1
|
Huang L, Long Q, Su Q, Zhu X, Long X. Aflatoxin B1-DNA adducts modify the effects of post-operative adjuvant transarterial chemoembolization improving hepatocellular carcinoma prognosis. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:780-792. [PMID: 37711588 PMCID: PMC10497403 DOI: 10.37349/etat.2023.00167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/10/2023] [Indexed: 09/16/2023] Open
Abstract
Aim DNA damage involves in the carcinogenesis of some cancer and may act as a target for therapeutic intervention of cancers. However, it is unclear whether aflatoxin B1 (AFB1)-DNA adducts (ADAs), an important kind of DNA damage caused by AFB1, affect the efficiency of post-operative adjuvant transarterial chemoembolization (po-TACE) treatment improving hepatocellular carcinoma (HCC) survival. Methods A hospital-based retrospective study, including 318 patients with Barcelona Clinic Liver Cancer (BCLC)-C stage HCC from high AFB1 exposure areas, to investigate the potential effects of ADAs in the tissues with HCC on po-TACE treatment. The amount of ADAs in the cancerous tissues was tested by competitive enzyme-linked immunosorbent assay (c-ELISA). Results Among these patients with HCC, the average amount of ADAs was 3.00 µmol/mol ± 1.51 µmol/mol DNA in their tissues with cancer. For these patients, increasing amount of ADAs was significantly associated with poorer overall survival (OS) and tumor reoccurrence-free survival (RFS), with corresponding death risk (DR) of 3.69 (2.78-4.91) and tumor recurrence risk (TRR) of 2.95 (2.24-3.88). The po-TACE therapy can efficiently improve their prognosis [DR = 0.59 (0.46-0.76), TRR = 0.63 (0.49-0.82)]. Interestingly, this improving role was more noticeable among these patients with high ADAs [DR = 0.36 (0.24-0.53), TRR = 0.40 (0.28-0.59)], but not among those with low ADAs (P > 0.05). Conclusions These results suggest that increasing ADAs in the cancerous tissues may be beneficial for po-TACE in ameliorating the survival of patients with HCC.
Collapse
Affiliation(s)
- Liyan Huang
- Clinicopathological Diagnosis & Research Centre, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
- Departement of Pathology, Graduate School of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Qinqin Long
- Clinicopathological Diagnosis & Research Centre, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Qunying Su
- Clinicopathological Diagnosis & Research Centre, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Xiaoying Zhu
- Clinicopathological Diagnosis & Research Centre, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Xidai Long
- Clinicopathological Diagnosis & Research Centre, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
2
|
Merchant N, Alam A, Bhaskar L. The correlation between hepatocellular carcinoma susceptibility and XRCC1 polymorphisms Arg194Trp, Arg280His, and Arg399Gln – A meta-analysis. HUMAN GENE 2023; 36:201165. [DOI: 10.1016/j.humgen.2023.201165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
3
|
Yu Y, Sun Y, Li Z, Li J, Tian D. Systematic analysis identifies XRCC4 as a potential immunological and prognostic biomarker associated with pan-cancer. BMC Bioinformatics 2023; 24:44. [PMID: 36765282 PMCID: PMC9921312 DOI: 10.1186/s12859-023-05165-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND XRCC4 is a NHEJ factor identified recently that plays a vital role in repairing DNA double-stranded breaks. Studies have reported the associations between abnormal expression of XRCC4 and tumor susceptibility and radiosensitivity, but the potential biological mechanisms by which XRCC4 exerts effects on tumorigenesis are not fully understood. This study aimed to systematically investigate the role of XRCC4 across cancer types. METHODS The TIMER, GTEX and Xiantao Academic database were used to interpret the expression of XRCC4. Genomic alterations and protein expression in human organic and tumor tissues were applied in cBioPortal and the Human Protein Atlas databases. Correlations between XRCC4 expression and immune and molecular subtypes were analyzed by using the TISIDB database. Protein-protein interactions, GO and KEGG enrichment were also applied for XRCC4-related genes. The TIMER and the Tumor Immune Single Cell Hub (TISCH) online databases were used to explore the relationship between XRCC4 and tumor immune microenvironment. Drug sensitivity information was acquired from the CellMiner database to analyze the effect of XRCC4 on sensitivity analysis. RESULTS The XRCC4 expression was significantly upregulated in 15 tumor types and downregulated in two tumor types compared with the normal tissues, most of which were validated by the results of Xiantao academic platform. XRCC4 was expressed at intermediate level in malignant cells. The XRCC4 expression was related to the molecular and immune subtypes of human cancers, and the survival outcome of 11 types of cancers, including KIRC, STAD and LIHC. The main type of frequent genetic alteration is amplification. Strong correlations were also found between XRCC4 and immune checkpoint genes in 33 human cancers. Furthermore, the abnormal expression of XRCC4 was related to immune cell infiltration and drug sensitivity. Enrichment analysis showed that XRCC4 was significantly correlated with DNA damage response. CONCLUSIONS This comprehensive pan-cancer analysis suggested that XRCC4 may play a vital role in the prognosis and immunotherapy response in cancer patients, and it is a promising therapy target in the future.
Collapse
Affiliation(s)
- Yang Yu
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, 300190 China
| | - Yanyan Sun
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, 300190 China
| | - Zhaoxian Li
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, 300190 China ,grid.216938.70000 0000 9878 7032School of Medicine, Nankai University, 94 Weijin Road, Tianjin, 300071 China
| | - Jiang Li
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, 300190 China
| | - Dazhi Tian
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, 300190, China.
| |
Collapse
|
4
|
Association of Polymorphisms in NHEJ Pathway Genes with HIV-1 Infection and AIDS Progression in a Northern Chinese MSM Population. DISEASE MARKERS 2022; 2022:5126867. [PMID: 36312587 PMCID: PMC9605847 DOI: 10.1155/2022/5126867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 10/07/2022] [Indexed: 11/17/2022]
Abstract
Background and Aims Men who have sex with men (MSM) are at high risk of HIV infection. The nonhomologous end joining (NHEJ) pathway is the main way of double-stranded DNA break (DSB) repair in the higher eukaryotes and can repair the DSB timely at any time in cell cycle. It is also indicated that the NHEJ pathway is associated with HIV-1 infection since the DSB in host genome DNA occurs in the process of HIV-1 integration. The aim of the present investigation was to evaluate associations of single-nucleotide polymorphisms (SNPs) in NHEJ pathway genes with susceptibility to HIV-1 infection and AIDS progression among MSM residing in northern China. Methods A total of 481 HIV-1 seropositive men and 493 HIV-1 seronegative men were included in this case-control study. Genotyping of 22 SNPs in NHEJ pathway genes was performed using the SNPscan™ Kit. Results Positive associations were observed between XRCC6 rs132770 and XRCC4 rs1056503 genotypes and the susceptibility to HIV-1 infection. In gene-gene interaction analysis, significant SNP-SNP interactions of XRCC6 and XRCC4 genetic variations were found to play a potential role in the risk of HIV-1 infection. In stratified analysis, XRCC5 rs16855458 was significantly associated with CD4+ T cell counts in AIDS patients, whereas LIG4 rs1805388 was linked to the clinical phases of AIDS patients. Conclusions NHEJ gene polymorphisms can be considered to be risk factors of HIV-1 infection and AIDS progression in the northern Chinese MSM population.
Collapse
|
5
|
Wang Y, Huang X, Su Z, He J, Zhao N, Nie L, Tang Y, Zhao H, Nong Q. The Glu69Asp Polymorphism of EME1 Gene is Associated with an Increased Risk of Hepatocellular Carcinoma in Guangxi Population, China. Int J Gen Med 2022; 15:7855-7866. [PMID: 36281338 PMCID: PMC9587733 DOI: 10.2147/ijgm.s383261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
Background The dysfunction of Essential meiotic endonuclease 1 homolog 1 (EME1) can lead to genomic instability and tumorigenesis. Single nucleotide polymorphisms (SNPs) in the EME1 gene have been reported to be associated with the risk of several cancers, but its association with hepatocellular carcinoma (HCC) has not been investigated. This study aimed to determine the association between EME1 SNPs and the risk of HCC. Methods This study included 645 HCC patients and 649 healthy controls from a Guangxi population of Southern China, and genotyped three functional SNPs (Glu69Asp: rs3760413A>C, Ile350Thr: rs12450550T>C, and rs11868055A>G) of the EME1 gene utilizing the Agena MassARRAY platform. Results The rs3760413C variant genotypes (AC+CC: Glu/Asp+Asp/Asp) conferred a 1.419-fold risk of HCC compared to the AA (Glu/Glu) genotype (adjusted OR = 1.419, 95% CI = 1.017–1.980), and the allele C increased the risk of HCC in a dose-dependent manner (Ptrend = 0.017). Moreover, the effects of the rs3760413C variant genotypes were more pronounced in individuals who drank pond/ditch water (adjusted OR = 3.956, 95% CI = 1.413–11.076) than in those who never drank (P = 0.033). We further observed that a potential carcinogen microcystin-LR induced more DNA oxidative damages in peripheral blood mononuclear cells from the carriers of rs3760413C variant genotypes than those from the subjects with AA genotype (P = 0.006). A nomogram was also constructed combining the rs3760413A>C polymorphism and environmental risk factors for predicting HCC risk with a good discriminatory ability (concordance index = 0.892, 95% CI: 0.874–0.911) and good calibration (mean absolute error = 0.005). Conclusion Our data suggest that the Glu69Asp missense polymorphism (rs3760413) of EME1 gene is associated with the risk of HCC, which may be a susceptible biomarker of HCC in the Guangxi population.
Collapse
Affiliation(s)
- Youxin Wang
- Department of Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Xinglei Huang
- Department of Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Zhaohui Su
- Department of Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Junquan He
- Department of Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Na Zhao
- Department of Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Liyun Nie
- Department of Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Yanmei Tang
- Department of Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Huiliu Zhao
- Department of Clinical Laboratory, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Qingqing Nong
- Department of Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, People’s Republic of China,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, People’s Republic of China,Correspondence: Qingqing Nong, Department of Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, People’s Republic of China, Tel +86 771-5358146, Fax +86 771-5350823, Email
| |
Collapse
|
6
|
Gomez-Quiroz LE, Roman S. Influence of genetic and environmental risk factors in the development of hepatocellular carcinoma in Mexico. Ann Hepatol 2022; 27 Suppl 1:100649. [PMID: 34902602 DOI: 10.1016/j.aohep.2021.100649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/20/2021] [Accepted: 11/24/2021] [Indexed: 02/06/2023]
Abstract
The latest studies on the epidemiology of diverse types of cancers have located in the scene the relevance of liver tumors, particularly hepatocellular carcinoma (HCC). HCC is a life-threatening malignancy triggered by chronic exposure to hepatitis B and C viruses, excessive alcohol intake, hepatic lipid droplet accumulation, and aflatoxins that lead to persistent liver damage. The occurrence of such etiological risk factors deeply marks the variability in the incidence of HCC worldwide reflected by geography, ethnicity, age, and lifestyle factors influenced by cultural aspects. New perspectives on the primary risk factors and their potential gene-environment interactions (GxE) have been well-addressed in some cancers; however, it continues to be a partially characterized issue in liver malignancies. In this review, the epidemiology of the risk factors for HCC are described enhancing the GxE interactions identified in Mexico, which could mark the risk of this liver malignancy among the population and the measures needed to revert them. Updated healthcare policies focusing on preventive care should be tailored based on the genetic and environmental risk factors, which may influence the effect of the etiological agents of HCC. Robust regional investigations related to epidemiological, clinical, and basic studies are warranted to understand this health problem complying with the rules of ethnic, genetic, environmental, and social diversity.
Collapse
Affiliation(s)
- Luis E Gomez-Quiroz
- Área de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Sonia Roman
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, "Fray Antonio Alcalde," Guadalajara, Jalisco, Mexico; Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
7
|
Wang Y, Huang Q, Huang X, Zhao H, Guan B, Ban K, Zhu X, Ma Z, Tang Y, Su Z, Nong Q. Genetic Variant of PP2A Subunit Gene Confers an Increased Risk of Primary Liver Cancer in Chinese. Pharmgenomics Pers Med 2021; 14:1565-1574. [PMID: 34898995 PMCID: PMC8654694 DOI: 10.2147/pgpm.s335555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022] Open
Abstract
Background Protein phosphatase 2A (PP2A, a serine/threonine phosphatase) is frequently inactivated in many types of cancer, including primary liver cancer (PLC). Genetic variations in PP2A subunits have been reported to be associated with the risk of many types of cancer but rarely in PLC. This study aims to assess the association between functional polymorphisms of PP2A subunit genes and the risk of PLC in Chinese. Methods In a case-control study with a total of 541 PLC patients and 547 controls in Guangxi province of Southern China, we genotyped six putatively functional polymorphisms (rs10421191G>A, rs11453459del>insG, rs1560092T>G, rs7840855C>T, rs1255722G>A and rs10151527A>C) of three PP2A subunit genes (PPP2R1A, PPP2R2A and PPP2R5E) using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry platform. Results The rs11453459insG variant genotypes (ins/ins+del/ins) of PPP2R1A were found to be significantly associated with an increased risk of PLC compared with the del/del genotype (adjusted OR = 1.290, 95% CI = 1.009–1.650), and the number of insert G allele worked in a dose-dependent manner (Ptrend= 0.007). The stratified analysis showed that the effects of rs11453459insG variant genotypes were more evident in the subgroup who drink pond-ditch water (adjusted OR = 3.051, 95% CI = 1.264–7.364) than those never drink (P = 0.041). The carriers of rs11453459 del/ins genotype had a significantly lower level of PPP2R1A mRNA expression in liver cancer tissues than those of the del/del genotype (P = 0.021). Furthermore, we used microcystin-LR, a carcinogen presents in the pond-ditch water, to treat human peripheral blood mononuclear cells and found that the cells from carriers of rs11453459insG variant genotypes induced more DNA oxidative damages than those from the del/del genotype carriers (P < 0.001). Conclusion These findings suggest that the PPP2R1A rs11453459del>insG polymorphism is associated with an increased risk of PLC, especially for persons with a history of drinking pond-ditch water. This insertion/deletion polymorphism may be a susceptible biomarker for PLC in Chinese.
Collapse
Affiliation(s)
- Youxin Wang
- Department of Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Qiuyue Huang
- Department of Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Xinglei Huang
- Department of Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Huiliu Zhao
- Department of Clinical Laboratory, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Bin Guan
- Department of Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Kechen Ban
- Department of Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xuefeng Zhu
- Department of Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Zhixing Ma
- Department of Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Yanmei Tang
- Department of Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Zhaohui Su
- Department of Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, People's Republic of China
| | - Qingqing Nong
- Department of Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, People's Republic of China
| |
Collapse
|
8
|
Ghaderi-Zefrehi H, Rezaei M, Sadeghi F, Heiat M. Genetic polymorphisms in DNA repair genes and hepatocellular carcinoma risk. DNA Repair (Amst) 2021; 107:103196. [PMID: 34416543 DOI: 10.1016/j.dnarep.2021.103196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/23/2021] [Accepted: 07/26/2021] [Indexed: 01/27/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequent types of tumors worldwide. Its occurrence and development have been related to various risk factors, such as chronic infection with hepatitis B or C viruses and alcohol addiction. DNA repair systems play a critical role in maintaining the integrity of the genome. Defects in these systems have been related to increased susceptibility to various types of cancer. Multiple genetic polymorphisms in genes of DNA repair systems have been reported that may affect DNA repair capacity (DRC) and modulate risk to cancer. Several studies have been conducted to assess the role of polymorphisms of DNA repair genes on the HCC risk. Identifying these polymorphisms and their association with HCC risk may help to improve prevention and treatment strategies. In this study, we review investigations that evaluated the association between genetic polymorphisms of DNA repair genes and risk of HCC.
Collapse
Affiliation(s)
- Hossein Ghaderi-Zefrehi
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Baqiyatallah Research Center for Gastroenterology and Liver Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maryam Rezaei
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Farzin Sadeghi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Heiat
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Aflatoxin Biosynthesis, Genetic Regulation, Toxicity, and Control Strategies: A Review. J Fungi (Basel) 2021; 7:jof7080606. [PMID: 34436145 PMCID: PMC8397101 DOI: 10.3390/jof7080606] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022] Open
Abstract
Aflatoxins (AFs) are highly toxic and cancer-causing compounds, predominantly synthesized by the Aspergillus species. AFs biosynthesis is a lengthy process that requires as minimum as 30 genes grouped inside 75 kilobytes (kB) of gene clusters, which are regulated by specific transcription factors, including aflR, aflS, and some general transcription factors. This paper summarizes the status of research on characterizing structural and regulatory genes associated with AF production and their roles in aflatoxigenic fungi, particularly Aspergillus flavus and A. parasiticus, and enhances the current understanding of AFs that adversely affect humans and animals with a great emphasis on toxicity and preventive methods.
Collapse
|
10
|
Gao A, Guo M. Epigenetic based synthetic lethal strategies in human cancers. Biomark Res 2020; 8:44. [PMID: 32974031 PMCID: PMC7493427 DOI: 10.1186/s40364-020-00224-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 09/04/2020] [Indexed: 02/08/2023] Open
Abstract
Over the past decades, it is recognized that loss of DNA damage repair (DDR) pathways is an early and frequent event in tumorigenesis, occurring in 40-50% of many cancer types. The basis of synthetic lethality in cancer therapy is DDR deficient cancers dependent on backup DNA repair pathways. In cancer, the concept of synthetic lethality has been extended to pairs of genes, in which inactivation of one by deletion or mutation and pharmacological inhibition of the other leads to death of cancer cells whereas normal cells are spared the effect of the drug. The paradigm study is to induce cell death by inhibiting PARP in BRCA1/2 defective cells. Since the successful application of PARP inhibitor, a growing number of developed DDR inhibitors are ongoing in preclinical and clinical testing, including ATM, ATR, CHK1/2 and WEE1 inhibitors. Combination of PARP inhibitors and other DDR inhibitors, or combination of multiple components of the same pathway may have great potential synthetic lethality efficiency. As epigenetics joins Knudson’s two hit theory, silencing of DDR genes by aberrant epigenetic changes provide new opportunities for synthetic lethal therapy in cancer. Understanding the causative epigenetic changes of loss-of-function has led to the development of novel therapeutic agents in cancer. DDR and related genes were found frequently methylated in human cancers, including BRCA1/2, MGMT, WRN, MLH1, CHFR, P16 and APC. Both genetic and epigenetic alterations may serve as synthetic lethal therapeutic markers.
Collapse
Affiliation(s)
- Aiai Gao
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China
| | - Mingzhou Guo
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China.,Henan Key Laboratory for Esophageal Cancer Research, Zhengzhou University, 40 Daxue Road, Zhengzhou, 450052 Henan China.,State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China
| |
Collapse
|
11
|
Investigation of gene-gene interactions in cardiac traits and serum fatty acid levels in the LURIC Health Study. PLoS One 2020; 15:e0238304. [PMID: 32915819 PMCID: PMC7485803 DOI: 10.1371/journal.pone.0238304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 08/13/2020] [Indexed: 01/25/2023] Open
Abstract
Epistasis analysis elucidates the effects of gene-gene interactions (G×G) between multiple loci for complex traits. However, the large computational demands and the high multiple testing burden impede their discoveries. Here, we illustrate the utilization of two methods, main effect filtering based on individual GWAS results and biological knowledge-based modeling through Biofilter software, to reduce the number of interactions tested among single nucleotide polymorphisms (SNPs) for 15 cardiac-related traits and 14 fatty acids. We performed interaction analyses using the two filtering methods, adjusting for age, sex, body mass index (BMI), waist-hip ratio, and the first three principal components from genetic data, among 2,824 samples from the Ludwigshafen Risk and Cardiovascular (LURIC) Health Study. Using Biofilter, one interaction nearly met Bonferroni significance: an interaction between rs7735781 in XRCC4 and rs10804247 in XRCC5 was identified for venous thrombosis with a Bonferroni-adjusted likelihood ratio test (LRT) p: 0.0627. A total of 57 interactions were identified from main effect filtering for the cardiac traits G×G (10) and fatty acids G×G (47) at Bonferroni-adjusted LRT p < 0.05. For cardiac traits, the top interaction involved SNPs rs1383819 in SNTG1 and rs1493939 (138kb from 5’ of SAMD12) with Bonferroni-adjusted LRT p: 0.0228 which was significantly associated with history of arterial hypertension. For fatty acids, the top interaction between rs4839193 in KCND3 and rs10829717 in LOC107984002 with Bonferroni-adjusted LRT p: 2.28×10−5 was associated with 9-trans 12-trans octadecanoic acid, an omega-6 trans fatty acid. The model inflation factor for the interactions under different filtering methods was evaluated from the standard median and the linear regression approach. Here, we applied filtering approaches to identify numerous genetic interactions related to cardiac-related outcomes as potential targets for therapy. The approaches described offer ways to detect epistasis in the complex traits and to improve precision medicine capability.
Collapse
|
12
|
Li Q, Liu J, Jia Y, Li T, Zhang M. miR-623 suppresses cell proliferation, migration and invasion through direct inhibition of XRCC5 in breast cancer. Aging (Albany NY) 2020; 12:10246-10258. [PMID: 32501811 PMCID: PMC7346019 DOI: 10.18632/aging.103182] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/25/2020] [Indexed: 12/11/2022]
Abstract
Background/Aims: MicroRNAs (miRNAs) are short, non-coding RNA molecules that control gene expression trough negative translational regulation. MiR-623 is a tumor suppressor, and it’s function and mechanism in breast cancer has not been reported. Results: Exogenous overexpression of miR-623 suppressed cell proliferation, migration and invasion, meanwhile, but promoted cell apoptosis. MiR-623 knockdown displayed opposite results. Overexpression of miR-623 resulted in the downregulation of CDK4/6 as well as the inhibition of the phosphatidylinositol-3-kinase (PI3K)/Akt and Wnt/β-Catenin signaling pathways. MiR-623 knockdown displayed opposite results. Results of the reporter assay revealed that the luciferase activity was decreased in XRCC5-wt cells, suggesting that miR-623 could directly combine with 3’ UTR of XRCC5. MiR-623 significantly suppressed XRCC5 expression, which is critical for miR-623-induced proliferation and migration block in breast cancer cells. Conclusion: miR-623 suppressed cell proliferation, migration and invasion through downregulation of cyclin dependent kinases and inhibition of the phosphatidylinositol-3-kinase (PI3K)/Akt and Wnt/β-Catenin pathways by targeting XRCC5. Methods: miR-623 was either overexpressed in breast cancer cell lines through exogenous transfection or knocked down by specific siRNA. Cell proliferation, migration and invasion were examined using CCK-8, colony formation and transwell assay. The direct target of miR-623 was verified using luciferase reporter gene assay.
Collapse
Affiliation(s)
- Qing Li
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan 250000, Shandong, P.R.China
| | - Jiangtao Liu
- Department of Internal Medical Oncology, Binzhou Central Hospital, Binzhou 251700, Shandong, China
| | - Yanli Jia
- Department of Internal Medical Oncology, Binzhou Central Hospital, Binzhou 251700, Shandong, China
| | - Tingting Li
- Anesthesia department, Binzhou Central Hospital, Binzhou 251700, Shandong, China
| | - Mei Zhang
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan 250000, Shandong, P.R.China
| |
Collapse
|
13
|
Hartwig A, Arand M, Epe B, Guth S, Jahnke G, Lampen A, Martus HJ, Monien B, Rietjens IMCM, Schmitz-Spanke S, Schriever-Schwemmer G, Steinberg P, Eisenbrand G. Mode of action-based risk assessment of genotoxic carcinogens. Arch Toxicol 2020; 94:1787-1877. [PMID: 32542409 PMCID: PMC7303094 DOI: 10.1007/s00204-020-02733-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 12/16/2022]
Abstract
The risk assessment of chemical carcinogens is one major task in toxicology. Even though exposure has been mitigated effectively during the last decades, low levels of carcinogenic substances in food and at the workplace are still present and often not completely avoidable. The distinction between genotoxic and non-genotoxic carcinogens has traditionally been regarded as particularly relevant for risk assessment, with the assumption of the existence of no-effect concentrations (threshold levels) in case of the latter group. In contrast, genotoxic carcinogens, their metabolic precursors and DNA reactive metabolites are considered to represent risk factors at all concentrations since even one or a few DNA lesions may in principle result in mutations and, thus, increase tumour risk. Within the current document, an updated risk evaluation for genotoxic carcinogens is proposed, based on mechanistic knowledge regarding the substance (group) under investigation, and taking into account recent improvements in analytical techniques used to quantify DNA lesions and mutations as well as "omics" approaches. Furthermore, wherever possible and appropriate, special attention is given to the integration of background levels of the same or comparable DNA lesions. Within part A, fundamental considerations highlight the terms hazard and risk with respect to DNA reactivity of genotoxic agents, as compared to non-genotoxic agents. Also, current methodologies used in genetic toxicology as well as in dosimetry of exposure are described. Special focus is given on the elucidation of modes of action (MOA) and on the relation between DNA damage and cancer risk. Part B addresses specific examples of genotoxic carcinogens, including those humans are exposed to exogenously and endogenously, such as formaldehyde, acetaldehyde and the corresponding alcohols as well as some alkylating agents, ethylene oxide, and acrylamide, but also examples resulting from exogenous sources like aflatoxin B1, allylalkoxybenzenes, 2-amino-3,8-dimethylimidazo[4,5-f] quinoxaline (MeIQx), benzo[a]pyrene and pyrrolizidine alkaloids. Additionally, special attention is given to some carcinogenic metal compounds, which are considered indirect genotoxins, by accelerating mutagenicity via interactions with the cellular response to DNA damage even at low exposure conditions. Part C finally encompasses conclusions and perspectives, suggesting a refined strategy for the assessment of the carcinogenic risk associated with an exposure to genotoxic compounds and addressing research needs.
Collapse
Affiliation(s)
- Andrea Hartwig
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany.
| | - Michael Arand
- Institute of Pharmacology and Toxicology, University of Zurich, 8057, Zurich, Switzerland
| | - Bernd Epe
- Institute of Pharmacy and Biochemistry, University of Mainz, 55099, Mainz, Germany
| | - Sabine Guth
- Department of Toxicology, IfADo-Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Gunnar Jahnke
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany
| | - Alfonso Lampen
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), 10589, Berlin, Germany
| | - Hans-Jörg Martus
- Novartis Institutes for BioMedical Research, 4002, Basel, Switzerland
| | - Bernhard Monien
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), 10589, Berlin, Germany
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Simone Schmitz-Spanke
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, University of Erlangen-Nuremberg, Henkestr. 9-11, 91054, Erlangen, Germany
| | - Gerlinde Schriever-Schwemmer
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany
| | - Pablo Steinberg
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Str. 9, 76131, Karlsruhe, Germany
| | - Gerhard Eisenbrand
- Retired Senior Professor for Food Chemistry and Toxicology, Kühler Grund 48/1, 69126, Heidelberg, Germany.
| |
Collapse
|
14
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Marko D, Oswald IP, Piersma A, Routledge M, Schlatter J, Baert K, Gergelova P, Wallace H. Risk assessment of aflatoxins in food. EFSA J 2020; 18:e06040. [PMID: 32874256 PMCID: PMC7447885 DOI: 10.2903/j.efsa.2020.6040] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
EFSA was asked to deliver a scientific opinion on the risks to public health related to the presence of aflatoxins in food. The risk assessment was confined to aflatoxin B1 (AFB1), AFB2, AFG1, AFG2 and AFM1. More than 200,000 analytical results on the occurrence of aflatoxins were used in the evaluation. Grains and grain-based products made the largest contribution to the mean chronic dietary exposure to AFB1 in all age classes, while 'liquid milk' and 'fermented milk products' were the main contributors to the AFM1 mean exposure. Aflatoxins are genotoxic and AFB1 can cause hepatocellular carcinomas (HCCs) in humans. The CONTAM Panel selected a benchmark dose lower confidence limit (BMDL) for a benchmark response of 10% of 0.4 μg/kg body weight (bw) per day for the incidence of HCC in male rats following AFB1 exposure to be used in a margin of exposure (MOE) approach. The calculation of a BMDL from the human data was not appropriate; instead, the cancer potencies estimated by the Joint FAO/WHO Expert Committee on Food Additives in 2016 were used. For AFM1, a potency factor of 0.1 relative to AFB1 was used. For AFG1, AFB2 and AFG2, the in vivo data are not sufficient to derive potency factors and equal potency to AFB1 was assumed as in previous assessments. MOE values for AFB1 exposure ranged from 5,000 to 29 and for AFM1 from 100,000 to 508. The calculated MOEs are below 10,000 for AFB1 and also for AFM1 where some surveys, particularly for the younger age groups, have an MOE below 10,000. This raises a health concern. The estimated cancer risks in humans following exposure to AFB1 and AFM1 are in-line with the conclusion drawn from the MOEs. The conclusions also apply to the combined exposure to all five aflatoxins.
Collapse
|
15
|
Benkerroum N. Chronic and Acute Toxicities of Aflatoxins: Mechanisms of Action. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E423. [PMID: 31936320 PMCID: PMC7013914 DOI: 10.3390/ijerph17020423] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/23/2019] [Accepted: 12/29/2019] [Indexed: 01/01/2023]
Abstract
There are presently more than 18 known aflatoxins most of which have been insufficiently studied for their incidence, health-risk, and mechanisms of toxicity to allow effective intervention and control means that would significantly and sustainably reduce their incidence and adverse effects on health and economy. Among these, aflatoxin B1 (AFB1) has been by far the most studied; yet, many aspects of the range and mechanisms of the diseases it causes remain to be elucidated. Its mutagenicity, tumorigenicity, and carcinogenicity-which are the best known-still suffer from limitations regarding the relative contribution of the oxidative stress and the reactive epoxide derivative (Aflatoxin-exo 8,9-epoxide) in the induction of the diseases, as well as its metabolic and synthesis pathways. Additionally, despite the well-established additive effects for carcinogenicity between AFB1 and other risk factors, e.g., hepatitis viruses B and C, and the hepatotoxic algal microcystins, the mechanisms of this synergy remain unclear. This study reviews the most recent advances in the field of the mechanisms of toxicity of aflatoxins and the adverse health effects that they cause in humans and animals.
Collapse
Affiliation(s)
- Noreddine Benkerroum
- Department of Food Science and Agricultural Chemistry MacDonald Campus, McGill University, 21111 Lakeshore, Ste Anne de Bellevue, QC H9X 3V9, Canada
| |
Collapse
|
16
|
Wang XZ, Tang WZ, Su QY, Yao JG, Huang XY, Long QQ, Wu XM, Xia Q, Long XD. Single-nucleotide polymorphisms in the coding region of a disintegrin and metalloproteinase with thrombospondin motifs 4 and hepatocellular carcinoma: A retrospective case-control study. Cancer Med 2019; 8:7869-7880. [PMID: 31663692 PMCID: PMC6912020 DOI: 10.1002/cam4.2646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 09/22/2019] [Accepted: 10/10/2019] [Indexed: 02/06/2023] Open
Abstract
Previous studies have shown that single-nucleotide polymorphisms (SNPs) of a disintegrin and metalloproteinase with thrombospondin type 1 motif 4 (ADAMTS4) may involve in the pathogenesis of some diseases. However, it is not clear whether they are associated with hepatocellular carcinoma (HCC). A hospital-based case-control study, including 862 cases with HCC and 1120 controls, was conducted to assess the effects of 258 SNPs in the coding regions of ADAMTS4 on HCC risk and prognosis. We found that six SNPs in ADAMTS4 were differential distribution between cases and controls via the primary screening analyses; however, only rs538321148 and rs1014509103 polymorphisms were further identified to modify the risk of HCC (odds ratio: 2.73 and 2.95; 95% confidence interval, 2.28-3.29 and 2.43-3.58; P-value, 5.73 × 10-27 and 1.36 × 10-27 , respectively). Significant interaction between these two SNPs and two known causes of hepatitis B virus and aflatoxin B1 were also observed. Furthermore, rs538321148 and rs1014509103 polymorphisms were associated not only with clinicopathological features of tumor such as tumor stage and grade, microvessel density, and vessel metastasis, but with poor overall survival. Additionally, these SNPs significantly downregulated ADATMS4 expression in tumor tissues. These data suggest that SNPs in the coding region of ADAMTS4, such as rs538321148 and rs1014509103, may be potential biomarkers for predicting HCC risk and prognosis.
Collapse
Affiliation(s)
- Xing-Zhizi Wang
- Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, P.R. China
| | - Wei-Zhong Tang
- Department of Gastrointestinal Surgery, The Affiliated Tumor Hospital, Guangxi Medical University, Nanning, P.R. China
| | - Qun-Ying Su
- Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, P.R. China
| | - Jin-Guang Yao
- Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, P.R. China
| | - Xiao-Ying Huang
- Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, P.R. China
| | - Qin-Qin Long
- Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, P.R. China
| | - Xue-Min Wu
- Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, P.R. China
| | - Qiang Xia
- Department of Liver Surgery, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Xi-Dai Long
- Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, P.R. China.,Department of Liver Surgery, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, P.R. China
| |
Collapse
|
17
|
Gupta MK, Kushwah AS, Singh R, Banerjee M. Genotypic analysis of XRCC4 and susceptibility to cervical cancer. Br J Biomed Sci 2019; 77:7-12. [DOI: 10.1080/09674845.2019.1637573] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- MK Gupta
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, India
| | - AS Kushwah
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, India
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - R Singh
- Department of Obstetrics & Gynecology, King George’s Medical University, Lucknow, India
| | - M Banerjee
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, India
| |
Collapse
|
18
|
Li N, Zhao L, Guo C, Liu C, Liu Y. Identification of a novel DNA repair-related prognostic signature predicting survival of patients with hepatocellular carcinoma. Cancer Manag Res 2019; 11:7473-7484. [PMID: 31496805 PMCID: PMC6689532 DOI: 10.2147/cmar.s204864] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/19/2019] [Indexed: 12/14/2022] Open
Abstract
Purpose Hepatocellular carcinoma (HCC) is the sixth most lethal neoplasm worldwide. Traditional biomarkers often exploit the relationship between a certain gene and cancer progression, but they cannot predict patient survival or prognosis accurately. We aim to construct a new DNA repair-related gene signature that combines several genes to improve prognosis prediction in HCC. Methods We selected an HCC mRNA sequencing (mRNA-seq) dataset (n=365) from The Cancer Genome Atlas (TCGA), and gene set enrichment analysis (GSEA) was used to explore bioinformatics information and further screen genes. We then built a gene signature based on the Cox proportional hazards regression model. Results GSEA revealed that the hallmark DNA repair gene set was significantly upregulated in the tumor phenotype. A set of seven genes, namely, ADA, FEN1, POLR2G, SAC3D1, SEC61A1, SF3A3, and UPF3B, were significantly a
ssociated with overall survival (OS) and used to form a gene signature. The signature risk score was calculated and used to divide patients into high‐ and low‐risk groups. The high-risk group showed worse prognosis (log-rank test p<0.0001). Univariate and multivariate Cox regression analysis showed that the prognostic performance of this risk score signature was robust in different subgroups based on clinicopathological features, with p-values <0.05 (HR=2.38, 95% CI (confidence interval) =1.355–4.184), indicating that it can serve as an independent prognostic indicator. Conclusion We developed and identified a seven‐gene signature related to the DNA repair process that can predict survival in HCC. It can be used as an effective classification tool and to guide clinical treatment.
Collapse
Affiliation(s)
- Na Li
- Department of Central Laboratory, Shenyang Tenth People's Hospital, Shenyang Chest Hospital, Shenyang, Liaoning, People's Republic of China
| | - Lan Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Chunyan Guo
- Department of Pharmacy, Shenyang Tenth People's Hospital, Shenyang Chest Hospital, Shenyang, Liaoning, People's Republic of China
| | - Chang Liu
- Department of Thoracic Surgery, Shenyang Tenth People's Hospital, Shenyang Chest Hospital, Shenyang, Liaoning, People's Republic of China
| | - Yongyu Liu
- Department of Thoracic Surgery, Shenyang Tenth People's Hospital, Shenyang Chest Hospital, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
19
|
Liu W, Wu J, Yang F, Ma L, Ni C, Hou X, Wang L, Xu A, Song J, Deng Y, Xian L, Li Z, Wang S, Chen X, Yin J, Han X, Li C, Zhao J, Cao G. Genetic Polymorphisms Predisposing the Interleukin 6-Induced APOBEC3B-UNG Imbalance Increase HCC Risk via Promoting the Generation of APOBEC-Signature HBV Mutations. Clin Cancer Res 2019; 25:5525-5536. [PMID: 31152021 DOI: 10.1158/1078-0432.ccr-18-3083] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/04/2019] [Accepted: 05/29/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE APOBEC3-UNG imbalance contributes to hepatitis B virus (HBV) inhibition and somatic mutations. We aimed to explore the associations between hepatocellular carcinoma (HCC) risk and genetic polymorphisms predisposing the imbalance.Experimental Design: Genetic polymorphisms at APOBEC3 promoter and UNG enhancer regions were genotyped in 5,621 participants using quantitative PCR. HBV mutations (nt.1600-nt.1945, nt.2848-nt.155) were determined by Sanger sequencing. Dual-luciferase reporter assay was applied to detect the transcriptional activity. Effects of APOBEC3B/UNG SNPs and expression levels on HCC prognosis were evaluated with a cohort of 400 patients with HCC and public databases, respectively. RESULTS APOBEC3B rs2267401-G allele and UNG rs3890995-C allele significantly increased HCC risk. rs2267401-G allele was significantly associated with the generation of APOBEC-signature HBV mutation whose frequency consecutively increased from asymptomatic HBV carriers to patients with HCC. Multiplicative interaction of rs2267401-G allele with rs3890995-C allele increased HCC risk, with an adjusted OR (95% confidence interval) of 1.90 (1.34-2.81). rs2267401 T-to-G and rs3890995 T-to-C conferred increased activities of APOBEC3B promoter and UNG enhancer, respectively. IL6 significantly increased APOBEC3B promoter activity and inhibited UNG enhancer activity, and these effects were more evident in those carrying rs2267401-G and rs3890995-C, respectively. APOBEC3B rs2267401-GG genotype, higher APOBEC3B expression, and higher APOBEC3B/UNG expression ratio in HCCs indicated poor prognosis. APOBEC-signature somatic mutation predicts poor prognosis in HBV-free HCCs rather than in HBV-positive ones. CONCLUSIONS Polymorphic genotypes predisposing the APOBEC3B-UNG imbalance in IL6-presenting microenvironment promote HCC development, possibly via promoting the generation of high-risk HBV mutations. This can be transformed into specific prophylaxis of HBV-caused HCC.
Collapse
Affiliation(s)
- Wenbin Liu
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Jianfeng Wu
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Fan Yang
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Longteng Ma
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Chong Ni
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Xiaomei Hou
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Ling Wang
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Aijing Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Jiahui Song
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Yang Deng
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Linfeng Xian
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Zixiong Li
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Shuo Wang
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Xi Chen
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Jianhua Yin
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Xue Han
- Division of Chronic Diseases, Center for Disease Control and Prevention of Yangpu District, Shanghai, China
| | - Chengzhong Li
- Department of Infectious Diseases, The First Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Jun Zhao
- Department of Liver Cancer Surgery, The Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Guangwen Cao
- Department of Epidemiology, Second Military Medical University, Shanghai, China. .,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Shanghai, China.,Shanghai Key Laboratory of Hepatobiliary Tumor Biology, Shanghai, China
| |
Collapse
|
20
|
VoPham T. Environmental risk factors for liver cancer and nonalcoholic fatty liver disease. CURR EPIDEMIOL REP 2019; 6:50-66. [PMID: 31080703 DOI: 10.1007/s40471-019-0183-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Purpose of review The objective of this review was to summarize recent epidemiologic research examining the associations between environmental exposures and liver cancer and nonalcoholic fatty liver disease (NAFLD). Recent findings There were 28 liver cancer studies showing positive associations for exposures to aflatoxin, air pollution, polycyclic aromatic hydrocarbons, asbestos, chimney sweeping occupation, and paints; an inverse association for ultraviolet radiation; and null/inconsistent results for organic solvents, pesticides, perfluorooctanoic acid, nuclear radiation, iron foundry occupation, and brick kiln pollution. There were n=5 NAFLD studies showing positive associations for heavy metals, methyl tertiary-butyl ether, and selenium; and no association with trihalomethanes. Summary Evidence suggests that particular environmental exposures may be associated with liver cancer and NAFLD. Future liver cancer studies should examine specific histological subtypes and assess historical environmental exposures. Future NAFLD research should examine incident, biopsy-confirmed cases and the potential role of obesity and/or diabetes in studies of environmental factors and NAFLD.
Collapse
Affiliation(s)
- Trang VoPham
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
21
|
He X, Zhu X, Li L, Zhang J, Wu R, Zhang Y, Kang L, Yuan D, Jin T. The relationship between polymorphisms of XRCC5 genes with astrocytoma prognosis in the Han Chinese population. Oncotarget 2018; 7:85283-85290. [PMID: 27852033 PMCID: PMC5356736 DOI: 10.18632/oncotarget.13297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 10/26/2016] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Gliomas are highly malignant with a poor prognosis. Studies have reported that DNA repair genes influence risk for glioma, but its relationship with prognosis is unclear. In this study, we want to explore the relationship between DNA repair genes (XRCC3, XRCC4 and XRCC5) and prognosis of astrocytoma in the Chinese Han population. MATERIALS AND METHODS 160 astrocytoma cases were recruited in our study. Survival probabilities were estimated by using Kaplan-Meier analysis, and significant differences were analyzed by using the log-rank test. Cox proportional hazards models were used to analyze the associations between genotypes with astrocytoma survival. Hazard ratios (HR) and 95% confidence intervals (CI) were estimated using multivariable models. All tests were two-sided and p < 0.05 was considered to be significant. RESULTS The SNP (rs9288516) in XRCC5 (HR: 1.69, 95%CI: 1.04 - 2.77, p = 0.049), surgical approach (HR: 0.61, 95%CI: 0.43 - 0.88, p = 0.003) and chemotherapy (HR: 0.71, 95%CI: 0.50 - 0.99, p = 0.029) were associated with astrocytoma prognosis. Further, the "A/A" genotype of rs9288516 in XRCC5 (HR: 1.67, 95%CI: 1.02 - 2.72, p = 0.042) had significantly outcomes after adjusting for potential confounders, patients with poor tumor differentiation and the coexistence of the unfavorable genotypes. CONCLUSION These results suggest that polymorphisms of XRCC5 play an important role in astrocytoma prognosis in the Chinese Han population which could be used in the determination of astrocytoma prognosis in clinical researches.
Collapse
Affiliation(s)
- Xue He
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China.,Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China.,Key Laboratory of High Altitude Environment and Gene Related to Disease of Tibet Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
| | - Xikai Zhu
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China.,Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China.,Key Laboratory of High Altitude Environment and Gene Related to Disease of Tibet Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
| | - Lei Li
- Department of Thoracolumbar Spine Surgery, Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010000, China.,Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, China
| | - Jiayi Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Ruipeng Wu
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China.,Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China.,Key Laboratory of High Altitude Environment and Gene Related to Disease of Tibet Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
| | - Yuan Zhang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China.,Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China.,Key Laboratory of High Altitude Environment and Gene Related to Disease of Tibet Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
| | - Longli Kang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China.,Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China.,Key Laboratory of High Altitude Environment and Gene Related to Disease of Tibet Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
| | - Dongya Yuan
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China.,Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China.,Key Laboratory of High Altitude Environment and Gene Related to Disease of Tibet Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China
| | - Tianbo Jin
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China.,Key Laboratory for Basic Life Science Research of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China.,Key Laboratory of High Altitude Environment and Gene Related to Disease of Tibet Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang 712082, Shaanxi, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an 710069, China
| |
Collapse
|
22
|
Wang XZ, Huang XY, Yao JG, Wang C, Xia Q, Long XD. Genetic polymorphisms in ataxin-3 and liver cirrhosis risk related to aflatoxin B1. Oncotarget 2018; 9:27321-27332. [PMID: 29937988 PMCID: PMC6007954 DOI: 10.18632/oncotarget.24535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/07/2017] [Indexed: 01/17/2023] Open
Abstract
Background Altered expression of ataxin-3 (AT3) can modify DNA repair capacity and is observed in human diseases. The genetic polymorphisms of this gene in aflatoxin B1 (AFB1)–related liver cirrhosis (LC) have not yet been elucidated. Materials and Methods We conducted a hospital-based case–control study, including 384 patients with LC and 851 controls without any liver diseases, to assess the association between 264 polymorphisms in AT3 and AFB1-related LC risk. Genotype were tested using TaqMan-PCR or sequencing technique. Results We found three differentially distributed SNPs (rs8021276, rs7158733, and rs10146249) via the screening analysis; however, only rs8021276 polymorphism was further identified to modify the risk of LC. Compared with the homozygote of rs8021276 A alleles (rs8021276-AA), the genotypes of rs8021276 G alleles (rs8021276-AG or -GG) increased LC risk (OR: 2.48 and 6.98; 95% CI: 1.84–3.33 and 4.35–11.22, respectively). Significant interactive effects between risk genotypes and AFB1 exposure status were also observed in the joint effects analysis. Additionally, rs8021276 polymorphism was also associated with down-regulation of AT3 mRNA expression and increasing AFB1-DNA adducts in liver tissues with cirrhosis. Conclusions These results suggest AT3 polymorphisms may be risk biomarkers of AFB1-related LC, and rs8021276 is a potential candidate.
Collapse
Affiliation(s)
- Xing-Zhizi Wang
- Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Xiao-Ying Huang
- Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Jin-Guang Yao
- Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Chao Wang
- Department of Digestive Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Qiang Xia
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xi-Dai Long
- Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China.,Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Guangxi Clinic Research Center of Hepatobiliary Diseases, Baise 533000, China
| |
Collapse
|
23
|
Singh PK, Mistry KN, Chiramana H, Rank DN, Joshi CG. Exploring the deleterious SNPs in XRCC4 gene using computational approach and studying their association with breast cancer in the population of West India. Gene 2018; 655:13-19. [PMID: 29452234 DOI: 10.1016/j.gene.2018.02.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 12/21/2017] [Accepted: 02/12/2018] [Indexed: 01/24/2023]
Abstract
Non-homologous end joining (NHEJ) pathway has pivotal role in repair of double-strand DNA breaks that may lead to carcinogenesis. XRCC4 is one of the essential proteins of this pathway and single-nucleotide polymorphisms (SNPs) of this gene are reported to be associated with cancer risks. In our study, we first used computational approaches to predict the damaging variants of XRCC4 gene. Tools predicted rs79561451 (S110P) nsSNP as the most deleterious SNP. Along with this SNP, we analysed other two SNPs (rs3734091 and rs6869366) to study their association with breast cancer in population of West India. Variant rs3734091 was found to be significantly associated with breast cancer while rs6869366 variant did not show any association. These SNPs may influence the susceptibility of individuals to breast cancer in this population.
Collapse
Affiliation(s)
- Preety K Singh
- Ashok and Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Sciences (ARIBAS), New Vallabh Vidyanagar, Affiliated to Sardar Patel University, Anand, Gujarat 388121, India
| | - Kinnari N Mistry
- Ashok and Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Sciences (ARIBAS), New Vallabh Vidyanagar, Affiliated to Sardar Patel University, Anand, Gujarat 388121, India.
| | - Haritha Chiramana
- Manibhai Shivabhai Patel Cancer Centre, Shree Krishna Hospital, Karamsad, Anand, Gujarat, India
| | - Dharamshi N Rank
- Department of Animal Breeding and Genetics, Anand Agriculture University, Anand, Gujarat, India
| | - Chaitanya G Joshi
- Department of Animal Biotechnology, Anand Agriculture University, Anand, Gujarat, India
| |
Collapse
|
24
|
Prognostic significance of XRCC4 expression in hepatocellular carcinoma. Oncotarget 2017; 8:87955-87970. [PMID: 29152133 PMCID: PMC5675685 DOI: 10.18632/oncotarget.21360] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 08/29/2017] [Indexed: 12/26/2022] Open
Abstract
Background Our previous investigations have shown that the variants of X-ray repair complementing 4 (XRCC4) may be involved in hepatocellular carcinoma (hepatocarcinoma) tumorigenesis. This study aimed to investigate the possible prognostic significance of XRCC4 expression for hepatocarcinoma patients and possible value for the selection of transarterial chemoembolization (TACE) treatment. Materials and Methods We conducted a hospital-based retrospective analysis (including 421 hepatocarcinoma cases) to analyze the effects of XRCC4 on hepatocarcinoma prognosis and TACE. The levels of XRCC4 expression were tested using immunohistochemistry. The sensitivity of cancer cells to anti-cancer drug doxorubicin was evaluated using the half-maximal inhibitory concentration (IC50). Results XRCC4 expression was significantly correlated with pathological features including tumor stage, liver cirrhosis, and micro-vessel density. XRCC4 expression was an independent prognostic factor of hepatocarcinoma, and TACE treatments had no effects on prognosis of hepatocarcinoma patients with high XRCC4 expression. More intriguingly, TACE improved the prognosis of hepatocarcinoma patients with low XRCC4 expression. Functionally, XRCC4 overexpression increased while XRCC4 knockdown reduced the IC50 of cancer cells to doxorubicin. Conclusions These results suggest that XRCC4 may be an independent prognostic factor for hepatocarcinoma patients, and that decreasing XRCC4 expression may be beneficial for post-operative adjuvant TACE treatment in hepatocarcinoma.
Collapse
|
25
|
The Role of the Core Non-Homologous End Joining Factors in Carcinogenesis and Cancer. Cancers (Basel) 2017; 9:cancers9070081. [PMID: 28684677 PMCID: PMC5532617 DOI: 10.3390/cancers9070081] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 12/20/2022] Open
Abstract
DNA double-strand breaks (DSBs) are deleterious DNA lesions that if left unrepaired or are misrepaired, potentially result in chromosomal aberrations, known drivers of carcinogenesis. Pathways that direct the repair of DSBs are traditionally believed to be guardians of the genome as they protect cells from genomic instability. The prominent DSB repair pathway in human cells is the non-homologous end joining (NHEJ) pathway, which mediates template-independent re-ligation of the broken DNA molecule and is active in all phases of the cell cycle. Its role as a guardian of the genome is supported by the fact that defects in NHEJ lead to increased sensitivity to agents that induce DSBs and an increased frequency of chromosomal aberrations. Conversely, evidence from tumors and tumor cell lines has emerged that NHEJ also promotes chromosomal aberrations and genomic instability, particularly in cells that have a defect in one of the other DSB repair pathways. Collectively, the data present a conundrum: how can a single pathway both suppress and promote carcinogenesis? In this review, we will examine NHEJ's role as both a guardian and a disruptor of the genome and explain how underlying genetic context not only dictates whether NHEJ promotes or suppresses carcinogenesis, but also how it alters the response of tumors to conventional therapeutics.
Collapse
|
26
|
Cohen MM, Elliott F, Oates L, Schembri A, Mantri N. Do Wellness Tourists Get Well? An Observational Study of Multiple Dimensions of Health and Well-Being After a Week-Long Retreat. J Altern Complement Med 2017; 23:140-148. [PMID: 28068147 PMCID: PMC5312624 DOI: 10.1089/acm.2016.0268] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022] Open
Abstract
Background: Wellness retreats use many complementary and alternative therapies within a holistic residential setting, yet few studies have evaluated the effect of retreat experiences on multiple dimensions of health and well-being, and no published studies have reported health outcomes in wellness tourists. Objectives: To assess the effect of a week-long wellness-retreat experience in wellness tourists. Design: A longitudinal observational study with outcomes assessed upon arrival and departure and 6 weeks after the retreat. Setting: A rural health retreat in Queensland, Australia. Interventions: A holistic, 1-week, residential, retreat experience that included many educational, therapeutic, and leisure activities and an organic, mostly plant-based diet. Outcome measures: Multiple outcome measures were performed upon arrival and departure and 6 weeks after the retreat. These included anthropometric measures, urinary pesticide metabolites, a food and health symptom questionnaire, the Five Factor Wellness Inventory, the General Self Efficacy questionnaire, the Pittsburgh Insomnia Rating Scale, the Depression Anxiety Stress Scale, the Profile of Mood States, and the Cogstate cognitive function test battery. Results: Statistically significant improvements (p < 0.05) were seen in almost all measures (n = 37) after 1 week and were sustained at 6 weeks (n = 17). There were statistically significant improvements (p < 0.001) in all anthropometric measures after 1 week, with reductions in abdominal girth (2.7 cm), weight (1.6 kg), and average systolic and diastolic pressure (−16.1 mmHg and −9.3 mmHg, respectively). Statistically significant improvements (p < 0.05) were also seen in psychological and health symptom measures. Urinary pesticide metabolites were detected in pooled urine samples before the retreat and were undetectable after the retreat. Conclusion: Retreat experiences can lead to substantial improvements in multiple dimensions of health and well-being that are maintained for 6 weeks. Further research that includes objective biomarkers and economic measures in different populations is required to determine the mechanisms of these effects and assess the value and relevance of retreat experiences to clinicians and health insurers.
Collapse
Affiliation(s)
- Marc M Cohen
- 1 School of Health and Biomedical Sciences, RMIT University , Bundoora, Victoria, Australia
| | - Fiona Elliott
- 1 School of Health and Biomedical Sciences, RMIT University , Bundoora, Victoria, Australia
| | - Liza Oates
- 1 School of Health and Biomedical Sciences, RMIT University , Bundoora, Victoria, Australia
| | - Adrian Schembri
- 1 School of Health and Biomedical Sciences, RMIT University , Bundoora, Victoria, Australia .,2 Cogstate Limited , Melbourne, Victoria, Australia
| | - Nitin Mantri
- 3 School of Science, RMIT University , Bundoora, Victoria, Australia
| |
Collapse
|
27
|
Lu YL, Yao JG, Huang XY, Wang C, Wu XM, Xia Q, Long XD. Prognostic significance of miR-1268a expression and its beneficial effects for post-operative adjuvant transarterial chemoembolization in hepatocellular carcinoma. Sci Rep 2016; 6:36104. [PMID: 27796321 PMCID: PMC5086876 DOI: 10.1038/srep36104] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/10/2016] [Indexed: 02/07/2023] Open
Abstract
Our recent investigation has shown that the variables of microRNA-1268a may involve in hepatocellular carcinoma (HCC) tumorigenesis. Here, we attempted to identify the prognostic significance of microRNA-1268a expression in tumor tissues by a retrospective analysis in 411 patients with HCC, and analyze its effects on post-operative adjuvant transarterial chemoembolization (TACE) improving HCC prognosis. All cases received tumor resection or tumor resection plus post-operative adjuvant TACE as an initial treatment. Logistical regression analysis exhibited that microRNA-1268a expression was significantly correlated with tumor stage, tumor grade, tumor size, and microvessel density. Cox regression analysis showed that microRNA-1268a expression was an independent prognostic factor for HCC, and TACE treatment had no effects on prognosis of HCC patients with high microRNA-1268a expression. More intriguingly, TACE improved the prognosis of HCC patients with low microRNA-1268a expression. Functionally, overexpression of microRNA-1268a inhibited while its inhibitor enhanced doxorubicin-induced the death of cancer cells. These results suggest that microRNA-1268a may be an independent prognostic factor for HCC patients, and that decreasing microRNA-1268a expression may be beneficial for post-operative adjuvant TACE treatment in HCC.
Collapse
Affiliation(s)
- Yun-Long Lu
- Department of Pathology, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, P.R.China
| | - Jin-Guang Yao
- Department of Pathology, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, P.R.China
| | - Xiao-Ying Huang
- Department of Pathology, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, P.R.China
| | - Chao Wang
- Department of Medicine, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, P.R.China
| | - Xue-Min Wu
- Department of Pathology, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, P.R.China
| | - Qiang Xia
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R.China
| | - Xi-Dai Long
- Department of Pathology, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, P.R.China.,Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R.China
| |
Collapse
|
28
|
Oussalah A, Avogbe PH, Guyot E, Chery C, Guéant-Rodriguez RM, Ganne-Carrié N, Cobat A, Moradpour D, Nalpas B, Negro F, Poynard T, Pol S, Bochud PY, Abel L, Jeulin H, Schvoerer E, Chabi N, Amouzou E, Sanni A, Barraud H, Rouyer P, Josse T, Goffinet L, Jouve JL, Minello A, Bonithon-Kopp C, Thiefin G, Di Martino V, Doffoël M, Richou C, Raab JJ, Hillon P, Bronowicki JP, Guéant JL. BRIP1 coding variants are associated with a high risk of hepatocellular carcinoma occurrence in patients with HCV- or HBV-related liver disease. Oncotarget 2016; 8:62842-62857. [PMID: 28968953 PMCID: PMC5609885 DOI: 10.18632/oncotarget.11327] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/19/2016] [Indexed: 12/21/2022] Open
Abstract
The molecular mechanisms of hepatocellular carcinoma (HCC) carcinogenesis are still not fully understood. DNA repair defects may influence HCC risk. The aim of the study was to look for potential genetic variants of DNA repair genes associated with HCC risk among patients with alcohol- or viral-induced liver disease. We performed four case-control studies on 2,006 European- (Derivation#1 and #2 studies) and African-ancestry (Validation#1 and #2 studies) patients originating from several cohorts in order to assess the association between genetic variants on DNA repair genes and HCC risk using a custom array encompassing 94 genes. In the Derivation#1 study, the BRIP1 locus reached array-wide significance (Chi-squared SV-Perm, P=5.00×10-4) among the 253 haplotype blocks tested for their association with HCC risk, in patients with viral cirrhosis but not among those with alcoholic cirrhosis. The BRIP1 haplotype block included three exonic variants (rs4986763, rs4986764, rs4986765). The BRIP1 'AAA' haplotype was significantly associated with an increased HCC risk [odds ratio (OR), 2.01 (1.19-3.39); false discovery rate (FDR)-P=1.31×10-2]. In the Derivation#2 study, results were confirmed for the BRIP1 'GGG' haplotype [OR, 0.53 (0.36-0.79); FDR-P=3.90×10-3]. In both Validation#1 and #2 studies, BRIP1 'AAA' haplotype was significantly associated with an increased risk of HCC [OR, 1.71 (1.09-2.68); FDR-P=7.30×10-2; and OR, 6.45 (4.17-9.99); FDR-P=2.33×10-19, respectively]. Association between the BRIP1 locus and HCC risk suggests that impaired DNA mismatch repair might play a role in liver carcinogenesis, among patients with HCV- or HBV-related liver disease.
Collapse
Affiliation(s)
- Abderrahim Oussalah
- INSERM, U954, NGERE - Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France.,Department of Molecular Medicine and Personalized Therapeutics, Department of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, Vandoeuvre-lès-Nancy, France
| | - Patrice Hodonou Avogbe
- INSERM, U954, NGERE - Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | - Erwan Guyot
- Biochemistry Unit, Jean Verdier Hospital, APHP, Bondy, France and University Paris 13-UFR SMBH/INSERM, Bobigny, France
| | - Céline Chery
- INSERM, U954, NGERE - Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France.,Department of Molecular Medicine and Personalized Therapeutics, Department of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, Vandoeuvre-lès-Nancy, France
| | - Rosa-Maria Guéant-Rodriguez
- INSERM, U954, NGERE - Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France.,Department of Molecular Medicine and Personalized Therapeutics, Department of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, Vandoeuvre-lès-Nancy, France
| | - Nathalie Ganne-Carrié
- Liver Unit and Liver biobank CRB des Hôpitaux Universitaires Paris-Seine-Saint-Denis BB-0033-00027, Jean Verdier Hospital, APHP, Bondy, France.,INSERM, U1162, Génomique fonctionnelle des Tumeurs solides, Paris, France
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | - Darius Moradpour
- Division of Gastroenterology and Hepatology, University Hospital and University of Lausanne, Switzerland
| | - Bertrand Nalpas
- Département d'Hépatologie, Hôpital Cochin (AP-HP), Université Paris Descartes, Paris, France
| | - Francesco Negro
- Division of Clinical Pathology and Division of Gastroenterology and Hepatology, University Hospitals, Geneva, Switzerland
| | - Thierry Poynard
- Université Pierre et Marie Curie, Service d'Hépato-gastroentérologie, Hôpital Pitié-Salpêtrière (AP-HP), Paris, France
| | - Stanislas Pol
- Département d'Hépatologie, Hôpital Cochin (AP-HP), Université Paris Descartes, Paris, France.,INSERM UMS20, Institut Pasteur, Paris, France
| | - Pierre-Yves Bochud
- Infectious Diseases Service, Department of Medicine, University Hospital and University of Lausanne, Switzerland
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, NY, USA
| | - Hélène Jeulin
- Virology Laboratory, Centre Hospitalier Universitaire de Nancy, Vandoeuvre-lès-Nancy, France
| | - Evelyne Schvoerer
- Virology Laboratory, Centre Hospitalier Universitaire de Nancy, Vandoeuvre-lès-Nancy, France
| | - Nicodème Chabi
- Laboratory of Biochemistry and Molecular Biology, University of Cotonou, Cotonou, Benin
| | - Emile Amouzou
- Laboratory of Biochemistry and Nutrition, Lomé, University of Kara, Togo
| | - Ambaliou Sanni
- Laboratory of Biochemistry and Molecular Biology, University of Cotonou, Cotonou, Benin
| | - Hélène Barraud
- Department of Hepato-Gastroenterology, University Hospital of Nancy, Vandoeuvre-lès-Nancy, France
| | - Pierre Rouyer
- INSERM, U954, NGERE - Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | - Thomas Josse
- Department of Molecular Medicine and Personalized Therapeutics, Department of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, Vandoeuvre-lès-Nancy, France
| | - Laetitia Goffinet
- INSERM, U954, NGERE - Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | - Jean-Louis Jouve
- INSERM, U866 and INSERM, CIE 01, University Hospital of Dijon, University of Burgundy, Dijon, France
| | - Anne Minello
- INSERM, U866 and INSERM, CIE 01, University Hospital of Dijon, University of Burgundy, Dijon, France
| | - Claire Bonithon-Kopp
- INSERM, U866 and INSERM, CIE 01, University Hospital of Dijon, University of Burgundy, Dijon, France
| | - Gérard Thiefin
- Department of Hepato-Gastroenterology, Reims University Hospital, Reims, France
| | - Vincent Di Martino
- Department of Hepatology, University Hospital of Besançon, Besançon, France
| | - Michel Doffoël
- Department of Hepato-Gastroenterology, University Hospital of Strasbourg, Strasbourg, France
| | - Carine Richou
- Department of Hepatology, University Hospital of Besançon, Besançon, France
| | | | - Patrick Hillon
- INSERM, U866 and INSERM, CIE 01, University Hospital of Dijon, University of Burgundy, Dijon, France
| | - Jean-Pierre Bronowicki
- INSERM, U954, NGERE - Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France.,Department of Hepato-Gastroenterology, University Hospital of Nancy, Vandoeuvre-lès-Nancy, France
| | - Jean-Louis Guéant
- INSERM, U954, NGERE - Nutrition, Genetics, and Environmental Risk Exposure, Faculty of Medicine of Nancy, University of Lorraine, Vandoeuvre-lès-Nancy, France.,Department of Molecular Medicine and Personalized Therapeutics, Department of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, Vandoeuvre-lès-Nancy, France
| | | |
Collapse
|
29
|
Huang XY, Yao JG, Huang BC, Ma Y, Xia Q, Long XD. Polymorphisms of a Disintegrin and Metalloproteinase with Thrombospondin Motifs 5 and Aflatoxin B1–Related Hepatocellular Carcinoma. Cancer Epidemiol Biomarkers Prev 2015; 25:334-43. [PMID: 26677209 DOI: 10.1158/1055-9965.epi-15-0774] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/30/2015] [Indexed: 11/16/2022] Open
Affiliation(s)
- Xiao-Ying Huang
- Department of Pathology, The Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, China
| | - Jin-Guang Yao
- Department of Pathology, The Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, China
| | - Bing-Chen Huang
- Department of Pathology, The Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, China
| | - Yun Ma
- Department of Pathology, The Affiliated Tumor Hospital, Guangxi Medical University, Nanning, China
| | - Qiang Xia
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xi-Dai Long
- Department of Pathology, The Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, China. Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
30
|
Chen J, Wu L, Wang Y, Yin J, Li X, Wang Z, Li H, Zou T, Qian C, Li C, Zhang W, Zhou H, Liu Z. Effect of transporter and DNA repair gene polymorphisms to lung cancer chemotherapy toxicity. Tumour Biol 2015; 37:2275-84. [PMID: 26358256 DOI: 10.1007/s13277-015-4048-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/02/2015] [Indexed: 11/26/2022] Open
Abstract
Lung cancer is the first leading cause of cancer deaths. Chemotherapy toxicity is one of factors that limited the efficacy of platinum-based chemotherapy in lung cancer patients. Transporters and DNA repair genes play critical roles in occurrence of platinum-based chemotherapy toxicity. To investigate the relationships between transporter and DNA repair gene polymorphisms and platinum-based chemotherapy toxicity in lung cancer patients, we selected 60 polymorphisms in 14 transporters and DNA repair genes. The polymorphisms were genotyped in 317 lung cancer patients by Sequenom MassARRAY. Logistic regression was performed to estimate the association of toxicity outcome with the polymorphisms by PLINK. Our results showed that polymorphisms of SLC2A1 (rs3738514, rs4658, rs841844) were significantly related to overall toxicity. XRCC5 (rs1051685, rs6941) and AQP2 (10875989, rs3759125) polymorphisms were associated with hematologic toxicity. AQP2 polymorphisms (rs461872, rs7305534) were correlated with gastrointestinal toxicity. In conclusion, genotypes of these genes may be used to predict the platinum-based chemotherapy toxicity in lung cancer patients.
Collapse
Affiliation(s)
- Juan Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China
- Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, People's Republic of China
| | - Lin Wu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410014, People's Republic of China
| | - Ying Wang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410014, People's Republic of China
| | - Jiye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China
- Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, People's Republic of China
| | - Xiangping Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China
| | - Zhan Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Huihua Li
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Ting Zou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China
| | - Chenyue Qian
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China
| | - Chuntian Li
- Department of Radiotherapy, PLA 463 Hospital, Shenyang, 110042, People's Republic of China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China
- Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, People's Republic of China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China
- Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, People's Republic of China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China.
- Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, People's Republic of China.
| |
Collapse
|
31
|
Long XD, Huang XY, Yao JG, Liao P, Tang YJ, Ma Y, Xia Q. Polymorphisms in the precursor microRNAs and aflatoxin B1-related hepatocellular carcinoma. Mol Carcinog 2015; 55:1060-72. [PMID: 26152337 DOI: 10.1002/mc.22350] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 04/19/2015] [Accepted: 05/28/2015] [Indexed: 12/22/2022]
Abstract
The altered expression of some microRNAs (miRNAs) is observed in hepatocellular carcinoma (HCC); however, the genetic polymorphisms in the precursor miRNAs (pre-miRNAs) in aflatoxin B1 (AFB1)-related HCC have not yet been investigated. A hospital-based case-control study, including 1,706 HCC cases and 2,270 controls without any liver diseases or tumors, was conducted in a high AFB1 exposure area of China to assess the relationship between 48 polymorphisms in the pre-miRNAs and AFB1-related HCC risk and prognosis. Among 48 polymorphisms, only rs28599926 (in the miRNA 1268a) affected HCC risk. Compared with the homozygote of rs28599926C alleles (rs28599926-CC), the genotypes of rs28599926 T alleles (namely rs28599926-CT or -TT) increased HCC risk (odds ratio [OR]: 1.63 and 5.52, 95% confidence interval [CI]: 1.40-1.90 and 4.27-7.14, respectively). Significant interactive effects between risk genotypes and AFB1 exposure status were also observed in the joint effects analysis. This polymorphism was associated not only with larger tumor size, higher portal vein tumor risk, and tumor dedifferentiation, but also with higher AFB1 adducts levels and increasing the mutation risk of TP53 gene. Furthermore, rs28599926 modified the tumor recurrence-free survival (hazard ratio [HR]: 2.86, 95% CI: 2.36-3.43) and overall survival (HR: 2.12, 95% CI: 1.86-2.41) of cases. Additionally, one target of miR-1268a was show to be the ADAMTS4 mRNA and rs28599926 polymorphism might modify ADAMTS4 expression. These findings indicate that polymorphisms in the pre-miRNAs may be risk and prognostic biomarkers of AFB1-related HCC, and rs28599926 in miR-1268a is such a potential candidate. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xi-Dai Long
- Department of Pathology, The Affiliated Hospital of Youjiang Medical College for Nationalities (AHYMCN), Baise, China.,Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Ying Huang
- Department of Pathology, The Affiliated Hospital of Youjiang Medical College for Nationalities (AHYMCN), Baise, China
| | - Jin-Guang Yao
- Department of Pathology, The Affiliated Hospital of Youjiang Medical College for Nationalities (AHYMCN), Baise, China
| | - Pinhu Liao
- Department of Medicine, The Affiliated Hospital of Youjiang Medical College for Nationalities (AHYMCN), Baise, China
| | - Yu-Jin Tang
- Department of Surgery, The Affiliated Hospital of Youjiang Medical College for Nationalities (AHYMCN), Baise, China
| | - Yun Ma
- Department of Pathology, The Affiliated Tumor Hospital, Guangxi Medical University, Nanning, China
| | - Qiang Xia
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
32
|
Zhao D, Long XD, Lu TF, Wang T, Zhang WW, Liu YX, Cui XL, Dai HJ, Xue F, Xia Q. Metformin decreases IL-22 secretion to suppress tumor growth in an orthotopic mouse model of hepatocellular carcinoma. Int J Cancer 2015; 136:2556-65. [PMID: 25370454 DOI: 10.1002/ijc.29305] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 10/21/2014] [Indexed: 12/17/2022]
Abstract
Epidemiological, preclinical and cellular studies in the last 5 years have shown that metformin exerts anti-tumoral properties, but its mode of action in cancer remains unclear. Here, we investigated the effects of metformin on a mouse hepatocellular carcinoma (HCC) model and tumor-associated T cell immune responses. Oral metformin administration led to a significant reduction of tumor growth, which was accompanied by decreased interleukin-22 (IL-22). Meanwhile, IL-22-induced STAT3 phosphorylation and upregulation of downstream genes Bcl-2 and cyclin D1 were inhibited by metformin. At the cellular level, metformin attenuated Th1- and Th17-derived IL-22 production. Furthermore, metformin inhibited de novo generation of Th1 and Th17 cells from naive CD4(+) cells. These observations were further supported by the fact that metformin treatment inhibited CD3/CD28-induced IFN-γ and IL-17A expression along with the transcription factors that drive their expression (T-bet [Th1] and ROR-γt [Th17], respectively). The effects of metformin on T cell differentiation were mediated by downregulated STAT3 and STAT4 phosphorylation via the AMP-activated kinase-mammalian target of rapamycin complex 1 pathway. Notably, metformin led to a reduction in glucose transporter Glut1 expression, resulting in less glucose uptake, which is critical to regulate CD4(+) T cell fate. Taken together, these findings provide evidence for the growth-inhibitory and immune-modulatory effects of metformin in HCC and thus, broaden our understanding about the action of metformin in liver cancer treatment.
Collapse
Affiliation(s)
- Dong Zhao
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Li K, Zhong C, Wang J, Wang B, He J, Bi J. Association of androgen receptor exon 1 CAG repeat length with risk of hepatocellular carcinoma: a case–control study. Tumour Biol 2014; 35:12519-23. [PMID: 25217983 DOI: 10.1007/s13277-014-2570-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 08/28/2014] [Indexed: 11/30/2022] Open
|
34
|
Zhang H, Liu C, Han YC, Ma Z, Zhang H, Ma Y, Liu X. Genetic variations in the one-carbon metabolism pathway genes and susceptibility to hepatocellular carcinoma risk: a case-control study. Tumour Biol 2014; 36:997-1002. [PMID: 25318605 DOI: 10.1007/s13277-014-2725-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 10/07/2014] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth common cancer and the third common cause of cancer mortality worldwide. However, the exact molecular mechanism of HCC remains uncertain. Many enzymes are involved in one-carbon metabolism (OCM), and single nucleotide polymorphisms (SNPs) in the corresponding genes may play a role in liver carcinogenesis. In this study, we enrolled 1500 HCC patients and 1500 cancer-free controls, which were frequency-matched by age, gender, and HBV infection status. Then eight SNPs from seven OCM genes (MTHFR, MTR, MTRR, FTHFD, GART, SHMT, and CBS) were evaluated. Results showed that six SNPs (MTHFR rs1801133, MTRR rs2287780, MTRR rs10380, FTHFD rs1127717, GART rs8971, and SHMT rs1979277) were significantly associated with HCC risk in Chinese population, with P values range from 2.26 × 10(-4) to 0.035). The most significant association was detected for GART rs8971. Compared with individuals with the TT genotype, the age- and sex-adjusted odds ratio (OR) for developing HCC was 1.44 (95% confidence interval (CI): 1.03-2.02) among those with the CC genotype and 1.30 (95% CI: 1.10-1.53) for those with CT genotype. Under the log-additive model, each additional copy of minor allele C was associated with a 1.28-fold increased risk of HCC (OR = 1.28, 95% CI: 1.12-1.45). These findings indicated that genetic variants in OCM genes might contribute to HCC susceptibility.
Collapse
Affiliation(s)
- Heng Zhang
- China Medical University, Shenyang, China
| | | | | | | | | | | | | |
Collapse
|
35
|
Zhao X, Pan G, Yuan Q, Mu D, Zhang J, Cui T, Zhang J, Zhang L. Genetic variations of CAV1 gene contribute to HCC risk: a case-control study. Tumour Biol 2014; 35:11289-93. [PMID: 25117072 DOI: 10.1007/s13277-014-2428-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 07/31/2014] [Indexed: 11/28/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth common cancer and the third common cause of cancer mortality worldwide. However, the exact molecular mechanism of HCC remains uncertain. Caveolin-1 (CAV1) is the main protein in the caveolin family and plays an important role in tumorigenesis signaling. However, the contribution of CAV1 genetic variants to HCC is still unknown. The purpose of this study was to evaluate the association between the tagSNPs of the CAV1 gene and HCC risk. In this case-control study, we enrolled 1,000 HCC patients and 1,000 cancer-free controls, which were frequency-matched by age, gender, and HBV infection status. We found that CAV1 rs729949 was statistically associated with increased risk of HCC (odds ratio (OR) = 1.28; 95% confidence interval (CI), 1.11-1.48; P = 8.53 × 10(-4)), even after Bonferroni correction (P = 5.97 × 10(-3)); the expression levels of CAV1 in cancer tissues were significantly lower than those in adjacent normal tissues (P = 0.012). We also detected a significant association for CAV1 rs3807989 under the log-additive model (OR = 0.85; 95% CI, 0.74-0.98; P = 0.026). Significant associations were also detected for CAV1 rs6466583 (GG vs AA: OR = 2.53; 95% CI, 1.24-5.17; P = 0.011) and CAV1 rs3807986 (AG vs AA: OR = 3.16; 95% CI, 1.68-5.91; P = 3.36 × 10(-4)) among genotype comparisons. These findings indicated that genetic variants n CAV1 might contribute to HCC susceptibility.
Collapse
Affiliation(s)
- Xixue Zhao
- Shengli Oilfield Central Hospital, Jinan Road No.31, Dongying, Shandong, 257034, China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Rho GTPase-activating protein 35 rs1052667 polymorphism and osteosarcoma risk and prognosis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:396947. [PMID: 25136583 PMCID: PMC4124850 DOI: 10.1155/2014/396947] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 05/30/2014] [Accepted: 06/30/2014] [Indexed: 12/20/2022]
Abstract
The Rho GTPase-activating protein 35 (ARHGAP35), an important Rho family GTPase-activating protein, may be associated with tumorigenesis of some tumors. Here, we investigated the relationship between an important polymorphic variant at 3′-UTR of this gene (rs1052667) and osteosarcoma risk and prognosis. This hospital-based case-control study, including 247 osteosarcoma patients and 428 age-, sex-, and race-matched healthy controls, was conducted in Guangxi population. Genotypes were tested using TaqMan PCR technique. We found a significant difference in the frequency of rs1052667 genotypes between cases and controls. Compared with the homozygote of rs1052667 C alleles (rs1052667-CC), the genotypes with rs1052667 T alleles (namely, rs1052667-CT or -TT) increased osteosarcoma risk (odds ratios: 2.41 and 7.35, resp.). Moreover, rs1052667 polymorphism was correlated with such pathological features of osteosarcoma as tumor size, tumor grade, and tumor metastasis. Additionally, this polymorphism also modified the overall survival and recurrence-free survival of osteosarcoma cases. Like tumor grade, ARHGAP35 rs1052667 polymorphism was an independent prognostic factor influencing the survival of osteosarcoma. These results suggest that ARHGAP35 rs1052667 polymorphism may be associated with osteosarcoma risk and prognosis.
Collapse
|
37
|
MicroRNA-24 modulates aflatoxin B1-related hepatocellular carcinoma prognosis and tumorigenesis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:482926. [PMID: 24800232 PMCID: PMC3997078 DOI: 10.1155/2014/482926] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/13/2014] [Accepted: 03/16/2014] [Indexed: 12/12/2022]
Abstract
MicroRNA-24 (miR-24) may be involved in neoplastic process; however, the role of this microRNA in the hepatocellular carcinoma (HCC) related to aflatoxin B1 (AFB1) has not been well elaborated. Here, we tested miR-24 expression in 207 pathology-diagnosed HCC cases from high AFB1 exposure areas and HCC cells. We found that miR-24 was upregulated in HCC tumor tissues relative to adjacent noncancerous tissue samples, and that the high expression of miR-24 was significantly correlated with larger tumor size, higher microvessel density, and tumor dedifferentiation. Additionally, this microRNA overexpression modified the recurrence-free survival (relative hazard ratio [HR], 4.75; 95% confidence interval [CI], 2.66-8.47) and overall survival (HR = 3.58, 95% CI = 2.34-5.46) of HCC patients. Furthermore, we observed some evidence of joint effects between miR-24 and AFB1 exposure on HCC prognosis. Functionally, miR-24 overexpression progressed tumor cells proliferation, inhibited cell apoptosis, and developed the formation of AFB1-DNA adducts. These results indicate for the first time that miR-24 may modify AFB1-related HCC prognosis and tumorigenesis.
Collapse
|
38
|
DNA repair gene XRCC4 codon 247 polymorphism modified diffusely infiltrating astrocytoma risk and prognosis. Int J Mol Sci 2013; 15:250-60. [PMID: 24378850 PMCID: PMC3907808 DOI: 10.3390/ijms15010250] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/01/2013] [Accepted: 12/23/2013] [Indexed: 12/12/2022] Open
Abstract
The DNA repair gene X-ray cross-complementary group 4 (XRCC4), an important caretaker of the overall genome stability, is thought to play a major role in human tumorigenesis. We investigated the association between an important polymorphic variant of this gene at codon 247 (rs373409) and diffusely infiltrating astrocytoma (DIA) risk and prognosis. This hospital-based case-control study investigated this association in the Guangxi population. In total, 242 cases with DIA and 358 age-, sex-, and race-matched healthy controls were genotyped using TaqMan-PCR technique. We found a significant difference in the frequency of XRCC4 genotypes between cases and controls. Compared with the homozygote of XRCC4 codon 247 Ala alleles (XRCC4-AA), the genotypes of XRCC4 codon 247 Ser alleles (namely XRCC4-AS or -SS) increased DIA risk (odds ratios [OR], 1.82 and 2.89, respectively). Furthermore, XRCC4 polymorphism was correlated with tumor dedifferentiation of DIA (r = 0.261, p < 0.01). Additionally, this polymorphism modified the overall survival of DIA patients (the median survival times were 26, 14, and 8 months for patients with XRCC4-AA, -AS, and -SS, respectively). Like tumor grade, XRCC4 codon 247 polymorphism was an independent prognostic factor influencing the survival of DIA. These results suggest that XRCC4 codon 247 polymorphism may be associated with DIA risk and prognosis among the Guangxi population.
Collapse
|
39
|
XRCC7 rs#7003908 Polymorphism and Helicobacter pylori Infection-Related Gastric Antrum Adenocarcinoma. Int J Genomics 2013; 2013:124612. [PMID: 24319674 PMCID: PMC3844259 DOI: 10.1155/2013/124612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 09/29/2013] [Indexed: 02/06/2023] Open
Abstract
The X-ray repair cross-complementing group 7 (XRCC7) plays a key role in DNA repair that protects against genetic instability and carcinogenesis. To determine whether XRCC7 rs#7003908 polymorphism (XRCC7P) is associated with Helicobacter pylori (H. pylori) infection-related gastric antrum adenocarcinoma (GAA) risk, we conducted a hospital-based case-control study, including 642 patients with pathologically confirmed GAA and 927 individually matched controls without any evidence of tumours or precancerous lesions, among Guangxi population. Increased risks of GAA were observed for individuals with cagA positive (odds ratio (OR) 6.38; 95% confidence interval (CI) 5.03–8.09). We also found that these individuals with the genotypes of XRCC7 rs#7003908 G alleles (XRCC7-TG or -GG) featured increasing risk of GAA (ORs 2.80 and 5.13, resp.), compared with the homozygote of XRCC7 rs#7003908 T alleles (XRCC7-TT). GAA risk, moreover, did appear to differ more significantly among individuals featuring cagA-positive status, whose adjusted ORs (95% CIs) were 15.74 (10.89–22.77) for XRCC7-TG and 38.49 (22.82–64.93) for XRCC7-GG, respectively. Additionally, this polymorphism multiplicatively interacted with XRCC3 codon 241 polymorphism with respect to HCC risk (ORinteraction = 1.49). These results suggest that XRCC7P may be associated with the risk of Guangxiese GAA related to cagA.
Collapse
|
40
|
MicroRNA-429 Modulates Hepatocellular Carcinoma Prognosis and Tumorigenesis. Gastroenterol Res Pract 2013; 2013:804128. [PMID: 24204382 PMCID: PMC3800573 DOI: 10.1155/2013/804128] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 08/20/2013] [Indexed: 12/31/2022] Open
Abstract
MicroRNA-429 (miR-429) may modify the development and progression of cancers; however, the role of this microRNA in the hepatocellular carcinoma (HCC) has not been well elaborated. Here, we tested miR-429 expression in 138 pathology-diagnosed HCC cases and SMMC-7721 cells. We found that miR-429 was upregulated in HCC tumor tissues and that the high expression of miR-429 was significantly correlated with larger tumor size (odd ratio (OR), 2.70; 95% confidence interval (CI), 1.28–5.56) and higher aflatoxin B1-DNA adducts (OR = 3.13, 95% CI = 1.47–6.67). Furthermore, this microRNA overexpression modified the recurrence-free survival and overall survival of HCC patients. Functionally, miR-429 overexpression progressed tumor cells proliferation and inhibited cell apoptosis. These results indicate for the first time that miR-429 may modify HCC prognosis and tumorigenesis and may be a potential tumor therapeutic target.
Collapse
|
41
|
Elshimali YI, Khaddour H, Sarkissyan M, Wu Y, Vadgama JV. The clinical utilization of circulating cell free DNA (CCFDNA) in blood of cancer patients. Int J Mol Sci 2013; 14:18925-58. [PMID: 24065096 PMCID: PMC3794814 DOI: 10.3390/ijms140918925] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/26/2013] [Accepted: 08/30/2013] [Indexed: 02/06/2023] Open
Abstract
Qualitative and quantitative testing of circulating cell free DNA (CCFDNA) can be applied for the management of malignant and benign neoplasms. Detecting circulating DNA in cancer patients may help develop a DNA profile for early stage diagnosis in malignancies. The technical issues of obtaining, using, and analyzing CCFDNA from blood will be discussed.
Collapse
Affiliation(s)
- Yahya I. Elshimali
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, 1720 East 120th Street, Los Angeles, CA 90059, USA; E-Mails: (M.S.); (Y.W.); (J.V.V.)
- Author to whom correspondence should be addressed; E-Mail: or ; Tel.: +1-818-515-7618; Fax: +1-818-994-9875
| | - Husseina Khaddour
- Laboratory Diagnostic Medicine, Faculty of Pharmacy, Mazzeh (17th April Street), Damascus University, Damascus, Syria; E-Mail:
| | - Marianna Sarkissyan
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, 1720 East 120th Street, Los Angeles, CA 90059, USA; E-Mails: (M.S.); (Y.W.); (J.V.V.)
| | - Yanyuan Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, 1720 East 120th Street, Los Angeles, CA 90059, USA; E-Mails: (M.S.); (Y.W.); (J.V.V.)
- David Geffen School of Medicine at UCLA, UCLA’s Jonsson Comprehensive Cancer Center, 8-684 Factor Building, Box 951781, Los Angeles, CA 90095-1781, USA
| | - Jaydutt V. Vadgama
- Division of Cancer Research and Training, Department of Internal Medicine, Charles Drew University of Medicine and Science, 1720 East 120th Street, Los Angeles, CA 90059, USA; E-Mails: (M.S.); (Y.W.); (J.V.V.)
- David Geffen School of Medicine at UCLA, UCLA’s Jonsson Comprehensive Cancer Center, 8-684 Factor Building, Box 951781, Los Angeles, CA 90095-1781, USA
| |
Collapse
|