1
|
Honeycutt JB, Wahl A, Files JK, League AF, Yadav-Samudrala BJ, Garcia JV, Fitting S. In situ analysis of neuronal injury and neuroinflammation during HIV-1 infection. Retrovirology 2024; 21:11. [PMID: 38945996 PMCID: PMC11215835 DOI: 10.1186/s12977-024-00644-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/10/2024] [Indexed: 07/02/2024] Open
Abstract
BACKGROUND Since the introduction of combination antiretroviral therapy (cART) the brain has become an important human immunodeficiency virus (HIV) reservoir due to the relatively low penetration of many drugs utilized in cART into the central nervous system (CNS). Given the inherent limitations of directly assessing acute HIV infection in the brains of people living with HIV (PLWH), animal models, such as humanized mouse models, offer the most effective means of studying the effects of different viral strains and their impact on HIV infection in the CNS. To evaluate CNS pathology during HIV-1 infection in the humanized bone marrow/liver/thymus (BLT) mouse model, a histological analysis was conducted on five CNS regions, including the frontal cortex, hippocampus, striatum, cerebellum, and spinal cord, to delineate the neuronal (MAP2ab, NeuN) and neuroinflammatory (GFAP, Iba-1) changes induced by two viral strains after 2 weeks and 8 weeks post-infection. RESULTS Findings reveal HIV-infected human cells in the brain of HIV-infected BLT mice, demonstrating HIV neuroinvasion. Further, both viral strains, HIV-1JR-CSF and HIV-1CH040, induced neuronal injury and astrogliosis across all CNS regions following HIV infection at both time points, as demonstrated by decreases in MAP2ab and increases in GFAP fluorescence signal, respectively. Importantly, infection with HIV-1JR-CSF had more prominent effects on neuronal health in specific CNS regions compared to HIV-1CH040 infection, with decreasing number of NeuN+ neurons, specifically in the frontal cortex. On the other hand, infection with HIV-1CH040 demonstrated more prominent effects on neuroinflammation, assessed by an increase in GFAP signal and/or an increase in number of Iba-1+ microglia, across CNS regions. CONCLUSION These findings demonstrate that CNS pathology is widespread during acute HIV infection. However, neuronal loss and the magnitude of neuroinflammation in the CNS is strain dependent indicating that strains of HIV cause differential CNS pathologies.
Collapse
Affiliation(s)
- Jenna B Honeycutt
- Division of Infectious Diseases, Center for AIDS Research, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Angela Wahl
- Division of Infectious Diseases, Center for AIDS Research, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, AL, 35294, USA
| | - Jacob K Files
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, AL, 35294, USA
| | - Alexis F League
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Barkha J Yadav-Samudrala
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - J Victor Garcia
- Division of Infectious Diseases, Center for AIDS Research, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, AL, 35294, USA.
| | - Sylvia Fitting
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
2
|
A Gut Reaction to SIV and SHIV Infection: Lower Dysregulation of Mucosal T Cells during Acute Infection Is Associated with Greater Viral Suppression during cART. Viruses 2021; 13:v13081609. [PMID: 34452474 PMCID: PMC8402906 DOI: 10.3390/v13081609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/31/2021] [Accepted: 08/12/2021] [Indexed: 11/27/2022] Open
Abstract
Selection of a pre-clinical non-human primate (NHP) model is essential when evaluating therapeutic vaccine and treatment strategies for HIV. SIV and SHIV-infected NHPs exhibit a range of viral burdens, pathologies, and responses to combinatorial antiretroviral therapy (cART) regimens and the choice of the NHP model for AIDS could influence outcomes in studies investigating interventions. Previously, in rhesus macaques (RMs) we showed that maintenance of mucosal Th17/Treg homeostasis during SIV infection correlated with a better virological response to cART. Here, in RMs we compared viral kinetics and dysregulation of gut homeostasis, defined by T cell subset disruption, during highly pathogenic SIVΔB670 compared to SHIV-1157ipd3N4 infection. SHIV infection resulted in lower acute viremia and less disruption to gut CD4 T-cell homeostasis. Additionally, 24/24 SHIV-infected versus 10/19 SIV-infected animals had sustained viral suppression <100 copies/mL of plasma after 5 months of cART. Significantly, the more profound viral suppression during cART in a subset of SIV and all SHIV-infected RMs corresponded with less gut immune dysregulation during acute SIV/SHIV infection, defined by maintenance of the Th17/Treg ratio. These results highlight significant differences in viral control during cART and gut dysregulation in NHP AIDS models and suggest that selection of a model may impact the evaluation of candidate therapeutic interventions for HIV treatment and cure strategies.
Collapse
|
3
|
Olwenyi OA, Asingura B, Naluyima P, Anywar GU, Nalunga J, Nakabuye M, Semwogerere M, Bagaya B, Cham F, Tindikahwa A, Kiweewa F, Lichter EZ, Podany AT, Fletcher CV, Byrareddy SN, Kibuuka H. In-vitro Immunomodulatory activity of Azadirachta indica A.Juss. Ethanol: water mixture against HIV associated chronic CD4 + T-cell activation/ exhaustion. BMC Complement Med Ther 2021; 21:114. [PMID: 33836748 PMCID: PMC8034071 DOI: 10.1186/s12906-021-03288-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 03/25/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND In Sub-Saharan Africa, herbal therapy continues to be utilized for HIV-1 disease management. However, the therapeutic benefits of these substances remain ambiguous. To date, little is known about the effects of these plant extracts on chronic CD4 + T-cell activation and exhaustion which is partly driven by HIV-1 associated microbial translocation. METHODS Effects of Azadirachta indica, Momordica foetida and Moringa oleifera ethanol: water mixtures on cell viability were evaluated using the Guava PCA system. Then, an in-vitro cell culture model was developed to mimic CD4+ T cell exposures to antigens following HIV-1 microbial translocation. In this, peripheral blood mononuclear cells (PBMCs) isolated from HIV negative (n = 13), viral load < 1000 copies per mL (n = 10) and viral load > 1000 copies per mL (n = 6) study participants from rural Uganda were treated with Staphylococcus enterotoxin B (SEB). Then, the candidate plant extract (A. indica) was added to test the potential to inhibit corresponding CD4+ T cell activation. Following BD Facs Canto II event acquisition, variations in %CD38, %CD69, Human Leukocyte Antigen -DR (HLA-DR), Programmed cell death protein 1 (PD-1), T-cell immunoglobulin and mucin domain-containing protein 3 (Tim-3), interferon gamma (IFN γ) and interleukin 2 (IL-2) CD4 + T cell expression were evaluated. RESULTS Following exposure to SEB, only A. indica demonstrated a concentration-dependent ability to downregulate the levels of CD4 + T cell activation. At the final concentration of 0.500 μg/mL of A. indica, a significant downregulation of CD4 + CD38 + HLA-DR+ expression was observed in HIV negative (p < 0.0001) and both HIV infected groups (P = 0.0313). This plant extract also significantly lowered SEB induced % CD4+ T cell HLADR, PD-1 and Tim-3 levels. PD-1 and CD69 markers were only significantly downmodulated in only the HIV negative ((p = 0.0001 and p = 0.0078 respectively) and viral load< 1000 copies per ml (p = 0.0078) groups. CONCLUSION A. indica exhibited the in-vitro immunomodulatory potential to inhibit the continuum of SEB induced CD4+ T-cell activation/ exhaustion without impacting general T-cell specific functions such as cytokine secretion. Additional studies are needed to confirm A. indica as a source of natural products for targeting persistent immune activation and inflammation during ART.
Collapse
Affiliation(s)
- Omalla A Olwenyi
- Makerere University, Walter Reed Project, P.O Box 16524, Kampala, Uganda.
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Bannet Asingura
- Makerere University, Walter Reed Project, P.O Box 16524, Kampala, Uganda
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Prossy Naluyima
- Makerere University, Walter Reed Project, P.O Box 16524, Kampala, Uganda
| | - Godwin Upoki Anywar
- Department of Plant Sciences, Microbiology & Biotechnology, College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Justine Nalunga
- Makerere University, Walter Reed Project, P.O Box 16524, Kampala, Uganda
| | - Mariam Nakabuye
- Makerere University, Walter Reed Project, P.O Box 16524, Kampala, Uganda
| | | | - Bernard Bagaya
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Fatim Cham
- Makerere University, Walter Reed Project, P.O Box 16524, Kampala, Uganda
| | - Allan Tindikahwa
- Makerere University, Walter Reed Project, P.O Box 16524, Kampala, Uganda
| | - Francis Kiweewa
- Makerere University, Walter Reed Project, P.O Box 16524, Kampala, Uganda
| | - Eliezer Z Lichter
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Anthony T Podany
- Antiviral Pharmacology Laboratory, University of Nebraska Medical Center (UNMC) Center for Drug Discovery, Omaha, NE, USA
| | - Courtney V Fletcher
- Antiviral Pharmacology Laboratory, University of Nebraska Medical Center (UNMC) Center for Drug Discovery, Omaha, NE, USA
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Hannah Kibuuka
- Makerere University, Walter Reed Project, P.O Box 16524, Kampala, Uganda
| |
Collapse
|
4
|
Del Prete GQ, Alvord WG, Li Y, Deleage C, Nag M, Oswald K, Thomas JA, Pyle C, Bosche WJ, Coalter V, Wiles A, Wiles R, Berkemeier B, Hull M, Chipriano E, Silipino L, Fast R, Kiser J, Kiser R, Malys T, Kramer J, Breed MW, Trubey CM, Estes JD, Barnes TL, Hesselgesser J, Geleziunas R, Lifson JD. TLR7 agonist administration to SIV-infected macaques receiving early initiated cART does not induce plasma viremia. JCI Insight 2019; 4:127717. [PMID: 31167974 PMCID: PMC6629134 DOI: 10.1172/jci.insight.127717] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/19/2019] [Indexed: 12/29/2022] Open
Abstract
Reduction/elimination of HIV-1 reservoirs that persist despite combination antiretroviral therapy (cART) will likely require induction of viral expression by residual infected cells and enhanced clearance of these cells. TLR7 agonists have potential to mediate these activities. We evaluated immunologic and virologic effects of repeated doses of the TLR7 agonist GS-9620 in SIV-infected rhesus macaques receiving cART, which was initiated at 13 days after infection and was continued for 75 weeks prior to GS-9620 administration. During cART, GS-9620 induced transient upregulation of IFN-stimulated genes in blood and tissues, increases in plasma cytokines, and changes in immune cell population activation and phenotypes but did not result in measurable increases in plasma viremia or viral RNA-to-viral DNA ratio in PBMCs or tissues nor decreases in viral DNA in PBMC or tissues. SIV-specific CD8+ T cell responses, negligible prior to GS-9620 treatment, were not measurably boosted by treatment; a second course of GS-9620 administration overlapping with later cART discontinuation was associated with increased CD8+ T cell responses during viral recrudescence. These results confirm and extend evidence for GS-9620-mediated enhancement of antiviral immune responses in SIV-infected macaques but suggest that GS-9620-mediated viral induction may depend critically on the timing of initiation and duration of cART and resulting characteristics of viral reservoirs.
Collapse
Affiliation(s)
| | | | - Yuan Li
- AIDS and Cancer Virus Program
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Tyler Malys
- DMS Applied Information & Management Sciences, and
| | - Joshua Kramer
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Matthew W. Breed
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Swanstrom AE, Jacques A, Del Prete GQ, Bieniasz P, Hatziioannou T, Gorelick R, Lifson JD. Short Communication: Ultrasensitive Immunoassay for Assessing Residual Simian-Tropic HIV in Nonhuman Primate Models of AIDS. AIDS Res Hum Retroviruses 2019; 35:473-476. [PMID: 30632394 DOI: 10.1089/aid.2018.0278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Persistence of replication-competent viral reservoirs during infection remains a barrier to HIV cure, despite the ability of combination antiretroviral therapy (cART) to effectively suppress viral replication. Simian-tropic HIV (stHIV) is a minimally chimeric HIV-1 that is comprised of 94% HIV-1 sequence, contains HIV-1 drug and immunologic targets, and is capable of replicating to high levels and causing authentic HIV-like pathogenesis leading to clinical AIDS in pigtail macaques. Suppression of stHIV replication by cART provides a model for study of viral reservoirs and HIV-specific intervention strategies targeting them. Accurate measurement of reservoir size is crucial for evaluating the effect of any such intervention strategies. Although there are a variety of assays that allow for indirect monitoring of viral reservoir size ex vivo, they each quantify a different aspect of viral reservoirs, and are characterized by conceptual and/or technical limitations. Measurement of viral protein in ex vivo cell culture assays captures the immunologically relevant viral-antigen producing component of the reservoir. This study demonstrates the utility of an ultrasensitive digital HIV Gag p24 immunoassay, which enabled earlier, and more sensitive detection of viral protein in culture supernatants from stimulated CD4+ T cells from stHIV-infected pigtail macaques receiving cART compared with conventional enzyme-linked immunosorbent assay. Protein measurements were highly correlated with cell-free stHIV RNA, as measured by quantitative reverse transcription polymerase chain reaction. This ultrasensitive p24 assay can be used to complement other reservoir measurement tools to assess ongoing replication and reactivation of infectious virus from reservoirs in stHIV-infected pigtail macaques.
Collapse
Affiliation(s)
- Adrienne E. Swanstrom
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Alison Jacques
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Gregory Q. Del Prete
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Paul Bieniasz
- Laboratory of Retrovirology, Rockefeller University, New York, New York
- Howard Hughes Medical Institute, Rockefeller University, New York, New York
| | | | - Robert Gorelick
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| |
Collapse
|
6
|
Okoye AA, Hansen SG, Vaidya M, Fukazawa Y, Park H, Duell DM, Lum R, Hughes CM, Ventura AB, Ainslie E, Ford JC, Morrow D, Gilbride RM, Legasse AW, Hesselgesser J, Geleziunas R, Li Y, Oswald K, Shoemaker R, Fast R, Bosche WJ, Borate BR, Edlefsen PT, Axthelm MK, Picker LJ, Lifson JD. Early antiretroviral therapy limits SIV reservoir establishment to delay or prevent post-treatment viral rebound. Nat Med 2018; 24:1430-1440. [PMID: 30082858 PMCID: PMC6389357 DOI: 10.1038/s41591-018-0130-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/20/2018] [Indexed: 12/30/2022]
Abstract
Prophylactic vaccination of rhesus macaques with rhesus cytomegalovirus (RhCMV) vectors expressing simian immunodeficiency virus (SIV) antigens (RhCMV/SIV) elicits immune responses that stringently control highly pathogenic SIV infection, with subsequent apparent clearance of the infection, in ~50% of vaccinees. In contrast, here, we show that therapeutic RhCMV/SIV vaccination of rhesus macaques previously infected with SIV and given continuous combination antiretroviral therapy (cART) beginning 4-9 d post-SIV infection does not mediate measurable SIV reservoir clearance during over 600 d of follow-up on cART relative to RhCMV/control vaccination. However, none of the six animals started on cART on day four or five, across both RhCMV/SIV- and RhCMV/control-vaccinated groups, those rhesus macaques with SIV reservoirs most closely resembling those of prophylactically RhCMV/SIV-vaccinated and protected animals early in their course, showed post-cART viral rebound with up to nine months of follow-up. Moreover, at necropsy, these rhesus macaques showed little to no evidence of replication-competent SIV. These results suggest that the early SIV reservoir is limited in durability and that effective blockade of viral replication and spread in this critical time window by either pharmacologic or immunologic suppression may result in reduction, and potentially loss, of rebound-competent virus over a period of ~two years.
Collapse
Affiliation(s)
- Afam A Okoye
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Scott G Hansen
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Mukta Vaidya
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Yoshinori Fukazawa
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Haesun Park
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Derick M Duell
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Richard Lum
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Colette M Hughes
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Abigail B Ventura
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Emily Ainslie
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Julia C Ford
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - David Morrow
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Roxanne M Gilbride
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Alfred W Legasse
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | | | | | - Yuan Li
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kelli Oswald
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Rebecca Shoemaker
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Randy Fast
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - William J Bosche
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Bhavesh R Borate
- Statistical Center for HIV/AIDS Research and Prevention, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Paul T Edlefsen
- Statistical Center for HIV/AIDS Research and Prevention, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Michael K Axthelm
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Louis J Picker
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA.
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| |
Collapse
|
7
|
Chaudhary O, Narayan V, Lelis F, Linz B, Watkins M, Veazey R, Aldovini A. Inhibition of p38 MAPK in combination with ART reduces SIV-induced immune activation and provides additional protection from immune system deterioration. PLoS Pathog 2018; 14:e1007268. [PMID: 30161247 PMCID: PMC6135519 DOI: 10.1371/journal.ppat.1007268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 09/12/2018] [Accepted: 08/08/2018] [Indexed: 12/12/2022] Open
Abstract
Differences in immune activation were identified as the most significant difference between AIDS-susceptible and resistant species. p38 MAPK, activated in HIV infection, is key to induction of interferon-stimulated genes and cytokine-mediated inflammation and is associated with some of the pathology produced by HIV or SIV infection in AIDS-susceptible primates. As small molecule p38 MAPK inhibitors are being tested in human trials for inflammatory diseases, we evaluated the effects of treating SIV-infected macaques with the p38 MAPK inhibitor PH-797804 in conjunction with ART. PH-797804 had no side effects, did not impact negatively the antiviral immune response and, used alone, had no significant effect on levels of immune activation and did not reduced the viremia. When administered with ART, it significantly reduced numerous immune activation markers compared to ART alone. CD38+/HLA-DR+ and Ki-67+ T-cell percentages in blood, lymph node and rectal CD4+ and CD8+ T cells, PD-1 expression in CD8+ T cells and plasma levels of IFNα, IFNγ, TNFα, IL-6, IP-10, sCD163 and C-reactive protein were all significantly reduced. Significant preservation of CD4+, CD4+ central memory, CD4+/IL-22+ and CD4+/IL-17+ T-cell percentages and improvement of Th17/Treg ratio in blood and rectal mucosa were also observed. Importantly, the addition of PH-797804 to ART initiated during chronic SIV infection reduced immune activation and restored immune system parameters to the levels observed when ART was initiated on week 1 after infection. After ART interruption, viremia rebounded in a similar fashion in all groups, regardless of when ART was initiated. We concluded that the inhibitor PH-797804 significantly reduced, even if did not normalized, the immune activation parameters evaluated during ART treatment, improved preservation of critical populations of the immune system targeted by SIV, and increased the efficacy of ART treatment initiated in chronic infection to levels similar to those observed when initiated in acute infection but did not affect positively or negatively viral reservoirs. The hallmark of Human Immunodeficiency Virus and Simian Immunodeficiency Virus infection in disease-susceptible species is the progressive decline of the CD4+ T cell population and heightened immune activation, which by itself can contribute to CD4+ T-cell death. The cellular pathway regulated by p38 MAPK, which is activated in HIV and SIV infection, can contribute significantly to immune activation. We tested in SIV-infected macaques a p38 MAPK inhibitor in combination with anti-retroviral therapy. This drug is already being evaluated in humans for treatment of immune activation associated with other diseases. We found that, when combined with antiretroviral therapy, the inhibitor PH-797804 significantly reduced a few parameters of SIV-induced immune activation and improved preservation of critical populations of the immune system targeted by SIV, but did not modulate viral reservoirs. Importantly, the addition of the inhibitor to anti-retroviral therapy during the chronic phase of the infection, which is the time when most HIV-infected individuals initiate treatment, permitted a more significant preservation of the immune system compared to antiretroviral therapy alone that was similar to that observed when anti-retroviral therapy was initiated in the acute phase of the infection, which rarely occurs in HIV infection.
Collapse
Affiliation(s)
- Omkar Chaudhary
- Boston Children’s Hospital, Department of Medicine, and Harvard Medical School, Department of Pediatrics, Boston MA, United States of America
| | - Vivek Narayan
- Boston Children’s Hospital, Department of Medicine, and Harvard Medical School, Department of Pediatrics, Boston MA, United States of America
| | - Felipe Lelis
- Boston Children’s Hospital, Department of Medicine, and Harvard Medical School, Department of Pediatrics, Boston MA, United States of America
| | - Brandon Linz
- Boston Children’s Hospital, Department of Medicine, and Harvard Medical School, Department of Pediatrics, Boston MA, United States of America
| | - Meagan Watkins
- Tulane National Primate Research Center, Division of Comparative Pathology, Covington LA, United States of America
| | - Ronald Veazey
- Tulane National Primate Research Center, Division of Comparative Pathology, Covington LA, United States of America
| | - Anna Aldovini
- Boston Children’s Hospital, Department of Medicine, and Harvard Medical School, Department of Pediatrics, Boston MA, United States of America
- * E-mail:
| |
Collapse
|
8
|
CHOMONT N, OKOYE AA, FAVRE D, TRAUTMANN L. Wake me up before you go: a strategy to reduce the latent HIV reservoir. AIDS 2018; 32:293-298. [PMID: 29135580 PMCID: PMC5758429 DOI: 10.1097/qad.0000000000001695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the quest to eliminate or reduce the HIV reservoir, shock and kill strategies require the combined administration of a latency reversing agent (LRA) to reactivate the latent reservoir and an intervention to boost effector functions to clear this reservoir. Both parts of this strategy are quite inefficient when LRAs are administered to HIV-infected individuals on suppressive ART for several years, possibly due to low levels of induced antigen expression, negative impact of LRAs on clearance mechanisms, and very low number of effective cytotoxic T cells (CTLs). Here we provide rationale for an approach that would require only the administration of an LRA at the time of ART initiation to significantly reduce the HIV reservoir. The advantage of this strategy is an efficient reactivation of the latent HIV reservoir when high numbers of HIV-specific CD8+ T cells are present. This strategy may also potentiate more effective CTL responses and the establishment of a longer period of immune surveillance. This “window of opportunity” has been validated in silico , can be tested in preclinical non-human primate (NHP) models and translated rapidly in the clinic.
Collapse
Affiliation(s)
- Nicolas CHOMONT
- Research Centre of the Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec, Canada
- Department of microbiology, infectiology and immunology, Faculty of Medicine. Université de Montréal, Montreal, Quebec, Canada
| | - Afam A. OKOYE
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - David FAVRE
- GlaxoSmithKline, Durham, North Carolina, USA
| | - Lydie TRAUTMANN
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Post K, Olson ED, Naufer MN, Gorelick RJ, Rouzina I, Williams MC, Musier-Forsyth K, Levin JG. Mechanistic differences between HIV-1 and SIV nucleocapsid proteins and cross-species HIV-1 genomic RNA recognition. Retrovirology 2016; 13:89. [PMID: 28034301 PMCID: PMC5198506 DOI: 10.1186/s12977-016-0322-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/29/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The nucleocapsid (NC) domain of HIV-1 Gag is responsible for specific recognition and packaging of genomic RNA (gRNA) into new viral particles. This occurs through specific interactions between the Gag NC domain and the Psi packaging signal in gRNA. In addition to this critical function, NC proteins are also nucleic acid (NA) chaperone proteins that facilitate NA rearrangements during reverse transcription. Although the interaction with Psi and chaperone activity of HIV-1 NC have been well characterized in vitro, little is known about simian immunodeficiency virus (SIV) NC. Non-human primates are frequently used as a platform to study retroviral infection in vivo; thus, it is important to understand underlying mechanistic differences between HIV-1 and SIV NC. RESULTS Here, we characterize SIV NC chaperone activity for the first time. Only modest differences are observed in the ability of SIV NC to facilitate reactions that mimic the minus-strand annealing and transfer steps of reverse transcription relative to HIV-1 NC, with the latter displaying slightly higher strand transfer and annealing rates. Quantitative single molecule DNA stretching studies and dynamic light scattering experiments reveal that these differences are due to significantly increased DNA compaction energy and higher aggregation capability of HIV-1 NC relative to the SIV protein. Using salt-titration binding assays, we find that both proteins are strikingly similar in their ability to specifically interact with HIV-1 Psi RNA. In contrast, they do not demonstrate specific binding to an RNA derived from the putative SIV packaging signal. CONCLUSIONS Based on these studies, we conclude that (1) HIV-1 NC is a slightly more efficient NA chaperone protein than SIV NC, (2) mechanistic differences between the NA interactions of highly similar retroviral NC proteins are revealed by quantitative single molecule DNA stretching, and (3) SIV NC demonstrates cross-species recognition of the HIV-1 Psi RNA packaging signal.
Collapse
Affiliation(s)
- Klara Post
- Section on Viral Gene Regulation, Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2780 USA
| | - Erik D. Olson
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus, OH 43210 USA
| | - M. Nabuan Naufer
- Department of Physics, Northeastern University, Boston, MA 02115 USA
| | - Robert J. Gorelick
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702-1201 USA
| | - Ioulia Rouzina
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus, OH 43210 USA
| | - Mark C. Williams
- Department of Physics, Northeastern University, Boston, MA 02115 USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus, OH 43210 USA
| | - Judith G. Levin
- Section on Viral Gene Regulation, Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2780 USA
| |
Collapse
|
10
|
Multi-dose Romidepsin Reactivates Replication Competent SIV in Post-antiretroviral Rhesus Macaque Controllers. PLoS Pathog 2016; 12:e1005879. [PMID: 27632364 PMCID: PMC5025140 DOI: 10.1371/journal.ppat.1005879] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/18/2016] [Indexed: 11/19/2022] Open
Abstract
Viruses that persist despite seemingly effective antiretroviral treatment (ART) and can reinitiate infection if treatment is stopped preclude definitive treatment of HIV-1 infected individuals, requiring lifelong ART. Among strategies proposed for targeting these viral reservoirs, the premise of the “shock and kill” strategy is to induce expression of latent proviruses [for example with histone deacetylase inhibitors (HDACis)] resulting in elimination of the affected cells through viral cytolysis or immune clearance mechanisms. Yet, ex vivo studies reported that HDACis have variable efficacy for reactivating latent proviruses, and hinder immune functions. We developed a nonhuman primate model of post-treatment control of SIV through early and prolonged administration of ART and performed in vivo reactivation experiments in controller RMs, evaluating the ability of the HDACi romidepsin (RMD) to reactivate SIV and the impact of RMD treatment on SIV-specific T cell responses. Ten RMs were IV-infected with a SIVsmmFTq transmitted-founder infectious molecular clone. Four RMs received conventional ART for >9 months, starting from 65 days post-infection. SIVsmmFTq plasma viremia was robustly controlled to <10 SIV RNA copies/mL with ART, without viral blips. At ART cessation, initial rebound viremia to ~106 copies/mL was followed by a decline to < 10 copies/mL, suggesting effective immune control. Three post-treatment controller RMs received three doses of RMD every 35–50 days, followed by in vivo experimental depletion of CD8+ cells using monoclonal antibody M-T807R1. RMD was well-tolerated and resulted in a rapid and massive surge in T cell activation, as well as significant virus rebounds (~104 copies/ml) peaking at 5–12 days post-treatment. CD8+ cell depletion resulted in a more robust viral rebound (107 copies/ml) that was controlled upon CD8+ T cell recovery. Our results show that RMD can reactivate SIV in vivo in the setting of post-ART viral control. Comparison of the patterns of virus rebound after RMD administration and CD8+ cell depletion suggested that RMD impact on T cells is only transient and does not irreversibly alter the ability of SIV-specific T cells to control the reactivated virus. Antiretroviral therapy (ART) does not eradicate HIV-1 in infected individuals due to virus persistence in latently infected reservoir cells, despite apparently effective ART. The persistent virus and can rekindle infection when ART is interrupted. The goal of the “shock and kill” viral clearance strategy is to induce expression of latent proviruses and eliminate the infected cells through viral cytolysis or immune clearance mechanisms. Latency reversing agents (LRAs) tested to date have been reported to have variable effects, both on virus reactivation and on immune functions. We performed in vivo reactivation experiments in SIV-infected RMs that controlled viral replication after a period of ART to evaluate the ability of the histone deacetylase inhibitor romidepsin (RMD) to reactivate SIV and its impact on SIV-specific immune responses. Our results suggest that RMD treatment can increase virus expression in this setting, and that it does not markedly or durably impair the ability of SIV-specific T cells to control viral replication.
Collapse
|
11
|
Margolis DM, Garcia JV, Hazuda DJ, Haynes BF. Latency reversal and viral clearance to cure HIV-1. Science 2016; 353:aaf6517. [PMID: 27463679 DOI: 10.1126/science.aaf6517] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Research toward a cure for human immunodeficiency virus type 1 (HIV-1) infection has joined prevention and treatment efforts in the global public health agenda. A major approach to HIV eradication envisions antiretroviral suppression, paired with targeted therapies to enforce the expression of viral antigen from quiescent HIV-1 genomes, and immunotherapies to clear latent infection. These strategies are targeted to lead to viral eradication--a cure for AIDS. Paired testing of latency reversal and clearance strategies has begun, but additional obstacles to HIV eradication may emerge. Nevertheless, there is reason for optimism that advances in long-acting antiretroviral therapy and HIV prevention strategies will contribute to efforts in HIV cure research and that the implementation of these efforts will synergize to markedly blunt the effect of the HIV pandemic on society.
Collapse
Affiliation(s)
- David M Margolis
- University of North Carolina HIV Cure Center, Department of Medicine, and Center for AIDS Research, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA. Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| | - J Victor Garcia
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Daria J Hazuda
- Merck Research Laboratories, White Horse Junction, PA, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Department of Medicine, and Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
12
|
|
13
|
Long-term multilineage engraftment of autologous genome-edited hematopoietic stem cells in nonhuman primates. Blood 2016; 127:2416-26. [PMID: 26980728 DOI: 10.1182/blood-2015-09-672337] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 02/26/2016] [Indexed: 12/27/2022] Open
Abstract
Genome editing in hematopoietic stem and progenitor cells (HSPCs) is a promising novel technology for the treatment of many human diseases. Here, we evaluated whether the disruption of the C-C chemokine receptor 5 (CCR5) locus in pigtailed macaque HSPCs by zinc finger nucleases (ZFNs) was feasible. We show that macaque-specific CCR5 ZFNs efficiently induce CCR5 disruption at levels of up to 64% ex vivo, 40% in vivo early posttransplant, and 3% to 5% in long-term repopulating cells over 6 months following HSPC transplant. These genome-edited HSPCs support multilineage engraftment and generate progeny capable of trafficking to secondary tissues including the gut. Using deep sequencing technology, we show that these ZFNs are highly specific for the CCR5 locus in primary cells. Further, we have adapted our clonal tracking methodology to follow individual CCR5 mutant cells over time in vivo, reinforcing that CCR5 gene-edited HSPCs are capable of long-term engraftment. Together, these data demonstrate that genome-edited HSPCs engraft, and contribute to multilineage repopulation after autologous transplantation in a clinically relevant large animal model, an important step toward the development of stem cell-based genome-editing therapies for HIV and potentially other diseases as well.
Collapse
|
14
|
Yee JL, Vanderford TH, Didier ES, Gray S, Lewis A, Roberts J, Taylor K, Bohm RP. Specific pathogen free macaque colonies: a review of principles and recent advances for viral testing and colony management. J Med Primatol 2016; 45:55-78. [PMID: 26932456 DOI: 10.1111/jmp.12209] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2016] [Indexed: 11/26/2022]
Abstract
Specific pathogen free (SPF) macaques provide valuable animal models for biomedical research. In 1989, the National Center for Research Resources [now Office of Research Infrastructure Programs (ORIP)] of the National Institutes of Health initiated experimental research contracts to establish and maintain SPF colonies. The derivation and maintenance of SPF macaque colonies is a complex undertaking requiring knowledge of the biology of the agents for exclusion and normal physiology and behavior of macaques, application of the latest diagnostic technology, facilitiy management, and animal husbandry. This review provides information on the biology of the four viral agents targeted for exclusion in ORIP SPF macaque colonies, describes current state-of-the-art viral diagnostic algorithms, presents data from proficiency testing of diagnostic assays between laboratories at institutions participating in the ORIP SPF program, and outlines management strategies for maintaining the integrity of SPF colonies using results of diagnostic testing as a guide to decision making.
Collapse
Affiliation(s)
- JoAnn L Yee
- California National Primate Research Center, University of California, Davis, CA, USA
| | | | - Elizabeth S Didier
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA
| | - Stanton Gray
- Michael E. Keeling Center for Comparative Medicine and Research, University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| | - Anne Lewis
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Jeffrey Roberts
- California National Primate Research Center, University of California, Davis, CA, USA
| | - Kerry Taylor
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Rudolf P Bohm
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA
| |
Collapse
|
15
|
Del Prete GQ, Smedley J, Macallister R, Jones GS, Li B, Hattersley J, Zheng J, Piatak M, Keele BF, Hesselgesser J, Geleziunas R, Lifson JD. Short Communication: Comparative Evaluation of Coformulated Injectable Combination Antiretroviral Therapy Regimens in Simian Immunodeficiency Virus-Infected Rhesus Macaques. AIDS Res Hum Retroviruses 2016; 32:163-8. [PMID: 26150024 DOI: 10.1089/aid.2015.0130] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The use of nonhuman primate (NHP) models to study persistent residual virus and viral eradication strategies in combination antiretroviral therapy (cART)-treated individuals requires regimens that effectively suppress SIV replication to clinically relevant levels in macaques. We developed and evaluated two novel cART regimens in SIVmac239-infected rhesus macaques: (1) a "triple regimen" containing the nucleo(s/t)ide reverse transcriptase inhibitors emtricitabine (FTC) and tenofovir disoproxil fumarate [TDF, prodrug of tenofovir (TFV, PMPA)] with the integrase strand transfer inhibitor dolutegravir (DTG) (n = 3), or (2) a "quad regimen" containing the same three drugs plus the protease inhibitor darunavir (DRV) (n = 3), with each regimen coformulated for convenient administration by a single daily subcutaneous injection. Plasma drug concentrations were consistent across animals within the triple and quad regimen-treated groups, although DTG levels were lower in the quad regimen animals. Time to achieve plasma viral loads stably <30 viral RNA copies/ml ranged from 12 to 20 weeks of treatment between animals, and viral loads <30 viral RNA copies/ml plasma were maintained through 40 weeks of follow-up on cART. Notably, although we show virologic suppression and development of viral resistance in a separate cohort of SIV-infected animals treated with oral DRV monotherapy, the addition of DRV in the quad regimen did not confer an apparent virologic benefit during early treatment, hence the quad regimen-treated animals were switched to the triple regimen after 4 weeks. This coformulated triple cART regimen can be safely, conveniently, and sustainably administered to durably suppress SIV replication to clinically relevant levels in rhesus macaques.
Collapse
Affiliation(s)
- Gregory Q. Del Prete
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Jeremy Smedley
- Laboratory Animal Sciences Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Rhonda Macallister
- Laboratory Animal Sciences Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | | | - Bei Li
- Gilead Sciences, Foster City, California
| | | | - Jim Zheng
- Gilead Sciences, Foster City, California
| | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | | | | | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| |
Collapse
|
16
|
Policicchio BB, Pandrea I, Apetrei C. Animal Models for HIV Cure Research. Front Immunol 2016; 7:12. [PMID: 26858716 PMCID: PMC4729870 DOI: 10.3389/fimmu.2016.00012] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/12/2016] [Indexed: 12/17/2022] Open
Abstract
The HIV-1/AIDS pandemic continues to spread unabated worldwide, and no vaccine exists within our grasp. Effective antiretroviral therapy (ART) has been developed, but ART cannot clear the virus from the infected patient. A cure for HIV-1 is badly needed to stop both the spread of the virus in human populations and disease progression in infected individuals. A safe and effective cure strategy for human immunodeficiency virus (HIV) infection will require multiple tools, and appropriate animal models are tools that are central to cure research. An ideal animal model should recapitulate the essential aspects of HIV pathogenesis and associated immune responses, while permitting invasive studies, thus allowing a thorough evaluation of strategies aimed at reducing the size of the reservoir (functional cure) or eliminating the reservoir altogether (sterilizing cure). Since there is no perfect animal model for cure research, multiple models have been tailored and tested to address specific quintessential questions of virus persistence and eradication. The development of new non-human primate and mouse models, along with a certain interest in the feline model, has the potential to fuel cure research. In this review, we highlight the major animal models currently utilized for cure research and the contributions of each model to this goal.
Collapse
Affiliation(s)
| | - Ivona Pandrea
- Center for Vaccine Research, University of Pittsburgh , Pittsburgh, PA , USA
| | - Cristian Apetrei
- Center for Vaccine Research, University of Pittsburgh , Pittsburgh, PA , USA
| |
Collapse
|
17
|
Del Prete GQ, Oswald K, Lara A, Shoemaker R, Smedley J, Macallister R, Coalter V, Wiles A, Wiles R, Li Y, Fast R, Kiser R, Lu B, Zheng J, Alvord WG, Trubey CM, Piatak M, Deleage C, Keele BF, Estes JD, Hesselgesser J, Geleziunas R, Lifson JD. Elevated Plasma Viral Loads in Romidepsin-Treated Simian Immunodeficiency Virus-Infected Rhesus Macaques on Suppressive Combination Antiretroviral Therapy. Antimicrob Agents Chemother 2015; 60:1560-72. [PMID: 26711758 PMCID: PMC4776002 DOI: 10.1128/aac.02625-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/13/2015] [Indexed: 11/20/2022] Open
Abstract
Replication-competent human immunodeficiency virus (HIV) persists in infected people despite suppressive combination antiretroviral therapy (cART), and it represents a major obstacle to HIV functional cure or eradication. We have developed a model of cART-mediated viral suppression in simian human immunodeficiency virus (SIV) mac239-infected Indian rhesus macaques and evaluated the impact of the histone deacetylase inhibitor (HDACi) romidepsin (RMD) on viremia in vivo. Eight macaques virologically suppressed to clinically relevant levels (<30 viral RNA copies/ml of plasma), using a three-class five-drug cART regimen, received multiple intravenous infusions of either RMD (n = 5) or saline (n = 3) starting 31 to 54 weeks after cART initiation. In vivo RMD treatment resulted in significant transient increases in acetylated histone levels in CD4(+) T cells. RMD-treated animals demonstrated plasma viral load measurements for each 2-week treatment cycle that were significantly higher than those in saline control-treated animals during periods of treatment, suggestive of RMD-induced viral reactivation. However, plasma virus rebound was indistinguishable between RMD-treated and control-treated animals for a subset of animals released from cART. These findings suggest that HDACi drugs, such as RMD, can reactivate residual virus in the presence of suppressive antiviral therapy and may be a valuable component of a comprehensive HIV functional cure/eradication strategy.
Collapse
Affiliation(s)
- Gregory Q Del Prete
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Kelli Oswald
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Abigail Lara
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Rebecca Shoemaker
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jeremy Smedley
- Laboratory Animal Sciences Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Rhonda Macallister
- Laboratory Animal Sciences Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Vicky Coalter
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Adam Wiles
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Rodney Wiles
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Yuan Li
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Randy Fast
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Rebecca Kiser
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Bing Lu
- Gilead Sciences, Foster City, California, USA
| | - Jim Zheng
- Gilead Sciences, Foster City, California, USA
| | - W Gregory Alvord
- Statistical Consulting, Data Management Services, Inc., Frederick, Maryland, USA
| | - Charles M Trubey
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Claire Deleage
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jacob D Estes
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | | | | | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| |
Collapse
|
18
|
Lee SA. Highlights from the Keystone Symposium on HIV Persistence 2015: 26-30 April 2015, Boston, Massachusetts, USA. J Virus Erad 2015; 1:225-6. [PMID: 27482417 PMCID: PMC4946746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
19
|
Micci L, McGary CS, Paiardini M. Animal models in HIV cure research. J Virus Erad 2015; 1:17-22. [PMID: 27482392 PMCID: PMC4946666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Current HIV antiretroviral therapy (ART) successfully inhibits viral replication in the majority of HIV-infected individuals. However, ART is not curative and lifelong adherence is required. Despite the undisputed benefit of ART, long-lived latently infected cells that carry HIV-integrated DNA remain. Hence, upon ART interruption, HIV-infected subjects experience viral rebound. Interestingly, similar disease course occurs in the well-characterised animal model of SIV-infected non-human primates. Using these animal models to investigate the mechanisms involved in the generation of latently infected cells, define the phenotypic and anatomical nature of persistent viral reservoirs, and test novel interventions for viral eradication, is critical for strengthening our understanding of HIV persistence and developing novel therapeutics aimed at curing HIV. In this review, we discuss the current animal models used in AIDS cure research, with a particular focus on non-human primates, and outline the experimental strategies explored in the quest for virus eradication.
Collapse
Affiliation(s)
- Luca Micci
- Division of Microbiology & Immunology,
Yerkes National Primate Research Center
| | - Colleen S McGary
- Division of Microbiology & Immunology,
Yerkes National Primate Research Center
| | - Mirko Paiardini
- Division of Microbiology & Immunology,
Yerkes National Primate Research Center,Department of Pathology and Laboratory Medicine,
Emory University School of Medicine,
Atlanta,
GA,
USA,Corresponding author: Mirko Paiardini,
Division of Microbiology & Immunology,
Yerkes National Primate Research Center,
Emory University School of Medicine,
954 Gatewood Road,
Atlanta,
GA,
30329,
USA
| |
Collapse
|
20
|
Del Prete GQ, Shoemaker R, Oswald K, Lara A, Trubey CM, Fast R, Schneider DK, Kiser R, Coalter V, Wiles A, Wiles R, Freemire B, Keele BF, Estes JD, Quiñones OA, Smedley J, Macallister R, Sanchez RI, Wai JS, Tan CM, Alvord WG, Hazuda DJ, Piatak M, Lifson JD. Effect of suberoylanilide hydroxamic acid (SAHA) administration on the residual virus pool in a model of combination antiretroviral therapy-mediated suppression in SIVmac239-infected indian rhesus macaques. Antimicrob Agents Chemother 2014; 58:6790-806. [PMID: 25182644 PMCID: PMC4249371 DOI: 10.1128/aac.03746-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/25/2014] [Indexed: 11/20/2022] Open
Abstract
Nonhuman primate models are needed for evaluations of proposed strategies targeting residual virus that persists in HIV-1-infected individuals receiving suppressive combination antiretroviral therapy (cART). However, relevant nonhuman primate (NHP) models of cART-mediated suppression have proven challenging to develop. We used a novel three-class, six-drug cART regimen to achieve durable 4.0- to 5.5-log reductions in plasma viremia levels and declines in cell-associated viral RNA and DNA in blood and tissues of simian immunodeficiency virus SIVmac239-infected Indian-origin rhesus macaques, then evaluated the impact of treatment with the histone deacetylase inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA; Vorinostat) on the residual virus pool. Ex vivo SAHA treatment of CD4(+) T cells obtained from cART-suppressed animals increased histone acetylation and viral RNA levels in culture supernatants. cART-suppressed animals each received 84 total doses of oral SAHA. We observed SAHA dose-dependent increases in acetylated histones with evidence for sustained modulation as well as refractoriness following prolonged administration. In vivo virologic activity was demonstrated based on the ratio of viral RNA to viral DNA in peripheral blood mononuclear cells, a presumptive measure of viral transcription, which significantly increased in SAHA-treated animals. However, residual virus was readily detected at the end of treatment, suggesting that SAHA alone may be insufficient for viral eradication in the setting of suppressive cART. The effects observed were similar to emerging data for repeat-dose SAHA treatment of HIV-infected individuals on cART, demonstrating the feasibility, utility, and relevance of NHP models of cART-mediated suppression for in vivo assessments of AIDS virus functional cure/eradication approaches.
Collapse
Affiliation(s)
- Gregory Q Del Prete
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Rebecca Shoemaker
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Kelli Oswald
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Abigail Lara
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Charles M Trubey
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Randy Fast
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Douglas K Schneider
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Rebecca Kiser
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Vicky Coalter
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Adam Wiles
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Rodney Wiles
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Brandi Freemire
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jacob D Estes
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Octavio A Quiñones
- Statistical Consulting, Data Management Services, Inc., Frederick, Maryland, USA
| | - Jeremy Smedley
- Laboratory Animal Sciences Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Rhonda Macallister
- Laboratory Animal Sciences Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | | | - John S Wai
- Merck Research Labs, West Point, Pennsylvania, USA
| | | | - W Gregory Alvord
- Statistical Consulting, Data Management Services, Inc., Frederick, Maryland, USA
| | | | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| |
Collapse
|
21
|
Phillips KA, Bales KL, Capitanio JP, Conley A, Czoty PW, ‘t Hart BA, Hopkins WD, Hu SL, Miller LA, Nader MA, Nathanielsz PW, Rogers J, Shively CA, Voytko ML. Why primate models matter. Am J Primatol 2014; 76:801-27. [PMID: 24723482 PMCID: PMC4145602 DOI: 10.1002/ajp.22281] [Citation(s) in RCA: 399] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/01/2014] [Accepted: 03/02/2014] [Indexed: 12/13/2022]
Abstract
Research involving nonhuman primates (NHPs) has played a vital role in many of the medical and scientific advances of the past century. NHPs are used because of their similarity to humans in physiology, neuroanatomy, reproduction, development, cognition, and social complexity-yet it is these very similarities that make the use of NHPs in biomedical research a considered decision. As primate researchers, we feel an obligation and responsibility to present the facts concerning why primates are used in various areas of biomedical research. Recent decisions in the United States, including the phasing out of chimpanzees in research by the National Institutes of Health and the pending closure of the New England Primate Research Center, illustrate to us the critical importance of conveying why continued research with primates is needed. Here, we review key areas in biomedicine where primate models have been, and continue to be, essential for advancing fundamental knowledge in biomedical and biological research.
Collapse
Affiliation(s)
- Kimberley A. Phillips
- Department of Psychology, Trinity University, San Antonio TX 78212
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio TX
| | - Karen L. Bales
- Department of Psychology, University of California, Davis CA 95616
- California National Primate Research Center, Davis CA 95616
| | - John P. Capitanio
- Department of Psychology, University of California, Davis CA 95616
- California National Primate Research Center, Davis CA 95616
| | - Alan Conley
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, Davis CA 95616
| | - Paul W. Czoty
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem NC 27157
| | - Bert A. ‘t Hart
- Department of Immunobiology, Biomedical Primate Research Center, Rijswick, The Netherlands
| | - William D. Hopkins
- Neuroscience Institute and Language Research Center, Georgia State University, Atlanta GA 30302
- Division of Cognitive and Developmental Neuroscience, Yerkes National Primate Research Center, Atlanta GA 30030
| | - Shiu-Lok Hu
- Department of Pharmaceutics and Washington National Primate Research Center, University of Washington, Seattle WA
| | - Lisa A. Miller
- California National Primate Research Center, Davis CA 95616
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis CA 95616
| | - Michael A. Nader
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem NC 27157
| | - Peter W. Nathanielsz
- Center for Pregnancy and Newborn Research, University of Texas Health Science Center, San Antonio TX 78229
| | - Jeffrey Rogers
- Human Genome Sequencing Center, Baylor College of Medicine, Houston TX
- Wisconsin National Primate Research Center, Madison, WI
| | - Carol A. Shively
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem NC 27157
| | - Mary Lou Voytko
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem NC 27157
| |
Collapse
|
22
|
Ling B, Piatak M, Rogers L, Johnson AM, Russell-Lodrigue K, Hazuda DJ, Lifson JD, Veazey RS. Effects of treatment with suppressive combination antiretroviral drug therapy and the histone deacetylase inhibitor suberoylanilide hydroxamic acid; (SAHA) on SIV-infected Chinese rhesus macaques. PLoS One 2014; 9:e102795. [PMID: 25033210 PMCID: PMC4102539 DOI: 10.1371/journal.pone.0102795] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 06/23/2014] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVES Viral reservoirs-persistent residual virus despite combination antiretroviral therapy (cART)-remain an obstacle to cure of HIV-1 infection. Difficulty studying reservoirs in patients underscores the need for animal models that mimics HIV infected humans on cART. We studied SIV-infected Chinese-origin rhesus macaques (Ch-RM) treated with intensive combination antiretroviral therapy (cART) and 3 weeks of treatment with the histone deacetyalse inhibitor, suberoylanilide hydroxamic acid (SAHA). METHODS SIVmac251 infected Ch-RM received reverse transcriptase inhibitors PMPA and FTC and integrase inhibitor L-870812 beginning 7 weeks post infection. Integrase inhibitor L-900564 and boosted protease inhibitor treatment with Darunavir and Ritonavir were added later. cART was continued for 45 weeks, with daily SAHA administered for the last 3 weeks, followed by euthanasia/necropsy. Plasma viral RNA and cell/tissue-associated SIV gag RNA and DNA were quantified by qRT-PCR/qPCR, with flow cytometry monitoring changes in immune cell populations. RESULTS Upon cART initiation, plasma viremia declined, remaining <30 SIV RNA copy Eq/ml during cART, with occasional blips. Decreased viral replication was associated with decreased immune activation and partial restoration of intestinal CD4+ T cells. SAHA was well tolerated but did not result in demonstrable treatment-associated changes in plasma or cell associated viral parameters. CONCLUSIONS The ability to achieve and sustain virological suppression makes cART-suppressed, SIV-infected Ch-RM a potentially useful model to evaluate interventions targeting residual virus. However, despite intensive cART over one year, persistent viral DNA and RNA remained in tissues of all three animals. While well tolerated, three weeks of SAHA treatment did not demonstrably impact viral RNA levels in plasma or tissues; perhaps reflecting dosing, sampling and assay limitations.
Collapse
Affiliation(s)
- Binhua Ling
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, United States of America
| | - Linda Rogers
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Ann-Marie Johnson
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Kasi Russell-Lodrigue
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Daria J. Hazuda
- Merck Research Laboratories, West Point, Pennsylvania, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, United States of America
| | - Ronald S. Veazey
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| |
Collapse
|
23
|
Shytaj IL, Savarino A. A cure for AIDS: a matter of timing? Retrovirology 2013; 10:145. [PMID: 24267982 PMCID: PMC3842794 DOI: 10.1186/1742-4690-10-145] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 11/12/2013] [Indexed: 01/08/2023] Open
Abstract
Despite the huge clinical success of antiretroviral therapy, several factors such as side effects, requirement of life-long adherence, high cost, incomplete access to therapies and development of drug resistance make the quest for an ultimate cure of HIV/AIDS a worldwide priority of biomedical research. In this respect, several sterilizing or functional cures have been reported in the last years in both non-human primates and humans. This review provides a summary of the main results achieved so far, outlining their strengths as well as their limitations. A synthetic interpretation of these results could be pivotal in order to develop an effective and widely available cure.
Collapse
Affiliation(s)
| | - Andrea Savarino
- Istituto Superiore di Sanità, Viale Regina Elena, 299, Rome 00161, Italy.
| |
Collapse
|