1
|
Borner T, Pataro AM, De Jonghe BC. Central mechanisms of emesis: A role for GDF15. Neurogastroenterol Motil 2024:e14886. [PMID: 39108013 DOI: 10.1111/nmo.14886] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/08/2024] [Accepted: 07/24/2024] [Indexed: 02/06/2025]
Abstract
BACKGROUND Nausea and emesis are ubiquitously reported medical conditions and often present as treatment side effects along with polymorbidities contributing to detrimental life-threatening outcomes, such as poor nutrition, lower quality of life, and unfavorable patient prognosis. Growth differentiation factor 15 (GDF15) is a stress response cytokine secreted by a wide variety of cell types in response to a broad range of stressors. Circulating GDF15 levels are elevated in a range of medical conditions characterized by cachexia and malaise. In recent years, GDF15 has gained scientific and translational prominence with the discovery that its receptor, GDNF family receptor α-like (GFRAL), is expressed exclusively in the hindbrain. GFRAL activation may results in profound anorexia and body weight loss, effects which have attracted interest for the pharmacological treatment of obesity. PURPOSE This review highlights compelling emerging evidence indicating that GDF15 causes anorexia through the induction of nausea, emesis, and food aversions, which encourage a perspective on GDF15 system function in physiology and behavior beyond homeostatic energy regulation contexts. This highlights the potential role of GDF15 in the central mediation of nausea and emesis following a variety of physiological, and pathophysiological conditions such as chemotherapy-induced emesis, hyperemesis gravidarum, and cyclic vomiting syndrome.
Collapse
Affiliation(s)
- Tito Borner
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Psychiatry, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, California, USA
| | - Allison M Pataro
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bart C De Jonghe
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Psychiatry, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Pinto Payares DV, Spooner L, Vosters J, Dominguez S, Patrick L, Harris A, Kanungo S. A systematic review on the role of mitochondrial dysfunction/disorders in neurodevelopmental disorders and psychiatric/behavioral disorders. Front Psychiatry 2024; 15:1389093. [PMID: 39006821 PMCID: PMC11239503 DOI: 10.3389/fpsyt.2024.1389093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/16/2024] [Indexed: 07/16/2024] Open
Abstract
Introduction Mitochondrial diseases are known inborn errors affecting energy metabolism and are as common as chronic diseases such as diabetes, affecting approximately 1 in 5,000 people. The role of mitochondrial diseases/dysfunction has been highlighted in neurodevelopmental disorders like ASD, ADHD, intellectual disability, and speech delay, as well as various psychiatric conditions. Neurodevelopmental disorders are increasingly recognized as having behavioral and psychiatric symptoms. Our study aimed to investigate reports of mitochondrial disorders, noting neurodevelopmental disorders and psychiatric/behavioral conditions. Methods This was done through a systematic review of literature from PubMed/MEDLINE, Scopus, and Cochrane Library up to November 2022. Results We found 277 publications, of which 139 met the inclusion criteria. We mostly found review articles with mention of mitochondrial dysfunction/disorder in relation to ASD with brief mentions of psychiatric/behavioral comorbidities. Discussion This suggests a need for broader research efforts beyond ASD to understand the relationship between mitochondrial disorder or dysfunction and various neurodevelopmental and psychiatric/behavioral comorbidities.
Collapse
Affiliation(s)
- Daniela V. Pinto Payares
- Department of Student Affairs, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, United States
| | - Logan Spooner
- Department of Student Affairs, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, United States
| | - Jennifer Vosters
- Department of Student Affairs, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, United States
| | - Samantha Dominguez
- Department of Student Affairs, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, United States
| | - Lauren Patrick
- Department of Student Affairs, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, United States
| | - Ann Harris
- Department of Medical Library, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, United States
| | - Shibani Kanungo
- Department of Pediatric and Adolescent Medicine, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, United States
- Department of Medical Ethics, Humanities and Law, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, United States
| |
Collapse
|
3
|
Coronel R, García-Moreno E, Siendones E, Barrero MJ, Martínez-Delgado B, Santos-Ocaña C, Liste I, Cascajo-Almenara MV. Brain organoid as a model to study the role of mitochondria in neurodevelopmental disorders: achievements and weaknesses. Front Cell Neurosci 2024; 18:1403734. [PMID: 38978706 PMCID: PMC11228165 DOI: 10.3389/fncel.2024.1403734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/13/2024] [Indexed: 07/10/2024] Open
Abstract
Mitochondrial diseases are a group of severe pathologies that cause complex neurodegenerative disorders for which, in most cases, no therapy or treatment is available. These organelles are critical regulators of both neurogenesis and homeostasis of the neurological system. Consequently, mitochondrial damage or dysfunction can occur as a cause or consequence of neurodevelopmental or neurodegenerative diseases. As genetic knowledge of neurodevelopmental disorders advances, associations have been identified between genes that encode mitochondrial proteins and neurological symptoms, such as neuropathy, encephalomyopathy, ataxia, seizures, and developmental delays, among others. Understanding how mitochondrial dysfunction can alter these processes is essential in researching rare diseases. Three-dimensional (3D) cell cultures, which self-assemble to form specialized structures composed of different cell types, represent an accessible manner to model organogenesis and neurodevelopmental disorders. In particular, brain organoids are revolutionizing the study of mitochondrial-based neurological diseases since they are organ-specific and model-generated from a patient's cell, thereby overcoming some of the limitations of traditional animal and cell models. In this review, we have collected which neurological structures and functions recapitulate in the different types of reported brain organoids, focusing on those generated as models of mitochondrial diseases. In addition to advancements in the generation of brain organoids, techniques, and approaches for studying neuronal structures and physiology, drug screening and drug repositioning studies performed in brain organoids with mitochondrial damage and neurodevelopmental disorders have also been reviewed. This scope review will summarize the evidence on limitations in studying the function and dynamics of mitochondria in brain organoids.
Collapse
Affiliation(s)
- Raquel Coronel
- Neural Regeneration Unit, Functional Unit for Research on Chronic Diseases (UFIEC), National Institute of Health Carlos III (ISCIII), Madrid, Spain
- Department of Systems Biology, Faculty of Medicine and Health Sciences, University of Alcalá (UAH), Alcalá de Henares, Spain
| | - Enrique García-Moreno
- Andalusian Centre for Developmental Biology, CIBERER, National Institute of Health Carlos III (ISCIII), Pablo de Olavide University-CSIC-JA, Seville, Spain
| | - Emilio Siendones
- Andalusian Centre for Developmental Biology, CIBERER, National Institute of Health Carlos III (ISCIII), Pablo de Olavide University-CSIC-JA, Seville, Spain
| | - Maria J. Barrero
- Models and Mechanisms Unit, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Beatriz Martínez-Delgado
- Molecular Genetics Unit, Institute of Rare Diseases Research (IIER), CIBER of Rare Diseases (CIBERER), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Carlos Santos-Ocaña
- Andalusian Centre for Developmental Biology, CIBERER, National Institute of Health Carlos III (ISCIII), Pablo de Olavide University-CSIC-JA, Seville, Spain
| | - Isabel Liste
- Neural Regeneration Unit, Functional Unit for Research on Chronic Diseases (UFIEC), National Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - M. V. Cascajo-Almenara
- Andalusian Centre for Developmental Biology, CIBERER, National Institute of Health Carlos III (ISCIII), Pablo de Olavide University-CSIC-JA, Seville, Spain
| |
Collapse
|
4
|
Sánchez RM, Bermeo Losada JF, Marín Martínez JA. The research landscape concerning environmental factors in neurodevelopmental disorders: Endocrine disrupters and pesticides-A review. Front Neuroendocrinol 2024; 73:101132. [PMID: 38561126 DOI: 10.1016/j.yfrne.2024.101132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/08/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
In recent years, environmental epidemiology and toxicology have seen a growing interest in the environmental factors that contribute to the increased prevalence of neurodevelopmental disorders, with the purpose of establishing appropriate prevention strategies. A literature review was performed, and 192 articles covering the topic of endocrine disruptors and neurodevelopmental disorders were found, focusing on polychlorinated biphenyls, polybrominated diphenyl ethers, bisphenol A, and pesticides. This study contributes to analyzing their effect on the molecular mechanism in maternal and infant thyroid function, essential for infant neurodevelopment, and whose alteration has been associated with various neurodevelopmental disorders. The results provide scientific evidence of the association that exists between the environmental neurotoxins and various neurodevelopmental disorders. In addition, other possible molecular mechanisms by which pesticides and endocrine disruptors may be associated with neurodevelopmental disorders are being discussed.
Collapse
Affiliation(s)
- Rebeca Mira Sánchez
- Universidad de Murcia, Spain; Instituto de Ciencias Medioambientales y Neurodesarrollo ICMYN, Murcia, Spain.
| | | | | |
Collapse
|
5
|
Bjørklund G, Tippairote T, Hangan T, Chirumbolo S, Peana M. Early-Life Lead Exposure: Risks and Neurotoxic Consequences. Curr Med Chem 2024; 31:1620-1633. [PMID: 37031386 DOI: 10.2174/0929867330666230409135310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 04/10/2023]
Abstract
BACKGROUND Lead (Pb) does not have any biological function in a human, and it is likely no safe level of Pb in the human body. The Pb exposure impacts are a global concern for their potential neurotoxic consequences. Despite decreasing both the environmental Pb levels and the average blood Pb levels in the survey populations, the lifetime redistribution from the tissues-stored Pb still poses neurotoxic risks from the low-level exposure in later life. The growing fetus and children hold their innate high-susceptible to these Pb-induced neurodevelopmental and neurobehavioral effects. OBJECTIVE This article aims to evaluate cumulative studies and insights on the topic of Pb neurotoxicology while assessing the emerging trends in the field. RESULTS The Pb-induced neurochemical and neuro-immunological mechanisms are likely responsible for the high-level Pb exposure with the neurodevelopmental and neurobehavioral impacts at the initial stages. Early-life Pb exposure can still produce neurodegenerative consequences in later life due to the altered epigenetic imprints and the ongoing endogenous Pb exposure. Several mechanisms contribute to the Pb-induced neurotoxic impacts, including the direct neurochemical effects, the induction of oxidative stress and inflammation through immunologic activations, and epigenetic alterations. Furthermore, the individual nutritional status, such as macro-, micro-, or antioxidant nutrients, can significantly influence the neurotoxic impacts even at low-level exposure to Pb. CONCLUSION The prevention of early-life Pb exposure is, therefore, the critical determinant for alleviating various Pb-induced neurotoxic impacts across the different age groups.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, Mo i Rana, 8610, Norway
| | - Torsak Tippairote
- Department of Nutritional and Environmental Medicine, HP Medical Center, Bangkok 10540, Thailand
| | - Tony Hangan
- Faculty of Medicine, Ovidius University of Constanta, Constanta, 900470, Romania
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, 37134, Italy
- CONEM Scientific Secretary, Strada Le Grazie 9, 37134, Verona, Italy
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, Sassari, 07100, Italy
| |
Collapse
|
6
|
Anitha A, Thanseem I, Iype M, Thomas SV. Mitochondrial dysfunction in cognitive neurodevelopmental disorders: Cause or effect? Mitochondrion 2023; 69:18-32. [PMID: 36621534 DOI: 10.1016/j.mito.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Mitochondria have a crucial role in brain development and neurogenesis, both in embryonic and adult brains. Since the brain is the highest energy consuming organ, it is highly vulnerable to mitochondrial dysfunction. This has been implicated in a range of brain disorders including, neurodevelopmental conditions, psychiatric illnesses, and neurodegenerative diseases. Genetic variations in mitochondrial DNA (mtDNA), and nuclear DNA encoding mitochondrial proteins, have been associated with several cognitive disorders. However, it is not yet clear whether mitochondrial dysfunction is a primary cause of these conditions or a secondary effect. Our review article deals with this topic, and brings out recent advances in mitochondria-oriented therapies. Mitochondrial dysfunction could be involved in the pathogenesis of a subset of disorders involving cognitive impairment. In these patients, mitochondrial dysfunction could be the cause of the condition, rather than the consequence. There are vast areas in this topic that remains to be explored and elucidated.
Collapse
Affiliation(s)
- Ayyappan Anitha
- Dept. of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Shoranur, Palakkad 679 523, Kerala, India.
| | - Ismail Thanseem
- Dept. of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Shoranur, Palakkad 679 523, Kerala, India
| | - Mary Iype
- Dept. of Pediatric Neurology, Government Medical College, Thiruvananthapuram 695 011, Kerala, India; Dept. of Neurology, ICCONS, Thiruvananthapuram 695 033, Kerala, India
| | - Sanjeev V Thomas
- Dept. of Neurology, ICCONS, Thiruvananthapuram 695 033, Kerala, India
| |
Collapse
|
7
|
Kornblum C, Lamperti C, Parikh S. Currently available therapies in mitochondrial disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 194:189-206. [PMID: 36813313 DOI: 10.1016/b978-0-12-821751-1.00007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Mitochondrial diseases are a heterogeneous group of multisystem disorders caused by impaired mitochondrial function. These disorders occur at any age and involve any tissue, typically affecting organs highly dependent on aerobic metabolism. Diagnosis and management are extremely difficult due to various underlying genetic defects and a wide range of clinical symptoms. Preventive care and active surveillance are strategies to try to reduce morbidity and mortality by timely treatment of organ-specific complications. More specific interventional therapies are in early phases of development and no effective treatment or cure currently exists. A variety of dietary supplements have been utilized based on biological logic. For several reasons, few randomized controlled trials have been completed to assess the efficacy of these supplements. The majority of the literature on supplement efficacy represents case reports, retrospective analyses and open-label studies. We briefly review selected supplements that have some degree of clinical research support. In mitochondrial diseases, potential triggers of metabolic decompensation or medications that are potentially toxic to mitochondrial function should be avoided. We shortly summarize current recommendations on safe medication in mitochondrial diseases. Finally, we focus on the frequent and debilitating symptoms of exercise intolerance and fatigue and their management including physical training strategies.
Collapse
Affiliation(s)
- Cornelia Kornblum
- Department of Neurology, Neuromuscular Disease Section, University Hospital Bonn, Bonn, Germany.
| | - Costanza Lamperti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Sumit Parikh
- Center for Pediatric Neurosciences, Mitochondrial Medicine & Neurogenetics, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
8
|
Petridi S, Dubal D, Rikhy R, van den Ameele J. Mitochondrial respiration and dynamics of in vivo neural stem cells. Development 2022; 149:285126. [PMID: 36445292 PMCID: PMC10112913 DOI: 10.1242/dev.200870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Neural stem cells (NSCs) in the developing and adult brain undergo many different transitions, tightly regulated by extrinsic and intrinsic factors. While the role of signalling pathways and transcription factors is well established, recent evidence has also highlighted mitochondria as central players in NSC behaviour and fate decisions. Many aspects of cellular metabolism and mitochondrial biology change during NSC transitions, interact with signalling pathways and affect the activity of chromatin-modifying enzymes. In this Spotlight, we explore recent in vivo findings, primarily from Drosophila and mammalian model systems, about the role that mitochondrial respiration and morphology play in NSC development and function.
Collapse
Affiliation(s)
- Stavroula Petridi
- Department of Clinical Neurosciences and MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Dnyanesh Dubal
- Department of Clinical Neurosciences and MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK.,Biology, Indian Institute of Science Education and Research, Homi Bhabha Road, Pashan, Pune 411008, India
| | - Richa Rikhy
- Biology, Indian Institute of Science Education and Research, Homi Bhabha Road, Pashan, Pune 411008, India
| | - Jelle van den Ameele
- Department of Clinical Neurosciences and MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| |
Collapse
|
9
|
Nascimento JM, Saia-Cereda VM, Zuccoli GS, Reis-de-Oliveira G, Carregari VC, Smith BJ, Rehen SK, Martins-de-Souza D. Proteomic signatures of schizophrenia-sourced iPSC-derived neural cells and brain organoids are similar to patients' postmortem brains. Cell Biosci 2022; 12:189. [PMID: 36451159 PMCID: PMC9714120 DOI: 10.1186/s13578-022-00928-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Schizophrenia is a complex and severe neuropsychiatric disorder, with a wide range of debilitating symptoms. Several aspects of its multifactorial complexity are still unknown, and some are accepted to be an early developmental deficiency with a more specifically neurodevelopmental origin. Understanding the timepoints of disturbances during neural cell differentiation processes could lead to an insight into the development of the disorder. In this context, human brain organoids and neural cells differentiated from patient-derived induced pluripotent stem cells are of great interest as a model to study the developmental origins of the disease. RESULTS Here we evaluated the differential expression of proteins of schizophrenia patient-derived neural progenitors (NPCs), early neurons, and brain organoids in comparison to healthy individuals. Using bottom-up shotgun proteomics with a label-free approach for quantitative analysis, we found multiple dysregulated proteins since NPCs, modified, and disrupted the 21DIV neuronal differentiation, and cerebral organoids. Our experimental methods have shown impairments in pathways never before found in patient-derived induced pluripotent stem cells studies, such as spliceosomes and amino acid metabolism; but also, those such as axonal guidance and synaptogenesis, in line with postmortem tissue studies of schizophrenia patients. CONCLUSION In conclusion, here we provide comprehensive, large-scale, protein-level data of different neural cell models that may uncover early events in brain development, underlying several of the mechanisms within the origins of schizophrenia.
Collapse
Affiliation(s)
- Juliana Minardi Nascimento
- grid.411087.b0000 0001 0723 2494Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP 255, 13083-862 Brazil ,grid.472984.4D’Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro, 30, Rio de Janeiro, RJ 22281-100 Brazil ,grid.411249.b0000 0001 0514 7202Department of Biosciences, Institute Science and Society, Federal University of São Paulo (UNIFESP), Santos, SP Brazil
| | - Verônica M. Saia-Cereda
- grid.411087.b0000 0001 0723 2494Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP 255, 13083-862 Brazil
| | - Giuliana S. Zuccoli
- grid.411087.b0000 0001 0723 2494Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP 255, 13083-862 Brazil
| | - Guilherme Reis-de-Oliveira
- grid.411087.b0000 0001 0723 2494Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP 255, 13083-862 Brazil
| | - Victor Corasolla Carregari
- grid.411087.b0000 0001 0723 2494Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP 255, 13083-862 Brazil
| | - Bradley J. Smith
- grid.411087.b0000 0001 0723 2494Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP 255, 13083-862 Brazil
| | - Stevens K. Rehen
- grid.472984.4D’Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro, 30, Rio de Janeiro, RJ 22281-100 Brazil ,grid.8536.80000 0001 2294 473XInstitute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
| | - Daniel Martins-de-Souza
- grid.411087.b0000 0001 0723 2494Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP 255, 13083-862 Brazil ,grid.472984.4D’Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro, 30, Rio de Janeiro, RJ 22281-100 Brazil ,grid.450640.30000 0001 2189 2026Instituto Nacional de Biomarcadores Em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico E Tecnológico (CNPq), São Paulo, Brazil ,grid.411087.b0000 0001 0723 2494Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP 13083-970 Brazil
| |
Collapse
|
10
|
Wong W, Balasubramaniam S, Wong RSH, Graf N, Thorburn DR, McFarland R, Troedson C. Mitochondrial respiratory chain dysfunction in a patient with a heterozygous de novo CTBP1 variant. JIMD Rep 2022; 63:546-554. [PMID: 36341169 PMCID: PMC9626656 DOI: 10.1002/jmd2.12326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/08/2022] Open
Abstract
The C-terminal binding protein 1 (CTBP1) functions as a transcriptional corepressor in vertebrates and has been identified to have critical roles in nervous system growth and development. Pathogenic variants in the CTBP1 gene has been shown to cause hypotonia, ataxia, developmental delay and tooth enamel defect syndrome (HADDTS). There have only been 16 cases reported to date with heterozygous, pathogenic variants in CTBP1 manifesting with a neurodevelopmental phenotype. We report a further case of a pathogenic, heterozygous, de novo variant in CTBP1 identified by whole exome sequencing in a female with the typical phenotype of global developmental delay, hypotonia, cerebellar dysfunction and failure to thrive. Additionally, muscle biopsy demonstrates evidence of a respiratory chain defect, only previously reported once in the literature. This supports the role of CTBP1 in maintenance of normal mitochondrial activity and highlights the importance of considering secondary mitochondrial dysfunction in genes not directly involved in the mitochondrial respiratory chain.
Collapse
Affiliation(s)
- Wui‐Kwan Wong
- TY Nelson Department of Neurology and NeurosurgeryThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
| | - Shanti Balasubramaniam
- Genetic Metabolic Disorders ServiceThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
- Discipline of Genomic Medicine, Sydney Medical SchoolUniversity of SydneySydneyNew South WalesAustralia
| | - Rachel S. H. Wong
- Genetic Metabolic Disorders ServiceThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
| | - Nicole Graf
- Department of HistopathologyThe Children's Hospital at WestmeadSydneyAustralia
| | - David R. Thorburn
- Murdoch Children's Research InstituteMelbourneVictoriaAustralia
- Department of PaediatricsUniversity of MelbourneMelbourneVictoriaAustralia
- Victorian Clinical Genetics ServicesMelbourneVictoriaAustralia
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
- NHS Highly Specialised Service for Rare Mitochondrial DisordersNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Christopher Troedson
- TY Nelson Department of Neurology and NeurosurgeryThe Children's Hospital at WestmeadSydneyNew South WalesAustralia
| |
Collapse
|
11
|
Neurogenetic disorders across the lifespan: from aberrant development to degeneration. Nat Rev Neurol 2022; 18:117-124. [PMID: 34987232 PMCID: PMC10132523 DOI: 10.1038/s41582-021-00595-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2021] [Indexed: 02/08/2023]
Abstract
Intellectual disability and autism spectrum disorder (ASD) are common, and genetic testing is increasingly performed in individuals with these diagnoses to inform prognosis, refine management and provide information about recurrence risk in the family. For neurogenetic conditions associated with intellectual disability and ASD, data on natural history in adults are scarce; however, as older adults with these disorders are identified, it is becoming clear that some conditions are associated with both neurodevelopmental problems and neurodegeneration. Moreover, emerging evidence indicates that some neurogenetic conditions associated primarily with neurodegeneration also affect neurodevelopment. In this Perspective, we discuss examples of diseases that have developmental and degenerative overlap. We propose that neurogenetic disorders should be studied continually across the lifespan to understand the roles of the affected genes in brain development and maintenance, and to inform strategies for treatment.
Collapse
|
12
|
Brunetti D, Dykstra W, Le S, Zink A, Prigione A. Mitochondria in neurogenesis: Implications for mitochondrial diseases. Stem Cells 2021; 39:1289-1297. [PMID: 34089537 DOI: 10.1002/stem.3425] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Mitochondria are organelles with recognized key roles in cellular homeostasis, including bioenergetics, redox, calcium signaling, and cell death. Mitochondria are essential for neuronal function, given the high energy demands of the human brain. Consequently, mitochondrial diseases affecting oxidative phosphorylation (OXPHOS) commonly exhibit neurological impairment. Emerging evidence suggests that mitochondria are important not only for mature postmitotic neurons but also for the regulation of neural progenitor cells (NPCs) during the process of neurogenesis. These recent findings put mitochondria as central regulator of cell fate decisions during brain development. OXPHOS mutations may disrupt the function of NPCs and thereby impair the metabolic programming required for neural fate commitment. Promoting the mitochondrial function of NPCs could therefore represent a novel interventional approach against incurable mitochondrial diseases.
Collapse
Affiliation(s)
- Dario Brunetti
- Mitochondrial Medicine Laboratory, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico "C. Besta", Milan, Italy
| | - Werner Dykstra
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Stephanie Le
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Annika Zink
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Alessandro Prigione
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
13
|
Consolidating biallelic SDHD variants as a cause of mitochondrial complex II deficiency. Eur J Hum Genet 2021; 29:1570-1576. [PMID: 34012134 PMCID: PMC8484551 DOI: 10.1038/s41431-021-00887-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/18/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
Isolated mitochondrial complex II deficiency is a rare cause of mitochondrial respiratory chain disease. To date biallelic variants in three genes encoding mitochondrial complex II molecular components have been unequivocally associated with mitochondrial disease (SDHA/SDHB/SDHAF1). Additionally, variants in one further complex II component (SDHD) have been identified as a candidate cause of isolated mitochondrial complex II deficiency in just two unrelated affected individuals with clinical features consistent with mitochondrial disease, including progressive encephalomyopathy and lethal infantile cardiomyopathy. We present clinical and genomic investigations in four individuals from an extended Palestinian family with clinical features consistent with an autosomal recessive mitochondrial complex II deficiency, in which our genomic studies identified a homozygous NM_003002.3:c.[205 G > A];[205 G > A];p.[(Glu69Lys)];[(Glu69Lys)] SDHD variant as the likely cause. Reviewing previously published cases, these findings consolidate disruption of SDHD function as a cause of mitochondrial complex II deficiency and further define the phenotypic spectrum associated with SDHD gene variants.
Collapse
|
14
|
Iwata R, Vanderhaeghen P. Regulatory roles of mitochondria and metabolism in neurogenesis. Curr Opin Neurobiol 2021; 69:231-240. [PMID: 34171617 PMCID: PMC8415079 DOI: 10.1016/j.conb.2021.05.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 01/14/2023]
Abstract
Neural stem cells (NSCs) undergo massive molecular and cellular changes during neuronal differentiation. These include mitochondria and metabolism remodelling, which were thought to be mostly permissive cues, but recent work indicates that they are causally linked to neurogenesis. Striking remodelling of mitochondria occurs right after mitosis of NSCs, which influences the postmitotic daughter cells towards self-renewal or differentiation. The transitioning to neuronal fate requires metabolic rewiring including increased oxidative phosphorylation activity, which drives transcriptional and epigenetic effects to influence cell fate. Mitochondria metabolic pathways also contribute in an essential way to the regulation of NSC proliferation and self-renewal. The influence of mitochondria and metabolism on neurogenesis is conserved from fly to human systems, but also displays striking differences linked to cell context or species. These new findings have important implications for our understanding of neurodevelopmental diseases and possibly human brain evolution.
Collapse
Affiliation(s)
- Ryohei Iwata
- VIB KULeuven Center for Brain & Disease Research, KU Leuven Department of Neurosciences, Leuven Brain Institute, Leuven, 3000, Belgium; Université Libre de Bruxelles (ULB), Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), ULB Neuroscience Institute (UNI), Brussels, 1070, Belgium
| | - Pierre Vanderhaeghen
- VIB KULeuven Center for Brain & Disease Research, KU Leuven Department of Neurosciences, Leuven Brain Institute, Leuven, 3000, Belgium; Université Libre de Bruxelles (ULB), Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), ULB Neuroscience Institute (UNI), Brussels, 1070, Belgium.
| |
Collapse
|
15
|
Mutated CCDC51 Coding for a Mitochondrial Protein, MITOK Is a Candidate Gene Defect for Autosomal Recessive Rod-Cone Dystrophy. Int J Mol Sci 2021; 22:ijms22157875. [PMID: 34360642 PMCID: PMC8346125 DOI: 10.3390/ijms22157875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/05/2021] [Accepted: 07/15/2021] [Indexed: 11/17/2022] Open
Abstract
The purpose of this work was to identify the gene defect underlying a relatively mild rod-cone dystrophy (RCD), lacking disease-causing variants in known genes implicated in inherited retinal disorders (IRD), and provide transcriptomic and immunolocalization data to highlight the best candidate. The DNA of the female patient originating from a consanguineous family revealed no large duplication or deletion, but several large homozygous regions. In one of these, a homozygous frameshift variant, c.244_246delins17 p.(Trp82Valfs*4); predicted to lead to a nonfunctional protein, was identified in CCDC51. CCDC51 encodes the mitochondrial coiled-coil domain containing 51 protein, also called MITOK. MITOK ablation causes mitochondrial dysfunction. Here we show for the first time that CCDC51/MITOK localizes in the retina and more specifically in the inner segments of the photoreceptors, well known to contain mitochondria. Mitochondrial proteins have previously been implicated in IRD, although usually in association with syndromic disease, unlike our present case. Together, our findings add another ultra-rare mutation implicated in non-syndromic IRD, whose pathogenic mechanism in the retina needs to be further elucidated.
Collapse
|
16
|
Zarate YA, Vernon HJ, Bosanko KA, Ramani PK, Gokden M, Writzl K, Meznaric M, Vipotnik Vesnaver T, Ramakrishnaiah R, Osredkar D. Case Report: SATB2-Associated Syndrome Overlapping With Clinical Mitochondrial Disease Presentation: Report of Two Cases. Front Genet 2021; 12:692087. [PMID: 34234817 PMCID: PMC8257052 DOI: 10.3389/fgene.2021.692087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/14/2021] [Indexed: 11/13/2022] Open
Abstract
SATB2-associated syndrome (SAS) is an autosomal dominant neurogenetic multisystemic disorder. We describe two individuals with global developmental delay and hypotonia who underwent an extensive evaluation to rule out an underlying mitochondrial disorder before their eventual diagnosis of SAS. Although the strict application of the clinical mitochondrial disease score only led to the designation of "possible" mitochondrial disorder for these two individuals, other documented abnormalities included nonspecific neuroimaging findings on magnetic resonance imaging and magnetic resonance spectroscopy, decreased complex I activity on muscle biopsy for patient 2, and variation in the size and relative proportion of types of muscle fibers in the muscle biopsies that were aligned with mitochondrial diseases. SAS should be in the differential diagnoses of mitochondrial disorders, and broad-spectrum diagnostic tests such as exome sequencing need to be considered early in the evaluation process of undiagnosed neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yuri A Zarate
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Hilary J Vernon
- Department of Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Katherine A Bosanko
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Praveen K Ramani
- Department of Pediatric Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Murat Gokden
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Karin Writzl
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Marija Meznaric
- Faculty of Medicine, Institute of Anatomy, University of Ljubljana, Ljubljana, Slovenia
| | | | - Raghu Ramakrishnaiah
- Division of Neuroradiology and Pediatric Radiology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Damjan Osredkar
- Department of Pediatric Neurology, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
17
|
Uchitel J, Wallace K, Tran L, Abrahamsen T, Hunanyan A, Prange L, Jasien J, Caligiuri L, Pratt M, Rikard B, Fons C, De Grandis E, Vezyroglou A, Heinzen EL, Goldstein DB, Vavassori R, Papadopoulou MT, Cocco I, Moré R, Arzimanoglou A, Panagiotakaki E, Mikati MA. Alternating hemiplegia of childhood: evolution over time and mouse model corroboration. Brain Commun 2021; 3:fcab128. [PMID: 34396101 PMCID: PMC8361420 DOI: 10.1093/braincomms/fcab128] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/05/2021] [Accepted: 06/03/2021] [Indexed: 11/30/2022] Open
Abstract
Alternating hemiplegia of childhood is a rare neurodevelopmental disorder caused by ATP1A3 mutations. Some evidence for disease progression exists, but there are few systematic analyses. Here, we evaluate alternating hemiplegia of childhood progression in humans and in the D801N knock-in alternating hemiplegia of childhood mouse, Mashlool, model. This study performed an ambidirectional (prospective and retrospective data) analysis of an alternating hemiplegia of childhood patient cohort (n = 42, age 10.24 ± 1.48 years) seen at one US centre. To investigate potential disease progression, we used linear mixed effects models incorporating early and subsequent visits, and Wilcoxon Signed Rank test comparing first and last visits. Potential early-life clinical predictors were determined via multivariable regression. We also compared EEG background at first encounter and at last follow-up. We then performed a retrospective confirmation study on a multicentre cohort of alternating hemiplegia of childhood patients from France (n = 52). To investigate disease progression in the Mashlool mouse, we performed behavioural testing on a cohort of Mashlool- mice at prepubescent and adult ages (n = 11). Results: US patients, over time, demonstrated mild worsening of non-paroxysmal disability index scores, but not of paroxysmal disability index scores. Increasing age was a predictor of worse scores: P < 0.0001 for the non-paroxysmal disability index, intellectual disability scale and gross motor scores. Earliest non-paroxysmal disability index score was a predictor of last visit non-paroxysmal disability index score (P = 0.022), and earliest intellectual disability score was a predictor of last intellectual disability score (P = 0.035). More patients with EEG background slowing were noted at last follow-up as compared to initial (P = 0.015). Similar worsening of disease with age was also noted in the French cohort: age was a significant predictor of non-paroxysmal disability index score (P = 0.001) and first and last non-paroxysmal disability index score scores significantly differed (P = 0.002). In animal studies, adult Mashlool mice had, as compared to younger Mashlool mice, (i) worse balance beam performance; (ii) wider base of support; (iii) higher severity of seizures and resultant mortality; and (iv) no increased predisposition to hemiplegic or dystonic spells. In conclusion, (i) non-paroxysmal alternating hemiplegia of childhood manifestations show, on average over time, progression associated with severity of early-life non-paroxysmal disability and age. (ii) Progression also occurs in Mashlool mice, confirming that ATP1A3 disease can lead to age-related worsening. (iii) Clinical findings provide a basis for counselling patients and for designing therapeutic trials. Animal findings confirm a mouse model for investigation of underlying mechanisms of disease progression, and are also consistent with known mechanisms of ATP1A3-related neurodegeneration.
Collapse
Affiliation(s)
- Julie Uchitel
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, NC 27710, USA
| | - Keri Wallace
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, NC 27710, USA
| | - Linh Tran
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, NC 27710, USA
| | - Tavis Abrahamsen
- Department of Statistical Science, Duke University, Durham, NC 27708, USA
| | - Arsen Hunanyan
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, NC 27710, USA
| | - Lyndsey Prange
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, NC 27710, USA
| | - Joan Jasien
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, NC 27710, USA
| | - Laura Caligiuri
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, NC 27710, USA
| | - Milton Pratt
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, NC 27710, USA
| | - Blaire Rikard
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, NC 27710, USA
| | - Carmen Fons
- Department of Child Neurology, Sant Joan de Déu Children’s Hospital, Member of the ERN EpiCARE, Barcelona 08950, Spain
| | - Elisa De Grandis
- Child Neuropsychiatry Unit, IRCCS Istituto Giannina Gaslini, Genoa 16147, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa 16147, Italy
| | - Aikaterini Vezyroglou
- Department of Developmental Neurosciences, UCL NIHR BRC Great Ormond Street Institute of Child Health, London WC1N 3JH, UK
| | - Erin L Heinzen
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David B Goldstein
- Institute of Genomic Medicine, Columbia University, New York, NY 10032, USA
| | - Rosaria Vavassori
- Euro Mediterranean Institute of Science and Technology I.E.ME.ST, Palermo 90139, Italy
| | - Maria T Papadopoulou
- Department of Pediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, Member of the ERN EpiCARE, University Hospitals of Lyon (HCL), Lyon 69500, France
| | - Isabella Cocco
- Department of Pediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, Member of the ERN EpiCARE, University Hospitals of Lyon (HCL), Lyon 69500, France
| | - Rebecca Moré
- Department of Paediatric Neurology Outpatient Clinic/Neonatal Paediatrics and Intensive Care, University Hospital of Rouen, Rouen 76000, France
| | | | | | - Alexis Arzimanoglou
- Department of Pediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, Member of the ERN EpiCARE, University Hospitals of Lyon (HCL), Lyon 69500, France
| | - Eleni Panagiotakaki
- Department of Pediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, Member of the ERN EpiCARE, University Hospitals of Lyon (HCL), Lyon 69500, France
| | - Mohamad A Mikati
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics, Duke University, Durham, NC 27710, USA
| |
Collapse
|
18
|
Inak G, Rybak-Wolf A, Lisowski P, Pentimalli TM, Jüttner R, Glažar P, Uppal K, Bottani E, Brunetti D, Secker C, Zink A, Meierhofer D, Henke MT, Dey M, Ciptasari U, Mlody B, Hahn T, Berruezo-Llacuna M, Karaiskos N, Di Virgilio M, Mayr JA, Wortmann SB, Priller J, Gotthardt M, Jones DP, Mayatepek E, Stenzel W, Diecke S, Kühn R, Wanker EE, Rajewsky N, Schuelke M, Prigione A. Defective metabolic programming impairs early neuronal morphogenesis in neural cultures and an organoid model of Leigh syndrome. Nat Commun 2021; 12:1929. [PMID: 33771987 PMCID: PMC7997884 DOI: 10.1038/s41467-021-22117-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
Leigh syndrome (LS) is a severe manifestation of mitochondrial disease in children and is currently incurable. The lack of effective models hampers our understanding of the mechanisms underlying the neuronal pathology of LS. Using patient-derived induced pluripotent stem cells and CRISPR/Cas9 engineering, we developed a human model of LS caused by mutations in the complex IV assembly gene SURF1. Single-cell RNA-sequencing and multi-omics analysis revealed compromised neuronal morphogenesis in mutant neural cultures and brain organoids. The defects emerged at the level of neural progenitor cells (NPCs), which retained a glycolytic proliferative state that failed to instruct neuronal morphogenesis. LS NPCs carrying mutations in the complex I gene NDUFS4 recapitulated morphogenesis defects. SURF1 gene augmentation and PGC1A induction via bezafibrate treatment supported the metabolic programming of LS NPCs, leading to restored neuronal morphogenesis. Our findings provide mechanistic insights and suggest potential interventional strategies for a rare mitochondrial disease.
Collapse
Affiliation(s)
- Gizem Inak
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Duesseldorf University Hospital, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Agnieszka Rybak-Wolf
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine (MDC), Hannoversche Str 28, 10115, Berlin, Germany
| | - Pawel Lisowski
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Duesseldorf University Hospital, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzebiec, n/Warsaw, Magdalenka, Poland
| | - Tancredi M Pentimalli
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine (MDC), Hannoversche Str 28, 10115, Berlin, Germany
| | - René Jüttner
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Petar Glažar
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine (MDC), Hannoversche Str 28, 10115, Berlin, Germany
| | | | - Emanuela Bottani
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Dario Brunetti
- Mitochondrial Medicine Laboratory, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Unit of Medical Genetics and Neurogenetics Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Christopher Secker
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Charité - Universitätsmedizin Berlin, Department of Neurology, Berlin, Germany
| | - Annika Zink
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Duesseldorf University Hospital, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
- Charité - Universitätsmedizin Berlin, Department of Neuropsychiatry, Berlin, Germany
| | | | - Marie-Thérèse Henke
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Charité - Universitätsmedizin Berlin, Department of Neuropediatrics, Berlin, Germany
| | - Monishita Dey
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Ummi Ciptasari
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Barbara Mlody
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Tobias Hahn
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | | | - Nikos Karaiskos
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine (MDC), Hannoversche Str 28, 10115, Berlin, Germany
| | | | - Johannes A Mayr
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Saskia B Wortmann
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
- Radboud Center for Mitochondrial Medicine, Department of Pediatrics, Amalia Children's Hospital, Radboudumc, Nijmegen, The Netherlands
| | - Josef Priller
- Charité - Universitätsmedizin Berlin, Department of Neuropsychiatry, Berlin, Germany
- University of Edinburgh and UK DRI, Edinburgh, UK
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | | | | | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Duesseldorf University Hospital, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Werner Stenzel
- Charité - Universitätsmedizin, Department of Neuropathology, Berlin, Germany
| | - Sebastian Diecke
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Ralf Kühn
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Erich E Wanker
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| | - Nikolaus Rajewsky
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine (MDC), Hannoversche Str 28, 10115, Berlin, Germany.
| | - Markus Schuelke
- Charité - Universitätsmedizin Berlin, Department of Neuropediatrics, Berlin, Germany.
- NeuroCure Clinical Research Center, Berlin, Germany.
| | - Alessandro Prigione
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany.
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Duesseldorf University Hospital, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany.
| |
Collapse
|
19
|
Yang S, Gorshkov K, Lee EM, Xu M, Cheng YS, Sun N, Soheilian F, de Val N, Ming G, Song H, Tang H, Zheng W. Zika Virus-Induced Neuronal Apoptosis via Increased Mitochondrial Fragmentation. Front Microbiol 2020; 11:598203. [PMID: 33424801 PMCID: PMC7785723 DOI: 10.3389/fmicb.2020.598203] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/02/2020] [Indexed: 12/19/2022] Open
Abstract
The 2015 to 2016 outbreak of Zika virus (ZIKV) infections in the Americas coincided with a dramatic increase in neurodevelopmental abnormalities, including fetal microcephaly, in newborns born to infected women. In this study, we observed mitochondrial fragmentation and disrupted mitochondrial membrane potential after 24 h of ZIKV infection in human neural stem cells and the SNB-19 glioblastoma cell line. The severity of these changes correlated with the amount of ZIKV proteins expressed in infected cells. ZIKV infection also decreased the levels of mitofusin 2, which modulates mitochondria fusion. Mitochondrial division inhibitor 1 (Mdivi-1), a small molecule inhibiting mitochondria fission, ameliorated mitochondria disruptions and reduced cell death in ZIKV-infected cells. Collectively, this study suggests that abnormal mitochondrial fragmentation contributes to ZIKV-induced neuronal cell death; rebalancing mitochondrial dynamics of fission-fusion could be a therapeutic strategy for drug development to treat ZIKV-mediated neuronal apoptosis.
Collapse
Affiliation(s)
- Shu Yang
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States
| | - Kirill Gorshkov
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States
| | - Emily M Lee
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States
| | - Miao Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States
| | - Yu-Shan Cheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States
| | - Nuo Sun
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Ferri Soheilian
- Electron Microscopy Laboratory, National Cancer Institute, Center for Cancer Research, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD, United States
| | - Natalia de Val
- Electron Microscopy Laboratory, National Cancer Institute, Center for Cancer Research, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD, United States
| | - Guoli Ming
- Department of Neuroscience, Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA, United States
| | - Hongjun Song
- Department of Neuroscience, Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA, United States
| | - Hengli Tang
- Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
20
|
Collin GB, Gogna N, Chang B, Damkham N, Pinkney J, Hyde LF, Stone L, Naggert JK, Nishina PM, Krebs MP. Mouse Models of Inherited Retinal Degeneration with Photoreceptor Cell Loss. Cells 2020; 9:cells9040931. [PMID: 32290105 PMCID: PMC7227028 DOI: 10.3390/cells9040931] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022] Open
Abstract
Inherited retinal degeneration (RD) leads to the impairment or loss of vision in millions of individuals worldwide, most frequently due to the loss of photoreceptor (PR) cells. Animal models, particularly the laboratory mouse, have been used to understand the pathogenic mechanisms that underlie PR cell loss and to explore therapies that may prevent, delay, or reverse RD. Here, we reviewed entries in the Mouse Genome Informatics and PubMed databases to compile a comprehensive list of monogenic mouse models in which PR cell loss is demonstrated. The progression of PR cell loss with postnatal age was documented in mutant alleles of genes grouped by biological function. As anticipated, a wide range in the onset and rate of cell loss was observed among the reported models. The analysis underscored relationships between RD genes and ciliary function, transcription-coupled DNA damage repair, and cellular chloride homeostasis. Comparing the mouse gene list to human RD genes identified in the RetNet database revealed that mouse models are available for 40% of the known human diseases, suggesting opportunities for future research. This work may provide insight into the molecular players and pathways through which PR degenerative disease occurs and may be useful for planning translational studies.
Collapse
Affiliation(s)
- Gayle B. Collin
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Navdeep Gogna
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Bo Chang
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Nattaya Damkham
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Jai Pinkney
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Lillian F. Hyde
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Lisa Stone
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Jürgen K. Naggert
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Patsy M. Nishina
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
- Correspondence: (P.M.N.); (M.P.K.); Tel.: +1-207-2886-383 (P.M.N.); +1-207-2886-000 (M.P.K.)
| | - Mark P. Krebs
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
- Correspondence: (P.M.N.); (M.P.K.); Tel.: +1-207-2886-383 (P.M.N.); +1-207-2886-000 (M.P.K.)
| |
Collapse
|
21
|
Sofou K, Hedberg-Oldfors C, Kollberg G, Thomsen C, Wiksell Å, Oldfors A, Tulinius M. Prenatal onset of mitochondrial disease is associated with sideroflexin 4 deficiency. Mitochondrion 2019; 47:76-81. [DOI: 10.1016/j.mito.2019.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 04/13/2019] [Accepted: 04/29/2019] [Indexed: 11/28/2022]
|
22
|
Stauch KL, Villeneuve LM, Totusek S, Lamberty B, Ciborowski P, Fox HS. Quantitative Proteomics of Presynaptic Mitochondria Reveal an Overexpression and Biological Relevance of Neuronal MitoNEET in Postnatal Brain Development. Dev Neurobiol 2019; 79:370-386. [PMID: 31050203 DOI: 10.1002/dneu.22684] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 03/02/2019] [Accepted: 04/25/2019] [Indexed: 12/11/2022]
Abstract
Although it has been recognized that energy metabolism and mitochondrial structure and functional activity in the immature brain differs from that of the adult, few studies have examined mitochondria specifically at the neuronal synapse during postnatal brain development. In this study, we examined the presynaptic mitochondrial proteome in mice at postnatal day 7 and 42, a period that involves the formation and maturation of synapses. Application of two independent quantitative proteomics approaches - SWATH-MS and super-SILAC - revealed a total of 40 proteins as significantly differentially expressed in the presynaptic mitochondria. In addition to elevated levels of proteins known to be involved in ATP metabolic processes, our results identified increased levels of mitoNEET (Cisd1), an iron-sulfur containing protein that regulates mitochondrial bioenergetics. We found that mitoNEET overexpression plays a cell-type specific role in ATP synthesis and in neuronal cells promotes ATP generation. The elevated ATP levels in SH-SY5Y neuroblastoma cells were associated with increased mitochondrial membrane potential and a fragmented mitochondrial network, further supporting a role for mitoNEET as a key regulator of mitochondrial function.
Collapse
Affiliation(s)
- Kelly L Stauch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, 68198
| | - Lance M Villeneuve
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, 68198
| | - Steven Totusek
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, 68198
| | - Benjamin Lamberty
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, 68198
| | - Pawel Ciborowski
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, 68198
| | - Howard S Fox
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, 68198
| |
Collapse
|
23
|
Wen Y. Maxwell's demon at work: Mitochondria, the organelles that convert information into energy? Chronic Dis Transl Med 2018; 4:135-138. [PMID: 29988942 PMCID: PMC6034008 DOI: 10.1016/j.cdtm.2018.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Indexed: 12/15/2022] Open
Affiliation(s)
- Ya Wen
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA.,Harvard Medical School, Harvard University, Boston, MA 02114, USA
| |
Collapse
|
24
|
Muraresku CC, McCormick EM, Falk MJ. Mitochondrial Disease: Advances in clinical diagnosis, management, therapeutic development, and preventative strategies. CURRENT GENETIC MEDICINE REPORTS 2018; 6:62-72. [PMID: 30393588 PMCID: PMC6208355 DOI: 10.1007/s40142-018-0138-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW Primary mitochondrial disease encompasses an impressive range of inherited energy deficiency disorders having highly variable molecular etiologies as well as clinical onset, severity, progression, and response to therapies of multi-system manifestations. Significant progress has been made in primary mitochondrial disease diagnostic approaches, clinical management, therapeutic options, and preventative strategies that are tailored to major mitochondrial disease phenotypes and subclasses. RECENT FINDINGS The extensive phenotypic pleiotropy of individual mitochondrial diseases from an organ-based perspective is reviewed. Improved consensus on standards for mitochondrial disease patient care are being complemented by emerging therapies that target specific molecular subtypes of mitochondrial disease. Reproductive counseling options now include preimplantation genetic diagnosis at the time of in vitro fertilization for familial mutations in nuclear genes and some mtDNA disorders. Mitochondrial replacement technologies have promise for some mtDNA disorders, although practical and societal challenges remain to allow their further research analyses and clinical utilization. SUMMARY A dramatic increase has occurred in recent years in the recognition, understanding, treatment options, and preventative strategies for primary mitochondrial disease.
Collapse
Affiliation(s)
- Colleen C. Muraresku
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Elizabeth M. McCormick
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Marni J. Falk
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
25
|
Abstract
Purpose of review The groundwork for mitochondrial medicine was laid 30 years ago with identification of the first disease-causing mitochondrial DNA (mtDNA) mutations in 1988. Three decades later, mutations in nearly 300 genes involving every possible mode of inheritance within both nuclear and mitochondrial genomes are now recognized to collectively comprise the largest class of inherited metabolic disease affecting at least 1 in 4,300 individuals across all ages. Significant progress has been made in recent years to improve understanding of mitochondrial biology and disease pathophysiology. Recent findings Markedly improved understanding of the highly diverse molecular etiologies of multi-systemic phenotypes in primary mitochondrial disease has resulted from massively parallel genomic sequencing technologies and improved bioinformatic resources that enable identification in individual patients of their disease's precise genetic etiology. Key informatics resources of particular utility to the mitochondrial disease genomics community have been developed, including: (1) Mitocarta 2.0 repository of 1200+ verified mitochondria-localized proteins, (2) MITOMAP Web resource of curated mtDNA genome variants, and (3) Mitochondrial Disease Sequence Data Resource (MSeqDR) that centralizes Web curation and annotation of mitochondrial disease genes and variants in both genomes, ontology-defined phenotypes, and access to many analytic tools to support genomic data mining and interpretation. Gene and mutation-based disease categorization has proven particularly useful to identify the full clinical spectrum of disease that may affect a given individual. Summary Extensive genomic advances, both in technologic platforms and bioinformatics resources, have facilitated dramatic improvement in the accurate recognition and understanding of primary mitochondrial disease.
Collapse
|
26
|
Singh L, Saini N, Pushker N, Bakhshi S, Sen S, Nag TC, Kashyap S. Mutational Analysis of the Mitochondrial DNA Displacement-Loop Region in Human Retinoblastoma with Patient Outcome. Pathol Oncol Res 2018. [DOI: 10.1007/s12253-018-0391-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Khacho M, Clark A, Svoboda DS, MacLaurin JG, Lagace DC, Park DS, Slack RS. Mitochondrial dysfunction underlies cognitive defects as a result of neural stem cell depletion and impaired neurogenesis. Hum Mol Genet 2018; 26:3327-3341. [PMID: 28595361 DOI: 10.1093/hmg/ddx217] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/02/2017] [Indexed: 01/09/2023] Open
Abstract
Mitochondrial dysfunction is a common feature of many genetic disorders that target the brain and cognition. However, the exact role these organelles play in the etiology of such disorders is not understood. Here, we show that mitochondrial dysfunction impairs brain development, depletes the adult neural stem cell (NSC) pool and impacts embryonic and adult neurogenesis. Using deletion of the mitochondrial oxidoreductase AIF as a genetic model of mitochondrial and neurodegenerative diseases revealed the importance of mitochondria in multiple steps of the neurogenic process. Developmentally, impaired mitochondrial function causes defects in NSC self-renewal, neural progenitor cell proliferation and cell cycle exit, as well as neuronal differentiation. Sustained mitochondrial dysfunction into adulthood leads to NSC depletion, loss of adult neurogenesis and manifests as a decline in brain function and cognitive impairment. These data demonstrate that mitochondrial dysfunction, as observed in genetic mitochondrial and neurodegenerative diseases, underlies the decline of brain function and cognition due to impaired stem cell maintenance and neurogenesis.
Collapse
Affiliation(s)
- Mireille Khacho
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, Ottawa, ON K1H 8M5, Canada
| | - Alysen Clark
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, Ottawa, ON K1H 8M5, Canada
| | - Devon S Svoboda
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, Ottawa, ON K1H 8M5, Canada
| | - Jason G MacLaurin
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, Ottawa, ON K1H 8M5, Canada
| | - Diane C Lagace
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, Ottawa, ON K1H 8M5, Canada
| | - David S Park
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, Ottawa, ON K1H 8M5, Canada
| | - Ruth S Slack
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
28
|
Eom S, Lee YM. Preliminary Study of Neurodevelopmental Outcomes and Parenting Stress in Pediatric Mitochondrial Disease. Pediatr Neurol 2017; 71:43-49.e1. [PMID: 28476522 DOI: 10.1016/j.pediatrneurol.2017.01.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/18/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Little is known regarding the neuropsychological profiles of pediatric patients with mitochondrial diseases or their parents, information that is crucial for improving the quality of life (QOL) for both patients and parents. We aimed to delineate neurodevelopment and psychological comorbidity in children with mitochondrial diseases in the preliminary investigation of adequate intervention methods, better prognoses, and improved QOL for both patients and parents. METHODS Seventy children diagnosed with mitochondrial diseases were neuropsychologically evaluated. Neurocognitive (development, intelligence) and psychological (behavior, daily living function, maternal depression, parenting stress) functions were analyzed. Clinical variables, including the first symptom, epileptic classification, organ involvement, lactic acidosis, brain magnetic resonance imaging findings, muscle pathology, biochemical enzyme assay results, and syndromic diagnosis of mitochondrial diseases, were also reviewed. RESULTS Prediagnostic assessments indicated that cognitive and psychomotor developments were significantly delayed. Group mean full scale intelligence quotient (IQ) scores indicated mild levels of intellectual disability, borderline levels of verbal IQ impairment, and mild levels of intellectual disability on performance IQ. Many children exhibited clinically significant levels of behavioral problems, whereas mothers of children with mitochondrial diseases exhibited significant increases in parenting stress relative to mothers of healthy children. Furthermore, 65% of mothers exhibited significant levels of depression. Early onset of the first symptoms, diffuse brain atrophy, and drug-resistant epilepsy negatively influenced neurodevelopmental and adaptive functions. CONCLUSION Better understanding of the functional levels and profiles of neurodevelopment and psychological comorbidity in children with mitochondrial diseases in the prediagnostic period is essential for adequate support and QOL of children with mitochondrial diseases and their parents.
Collapse
Affiliation(s)
- Soyong Eom
- Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young-Mock Lee
- Department of Pediatrics, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
29
|
Hsieh VC, Krane EJ, Morgan PG. Mitochondrial Disease and Anesthesia. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2017. [DOI: 10.1177/2326409817707770] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Vincent C. Hsieh
- Department of Anesthesiology and Perioperative Medicine, University of Washington, Seattle, WA, USA
| | - Elliot J. Krane
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Philip G. Morgan
- Department of Anesthesiology and Perioperative Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
30
|
Mitochondrial dysfunction underlying outer retinal diseases. Mitochondrion 2017; 36:66-76. [PMID: 28365408 DOI: 10.1016/j.mito.2017.03.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 03/06/2017] [Accepted: 03/27/2017] [Indexed: 01/21/2023]
Abstract
Dysfunction of photoreceptors, retinal pigment epithelium (RPE) or both contribute to the initiation and progression of several outer retinal disorders. Disrupted Müller glia function might additionally subsidize to these diseases. Mitochondrial malfunctioning is importantly associated with outer retina pathologies, which can be classified as primary and secondary mitochondrial disorders. This review highlights the importance of oxidative stress and mitochondrial DNA damage, underlying outer retinal disorders. Indeed, the metabolically active photoreceptors/RPE are highly prone to these hallmarks of mitochondrial dysfunction, indicating that mitochondria represent a weak link in the antioxidant defenses of outer retinal cells.
Collapse
|
31
|
Xu F, Armstrong R, Urrego D, Qazzaz M, Pehar M, Armstrong JN, Shutt T, Syed N. The mitochondrial division inhibitor Mdivi-1 rescues mammalian neurons from anesthetic-induced cytotoxicity. Mol Brain 2016; 9:35. [PMID: 27009068 PMCID: PMC4806411 DOI: 10.1186/s13041-016-0210-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 03/12/2016] [Indexed: 12/11/2022] Open
Abstract
Background Concerns have risen regarding the potential side effects of clinical exposure of the pediatric population to inhalational anesthetics, and how they might impact cognitive, learning, and memory functions. However, neither the mechanisms of anesthetic cytotoxicity, nor potential protective strategies, have yet been fully explored. In this study, we examined whether two of the most commonly used inhalational anesthetics, sevoflurane and desflurane, affect neuronal viability and synaptic network assembly between cultured rat cortical neurons. Results Primary rat cortical neuron cultures were exposed to equipotent sevoflurane or desflurane for 1 hour. Neuron viability, synaptic protein expression, mitochondrial morphology, and neurite growth were assayed with immunostaining and confocal microscopy techniques. The effects of anesthetics on the functional development of neural networks were evaluated with whole-cell patch clamp recordings of spontaneous synaptic currents. Our results demonstrate that an acute exposure to sevoflurane and desflurane inhibits the development of neurite processes, impacts the mitochondria, and compromises synaptic proteins - concomitant with a reduction in synaptic function in mature networks. Interestingly, pretreatment of neurons with a mitochondrial division inhibitor (Mdivi-1) not only protected mitochondria integrity but also played a protective role against anesthetic-induced structural and functional neurotoxicity. Conclusions We show that Mdivi-1 likely plays a protective role against certain harmful effects of general anesthetics on primary rat neuronal cultures. In addition, Mdivi-1 alone plays a direct role in enhancing growth and modulating synaptic activity. This study highlights the importance of further study into possible protective agents against anesthetic neurotoxicity.
Collapse
Affiliation(s)
- Fenglian Xu
- Hotchkiss Brain Institute and the Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 2T9, Canada. .,The Department of Biology, College of Arts and Sciences, Saint Louis University, Saint Louis, MO, 63103-2010, USA.
| | - Ryden Armstrong
- Hotchkiss Brain Institute and the Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 2T9, Canada
| | - Daniela Urrego
- Hotchkiss Brain Institute and the Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 2T9, Canada
| | - Munir Qazzaz
- Hotchkiss Brain Institute and the Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 2T9, Canada
| | - Mario Pehar
- The Department of Anesthesiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 2T9, Canada
| | - J N Armstrong
- The Department of Anesthesiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 2T9, Canada
| | - Tim Shutt
- The Departments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 2T9, Canada
| | - Naweed Syed
- Hotchkiss Brain Institute and the Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 2T9, Canada. .,The Department of Cell Biology & Anatomy and the Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada.
| |
Collapse
|
32
|
Mimura T, Imai S, Kawasaki T, Furuya Y, Mori K, Matsusue Y. Late-Emerging Lethal Exacerbation of Cardiomyopathy in a Patient with Mitochondrial Myopathy After Total Hip Arthroplasty: A Case Report. JBJS Case Connect 2014; 4:e105. [PMID: 29252773 DOI: 10.2106/jbjs.cc.n.00043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
CASE Mitochondrial myopathy comprises heterogeneous neuromuscular disorders caused by mitochondrial dysfunction. Acute exacerbation of mitochondrial myopathy infrequently occurs sequentially after perioperative stress. We present an unusual case of a late-emerging and lethal exacerbation of mitochondrial myopathy after total hip arthroplasty. Despite special attention paid to perioperative control, the patient's condition drastically deteriorated on postoperative day thirteen, and she died later as a result of cardiomyopathy. CONCLUSION When performing surgery on a patient with mitochondrial myopathy, the merits of surgery must always surpass the possible grave risk of this condition.
Collapse
Affiliation(s)
- Tomohiro Mimura
- Department of Orthopedic Surgery, Shiga University of Medical Science, Tsukinowa-cho, Seta, Otsu, Shiga, 520-2192, Japan.
| | | | | | | | | | | |
Collapse
|
33
|
Niezgoda J, Morgan PG. Anesthetic considerations in patients with mitochondrial defects. Paediatr Anaesth 2013; 23:785-93. [PMID: 23534340 PMCID: PMC3711963 DOI: 10.1111/pan.12158] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/25/2013] [Indexed: 12/17/2022]
Abstract
Mitochondrial disease, once thought to be a rare clinical entity, is now recognized as an important cause of a wide range of neurologic, cardiac, muscle, and endocrine disorders . The incidence of disorders of the respiratory chain alone is estimated to be about 1 per 4-5000 live births, similar to that of more well-known neurologic diseases . High-energy requiring tissues are uniquely dependent on the energy delivered by mitochondria and therefore have the lowest threshold for displaying symptoms of mitochondrial disease. Thus, mitochondrial dysfunction most commonly affects function of the central nervous system, the heart and the muscular system . Mutations in mitochondrial proteins cause striking clinical features in those tissues types, including encephalopathies, seizures, cerebellar ataxias, cardiomyopathies, myopathies, as well as gastrointestinal and hepatic disease. Our knowledge of the contribution of mitochondria in causing disease or influencing aging is expanding rapidly . As diagnosis and treatment improve for children with mitochondrial diseases, it has become increasingly common for them to undergo surgeries for their long-term care. In addition, often a muscle biopsy or other tests needing anesthesia are required for diagnosis. Mitochondrial disease represents probably hundreds of different defects, both genetic and environmental in origin, and is thus difficult to characterize. The specter of possible delayed complications in patients caused by inhibition of metabolism by anesthetics, by remaining in a biochemically stressed state such as fasting/catabolism, or by prolonged exposure to pain is a constant worry to physicians caring for these patients. Here, we review the considerations when caring for a patient with mitochondrial disease.
Collapse
Affiliation(s)
- Julie Niezgoda
- Department of Pediatric Anesthesiology, Cleveland Clinic, Cleveland, USA
| | - Phil G Morgan
- Department of Anesthesiology and Pain Medicine, University of Washington and Seattle Children’s Hospital, Seattle, USA
| |
Collapse
|
34
|
McCormick E, Place E, Falk MJ. Molecular genetic testing for mitochondrial disease: from one generation to the next. Neurotherapeutics 2013; 10:251-61. [PMID: 23269497 PMCID: PMC3625386 DOI: 10.1007/s13311-012-0174-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Molecular genetic diagnostic testing for mitochondrial disease has evolved continually since the first genetic basis for a clinical mitochondrial disease syndrome was identified in the late 1980s. Owing to global limitations in both knowledge and technology, few individuals, even among those with strong clinical or biochemical evidence of mitochondrial respiratory chain dysfunction, ever received a definitive molecular diagnosis prior to 2005. Clinically available genetic diagnostic testing options improved by 2006 to include sequencing and deletion analysis of an increasing number of individual nuclear genes linked to mitochondrial disease, genome-wide microarray analysis for chromosomal copy number abnormalities, and mitochondrial DNA whole genome sequence analysis. To assess the collective effect of these tests on the genetic diagnosis of suspected mitochondrial disease, we report here results from a retrospective review of the diagnostic yield in patients evaluated from 2008 to 2011 in the Mitochondrial-Genetics Diagnostic Clinic at The Children's Hospital of Philadelphia. Among 152 patients aged 6 weeks to 81 years referred for clinical evaluation of multisystem presentations concerning for suspected mitochondrial disease, a genetic etiology was established that confirmed definite mitochondrial disease in 16.4% and excluded primary mitochondrial disease in 9.2%. Substantial diagnostic challenges remain owing to the clinical difficulty and frank low yield of a priori selecting individual nuclear genes to sequence based on particular symptomatic or biochemical manifestations of suspected mitochondrial disease. These findings highlight the particular utility of massively parallel nuclear exome sequencing technologies, whose benefits and limitations are explored relative to the clinical genetic diagnostic evaluation of mitochondrial disease.
Collapse
Affiliation(s)
- Elizabeth McCormick
- />Divisions of Human Genetics and Child Development and Metabolic Disease, Department of Pediatrics, The Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 USA
| | - Emily Place
- />Divisions of Human Genetics and Child Development and Metabolic Disease, Department of Pediatrics, The Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 USA
- />Department of Ophthalmology, Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA USA
| | - Marni J. Falk
- />Divisions of Human Genetics and Child Development and Metabolic Disease, Department of Pediatrics, The Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 USA
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Mitochondrial disease is a heterogeneous group of energy metabolism disorders that present across all ages with a wide range of ocular or multisystemic manifestations. This review focuses on recent progress made toward understanding the various ophthalmologic manifestations of primary mitochondrial diseases and discusses the implications of mitochondrial dysfunction, placing particular emphasis on recent investigations into the pathogenesis and emerging therapies for mitochondrial-based ophthalmologic disorders. RECENT FINDINGS Novel pathogenic mitochondrial DNA mutations continue to be detected in diverse ethnic populations for primary mitochondrial ophthalmologic disorders that commonly affect the optic nerve, retina, and extraocular muscles. Promising antioxidant and gene therapy approaches are being actively investigated to treat these ophthalmologic manifestations, as in Leber's hereditary optic neuropathy. Mitochondrial dysfunction is also increasingly implicated in common ophthalmologic disorders of aging, including diabetic retinopathy, age-related macular degeneration, and glaucoma. Several proteins recently recognized to play a role in the mitochondrial oxidative stress response within retinal cells, such as prohibitin and MMP2, may serve as novel biomarkers and therapeutic targets for common ophthalmologic disorders. Therapies that inhibit mitochondrial function and induce apoptosis within tumor cells, such as EDL-155 and curcumin, may offer novel therapeutic agents for ocular neoplasms such as retinoblastoma and uveal melanoma. SUMMARY Primary mitochondrial genetic disease manifestations can involve almost all aspects of the eye. Mitochondrial dysfunction is increasingly recognized as playing a causative role in the common ophthalmologic disorders in aging. This understanding has unleashed a range of emerging therapeutic approaches for mitochondrial-based ophthalmologic disorders directed at optimizing mitochondrial function.
Collapse
|
36
|
Affiliation(s)
- Robert J Courtney
- Case Eye Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | | |
Collapse
|