1
|
Yuan L, Madaniyazi L, Vicedo-Cabrera AM, Ng CFS, Oka K, Chua PL, Ueda K, Tobias A, Honda Y, Hashizume M. Non-optimal temperature-attributable mortality and morbidity burden by cause, age and sex under climate and population change scenarios: a nationwide modelling study in Japan. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2024; 52:101214. [PMID: 39444715 PMCID: PMC11497367 DOI: 10.1016/j.lanwpc.2024.101214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/08/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024]
Abstract
Background Future temperature effects on mortality and morbidity may differ. However, studies comparing projected future temperature-attributable mortality and morbidity in the same setting are limited. Moreover, these studies did not consider future population change, human adaptation, and the variations in subpopulation susceptibility. Thus, we simultaneously projected the temperature-related mortality and morbidity by cause, age, and sex under population change, and human adaptation scenarios in Japan, a super-ageing society. Methods We used daily mean temperatures, mortality, and emergency ambulance dispatch (a sensitive indicator for morbidity) in 47 prefectures of Japan from 2015 to 2019 as the reference for future projections. Future mortality and morbidity were generated at prefecture level using four shared socioeconomic pathway (SSP) scenarios considering population changes. We calculated future temperature-related mortality and morbidity by combining baseline values with future temperatures and existing temperature risk functions by cause (all-cause, circulatory, respiratory), age (<65 years, ≥65 years), and sex under various climate change and SSP scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5). Full human adaptation was simulated based on empirical evidence using a fixed percentile of minimum mortality or morbidity temperature (MMT), while no adaptation was simulated with a fixed absolute MMT. Findings A future temporal decline in mortality burden attributable to non-optimal temperatures was observed, driven by greater cold-related deaths than heat-related deaths. In contrast, temperature-related morbidity increased over time, which was primarily driven by heat. In the 2050s and 2090s, under a moderate scenario, there are 83.69 (95% empirical confidence interval [eCI] 38.32-124.97) and 77.31 (95% eCI 36.84-114.47) all-cause deaths per 100,000 population, while there are 345.07 (95% eCI 258.31-438.66) and 379.62 (95% eCI 271.45-509.05) all-cause morbidity associated with non-optimal temperatures. These trends were largely consistent across causes, age, and sex groups. Future heat-attributable health burden is projected to increase substantially, with spatiotemporal variations and is particularly pronounced among individuals ≥65 y and males. Full human adaptation could yield a decreasing temperature-attributable mortality and morbidity in line with a decreasing population. Interpretation Our findings could support the development of targeted mitigation and adaptation strategies to address future heat-related impacts effectively. This includes improved healthcare allocations for ambulance dispatch and hospital preventive measures during heat periods, particularly custom-tailored to address specific health outcomes and vulnerable subpopulations. Funding Japan Science and Technology Agency and Environmental Restoration and Conservation Agency and Ministry of the Environment of Japan.
Collapse
Affiliation(s)
- Lei Yuan
- Department of Global Health Policy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Lina Madaniyazi
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Ana M. Vicedo-Cabrera
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
- Oeschger Center for Climate Change Research (OCCR), University of Bern, Bern, Switzerland
| | - Chris Fook Sheng Ng
- Department of Global Health Policy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazutaka Oka
- Center for Climate Change Adaptation, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Paul L.C. Chua
- Department of Global Health Policy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kayo Ueda
- Department of Hygiene, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Aurelio Tobias
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
- Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Barcelona, Spain
| | - Yasushi Honda
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
- Center for Climate Change Adaptation, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Masahiro Hashizume
- Department of Global Health Policy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
2
|
Luo L, He G, Meng R, Liu T, Yu M, Xiao Y, Huang B, Zhou C, Zhang H, Hou Z, Xu X, Gong W, Qin M, Hu J, Xiao J, Rong Z, Hu W, Huang C, Ren Z, Ma W. Projecting future minimum mortality temperature in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117192. [PMID: 39427536 DOI: 10.1016/j.ecoenv.2024.117192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024]
Abstract
Minimum mortality temperature (MMT) increases with global warming due to climate adaptation, which is crucial for the precise assessment of mortality burden attributed to climate change. Nevertheless, forecasting future MMT poses a challenge given the unavailability of future mortality data. Here, we attempted to develop a novel approach to project future MMT. First, we estimated the MMT of 334 locations in China using a distributed lag nonlinear model. Then, meta regression models were applied to investigate the associations between MMT and several temperature variables(Most Frequent Temperature(MFT), average daily mean temperature, average daily minimum temperature, average daily maximum temperature and percentiles of temperature from 1st to 100th). A generalized linear regression model was employed to investigate whether significant differences existed in the relationships between MMT and temperature from the 1st to the 100th percentile. Finally, an optional indicator of MMT for projecting future values was identified. Our results indicated that temperatures in the 85th to 89th percentiles were closely associated with MMT, with the 88th percentile temperature serving as the most effective indicator, as confirmed by meta-regression models. Using the 88th percentile of temperature as alternative indicator of MMT, compared with the period of 2006-2015, the projected MMT in most districts and counties in China tended to rise under three representative concentration pathways (RCPs) in the 2030 s (2030-2039), 2060 s (2060-2069), and 2090 s (2090-2099). Our findings provide some insight to project future MMT for assessing mortality burden related to temperature change driven by global warming.
Collapse
Affiliation(s)
- Lifang Luo
- Zhuhai Center for Maternal and Child Health Care, Zhuhai 519000, China
| | - Guanhao He
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510080, China
| | - Ruilin Meng
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Tao Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510080, China
| | - Min Yu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Yize Xiao
- Yunnan Provincial Center for Disease Control and Prevention, Kunming 650022, China
| | - Biao Huang
- Health Hazard Factors Control Department, Jilin Provincial Center for Disease Control and Prevention, Changchun 130062, China
| | - Chunliang Zhou
- Department of environment and health, Hunan Provincial Center for Disease Control and Prevention, Changsha 410005, China
| | - Haoming Zhang
- Yunnan Provincial Center for Disease Control and Prevention, Kunming 650022, China
| | - Zhulin Hou
- Health Hazard Factors Control Department, Jilin Provincial Center for Disease Control and Prevention, Changchun 130062, China
| | - Xiaojun Xu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Weiwei Gong
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Mingfang Qin
- Yunnan Provincial Center for Disease Control and Prevention, Kunming 650022, China
| | - Jianxiong Hu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510080, China
| | - Jianpeng Xiao
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Zuhua Rong
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China
| | - Wenbiao Hu
- School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Cunrui Huang
- Vanke School of Public Health,TsingHua University, Beijing 100084, China
| | - Zhoupeng Ren
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Wenjun Ma
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510080, China.
| |
Collapse
|
3
|
Gasparrini A, Vicedo-Cabrera AM, Tobias A. The Multi-Country Multi-City Collaborative Research Network: An international research consortium investigating environment, climate, and health. Environ Epidemiol 2024; 8:e339. [PMID: 39263673 PMCID: PMC11390054 DOI: 10.1097/ee9.0000000000000339] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/08/2024] [Indexed: 09/13/2024] Open
Abstract
Research on the health risks of environmental factors and climate change requires epidemiological evidence on associated health risks at a global scale. Multi-center studies offer an excellent framework for this purpose, but they present various methodological and logistical problems. This contribution illustrates the experience of the Multi-Country Multi-City Collaborative Research Network, an international collaboration working on a global research program on the associations between environmental stressors, climate, and health in a multi-center setting. The article illustrates the collaborative scheme based on mutual contribution and data and method sharing, describes the collection of a huge multi-location database, summarizes published research findings and future plans, and discusses advantages and limitations. The Multi-Country Multi-City represents an example of a collaborative research framework that has greatly contributed to advance knowledge on the health impacts of climate change and other environmental factors and can be replicated to address other research questions across various research fields.
Collapse
Affiliation(s)
- Antonio Gasparrini
- Environment & Health Modelling (EHM) Lab, Department of Public Health Environments and Society, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Ana Maria Vicedo-Cabrera
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
- Oeschger Center for Climate Change Research, University of Bern, Bern, Switzerland
| | - Aurelio Tobias
- Institute of Environmental Assessment and Water Research, Spanish Council for Scientific Research, Barcelona, Spain
| |
Collapse
|
4
|
Ragettli MS, Flückiger B, Vienneau D, Domingo-Irigoyen S, Koschenz M, Röösli M. Vulnerability to heat-related mortality and the effect of prevention measures: a time-stratified case-crossover study in Switzerland. Swiss Med Wkly 2024; 154:3410. [PMID: 39463255 DOI: 10.57187/s.3418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Swiss climate scenarios predict increases in the frequency and intensity of extreme heat episodes in the future. For the effective prevention of heat-related mortality, several aspects of the population's vulnerability to heat must be understood on a local level. METHODS A nationwide analysis of individual death records was conducted, enabling a more comprehensive understanding than typical heat studies based on aggregated data. A total of 320,306 individual death records from the Swiss National Cohort with precise address information during the warm season (May to September) from 2003-2016 were linked to indoor and outdoor high-resolution daily temperature estimates. A time-stratified case-crossover study combined with distributed lag non-linear models was then performed to assess the temperature-mortality associations for various causes of death and to estimate the potential effect modification of individual characteristics. Additionally, it was explored whether the effect of extreme heat changed over time in regions with and without cantonal heat-health action plans (HHAPs). RESULTS Using the temperature with the lowest cause-specific mortality risk (minimum mortality temperature) as the reference temperature, extreme heat (defined as ambient daily maximum temperature reaching 33 °C) was associated with a strong increase in all-cause mortality (odds ratio (OR): 1.21, 95% CI: 1.17-1.25) and disease-specific mortality from Alzheimer's disease and dementia (OR: 1.67, 95% CI: 1.48-1.88), COPD (OR: 1.37, 95% CI: 1.12-1.67), diabetes (OR: 1.34, 95% CI: 1.06-1.70), and myocardial infarction (OR: 1.26, 95% CI: 1.10-1.44). Indoor temperatures above 24 °C were found to be critical for mortality. The population most vulnerable to heat included older adults (≥75 years), unmarried individuals, people with a low education level, older women with low neighbourhood socioeconomic position, and men under 75 years old with low socioeconomic position. Overall, the risk of heat-related all-cause mortality in 2009-2016 was lower than that in 2003-2008. The decrease was significantly stronger in the region where cantonal HHAPs were implemented. CONCLUSIONS This study provides important information for planning targeted and effective measures to reduce heat-related health risks in Switzerland. It demonstrates that HHAPs contribute to reducing heat-related mortality, although they may not reach the high-risk population of individuals with low socioeconomic position. Future prevention efforts should also target the less privileged population, including people younger than 75 years.
Collapse
Affiliation(s)
- Martina S Ragettli
- Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Benjamin Flückiger
- Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Danielle Vienneau
- Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Silvia Domingo-Irigoyen
- Lucerne University of Applied Sciences and Arts. School of Engineering and Architecture, Horw, Switzerland
| | - Markus Koschenz
- Lucerne University of Applied Sciences and Arts. School of Engineering and Architecture, Horw, Switzerland
| | - Martin Röösli
- Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
5
|
Wagatsuma K, Madaniyazi L, Sheng Ng CF, Saito R, Hashizume M. Characterizing the seasonal influenza disease burden attributable to climate variability: A nationwide time-series modelling study in Japan, 2000-2019. ENVIRONMENTAL RESEARCH 2024; 263:120065. [PMID: 39341540 DOI: 10.1016/j.envres.2024.120065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/05/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Ambient temperature and humidity are established environmental stressors with regard to influenza infections; however, mapping disease burden is difficult owing to the complexities of the underlying associations and differences in vulnerable population distributions. In this study, we aimed to quantify the burden of influenza attributable to non-optimal ambient temperature and absolute humidity in Japan considering geographical differences in vulnerability. METHODS The exposure-lag-response relationships between influenza incidence, ambient temperature, and absolute humidity in all 47 Japanese prefectures for 2000-2019 were quantified using a distributed lag non-linear model for each prefecture; the estimates from all the prefectures were then pooled using a multivariate mixed-effects meta-regression model to derive nationwide average associations. Association between prefecture-specific indicators and the risk were also examined. Attributable risks were estimated for non-optimal ambient temperature and absolute humidity according to the exposure-lag-response relationships obtained before. RESULTS A total of 25,596,525 influenza cases were reported during the study period. Cold and dry conditions significantly increased influenza incidence risk. Compared with the minimum incidence weekly mean ambient temperature (29.8 °C) and the minimum incidence weekly mean absolute humidity (20.2 g/m3), the cumulative relative risks (RRs) of influenza in cold (2.5 °C) and dry (3.6 g/m3) conditions were 2.79 (95% confidence interval [CI]: 1.78-4.37) and 3.20 (95% CI: 2.37-4.31), respectively. The higher RRs for cold and dry conditions were associated with geographical and climatic indicators corresponding to the central and northern prefectures; demographic, socioeconomic, and health resources indicators showed no clear trends. Finally, 27.25% (95% empirical CI [eCI]: 5.54-36.35) and 32.35% (95% eCI: 22.39-37.87) of all cases were attributable to non-optimal ambient temperature and absolute humidity (6,976,300 [95% eCI: 1,420,068-9,306,128] and 8,280,981 [95% eCI: 8,280,981-9,693,532] cases), respectively. CONCLUSIONS These findings could help identify the most vulnerable populations in Japan and design adaptation policies to reduce the attributable burden of influenza due to climate variability.
Collapse
Affiliation(s)
- Keita Wagatsuma
- Division of International Health (Public Health), Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan; Institute for Research Administration, Niigata University, Niigata, Japan.
| | - Lina Madaniyazi
- Department of Global Health, School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Chris Fook Sheng Ng
- Department of Global Health, School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan; Department of Global Health Policy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Reiko Saito
- Division of International Health (Public Health), Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masahiro Hashizume
- Department of Global Health, School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan; Department of Global Health Policy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Pintor MP. The future of the temperature-mortality relationship. Lancet Public Health 2024; 9:e636-e637. [PMID: 39181155 DOI: 10.1016/s2468-2667(24)00184-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/27/2024]
Affiliation(s)
- Matteo Pinna Pintor
- Luxembourg Institute of Socio-economic Research, L-4366 Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
7
|
Matte T, Lane K, Tipaldo JF, Barnes J, Knowlton K, Torem E, Anand G, Yoon L, Marcotullio P, Balk D, Constible J, Elszasz H, Ito K, Jessel S, Limaye V, Parks R, Rutigliano M, Sorenson C, Yuan A. NPCC4: Climate change and New York City's health risk. Ann N Y Acad Sci 2024; 1539:185-240. [PMID: 38922909 DOI: 10.1111/nyas.15115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 06/28/2024]
Abstract
This chapter of the New York City Panel on Climate Change 4 (NPCC4) report considers climate health risks, vulnerabilities, and resilience strategies in New York City's unique urban context. It updates evidence since the last health assessment in 2015 as part of NPCC2 and addresses climate health risks and vulnerabilities that have emerged as especially salient to NYC since 2015. Climate health risks from heat and flooding are emphasized. In addition, other climate-sensitive exposures harmful to human health are considered, including outdoor and indoor air pollution, including aeroallergens; insect vectors of human illness; waterborne infectious and chemical contaminants; and compounding of climate health risks with other public health emergencies, such as the COVID-19 pandemic. Evidence-informed strategies for reducing future climate risks to health are considered.
Collapse
Affiliation(s)
- Thomas Matte
- Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Kathryn Lane
- New York City Department of Health and Mental Hygiene, New York, New York, USA
| | - Jenna F Tipaldo
- CUNY Graduate School of Public Health and Health Policy and CUNY Institute for Demographic Research, New York, New York, USA
| | - Janice Barnes
- Climate Adaptation Partners, New York, New York, USA
| | - Kim Knowlton
- Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Emily Torem
- New York City Department of Health and Mental Hygiene, New York, New York, USA
| | - Gowri Anand
- City of New York, Department of Transportation, New York, New York, USA
| | - Liv Yoon
- School of Kinesiology, The University of British Columbia, Vancouver, Canada
| | - Peter Marcotullio
- Department of Geography and Environmental Science, Hunter College, CUNY, New York, New York, USA
| | - Deborah Balk
- Marxe School of Public and International Affairs, Baruch College and also CUNY Institute for Demographic Research, New York, New York, USA
| | | | - Hayley Elszasz
- City of New York, Mayors Office of Climate and Environmental Justice, New York, New York, USA
| | - Kazuhiko Ito
- New York City Department of Health and Mental Hygiene, New York, New York, USA
| | - Sonal Jessel
- WE ACT for Environmental Justice, New York, New York, USA
| | - Vijay Limaye
- Natural Resources Defense Council, New York, New York, USA
| | - Robbie Parks
- Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Mallory Rutigliano
- New York City Mayor's Office of Management and Budget, New York, New York, USA
| | - Cecilia Sorenson
- Mailman School of Public Health, Columbia University, New York, New York, USA
- Global Consortium on Climate and Health Education, Columbia University, New York, New York, USA
- Department of Emergency Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Ariel Yuan
- New York City Department of Health and Mental Hygiene, New York, New York, USA
| |
Collapse
|
8
|
Navas-Martín MÁ, Cuerdo-Vilches T, López-Bueno JA, Díaz J, Linares C, Sánchez-Martínez G. Human adaptation to heat in the context of climate change: A conceptual framework. ENVIRONMENTAL RESEARCH 2024; 252:118803. [PMID: 38565417 DOI: 10.1016/j.envres.2024.118803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
Climate change is causing serious damage to natural and social systems, as well as having an impact on human health. Among the direct effects of climate change is the rise in global surface temperatures and the increase in the frequency, duration, intensity and severity of heat waves. In addition, understanding of the adaptation process of the exposed population remains limited, posing a challenge in accurately estimating heat-related morbidity and mortality. In this context, this study seeks to establish a conceptual framework that would make it easier to understand and organise knowledge about human adaptation to heat and the factors that may influence this process. An inductive approach based on grounded theory was used, through the analysis of case studies connecting concepts. The proposed conceptual framework is made up of five components (climate change, vulnerability, health risks of heat, axes of inequality and health outcomes), three heat-adaptation domains (physiological, cultural and political), two levels (individual and social), and the pre-existing before a heat event. The application of this conceptual framework facilitates the assistance of decision-makers in planning and implementing effective adaptation measures. Recognizing the importance of addressing heat adaptation as a health problem that calls for political solutions and social changes. Accordingly, this requires a multidisciplinary approach that would foster the participation and collaboration of multiple actors for the purpose of proposing effective measures to address the health impact of the rise in temperature.
Collapse
Affiliation(s)
- Miguel Ángel Navas-Martín
- Programme in Biomedical Sciences and Public Health, National University of Distance Education (UNED), Madrid, Spain; National School of Public Health, Carlos III Institute of Health (ISCIII), Madrid, Spain.
| | - Teresa Cuerdo-Vilches
- Eduardo Torroja Construction Sciences Institute (IETCC), Spanish National Research Council (CSIC), Madrid, Spain
| | | | - Julio Díaz
- National School of Public Health, Carlos III Institute of Health (ISCIII), Madrid, Spain
| | - Cristina Linares
- National School of Public Health, Carlos III Institute of Health (ISCIII), Madrid, Spain
| | | |
Collapse
|
9
|
Hundessa S, Huang W, Zhao Q, Wu Y, Wen B, Alahmad B, Armstrong B, Gasparrini A, Sera F, Tong S, Madureira J, Kyselý J, Schwartz J, Vicedo-Cabrera AM, Hales S, Johnson A, Li S, Guo Y. Global and Regional Cardiovascular Mortality Attributable to Nonoptimal Temperatures Over Time. J Am Coll Cardiol 2024; 83:2276-2287. [PMID: 38839202 DOI: 10.1016/j.jacc.2024.03.425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND The association between nonoptimal temperatures and cardiovascular mortality risk is recognized. However, a comprehensive global assessment of this burden is lacking. OBJECTIVES The goal of this study was to assess global cardiovascular mortality burden attributable to nonoptimal temperatures and investigate spatiotemporal trends. METHODS Using daily cardiovascular deaths and temperature data from 32 countries, a 3-stage analytical approach was applied. First, location-specific temperature-mortality associations were estimated, considering nonlinearity and delayed effects. Second, a multivariate meta-regression model was developed between location-specific effect estimates and 5 meta-predictors. Third, cardiovascular deaths associated with nonoptimal, cold, and hot temperatures for each global grid (55 km × 55 km resolution) were estimated, and temporal trends from 2000 to 2019 were explored. RESULTS Globally, 1,801,513 (95% empirical CI: 1,526,632-2,202,831) annual cardiovascular deaths were associated with nonoptimal temperatures, constituting 8.86% (95% empirical CI: 7.51%-12.32%) of total cardiovascular mortality corresponding to 26 deaths per 100,000 population. Cold-related deaths accounted for 8.20% (95% empirical CI: 6.74%-11.57%), whereas heat-related deaths accounted for 0.66% (95% empirical CI: 0.49%-0.98%). The mortality burden varied significantly across regions, with the highest excess mortality rates observed in Central Asia and Eastern Europe. From 2000 to 2019, cold-related excess death ratios decreased, while heat-related ratios increased, resulting in an overall decline in temperature-related deaths. Southeastern Asia, Sub-Saharan Africa, and Oceania observed the greatest reduction, while Southern Asia experienced an increase. The Americas and several regions in Asia and Europe displayed fluctuating temporal patterns. CONCLUSIONS Nonoptimal temperatures substantially contribute to cardiovascular mortality, with heterogeneous spatiotemporal patterns. Effective mitigation and adaptation strategies are crucial, especially given the increasing heat-related cardiovascular deaths amid climate change.
Collapse
Affiliation(s)
- Samuel Hundessa
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Wenzhong Huang
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Qi Zhao
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yao Wu
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Bo Wen
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Barrak Alahmad
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Ben Armstrong
- Department of Public Health Environments and Society, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Antonio Gasparrini
- Environment & Health Modelling (EHM) Lab, Department of Public Health Environments and Society, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Francesco Sera
- Department of Statistics, Computer Science and Applications "G. Parenti", University of Florence, Florence, Italy
| | - Shilu Tong
- School of Public Health and Social Work, Queensland University of Technology, Brisbane, Australia; National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Joana Madureira
- Environmental Health Department, Instituto Nacional de Saúde Dr Ricardo Jorge, Porto, Portugal; EPIUnit-Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
| | - Jan Kyselý
- Institute of Atmospheric Physics, Czech Academy of Sciences, Prague, Czech Republic; Faculty of Environmental Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Ana Maria Vicedo-Cabrera
- Department of Public Health Environments and Society, London School of Hygiene & Tropical Medicine, London, United Kingdom; Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland; Oeschger Center for Climate Change Research, University of Bern, Bern, Switzerland
| | - Simon Hales
- Department of Public Health, University of Otago, Wellington, New Zealand
| | - Amanda Johnson
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Shanshan Li
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.
| | - Yuming Guo
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
10
|
Wu Y, Wen B, Gasparrini A, Armstrong B, Sera F, Lavigne E, Li S, Guo Y. Temperature frequency and mortality: Assessing adaptation to local temperature. ENVIRONMENT INTERNATIONAL 2024; 187:108691. [PMID: 38718673 DOI: 10.1016/j.envint.2024.108691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/19/2024] [Accepted: 04/23/2024] [Indexed: 05/19/2024]
Abstract
Assessing the association between temperature frequency and mortality can provide insights into human adaptation to local ambient temperatures. We collected daily time-series data on mortality and temperature from 757 locations in 47 countries/regions during 1979-2020. We used a two-stage time series design to assess the association between temperature frequency and all-cause mortality. The results were pooled at the national, regional, and global levels. We observed a consistent decrease in the risk of mortality as the normalized frequency of temperature increases across the globe. The average increase in mortality risk comparing the 10th to 100th percentile of normalized frequency was 13.03% (95% CI: 12.17-13.91), with substantial regional differences (from 4.56% in Australia and New Zealand to 33.06% in South Europe). The highest increase in mortality was observed for high-income countries (13.58%, 95% CI: 12.56-14.61), followed by lower-middle-income countries (12.34%, 95% CI: 9.27-15.51). This study observed a declining risk of mortality associated with higher temperature frequency. Our findings suggest that populations can adapt to their local climate with frequent exposure, with the adapting ability varying geographically due to differences in climatic and socioeconomic characteristics.
Collapse
Affiliation(s)
- Yao Wu
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Bo Wen
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Antonio Gasparrini
- Department of Public Health Environments and Society, London School of Hygiene & Tropical Medicine, London, United Kingdom; Centre for Statistical Methodology, London School of Hygiene & Tropical Medicine, London, United Kingdom; Centre On Climate Change & Planetary Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Ben Armstrong
- Department of Public Health Environments and Society, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Francesco Sera
- Department of Statistics, Computer Science and Applications "G. Parenti", University of Florence, Florence, Italy
| | - Eric Lavigne
- School of Epidemiology & Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Shanshan Li
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.
| | - Yuming Guo
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.
| |
Collapse
|
11
|
Yin P, He C, Chen R, Huang J, Luo Y, Gao X, Xu Y, Ji JS, Cai W, Wei Y, Li H, Zhou M, Kan H. Projection of Mortality Burden Attributable to Nonoptimum Temperature with High Spatial Resolution in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6226-6235. [PMID: 38557021 DOI: 10.1021/acs.est.3c09162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The updated climate models provide projections at a fine scale, allowing us to estimate health risks due to future warming after accounting for spatial heterogeneity. Here, we utilized an ensemble of high-resolution (25 km) climate simulations and nationwide mortality data from 306 Chinese cities to estimate death anomalies attributable to future warming. Historical estimation (1986-2014) reveals that about 15.5% [95% empirical confidence interval (eCI):13.1%, 17.6%] of deaths are attributable to nonoptimal temperature, of which heat and cold corresponded to attributable fractions of 4.1% (eCI:2.4%, 5.5%) and 11.4% (eCI:10.7%, 12.1%), respectively. Under three climate scenarios (SSP126, SSP245, and SSP585), the national average temperature was projected to increase by 1.45, 2.57, and 4.98 °C by the 2090s, respectively. The corresponding mortality fractions attributable to heat would be 6.5% (eCI:5.2%, 7.7%), 7.9% (eCI:6.3%, 9.4%), and 11.4% (eCI:9.2%, 13.3%). More than half of the attributable deaths due to future warming would occur in north China and cardiovascular mortality would increase more drastically than respiratory mortality. Our study shows that the increased heat-attributable mortality burden would outweigh the decreased cold-attributable burden even under a moderate climate change scenario across China. The results are helpful for national or local policymakers to better address the challenges of future warming.
Collapse
Affiliation(s)
- Peng Yin
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Cheng He
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200082, China
- Institute of Epidemiology, Helmholtz Zentrum München─German Research Center for Environmental Health (GmbH), Neuherberg 85764, Germany
| | - Renjie Chen
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200082, China
| | - Jianbin Huang
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing 100084, China
| | - Yong Luo
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing 100084, China
| | - Xuejie Gao
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Climate Change Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100017, China
| | - Ying Xu
- National Climate Center, China Meteorological Administration, Beijing 100044, China
| | - John S Ji
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Wenjia Cai
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing 100084, China
| | - Yongjie Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Huichu Li
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Maigeng Zhou
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Haidong Kan
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200082, China
- National Center for Children's Health, Children's Hospital of Fudan University, Shanghai 200032, China
| |
Collapse
|
12
|
Bouchama A, Mündel T, Laitano O. Beyond heatwaves: A nuanced view of temperature-related mortality. Temperature (Austin) 2024; 11:190-202. [PMID: 39193046 PMCID: PMC11346551 DOI: 10.1080/23328940.2024.2310459] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 08/29/2024] Open
Abstract
The increasing use of time-series analyses in exploring the relationship between daily ambient temperature and mortality has expanded our understanding of the potential health impacts of climate change. However, it raises significant concerns about the risk of overinterpretation and misattribution of statistical findings. This review examines the methodological assumptions and interpretation pitfalls prevalent in current research on ambient temperature-mortality associations. Extremely elevated ambient temperatures are well-known to elicit physiological stress and increase mortality risk; however, there is no physiological evidence for lethality risk within normal ambient temperature ranges. Despite this, many studies attribute mortality risks across the entire ambient temperature-mortality curve, including normal range ambient temperatures, thus oversimplifying complex underlying physiological processes. Overinterpretation may lead to inaccurate assessments and misguided public health policies. We caution against the tendency to extrapolate results from extreme heat conditions to milder, more typical summer ambient temperature ranges. We advocate for an interdisciplinary approach that combines physiological, clinical, and epidemiological perspectives, with a strong emphasis on the role of behavioral thermoregulation and socio-economic factors to link normal range ambient temperatures with mortality. We recommend analyses centered on excess mortality during defined heatwave periods, and to incorporate heat stress biomarkers to substantiate causal claims for temperatures below heatwaves threshold. A careful approach to interpreting ambient temperature-mortality associations is crucial for formulating evidence-based public health policies.
Collapse
Affiliation(s)
- Abderrezak Bouchama
- King Abdullah International Medical Research Center, Experimental Medicine Department, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia
| | - Toby Mündel
- Department of Kinesiology, Brock University, Ontario, Canada
| | - Orlando Laitano
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
13
|
Scovronick N, Pillarisetti A. Invited Perspective: Beating the Heat. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:21302. [PMID: 38329751 PMCID: PMC10852038 DOI: 10.1289/ehp14343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 02/09/2024]
Affiliation(s)
- Noah Scovronick
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Ajay Pillarisetti
- Division of Environmental Health Sciences, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
14
|
Navas-Martín MÁ, Ovalle-Perandones MA, López-Bueno JA, Díaz J, Linares C, Sánchez-Martínez G. Population adaptation to heat as seen through the temperature-mortality relationship, in the context of the impact of global warming on health: A scoping review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168441. [PMID: 37949135 DOI: 10.1016/j.scitotenv.2023.168441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Climate change is the greatest threat to human health, with one of its direct effects being global warming and its impact on health. Currently, the world is experiencing an increase in the mean global temperature, but this increase affects different populations to different degrees. This is due to the fact that individual, demographic, geographical and social factors influence vulnerability and the capacity to adapt. Adaptation is the process of adjusting to the current or envisaged climate and its effects, with the aim of mitigating harm and taking advantage of the beneficial opportunities. There are different ways of measuring the effectiveness of adaptation, and the most representative indicator is via the time trend in the temperature-mortality relationship. Despite the rise in the number of studies that have examined the temperature-mortality relationship in recent years, there are very few that have analysed whether a particular population has or has not adapted to heat. We conducted a scoping review that met the following criteria, namely: including all persons; considering the heat adaptation concept; and covering the context of the impact of global warming on health and mortality. A total of 23 studies were selected. This review found very few studies targeting adaptation to heat in the human population and a limited number of countries carrying out research in this field, something that highlights the lack of research in this area. It is therefore crucial for political decision-makers to support studies that serve to enhance our comprehension of long-term adaptation to heat and its impact on the health of the human population.
Collapse
Affiliation(s)
- Miguel Ángel Navas-Martín
- Doctorate Programme in Biomedical Sciences and Public Health, National University of Distance Education (UNED), Madrid, Spain; National School of Public Health, Carlos III Institute of Health (ISCIII), Madrid, Spain.
| | | | | | - Julio Díaz
- National School of Public Health, Carlos III Institute of Health (ISCIII), Madrid, Spain
| | - Cristina Linares
- National School of Public Health, Carlos III Institute of Health (ISCIII), Madrid, Spain
| | | |
Collapse
|
15
|
Varghese BM, Hansen A, Mann N, Liu J, Zhang Y, Driscoll TR, Morgan GG, Dear K, Capon A, Gourley M, Prescott V, Dolar V, Bi P. The burden of occupational injury attributable to high temperatures in Australia, 2014-19: a retrospective observational study. Med J Aust 2023; 219:542-548. [PMID: 37992722 DOI: 10.5694/mja2.52171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 10/05/2023] [Indexed: 11/24/2023]
Abstract
OBJECTIVES To assess the population health impact of high temperatures on workplace health and safety by estimating the burden of heat-attributable occupational injury in Australia. STUDY DESIGN, SETTING Retrospective observational study; estimation of burden of occupational injury in Australia attributable to high temperatures during 2014-19, based on Safe Work Australia (work-related traumatic injury fatalities and workers' compensation databases) and Australian Institute of Health and Welfare data (Australian Burden of Disease Study and National Hospital Morbidity databases), and a meta-analysis of climate zone-specific risk data. MAIN OUTCOME MEASURE Burden of heat-attributable occupational injuries as disability-adjusted life years (DALYs), comprising the numbers of years of life lived with disability (YLDs) and years of life lost (YLLs), nationally, by Köppen-Geiger climate zone, and by state and territory. RESULTS During 2014-19, an estimated 42 884 years of healthy life were lost to occupational injury, comprising 39 485 YLLs (92.1%) and 3399 YLDs (7.9%), at a rate of 0.80 DALYs per 1000 workers per year. A total of 967 occupational injury-related DALYs were attributable to heat (2.3% of occupational injury-related DALYs), comprising 890 YLLs (92%) and 77 YLDs (8%). By climate zone, the heat-attributable proportion was largest in the tropical Am (12 DALYs; 3.5%) and Aw zones (34 DALYs; 3.5%); by state and territory, the proportion was largest in New South Wales and Queensland (each 2.9%), which also included the largest numbers of heat-attributable occupational injury-related DALYs (NSW: 379 DALYs, 39% of national total; Queensland: 308 DALYs; 32%). CONCLUSION An estimated 2.3% of the occupational injury burden in Australia is attributable to high ambient temperatures. To prevent this burden increasing with global warming, adaptive measures and industry-based policies are needed to safeguard workplace health and safety, particularly in heat-exposed industries, such as agriculture, transport, and construction.
Collapse
Affiliation(s)
| | | | - Nick Mann
- Australian Institute of Health and Welfare, Canberra, ACT
| | | | | | | | - Geoffrey G Morgan
- The University of Sydney, Sydney, NSW
- Centre for Rural Health, the University of Sydney, Lismore, NSW
| | - Keith Dear
- The University of Adelaide, Adelaide, SA
| | - Anthony Capon
- Monash Sustainable Development Institute, Monash University, Melbourne, VIC
| | | | | | - Vergil Dolar
- Australian Institute of Health and Welfare, Canberra, ACT
| | - Peng Bi
- The University of Adelaide, Adelaide, SA
| |
Collapse
|
16
|
Yuan L, Madaniyazi L, Vicedo-Cabrera AM, Honda Y, Ng CFS, Ueda K, Oka K, Tobias A, Hashizume M. A Nationwide Comparative Analysis of Temperature-Related Mortality and Morbidity in Japan. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:127008. [PMID: 38060264 DOI: 10.1289/ehp12854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
BACKGROUND The impact of temperature on morbidity remains largely unknown. Moreover, extensive evidence indicates contrasting patterns between temperature-mortality and temperature-morbidity associations. A nationwide comparison of the impact of temperature on mortality and morbidity in more specific subgroups is necessary to strengthen understanding and help explore underlying mechanisms by identifying susceptible populations. OBJECTIVE We performed this study to quantify and compare the impact of temperature on mortality and morbidity in 47 prefectures in Japan. METHODS We applied a two-stage time-series design with distributed lag nonlinear models and mixed-effect multivariate meta-analysis to assess the association of temperature with mortality and morbidity by causes (all-cause, circulatory, and respiratory) at prefecture and country levels between 2015 and 2019. Subgroup analysis was conducted by sex, age, and regions. RESULTS The patterns and magnitudes of temperature impacts on morbidity and mortality differed. For all-cause outcomes, cold exhibited larger effects on mortality, and heat showed larger effects on morbidity. At specific temperature percentiles, cold (first percentile) was associated with a higher relative risk (RR) of mortality [1.45; 95% confidence interval (CI): 1.39, 1.52] than morbidity (1.33; 95% CI: 1.26, 1.40), as compared to the minimum mortality/morbidity temperature. Heat (99th percentile) was associated with a higher risk of morbidity (1.30; 95% CI: 1.28, 1.33) than mortality (1.04; 95% CI: 1.02, 1.06). For cause-specific diseases, mortality due to circulatory diseases was more susceptible to heat and cold than morbidity. However, for respiratory diseases, both cold and heat showed higher risks for morbidity than mortality. Subgroup analyses suggested varied associations depending on specific outcomes. DISCUSSION Distinct patterns were observed for the association of temperature with mortality and morbidity, underlying different mechanisms of temperature on different end points, and the differences in population susceptibility are possible explanations. Future mitigation policies and preventive measures against nonoptimal temperatures should be specific to disease outcomes and targeted at susceptible populations. https://doi.org/10.1289/EHP12854.
Collapse
Affiliation(s)
- Lei Yuan
- Department of Global Health Policy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Lina Madaniyazi
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Ana M Vicedo-Cabrera
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
- Oeschger Center for Climate Change Research (OCCR), University of Bern, Bern, Switzerland
| | - Yasushi Honda
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
- Center for Climate Change Adaptation, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Chris Fook Sheng Ng
- Department of Global Health Policy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kayo Ueda
- Department of Hygiene, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kazutaka Oka
- Center for Climate Change Adaptation, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Aurelio Tobias
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
- Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Barcelona, Spain
| | - Masahiro Hashizume
- Department of Global Health Policy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
17
|
Kivimäki M, Batty GD, Pentti J, Suomi J, Nyberg ST, Merikanto J, Nordling K, Ervasti J, Suominen SB, Partanen AI, Stenholm S, Käyhkö J, Vahtera J. Climate Change, Summer Temperature, and Heat-Related Mortality in Finland: Multicohort Study with Projections for a Sustainable vs. Fossil-Fueled Future to 2050. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:127020. [PMID: 38150315 PMCID: PMC10752417 DOI: 10.1289/ehp12080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Climate change scenarios illustrate various pathways in terms of global warming ranging from "sustainable development" (Shared Socioeconomic Pathway SSP1-1.9), the best-case scenario, to 'fossil-fueled development' (SSP5-8.5), the worst-case scenario. OBJECTIVES We examined the extent to which increase in daily average urban summer temperature is associated with future cause-specific mortality and projected heat-related mortality burden for the current warming trend and these two scenarios. METHODS We did an observational cohort study of 363,754 participants living in six cities in Finland. Using residential addresses, participants were linked to daily temperature records and electronic death records from national registries during summers (1 May to 30 September) 2000 to 2018. For each day of observation, heat index (average daily air temperature weighted by humidity) for the preceding 7 d was calculated for participants' residential area using a geographic grid at a spatial resolution of 1 km × 1 km . We examined associations of the summer heat index with risk of death by cause for all participants adjusting for a wide range of individual-level covariates and in subsidiary analyses using case-crossover design, computed the related period population attributable fraction (PAF), and projected change in PAF from summers 2000-2018 compared with those in 2030-2050. RESULTS During a cohort total exposure period of 582,111,979 summer days (3,880,746 person-summers), we recorded 4,094 deaths, including 949 from cardiovascular disease. The multivariable-adjusted rate ratio (RR) for high (≥ 21 ° C ) vs. reference (14 - 15 ° C ) heat index was 1.70 (95% CI: 1.28, 2.27) for cardiovascular mortality, but it did not reach statistical significance for noncardiovascular deaths, RR = 1.14 (95% CI: 0.96, 1.36), a finding replicated in case-crossover analysis. According to projections for 2030-2050, PAF of summertime cardiovascular mortality attributable to high heat will be 4.4% (1.8%-7.3%) under the sustainable development scenario, but 7.6% (3.2%-12.3%) under the fossil-fueled development scenario. In the six cities, the estimated annual number of summertime heat-related cardiovascular deaths under the two scenarios will be 174 and 298 for a total population of 1,759,468 people. DISCUSSION The increase in average urban summer temperature will raise heat-related cardiovascular mortality burden. The estimated magnitude of this burden is > 1.5 times greater if future climate change is driven by fossil fuels rather than sustainable development. https://doi.org/10.1289/EHP12080.
Collapse
Affiliation(s)
- Mika Kivimäki
- University College London (UCL) Brain Sciences, UCL, London, UK
- Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - G. David Batty
- University College London (UCL) Brain Sciences, UCL, London, UK
| | - Jaana Pentti
- Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Finnish Institute of Occupational Health, Helsinki, Finland
- Department of Public Health, University of Turku (UTU), Turku, Finland
- Centre for Population Health Research, UTU, Turku, Finland
| | - Juuso Suomi
- Department of Geography and Geology, UTU, Turku, Finland
| | - Solja T. Nyberg
- Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Finnish Institute of Occupational Health, Helsinki, Finland
| | | | - Kalle Nordling
- Finnish Meteorological Institute, Helsinki, Finland
- Centre for International Climate and Environmental Research, Oslo, Norway
| | - Jenni Ervasti
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Sakari B. Suominen
- Department of Public Health, University of Turku (UTU), Turku, Finland
- Turku University Hospital, Turku, Finland
- School of Health Science, University of Skövde, Skövde, Sweden
| | | | - Sari Stenholm
- Department of Public Health, University of Turku (UTU), Turku, Finland
- Centre for Population Health Research, UTU, Turku, Finland
| | - Jukka Käyhkö
- Department of Geography and Geology, UTU, Turku, Finland
| | - Jussi Vahtera
- Department of Public Health, University of Turku (UTU), Turku, Finland
- Centre for Population Health Research, UTU, Turku, Finland
- Turku University Hospital, Turku, Finland
| |
Collapse
|
18
|
Zafeiratou S, Samoli E, Analitis A, Gasparrini A, Stafoggia M, de’ Donato FK, Rao S, Zhang S, Breitner S, Masselot P, Aunan K, Schneider A, Katsouyanni K. Assessing heat effects on respiratory mortality and location characteristics as modifiers of heat effects at a small area scale in Central-Northern Europe. Environ Epidemiol 2023; 7:e269. [PMID: 37840857 PMCID: PMC10569755 DOI: 10.1097/ee9.0000000000000269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/06/2023] [Accepted: 08/02/2023] [Indexed: 10/17/2023] Open
Abstract
Background Heat effects on respiratory mortality are known, mostly from time-series studies of city-wide data. A limited number of studies have been conducted at the national level or covering non-urban areas. Effect modification by area-level factors has not been extensively investigated. Our study assessed the heat effects on respiratory mortality at a small administrative area level in Norway, Germany, and England and Wales, in the warm period (May-September) within 1996-2018. Also, we examined possible effect modification by several area-level characteristics in the framework of the EU-Horizon2020 EXHAUSTION project. Methods Daily respiratory mortality counts and modeled air temperature data were collected for Norway, Germany, and England and Wales at a small administrative area level. The temperature-mortality association was assessed by small area-specific Poisson regression allowing for overdispersion, using distributed lag non-linear models. Estimates were pooled at the national level and overall using a random-effect meta-analysis. Age- and sex-specific models were also applied. A multilevel random-effects model was applied to investigate the modification of the heat effects by area-level factors. Results A rise in temperature from the 75th to 99th percentile was associated with a 27% (95% confidence interval [CI] = 19%, 34%) increase in respiratory mortality, with higher effects for females. Increased population density and PM2.5 concentrations were associated with stronger heat effects on mortality. Conclusions Our study strengthens the evidence of adverse heat effects on respiratory mortality in Northern Europe by identifying vulnerable subgroups and subregions. This may contribute to the development of targeted policies for adaptation to climate change.
Collapse
Affiliation(s)
- Sofia Zafeiratou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, University of Athens, Athens, Greece
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, University of Athens, Athens, Greece
| | - Antonis Analitis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, University of Athens, Athens, Greece
| | - Antonio Gasparrini
- Department of Public Health, Environments and Society, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Massimo Stafoggia
- Department of Epidemiology, Lazio Region Health Service (ASL ROMA 1), Rome, Italy
| | | | - Shilpa Rao
- Division for Climate and Environment, Norwegian Institute of Public Health (NIPH), Oslo, Norway
| | - Siqi Zhang
- Institute of Epidemiology, Helmholtz Zentrum München (HMGU), Neuherberg, Germany
| | - Susanne Breitner
- Institute of Epidemiology, Helmholtz Zentrum München (HMGU), Neuherberg, Germany
| | - Pierre Masselot
- Department of Public Health, Environments and Society, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Kristin Aunan
- CICERO Center for International Climate Research, Norway
| | - Alexandra Schneider
- Institute of Epidemiology, Helmholtz Zentrum München (HMGU), Neuherberg, Germany
| | - Klea Katsouyanni
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, University of Athens, Athens, Greece
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College, London, United Kingdom
| |
Collapse
|
19
|
Timpka S, Melander O, Engström G, Elmståhl S, Nilsson PM, Lind L, Pihlsgård M, Enhörning S. Short-term association between outdoor temperature and the hydration-marker copeptin: a pooled analysis in five cohorts. EBioMedicine 2023; 95:104750. [PMID: 37556945 PMCID: PMC10432996 DOI: 10.1016/j.ebiom.2023.104750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Whereas outdoor temperature is linked to both mortality and hydration status, the hormone vasopressin, measured through the surrogate copeptin, is a marker of cardiometabolic risk and hydration. We recently showed that copeptin has a seasonal pattern with higher plasma concentration in winter. Here, we aimed to investigate the association between outdoor temperature and copeptin. METHODS Copeptin was analysed in fasting plasma from five cohorts in Malmö, Sweden (n = 26,753, 49.7% men, age 18-86 years). We utilized a multivariable adjusted non-linear spline model with four knots to investigate the association between short-term temperature (24 h mean apparent) and log copeptin z-score. FINDINGS We found a distinct non-linear association between temperature and log copeptin z-score, with both moderately low and high temperatures linked to higher copeptin concentration (p < 0.0001). Between 0 °C and nadir at the 75th temperature percentile (corresponding to 14.3 °C), log copeptin decreased 0.13 z-scores (95% CI 0.096; 0.16), which also inversely corresponded to the increase in z-score log copeptin between the nadir and 21.3 °C. INTERPRETATION The J-shaped association between short-term temperature and copeptin resembles the J-shaped association between temperature and mortality. Whereas the untangling of temperature from other seasonal effects on hydration warrants further study, moderately increased water intake constitutes a feasible intervention to lower vasopressin and might mitigate adverse health effects of both moderately cold and hot outdoor temperatures. FUNDING Swedish Research Council, Å Wiberg, M Stephen, A Påhlsson, Crafoord and Swedish Heart-Lung Foundations, Swedish Society for Medical Research and Swedish Society of Medicine.
Collapse
Affiliation(s)
- Simon Timpka
- Perinatal and Cardiovascular Epidemiology, Lund University Diabetes Centre, Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden; Department of Obstetrics and Gynecology, Skåne University Hospital, Malmö, Sweden
| | - Olle Melander
- Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden; Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden
| | - Gunnar Engström
- Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
| | - Sölve Elmståhl
- Department of Clinical Sciences in Malmö, Division of Geriatric Medicine, Lund University, Malmö, Sweden
| | - Peter M Nilsson
- Internal Medicine - Epidemiology, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Mats Pihlsgård
- Perinatal and Cardiovascular Epidemiology, Lund University Diabetes Centre, Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
| | - Sofia Enhörning
- Perinatal and Cardiovascular Epidemiology, Lund University Diabetes Centre, Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden; Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden.
| |
Collapse
|
20
|
Quilty S, Jupurrurla NF, Lal A, Matthews V, Gasparrini A, Hope P, Brearley M, Ebi KL. The relative value of sociocultural and infrastructural adaptations to heat in a very hot climate in northern Australia: a case time series of heat-associated mortality. Lancet Planet Health 2023; 7:e684-e693. [PMID: 37558349 DOI: 10.1016/s2542-5196(23)00138-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND Climate change is increasing heat-associated mortality particularly in hotter parts of the world. The Northern Territory is a large and sparsely populated peri-equatorial state in Australia. The Northern Territory has the highest proportion of Aboriginal and Torres Strait Islander people in Australia (31%), most of whom live in remote communities of over 65 Aboriginal Nations defined by ancient social, cultural, and linguistic heritage. The remainder non-Indigenous population lives mostly within the two urban centres (Darwin in the Top End region and Alice Springs in the Centre region of the Northern Territory). Here we aim to compare non-Indigenous (eg, high income) and Indigenous societies in a tropical environment and explore the relative importance of physiological, sociocultural, and technological and infrastructural adaptations to heat. METHODS In this case time series, we matched temperature at the time of death using a modified distributed lag non-linear model for all deaths in the Northern Territory, Australia, from Jan 1, 1980, to Dec 31, 2019. Data on deaths came from the national registry of Births, Deaths and Marriages. Cases were excluded if location or date of death were not recorded or if the person was a non-resident. Daily maximum and minimum temperature were measured and recorded by the Bureau of Meteorology. Hot weather was defined as mean temperature greater than 35°C over a 3-day lag. Socioeconomic status as indicated by Index of Relative Socioeconomic Disadvantage was mapped from location at death. FINDINGS During the study period, 34 782 deaths were recorded; after exclusions 31 800 deaths were included in statistical analysis (15 801 Aboriginal and 15 999 non-Indigenous). There was no apparent reduction in heat susceptibility despite infrastructural and technological improvements for the majority non-Indigenous population over the study period with no heat-associated mortality in the first two decades (1980-99; relative risk 1·00 [95% CI 0·87-1·15]) compared with the second two decades (2000-19; 1·14 [1·01-1·29]). Despite marked socioeconomic inequity, Aboriginal people are not more susceptible to heat mortality (1·05, [0·95-1·18]) than non-Indigenous people (1·18 [1·06-1·29]). INTERPRETATION It is widely believed that technological and infrastructural adaptations are crucial in preparing for hotter climates; however, this study suggests that social and cultural adaptations to increasing hot weather are potentially powerful mechanisms for protecting human health. Although cool shelters are essential during extreme heat, research is required to determine whether excessive exposure to air-conditioned spaces might impair physiological acclimatisation to the prevailing environment. Understanding sociocultural practices from past and ancient societies provides insight into non-technological adaptation opportunities that are protective of health. FUNDING None.
Collapse
Affiliation(s)
- Simon Quilty
- National Centre for Epidemiology & Population Health, Australian National University, Canberra, ACT, Australia.
| | | | - Aparna Lal
- National Centre for Epidemiology and Population Health, Australian National University, Canberra, ACT, Australia
| | - Veronica Matthews
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Antonio Gasparrini
- Environment and Health Modelling Laboratory, London School of Hygiene & Tropical Medicine, London, UK
| | - Pandora Hope
- Australian Bureau of Meteorology, Canberra, ACT, Australia
| | - Matt Brearley
- National Critical Care and Trauma Response Centre, Charles Darwin University, Darwin, NT, Australia
| | - Kris L Ebi
- Centre for Health and the Global Environment, University of Washington, Seattle, WA, USA
| |
Collapse
|
21
|
Liu J, Hansen A, Varghese BM, Dear K, Tong M, Prescott V, Dolar V, Gourley M, Driscoll T, Zhang Y, Morgan G, Capon A, Bi P. Estimating the burden of disease attributable to high ambient temperature across climate zones: methodological framework with a case study. Int J Epidemiol 2023; 52:783-795. [PMID: 36511334 PMCID: PMC10244055 DOI: 10.1093/ije/dyac229] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 11/30/2022] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND With high temperature becoming an increasing health risk due to a changing climate, it is important to quantify the scale of the problem. However, estimating the burden of disease (BoD) attributable to high temperature can be challenging due to differences in risk patterns across geographical regions and data accessibility issues. METHODS We present a methodological framework that uses Köppen-Geiger climate zones to refine exposure levels and quantifies the difference between the burden observed due to high temperatures and what would have been observed if the population had been exposed to the theoretical minimum risk exposure distribution (TMRED). Our proposed method aligned with the Australian Burden of Disease Study and included two parts: (i) estimation of the population attributable fractions (PAF); and then (ii) estimation of the BoD attributable to high temperature. We use suicide and self-inflicted injuries in Australia as an example, with most frequent temperatures (MFTs) as the minimum risk exposure threshold (TMRED). RESULTS Our proposed framework to estimate the attributable BoD accounts for the importance of geographical variations of risk estimates between climate zones, and can be modified and adapted to other diseases and contexts that may be affected by high temperatures. CONCLUSIONS As the heat-related BoD may continue to increase in the future, this method is useful in estimating burdens across climate zones. This work may have important implications for preventive health measures, by enhancing the reproducibility and transparency of BoD research.
Collapse
Affiliation(s)
- Jingwen Liu
- School of Public Health, University of Adelaide, Adelaide, SA, Australia
| | - Alana Hansen
- School of Public Health, University of Adelaide, Adelaide, SA, Australia
| | - Blesson M Varghese
- School of Public Health, University of Adelaide, Adelaide, SA, Australia
| | - Keith Dear
- School of Public Health, University of Adelaide, Adelaide, SA, Australia
| | - Michael Tong
- School of Public Health, University of Adelaide, Adelaide, SA, Australia
| | - Vanessa Prescott
- Burden of Disease and Mortality Unit, Australian Institute of Health and Welfare, Canberra, ACT, Australia
| | - Vergil Dolar
- Burden of Disease and Mortality Unit, Australian Institute of Health and Welfare, Canberra, ACT, Australia
| | - Michelle Gourley
- Burden of Disease and Mortality Unit, Australian Institute of Health and Welfare, Canberra, ACT, Australia
| | - Timothy Driscoll
- Sydney School of Public Health, University of Sydney, Sydney, NSW, Australia
| | - Ying Zhang
- Sydney School of Public Health, University of Sydney, Sydney, NSW, Australia
| | - Geoffrey Morgan
- Sydney School of Public Health, University of Sydney, Sydney, NSW, Australia
| | - Anthony Capon
- Monash Sustainable Development Institute, Monash University, Melbourne, VIC, Australia
| | - Peng Bi
- School of Public Health, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
22
|
Yezli S, Khan AH, Yassin YM, Khan AA, Alotaibi BM, Bouchama A. Human tolerance to extreme heat: evidence from a desert climate population. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023:10.1038/s41370-023-00549-7. [PMID: 37138035 DOI: 10.1038/s41370-023-00549-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND Ambient temperatures exceeding 40 °C are projected to become common in many temperate climatic zones due to global warming. Therefore, understanding the health effects of continuous exposure to high ambient temperatures on populations living in hot climatic regions can help identify the limits of human tolerance. OBJECTIVE We studied the relationship between ambient temperature and non-accidental mortality in the hot desert city of Mecca, Saudi Arabia, between 2006 and 2015. METHODS We used a distributed lag nonlinear model to estimate the mortality-temperature association over 25 days of lag. We determined the minimum mortality temperature (MMT) and the deaths that are attributable to heat and cold. RESULTS We analyzed 37,178 non-accidental deaths reported in the ten-year study period among Mecca residents. The median average daily temperature was 32 °C (19-42 °C) during the same study period. We observed a U-shaped relationship between daily temperature and mortality with an MMT of 31.8 °C. The total temperature-attributable mortality of Mecca residents was 6.9% (-3.2; 14.8) without reaching statistical significance. However, extreme heat, higher than 38 °C, was significantly associated with increased risk of mortality. The lag structure effect of the temperature showed an immediate impact, followed by a decline in mortality over many days of heat. No effect of cold on mortality was observed. IMPACT STATEMENT High ambient temperatures are projected to become future norms in temperate climates. Studying populations familiar with desert climates for generations with access to air-conditioning would inform on the mitigation measures to protect other populations from heat and on the limits of human tolerance to extreme temperatures. We studied the relationship between ambient temperature and all-cause mortality in the hot desert city of Mecca. We found that Mecca population is adapted to high temperatures, although there was a limit to tolerance to extreme heat. This implies that mitigation measures should be directed to accelerate individual adaptation to heat and societal reorganization.
Collapse
Affiliation(s)
- Saber Yezli
- Biostatistics, Epidemiology and Scientific Computing Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
- Global Centre for Mass Gathering Medicine, Ministry of Health, Riyadh, 12341, Saudi Arabia.
- Experimental Medicine Department, King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences 11481, Riyadh, Saudi Arabia.
| | - Altaf H Khan
- Department of Biostatistics and Bioinformatics, King Abdullah International Center for Medical Research / King Saud bin Abdulaziz University for Health Sciences 11481, Riyadh, Saudi Arabia
| | - Yara M Yassin
- Global Centre for Mass Gathering Medicine, Ministry of Health, Riyadh, 12341, Saudi Arabia
| | - Anas A Khan
- Global Centre for Mass Gathering Medicine, Ministry of Health, Riyadh, 12341, Saudi Arabia
- Department of Emergency Medicine, College of Medicine, King Saud University, Riyadh, 12372, Saudi Arabia
| | - Badriah M Alotaibi
- Global Centre for Mass Gathering Medicine, Ministry of Health, Riyadh, 12341, Saudi Arabia
| | - Abderrezak Bouchama
- Experimental Medicine Department, King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences 11481, Riyadh, Saudi Arabia.
| |
Collapse
|
23
|
Masselot P, Mistry M, Vanoli J, Schneider R, Iungman T, Garcia-Leon D, Ciscar JC, Feyen L, Orru H, Urban A, Breitner S, Huber V, Schneider A, Samoli E, Stafoggia M, de'Donato F, Rao S, Armstrong B, Nieuwenhuijsen M, Vicedo-Cabrera AM, Gasparrini A. Excess mortality attributed to heat and cold: a health impact assessment study in 854 cities in Europe. Lancet Planet Health 2023; 7:e271-e281. [PMID: 36934727 DOI: 10.1016/s2542-5196(23)00023-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Heat and cold are established environmental risk factors for human health. However, mapping the related health burden is a difficult task due to the complexity of the associations and the differences in vulnerability and demographic distributions. In this study, we did a comprehensive mortality impact assessment due to heat and cold in European urban areas, considering geographical differences and age-specific risks. METHODS We included urban areas across Europe between Jan 1, 2000, and Dec 12, 2019, using the Urban Audit dataset of Eurostat and adults aged 20 years and older living in these areas. Data were extracted from Eurostat, the Multi-country Multi-city Collaborative Research Network, Moderate Resolution Imaging Spectroradiometer, and Copernicus. We applied a three-stage method to estimate risks of temperature continuously across the age and space dimensions, identifying patterns of vulnerability on the basis of city-specific characteristics and demographic structures. These risks were used to derive minimum mortality temperatures and related percentiles and raw and standardised excess mortality rates for heat and cold aggregated at various geographical levels. FINDINGS Across the 854 urban areas in Europe, we estimated an annual excess of 203 620 (empirical 95% CI 180 882-224 613) deaths attributed to cold and 20 173 (17 261-22 934) attributed to heat. These corresponded to age-standardised rates of 129 (empirical 95% CI 114-142) and 13 (11-14) deaths per 100 000 person-years. Results differed across Europe and age groups, with the highest effects in eastern European cities for both cold and heat. INTERPRETATION Maps of mortality risks and excess deaths indicate geographical differences, such as a north-south gradient and increased vulnerability in eastern Europe, as well as local variations due to urban characteristics. The modelling framework and results are crucial for the design of national and local health and climate policies and for projecting the effects of cold and heat under future climatic and socioeconomic scenarios. FUNDING Medical Research Council of UK, the Natural Environment Research Council UK, the EU's Horizon 2020, and the EU's Joint Research Center.
Collapse
Affiliation(s)
- Pierre Masselot
- Department of Public Health, Environments and Society, London School of Hygiene & Tropical Medicine, London, UK.
| | - Malcolm Mistry
- Department of Public Health, Environments and Society, London School of Hygiene & Tropical Medicine, London, UK; Department of Economics, Ca' Foscari University of Venice, Venice, Italy
| | - Jacopo Vanoli
- Department of Public Health, Environments and Society, London School of Hygiene & Tropical Medicine, London, UK
| | - Rochelle Schneider
- Department of Public Health, Environments and Society, London School of Hygiene & Tropical Medicine, London, UK; Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK; ϕ-Lab, European Space Agency, Frascati, Italy
| | - Tamara Iungman
- Institute for Global Health (ISGlobal), Barcelona, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | | | | | - Luc Feyen
- Joint Research Centre, European Commission, Ispra, Italy
| | - Hans Orru
- Department of Family Medicine and Public Health, University of Tartu, Tartu, Estonia
| | - Aleš Urban
- Institute of Atmospheric Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic; Faculty of Environmental Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Susanne Breitner
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; IBE-Chair of Epidemiology, LMU Munich, Munich, Germany
| | - Veronika Huber
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; IBE-Chair of Epidemiology, LMU Munich, Munich, Germany
| | - Alexandra Schneider
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, National and Kapodistrian University of Athens, Athens, Greece
| | - Massimo Stafoggia
- Department of Epidemiology, Lazio Regional Health Service/ASL Roma 1, Rome, Italy
| | - Francesca de'Donato
- Department of Epidemiology, Lazio Regional Health Service/ASL Roma 1, Rome, Italy
| | - Shilpa Rao
- Norwegian Institute of Public Health, Oslo, Norway
| | - Ben Armstrong
- Department of Public Health, Environments and Society, London School of Hygiene & Tropical Medicine, London, UK
| | - Mark Nieuwenhuijsen
- Institute for Global Health (ISGlobal), Barcelona, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Ana Maria Vicedo-Cabrera
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland; Oeschger Center for Climate Change Research, University of Bern, Bern, Switzerland
| | - Antonio Gasparrini
- Department of Public Health, Environments and Society, London School of Hygiene & Tropical Medicine, London, UK; Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK; Centre for Statistical Methodology, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
24
|
Ragettli MS, Saucy A, Flückiger B, Vienneau D, de Hoogh K, Vicedo-Cabrera AM, Schindler C, Röösli M. Explorative Assessment of the Temperature-Mortality Association to Support Health-Based Heat-Warning Thresholds: A National Case-Crossover Study in Switzerland. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4958. [PMID: 36981871 PMCID: PMC10049426 DOI: 10.3390/ijerph20064958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/24/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Defining health-based thresholds for effective heat warnings is crucial for climate change adaptation strategies. Translating the non-linear function between heat and health effects into an effective threshold for heat warnings to protect the population is a challenge. We present a systematic analysis of heat indicators in relation to mortality. We applied distributed lag non-linear models in an individual-level case-crossover design to assess the effects of heat on mortality in Switzerland during the warm season from 2003 to 2016 for three temperature metrics (daily mean, maximum, and minimum temperature), and various threshold temperatures and heatwave definitions. Individual death records with information on residential address from the Swiss National Cohort were linked to high-resolution temperature estimates from 100 m resolution maps. Moderate (90th percentile) to extreme thresholds (99.5th percentile) of the three temperature metrics implied a significant increase in mortality (5 to 38%) in respect of the median warm-season temperature. Effects of the threshold temperatures on mortality were similar across the seven major regions in Switzerland. Heatwave duration did not modify the effect when considering delayed effects up to 7 days. This nationally representative study, accounting for small-scale exposure variability, suggests that the national heat-warning system should focus on heatwave intensity rather than duration. While a different heat-warning indicator may be appropriate in other countries, our evaluation framework is transferable to any country.
Collapse
Affiliation(s)
- Martina S. Ragettli
- Swiss Tropical and Public Health Institute (SwissTPH), 4123 Allschwil, Switzerland
- University of Basel, 4001 Basel, Switzerland
| | - Apolline Saucy
- Swiss Tropical and Public Health Institute (SwissTPH), 4123 Allschwil, Switzerland
- University of Basel, 4001 Basel, Switzerland
- Barcelona Institute for Global Health (ISGlobal), 08003 Barcelona, Spain
| | - Benjamin Flückiger
- Swiss Tropical and Public Health Institute (SwissTPH), 4123 Allschwil, Switzerland
- University of Basel, 4001 Basel, Switzerland
| | - Danielle Vienneau
- Swiss Tropical and Public Health Institute (SwissTPH), 4123 Allschwil, Switzerland
- University of Basel, 4001 Basel, Switzerland
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute (SwissTPH), 4123 Allschwil, Switzerland
- University of Basel, 4001 Basel, Switzerland
| | - Ana M. Vicedo-Cabrera
- Institute of Social and Preventive Medicine (ISPM), University of Bern, 3012 Bern, Switzerland
- Oeschger Center for Climate Change Research (OCCR), University of Bern, 3012 Bern, Switzerland
| | - Christian Schindler
- Swiss Tropical and Public Health Institute (SwissTPH), 4123 Allschwil, Switzerland
- University of Basel, 4001 Basel, Switzerland
| | - Martin Röösli
- Swiss Tropical and Public Health Institute (SwissTPH), 4123 Allschwil, Switzerland
- University of Basel, 4001 Basel, Switzerland
| |
Collapse
|
25
|
Ordanovich D, Tobías A, Ramiro D. Temporal variation of the temperature-mortality association in Spain: a nationwide analysis. Environ Health 2023; 22:5. [PMID: 36635705 PMCID: PMC9838025 DOI: 10.1186/s12940-022-00957-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Although adaptation to continuously rising ambient temperatures is an emerging topic and has been widely studied at a global scale, detailed analysis of the joint indicators for long-term adaptation in Spain are scarce. This study aims to explore temporal variations of the minimum mortality temperature and mortality burden from heat and cold between 1979 and 2018. METHODS We collected individual all-cause mortality and climate reanalysis data for 4 decades at a daily time step. To estimate the temperature-mortality association for each decade, we fitted a quasi-Poisson time-series regression model using a distributed lag non-linear model with 21 days of lag, controlling for trends and day of the week. We also calculated attributable mortality fractions by age and sex for heat and cold, defined as temperatures above and below the optimum temperature, which corresponds to the minimum mortality in each period. RESULTS We analysed over 14 million deaths registered in Spain between 1979 and 2018. The optimum temperature estimated at a nationwide scale declined from 21 °C in 1979-1988 to 16 °C in 1999-2008, and raised to 18 °C in 2009-2018. The mortality burden from moderate cold showed a 3-fold reduction down to 2.4% in 2009-2018. Since 1988-1999, the mortality risk attributable to moderate (extreme) heat reduced from 0.9% (0.8%) to 0.6% (0.5%). The mortality risk due to heat in women was almost 2 times larger than in men, and did not decrease over time. CONCLUSION Despite the progressively warmer temperatures in Spain, we observed a persistent flattening of the exposure-response curves, which marked an expansion of the uncertainty range of the optimal temperatures. Adaptation has been produced to some extent in a non-uniform manner with a substantial decrease in cold-related mortality, while for heat it became more apparent in the most recent decade only.
Collapse
Affiliation(s)
- Dariya Ordanovich
- Institute of Economy, Geography y Demography (IEGD), Spanish National Research Council (CSIC), Madrid, Spain.
| | - Aurelio Tobías
- Institute of Environmental Assessment and Water Research (IDAEA), Spanish National Research Council (CSIC), Barcelona, Spain
| | - Diego Ramiro
- Institute of Economy, Geography y Demography (IEGD), Spanish National Research Council (CSIC), Madrid, Spain
| |
Collapse
|
26
|
Alahmad B, Khraishah H, Royé D, Vicedo-Cabrera AM, Guo Y, Papatheodorou SI, Achilleos S, Acquaotta F, Armstrong B, Bell ML, Pan SC, de Sousa Zanotti Stagliorio Coelho M, Colistro V, Dang TN, Van Dung D, De’ Donato FK, Entezari A, Guo YLL, Hashizume M, Honda Y, Indermitte E, Íñiguez C, Jaakkola JJ, Kim H, Lavigne E, Lee W, Li S, Madureira J, Mayvaneh F, Orru H, Overcenco A, Ragettli MS, Ryti NR, Saldiva PHN, Scovronick N, Seposo X, Sera F, Silva SP, Stafoggia M, Tobias A, Garshick E, Bernstein AS, Zanobetti A, Schwartz J, Gasparrini A, Koutrakis P. Associations Between Extreme Temperatures and Cardiovascular Cause-Specific Mortality: Results From 27 Countries. Circulation 2023; 147:35-46. [PMID: 36503273 PMCID: PMC9794133 DOI: 10.1161/circulationaha.122.061832] [Citation(s) in RCA: 93] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/29/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cardiovascular disease is the leading cause of death worldwide. Existing studies on the association between temperatures and cardiovascular deaths have been limited in geographic zones and have generally considered associations with total cardiovascular deaths rather than cause-specific cardiovascular deaths. METHODS We used unified data collection protocols within the Multi-Country Multi-City Collaborative Network to assemble a database of daily counts of specific cardiovascular causes of death from 567 cities in 27 countries across 5 continents in overlapping periods ranging from 1979 to 2019. City-specific daily ambient temperatures were obtained from weather stations and climate reanalysis models. To investigate cardiovascular mortality associations with extreme hot and cold temperatures, we fit case-crossover models in each city and then used a mixed-effects meta-analytic framework to pool individual city estimates. Extreme temperature percentiles were compared with the minimum mortality temperature in each location. Excess deaths were calculated for a range of extreme temperature days. RESULTS The analyses included deaths from any cardiovascular cause (32 154 935), ischemic heart disease (11 745 880), stroke (9 351 312), heart failure (3 673 723), and arrhythmia (670 859). At extreme temperature percentiles, heat (99th percentile) and cold (1st percentile) were associated with higher risk of dying from any cardiovascular cause, ischemic heart disease, stroke, and heart failure as compared to the minimum mortality temperature, which is the temperature associated with least mortality. Across a range of extreme temperatures, hot days (above 97.5th percentile) and cold days (below 2.5th percentile) accounted for 2.2 (95% empirical CI [eCI], 2.1-2.3) and 9.1 (95% eCI, 8.9-9.2) excess deaths for every 1000 cardiovascular deaths, respectively. Heart failure was associated with the highest excess deaths proportion from extreme hot and cold days with 2.6 (95% eCI, 2.4-2.8) and 12.8 (95% eCI, 12.2-13.1) for every 1000 heart failure deaths, respectively. CONCLUSIONS Across a large, multinational sample, exposure to extreme hot and cold temperatures was associated with a greater risk of mortality from multiple common cardiovascular conditions. The intersections between extreme temperatures and cardiovascular health need to be thoroughly characterized in the present day-and especially under a changing climate.
Collapse
Affiliation(s)
- Barrak Alahmad
- Environmental Health Department (B.Alahmad, A.Z., J.S., P.K.), Harvard T.H. Chan School of Public Health, Boston, MA
- Environmental and Occupational Health Department, Faculty of Public Health, Kuwait University, Kuwait City (B.Alahmad)
| | - Haitham Khraishah
- Cardiology Division, University of Maryland Medical Center, University of Maryland, Baltimore (H.Khraishah)
| | - Dominic Royé
- Department of Geography, University of Santiago de Compostela, Spain (D.R.)
| | - Ana Maria Vicedo-Cabrera
- Institute of Social and Preventive Medicine (A.M.V-C.)
- Oeschger Center for Climate Change Research, University of Bern, Switzerland (A.M.V-C.)
- Department of Public Health Environments and Society (A.M.V-C., B.Armstrong), London School of Hygiene and Tropical Medicine, UK
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia (Y.G., S.L.)
| | | | - Souzana Achilleos
- School of Health Sciences, Cyprus University of Technology, Limassol (S.A.)
- Department of Primary Care and Population Health, University of Nicosia Medical School, Cyprus (S.A.)
| | | | - Ben Armstrong
- Department of Public Health Environments and Society (A.M.V-C., B.Armstrong), London School of Hygiene and Tropical Medicine, UK
| | - Michelle L. Bell
- School of the Environment, Yale University, New Haven, CT (M.L.B., W.L.)
| | - Shih-Chun Pan
- National Institute of Environmental Health Science, National Health Research Institutes, Zhunan, Taiwan (S-C.P., Y-L.L.G.)
| | | | - Valentina Colistro
- Department of Quantitative Methods, School of Medicine, University of the Republic, Montevideo, Uruguay (V.C.)
| | - Tran Ngoc Dang
- Department of Environmental Health, Faculty of Public Health, University of Medicine and Pharmacy at Ho Chi Minh City, Vietnam (T.N.D., D.V.D.)
| | - Do Van Dung
- Department of Environmental Health, Faculty of Public Health, University of Medicine and Pharmacy at Ho Chi Minh City, Vietnam (T.N.D., D.V.D.)
| | | | - Alireza Entezari
- Faculty of Geography and Environmental Sciences, Hakim Sabzevari University, Sabzevar, Iran (A.E., F.M.)
| | - Yue-Liang Leon Guo
- National Institute of Environmental Health Science, National Health Research Institutes, Zhunan, Taiwan (S-C.P., Y-L.L.G.)
| | - Masahiro Hashizume
- Department of Global Health Policy, Graduate School of Medicine, University of Tokyo, Japan (M.H.)
| | - Yasushi Honda
- Center for Climate Change Adaptation, National Institute for Environmental Studies, Tsukuba, Japan (Y.H.)
| | - Ene Indermitte
- Department of Family Medicine and Public Health, University of Tartu, Estonia (E.I., H.O.)
| | - Carmen Íñiguez
- CIBER de Epidemiología y Salud Pública, Madrid, Spain (D.R., C.Í.)
- Department of Statistics and Computational Research, Universitat de València, Spain (C.Í.)
| | - Jouni J.K. Jaakkola
- Center for Environmental and Respiratory Health Research (J.J.K.J.), University of Oulu, Finland
- Medical Research Center Oulu (J.J.K.J.), University of Oulu, Finland
- Biocenter Oulu (N.R.I.R., J.J.K.J.), University of Oulu, Finland
| | - Ho Kim
- Graduate School of Public Health, Seoul National University, South Korea (H.Kim)
| | - Eric Lavigne
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Canada (E.L.)
| | - Whanhee Lee
- School of the Environment, Yale University, New Haven, CT (M.L.B., W.L.)
- School of Biomedical Engineering, College of Information and Biomedical Engineering, Pusan National University, Yangsan, South Korea (W.L.)
| | - Shanshan Li
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia (Y.G., S.L.)
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia (S.L.)
| | - Joana Madureira
- Department of Environmental Health, Instituto Nacional de Saúde Dr Ricardo Jorge, Porto, Portugal (J.M.)
- Epidemiology Research Unit (EPIUnit) (J.M.), Instituto de Saúde Pública, Universidade do Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (J.M.), Instituto de Saúde Pública, Universidade do Porto, Portugal
| | - Fatemeh Mayvaneh
- Faculty of Geography and Environmental Sciences, Hakim Sabzevari University, Sabzevar, Iran (A.E., F.M.)
| | - Hans Orru
- Department of Family Medicine and Public Health, University of Tartu, Estonia (E.I., H.O.)
| | - Ala Overcenco
- Laboratory of Management in Science and Public Health, National Agency for Public Health of the Ministry of Health, Chisinau, Moldova (A.O.)
| | - Martina S. Ragettli
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute (M.S.R.), Switzerland
- University of Basel (M.S.R.), Switzerland
| | - Niilo R.I. Ryti
- Biocenter Oulu (N.R.I.R., J.J.K.J.), University of Oulu, Finland
| | | | - Noah Scovronick
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA (N.S.)
| | - Xerxes Seposo
- School of Tropical Medicine and Global Health, Nagasaki University, Japan (X.S., A.T.)
| | - Francesco Sera
- Department of Statistics, Computer Science and Applications G. Parenti, University of Florence, Italy (F.S.)
| | - Susana Pereira Silva
- Department of Epidemiology, Instituto Nacional de Saúde Dr Ricardo Jorge, Lisboa, Portugal (S.P.S.)
| | - Massimo Stafoggia
- Department of Epidemiology, Lazio Regional Health Service, Rome, Italy (F.K.D’D., M.S.)
| | - Aurelio Tobias
- School of Tropical Medicine and Global Health, Nagasaki University, Japan (X.S., A.T.)
- Institute of Environmental Assessment and Water Research, Spanish Council for Scientific Research, Barcelona (A.T.)
| | - Eric Garshick
- Pulmonary, Allergy, Sleep and Critical Care Medicine Section, Department of Medicine, Veterans Affairs Boston Healthcare System, Harvard Medical School, West Roxbury, MA (E.G.)
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital (E.G.), Harvard Medical School, MA
| | - Aaron S. Bernstein
- Center for Climate, Health and the Global Environment (A.S.B.), Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Pediatrics, Boston Children’s Hospital (A.S.B.), Harvard Medical School, MA
| | - Antonella Zanobetti
- Environmental Health Department (B.Alahmad, A.Z., J.S., P.K.), Harvard T.H. Chan School of Public Health, Boston, MA
| | - Joel Schwartz
- Environmental Health Department (B.Alahmad, A.Z., J.S., P.K.), Harvard T.H. Chan School of Public Health, Boston, MA
| | - Antonio Gasparrini
- Centre for Statistical Methodology (A.G.), London School of Hygiene and Tropical Medicine, UK
- Centre on Climate Change and Planetary Health (A.G.), London School of Hygiene and Tropical Medicine, UK
| | - Petros Koutrakis
- Environmental Health Department (B.Alahmad, A.Z., J.S., P.K.), Harvard T.H. Chan School of Public Health, Boston, MA
| |
Collapse
|
27
|
Zheng H, Wang Q, Fu J, Ding Z, Cheng J, Xu Z, Xu Y, Xia Y. Geographical variation in the effect of ambient temperature on infectious diarrhea among children under 5 years. ENVIRONMENTAL RESEARCH 2023; 216:114491. [PMID: 36208789 DOI: 10.1016/j.envres.2022.114491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/22/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Understanding the geographical distribution in the association of temperature with childhood diarrhea can assist in formulating effective localized diarrhea prevention practices. This study aimed to identify the geographical variation in terms of temperature thresholds, lag effects, and attributable fraction (AF) in the effects of ambient temperature on Class C Other Infectious Diarrhea (OID) among children <5 years in Jiangsu Province, China. Daily data of OID cases and meteorological variables from 2015 to 2019 were collected. City-specific minimum morbidity temperature (MMT), increasing risk temperature (IRT), maximum risk temperature (MRT), maximum risk lag day (MRD), and lag day duration (LDD) were identified as risk indicators for the temperature-OID relationship using distributed lag non-linear models. The AF of OID incidence due to temperature was evaluated. Multivariable regression was also applied to explore the underlying modifiers of the AF. The geographical distributions of MMT, IRT, and MRT generally decreased with the latitude increment varying between 22.3-34.7 °C, -2.9-18.1 °C, and -6.8-23.2 °C. Considerable variation was shown in the AF ranging from 0.2 to 8.5%, and the AF significantly increased with latitude (95% confidence interval (CI): -3.458, -0.987) and economic status decrement (95% CI: -0.161, -0.019). Our study demonstrated between-city variations in the association of temperature with OID, which should be considered in the localized clinical and public health practices to decrease the incidence of childhood diarrhea.
Collapse
Affiliation(s)
- Hao Zheng
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - QingQing Wang
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Jianguang Fu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China; Key Laboratory of Enteric Pathogenic Microbiology, Ministry of Health, Nanjing, China
| | - Zhen Ding
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Jian Cheng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China
| | - Zhiwei Xu
- School of Public Health, University of Queensland, Queensland, Australia
| | - Yan Xu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China; Key Laboratory of Enteric Pathogenic Microbiology, Ministry of Health, Nanjing, China.
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
28
|
Bühler JL, Shrikhande S, Kapwata T, Cissé G, Liang Y, Pedder H, Kwiatkowski M, Kunene Z, Mathee A, Peer N, Wright CY. The Association between Apparent Temperature and Hospital Admissions for Cardiovascular Disease in Limpopo Province, South Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:ijerph20010116. [PMID: 36612437 PMCID: PMC9820030 DOI: 10.3390/ijerph20010116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 05/27/2023]
Abstract
Cardiovascular diseases (CVDs) have a high disease burden both globally and in South Africa. They have also been found to be temperature-sensitive globally. The association between temperature and CVD morbidity has previously been demonstrated, but little is known about it in South Africa. It is important to understand how changes in temperature in South Africa will affect CVD morbidity, especially in rural regions, to inform public health interventions and adaptation strategies. This study aimed to determine the short-term effect of apparent temperature (Tapp) on CVD hospital admissions in Mopani District, Limpopo province, South Africa. A total of 3124 CVD hospital admissions records were obtained from two hospitals from 1 June 2009 to 31 December 2016. Daily Tapp was calculated using nearby weather station measurements. The association was modelled using a distributed lag non-linear model with a negative binomial regression over a 21-day lag period. The fraction of morbidity attributable to non-optimal Tapp, i.e., cold (6-25 °C) and warm (27-32 °C) Tapp was reported. We found an increase in the proportion of admissions due to CVDs for warm and cold Tapp cumulatively over 21 days. Increasing CVD admissions due to warm Tapp appeared immediately and lasted for two to four days, whereas the lag-structure for the cold effect was inconsistent. A proportion of 8.5% (95% Confidence Interval (CI): 3.1%, 13.7%) and 1.1% (95% CI: -1.4%, 3.5%) of the total CVD admissions was attributable to cold and warm temperatures, respectively. Warm and cold Tapp may increase CVD admissions, suggesting that the healthcare system and community need to be prepared in the context of global temperature changes.
Collapse
Affiliation(s)
- Jacqueline Lisa Bühler
- Department of Global Public Health, Karolinska Institutet, 171 77 Stockholm, Sweden
- Epidemiology and Public Health Department, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- Faculty of Science, University of Basel, 4001 Basel, Switzerland
| | - Shreya Shrikhande
- Epidemiology and Public Health Department, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- Faculty of Science, University of Basel, 4001 Basel, Switzerland
| | - Thandi Kapwata
- Environment and Health Research Unit, South African Medical Research Council, Johannesburg 2094, South Africa
- Environmental Health Department, Faculty of Health Sciences, University of Johannesburg, Johannesburg 2094, South Africa
| | - Guéladio Cissé
- Epidemiology and Public Health Department, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- Faculty of Science, University of Basel, 4001 Basel, Switzerland
| | - Yajun Liang
- Department of Global Public Health, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Hugo Pedder
- Population Health Sciences, University of Bristol, Bristol BS8 2PS, UK
| | - Marek Kwiatkowski
- Epidemiology and Public Health Department, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland
- Faculty of Science, University of Basel, 4001 Basel, Switzerland
| | - Zamantimande Kunene
- Environment and Health Research Unit, South African Medical Research Council, Johannesburg 2094, South Africa
| | - Angela Mathee
- Environment and Health Research Unit, South African Medical Research Council, Johannesburg 2094, South Africa
- Environmental Health Department, Faculty of Health Sciences, University of Johannesburg, Johannesburg 2094, South Africa
| | - Nasheeta Peer
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Durban 4091, South Africa
- Department of Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Caradee Y. Wright
- Environment and Health Research Unit, South African Medical Research Council, Pretoria 0001, South Africa
- Department of Geography, Geoinformatics and Meteorology, University of Pretoria, Pretoria 0001, South Africa
| |
Collapse
|
29
|
Roca-Barceló A, Fecht D, Pirani M, Piel FB, Nardocci AC, Vineis P. Trends in Temperature-associated Mortality in São Paulo (Brazil) between 2000 and 2018: an Example of Disparities in Adaptation to Cold and Heat. J Urban Health 2022; 99:1012-1026. [PMID: 36357626 PMCID: PMC9727050 DOI: 10.1007/s11524-022-00695-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/19/2022] [Indexed: 11/12/2022]
Abstract
Exposure to non-optimal temperatures remains the single most deathful direct climate change impact to health. The risk varies based on the adaptation capacity of the exposed population which can be driven by climatic and/or non-climatic factors subject to fluctuations over time. We investigated temporal changes in the exposure-response relationship between daily mean temperature and mortality by cause of death, sex, age, and ethnicity in the megacity of São Paulo, Brazil (2000-2018). We fitted a quasi-Poisson regression model with time-varying distributed-lag non-linear model (tv-DLNM) to obtain annual estimates. We used two indicators of adaptation: trends in the annual minimum mortality temperature (MMT), i.e., temperature at which the mortality rate is the lowest, and in the cumulative relative risk (cRR) associated with extreme cold and heat. Finally, we evaluated their association with annual mean temperature and annual extreme cold and heat, respectively to assess the role of climatic and non-climatic drivers. In total, we investigated 4,471,000 deaths from non-external causes. We found significant temporal trends for both the MMT and cRR indicators. The former was decoupled from changes in AMT, whereas the latter showed some degree of alignment with extreme heat and cold, suggesting the role of both climatic and non-climatic adaptation drivers. Finally, changes in MMT and cRR varied substantially by sex, age, and ethnicity, exposing disparities in the adaptation capacity of these population groups. Our findings support the need for group-specific interventions and regular monitoring of the health risk to non-optimal temperatures to inform urban public health policies.
Collapse
Affiliation(s)
- Aina Roca-Barceló
- Department of Epidemiology and Biostatistics, School of Public Health, MRC Centre for Environment and Health, Imperial College London, Norfolk Place, London, W2 1PG, UK.
| | - Daniela Fecht
- Department of Epidemiology and Biostatistics, School of Public Health, MRC Centre for Environment and Health, Imperial College London, Norfolk Place, London, W2 1PG, UK.,Protection Research Unit in Chemical and Radiation Threats and Hazards, Department of Epidemiology and Biostatistics, School of Public Health, National Institute for Health Research Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Monica Pirani
- Department of Epidemiology and Biostatistics, School of Public Health, MRC Centre for Environment and Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Frédéric B Piel
- Department of Epidemiology and Biostatistics, School of Public Health, MRC Centre for Environment and Health, Imperial College London, Norfolk Place, London, W2 1PG, UK.,Department of Epidemiology and Biostatistics, School of Public Health, National Institute for Health Research Health Protection Research Unit in Environmental Exposures and Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - Adelaide C Nardocci
- Department of Environmental Health, School of Public Health, University of São Paulo, São Paulo, Brazil
| | - Paolo Vineis
- Department of Epidemiology and Biostatistics, School of Public Health, MRC Centre for Environment and Health, Imperial College London, Norfolk Place, London, W2 1PG, UK
| |
Collapse
|
30
|
Liu H, Tong M, Guo F, Nie Q, Li J, Li P, Zhu T, Xue T. Deaths attributable to anomalous temperature: A generalizable metric for the health impact of global warming. ENVIRONMENT INTERNATIONAL 2022; 169:107520. [PMID: 36170754 DOI: 10.1016/j.envint.2022.107520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/05/2022] [Accepted: 09/10/2022] [Indexed: 06/16/2023]
Abstract
The U-shaped association between health outcomes and ambient temperatures has been extensively investigated. However, such analyses cannot fully estimate the mortality burden of climate change because the features of the association (e.g., minimum mortality temperature) vary with human adaptation; thus, they are not generalizable to different locations. In this study, we assumed that humans could adapt to regular temperature variations; and thus examined the all-cause mortality attributable to temperature anomaly (TA), an indicator widely utilized in climate science to measure irregular temperature fluctuations, across 115 cities in the United States (US). We first used quasi-Poisson regressions to obtain the city-specific TA-mortality associations, then used meta-regression to pool these city-specific estimates. Finally, we calculated the number of TA-related deaths using the uniform pooled association, then compared it to the estimates from city-specific associations, which had been controlled for adaptation. Meta-regression showed a U-shaped TA-mortality association, centered at a TA near 0. According to the pooled association, 0.579 % (95 % confidence interval [CI]: 0.465-0.681 %), 0.394 % (95 % CI: 0.332-0.451 %), and 0.185 % (95 % CI: 0.107-0.254 %) of all-cause deaths were attributable to all anomalous temperatures (TA ≠ 0), anomalous heat (TA > 0), and anomalous cold (TA < 0), respectively. At the city level, heat-related deaths estimated from the pooled association were in good agreement with heat-related deaths estimated from the city-specific associations (R2 = 0.84). However, the cold-related deaths estimated from the two methods showed a weaker correlation (R2 = 0.07). Our findings suggest that TA constitutes a generalizable indicator that can uniformly evaluate deaths attributable to anomalous heat in distinct geographical locations.
Collapse
Affiliation(s)
- Hengyi Liu
- Institute of Reproductive and Child Health / National Health Commission Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Mingkun Tong
- Institute of Reproductive and Child Health / National Health Commission Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Fuyu Guo
- Institute of Reproductive and Child Health / National Health Commission Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China
| | - Qiyue Nie
- College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Jiwei Li
- School of Computer Science, Zhejiang University, Hangzhou, China
| | - Pengfei Li
- Institute of Reproductive and Child Health / National Health Commission Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China; Advanced Institute of Information Technology, Peking University, Hangzhou, China
| | - Tong Zhu
- College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Tao Xue
- Institute of Reproductive and Child Health / National Health Commission Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Centre, Beijing, China.
| |
Collapse
|
31
|
Skarha J, Dominick A, Spangler K, Dosa D, Rich JD, Savitz DA, Zanobetti A. Provision of Air Conditioning and Heat-Related Mortality in Texas Prisons. JAMA Netw Open 2022; 5:e2239849. [PMID: 36322085 PMCID: PMC9631100 DOI: 10.1001/jamanetworkopen.2022.39849] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
IMPORTANCE There is a large body of epidemiologic evidence that heat is associated with increased risk of mortality. One of the most effective strategies to mitigate the effects of heat is through air conditioning (AC); Texas regulates the internal temperature of jails to stay between 65 and 85 °F degrees, but these same standards do not apply to state and private prisons. OBJECTIVE To analyze whether heat during warm months is associated with an increased risk of mortality in Texas prisons without AC. DESIGN, SETTING, AND PARTICIPANTS This case-crossover study included individuals who died in Texas prisons between 2001 and 2019. The association of heat in warm months with mortality in Texas prisons with and without AC was estimated. Data analysis was conducted from January to April 2022. EXPOSURES Increasing daily heat index above 85 °F and extreme heat days (days above the 90th percentile heat index for the prison location). MAIN OUTCOMES AND MEASURES Daily mortality in Texas prisons. RESULTS There were 2083 and 1381 deaths in prisons without and with AC, respectively, during warm months from 2001 to 2019. Most of the deceased were male (3339 of 3464 [96%]) and the median (IQR) age at death was 54 (45-62) years. A 1-degree increase above 85 °F heat index and an extreme heat day were associated with a 0.7% (95% CI, 0.1%-1.3%) and a 15.1% (95% CI, 1.3%-30.8%) increase in the risk of mortality in prisons without AC, respectively. Approximately 13% of mortality or 271 deaths may be attributable to extreme heat during warm months between 2001 to 2019 in Texas prison facilities without AC. In prisons with AC, a negative percentage change in mortality risk was observed, although the 95% CI crossed zero (percentage change in mortality risk: -0.6%; 95% CI, -1.6% to 0.5%). The estimates in prisons without AC were statistically different than the estimates in prisons with AC (P = .05). CONCLUSIONS AND RELEVANCE This study found an average of 14 deaths per year between 2001 to 2019 were associated with heat in Texas prisons without AC vs no deaths associated with heat in prisons with AC. Adopting an AC policy in Texas prisons may be important for protecting the health of one of our most vulnerable populations.
Collapse
Affiliation(s)
- Julianne Skarha
- Department of Epidemiology, School of Public Health, Brown University, Providence, Rhode Island
| | | | - Keith Spangler
- Department of Environmental Health, School of Public Health, Boston University, Boston, Massachusetts
| | - David Dosa
- Warren Alpert Medical School, Brown University, Providence, Rhode Island
- Providence VAMC, Department of Primary Care, Providence, Rhode Island
| | - Josiah D. Rich
- Department of Epidemiology, School of Public Health, Brown University, Providence, Rhode Island
- Center for Health and Justice Transformation, Providence, Rhode Island
| | - David A. Savitz
- Department of Epidemiology, School of Public Health, Brown University, Providence, Rhode Island
| | - Antonella Zanobetti
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
32
|
Heat-related mortality prediction using low-frequency climate oscillation indices: Case studies of the cities of Montréal and Québec, Canada. Environ Epidemiol 2022; 6:e206. [PMID: 35434457 PMCID: PMC9005246 DOI: 10.1097/ee9.0000000000000206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 03/12/2022] [Indexed: 11/25/2022] Open
Abstract
Heat-related mortality is an increasingly important public health burden that is expected to worsen with climate change. In addition to long-term trends, there are also interannual variations in heat-related mortality that are of interest for efficient planning of health services. Large-scale climate patterns have an important influence on summer weather and therefore constitute important tools to understand and predict the variations in heat-related mortality.
Collapse
|