1
|
van Pul L, Maurer I, Boeser-Nunnink BD, Harskamp AM, van Dort KA, Kootstra NA. A genetic variation in fucosyltransferase 8 accelerates HIV-1 disease progression indicating a role for N-glycan fucosylation. AIDS 2023; 37:1959-1969. [PMID: 37598360 PMCID: PMC10552802 DOI: 10.1097/qad.0000000000003689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/25/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023]
Abstract
OBJECTIVES Core fucosylation by fucosyltransferase 8 (FUT8) is an important posttranslational modification that impacts components of the immune system. Genetic variations in FUT8 can alter its function and could, therefore, play a role in the antiviral immune response and pathogenesis of HIV-1. This study analysed the effect of a single nucleotide polymorphism (SNP) in FUT8 on the clinical course of HIV-1 infection. DESIGN/METHODS The effect of SNPs in FUT8 on untreated HIV-1 disease outcome were analysed in a cohort of 304 people with HIV-1 (PWH) using survival analysis. Flow-cytometry was used to determine the effect of SNP on T-cell activation, differentiation and exhaustion/senescence. T-cell function was determined by proliferation assay and by measuring intracellular cytokine production. The effect of the SNP on HIV-1 replication was determined by in-vitro HIV-1 infections. Sensitivity of HIV-1 produced in PBMC with or without the SNP to broadly neutralizing antibodies was determined using a TZM-bl based neutralization assay. RESULTS Presence of the minor allele of SNP rs4131564 was associated with accelerated disease progression. The SNP had no effect on T-cell activation and T-cell differentiation in PWH. Additionally, no differences in T-cell functionality as determined by proliferation and cytokine production was observed. HIV-1 replication and neutralization sensitivity was also unaffected by the SNP in FUT8. CONCLUSION SNP rs4131564 in FUT8 showed a major impact on HIV-1 disease course underscoring a role for N-glycan fucosylation even though no clear effect on the immune system or HIV-1 could be determined in vitro .
Collapse
Affiliation(s)
- Lisa van Pul
- Amsterdam Institute for Infection and Immunity
- Department of Experimental Immunology, Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
| | - Irma Maurer
- Amsterdam Institute for Infection and Immunity
- Department of Experimental Immunology, Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
| | - Brigitte D.M. Boeser-Nunnink
- Amsterdam Institute for Infection and Immunity
- Department of Experimental Immunology, Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
| | - Agnes M. Harskamp
- Amsterdam Institute for Infection and Immunity
- Department of Experimental Immunology, Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
| | - Karel A. van Dort
- Amsterdam Institute for Infection and Immunity
- Department of Experimental Immunology, Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
| | - Neeltje A. Kootstra
- Amsterdam Institute for Infection and Immunity
- Department of Experimental Immunology, Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Molinos-Albert LM, Baquero E, Bouvin-Pley M, Lorin V, Charre C, Planchais C, Dimitrov JD, Monceaux V, Vos M, Hocqueloux L, Berger JL, Seaman MS, Braibant M, Avettand-Fenoël V, Sáez-Cirión A, Mouquet H. Anti-V1/V3-glycan broadly HIV-1 neutralizing antibodies in a post-treatment controller. Cell Host Microbe 2023; 31:1275-1287.e8. [PMID: 37433296 DOI: 10.1016/j.chom.2023.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/08/2023] [Accepted: 06/13/2023] [Indexed: 07/13/2023]
Abstract
HIV-1 broadly neutralizing antibodies (bNAbs) can decrease viremia but are usually unable to counteract autologous viruses escaping the antibody pressure. Nonetheless, bNAbs may contribute to natural HIV-1 control in individuals off antiretroviral therapy (ART). Here, we describe a bNAb B cell lineage elicited in a post-treatment controller (PTC) that exhibits broad seroneutralization and show that a representative antibody from this lineage, EPTC112, targets a quaternary epitope in the glycan-V3 loop supersite of the HIV-1 envelope glycoprotein. The cryo-EM structure of EPTC112 complexed with soluble BG505 SOSIP.664 envelope trimers revealed interactions with N301- and N156-branched N-glycans and the 324GDIR327 V3 loop motif. Although the sole contemporaneous virus circulating in this PTC was resistant to EPTC112, it was potently neutralized by autologous plasma IgG antibodies. Our findings illuminate how cross-neutralizing antibodies can alter the HIV-1 infection course in PTCs and may control viremia off-ART, supporting their role in functional HIV-1 cure strategies.
Collapse
Affiliation(s)
- Luis M Molinos-Albert
- Humoral Immunology Unit, Institut Pasteur, Université Paris Cité, INSERM U1222, Paris 75015, France
| | - Eduard Baquero
- NanoImaging Core Facility, Centre de Ressources et Recherches Technologiques (C2RT), Université Paris Cité, Institut Pasteur, Paris 75015, France
| | | | - Valérie Lorin
- Humoral Immunology Unit, Institut Pasteur, Université Paris Cité, INSERM U1222, Paris 75015, France
| | - Caroline Charre
- Université Cité, Faculté de Médecine, Paris 75014, France; INSERM U1016, CNRS UMR8104, Institut Cochin, Paris 75014, France; AP-HP, Service de Virologie, Hôpital Cochin, Paris 75014, France
| | - Cyril Planchais
- Humoral Immunology Unit, Institut Pasteur, Université Paris Cité, INSERM U1222, Paris 75015, France
| | - Jordan D Dimitrov
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris 75006, France
| | - Valérie Monceaux
- Viral Reservoirs and Immune control Unit, Institut Pasteur, Université Paris Cité, Paris 75015, France; HIV, Inflammation and Persistence Unit, Institut Pasteur, Université Paris Cité, Paris 75015, France
| | - Matthijn Vos
- NanoImaging Core Facility, Centre de Ressources et Recherches Technologiques (C2RT), Université Paris Cité, Institut Pasteur, Paris 75015, France
| | - Laurent Hocqueloux
- Service des Maladies Infectieuses et Tropicales, Centre Hospitalier Universitaire d'Orléans La Source, Orléans 45067, France
| | - Jean-Luc Berger
- Department of Internal Medicine, Clinical Immunology and Infectious Diseases, Reims University Hospital, Reims 51100, France
| | | | | | - Véronique Avettand-Fenoël
- Université Cité, Faculté de Médecine, Paris 75014, France; INSERM U1016, CNRS UMR8104, Institut Cochin, Paris 75014, France; AP-HP, Service de Virologie, Hôpital Cochin, Paris 75014, France
| | - Asier Sáez-Cirión
- Viral Reservoirs and Immune control Unit, Institut Pasteur, Université Paris Cité, Paris 75015, France; HIV, Inflammation and Persistence Unit, Institut Pasteur, Université Paris Cité, Paris 75015, France
| | - Hugo Mouquet
- Humoral Immunology Unit, Institut Pasteur, Université Paris Cité, INSERM U1222, Paris 75015, France.
| |
Collapse
|
3
|
Hokello J, Tyagi P, Dimri S, Sharma AL, Tyagi M. Comparison of the Biological Basis for Non-HIV Transmission to HIV-Exposed Seronegative Individuals, Disease Non-Progression in HIV Long-Term Non-Progressors and Elite Controllers. Viruses 2023; 15:1362. [PMID: 37376660 DOI: 10.3390/v15061362] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
HIV-exposed seronegative individuals (HESIs) are a small fraction of persons who are multiply exposed to human immunodeficiency virus (HIV), but do not exhibit serological or clinical evidence of HIV infection. In other words, they are groups of people maintaining an uninfected status for a long time, even after being exposed to HIV several times. The long-term non-progressors (LTNPs), on the other hand, are a group of HIV-infected individuals (approx. 5%) who remain clinically and immunologically stable for an extended number of years without combination antiretroviral therapy (cART). Meanwhile, elite controllers are comprise a much lower number (0.5%) of HIV-infected persons who spontaneously and durably control viremia to below levels of detection for at least 12 months, even when using the most sensitive assays, such as polymerase chain reaction (PCR) in the absence of cART. Despite the fact that there is no universal agreement regarding the mechanisms by which these groups of individuals are able to control HIV infection and/or disease progression, there is a general consensus that the mechanisms of protection are multifaceted and include genetic, immunological as well as viral factors. In this review, we analyze and compare the biological factors responsible for the control of HIV in these unique groups of individuals.
Collapse
Affiliation(s)
- Joseph Hokello
- Department of Biology, Faculty of Science and Education, Busitema University, Tororo P.O. Box 236, Uganda
| | - Priya Tyagi
- Cherry Hill East High School, 1750 Kresson Rd, Cherry Hill, NJ 08003, USA
| | - Shelly Dimri
- George C. Marshall High School, Fairfax County Public Schools, 7731 Leesburg Pike, Falls Church, VA 22043, USA
| | | | - Mudit Tyagi
- Center for Translational Medicine, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| |
Collapse
|
4
|
Wu S, Yi W, Gao Y, Deng W, Bi X, Lin Y, Yang L, Lu Y, Liu R, Chang M, Shen G, Hu L, Zhang L, Li M, Xie Y. Immune Mechanisms Underlying Hepatitis B Surface Antigen Seroclearance in Chronic Hepatitis B Patients With Viral Coinfection. Front Immunol 2022; 13:893512. [PMID: 35634301 PMCID: PMC9130599 DOI: 10.3389/fimmu.2022.893512] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/11/2022] [Indexed: 12/28/2022] Open
Abstract
It is considered that chronic hepatitis B patients have obtained functional cure if they get hepatitis B surface antigen (HBsAg) seroclearance after treatment. Serum HBsAg is produced by cccDNA that is extremely difficult to clear and dslDNA that is integrated with host chromosome. High HBsAg serum level leads to failure of host immune system, which makes it unable to produce effective antiviral response required for HBsAg seroclerance. Therefore, it is very difficult to achieve functional cure, and fewer than 1% of chronic hepatitis B patients are cured with antiviral treatment annually. Some chronic hepatitis B patients are coinfected with other chronic viral infections, such as HIV, HCV and HDV, which makes more difficult to cure. However, it is found that the probability of obtaining HBsAg seroclearance in patients with coinfection is higher than that in patients with HBV monoinfection, especially in patients with HBV/HIV coinfection who have an up to 36% of HBsAg 5-year-seroclerance rate. The mechanism of this interesting phenomenon is related to the functional reconstruction of immune system after antiretroviral therapy (ART). The quantity increase and function recovery of HBV specific T cells and B cells, and the higher level of cytokines and chemokines such as IP-10, GM-CSF, promote HBsAg seroclearance. This review summarizes recent studies on the immune factors that have influence on HBsAg seroconversion in the chronic hepatitis B patients with viral coinfection, which might provide new insights for the development of therapeutic approaches to partially restore the specific immune response to HBV and other viruses.
Collapse
Affiliation(s)
- Shuling Wu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Wei Yi
- Department of Gynecology and Obstetrics, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yuanjiao Gao
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Wen Deng
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaoyue Bi
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yanjie Lin
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| | - Liu Yang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yao Lu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ruyu Liu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Min Chang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ge Shen
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Leiping Hu
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Lu Zhang
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Minghui Li
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| | - Yao Xie
- Department of Hepatology Division 2, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Department of Hepatology Division 2, Peking University Ditan Teaching Hospital, Beijing, China
| |
Collapse
|
5
|
Molinos-Albert LM, Lorin V, Monceaux V, Orr S, Essat A, Dufloo J, Schwartz O, Rouzioux C, Meyer L, Hocqueloux L, Sáez-Cirión A, Mouquet H, Prazuck T, Dieuleveult BD, Bani-Sadr F, Hentzien M, Berger JL, Kmiec I, Pichancourt G, Nasri S, Hittinger G, Lambry V, Beauey AC, Pialoux G, Palacios C, Siguier M, Adda A, Foucoin J, Weiss L, Karmochkine M, Meghadecha M, Ptak M, Salmon-Ceron D, Blanche P, Piétri MP, Molina JM, Taulera O, Lascoux-Combe C, Ponscarme D, Bertaut JD, Makhloufi D, Godinot M, Artizzu V, Yazdanpanah Y, Matheron S, Godard C, Julia Z, Bernard L, Bastides F, Bourgault O, Jacomet C, Goncalves E, Meybeck A, Huleux T, Cornavin P, Debab Y, Théron D, Miailhes P, Cotte L, Pailhes S, Ogoudjobi S, Viard JP, Dulucq MJ, Bodard L, Churaqui F, Guimard T, Laine L. Transient viral exposure drives functionally-coordinated humoral immune responses in HIV-1 post-treatment controllers. Nat Commun 2022; 13:1944. [PMID: 35410989 PMCID: PMC9001681 DOI: 10.1038/s41467-022-29511-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 03/21/2022] [Indexed: 12/11/2022] Open
Abstract
AbstractHIV-1 post-treatment controllers are rare individuals controlling HIV-1 infection for years after antiretroviral therapy interruption. Identification of immune correlates of control in post-treatment controllers could aid in designing effective HIV-1 vaccine and remission strategies. Here, we perform comprehensive immunoprofiling of the humoral response to HIV-1 in long-term post-treatment controllers. Global multivariate analyses combining clinico-virological and humoral immune data reveal distinct profiles in post-treatment controllers experiencing transient viremic episodes off therapy compared to those stably aviremic. Virally-exposed post-treatment controllers display stronger HIV-1 humoral responses, and develop more frequently Env-specific memory B cells and cross-neutralizing antibodies. Both are linked to short viremic exposures, which are also accompanied by an increase in blood atypical memory B cells and activated subsets of circulating follicular helper T cells. Still, most humoral immune variables only correlate with Th2-like circulating follicular helper T cells. Thus, post-treatment controllers form a heterogeneous group with two distinct viral behaviours and associated immune signatures. Post-treatment controllers stably aviremic present “silent” humoral profiles, while those virally-exposed develop functionally robust HIV-specific B-cell and antibody responses, which may participate in controlling infection.
Collapse
|
6
|
Nyanhete TE, Edwards RJ, LaBranche CC, Mansouri K, Eaton A, Dennison SM, Saunders KO, Goodman D, Janowska K, Spreng RL, Zhang L, Mudrak SV, Hope TJ, Hora B, Bradley T, Georgiev IS, Montefiori DC, Acharya P, Tomaras GD. Polyclonal Broadly Neutralizing Antibody Activity Characterized by CD4 Binding Site and V3-Glycan Antibodies in a Subset of HIV-1 Virus Controllers. Front Immunol 2021; 12:670561. [PMID: 35003053 PMCID: PMC8733328 DOI: 10.3389/fimmu.2021.670561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Broadly neutralizing antibodies (bNAbs), known to mediate immune control of HIV-1 infection, only develop in a small subset of HIV-1 infected individuals. Despite being traditionally associated with patients with high viral loads, bNAbs have also been observed in therapy naïve HIV-1+ patients naturally controlling virus replication [Virus Controllers (VCs)]. Thus, dissecting the bNAb response in VCs will provide key information about what constitutes an effective humoral response to natural HIV-1 infection. In this study, we identified a polyclonal bNAb response to natural HIV-1 infection targeting CD4 binding site (CD4bs), V3-glycan, gp120-gp41 interface and membrane-proximal external region (MPER) epitopes on the HIV-1 envelope (Env). The polyclonal antiviral antibody (Ab) response also included antibody-dependent cellular phagocytosis of clade AE, B and C viruses, consistent with both the Fv and Fc domain contributing to function. Sequence analysis of envs from one of the VCs revealed features consistent with potential immune pressure and virus escape from V3-glycan targeting bNAbs. Epitope mapping of the polyclonal bNAb response in VCs with bNAb activity highlighted the presence of gp120-gp41 interface and CD4bs antibody classes with similar binding profiles to known potent bNAbs. Thus, these findings reveal the induction of a broad and polyfunctional humoral response in VCs in response to natural HIV-1 infection.
Collapse
Affiliation(s)
- Tinashe E. Nyanhete
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Immunology, Duke University School of Medicine, Durham, NC, United States
| | - Robert J. Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Celia C. LaBranche
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Katayoun Mansouri
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Amanda Eaton
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - S. Moses Dennison
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Kevin O. Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Derrick Goodman
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Katarzyna Janowska
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Rachel L. Spreng
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Lu Zhang
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Sarah V. Mudrak
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Thomas J. Hope
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Bhavna Hora
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Todd Bradley
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Medicine, Duke University School of Medicine, Durham, NC, United States
| | - Ivelin S. Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - David C. Montefiori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Georgia D. Tomaras
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, NC, United States
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
- Department of Immunology, Duke University School of Medicine, Durham, NC, United States
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW HIV-1 elite controllers encompass small populations of people infected with HIV-1 who can spontaneously control plasma viral loads below the limit of detection, in the absence of antiretroviral treatment. Antiviral immune responses are likely to contribute to such an impressive HIV-1 disease outcome. In this review, we discuss recent novel findings regarding antiviral innate and adaptive immune responses in elite controllers. RECENT FINDINGS Elite controllers maintain a pool of infected cells in which intact HIV-1 proviruses are more frequently integrated into noncoding regions of the host genome, likely conferring a state of deep latency. This atypical viral reservoir configuration is best explained by potent antiviral immune responses that can successfully eliminate virally infected cells in which proviruses are integrated into permissive chromatin. However, identifying the specific type and nature of this immune selection pressure represents a formidable challenge. Recent studies continue to support the role of HIV-1-specific CD8+ T cells as the main driver of elite immune control of HIV-1, however, increasing evidence suggests that their role is complemented by a fine-tuned interplay with innate immune cell subsets. Therefore, the combination of different immune effector mechanisms may shape antiviral immunity in elite controllers. SUMMARY Understanding the complex immune mechanisms responsible for natural, drug-free HIV-1 control represents a premier avenue to find and develop interventions for a cure of HIV-1 infection. Future single-cell assays designed to uncover the full genetic, epigenetic, transcriptional and functional complexity of antiviral immune responses in elite controllers may allow us to define correlates of antiviral immune protection in greater detail.
Collapse
Affiliation(s)
| | - Xu G. Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA; 02139, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
8
|
Ripari N, Sartori AA, da Silva Honorio M, Conte FL, Tasca KI, Santiago KB, Sforcin JM. Propolis antiviral and immunomodulatory activity: a review and perspectives for COVID-19 treatment. J Pharm Pharmacol 2021; 73:281-299. [PMID: 33793885 PMCID: PMC7928728 DOI: 10.1093/jpp/rgaa067] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Viral outbreaks are a frequent concern for humans. A great variety of drugs has been used to treat viral diseases, which are not always safe and effective and may induce adverse effects, indicating the need for new antiviral drugs extracted from natural sources. Propolis is a bee-made product exhibiting many biological properties. An overview of viruses, antiviral immunity, propolis safety and its immunomodulatory and antiviral action is reported, as well as perspectives for coronavirus disease 2019 (COVID-19) treatment. PubMed platform was used for data collection, searching for the keywords "propolis", "virus", "antiviral", "antimicrobial" and "coronavirus". KEY FINDINGS Propolis is safe and exerts antiviral and immunomodulatory activity; however, clinical trials should investigate its effects on individuals with viral diseases, in combination or not with antiviral drugs or vaccines. SUMMARY Regarding COVID-19, the effects of propolis should be investigated directly on the virus in vitro or on infected individuals alone or in combination with antiviral drugs, due to its immunomodulatory and anti-inflammatory action. Propolis administration simultaneously with vaccines should be analyzed, due to its adjuvant properties, to enhance the individuals' immune response. The search for therapeutic targets may be useful to find out how propolis can help to control COVID-19.
Collapse
Affiliation(s)
- Nicolas Ripari
- São Paulo State University (UNESP), Institute of Biosciences, Department of Chemical and Biological Sciences, Campus Botucatu, Botucatu, Brazil
| | - Arthur Alves Sartori
- São Paulo State University (UNESP), Institute of Biosciences, Department of Chemical and Biological Sciences, Campus Botucatu, Botucatu, Brazil
| | - Mariana da Silva Honorio
- São Paulo State University (UNESP), Institute of Biosciences, Department of Chemical and Biological Sciences, Campus Botucatu, Botucatu, Brazil
| | - Fernanda Lopes Conte
- São Paulo State University (UNESP), Institute of Biosciences, Department of Chemical and Biological Sciences, Campus Botucatu, Botucatu, Brazil
| | - Karen Ingrid Tasca
- São Paulo State University (UNESP), Institute of Biosciences, Department of Chemical and Biological Sciences, Campus Botucatu, Botucatu, Brazil
| | - Karina Basso Santiago
- São Paulo State University (UNESP), Institute of Biosciences, Department of Chemical and Biological Sciences, Campus Botucatu, Botucatu, Brazil
| | - José Maurício Sforcin
- São Paulo State University (UNESP), Institute of Biosciences, Department of Chemical and Biological Sciences, Campus Botucatu, Botucatu, Brazil
| |
Collapse
|
9
|
Su B, Dispinseri S, Iannone V, Zhang T, Wu H, Carapito R, Bahram S, Scarlatti G, Moog C. Update on Fc-Mediated Antibody Functions Against HIV-1 Beyond Neutralization. Front Immunol 2019; 10:2968. [PMID: 31921207 PMCID: PMC6930241 DOI: 10.3389/fimmu.2019.02968] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 12/03/2019] [Indexed: 12/31/2022] Open
Abstract
Antibodies (Abs) are the major component of the humoral immune response and a key player in vaccination. The precise Ab-mediated inhibitory mechanisms leading to in vivo protection against HIV have not been elucidated. In addition to the desired viral capture and neutralizing Ab functions, complex Ab-dependent mechanisms that involve engaging immune effector cells to clear infected host cells, immune complexes, and opsonized virus have been proposed as being relevant. These inhibitory mechanisms involve Fc-mediated effector functions leading to Ab-dependent cellular cytotoxicity, phagocytosis, cell-mediated virus inhibition, aggregation, and complement inhibition. Indeed, the decreased risk of infection observed in the RV144 HIV-1 vaccine trial was correlated with the production of non-neutralizing inhibitory Abs, highlighting the role of Ab inhibitory functions besides neutralization. Moreover, Ab isotypes and subclasses recognizing specific HIV envelope epitopes as well as pecular Fc-receptor polymorphisms have been associated with disease progression. These findings further support the need to define which Fc-mediated Ab inhibitory functions leading to protection are critical for HIV vaccine design. Herein, based on our previous review Su & Moog Front Immunol 2014, we update the different inhibitory properties of HIV-specific Abs that may potentially contribute to HIV protection.
Collapse
Affiliation(s)
- Bin Su
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Stefania Dispinseri
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation, and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Valeria Iannone
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation, and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Tong Zhang
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Hao Wu
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Raphael Carapito
- INSERM U1109, LabEx TRANSPLANTEX, Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Seiamak Bahram
- INSERM U1109, LabEx TRANSPLANTEX, Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, Division of Immunology, Transplantation, and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Christiane Moog
- INSERM U1109, LabEx TRANSPLANTEX, Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Vaccine Research Institute (VRI), Créteil, France
| |
Collapse
|