, Aguilar Valdez AD. Elevated admission C-reactive protein to albumin ratios are associated with disease severity and respiratory complications in adults with imported falciparum malaria. Trans R Soc Trop Med Hyg 2021; 116:492-500. [PMID: 34788859 DOI: 10.1093/trstmh/trab167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/15/2021] [Accepted: 10/23/2021] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND In imported falciparum malaria, systemic inflammation with increased capillary permeability can cause life-threatening complications, such as acute pulmonary edema (APO) or adult respiratory distress syndrome (ARDS). This observational study assessed the association of the admission serum albumin level (ALB) and C-reactive protein to albumin ratio (CRP/ALB) with disease severity and these respiratory complications. METHODS All adult cases hospitalized during 2001-2015 in the Charité University Hospital, Berlin, with ALB and CRP values measured upon admission, were retrospectively analysed. RESULTS Seventy-six patients were enrolled (26 female, median age: 37 y), 60 with uncomplicated malaria and 16 with severe malaria (SM). SM was associated with lower ALB (p<0.0001) and higher CRP/ALB (p<0.0001) values; the areas under the receiver operator curves (AUROCs) were 0.85 (95% CI 0.74 to 0.96) for ALB and 0.88 (95% CI 0.80 to 0.97) for CRP/ALB. Radiologic changes consistent with APO/ARDS were detectable in 5 of 45 admission chest X-rays performed (11.1%); the AUROCs were 0.86 (95% CI 0.74 to 0.99) for ALB and 0.91 (95% CI 0.82 to 0.99) for CRP/ALB. CONCLUSIONS Diminished admission ALB levels and elevated CRP/ALB ratios are associated with disease severity and respiratory complications in imported falciparum malaria. These readily and ubiquitously available markers may facilitate early identification of at-risk patients.
Collapse
Affiliation(s)
- Bodo Hoffmeister
- Depart ment of Respiratory Medicine, Clinic-Group Ernst von Bergmann, Potsdam and Bad Belzig, 14806 Bad Belzig, Germany
| | - Abner D Aguilar Valdez
- Department of Endocrinology, Clinic-Group Ernst von Bergmann, Potsdam and Bad Belzig, 14806 Bad Belzig, Germany
| |
Collapse
|
8
|
Barber BE, Grigg MJ, Cooper DJ, van Schalkwyk DA, William T, Rajahram GS, Anstey NM. Clinical management of Plasmodium knowlesi malaria. ADVANCES IN PARASITOLOGY 2021; 113:45-76. [PMID: 34620385 DOI: 10.1016/bs.apar.2021.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The zoonotic parasite Plasmodium knowlesi has emerged as an important cause of human malaria in parts of Southeast Asia. The parasite is indistinguishable by microscopy from the more benign P. malariae, but can result in high parasitaemias with multiorgan failure, and deaths have been reported. Recognition of severe knowlesi malaria, and prompt initiation of effective therapy is therefore essential to prevent adverse outcomes. Here we review all studies reporting treatment of uncomplicated and severe knowlesi malaria. We report that although chloroquine is effective for the treatment of uncomplicated knowlesi malaria, artemisinin combination treatment is associated with faster parasite clearance times and lower rates of anaemia during follow-up, and should be considered the treatment of choice, particularly given the risk of administering chloroquine to drug-resistant P. vivax or P. falciparum misdiagnosed as P. knowlesi malaria in co-endemic areas. For severe knowlesi malaria, intravenous artesunate has been shown to be highly effective and associated with reduced case-fatality rates, and should be commenced without delay. Regular paracetamol may also be considered for patients with severe knowlesi malaria or for those with acute kidney injury, to attenuate the renal damage resulting from haemolysis-induced lipid peroxidation.
Collapse
Affiliation(s)
- Bridget E Barber
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia.
| | - Matthew J Grigg
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Daniel J Cooper
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia; Department of Medicine, University of Cambridge School of Medicine, Cambridge, United Kingdom
| | | | - Timothy William
- Gleneagles Medical Centre, Kota Kinabalu, Malaysia; Clinical Research Centre, Queen Elizabeth Hospital 1, Kota Kinabalu, Malaysia
| | - Giri S Rajahram
- Clinical Research Centre, Queen Elizabeth Hospital 1, Kota Kinabalu, Malaysia; Queen Elizabeth Hospital 2, Kota Kinabalu, Malaysia
| | - Nicholas M Anstey
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| |
Collapse
|
9
|
Factors Associated with Prolonged Hospital Length of Stay in Adults with Imported Falciparum Malaria-An Observational Study from a Tertiary Care University Hospital in Berlin, Germany. Microorganisms 2021; 9:microorganisms9091941. [PMID: 34576836 PMCID: PMC8466442 DOI: 10.3390/microorganisms9091941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/22/2021] [Accepted: 09/06/2021] [Indexed: 12/20/2022] Open
Abstract
Outcome of falciparum malaria is largely influenced by the standard of care provided, which in turn depends on the available medical resources. Worldwide, the COVID-19 pandemic has had a major impact on the availability of these resources, even in resource-rich healthcare systems such as Germany's. The present study aimed to determine the under-explored factors associated with hospital length of stay (LOS) in imported falciparum malaria to identify potential targets for improving management. This retrospective observational study used multivariate Cox proportional hazard regression with time to discharge as an endpoint for adults hospitalized between 2001 and 2015 with imported falciparum malaria in the Charité University Hospital, Berlin. The median LOS of the 535 cases enrolled was 3 days (inter-quartile range, IQR, 3-4 days). The likelihood of being discharged by day 3 strongly decreased with severe malaria (hazard ratio, HR, 0.274; 95% Confidence interval, 95%CI: 0.190-0.396) and by 40% with each additional presenting complication (HR, 0.595; 95%CI: 0.510-0.694). The 55 (10.3%) severe cases required a median LOS of 7 days (IQR, 5-12 days). In multivariate analysis, occurrence of shock (adjusted HR, aHR, 0.438; 95%CI 0.220-0.873), acute pulmonary oedema or acute respiratory distress syndrome (aHR, 0.450; 95%CI: 0.223-0.874), and the need for renal replacement therapy (aHR, 0.170; 95%CI: 0.063-0.461) were independently associated with LOS. All patients survived to discharge. This study illustrates that favourable outcomes can be achieved with high-standard care in imported falciparum malaria. Early recognition of disease severity together with targeted supportive care can lead to avoidance of manifest organ failure, thereby potentially decreasing LOS and alleviating pressure on bed capacities.
Collapse
|
10
|
Batte A, Berrens Z, Murphy K, Mufumba I, Sarangam ML, Hawkes MT, Conroy AL. Malaria-Associated Acute Kidney Injury in African Children: Prevalence, Pathophysiology, Impact, and Management Challenges. Int J Nephrol Renovasc Dis 2021; 14:235-253. [PMID: 34267538 PMCID: PMC8276826 DOI: 10.2147/ijnrd.s239157] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/26/2021] [Indexed: 01/02/2023] Open
Abstract
Acute kidney injury (AKI) is emerging as a complication of increasing clinical importance associated with substantial morbidity and mortality in African children with severe malaria. Using the Kidney Disease: Improving Global Outcomes (KDIGO) criteria to define AKI, an estimated 24–59% of African children with severe malaria have AKI with most AKI community-acquired. AKI is a risk factor for mortality in pediatric severe malaria with a stepwise increase in mortality across AKI stages. AKI is also a risk factor for post-discharge mortality and is associated with increased long-term risk of neurocognitive impairment and behavioral problems in survivors. Following injury, the kidney undergoes a process of recovery and repair. AKI is an established risk factor for chronic kidney disease and hypertension in survivors and is associated with an increased risk of chronic kidney disease in severe malaria survivors. The magnitude of the risk and contribution of malaria-associated AKI to chronic kidney disease in malaria-endemic areas remains undetermined. Pathways associated with AKI pathogenesis in the context of pediatric severe malaria are not well understood, but there is emerging evidence that immune activation, endothelial dysfunction, and hemolysis-mediated oxidative stress all directly contribute to kidney injury. In this review, we outline the KDIGO bundle of care and highlight how this could be applied in the context of severe malaria to improve kidney perfusion, reduce AKI progression, and improve survival. With increased recognition that AKI in severe malaria is associated with substantial post-discharge morbidity and long-term risk of chronic kidney disease, there is a need to increase AKI recognition through enhanced access to creatinine-based and next-generation biomarker diagnostics. Long-term studies to assess severe malaria-associated AKI’s impact on long-term health in malaria-endemic areas are urgently needed.
Collapse
Affiliation(s)
- Anthony Batte
- Child Health and Development Centre, Makerere University College of Health Sciences, Kampala, Uganda
| | - Zachary Berrens
- Department of Pediatrics, Pediatric Critical Care Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kristin Murphy
- Department of Pediatrics, Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ivan Mufumba
- CHILD Research Laboratory, Global Health Uganda, Kampala, Uganda
| | | | - Michael T Hawkes
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Andrea L Conroy
- Department of Pediatrics, Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
11
|
Hoffmeister B, Aguilar Valdez AD. 'Run them dry': a retrospective experience with a restrictive fluid management strategy in severe imported falciparum malaria from a tertiary care university hospital in Berlin, Germany. Trans R Soc Trop Med Hyg 2021; 115:520-530. [PMID: 33681989 DOI: 10.1093/trstmh/trab027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 02/08/2021] [Accepted: 02/13/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Due to the unique pathophysiology with progressive mircocirculatory obstruction and simultaneously increased vascular permeability, overhydration can be rapidly harmful in patients with falciparum malaria. The outcome in all 558 cases hospitalised during 2001-2015 in the Charité University Hospital, Berlin, was favourable, independent of the antimalarial used. Here, the fluid management strategy in the most severely affected subgroup is examined. METHODS All fluids in 32 patients requiring treatment on intensive care units (ICUs) for >48 h were retrospectively quantified. All malaria-specific complications were followed up over the whole ICU stay. RESULTS Strong linear relationships between fluid intake and positive balances reflecting dehydration and increased vascular permeability were evident over the whole stay. With 2.2 (range: 0.7-6.9), 1.8 (0.6-6.1) and 1.3 (0.3-5.0) mL/kg/h on day 1, day 2 and over the remaining ICU stay, respectively, median fluid volumes remained below the actual WHO recommendations. No evidence for deterioration of any malaria-specific complication under such restrictive fluid management was found. The key prognostic parameter metabolic acidosis improved significantly over 48 h (p=0.02). All patients survived to discharge. CONCLUSIONS These results suggest that in the face of markedly increased vascular permeability, a restrictive fluid management strategy is clinically safe in adults with severe imported falciparum malaria.
Collapse
Affiliation(s)
- Bodo Hoffmeister
- D epartment of Respiratory Medicine , Clinic-Group Ernst von Bergmann, Potsdam and Bad Belzig, 14806 Bad Belzig, Germany
| | - Abner D Aguilar Valdez
- Department of Endocrinology, Clinic-Group Ernst von Bergmann, Potsdam and Bad Belzig, 14806 Bad Belzig, Germany
| |
Collapse
|
12
|
Point-of-care ultrasound to assess volume status and pulmonary oedema in malaria patients. Infection 2021; 50:65-82. [PMID: 34110570 PMCID: PMC8803774 DOI: 10.1007/s15010-021-01637-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/31/2021] [Indexed: 12/25/2022]
Abstract
PURPOSE Fluid management is challenging in malaria patients given the risks associated with intravascular fluid depletion and iatrogenic fluid overload leading to pulmonary oedema. Given the limitations of the physical examination in guiding fluid therapy, we evaluated point-of-care ultrasound (POCUS) of the inferior vena cava (IVC) and lungs as a novel tool to assess volume status and detect early oedema in malaria patients. METHODS To assess the correlation between IVC and lung ultrasound (LUS) indices and clinical signs of hypovolaemia and pulmonary oedema, respectively, concurrent clinical and sonographic examinations were performed in an observational study of 48 malaria patients and 62 healthy participants across age groups in Gabon. RESULTS IVC collapsibility index (CI) ≥ 50% on enrolment reflecting intravascular fluid depletion was associated with an increased number of clinical signs of hypovolaemia in severe and uncomplicated malaria. With exception of dry mucous membranes, IVC-CI correlated with most clinical signs of hypovolaemia, most notably sunken eyes (r = 0.35, p = 0.0001) and prolonged capillary refill (r = 0.35, p = 0.001). IVC-to-aorta ratio ≤ 0.8 was not associated with any clinical signs of hypovolaemia on enrolment. Among malaria patients, a B-pattern on enrolment reflecting interstitial fluid was associated with dyspnoea (p = 0.0003), crepitations and SpO2 ≤ 94% (both p < 0.0001), but not tachypnoea (p = 0.069). Severe malaria patients had increased IVC-CI (p < 0.0001) and more B-patterns (p = 0.004) on enrolment relative to uncomplicated malaria and controls. CONCLUSION In malaria patients, POCUS of the IVC and lungs may improve the assessment of volume status and detect early oedema, which could help to manage fluids in these patients.
Collapse
|
13
|
Whole blood transfusion improves vascular integrity and increases survival in artemether-treated experimental cerebral malaria. Sci Rep 2021; 11:12077. [PMID: 34103601 PMCID: PMC8187502 DOI: 10.1038/s41598-021-91499-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/25/2021] [Indexed: 01/28/2023] Open
Abstract
Pathological features observed in both human and experimental cerebral malaria (ECM) are endothelial dysfunction and changes in blood components. Blood transfusion has been routinely used in patients with severe malarial anemia and can also benefit comatose and acidotic malaria patients. In the present study Plasmodium berghei-infected mice were transfused intraperitoneally with 200 μL of whole blood along with 20 mg/kg of artemether. ECM mice showed severe thrombocytopenia and decreases in hematocrit. Artemether treatment markedly aggravated anemia within 24 h. Whole blood administration significantly prevented further drop in hematocrit and partially restored the platelet count. Increased levels of plasma angiopoietin-2 (Ang-2) remained high 24 h after artemether treatment but returned to normal levels 24 h after blood transfusion, indicating reversal to quiescence. Ang-1 was depleted in ECM mice and levels were not restored by any treatment. Blood transfusion prevented the aggravation of the breakdown of blood brain barrier after artemether treatment and decreased spleen congestion without affecting splenic lymphocyte populations. Critically, blood transfusion resulted in markedly improved survival of mice with ECM (75.9% compared to 50.9% receiving artemether only). These findings indicate that whole blood transfusion can be an effective adjuvant therapy for cerebral malaria.
Collapse
|
14
|
Kingston HWF, Ghose A, Rungpradubvong V, Satitthummanid S, Herdman MT, Plewes K, Leopold SJ, Ishioka H, Mohanty S, Maude RJ, Schultz MJ, Lagrand WK, Hossain MA, Day NPJ, White NJ, Anstey NM, Dondorp AM. Reduced Cardiac Index Reserve and Hypovolemia in Severe Falciparum Malaria. J Infect Dis 2021; 221:1518-1527. [PMID: 31693130 PMCID: PMC7137886 DOI: 10.1093/infdis/jiz568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 11/05/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Impaired microvascular perfusion is central to the development of coma and lactic acidosis in severe falciparum malaria. Refractory hypotension is rare on admission but develops frequently in fatal cases. We assessed cardiac function and volume status in severe falciparum malaria and its prognostic significance. METHODS Patients with severe (N = 101) or acute uncomplicated falciparum malaria (N = 83) were recruited from 2 hospitals in India and Bangladesh, and healthy participants (N = 44) underwent echocardiography. RESULTS Patients with severe malaria had 38% shorter left ventricular (LV) filling times and 25% shorter LV ejection times than healthy participants because of tachycardia; however, stroke volume, LV internal diameter in diastole (LVIDd), and LV internal diameter in systole (LVIDs) indices were similar. A low endocardial fraction shortening (eFS) was present in 17% (9 of 52) of severe malaria patients. Adjusting for preload and afterload, eFS was similar in health and severe malaria. Fatal cases had smaller baseline LVIDd and LVIDs indices, more collapsible inferior vena cavae (IVC), and higher heart rates than survivors. The LVIDs and IVC collapsibility were independent predictors for mortality, together with base excess and Glasgow Coma Scale. CONCLUSIONS Patients with severe malaria have rapid ejection of a normal stroke volume. Fatal cases had features of relative hypovolemia and reduced cardiac index reserve.
Collapse
Affiliation(s)
- Hugh W F Kingston
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia.,Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Churchill Hospital, Oxford, United Kingdom
| | | | - Voravut Rungpradubvong
- Division of Cardiology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Cardiac Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Sudarat Satitthummanid
- Division of Cardiology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Cardiac Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - M Trent Herdman
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Katherine Plewes
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Churchill Hospital, Oxford, United Kingdom
| | - Stije J Leopold
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Churchill Hospital, Oxford, United Kingdom
| | - Haruhiko Ishioka
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Richard J Maude
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Churchill Hospital, Oxford, United Kingdom
| | - Marcus J Schultz
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Department of Intensive Care Medicine, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Wim K Lagrand
- Department of Intensive Care Medicine, Academic Medical Center, University of Amsterdam, The Netherlands
| | | | - Nicholas P J Day
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Churchill Hospital, Oxford, United Kingdom
| | - Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Churchill Hospital, Oxford, United Kingdom
| | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Arjen M Dondorp
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Churchill Hospital, Oxford, United Kingdom
| |
Collapse
|
15
|
Abstract
Lactic acidosis and hyperlactatemia are common metabolic disturbances in patients with severe malaria. Lactic acidosis causes physiological adverse effects, which can aggravate the outcome of malaria. Despite its clear association with mortality in malaria patients, the etiology of lactic acidosis is not completely understood. In this review, the possible contributors to lactic acidosis and hyperlactatemia in patients with malaria are discussed. Both increased lactate production and impaired lactate clearance may play a role in the pathogenesis of lactic acidosis. The increased lactate production is caused by several factors, including the metabolism of intraerythrocytic Plasmodium parasites, aerobic glycolysis by activated immune cells, and an increase in anaerobic glycolysis in hypoxic cells and tissues as a consequence of parasite sequestration and anemia. Impaired hepatic and renal lactate clearance, caused by underlying liver and kidney disease, might further aggravate hyperlactatemia. Multiple factors thus participate in the etiology of lactic acidosis in malaria, and further investigations are required to fully understand their relative contributions and the consequences of this major metabolic disturbance.
Collapse
Affiliation(s)
- Hendrik Possemiers
- Laboratory of Immunoparasitology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Belgium
| | - Leen Vandermosten
- Laboratory of Immunoparasitology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Belgium
| | - Philippe E. Van den Steen
- Laboratory of Immunoparasitology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Belgium
| |
Collapse
|
16
|
Abstract
Background Severe malaria remains a leading cause of death worldwide. A greater understanding of its impact on multiple organ systems is essential in reducing the burden of disease. In this review we will summarize previously reported cardiovascular parameters of both adults and children with severe malaria. Method For this systematic review we searched MEDLINE and PUBMED for all papers published on cardiac function in severe malaria from January 1, 1990 until September 1, 2019. Severe malaria was defined as per World Health Organization. Publications were included if there was data from echocardiography, Pulse Contour Cardiac Output (PiCCO), or Pulmonary Arterial catheters (PAC) reported. Studies were excluded if related to medication induced cardiac dysfunction, malaria in pregnancy, or included subjects with known pre-existing heart disease. Results Twenty-four studies met inclusion criteria, the majority of which were studies of adult patients or a mixed cohort. Six solely involved pediatric patients. Significant heterogeneity existed in the cardiac parameters measured and results reported. One pediatric and one adult study suggested a reduced preload state during severe malaria. Cardiac systolic function was reported primarily within, or above, normative numeric ranges established in uninfected pediatric patients without anemia. Extensive variability existed in adult studies with reports of an elevated cardiac index in two studies, normal cardiac function in two studies, and descriptions of decreased function in two studies. Two reports suggest afterload in pediatric severe malaria is reduced. Reports of changes in the systemic vascular resistance of adults with severe malaria are inconsistent, with two trials demonstrating an increase and two suggesting a decrease. Studies demonstrated a mild rise in pulmonary pressure in both pediatric and adult patients that normalized by discharge. Conclusion Based on limited data, the cardiovascular effects of severe malaria appear to be heterogeneous and vary depending on age. Further detailed studies are required to explore and understand the overall hemodynamic effects of this high burden disease.
Collapse
|
17
|
Hanson J, Nyein PP, Aung NM, Kyi MM. Time for pragmatic, prospective clinical trials to determine the role of empirical antibacterial therapy in critically ill adults hospitalized with malaria. Int J Infect Dis 2020; 102:28-31. [PMID: 33017698 DOI: 10.1016/j.ijid.2020.09.1472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND Children with severe falciparum malaria in malaria-endemic regions are predisposed to developing life-threatening bacterial co-infection. International guidelines therefore recommend empirical broad-spectrum antibacterial therapy in these children. Few studies have examined co-infection in adults, although it has been believed to be relatively rare; antibacterial therapy is therefore not routinely recommended in adults with falciparum malaria. DISCUSSION However, the fundamental pathophysiology of falciparum malaria in adults and children is the same; it is therefore unclear why adults would not also be predisposed to bacterial infection. Indeed, recent studies have identified bacteraemia in >10% of adults hospitalized with malaria. Some have suggested that these adults probably had bacterial sepsis, with the parasitaemia an incidental finding. However, it is usually impossible in resource-limited settings to determine-at presentation-whether critically ill, parasitaemic adults have severe malaria, bacterial sepsis, or both. Given the significant case-fatality rates of severe malaria and bacterial sepsis, the pragmatic initial approach would be to cover both possibilities. CONCLUSIONS Life-threatening bacterial co-infection may be more common in critically ill adults with malaria than previously believed. While further prospective data are awaited to confirm these findings, it might be more appropriate to provide empirical aantibacterial cover in these patients than current guidelines suggest.
Collapse
Affiliation(s)
- Josh Hanson
- The Kirby Institute, University of New South Wales, Sydney, Australia; University of Medicine 2, North Okkalapa Township, Yangon, Myanmar; Myanmar Australia Research Collaboration for Health (MARCH), Yangon, Myanmar.
| | - Phyo Pyae Nyein
- Myanmar Australia Research Collaboration for Health (MARCH), Yangon, Myanmar; Mingaladon Specialist Hospital, Mingaladon Township, Yangon, Myanmar
| | - Ne Myo Aung
- University of Medicine 2, North Okkalapa Township, Yangon, Myanmar; Myanmar Australia Research Collaboration for Health (MARCH), Yangon, Myanmar; Insein General Hospital, Insein Township, Yangon, Myanmar
| | - Mar Mar Kyi
- University of Medicine 2, North Okkalapa Township, Yangon, Myanmar; Myanmar Australia Research Collaboration for Health (MARCH), Yangon, Myanmar; Insein General Hospital, Insein Township, Yangon, Myanmar
| |
Collapse
|
18
|
Ishioka H, Plewes K, Pattnaik R, Kingston HWF, Leopold SJ, Herdman MT, Mahanta K, Mohanty A, Dey C, Alam S, Srinamon K, Mohanty A, Maude RJ, White NJ, Day NPJ, Hossain MA, Faiz MA, Charunwatthana P, Mohanty S, Ghose A, Dondorp AM. Associations Between Restrictive Fluid Management and Renal Function and Tissue Perfusion in Adults With Severe Falciparum Malaria: A Prospective Observational Study. J Infect Dis 2020; 221:285-292. [PMID: 31504666 PMCID: PMC6935998 DOI: 10.1093/infdis/jiz449] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/30/2019] [Indexed: 12/26/2022] Open
Abstract
Background Liberal fluid resuscitation has proved harmful in adults with severe malaria, but the level of restriction has not been defined. Methods In a prospective observational study in adults with severe falciparum malaria, restrictive fluid management was provided at the discretion of the treating physician. The relationships between the volume of fluid and changes in renal function or tissue perfusion were evaluated. Results A total of 154 patients were studied, 41 (26.6%) of whom died. Median total fluid intake during the first 6 and 24 hours from enrollment was 3.3 (interquartile range [IQR], 1.8–5.1) mL/kg per hour and 2.2 (IQR, 1.6–3.2) mL/kg per hour, respectively. Total fluid intake at 6 hours was not correlated with changes in plasma creatinine at 24 hours (n = 116; rs = 0.16; P = .089) or lactate at 6 hours (n = 94; rs = −0.05; P = .660). Development of hypotensive shock or pulmonary edema within 24 hours after enrollment were not related to the volume of fluid administration. Conclusions Restrictive fluid management did not worsen kidney function and tissue perfusion in adult patients with severe falciparum malaria. We suggest crystalloid administration of 2–3 mL/kg per hour during the first 24 hours without bolus therapy, unless the patient is hypotensive.
Collapse
Affiliation(s)
- Haruhiko Ishioka
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Department of Anesthesiology and Critical Care, Jichi Medical University, Saitama Medical Center, Saitama, Japan
| | - Katherine Plewes
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Hugh W F Kingston
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Stije J Leopold
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - M Trent Herdman
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | | | - Chandan Dey
- Ispat General Hospital, Rourkela, Orissa, India
| | - Shamsul Alam
- Chittagong Medical College and Hospital, Chittagong, Bangladesh
| | - Ketsanee Srinamon
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Akshaya Mohanty
- Infectious Disease Biology Unit, Research Unit of Institute of Life Sciences, Ispat General Hospital, Rourkela, Orissa, India.,Institute of Life Sciences, Department of Biotechnology, Government of India, Bhubaneswar, Orissa, India
| | - Richard J Maude
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom.,Harvard TH Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicholas P J Day
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Md Amir Hossain
- Chittagong Medical College and Hospital, Chittagong, Bangladesh
| | | | - Prakaykaew Charunwatthana
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Aniruddha Ghose
- Chittagong Medical College and Hospital, Chittagong, Bangladesh
| | - Arjen M Dondorp
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
19
|
Kingston HWF, Ghose A, Rungpradubvong V, Satitthummanid S, Herdman MT, Plewes K, Ishioka H, Leopold SJ, Sinha I, Intharabut B, Piera K, McNeil Y, Mohanty S, Maude RJ, White NJ, Day NPJ, Yeo TW, Hossain MA, Anstey NM, Dondorp AM. Cell-Free Hemoglobin Is Associated With Increased Vascular Resistance and Reduced Peripheral Perfusion in Severe Malaria. J Infect Dis 2020; 221:127-137. [PMID: 31693729 DOI: 10.1093/infdis/jiz359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 09/25/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND In severe falciparum malaria, unlike sepsis, hypotension on admission is uncommon. We hypothesized that low nitric oxide bioavailability due to the presence of cell-free hemoglobin (CFH) increases vascular tone in severe malaria. METHODS Patients with severe malaria (n = 119), uncomplicated malaria (n = 91), or suspected bacterial sepsis (n = 56), as well as healthy participants (n = 50), were recruited. The systemic vascular resistance index (SVRI) was estimated from the echocardiographic cardiac index and the mean arterial pressure. RESULTS SVRI and hematocrit levels were lower and plasma CFH and asymmetric dimethylarginine levels were higher in patients with malaria, compared with healthy participants. In multivariate linear regression models for mean arterial pressure or SVRI in patients with severe malaria, hematocrit and CFH but not asymmetric dimethylarginine were significant predictors. The SVRI was lower in patients with suspected bacterial sepsis than in those with severe malaria, after adjustment for hematocrit and age. Plasma CFH levels correlated positively with the core-peripheral temperature gradient and plasma lactate levels and inversely with the perfusion index. Impaired peripheral perfusion, as reflected by a low perfusion index or a high core-peripheral temperature gradient, predicted mortality in patients with severe malaria. CONCLUSIONS CFH is associated with mean arterial pressure, SVRI, and peripheral perfusion in patients with severe malaria. This may be mediated through the nitric oxide scavenging potency of CFH, increasing basal vascular tone and impairing tissue perfusion.
Collapse
Affiliation(s)
- Hugh W F Kingston
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia.,Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Churchill Hospital, Oxford, United Kingdom
| | | | - Voravut Rungpradubvong
- Division of Cardiology, Department of Medicine, Faculty of Medicine, Chulalongkorn University.,Cardiac Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Sudarat Satitthummanid
- Division of Cardiology, Department of Medicine, Faculty of Medicine, Chulalongkorn University.,Cardiac Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - M Trent Herdman
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University
| | - Katherine Plewes
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Churchill Hospital, Oxford, United Kingdom
| | - Haruhiko Ishioka
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University
| | - Stije J Leopold
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Churchill Hospital, Oxford, United Kingdom
| | - Ipsita Sinha
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Churchill Hospital, Oxford, United Kingdom
| | - Benjamas Intharabut
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University
| | - Kim Piera
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Yvette McNeil
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | | | - Richard J Maude
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Churchill Hospital, Oxford, United Kingdom
| | - Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Churchill Hospital, Oxford, United Kingdom
| | - Nicholas P J Day
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Churchill Hospital, Oxford, United Kingdom
| | - Tsin W Yeo
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.,Communicable Disease Centre, Institute of Infectious Diseases and Epidemiology, Tan Tock Seng Hospital, Singapore
| | | | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Arjen M Dondorp
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Churchill Hospital, Oxford, United Kingdom
| |
Collapse
|
20
|
Malaria. HIGHLY INFECTIOUS DISEASES IN CRITICAL CARE 2020. [PMCID: PMC7120402 DOI: 10.1007/978-3-030-33803-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Malaria is a significant cause of morbidity and mortality throughout the world, and environmental changes are likely to increase its importance in the coming years. Diagnosing this disease is difficult and requires a high index of suspicion, especially in non-endemic countries. Critical care providers play a major role in treating severe malaria and its complications, which has management particularities that might not be readily apparent. Fluid resuscitation should be carefully tailored to avoid complications, and dysperfusion seems more related to degree of parasitemia than hypovolemia. Antimalarial agents are effective, but resistance is growing. Complications can be found in nearly every organ, including cerebral malaria, acute respiratory distress syndrome, and acute kidney injury. As such, a critical care unit is frequently required for organ support when they appear. Superimposed infections are not infrequent. Despite all of this, mortality is encouragingly low with a timely diagnosis and access to appropriate treatment.
Collapse
|
21
|
Hoffmeister B, Aguilar Valdez AD. Hypertension is associated with an increased risk for severe imported falciparum malaria: a tertiary care hospital based observational study from Berlin, Germany. Malar J 2019; 18:410. [PMID: 31810471 PMCID: PMC6898961 DOI: 10.1186/s12936-019-3007-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 11/16/2019] [Indexed: 12/19/2022] Open
Abstract
Background Increasing numbers of aging individuals with chronic co-morbidities travel to regions where falciparum malaria is endemic. Non-communicable diseases are now leading risk factors for death in such countries. Thus, the influence of chronic diseases on the outcome of falciparum malaria is an issue of major importance. Aim of the present study was to assess whether non-communicable diseases increase the risk for severe imported falciparum malaria. Methods A retrospective observational study of all adult cases with imported falciparum malaria hospitalized between 2001 and 2015 in the tertiary care Charité University Hospital, Berlin, was performed. Results A total of 536 adult patients (median age 37 years; 31.3% female) were enrolled. Of these, 329 (61.4%) originated from endemic countries, 207 patients (38.6%) from non-endemic regions. Criteria for severe malaria were fulfilled in 68 (12.7%) cases. With older age, lack of previous malaria episodes, being a tourist, and delayed presentation, well-characterized risk factors were associated with severe malaria in univariate analysis. After adjustment for these potential confounders hypertension (adjusted odds ratio aOR, 3.06 95% confidence interval, CI 1.34–7.02), cardiovascular diseases (aOR, 8.20 95% CI 2.30–29.22), and dyslipidaemia (aOR, 6.08 95% CI 1.13–32.88) were individual diseases associated with severe disease in multivariable logistic regression. Hypertension proved an independent risk factor among individuals of endemic (aOR, 4.83, 95% CI 1.44–16.22) as well as of non-endemic origin (aOR, 3.60 95% CI 1.05–12.35). Conclusions In imported falciparum malaria hypertension and its related diseases are risk factors for severe disease.
Collapse
Affiliation(s)
- Bodo Hoffmeister
- Department of Respiratory Medicine, Clinic-Group Ernst von Bergmann, Potsdam and Bad Belzig, Niemegker Straße 45, 14806, Bad Belzig, Germany.
| | - Abner Daniel Aguilar Valdez
- Department of Endocrinology, Clinic Group Ernst von Bergmann, Potsdam and Bad Belzig, Niemegker Straße 45, 14806, Bad Belzig, Germany
| |
Collapse
|
22
|
Smith S, Liu YH, Carter A, Kennedy BJ, Dermedgoglou A, Poulgrain SS, Paavola MP, Minto TL, Luc M, Hanson J. Severe leptospirosis in tropical Australia: Optimising intensive care unit management to reduce mortality. PLoS Negl Trop Dis 2019; 13:e0007929. [PMID: 31790405 PMCID: PMC6907868 DOI: 10.1371/journal.pntd.0007929] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/12/2019] [Accepted: 11/15/2019] [Indexed: 12/13/2022] Open
Abstract
Background Severe leptospirosis can have a case-fatality rate of over 50%, even with intensive care unit (ICU) support. Multiple strategies–including protective ventilation and early renal replacement therapy (RRT)–have been recommended to improve outcomes. However, management guidelines vary widely around the world and there is no consensus on the optimal approach. Methodology/Principal findings All cases of leptospirosis admitted to the ICU of Cairns Hospital in tropical Australia between 1998 and 2018 were retrospectively reviewed. The patients’ demographics, presentation, management and clinical course were examined. The 55 patients’ median (interquartile range (IQR)) age was 47 (32–62) years and their median (IQR) APACHE III score was 67 (48–105). All 55 received appropriate antibiotic therapy, 45 (82%) within the first 6 hours. Acute kidney injury was present in 48/55 (87%), 18/55 (33%) required RRT, although this was usually not administered until traditional criteria for initiation were met. Moderate to severe acute respiratory distress syndrome developed in 37/55 (67%), 32/55 (58%) had pulmonary haemorrhage, and mechanical ventilation was required in 27/55 (49%). Vasopressor support was necessary in 34/55 (62%). Corticosteroids were prescribed in 20/55 (36%). The median (IQR) fluid balance in the initial three days of ICU care was +1493 (175–3567) ml. Only 2/55 (4%) died, both were elderly men with multiple comorbidities. Conclusion In patients with severe leptospirosis in tropical Australia, prompt ICU support that includes early antibiotics, protective ventilation strategies, conservative fluid resuscitation, traditional thresholds for RRT initiation and corticosteroid therapy is associated with a very low case-fatality rate. Prospective studies are required to establish the relative contributions of each of these interventions to optimal patient outcomes. Severe leptospirosis continues to carry a high mortality. To improve outcomes, several countries have developed national guidelines for the management of severe disease. However, there is substantial variation in these guidelines despite the fact that severe leptospirosis has a very similar presentation around the world. In tropical Australia, the case-fatality rate of severe leptospirosis is only 4%. This retrospective study reviewed 55 patients with leptospirosis requiring support in an Australian Intensive Care Unit (ICU) in an effort to identify the management strategies that might explain these excellent outcomes. The low case-fatality rate was associated with prompt multimodal ICU support that included early antibiotics, protective ventilation strategies, conservative fluid resuscitation, traditional thresholds for renal replacement therapy initiation and corticosteroid therapy. However prospective, multinational studies–which include the resource-poor settings that bear the greatest burden of disease–are necessary to define which of these interventions have the greatest therapeutic value.
Collapse
Affiliation(s)
- Simon Smith
- Department of Medicine, Cairns Hospital, Cairns, Queensland, Australia
| | - Yu-Hsuan Liu
- Department of Intensive Care, Cairns Hospital, Cairns, Queensland, Australia
| | - Angus Carter
- Department of Intensive Care, Cairns Hospital, Cairns, Queensland, Australia
- James Cook University, Cairns Campus, Cairns, Queensland, Australia
| | - Brendan J. Kennedy
- Infectious Diseases Service, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Communicable Disease Control Branch, Adelaide, South Australia, Australia
| | | | | | | | - Tarryn L. Minto
- Department of Medicine, Cairns Hospital, Cairns, Queensland, Australia
| | - Michael Luc
- Department of Medicine, Cairns Hospital, Cairns, Queensland, Australia
| | - Josh Hanson
- Department of Medicine, Cairns Hospital, Cairns, Queensland, Australia
- The Kirby Institute, University of New South Wales, Sydney, Australia
- * E-mail:
| |
Collapse
|
23
|
Plewes K, Leopold SJ, Kingston HWF, Dondorp AM. Malaria: What's New in the Management of Malaria? Infect Dis Clin North Am 2019; 33:39-60. [PMID: 30712767 DOI: 10.1016/j.idc.2018.10.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The global burden of malaria remains high, with 216 million cases causing 445,000 deaths in 2016 despite first-line treatment with artemisinin-based combination therapy. Decreasing transmission in Africa shifts the risk for severe malaria to older age groups as premunition wanes. Prompt diagnosis and treatment with intravenous artesunate in addition to appropriate supportive management are critical to reduce deaths from severe malaria. Effective individual management is challenging in settings with limited resources for higher-level care. Adjunctive therapies targeting the underlying pathophysiological pathways have the potential to reduce mortality. Resistance to artemisinin derivatives and their partner drugs threaten malaria management and control.
Collapse
Affiliation(s)
- Katherine Plewes
- Malaria Department, Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, 3/F 60th, Anniversary Chalermprakiat Building, 420/6 Rajvithi Road, Bangkok 10400, Thailand; Department of Medicine, University of British Columbia, Vancouver General Hospital, 452D Heather Pavilion East, 2733 Heather Street, Vancouver, British Columbia V5Z 3J5, Canada
| | - Stije J Leopold
- Malaria Department, Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, 3/F 60th, Anniversary Chalermprakiat Building, 420/6 Rajvithi Road, Bangkok 10400, Thailand
| | - Hugh W F Kingston
- Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Headington, Oxford OX3 7BN, UK; Malaria Department, Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, 3/F 60th, Anniversary Chalermprakiat Building, 420/6 Rajvithi Road, Bangkok 10400, Thailand
| | - Arjen M Dondorp
- Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Headington, Oxford OX3 7BN, UK; Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, 3/F 60th, Anniversary Chalermprakiat Building, 420/6 Rajvithi Road, Bangkok 10400, Thailand.
| |
Collapse
|
24
|
Moxon CA, Gibbins MP, McGuinness D, Milner DA, Marti M. New Insights into Malaria Pathogenesis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2019; 15:315-343. [PMID: 31648610 DOI: 10.1146/annurev-pathmechdis-012419-032640] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Malaria remains a major public health threat in tropical and subtropical regions across the world. Even though less than 1% of malaria infections are fatal, this leads to about 430,000 deaths per year, predominantly in young children in sub-Saharan Africa. Therefore, it is imperative to understand why a subset of infected individuals develop severe syndromes and some of them die and what differentiates these cases from the majority that recovers. Here, we discuss progress made during the past decade in our understanding of malaria pathogenesis, focusing on the major human parasite Plasmodium falciparum.
Collapse
Affiliation(s)
- Christopher A Moxon
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, United Kingdom; ,
| | - Matthew P Gibbins
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, United Kingdom; ,
| | - Dagmara McGuinness
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, United Kingdom; ,
| | - Danny A Milner
- American Society for Clinical Pathology, Chicago, Illinois 60603, USA.,Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Matthias Marti
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, United Kingdom; , .,Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| |
Collapse
|
25
|
Hirako IC, Assis PA, Galvão-Filho B, Luster AD, Antonelli LR, Gazzinelli RT. Monocyte-derived dendritic cells in malaria. Curr Opin Microbiol 2019; 52:139-150. [PMID: 31542508 DOI: 10.1016/j.mib.2019.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 08/03/2019] [Accepted: 08/17/2019] [Indexed: 12/16/2022]
Abstract
The pathogenesis of malaria is a multifactorial syndrome associated with a deleterious inflammatory response that is responsible for many of the clinical manifestations. While dendritic cells (DCs) play a critical role in initiating acquired immunity and host resistance to infection, they also play a pathogenic role in inflammatory diseases. In our recent studies, we found in different rodent malaria models that the monocyte-derived DCs (MO-DCs) become, transiently, a main DC population in spleens and inflamed non-lymphoid organs. These studies suggest that acute infection with Plasmodium berghei promotes the differentiation of splenic monocytes into inflammatory monocytes (iMOs) and thereafter into MO-DCs that play a pathogenic role by promoting inflammation and tissue damage. The recruitment of MO-DCs to the lungs and brain are dependent on expression of CCR4 and CCR5, respectively, and expression of respective chemokine ligands in each organ. Once they reach the target organ the MO-DCs produce the CXCR3 ligands (CXCL9 and CXCL10), recruit CD8+ T cells, and produce toxic metabolites that play an important role in the development of experimental cerebral malaria (ECM) and acute respiratory distress syndrome (ARDS).
Collapse
Affiliation(s)
- Isabella C Hirako
- Fundação Oswaldo Cruz - Minas, 30190-002 Belo Horizonte, MG, Brazil; University of Massachusetts Medical School, 01605 Worcester, MA, United States
| | - Patrícia A Assis
- University of Massachusetts Medical School, 01605 Worcester, MA, United States
| | | | - Andrew D Luster
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Lis Rv Antonelli
- Fundação Oswaldo Cruz - Minas, 30190-002 Belo Horizonte, MG, Brazil
| | - Ricardo T Gazzinelli
- Fundação Oswaldo Cruz - Minas, 30190-002 Belo Horizonte, MG, Brazil; University of Massachusetts Medical School, 01605 Worcester, MA, United States; Plataforma de Medicina Translacional, Fundação Oswaldo Cruz, 14049-900, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
26
|
Affiliation(s)
- Daniel R Stevenson
- Clinical Fellow, Department of Infectious Diseases and Tropical Medicine, Northwick Park Hospital, London HA1 3UJ
| | - Tumena Corrah
- Infectious Disease Consultant and Acute Medicine, Department of Infectious Diseases and Tropical Medicine, Northwick Park Hospital, London
| |
Collapse
|
27
|
Galvão-Filho B, de Castro JT, Figueiredo MM, Rosmaninho CG, Antonelli LRDV, Gazzinelli RT. The emergence of pathogenic TNF/iNOS producing dendritic cells (Tip-DCs) in a malaria model of acute respiratory distress syndrome (ARDS) is dependent on CCR4. Mucosal Immunol 2019; 12:312-322. [PMID: 30337650 PMCID: PMC6375779 DOI: 10.1038/s41385-018-0093-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 09/02/2018] [Accepted: 09/10/2018] [Indexed: 02/04/2023]
Abstract
Malaria-associated acute respiratory distress syndrome (MA-ARDS) and acute lung injury (ALI) are complications that cause lung damage and often leads to death. The MA-ARDS/ALI is associated with a Type 1 inflammatory response mediated by T lymphocytes and IFN-γ. Here, we used the Plasmodium berghei NK65 (PbN)-induced MA-ALI/ARDS model that resembles human disease and confirmed that lung CD4+ and CD8+ T cells predominantly expressed Tbet and IFN-γ. Surprisingly, we found that development of MA-ALI/ARDS was dependent on functional CCR4, known to mediate the recruitment of Th2 lymphocytes and regulatory T cells. However, in this Type 1 inflammation-ARDS model, CCR4 was not involved in the recruitment of T lymphocytes, but was required for the emergence of TNF-α/iNOS producing dendritic cells (Tip-DCs) in the lungs. In contrast, recruitment of Tip-DCs and development of MA-ALI/ARDS were not altered in CCR2-/- mice. Importantly, we showed that NOS2-/- mice are resistant to PbN-induced lung damage, indicating that reactive nitrogen species produced by Tip-DCs play an essential role in inducing MA-ARDS/ALI. Lastly, our experiments suggest that production of IFN-γ primarily by CD8+ T cells is required for inducing Tip-DCs differentiation in the lungs and the development of MA-ALI/ARDS model.
Collapse
Affiliation(s)
- Bruno Galvão-Filho
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil,Laboratório de Imunopatologia, Instituto Rene Rachou, Fundação Oswaldo Cruz –Minas, 30190-002, Belo Horizonte, MG, Brazil
| | - Júlia Teixeira de Castro
- Laboratório de Imunopatologia, Instituto Rene Rachou, Fundação Oswaldo Cruz –Minas, 30190-002, Belo Horizonte, MG, Brazil
| | - Maria Marta Figueiredo
- Laboratório de Imunopatologia, Instituto Rene Rachou, Fundação Oswaldo Cruz –Minas, 30190-002, Belo Horizonte, MG, Brazil
| | - Claudio Gonçalves Rosmaninho
- Laboratório de Imunopatologia, Instituto Rene Rachou, Fundação Oswaldo Cruz –Minas, 30190-002, Belo Horizonte, MG, Brazil
| | - Lis Ribeiro do Valle Antonelli
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil,Laboratório de Biologia e Imunologia de Doenças Infecciosas e Parasitárias, Instituto Rene Rachou, FIOCRUZ-MG, 30190-002, Belo Horizonte, MG, Brazil
| | - Ricardo Tostes Gazzinelli
- Laboratório de Imunopatologia, Instituto Rene Rachou, Fundação Oswaldo Cruz –Minas, 30190-002, Belo Horizonte, MG, Brazil,Department of Medicine, University of Massachusetts Medical School, 01605, Worcester, MA, USA,Plataforma de Medicinal Translacional-Fundação Oswaldo Cruz/Faculdade de Medicina de Ribeirão Preto-Universidade de São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| |
Collapse
|
28
|
Leopold SJ, Ghose A, Plewes KA, Mazumder S, Pisani L, Kingston HWF, Paul S, Barua A, Sattar MA, Huson MAM, Walden AP, Henwood PC, Riviello ED, Schultz MJ, Day NPJ, Kumar Dutta A, White NJ, Dondorp AM. Point-of-care lung ultrasound for the detection of pulmonary manifestations of malaria and sepsis: An observational study. PLoS One 2018; 13:e0204832. [PMID: 30540757 PMCID: PMC6291079 DOI: 10.1371/journal.pone.0204832] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/14/2018] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Patients with severe malaria or sepsis are at risk of developing life-threatening acute respiratory distress syndrome (ARDS). The objective of this study was to evaluate point-of-care lung ultrasound as a novel tool to determine the prevalence and early signs of ARDS in a resource-limited setting among patients with severe malaria or sepsis. MATERIALS AND METHODS Serial point-of-care lung ultrasound studies were performed on four consecutive days in a planned sub study of an observational cohort of patients with malaria or sepsis in Bangladesh. We quantified aeration patterns across 12 lung regions. ARDS was defined according to the Kigali Modification of the Berlin Definition. RESULTS Of 102 patients enrolled, 71 had sepsis and 31 had malaria. Normal lung ultrasound findings were observed in 44 patients on enrolment and associated with 7% case fatality. ARDS was detected in 10 patients on enrolment and associated with 90% case fatality. All patients with ARDS had sepsis, 4 had underlying pneumonia. Two patients developing ARDS during hospitalisation already had reduced aeration patterns on enrolment. The SpO2/FiO2 ratio combined with the number of regions with reduced aeration was a strong prognosticator for mortality in patients with sepsis (AUROC 91.5% (95% Confidence Interval: 84.6%-98.4%)). CONCLUSIONS This study demonstrates the potential usefulness of point-of-care lung ultrasound to detect lung abnormalities in patients with malaria or sepsis in a resource-constrained hospital setting. LUS was highly feasible and allowed to accurately identify patients at risk of death in a resource limited setting.
Collapse
Affiliation(s)
- Stije J. Leopold
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Aniruddha Ghose
- Department of Internal Medicine, Chittagong Medical College Hospital, Chittagong, Bangladesh
| | - Katherine A. Plewes
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Subash Mazumder
- Department of Radiology, Chittagong Medical College Hospital, Chittagong, Bangladesh
| | - Luigi Pisani
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Intensive Care, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Hugh W. F. Kingston
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sujat Paul
- Department of Internal Medicine, Chittagong Medical College Hospital, Chittagong, Bangladesh
| | - Anupam Barua
- Department of Internal Medicine, Chittagong Medical College Hospital, Chittagong, Bangladesh
| | - M. Abdus Sattar
- Department of Internal Medicine, Chittagong Medical College Hospital, Chittagong, Bangladesh
| | - Michaëla A. M. Huson
- Department of Intensive Care, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Andrew P. Walden
- Department of Intensive Care, Royal Berkshire Hospital, Reading, United Kingdom
| | - Patricia C. Henwood
- Department of Emergency Medicine, Brigham and Woman’s Hospital, Boston, Massachusetts, United States of America
| | - Elisabeth D. Riviello
- Division of Pulmonary, Critical Care and Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Marcus J. Schultz
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Intensive Care, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Nicholas P. J. Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Asok Kumar Dutta
- Department of Internal Medicine, Chittagong Medical College Hospital, Chittagong, Bangladesh
| | - Nicholas J. White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Arjen M. Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
29
|
Veenstra G, Ince C, Barendrecht BW, Zijlstra HW, Boerma EC. Differences in capillary recruitment between cardiac surgery and septic patients after fluid resuscitation. Microvasc Res 2018; 123:14-18. [PMID: 30448399 DOI: 10.1016/j.mvr.2018.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 01/12/2023]
Abstract
BACKGROUND Clinical evaluation of the effects of fluid therapy remains cumbersome and strategies are based on the assumption that normalization of macrohemodynamic variables will result in parallel improvement in organ perfusion. Recently, we and others suggested the use of direct in-vivo observation of the microcirculation to evaluate the effects of fluid therapy. METHODS A single-centre observational study, using in-vivo microscopy to assess total vessel density (TVD) in two subsets of ICU patients. RESULTS After fluid resuscitation TVD showed no difference between sepsis patients (N = 47) and cardiac surgery patients (N = 52): 18.4[16.8-20.8] vs 18.7[16.8-20.9] mm/mm2, p = 0.59. In cardiac surgery patients there was a significant correlation between the amount of fluids administered and TVD, with an optimum in the third quartile. However, such correlation was absent in septic patients. CONCLUSIONS TVD after fluid administration is not different between 2 subtypes of intensive care patients. However, only in septic patients we observed a lack of coherence between the amount of fluids administered and TVD. Further research is needed to determine if TVD may serve as potential endpoint for fluid administration.
Collapse
Affiliation(s)
- Gerke Veenstra
- Department of Intensive Care, Medical Center Leeuwarden, Leeuwarden, The Netherlands; Department of Translational Physiology, Amsterdam UMC, Amsterdam, The Netherlands.
| | - Can Ince
- Department of Translational Physiology, Amsterdam UMC, Amsterdam, The Netherlands; Department of Intensive Care, Erasmus MC University Hospital Rotterdam, Rotterdam, The Netherlands.
| | - Bart W Barendrecht
- Department of Intensive Care, Medical Center Leeuwarden, Leeuwarden, The Netherlands
| | - Hendrik W Zijlstra
- Department of Intensive Care, Medical Center Leeuwarden, Leeuwarden, The Netherlands
| | - E Christiaan Boerma
- Department of Intensive Care, Medical Center Leeuwarden, Leeuwarden, The Netherlands
| |
Collapse
|
30
|
Abstract
Malaria is a major cause of anaemia in tropical areas. Malaria infection causes haemolysis of infected and uninfected erythrocytes and bone marrow dyserythropoiesis which compromises rapid recovery from anaemia. In areas of high malaria transmission malaria nearly all infants and young children, and many older children and adults have a reduced haemoglobin concentration as a result. In these areas severe life-threatening malarial anaemia requiring blood transfusion in young children is a major cause of hospital admission, particularly during the rainy season months when malaria transmission is highest. In severe malaria, the mortality rises steeply below an admission haemoglobin of 3 g/dL, but it also increases with higher haemoglobin concentrations approaching the normal range. In the management of severe malaria transfusion thresholds remain uncertain. Prevention of malaria by vector control, deployment of insecticide-treated bed nets, prompt and accurate diagnosis of illness and appropriate use of effective anti-malarial drugs substantially reduces the burden of anaemia in tropical countries.
Collapse
Affiliation(s)
- Nicholas J White
- Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
31
|
Bruneel F, Raffetin A, Corne P, Llitjos JF, Mourvillier B, Argaud L, Wolff M, Laurent V, Jauréguiberry S. Management of severe imported malaria in adults. Med Mal Infect 2018; 50:213-225. [PMID: 30266432 DOI: 10.1016/j.medmal.2018.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/30/2018] [Indexed: 11/28/2022]
Abstract
Severe malaria accounts for approximately 10% of all cases of imported malaria in France; cases are mainly due to Plasmodium falciparum, while other Plasmodium species are possible but uncommon (P. vivax, P. knowlesi, P. malariae, and P. ovale). On the basis of WHO criteria for endemic areas, the French criteria defining severe imported malaria in adults have been progressively adapted to the European healthcare level. Management of severe imported malaria is a diagnostic and treatment emergency and must be initially conducted in the intensive care unit. Anti-infective treatment is now based on intravenous artesunate, which must be available in every hospital of the country likely to receive severe imported malaria patients. Intravenous quinine is thus used as a second-line treatment and is restricted to limited indications. Critical care management of organ failure is essential, particularly in patients presenting with very severe malaria. To date, no adjunctive therapy (including exchange transfusion) has demonstrated clear beneficial effects.
Collapse
Affiliation(s)
- F Bruneel
- Réanimation médico-chirurgicale, hôpital Mignot, centre hospitalier de Versailles, 177, rue de Versailles, 78150 Le Chesnay, France.
| | - A Raffetin
- Médecine interne, maladies infectieuses et tropicales, CHI Villeneuve-Saint-Georges, 94190 Villeneuve-Saint-Georges, France
| | - P Corne
- Réanimation médicale, CHU de Montpellier, 34000 Montpellier, France
| | - J F Llitjos
- Réanimation médicale, CHU Cochin, 75014 Paris, France
| | - B Mourvillier
- Réanimation médicale et infectieuse, CHU Bichat-Claude-Bernard, 75018 Paris, France
| | - L Argaud
- Réanimation médicale, CHU Edouard-Herriot, 69000 Lyon, France
| | - M Wolff
- Réanimation médicale et infectieuse, CHU Bichat-Claude-Bernard, 75018 Paris, France
| | - V Laurent
- Réanimation médico-chirurgicale, hôpital Mignot, centre hospitalier de Versailles, 177, rue de Versailles, 78150 Le Chesnay, France
| | - S Jauréguiberry
- Maladies infectieuses et tropicales, CHU Pitié-Salpêtrière, 75013 Paris, France
| |
Collapse
|
32
|
Aung NM, Nyein PP, Htut TY, Htet ZW, Kyi TT, Anstey NM, Kyi MM, Hanson J. Antibiotic Therapy in Adults with Malaria (ANTHEM): High Rate of Clinically Significant Bacteremia in Hospitalized Adults Diagnosed with Falciparum Malaria. Am J Trop Med Hyg 2018; 99:688-696. [PMID: 30014826 DOI: 10.4269/ajtmh.18-0378] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
It has been believed that concomitant bacteremia is uncommon in adults hospitalized with falciparum malaria. Accordingly, the World Health Organization treatment guidelines presently only recommended additional antibacterial therapy in these patients if they have a clinical syndrome compatible with serious bacterial infection. Admission blood cultures were collected from 20 consecutive adults in Myanmar, hospitalized with a positive immunochromatographic test and blood film, suggesting a diagnosis of falciparum malaria; four (20%) had bacteremia with a clinically significant pathogen. These case series' data were pooled with a previously published multicenter study from Myanmar which had also collected blood cultures in adults hospitalized with a diagnosis of falciparum malaria. Among 87 patients in the two studies, 13 (15%) had clinically significant bacteremia on admission, with Gram-negative organisms in 10 (77%) and Staphylococcus aureus in the remaining three (23%). Bacteremic patients had more severe disease than non-bacteremic patients (median [interquartile range] respiratory coma acidosis malaria score 2 [1-4] versus 1 [1-2], P = 0.02) and were more likely to die (2/13 [15%] versus 1/74 [1%], P = 0.01). However, bacterial coinfection was suspected clinically in a minority of bacteremic patients (5/13 [38%] compared with 13/70 [19%] of non-bacteremic patients, P = 0.11). Concomitant bacteremia in adults diagnosed with falciparum malaria may be more common than previously believed and is difficult to identify clinically in resource-poor settings. Death is more common in these patients, suggesting that clinicians should have a lower threshold for commencing empirical antibacterial therapy in adults diagnosed with falciparum malaria in these locations than is presently recommended.
Collapse
Affiliation(s)
- Ne Myo Aung
- University of Medicine 2, Yangon, Myanmar.,Insein General Hospital, Yangon, Myanmar
| | | | | | | | - Tint Tint Kyi
- Department of Medical Care, Ministry of Health and Sports, Nay Pyi Taw, Myanmar
| | - Nicholas M Anstey
- Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Mar Mar Kyi
- University of Medicine 2, Yangon, Myanmar.,Insein General Hospital, Yangon, Myanmar
| | - Josh Hanson
- Menzies School of Health Research, Charles Darwin University, Darwin, Australia.,Kirby Institute, University of New South Wales, Sydney, Australia.,University of Medicine 2, Yangon, Myanmar
| |
Collapse
|
33
|
Bruneel F, Raffetin A, Roujansky A, Corne P, Tridon C, Llitjos JF, Mourvillier B, Laurent V, Jauréguiberry S. Prise en charge du paludisme grave d’importation de l’adulte. MEDECINE INTENSIVE REANIMATION 2018. [DOI: 10.3166/rea-2018-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
En France, le paludisme grave d’importation concerne environ 12 à 14 % des accès palustres et implique très majoritairement Plasmodium falciparum. À partir de la définition du paludisme grave de l’Organisation mondiale de la santé utilisée en zone d’endémie palustre, la définition française du paludisme grave d’importation de l’adulte a été adaptée aux données et au contexte européens. La prise en charge du paludisme grave est une urgence diagnostique et thérapeutique qui doit être réalisée initialement en réanimation. Le traitement curatif du paludisme grave d’importation repose maintenant sur l’artésunate intraveineux (IV) qui doit être disponible dans chaque hôpital susceptible de recevoir ces patients. Dès lors, la quinine IV devient un traitement de seconde ligne réservé à quelques circonstances. La prise en charge symptomatique des défaillances d’organes est primordiale, notamment au cours des formes les plus sévères. Enfin, aucun traitement adjuvant n’a prouvé, à ce jour, son efficacité en pratique clinique.
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW Critical illness includes a wide range of conditions from sepsis to high-risk surgery. All these diseases are characterized by reduced tissue oxygenation. Macrohemodynamic parameters may be corrected by fluids and/or vasoactive compounds; however, the microcirculation and its tissues may be damaged and remain hypoperfused. An evaluation of microcirculation may enable more physiologically based approaches for understanding the pathogenesis, diagnosis, and treatment of critically ill patients. RECENT FINDINGS Microcirculation plays a pivotal role in delivering oxygen to the cells and maintains tissue perfusion. Negative results of several studies, based on conventional hemodynamic resuscitation procedures to achieve organ perfusion and decrease morbidity and mortality following conditions of septic shock and other cardiovascular compromise, have highlighted the need to monitor microcirculation. The loss of hemodynamic coherence between the macrocirculation and microcirculation, wherein improvement of hemodynamic variables of the systemic circulation does not cause a parallel improvement of microcirculatory perfusion and oxygenation of the essential organ systems, may explain why these studies have failed. SUMMARY Critical illness is usually accompanied by abnormalities in microcirculation and tissue hypoxia. Direct monitoring of sublingual microcirculation using hand-held microscopy may provide a more physiological approach. Evaluating the coherence between macrocirculation and microcirculation in response to therapy seems to be essential in evaluating the efficacy of therapeutic interventions.
Collapse
|
35
|
Abstract
Following unsuccessful eradication attempts there was a resurgence of malaria towards the end of the 20th century. Renewed control efforts using a range of improved tools, such as long-lasting insecticide-treated bednets and artemisinin-based combination therapies, have more than halved the global burden of disease, but it remains high with 445 000 deaths and more than 200 million cases in 2016. Pitfalls in individual patient management are delayed diagnosis and overzealous fluid resuscitation in severe malaria. Even in the absence of drug resistance, parasite recurrence can occur, owing to high parasite densities, low host immunity, or suboptimal drug concentrations. Malaria elimination is firmly back as a mainstream policy but resistance to the artemisinin derivatives, their partner drugs, and insecticides present major challenges. Vaccine development continues on several fronts but none of the candidates developed to date have been shown to provide long-lasting benefits at a population level. Increased resources and unprecedented levels of regional cooperation and societal commitment will be needed if further substantial inroads into the malaria burden are to be made.
Collapse
Affiliation(s)
- Elizabeth A Ashley
- Myanmar-Oxford Clinical Research Unit, Yangon, Myanmar; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Aung Pyae Phyo
- Shoklo Malaria Research Unit, Mae Sot, Thailand; Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Charles J Woodrow
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
36
|
Aramburo A, Todd J, George EC, Kiguli S, Olupot-Olupot P, Opoka RO, Engoru C, Akech SO, Nyeko R, Mtove G, Gibb DM, Babiker AG, Maitland K. Lactate clearance as a prognostic marker of mortality in severely ill febrile children in East Africa. BMC Med 2018; 16:37. [PMID: 29519240 PMCID: PMC5844084 DOI: 10.1186/s12916-018-1014-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hyperlactataemia (HL) is a biomarker of disease severity that predicts mortality in patients with sepsis and malaria. Lactate clearance (LC) during resuscitation has been shown to be a prognostic factor of survival in critically ill adults, but little data exist for African children living in malaria-endemic areas. METHODS In a secondary data analysis of severely ill febrile children included in the Fluid Expansion as Supportive Therapy (FEAST) resuscitation trial, we assessed the association between lactate levels at admission and LC at 8 h with all-cause mortality at 72 h (d72). LC was defined as a relative lactate decline ≥ 40% and/or lactate normalisation (lactate < 2.5 mmol/L). RESULTS Of 3170 children in the FEAST trial, including 1719 children (57%) with Plasmodium falciparum malaria, 3008 (95%) had a baseline lactate measurement, 2127 (71%) had HL (lactate ≥ 2.5 mmol/L), and 1179 (39%) had severe HL (≥ 5 mmol/L). Within 72 h, 309 children (10.3%) died, of whom 284 (92%) had baseline HL. After adjustment for potential confounders, severe HL was strongly associated with mortality (Odds Ratio (OR) 6.96; 95% CI 3.52, 13.76, p < 0.001). This association was not modified by malaria status, despite children with malaria having a higher baseline lactate (median 4.6 mmol/L vs 3 mmol/L; p < 0.001) and a lower mortality rate (OR = 0.42; p < 0.001) compared to non-malarial cases. Sensitivity and specificity analysis identified a higher lactate on admission cut-off value predictive of d72 for children with malaria (5.2 mmol/L) than for those with other febrile illnesses (3.4 mmol/L). At 8 h, 2748/3008 survivors (91%) had a lactate measured, 1906 (63%) of whom had HL on admission, of whom 1014 (53%) fulfilled pre-defined LC criteria. After adjustment for confounders, LC independently predicted survival after 8 h (OR 0.24; 95% CI 0.14, 0.42; p < 0.001). Absence of LC (< 10%) at 8 h was strongly associated with death at 72 h (OR 4.62; 95% CI 2.7, 8.0; p < 0.001). CONCLUSIONS Independently of the underlying diagnosis, HL is a strong risk factor for death at 72 h in children admitted with severe febrile illnesses in Africa. Children able to clear lactate within 8 h had an improved chance of survival. These findings prompt the more widespread use of lactate and LC to identify children with severe disease and monitor response to treatment. TRIAL REGISTRATION ISRCTN69856593 Registered 21 January 2009.
Collapse
Affiliation(s)
- A Aramburo
- Royal Brompton & Harefield NHS Foundation Trust, Sydney Street, London, SW3 6NP, UK
| | - Jim Todd
- London School of Hygiene and Tropical Medicine, 15-17, Tavistock Place WC1H 9SH, London, WC1H 9SH, UK
| | - Elizabeth C George
- Medical Research Council Clinical Trials Unit (MRC CTU) at UCL, 125 Aviation House, Kingsway, London, WC2B 6NH, UK
| | - Sarah Kiguli
- Department of Paediatrics, Mulago Hospital, Makerere College of Health Sciences, PO Box 7072, Kampala, Uganda
| | - Peter Olupot-Olupot
- Department of Paediatrics, Mbale Regional Referral Hospital, Pallisa Road, PO Box 291, Mbale, Uganda.,Mbale Clinical Research Institute (MCRI), Plot 29-33 Pallisa Rd, PO Box 1966, Mbale, Uganda
| | - Robert O Opoka
- Department of Paediatrics, Mulago Hospital, Makerere College of Health Sciences, PO Box 7072, Kampala, Uganda
| | - Charles Engoru
- Department of Paediatrics, Soroti Regional Referral Hospital, PO Box 289, Soroti, Uganda
| | - Samuel O Akech
- Kilifi Clinical Trials Facility, KEMRI-Wellcome Trust Research Programme, PO Box 203, Nairobi, Kenya
| | | | | | - Diana M Gibb
- Medical Research Council Clinical Trials Unit (MRC CTU) at UCL, 125 Aviation House, Kingsway, London, WC2B 6NH, UK
| | - Abdel G Babiker
- Medical Research Council Clinical Trials Unit (MRC CTU) at UCL, 125 Aviation House, Kingsway, London, WC2B 6NH, UK
| | - Kathryn Maitland
- Kilifi Clinical Trials Facility, KEMRI-Wellcome Trust Research Programme, PO Box 203, Nairobi, Kenya. .,Department of Paediatrics, Faculty of Medicine, Imperial College, W2 1PG, London, UK.
| |
Collapse
|
37
|
Ince C, Boerma EC, Cecconi M, De Backer D, Shapiro NI, Duranteau J, Pinsky MR, Artigas A, Teboul JL, Reiss IKM, Aldecoa C, Hutchings SD, Donati A, Maggiorini M, Taccone FS, Hernandez G, Payen D, Tibboel D, Martin DS, Zarbock A, Monnet X, Dubin A, Bakker J, Vincent JL, Scheeren TWL. Second consensus on the assessment of sublingual microcirculation in critically ill patients: results from a task force of the European Society of Intensive Care Medicine. Intensive Care Med 2018; 44:281-299. [DOI: 10.1007/s00134-018-5070-7] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/17/2018] [Indexed: 12/17/2022]
|
38
|
Plewes K, Turner GD, Dondorp AM. Pathophysiology, clinical presentation, and treatment of coma and acute kidney injury complicating falciparum malaria. Curr Opin Infect Dis 2018; 31:69-77. [PMID: 29206655 PMCID: PMC5768231 DOI: 10.1097/qco.0000000000000419] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW Cerebral impairment and acute kidney injury (AKI) are independent predictors of mortality in both adults and children with severe falciparum malaria. In this review, we present recent advances in understanding the pathophysiology, clinical features, and management of these complications of severe malaria, and discuss future areas of research. RECENT FINDINGS Cerebral malaria and AKI are serious and well recognized complications of severe malaria. Common pathophysiological pathways include impaired microcirculation, due to sequestration of parasitized erythrocytes, systemic inflammatory responses, and endothelial activation. Recent MRI studies show significant brain swelling in both adults and children with evidence of posterior reversible encephalopathy syndrome-like syndrome although targeted interventions including mannitol and dexamethasone are not beneficial. Recent work shows association of cell-free hemoglobin oxidation stress involved in the pathophysiology of AKI in both adults and children. Paracetamol protected renal function likely by inhibiting cell-free-mediated oxidative stress. It is unclear if heme-mediated endothelial activation or oxidative stress is involved in cerebral malaria. SUMMARY The direct causes of cerebral and kidney dysfunction remain incompletely understood. Optimal treatment involves prompt diagnosis and effective antimalarial treatment with artesunate. Renal replacement therapy reduces mortality in AKI but delayed diagnosis is an issue.
Collapse
Affiliation(s)
- Katherine Plewes
- Faculty of Tropical Medicine, Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gareth D.H. Turner
- Department of Cellular Pathology, John Radcliffe Hospital
- Nuffield Department of Clinical Medicine, Center for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Arjen M. Dondorp
- Faculty of Tropical Medicine, Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Nuffield Department of Clinical Medicine, Center for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| |
Collapse
|
39
|
Ince C. Personalized physiological medicine. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2017; 21:308. [PMID: 29297391 PMCID: PMC5751773 DOI: 10.1186/s13054-017-1907-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This paper introduces the concept of personalized physiological medicine that is specifically directed at the needs of the critically ill patient. This differs from the conventional view of personalized medicine, characterized by biomarkers and gene profiling, instead focusing on time-variant changes in the pathophysiology and regulation of various organ systems and their cellular and subcellular constituents. I propose that personalized physiological medicine is composed of four pillars relevant to the critically ill patient. Pillar 1 is defined by the frailty and fitness of the patient and their physiological reserve to cope with the stress of critical illness and therapy. Pillar 2 involves monitoring of the key physiological variables of the different organ systems and their response to disease and therapy. Pillar 3 concerns the evaluation of the success of resuscitation by assessment of the hemodynamic coherence between the systemic and microcirculation and parenchyma of the organ systems. Finally, pillar 4 is defined by the integration of the physiological and clinical data into a time-learning adaptive model of the patient to provide feedback about the function of organ systems and to guide and assess the response to disease and therapy. I discuss each pillar and describe the challenges to research and development that will allow the realization of personalized physiological medicine to be practiced at the bedside for critically ill patients.
Collapse
Affiliation(s)
- Can Ince
- Department of Intensive Care, Erasmus MC, University Medical Center Rotterdam, 's-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands. .,Department of Translational Physiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
40
|
Dondorp AM, Hoang MNT, Mer M. Recommendations for the management of severe malaria and severe dengue in resource-limited settings. Intensive Care Med 2017; 43:1683-1685. [PMID: 27816986 PMCID: PMC5633627 DOI: 10.1007/s00134-016-4602-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 10/19/2016] [Indexed: 10/26/2022]
Affiliation(s)
- Arjen M. Dondorp
- Mahidol-Oxford Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
- Oxford Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Department of Intensive Care, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Mai Nguyen Thi Hoang
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Mervyn Mer
- Department of Critical Care, Johannesburg Hospital and University of the Witwatersrand, Johannesburg, South Africa
| | - for the Sepsis in Resource-Limited Settings-Expert Consensus Recommendations Group of the European Society of Intensive Care Medicine (ESICM) and the Mahidol-Oxford Research Unit (MORU) in Bangkok, Thailand
- Mahidol-Oxford Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
- Oxford Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Department of Intensive Care, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
- Department of Critical Care, Johannesburg Hospital and University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
41
|
Vellinga NAR, Boerma EC, Koopmans M, Donati A, Dubin A, Shapiro NI, Pearse RM, van der Voort PHJ, Dondorp AM, Bafi T, Fries M, Akarsu-Ayazoglu T, Pranskunas A, Hollenberg S, Balestra G, van Iterson M, Sadaka F, Minto G, Aypar U, Hurtado FJ, Martinelli G, Payen D, van Haren F, Holley A, Gomez H, Mehta RL, Rodriguez AH, Ruiz C, Canales HS, Duranteau J, Spronk PE, Jhanji S, Hubble S, Chierego M, Jung C, Martin D, Sorbara C, Bakker J, Ince C. Mildly elevated lactate levels are associated with microcirculatory flow abnormalities and increased mortality: a microSOAP post hoc analysis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2017; 21:255. [PMID: 29047411 PMCID: PMC5646128 DOI: 10.1186/s13054-017-1842-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 09/15/2017] [Indexed: 01/08/2023]
Abstract
Background Mildly elevated lactate levels (i.e., 1–2 mmol/L) are increasingly recognized as a prognostic finding in critically ill patients. One of several possible underlying mechanisms, microcirculatory dysfunction, can be assessed at the bedside using sublingual direct in vivo microscopy. We aimed to evaluate the association between relative hyperlactatemia, microcirculatory flow, and outcome. Methods This study was a predefined subanalysis of a multicenter international point prevalence study on microcirculatory flow abnormalities, the Microcirculatory Shock Occurrence in Acutely ill Patients (microSOAP). Microcirculatory flow abnormalities were assessed with sidestream dark-field imaging. Abnormal microcirculatory flow was defined as a microvascular flow index (MFI) < 2.6. MFI is a semiquantitative score ranging from 0 (no flow) to 3 (continuous flow). Associations between microcirculatory flow abnormalities, single-spot lactate measurements, and outcome were analyzed. Results In 338 of 501 patients, lactate levels were available. For this substudy, all 257 patients with lactate levels ≤ 2 mmol/L (median [IQR] 1.04 [0.80–1.40] mmol/L) were included. Crude ICU mortality increased with each lactate quartile. In a multivariable analysis, a lactate level > 1.5 mmol/L was independently associated with a MFI < 2.6 (OR 2.5, 95% CI 1.1–5.7, P = 0.027). Conclusions In a heterogeneous ICU population, a single-spot mildly elevated lactate level (even within the reference range) was independently associated with increased mortality and microvascular flow abnormalities. In vivo microscopy of the microcirculation may be helpful in discriminating between flow- and non-flow-related causes of mildly elevated lactate levels. Trial registration ClinicalTrials.gov, NCT01179243. Registered on August 3, 2010. Electronic supplementary material The online version of this article (doi:10.1186/s13054-017-1842-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Namkje A R Vellinga
- Department of Intensive Care Adults, Erasmus MC University Medical Center, Rotterdam, The Netherlands. .,Department of Intensive Care, Medical Center Leeuwarden, P.O. Box 888, 8901 BR, Leeuwarden, The Netherlands.
| | - E Christiaan Boerma
- Department of Intensive Care, Medical Center Leeuwarden, P.O. Box 888, 8901 BR, Leeuwarden, The Netherlands
| | - Matty Koopmans
- Department of Intensive Care, Medical Center Leeuwarden, P.O. Box 888, 8901 BR, Leeuwarden, The Netherlands
| | - Abele Donati
- Department of Biomedical Science and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Arnaldo Dubin
- Sanatorio Otamendi y Miroli, Servicio de Terapia Intensiva, Azcuénaga 870, Buenos Aires, Argentina
| | - Nathan I Shapiro
- Department of Emergency Medicine and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Rupert M Pearse
- Barts and The London School of Medicine and Dentistry, London, UK
| | | | - Arjen M Dondorp
- Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Tony Bafi
- Dor e Terapia Intensiva, Universidade Federal de São Paolo, São Paolo, Brasil
| | - Michael Fries
- Department of Anesthesia and Surgical Intensive Care, St. Vincenz Krankenhaus, Limburg, Germany
| | - Tulin Akarsu-Ayazoglu
- S.B. Medeniyet University Göztepe Education and Research Hospital Kadıköy, Istanbul, Turkey
| | - Andrius Pranskunas
- Intensive Care Department, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | - Gianmarco Balestra
- Medical Intensive Care Unit, University Hospital Basel, Basel, Switzerland
| | - Mat van Iterson
- Department of Anesthesiology, Intensive Care and Pain Management, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Farid Sadaka
- Critical Care Medicine/Neurocritical Care, Mercy Hospital St. Louis, St. Louis University Hospital, St. Louis, MO, USA
| | - Gary Minto
- Derriford Hospital, Plymouth University Peninsula School of Medicine, Plymouth, UK
| | - Ulku Aypar
- Intensive Care Unit, Hacettepe University, Ankara, Turkey
| | - F Javier Hurtado
- Intensive Care Unit, Hospital Español-State Health Administration Service, School of Medicine, University of the Republic, Montevideo, Uruguay
| | - Giampaolo Martinelli
- Department of Perioperative Medicine, Barts Heart Centre, St. Bartholomew's Hospital, London, UK
| | - Didier Payen
- Department of Anesthesiology, Critical Care and Mobile Emergency and Resuscitation Service (SMUR), Hôpital Lariboisière Assistance Publique - Hôpitaux de Paris (AP-HP)/Université Paris 7 Diderot, Paris, France
| | | | - Anthony Holley
- Department of Intensive Care Medicine, Royal Brisbane & Women's Hospital, Brisbane, Australia
| | - Hernando Gomez
- Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ravindra L Mehta
- School of Medicine, University of California, San Diego, San Diego, CA, USA
| | | | - Carolina Ruiz
- Departamento de Medicina Intensiva, Escuela de Medicina, Facultad de Medicina, Universidad Católica de Chile, Santiago, Chile
| | | | - Jacques Duranteau
- Departement d'Anesthesie-Reanimation, Hôpitaux Universitaires Paris-Sud, Université Paris-Sud, Hôpital de Bicêtre Assistance Publique - Hôpitaux de Paris (AP-HP), Le Kremlin-Bicêtre, Paris, France
| | - Peter E Spronk
- Intensive Care Unit, Gelre Ziekenhuizen, Apeldoorn, The Netherlands
| | - Shaman Jhanji
- Intensive Care Unit, The Royal Marsden Hospital, London, UK
| | - Sheena Hubble
- Intensive Care Unit, Royal Devon and Exeter Hospital, Exeter, UK
| | | | - Christian Jung
- Department of Cardiology, Universitätsherzzentrum Thüringen, Clinic of Internal Medicine I, Friedrich Schiller University Jena, Jena, Germany.,Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University Düsseldorf, Düsseldorf, Germany
| | - Daniel Martin
- Intensive Care Unit, Royal Free Hospital, London, UK
| | - Carlo Sorbara
- Dipartimento di Anestesia, Rianimazione e Terapia Intensiva, Azienda Unità Locale Socio Sanitaria 9 (ULSS 9) Veneto, Treviso, Italy
| | - Jan Bakker
- Department of Intensive Care Adults, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Can Ince
- Department of Intensive Care Adults, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | | |
Collapse
|
42
|
Jeeyapant A, Kingston HW, Plewes K, Maude RJ, Hanson J, Herdman MT, Leopold SJ, Ngernseng T, Charunwatthana P, Phu NH, Ghose A, Hasan MMU, Fanello CI, Faiz MA, Hien TT, Day NPJ, White NJ, Dondorp AM. Defining Surrogate Endpoints for Clinical Trials in Severe Falciparum Malaria. PLoS One 2017; 12:e0169307. [PMID: 28052109 PMCID: PMC5215574 DOI: 10.1371/journal.pone.0169307] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/14/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Clinical trials in severe falciparum malaria require a large sample size to detect clinically meaningful differences in mortality. This means few interventions can be evaluated at any time. Using a validated surrogate endpoint for mortality would provide a useful alternative allowing a smaller sample size. Here we evaluate changes in coma score and plasma lactate as surrogate endpoints for mortality in severe falciparum malaria. METHODS Three datasets of clinical studies in severe malaria were re-evaluated: studies from Chittagong, Bangladesh (adults), the African 'AQUAMAT' trial comparing artesunate and quinine (children), and the Vietnamese 'AQ' study (adults) comparing artemether with quinine. The absolute change, relative change, slope of the normalization over time, and time to normalization were derived from sequential measurements of plasma lactate and coma score, and validated for their use as surrogate endpoint, including the proportion of treatment effect on mortality explained (PTE) by these surrogate measures. RESULTS Improvements in lactate concentration or coma scores over the first 24 hours of admission, were strongly prognostic for survival in all datasets. In hyperlactataemic patients in the AQ study (n = 173), lower mortality with artemether compared to quinine closely correlated with faster reduction in plasma lactate concentration, with a high PTE of the relative change in plasma lactate at 8 and 12 hours of 0.81 and 0.75, respectively. In paediatric patients enrolled in the 'AQUAMAT' study with cerebral malaria (n = 785), mortality was lower with artesunate compared to quinine, but this was not associated with faster coma recovery. CONCLUSIONS The relative changes in plasma lactate concentration assessed at 8 or 12 hours after admission are valid surrogate endpoints for severe malaria studies on antimalarial drugs or adjuvant treatments aiming at improving the microcirculation. Measures of coma recovery are not valid surrogate endpoints for mortality.
Collapse
Affiliation(s)
- Atthanee Jeeyapant
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Hugh W. Kingston
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Charles Darwin University, Darwin, Northern Territory, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Katherine Plewes
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Richard J. Maude
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Josh Hanson
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Global Health Division, Menzies School of Health Research, Darwin, Australia
| | - M. Trent Herdman
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- University College, Oxford, United Kingdom
| | - Stije J. Leopold
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Thatsanun Ngernseng
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Prakaykaew Charunwatthana
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol Unversity,Bangkok,Thailand
| | - Nguyen Hoan Phu
- Oxford University Clinical Research Unit. Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Aniruddha Ghose
- Department of Medicine, Chittagong Medical College Hospital, Chittagong, Bangladesh
| | | | - Caterina I. Fanello
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Kinshasa School of Public Health, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Md Abul Faiz
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Malaria Research Group, Dev Care Foundation, Dhaka, Bangladesh
| | - Tran Tinh Hien
- Oxford University Clinical Research Unit. Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Nicholas P. J. Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicholas J. White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Arjen M. Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
43
|
Kuiper JW, Tibboel D, Ince C. The vulnerable microcirculation in the critically ill pediatric patient. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2016; 20:352. [PMID: 27794361 PMCID: PMC5086412 DOI: 10.1186/s13054-016-1496-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In neonates, cardiovascular system development does not stop after the transition from intra-uterine to extra-uterine life and is not limited to the macrocirculation. The microcirculation (MC), which is essential for oxygen, nutrient, and drug delivery to tissues and cells, also develops. Developmental changes in the microcirculatory structure continue to occur during the initial weeks of life in healthy neonates. The physiologic hallmarks of neonates and developing children make them particularly vulnerable during critical illness; however, the cardiovascular monitoring possibilities are limited compared with critically ill adult patients. Therefore, the development of non-invasive methods for monitoring the MC is necessary in pediatric critical care for early identification of impending deterioration and to enable the initiation and titration of therapy to ensure cell survival. To date, the MC may be non-invasively monitored at the bedside using hand-held videomicroscopy, which provides useful information regarding the microcirculation. There is an increasing number of studies on the MC in neonates and pediatric patients; however, additional steps are necessary to transition MC monitoring from bench to bedside. The recently introduced concept of hemodynamic coherence describes the relationship between changes in the MC and macrocirculation. The loss of hemodynamic coherence may result in a depressed MC despite an improvement in the macrocirculation, which represents a condition associated with adverse outcomes. In the pediatric intensive care unit, the concept of hemodynamic coherence may function as a framework to develop microcirculatory measurements towards implementation in daily clinical practice.
Collapse
Affiliation(s)
- J W Kuiper
- Intensive Care and Department of Pediatric Surgery, Erasmus Medical Center - Sophia Children's Hospital, Postbox 2040, 3000 CA, Rotterdam, The Netherlands.
| | - D Tibboel
- Intensive Care and Department of Pediatric Surgery, Erasmus Medical Center - Sophia Children's Hospital, Postbox 2040, 3000 CA, Rotterdam, The Netherlands
| | - C Ince
- Department of Intensive Care, Erasmus MC, University Medical Center Rotterdam, 's-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands
| |
Collapse
|
44
|
Barber BE, Grigg MJ, William T, Yeo TW, Anstey NM. The Treatment of Plasmodium knowlesi Malaria. Trends Parasitol 2016; 33:242-253. [PMID: 27707609 DOI: 10.1016/j.pt.2016.09.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/31/2016] [Accepted: 09/07/2016] [Indexed: 12/30/2022]
Abstract
Plasmodium knowlesi occurs across Southeast Asia and is the most common cause of malaria in Malaysia. High parasitaemias can develop rapidly, and the risk of severe disease in adults is at least as high as in falciparum malaria. Prompt initiation of effective treatment is therefore essential. Intravenous artesunate is highly effective in severe knowlesi malaria and in those with moderately high parasitaemia but otherwise uncomplicated disease. Both chloroquine and artemisinin-combination therapy (ACT) are highly effective for uncomplicated knowlesi malaria, with faster parasite clearance times and lower anaemia rates with ACT. Given the difficulties with microscope diagnosis of P. knowlesi, a unified treatment strategy of ACT for all Plasmodium species is recommended in coendemic regions.
Collapse
Affiliation(s)
- Bridget E Barber
- Menzies School of Health Research and Charles Darwin University, PO Box 41096, Casuarina 0810, Northern Territory, Australia; Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu 88586, Sabah, Malaysia
| | - Matthew J Grigg
- Menzies School of Health Research and Charles Darwin University, PO Box 41096, Casuarina 0810, Northern Territory, Australia; Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu 88586, Sabah, Malaysia
| | - Timothy William
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu 88586, Sabah, Malaysia; Queen Elizabeth Hospital Clinical Research Centre, Kota Kinabalu 88586, Sabah, Malaysia; Jesselton Medical Centre, Kota Kinabalu 88300, Sabah, Malaysia
| | - Tsin W Yeo
- Menzies School of Health Research and Charles Darwin University, PO Box 41096, Casuarina 0810, Northern Territory, Australia; Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu 88586, Sabah, Malaysia; Lee Kong Chian School of Medicine, Nanyang Technological University, 639798 Singapore; Communicable Disease Centre, Institute of Infectious Diseases and Epidemiology, Tan Tock Seng Hospital, 308433 Singapore
| | - Nicholas M Anstey
- Menzies School of Health Research and Charles Darwin University, PO Box 41096, Casuarina 0810, Northern Territory, Australia; Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu 88586, Sabah, Malaysia.
| |
Collapse
|
45
|
Lalloo DG, Shingadia D, Bell DJ, Beeching NJ, Whitty CJM, Chiodini PL. UK malaria treatment guidelines 2016. J Infect 2016; 72:635-649. [PMID: 26880088 PMCID: PMC7132403 DOI: 10.1016/j.jinf.2016.02.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 02/06/2016] [Indexed: 12/15/2022]
Abstract
1.Malaria is the tropical disease most commonly imported into the UK, with 1300-1800 cases reported each year, and 2-11 deaths. 2. Approximately three quarters of reported malaria cases in the UK are caused by Plasmodium falciparum, which is capable of invading a high proportion of red blood cells and rapidly leading to severe or life-threatening multi-organ disease. 3. Most non-falciparum malaria cases are caused by Plasmodium vivax; a few cases are caused by the other species of plasmodium: Plasmodium ovale, Plasmodium malariae or Plasmodium knowlesi. 4. Mixed infections with more than one species of parasite can occur; they commonly involve P. falciparum with the attendant risks of severe malaria. 5. There are no typical clinical features of malaria; even fever is not invariably present. Malaria in children (and sometimes in adults) may present with misleading symptoms such as gastrointestinal features, sore throat or lower respiratory complaints. 6. A diagnosis of malaria must always be sought in a feverish or sick child or adult who has visited malaria-endemic areas. Specific country information on malaria can be found at http://travelhealthpro.org.uk/. P. falciparum infection rarely presents more than six months after exposure but presentation of other species can occur more than a year after exposure. 7. Management of malaria depends on awareness of the diagnosis and on performing the correct diagnostic tests: the diagnosis cannot be excluded until more than one blood specimen has been examined. Other travel related infections, especially viral haemorrhagic fevers, should also be considered. 8. The optimum diagnostic procedure is examination of thick and thin blood films by an expert to detect and speciate the malarial parasites. P. falciparum and P. vivax (depending upon the product) malaria can be diagnosed almost as accurately using rapid diagnostic tests (RDTs) which detect plasmodial antigens. RDTs for other Plasmodium species are not as reliable. 9. Most patients treated for P. falciparum malaria should be admitted to hospital for at least 24 h as patients can deteriorate suddenly, especially early in the course of treatment. In specialised units seeing large numbers of patients, outpatient treatment may be considered if specific protocols for patient selection and follow up are in place. 10. Uncomplicated P. falciparum malaria should be treated with an artemisinin combination therapy (Grade 1A). Artemether-lumefantrine (Riamet(®)) is the drug of choice (Grade 2C) and dihydroartemisinin-piperaquine (Eurartesim(®)) is an alternative. Quinine or atovaquone-proguanil (Malarone(®)) can be used if an ACT is not available. Quinine is highly effective but poorly-tolerated in prolonged treatment and should be used in combination with an additional drug, usually oral doxycycline. 11. Severe falciparum malaria, or infections complicated by a relatively high parasite count (more than 2% of red blood cells parasitized) should be treated with intravenous therapy until the patient is well enough to continue with oral treatment. Severe malaria is a rare complication of P. vivax or P. knowlesi infection and also requires parenteral therapy. 12. The treatment of choice for severe or complicated malaria in adults and children is intravenous artesunate (Grade 1A). Intravenous artesunate is unlicensed in the EU but is available in many centres. The alternative is intravenous quinine, which should be started immediately if artesunate is not available (Grade 1A). Patients treated with intravenous quinine require careful monitoring for hypoglycemia. 13. Patients with severe or complicated malaria should be managed in a high-dependency or intensive care environment. They may require haemodynamic support and management of: acute respiratory distress syndrome, disseminated intravascular coagulation, acute kidney injury, seizures, and severe intercurrent infections including Gram-negative bacteraemia/septicaemia. 14. Children with severe malaria should also be treated with empirical broad spectrum antibiotics until bacterial infection can be excluded (Grade 1B). 15. Haemolysis occurs in approximately 10-15% patients following intravenous artesunate treatment. Haemoglobin concentrations should be checked approximately 14 days following treatment in those treated with IV artemisinins (Grade 2C). 16. Falciparum malaria in pregnancy is more likely to be complicated: the placenta contains high levels of parasites, stillbirth or early delivery may occur and diagnosis can be difficult if parasites are concentrated in the placenta and scanty in the blood. 17. Uncomplicated falciparum malaria in the second and third trimester of pregnancy should be treated with artemether-lumefantrine (Grade 2B). Uncomplicated falciparum malaria in the first trimester of pregnancy should usually be treated with quinine and clindamycin but specialist advice should be sought. Severe malaria in any trimester of pregnancy should be treated as for any other patient with artesunate preferred over quinine (Grade 1C). 18. Children with uncomplicated malaria should be treated with an ACT (artemether-lumefantrine or dihydroartemisinin-piperaquine) as first line treatment (Grade 1A). Quinine with doxycycline or clindamycin, or atovaquone-proguanil at appropriate doses for weight can also be used. Doxycycline should not be given to children under 12 years. 19. Either an oral ACT or chloroquine can be used for the treatment of non-falciparum malaria. An oral ACT is preferred for a mixed infection, if there is uncertainty about the infecting species, or for P. vivax infection from areas where chloroquine resistance is common (Grade 1B). 20. Dormant parasites (hypnozoites) persist in the liver after treatment of P. vivax or P. ovale infection: the only currently effective drug for eradication of hypnozoites is primaquine (1A). Primaquine is more effective at preventing relapse if taken at the same time as chloroquine (Grade 1C). 21. Primaquine should be avoided or given with caution under expert supervision in patients with Glucose-6-phosphate dehydrogenase deficiency (G6PD), in whom it may cause severe haemolysis. 22. Primaquine (for eradication of P. vivax or P. ovale hypnozoites) is contraindicated in pregnancy and when breastfeeding (until the G6PD status of child is known); after initial treatment for these infections a pregnant woman should take weekly chloroquine prophylaxis until after delivery or cessation of breastfeeding when hypnozoite eradication can be considered. 23. An acute attack of malaria does not confer protection from future attacks: individuals who have had malaria should take effective anti-mosquito precautions and chemoprophylaxis during future visits to endemic areas.
Collapse
Affiliation(s)
- David G Lalloo
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK.
| | - Delane Shingadia
- Department of Infectious Diseases, Great Ormond Street Hospital, Great Ormond Street, London WC1N 3JH, UK
| | - David J Bell
- Department of Infectious Diseases, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Nicholas J Beeching
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Christopher J M Whitty
- Hospital for Tropical Diseases, Mortimer Market Centre, Capper Street off Tottenham Court Road, London WC1E 6AU, UK
| | - Peter L Chiodini
- Malaria Reference Laboratory, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| |
Collapse
|
46
|
Ince C, Mik EG. Microcirculatory and mitochondrial hypoxia in sepsis, shock, and resuscitation. J Appl Physiol (1985) 2016; 120:226-35. [DOI: 10.1152/japplphysiol.00298.2015] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/05/2015] [Indexed: 12/23/2022] Open
Abstract
After shock, persistent oxygen extraction deficit despite the apparent adequate recovery of systemic hemodynamic and oxygen-derived variables has been a source of uncertainty and controversy. Dysfunction of oxygen transport pathways during intensive care underlies the sequelae that lead to organ failure, and the limitations of techniques used to measure tissue oxygenation in vivo have contributed to the lack of progress in this area. Novel techniques have provided detailed quantitative insight into the determinants of microcirculatory and mitochondrial oxygenation. These techniques, which are based on the oxygen-dependent quenching of phosphorescence or delayed luminescence are briefly reviewed. The application of these techniques to animal models of shock and resuscitation revealed the heterogeneous nature of oxygen distributions and the alterations in oxygen distribution in the microcirculation and in mitochondria. These studies identified functional shunting in the microcirculation as an underlying cause of oxygen extraction deficit observed in states of shock and resuscitation. The translation of these concepts to the bedside has been enabled by our development and clinical introduction of hand-held microscopy. This tool facilitates the direct observation of the microcirculation and its alterations at the bedside under the conditions of shock and resuscitation. Studies identified loss of coherence between the macrocirculation and the microcirculation, in which resuscitation successfully restored systemic circulation but did not alleviate microcirculatory perfusion alterations. Various mechanisms responsible for these alterations underlie the loss of hemodynamic coherence during unsuccessful resuscitation procedures. Therapeutic resolution of persistent heterogeneous microcirculatory alterations is expected to improve outcomes in critically ill patients.
Collapse
Affiliation(s)
- Can Ince
- Department of Intensive Care, Erasmus MC, University Medical Center, Rotterdam
- Department of Translational Physiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Egbert G. Mik
- Department of Intensive Care, Erasmus MC, University Medical Center, Rotterdam
- Department of Anesthesiology, Erasmus MC, University Medical Center, Rotterdam; and
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW In shock states, optimizing intravascular volume is crucial to promote an adequate oxygen delivery to the tissues. Our current practice in fluid management pivots on the Frank-Starling law of the heart, and the effects of fluids are measured according to the induced changes on stroke volume. The purpose of this review is to evaluate the boundaries of current macrohemodynamic approach to fluid administration, and to introduce the microcirculatory integration as a fundamental part of tissue perfusion monitoring. RECENT FINDINGS Macrocirculatory changes induced by volume expansion are not always coupled to proportional changes in microcirculatory perfusion. Loss of hemodynamic coherence limits the value of guiding fluid therapy according to macrohemodynamics, and highlights the importance of evaluating the ultimate target of volume administration, the microcirculation. SUMMARY Current approach to intravascular volume optimization is made from a macrohemodynamic perspective. However, several situations wherein macrocirculatory and microcirculatory coherence is lost have been described. Future clinical trials should explore the usefulness of integrating the microcirculatory evaluation in fluid optimization.
Collapse
|
48
|
Ince C. Hemodynamic coherence and the rationale for monitoring the microcirculation. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19 Suppl 3:S8. [PMID: 26729241 PMCID: PMC4699073 DOI: 10.1186/cc14726] [Citation(s) in RCA: 305] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This article presents a personal viewpoint of the shortcoming of conventional hemodynamic resuscitation procedures in achieving organ perfusion and tissue oxygenation following conditions of shock and cardiovascular compromise, and why it is important to monitor the microcirculation in such conditions. The article emphasizes that if resuscitation procedures are based on the correction of systemic variables, there must be coherence between the macrocirculation and microcirculation if systemic hemodynamic-driven resuscitation procedures are to be effective in correcting organ perfusion and oxygenation. However, in conditions of inflammation and infection, which often accompany states of shock, vascular regulation and compensatory mechanisms needed to sustain hemodynamic coherence are lost, and the regional circulation and microcirculation remain in shock. We identify four types of microcirculatory alterations underlying the loss of hemodynamic coherence: type 1, heterogeneous microcirculatory flow; type 2, reduced capillary density induced by hemodilution and anemia; type 3, microcirculatory flow reduction caused by vasoconstriction or tamponade; and type 4, tissue edema. These microcirculatory alterations can be observed at the bedside using direct visualization of the sublingual microcirculation with hand-held vital microscopes. Each of these alterations results in oxygen delivery limitation to the tissue cells despite the presence of normalized systemic hemodynamic variables. Based on these concepts, we propose how to optimize the volume of fluid to maximize the oxygen-carrying capacity of the microcirculation to transport oxygen to the tissues.
Collapse
|
49
|
Deroost K, Pham TT, Opdenakker G, Van den Steen PE. The immunological balance between host and parasite in malaria. FEMS Microbiol Rev 2015; 40:208-57. [PMID: 26657789 DOI: 10.1093/femsre/fuv046] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2015] [Indexed: 12/16/2022] Open
Abstract
Coevolution of humans and malaria parasites has generated an intricate balance between the immune system of the host and virulence factors of the parasite, equilibrating maximal parasite transmission with limited host damage. Focusing on the blood stage of the disease, we discuss how the balance between anti-parasite immunity versus immunomodulatory and evasion mechanisms of the parasite may result in parasite clearance or chronic infection without major symptoms, whereas imbalances characterized by excessive parasite growth, exaggerated immune reactions or a combination of both cause severe pathology and death, which is detrimental for both parasite and host. A thorough understanding of the immunological balance of malaria and its relation to other physiological balances in the body is of crucial importance for developing effective interventions to reduce malaria-related morbidity and to diminish fatal outcomes due to severe complications. Therefore, we discuss in this review the detailed mechanisms of anti-malarial immunity, parasite virulence factors including immune evasion mechanisms and pathogenesis. Furthermore, we propose a comprehensive classification of malaria complications according to the different types of imbalances.
Collapse
Affiliation(s)
- Katrien Deroost
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven - University of Leuven, 3000 Leuven, Belgium The Francis Crick Institute, Mill Hill Laboratory, London, NW71AA, UK
| | - Thao-Thy Pham
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven - University of Leuven, 3000 Leuven, Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven - University of Leuven, 3000 Leuven, Belgium
| | - Philippe E Van den Steen
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven - University of Leuven, 3000 Leuven, Belgium
| |
Collapse
|
50
|
Aung NM, Kaung M, Kyi TT, Kyaw MP, Min M, Htet ZW, Anstey NM, Kyi MM, Hanson J. The Safety of a Conservative Fluid Replacement Strategy in Adults Hospitalised with Malaria. PLoS One 2015; 10:e0143062. [PMID: 26581060 PMCID: PMC4651424 DOI: 10.1371/journal.pone.0143062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 10/22/2015] [Indexed: 12/29/2022] Open
Abstract
Background A conservative approach to fluid resuscitation improves survival in children with severe malaria; however, this strategy has not been formally evaluated in adults with the disease. Methods Adults hospitalised with malaria at two tertiary referral hospitals in Myanmar received intravenous fluid replacement with isotonic saline, administered at a maintenance rate using a simple weight-based algorithm. Clinical and biochemical indices were followed sequentially. Results Of 61 adults enrolled, 34 (56%) had Plasmodium falciparum mono-infection, 17 (28%) Plasmodium vivax mono-infection and 10 (16%) mixed infection; 27 (44%) patients were at high risk of death (P. falciparum infection and RCAM score ≥ 2). In the first six hours of hospitalisation patients received a mean 1.7 ml/kg/hour (range: 1.3–2.2) of intravenous fluid and were able to drink a mean of 0.8 ml/kg/hour (range: 0–3). Intravenous fluid administration and oral intake were similar for the remainder of the first 48 hours of hospitalisation. All 61 patients survived to discharge. No patient developed Adult Respiratory Distress Syndrome, a requirement for renal replacement therapy or hypotension (mean arterial pressure < 60mmHg). Plasma lactate was elevated (> 2 mmol/L) on enrolment in 26 (43%) patients but had declined by 6 hours in 25 (96%) and was declining at 24 hours in the other patient. Plasma creatinine was elevated (> 120 μmol/L) on enrolment in 17 (28%) patients, but was normal or falling in 16 (94%) at 48 hours and declining in the other patient by 72 hours. There was no clinically meaningful increase in plasma lactate or creatinine in any patient with a normal value on enrolment. Patients receiving fluid replacement with the conservative fluid replacement algorithm were more likely to survive than historical controls in the same hospitals who had received fluid replacement guided by clinical judgement in the year prior to the study (p = 0.03), despite having more severe disease (p < 0.001). Conclusions A conservative fluid resuscitation strategy appears safe in adults hospitalised with malaria.
Collapse
Affiliation(s)
| | - Myat Kaung
- Hpa-an Hospital, Hpa-an, Kayin State, Myanmar
| | | | - Myat Phone Kyaw
- Department of Medical Research (Lower Myanmar), Yangon, Myanmar
| | - Myo Min
- Myanmar Medical Association, Yangon, Myanmar
| | | | - Nicholas M. Anstey
- Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | | | - Josh Hanson
- Menzies School of Health Research, Charles Darwin University, Darwin, Australia
- * E-mail:
| |
Collapse
|