1
|
Galstyan DS, Lebedev AS, Ilyin NP, Papulova MS, Golushko NI, Tishkina VV, Saklakova DK, Martynov D, Kolesnikova TO, Rosemberg DB, De Abreu MS, Demin KA, Kalueff AV. Acute Behavioral and Neurochemical Effects of Sulpiride in Adult Zebrafish. Neurochem Res 2024; 50:11. [PMID: 39549192 DOI: 10.1007/s11064-024-04268-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 11/18/2024]
Abstract
Affective and psychotic disorders are highly prevalent and severely debilitating mental illnesses that often remain untreated or treatment-resistant. Sulpiride is a common antipsychotic (neuroleptic) drug whose well-established additional (e.g., antidepressant) therapeutic effects call for further studies of a wider spectrum of its CNS effects. Here, we examined effects of acute 20-min exposure to sulpiride (50-200 mg/L) on anxiety- and depression-like behaviors, as well as on brain monoamines, in adult zebrafish (Danio rerio). Overall, sulpiride exerted overt anxiolytic-like effects in the novel tank test and showed tranquilizing-like effects in the zebrafish tail immobilization test, accompanied by lowered whole-brain dopamine and its elevated turnover, without affecting serotonin or norepinephrine levels and their turnover. Taken together, these findings support complex behavioral pharmacology of sulpiride in vivo and reconfirm high sensitivity of zebrafish-based screens to this and, likely, other related clinically active neuroleptics.
Collapse
Affiliation(s)
- David S Galstyan
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - Andrey S Lebedev
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - Nikita P Ilyin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | - Maria S Papulova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Nikita I Golushko
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Valeria V Tishkina
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Daryna K Saklakova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Daniil Martynov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | | | - Dennis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil
| | - Murilo S De Abreu
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
- Western Caspian University, Baku, Azerbaijan
| | - Konstantin A Demin
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.
- Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - Allan V Kalueff
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.
- Department of Biolosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China.
- Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China.
| |
Collapse
|
2
|
Kuang J, Kafetzopoulos V, Deth R, Kocsis B. Dopamine D4 Receptor Agonist Drastically Increases Delta Activity in the Thalamic Nucleus Reuniens: Potential Role in Communication between Prefrontal Cortex and Hippocampus. Int J Mol Sci 2023; 24:15289. [PMID: 37894968 PMCID: PMC10607171 DOI: 10.3390/ijms242015289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Network oscillations are essential for all cognitive functions. Oscillatory deficits are well established in psychiatric diseases and are recapitulated in animal models. They are significantly and specifically affected by pharmacological interventions using psychoactive compounds. Dopamine D4 receptor (D4R) activation was shown to enhance gamma rhythm in freely moving rats and to specifically affect slow delta and theta oscillations in the urethane-anesthetized rat model. The goal of this study was to test the effect of D4R activation on slow network oscillations at delta and theta frequencies during wake states, potentially supporting enhanced functional connectivity during dopamine-induced attention and cognitive processing. Network activity was recorded in the prefrontal cortex (PFC), hippocampus (HC) and nucleus reuniens (RE) in control conditions and after injecting the D4R agonist A-412997 (3 and 5 mg/kg; systemic administration). We found that A-412997 elicited a lasting (~40 min) wake state and drastically enhanced narrow-band delta oscillations in the PFC and RE in a dose-dependent manner. It also preferentially enhanced delta synchrony over theta coupling within the PFC-RE-HC circuit, strongly strengthening PFC-RE coupling. Thus, our findings indicate that the D4R may contribute to cognitive processes, at least in part, through acting on wake delta oscillations and that the RE, providing an essential link between the PFC and HC, plays a prominent role in this mechanism.
Collapse
Affiliation(s)
- J. Kuang
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (J.K.); (V.K.)
| | - V. Kafetzopoulos
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (J.K.); (V.K.)
- Department of Psychiatry, Medical School, University of Ioannina, 45110 Ioannina, Greece
| | - Richard Deth
- Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | - B. Kocsis
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (J.K.); (V.K.)
| |
Collapse
|
3
|
Boateng CA, Nilson AN, Placide R, Pham ML, Jakobs FM, Boldizsar N, McIntosh S, Stallings LS, Korankyi IV, Kelshikar S, Shah N, Panasis D, Muccilli A, Ladik M, Maslonka B, McBride C, Sanchez MX, Akca E, Alkhatib M, Saez J, Nguyen C, Kurtyan E, DePierro J, Crowthers R, Brunt D, Bonifazi A, Newman AH, Rais R, Slusher BS, Free RB, Sibley DR, Stewart KD, Wu C, Hemby SE, Keck TM. Pharmacology and Therapeutic Potential of Benzothiazole Analogues for Cocaine Use Disorder. J Med Chem 2023; 66:12141-12162. [PMID: 37646374 PMCID: PMC10510399 DOI: 10.1021/acs.jmedchem.3c00734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Indexed: 09/01/2023]
Abstract
Pharmacological targeting of the dopamine D4 receptor (D4R)─expressed in brain regions that control cognition, attention, and decision-making─could be useful for several neuropsychiatric disorders including substance use disorders (SUDs). This study focused on the synthesis and evaluation of a novel series of benzothiazole analogues designed to target D4R. We identified several compounds with high D4R binding affinity (Ki ≤ 6.9 nM) and >91-fold selectivity over other D2-like receptors (D2R, D3R) with diverse partial agonist and antagonist profiles. Novel analogue 16f is a potent low-efficacy D4R partial agonist, metabolically stable in rat and human liver microsomes, and has excellent brain penetration in rats (AUCbrain/plasma > 3). 16f (5-30 mg/kg, i.p.) dose-dependently decreased iv cocaine self-administration in rats, consistent with previous results produced by D4R-selective antagonists. Off-target antagonism of 5-HT2A or 5-HT2B may also contribute to these effects. Results with 16f support further efforts to target D4R in SUD treatment.
Collapse
Affiliation(s)
- Comfort A. Boateng
- Department
of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, One University Parkway, High Point, North Carolina 27268, United States
| | - Ashley N. Nilson
- Molecular
Neuropharmacology Section, National Institute of Neurological Disorders
and Stroke-Intramural Research Program, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Rebekah Placide
- Department
of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, One University Parkway, High Point, North Carolina 27268, United States
| | - Mimi L. Pham
- Department
of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, One University Parkway, High Point, North Carolina 27268, United States
| | - Franziska M. Jakobs
- Department
of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, One University Parkway, High Point, North Carolina 27268, United States
| | - Noelia Boldizsar
- Molecular
Neuropharmacology Section, National Institute of Neurological Disorders
and Stroke-Intramural Research Program, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Scot McIntosh
- Department
of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, One University Parkway, High Point, North Carolina 27268, United States
| | - Leia S. Stallings
- Department
of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, One University Parkway, High Point, North Carolina 27268, United States
| | - Ivana V. Korankyi
- Department
of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, One University Parkway, High Point, North Carolina 27268, United States
| | - Shreya Kelshikar
- Department
of Chemistry & Biochemistry, Department of Biological & Biomedical
Sciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Nisha Shah
- Department
of Chemistry & Biochemistry, Department of Biological & Biomedical
Sciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Diandra Panasis
- Department
of Chemistry & Biochemistry, Department of Biological & Biomedical
Sciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Abigail Muccilli
- Department
of Chemistry & Biochemistry, Department of Biological & Biomedical
Sciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Maria Ladik
- Department
of Chemistry & Biochemistry, Department of Biological & Biomedical
Sciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Brianna Maslonka
- Department
of Chemistry & Biochemistry, Department of Biological & Biomedical
Sciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Connor McBride
- Department
of Chemistry & Biochemistry, Department of Biological & Biomedical
Sciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Moises Ximello Sanchez
- Department
of Chemistry & Biochemistry, Department of Biological & Biomedical
Sciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Ebrar Akca
- Department
of Chemistry & Biochemistry, Department of Biological & Biomedical
Sciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Mohammad Alkhatib
- Department
of Chemistry & Biochemistry, Department of Biological & Biomedical
Sciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Julianna Saez
- Department
of Chemistry & Biochemistry, Department of Biological & Biomedical
Sciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Catherine Nguyen
- Department
of Chemistry & Biochemistry, Department of Biological & Biomedical
Sciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Emily Kurtyan
- Department
of Chemistry & Biochemistry, Department of Biological & Biomedical
Sciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Jacquelyn DePierro
- Department
of Chemistry & Biochemistry, Department of Biological & Biomedical
Sciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Raymond Crowthers
- Department
of Chemistry & Biochemistry, Department of Biological & Biomedical
Sciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Dylan Brunt
- Department
of Chemistry & Biochemistry, Department of Biological & Biomedical
Sciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Alessandro Bonifazi
- Medicinal
Chemistry Section, Molecular Targets and Medications Discovery Branch,
National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Amy Hauck Newman
- Medicinal
Chemistry Section, Molecular Targets and Medications Discovery Branch,
National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Rana Rais
- Department
of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Barbara S. Slusher
- Department
of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - R. Benjamin Free
- Molecular
Neuropharmacology Section, National Institute of Neurological Disorders
and Stroke-Intramural Research Program, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - David R. Sibley
- Molecular
Neuropharmacology Section, National Institute of Neurological Disorders
and Stroke-Intramural Research Program, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Kent D. Stewart
- Department
of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, One University Parkway, High Point, North Carolina 27268, United States
| | - Chun Wu
- Department
of Chemistry & Biochemistry, Department of Biological & Biomedical
Sciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Scott E. Hemby
- Department
of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, One University Parkway, High Point, North Carolina 27268, United States
| | - Thomas M. Keck
- Department
of Chemistry & Biochemistry, Department of Biological & Biomedical
Sciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| |
Collapse
|
4
|
Chestnykh D, Graßl F, Pfeifer C, Dülk J, Ebner C, Walters M, von Hörsten S, Kornhuber J, Kalinichenko LS, Heinrich M, Müller CP. Behavioural effects of APH199, a selective dopamine D4 receptor agonist, in animal models. Psychopharmacology (Berl) 2023; 240:1011-1031. [PMID: 36854793 PMCID: PMC10006056 DOI: 10.1007/s00213-023-06347-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/21/2023] [Indexed: 03/02/2023]
Abstract
RATIONALE The dopamine D4 receptors (DRD4) play a key role in numerous brain functions and are involved in the pathogenesis of various psychiatric disorders. DRD4 ligands have been shown to moderate anxiety, reward and depression-like behaviours, and cognitive impairments. Despite a series of promising but ambiguous findings, the therapeutic advantages of DRD4 stimulation remain elusive. OBJECTIVES The investigation focused on the behavioural effects of the recently developed DRD4 agonist, APH199, to evaluate its impact on anxiety, anhedonia, behavioural despair, establishment and retrieval of alcohol reinforcement, and amphetamine (AMPH)-induced symptoms. METHODS Male C57BL/6 J mice and Sprague-Dawley rats were examined in five independent experiments. We assessed APH199 (0.1-5 mg/kg, i.p.) effects on a broad range of behavioural parameters in the open field (OF) test, conditioned place preference test (CPP), elevated plus maze (EPM), light-dark box (LDB), novelty suppressed feeding (NSF), forced swim test (FST), sucrose preference test (SPT), AMPH-induced hyperlocomotion test (AIH), and prepulse inhibition (PPI) of the acoustic startle response in AMPH-sensitized rats. RESULTS APH199 caused mild and sporadic anxiolytic and antidepressant effects in EPM and FST, but no remarkable impact on behaviour in other tests in mice. However, we found a significant increase in AMPH-induced hyperactivity, suggesting an exaggeration of the psychotic-like responses in the AMPH-sensitized rats. CONCLUSIONS Our data challenged the hypothesis of the therapeutic benefits of DRD4 agonists, pointing out a possible aggravation of psychosis. We suggest a need for further preclinical studies to ensure the safety of antipsychotics with DRD4 stimulating properties.
Collapse
Affiliation(s)
- Daria Chestnykh
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Fabian Graßl
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University of Erlangen-Nuremberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Canice Pfeifer
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Jonas Dülk
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Chiara Ebner
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Mona Walters
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Stephan von Hörsten
- Department of Experimental Therapy, Preclinical Experimental Center, Friedrich-Alexander-University of Erlangen-Nuremberg, Palmsanlage 5, 91054, Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Liubov S Kalinichenko
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Markus Heinrich
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University of Erlangen-Nuremberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany.
- Centre for Drug Research, University Sains Malaysia, Penang, Minden, Malaysia.
| |
Collapse
|
5
|
Khan SS, Khatik GL, Datusalia AK. Strategies for Treatment of Disease-Associated Dementia Beyond Alzheimer's Disease: An Update. Curr Neuropharmacol 2023; 21:309-339. [PMID: 35410602 PMCID: PMC10190146 DOI: 10.2174/1570159x20666220411083922] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/27/2022] [Accepted: 04/03/2022] [Indexed: 11/22/2022] Open
Abstract
Memory, cognition, dementia, and neurodegeneration are complexly interlinked processes with various mechanistic pathways, leading to a range of clinical outcomes. They are strongly associated with pathological conditions like Alzheimer's disease, Parkinson's disease, schizophrenia, and stroke and are a growing concern for their timely diagnosis and management. Several cognitionenhancing interventions for management include non-pharmacological interventions like diet, exercise, and physical activity, while pharmacological interventions include medicinal agents, herbal agents, and nutritional supplements. This review critically analyzed and discussed the currently available agents under different drug development phases designed to target the molecular targets, including cholinergic receptor, glutamatergic system, GABAergic targets, glycine site, serotonergic targets, histamine receptors, etc. Understanding memory formation and pathways involved therein aids in opening the new gateways to treating cognitive disorders. However, clinical studies suggest that there is still a dearth of knowledge about the pathological mechanism involved in neurological conditions, making the dropouts of agents from the initial phases of the clinical trial. Hence, a better understanding of the disease biology, mode of drug action, and interlinked mechanistic pathways at a molecular level is required.
Collapse
Affiliation(s)
- Sabiya Samim Khan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Lucknow (UP) India
| | - Gopal L. Khatik
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Lucknow (UP) India
| | - Ashok K. Datusalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Lucknow (UP) India
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, Lucknow (UP) India
| |
Collapse
|
6
|
Thörn CW, Kafetzopoulos V, Kocsis B. Differential Effect of Dopamine D4 Receptor Activation on Low-Frequency Oscillations in the Prefrontal Cortex and Hippocampus May Bias the Bidirectional Prefrontal–Hippocampal Coupling. Int J Mol Sci 2022; 23:ijms231911705. [PMID: 36233007 PMCID: PMC9569525 DOI: 10.3390/ijms231911705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/18/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Dopamine D4 receptor (D4R) mechanisms are implicated in psychiatric diseases characterized by cognitive deficits, including schizophrenia, ADHD, and autism. The cellular mechanisms are poorly understood, but impaired neuronal synchronization in cortical networks was proposed to contribute to these deficits. In animal experiments, D4R activation was shown to generate aberrant increased gamma oscillations and to reduce performance on cognitive tasks requiring functional prefrontal cortex (PFC) and hippocampus (HPC) networks. While fast oscillations in the gamma range are important for local synchronization within neuronal ensembles, long-range synchronization between distant structures is achieved by slow rhythms in the delta, theta, alpha ranges. The characteristics of slow oscillations vary between structures during cognitive tasks. HPC activity is dominated by theta rhythm, whereas PFC generates unique oscillations in the 2–4 Hz range. In order to investigate the role of D4R on slow rhythms, cortical activity was recorded in rats under urethane anesthesia in which slow oscillations can be elicited in a controlled manner without behavioral confounds, by electrical stimulation of the brainstem reticular formation. The local field potential segments during stimulations were extracted and subjected to fast Fourier transform to obtain power density spectra. The selective D4R agonist A-412997 (5 and 10 mg/kg) and antagonists L-745870 (5 and 10 mg/kg) were injected systemically and the peak power in the two frequency ranges were compared before and after the injection. We found that D4R compounds significantly changed the activity of both HPC and PFC, but the direction of the effect was opposite in the two structures. D4R agonist enhanced PFC slow rhythm (delta, 2–4 Hz) and suppressed HPC theta, whereas the antagonist had an opposite effect. Analogous changes of the two slow rhythms were also found in the thalamic nucleus reuniens, which has connections to both forebrain structures. Slow oscillations play a key role in interregional cortical coupling; delta and theta oscillations were shown in particular, to entrain neuronal firing and to modulate gamma activity in interconnected forebrain structures with a relative HPC theta dominance over PFC. Thus, the results of this study indicate that D4R activation may introduce an abnormal bias in the bidirectional PFC–HPC coupling which can be reversed by D4R antagonists.
Collapse
Affiliation(s)
| | - Vasilios Kafetzopoulos
- Department Psychiatry at BIDMC, Harvard Medical School, Boston, MA 02215, USA
- Department of Psychiatry, Medical School, University of Ioannina, 45110 Ioannina, Greece
| | - Bernat Kocsis
- Department Psychiatry at BIDMC, Harvard Medical School, Boston, MA 02215, USA
- Correspondence: ; Tel.: +617-331-1782
| |
Collapse
|
7
|
Potential Targets and Action Mechanism of Gastrodin in the Treatment of Attention-Deficit/Hyperactivity Disorder: Bioinformatics and Network Pharmacology Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3607053. [PMID: 36133787 PMCID: PMC9484880 DOI: 10.1155/2022/3607053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/08/2022] [Accepted: 08/18/2022] [Indexed: 02/07/2023]
Abstract
Objective Gastrodin is a main medicinal component of traditional Chinese medicine (TCM) Gastrodia elata Blume (G. elata), presenting the potential for the treatment of attention-deficit/hyperactivity disorder (ADHD). However, the underlying targets and action mechanisms of the treatment have not been identified. Methods The gastrodin-related microarray dataset GSE85871 was obtained from the GEO database and analyzed by GEO2R to obtain differentially expressed genes (DEGs). Subsequently, the targets of gastrodin were supplemented by the Encyclopedia of Traditional Chinese Medicine (ETCM), PubChem, STITCH, and SwissTargetPrediction databases. ADHD-associated genes were collected from six available disease databases (i.e., TTD, DrugBank, OMIM, PharmGKB, GAD, and KEGG DISEASE). The potential targets of gastrodin during ADHD treatment were obtained by mapping gastrodin-related targets with ADHD genes, and their protein–protein interaction (PPI) relationship was constructed by the STRING database. The GO function and KEGG pathway enrichment analyses were performed using the ClueGO plug-in in the Cytoscape software and DAVID database, respectively. Finally, the binding affinity between gastrodin and important targets was verified by molecular docking. Results A total of 460 gastrodin-related DEGs were identified from GSE85871, and 124 known gastrodin targets were supplemented from 4 databases, including ETCM. A total of 440 genes were collected from the above 6 disease databases, and 267 ADHD-relevant genes were obtained after duplicate removal. Through mapping the 584 gastrodin targets to the 267 ADHD genes, 16 potential therapeutic targets were obtained, among which the important ones were DRD2, DRD4, CHRNA3, CYP1A1, TNF, IL6, and KCNJ3. The enrichment analysis results indicated that 16 potential targets were involved in 25 biological processes (e.g., dopamine (DA) transport) and 22 molecular functions (e.g., postsynaptic neurotransmitter receptor activity), which were mainly localized at excitatory synapses. The neuroactive ligand-receptor interaction, cholinergic synapse, and dopaminergic synapse might be the core pathways of gastrodin in ADHD treatment. Through molecular docking, it was preliminarily verified that gastrodin showed good binding activity to seven important targets and formed stable binding conformations. Conclusions Gastrodin might exert an anti-ADHD effect by upgrading the dopaminergic system and central cholinergic system, inhibiting the inflammatory response and GIRK channel, and exerting a synergistic effect with other drugs on ADHD. For this reason, gastrodin should be considered a multitarget drug for ADHD treatment.
Collapse
|
8
|
Sinani A, Vassi A, Tsotsokou G, Nikolakopoulou M, Kouvelas ED, Mitsacos A. Early life stress influences basal ganglia dopamine receptors and novel object recognition of adolescent and adult rats. IBRO Neurosci Rep 2022; 12:342-354. [PMID: 35572456 PMCID: PMC9092503 DOI: 10.1016/j.ibneur.2022.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 12/15/2022] Open
Abstract
Environmental stimuli in early life are recognized to affect brain development and behavior. Mother-pup interaction constitutes a determinant stimulus during this critical period. It is known that the dopaminergic system undergoes significant reorganization during adolescence and that dopamine receptors are involved in recognition memory. Based on the above, we examined the effects of brief and prolonged maternal separation during the neonatal period (15 or 180 min daily) on basal ganglia dopamine receptors and on the behavior in the novel object recognition task of adolescent and adult male rats. Using the NOR task, we observed that the discrimination index (DI) was decreased in rats with brief maternal separations independent of age. Using receptor autoradiography, we observed that brief maternal separation induced decreases in D1, D2 and D4 receptor binding levels in adult basal ganglia nuclei, while prolonged maternal separation induced increases in D1 receptor binding levels in caudate - putamen (CPu) of adolescent rats. With immunoblotting experiments, we found decreases in D1 and increases in D2 total protein levels in CPu of adult rats with prolonged maternal separations. Α positive correlation was observed between DI and D1 binding levels in CPu, internal globus pallidus and substantia nigra, and D2 binding levels in nucleus accumbens core in adult rats, using the Pearson correlation coefficient. Our results indicate that the long-lasting effects of neonatal mother-offspring separation on dopamine receptors depend on the duration of maternal separation and age and that this early life experience impairs recognition memory in adolescent and adult rats. Furthermore, the present results suggest that modulation of striatal dopamine receptors might underlie the reduced recognition memory of adult rats with brief neonatal maternal separations.
Collapse
Affiliation(s)
- Ada Sinani
- Laboratory of Physiology, Faculty of Medicine, University of Patras, Patras, Greece
| | - Andriana Vassi
- Laboratory of Physiology, Faculty of Medicine, University of Patras, Patras, Greece
| | - Giota Tsotsokou
- Laboratory of Physiology, Faculty of Medicine, University of Patras, Patras, Greece
| | - Maria Nikolakopoulou
- Laboratory of Physiology, Faculty of Medicine, University of Patras, Patras, Greece
| | - Elias D Kouvelas
- Laboratory of Physiology, Faculty of Medicine, University of Patras, Patras, Greece
| | - Ada Mitsacos
- Laboratory of Physiology, Faculty of Medicine, University of Patras, Patras, Greece
| |
Collapse
|
9
|
Prajapati R, Seong SH, Paudel P, Park SE, Jung HA, Choi JS. In Vitro and In Silico Characterization of Kurarinone as a Dopamine D 1A Receptor Antagonist and D 2L and D 4 Receptor Agonist. ACS OMEGA 2021; 6:33443-33453. [PMID: 34926894 PMCID: PMC8674921 DOI: 10.1021/acsomega.1c04109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Alterations in the expression and/or activity of brain G-protein-coupled receptors (GPCRs) such as dopamine D1R, D2LR, D3R, and D4R, vasopressin V1AR, and serotonin 5-HT1AR are noted in various neurodegenerative diseases (NDDs). Since studies have indicated that flavonoids can target brain GPCRs and provide neuroprotection via inhibition of monoamine oxidases (hMAOs), our study explored the functional role of kurarinone, an abundant lavandulated flavonoid in Sophora flavescens, on dopamine receptor subtypes, V1AR, 5-HT1AR, and hMAOs. Radioligand binding assays revealed considerable binding of kurarinone on D1R, D2LR, and D4R. Functional GPCR assays unfolded the compound's antagonist behavior on D1R (IC50 42.1 ± 0.35 μM) and agonist effect on D2LR and D4R (EC50 22.4 ± 3.46 and 71.3 ± 4.94 μM, respectively). Kurarinone was found to inhibit hMAO isoenzymes in a modest and nonspecific manner. Molecular docking displayed low binding energies during the intermolecular interactions of kurarinone with the key residues of the deep orthosteric binding pocket and the extracellular loops of D1R, D2LR, and D4R, validating substantial binding affinities to these prime targets. With appreciable D2LR and D4R agonism and D1R antagonism, kurarinone might be a potential compound that can alleviate clinical symptoms of Parkinson's disease and other NDDs.
Collapse
Affiliation(s)
- Ritu Prajapati
- Department
of Food and Life Science, Pukyong National
University, Busan 48513, Republic of Korea
| | - Su Hui Seong
- Department
of Food and Life Science, Pukyong National
University, Busan 48513, Republic of Korea
- Natural
Products Research Division, Honam National
Institute of Biological Resource, Mokpo 58762, Republic
of Korea
| | - Pradeep Paudel
- Department
of Food and Life Science, Pukyong National
University, Busan 48513, Republic of Korea
- National
Center for Natural Products Research, The
University of Mississippi, Oxford, Mississippi 38677, United States
| | - Se Eun Park
- Department
of Food and Life Science, Pukyong National
University, Busan 48513, Republic of Korea
- Department
of Biomedical Science, Asan Medical Institute
of Convergence Science and Technology, Seoul 05505, Republic
of Korea
| | - Hyun Ah Jung
- Department
of Food Science and Human Nutrition, Jeonbuk
National University, Jeonju 54896, Republic of Korea
| | - Jae Sue Choi
- Department
of Food and Life Science, Pukyong National
University, Busan 48513, Republic of Korea
| |
Collapse
|
10
|
Giorgioni G, Del Bello F, Pavletić P, Quaglia W, Botticelli L, Cifani C, Micioni Di Bonaventura E, Micioni Di Bonaventura MV, Piergentili A. Recent findings leading to the discovery of selective dopamine D 4 receptor ligands for the treatment of widespread diseases. Eur J Med Chem 2020; 212:113141. [PMID: 33422983 DOI: 10.1016/j.ejmech.2020.113141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/14/2022]
Abstract
Since its discovery, the dopamine D4 receptor (D4R) has been suggested to be an attractive target for the treatment of neuropsychiatric diseases. Novel findings have renewed the interest in such a receptor as an emerging target for the management of different diseases, including cancer, Parkinson's disease, alcohol or substance use disorders, eating disorders, erectile dysfunction and cognitive deficits. The recently resolved crystal structures of D4R in complexes with the potent ligands nemonapride and L-745870 strongly improved the knowledge on the molecular mechanisms involving the D4R functions and may help medicinal chemists in drug design. This review is focused on the recent development of the subtype selective D4R ligands belonging to classical or new chemotypes. Moreover, ligands showing functional selectivity toward G protein activation or β-arrestin recruitment and the effects of selective D4R ligands on the above-mentioned diseases are discussed.
Collapse
Affiliation(s)
- Gianfabio Giorgioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy
| | - Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy.
| | - Pegi Pavletić
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy
| | - Wilma Quaglia
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy.
| | - Luca Botticelli
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna Delle Carceri 9, 62032, Camerino, Italy
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna Delle Carceri 9, 62032, Camerino, Italy
| | | | | | - Alessandro Piergentili
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy
| |
Collapse
|
11
|
Vaseghi S, Nasehi M, Zarrindast MR. How do stupendous cannabinoids modulate memory processing via affecting neurotransmitter systems? Neurosci Biobehav Rev 2020; 120:173-221. [PMID: 33171142 DOI: 10.1016/j.neubiorev.2020.10.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/17/2020] [Accepted: 10/26/2020] [Indexed: 12/27/2022]
Abstract
In the present study, we wanted to review the role of cannabinoids in learning and memory in animal models, with respect to their interaction effects with six principal neurotransmitters involved in learning and memory including dopamine, glutamate, GABA (γ-aminobutyric acid), serotonin, acetylcholine, and noradrenaline. Cannabinoids induce a wide-range of unpredictable effects on cognitive functions, while their mechanisms are not fully understood. Cannabinoids in different brain regions and in interaction with different neurotransmitters, show diverse responses. Previous findings have shown that cannabinoids agonists and antagonists induce various unpredictable effects such as similar effect, paradoxical effect, or dualistic effect. It should not be forgotten that brain neurotransmitter systems can also play unpredictable roles in mediating cognitive functions. Thus, we aimed to review and discuss the effect of cannabinoids in interaction with neurotransmitters on learning and memory. In addition, we mentioned to the type of interactions between cannabinoids and neurotransmitter systems. We suggested that investigating the type of interactions is a critical neuropharmacological issue that should be considered in future studies.
Collapse
Affiliation(s)
- Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohammad-Reza Zarrindast
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Underlying Susceptibility to Eating Disorders and Drug Abuse: Genetic and Pharmacological Aspects of Dopamine D4 Receptors. Nutrients 2020; 12:nu12082288. [PMID: 32751662 PMCID: PMC7468707 DOI: 10.3390/nu12082288] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
The dopamine D4 receptor (DRD4) has a predominant expression in the prefrontal cortex (PFC), brain area strictly involved in the modulation of reward processes related to both food and drug consumption. Additionally, the human DRD4 gene is characterized by a variable number of tandem repeats (VNTR) in the exon 3 and, among the polymorphic variants, the 7-repeat (7R) allele appears as a contributing factor in the neurobiological mechanisms underlying drug abuse, aberrant eating behaviors and related comorbidities. The 7R variant encodes for a receptor with a blunted intracellular response to dopamine, and carriers of this polymorphism might be more tempted to enhance dopamine levels in the brain, through the overconsumption of drugs of abuse or palatable food, considering their reinforcing properties. Moreover, the presence of this polymorphism seems to increase the susceptibility of individuals to engage maladaptive eating patterns in response to negative environmental stimuli. This review is focused on the role of DRD4 and DRD4 genetic polymorphism in these neuropsychiatric disorders in both clinical and preclinical studies. However, further research is needed to better clarify the complex DRD4 role, by using validated preclinical models and novel compounds more selective for DRD4.
Collapse
|
13
|
Segura-Chama P, Luis E, Almanza A, Pellicer F, Hernández-Cruz A, Mercado F. Modulation of intracellular calcium concentration by D2-like DA receptor agonists in non-peptidergic DRG neurons is mediated mainly by D4 receptor activation. Neurosci Lett 2020; 736:135267. [PMID: 32717335 DOI: 10.1016/j.neulet.2020.135267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/10/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022]
Abstract
Nociceptive stimuli attributes are codified in the periphery; at this level, D2-like dopamine (DA) receptor activation decreases the high voltage-gated Ca2+ current predominantly in mechanonociceptive neurons, which explains the presynaptic action mechanism of the antinociception produced by quinpirole when it is intrathecally administered in rats. However, the identity of D2-like DA receptor subtype that mediates this effect remains unknown. To answer this question, we used Fluo-4-based Ca2+ microfluorometry to study the depolarization-elicited [Ca2+]i increase in small non-peptidergic DRG neurons (identified by its binding to the Isolectin B4), and to test the effect of D2-like DA receptor activation by quinpirole in presence of selective antagonists for D2, D3, and D4 DA receptors. The results showed a significantly greater contribution of the D4 DA receptor in the down-modulation of depolarization-elicited [Ca2+]i increase in small non-peptidergic DRG neurons compared to the other receptors. Although the D2 and D3 receptor antagonists also slightly inhibited the effect of quinpirole, their effects were significantly weaker than those of the D4 receptor antagonist. Furthermore, we showed that quinpirole selectively inhibits the CaV2.2 Ca2+ channels. Our results suggest that the activation of the D4 DA receptors is a promising strategy for pain management at the spinal cord level.
Collapse
Affiliation(s)
- Pedro Segura-Chama
- Laboratorio de Fisiología Celular, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico; Cátedras CONACyT - Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Enoch Luis
- Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico; Cátedras CONACyT - Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Angélica Almanza
- Laboratorio de Fisiología Celular, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Francisco Pellicer
- Laboratorio de Neurofisiología Integrativa, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Arturo Hernández-Cruz
- Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico; Departamento de Neurociencia Cognitiva, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Francisco Mercado
- Laboratorio de Fisiología Celular, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico.
| |
Collapse
|
14
|
Keck T, Free RB, Day MM, Brown SL, Maddaluna MS, Fountain G, Cooper C, Fallon B, Holmes M, Stang CT, Burkhardt R, Bonifazi A, Ellenberger MP, Newman AH, Sibley DR, Wu C, Boateng CA. Dopamine D 4 Receptor-Selective Compounds Reveal Structure-Activity Relationships that Engender Agonist Efficacy. J Med Chem 2019; 62:3722-3740. [PMID: 30883109 PMCID: PMC6466480 DOI: 10.1021/acs.jmedchem.9b00231] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Indexed: 01/08/2023]
Abstract
The dopamine D4 receptor (D4R) plays important roles in cognition, attention, and decision making. Novel D4R-selective ligands have promise in medication development for neuropsychiatric conditions, including Alzheimer's disease and substance use disorders. To identify new D4R-selective ligands, and to understand the molecular determinants of agonist efficacy at D4R, we report a series of eighteen novel ligands based on the classical D4R agonist A-412997 (1, 2-(4-(pyridin-2-yl)piperidin-1-yl)- N-( m-tolyl)acetamide). Compounds were profiled using radioligand binding displacement assays, β-arrestin recruitment assays, cyclic AMP inhibition assays, and molecular dynamics computational modeling. We identified several novel D4R-selective ( Ki ≤ 4.3 nM and >100-fold vs other D2-like receptors) compounds with diverse partial agonist and antagonist profiles, falling into three structural groups. These compounds highlight receptor-ligand interactions that control efficacy at D2-like receptors and may provide insights into targeted drug discovery, leading to a better understanding of the role of D4Rs in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Thomas
M. Keck
- Department
of Chemistry & Biochemistry, Department of Molecular & Cellular
Biosciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
- Cooper
Medical School of Rowan University, 401 Broadway, Camden, New
Jersey 08103, United
States
| | - R. Benjamin Free
- Molecular
Neuropharmacology Section, National Institute of Neurological Disorders
and Stroke-Intramural Research Program, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Marilyn M. Day
- Molecular
Neuropharmacology Section, National Institute of Neurological Disorders
and Stroke-Intramural Research Program, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Sonvia L. Brown
- Department
of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, One University Parkway, High Point, North Carolina 27268, United States
| | - Michele S. Maddaluna
- Department
of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, One University Parkway, High Point, North Carolina 27268, United States
| | - Griffin Fountain
- Department
of Chemistry & Biochemistry, Department of Molecular & Cellular
Biosciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Charles Cooper
- Department
of Chemistry & Biochemistry, Department of Molecular & Cellular
Biosciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Brooke Fallon
- Department
of Chemistry & Biochemistry, Department of Molecular & Cellular
Biosciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Matthew Holmes
- Department
of Chemistry & Biochemistry, Department of Molecular & Cellular
Biosciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Christopher T. Stang
- Molecular
Neuropharmacology Section, National Institute of Neurological Disorders
and Stroke-Intramural Research Program, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Russell Burkhardt
- Medicinal
Chemistry Section, Molecular Targets and Medications Discovery Branch,
National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Alessandro Bonifazi
- Medicinal
Chemistry Section, Molecular Targets and Medications Discovery Branch,
National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Michael P. Ellenberger
- Medicinal
Chemistry Section, Molecular Targets and Medications Discovery Branch,
National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Amy H. Newman
- Medicinal
Chemistry Section, Molecular Targets and Medications Discovery Branch,
National Institute on Drug Abuse-Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - David R. Sibley
- Molecular
Neuropharmacology Section, National Institute of Neurological Disorders
and Stroke-Intramural Research Program, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Chun Wu
- Department
of Chemistry & Biochemistry, Department of Molecular & Cellular
Biosciences, College of Science and Mathematics, Rowan University, 201 Mullica Hill Road, Glassboro, New Jersey 08028, United States
| | - Comfort A. Boateng
- Department
of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point University, One University Parkway, High Point, North Carolina 27268, United States
| |
Collapse
|
15
|
Weele CMV, Siciliano CA, Tye KM. Dopamine tunes prefrontal outputs to orchestrate aversive processing. Brain Res 2018; 1713:16-31. [PMID: 30513287 DOI: 10.1016/j.brainres.2018.11.044] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/25/2018] [Accepted: 11/30/2018] [Indexed: 01/06/2023]
Abstract
Decades of research suggest that the mesocortical dopamine system exerts powerful control over mPFC physiology and function. Indeed, dopamine signaling in the medial prefrontal cortex (mPFC) is implicated in a vast array of processes, including working memory, stimulus discrimination, stress responses, and emotional and behavioral control. Consequently, even slight perturbations within this delicate system result in profound disruptions of mPFC-mediated processes. Many neuropsychiatric disorders are associated with dysregulation of mesocortical dopamine, including schizophrenia, depression, attention deficit hyperactivity disorder, post-traumatic stress disorder, among others. Here, we review the anatomy and functions of the mesocortical dopamine system. In contrast to the canonical role of striatal dopamine in reward-related functions, recent work has revealed that mesocortical dopamine fine-tunes distinct efferent projection populations in a manner that biases subsequent behavior towards responding to stimuli associated with potentially aversive outcomes. We propose a framework wherein dopamine can serve as a signal for switching mPFC states by orchestrating how information is routed to the rest of the brain.
Collapse
Affiliation(s)
- Caitlin M Vander Weele
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Cody A Siciliano
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kay M Tye
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
16
|
Cadinu D, Grayson B, Podda G, Harte MK, Doostdar N, Neill JC. NMDA receptor antagonist rodent models for cognition in schizophrenia and identification of novel drug treatments, an update. Neuropharmacology 2018; 142:41-62. [DOI: 10.1016/j.neuropharm.2017.11.045] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/28/2017] [Accepted: 11/27/2017] [Indexed: 01/05/2023]
|
17
|
Aringhieri S, Carli M, Kolachalam S, Verdesca V, Cini E, Rossi M, McCormick PJ, Corsini GU, Maggio R, Scarselli M. Molecular targets of atypical antipsychotics: From mechanism of action to clinical differences. Pharmacol Ther 2018; 192:20-41. [PMID: 29953902 DOI: 10.1016/j.pharmthera.2018.06.012] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The introduction of atypical antipsychotics (AAPs) since the discovery of its prototypical drug clozapine has been a revolutionary pharmacological step for treating psychotic patients as these allow a significant recovery not only in terms of hospitalization and reduction in symptoms severity, but also in terms of safety, socialization and better rehabilitation in the society. Regarding the mechanism of action, AAPs are weak D2 receptor antagonists and they act beyond D2 antagonism, involving other receptor targets which regulate dopamine and other neurotransmitters. Consequently, AAPs present a significant reduction of deleterious side effects like parkinsonism, hyperprolactinemia, apathy and anhedonia, which are all linked to the strong blockade of D2 receptors. This review revisits previous and current findings within the class of AAPs and highlights the differences in terms of receptor properties and clinical activities among them. Furthermore, we propose a continuum spectrum of "atypia" that begins with risperidone (the least atypical) to clozapine (the most atypical), while all the other AAPs fall within the extremes of this spectrum. Clozapine is still considered the gold standard in refractory schizophrenia and in psychoses present in Parkinson's disease, though it has been associated with adverse effects like agranulocytosis (0.7%) and weight gain, pushing the scientific community to find new drugs as effective as clozapine, but devoid of its side effects. To achieve this, it is therefore imperative to characterize and compare in depth the very complex molecular profile of AAPs. We also introduce relatively new concepts like biased agonism, receptor dimerization and neurogenesis to identify better the old and new hallmarks of "atypia". Finally, a detailed confrontation of clinical differences among the AAPs is presented, especially in relation to their molecular targets, and new means like therapeutic drug monitoring are also proposed to improve the effectiveness of AAPs in clinical practice.
Collapse
Affiliation(s)
- Stefano Aringhieri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Marco Carli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Shivakumar Kolachalam
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Valeria Verdesca
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Enrico Cini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Mario Rossi
- Institute of Molecular Cell and Systems Biology, University of Glasgow, UK
| | - Peter J McCormick
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London EC1M 6BQ, UK
| | - Giovanni U Corsini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | - Roberto Maggio
- Biotechnological and Applied Clinical Sciences Department, University of L'Aquila, Italy
| | - Marco Scarselli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy.
| |
Collapse
|
18
|
Navakkode S, Chew KCM, Tay SJN, Lin Q, Behnisch T, Soong TW. Bidirectional modulation of hippocampal synaptic plasticity by Dopaminergic D4-receptors in the CA1 area of hippocampus. Sci Rep 2017; 7:15571. [PMID: 29138490 PMCID: PMC5686203 DOI: 10.1038/s41598-017-15917-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/03/2017] [Indexed: 11/09/2022] Open
Abstract
Long-term potentiation (LTP) is the persistent increase in the strength of the synapses. However, the neural networks would become saturated if there is only synaptic strenghthening. Synaptic weakening could be facilitated by active processes like long-term depression (LTD). Molecular mechanisms that facilitate the weakening of synapses and thereby stabilize the synapses are also important in learning and memory. Here we show that blockade of dopaminergic D4 receptors (D4R) promoted the formation of late-LTP and transformed early-LTP into late-LTP. This effect was dependent on protein synthesis, activation of NMDA-receptors and CaMKII. We also show that GABAA-receptor mediated mechanisms are involved in the enhancement of late-LTP. We could show that short-term plasticity and baseline synaptic transmission were unaffected by D4R inhibition. On the other hand, antagonizing D4R prevented both early and late forms of LTD, showing that activation of D4Rs triggered a dual function. Synaptic tagging experiments on LTD showed that D4Rs act as plasticity related proteins rather than the setting of synaptic tags. D4R activation by PD 168077 induced a slow-onset depression that was protein synthesis, NMDAR and CaMKII dependent. The D4 receptors, thus exert a bidirectional modulation of CA1 pyramidal neurons by restricting synaptic strengthening and facilitating synaptic weakening.
Collapse
Affiliation(s)
- Sheeja Navakkode
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.,Neurobiology/Aging Program, Centre for Life Sciences, National University of Singapore, Singapore, 117456, Singapore
| | - Katherine C M Chew
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.,Neurobiology/Aging Program, Centre for Life Sciences, National University of Singapore, Singapore, 117456, Singapore
| | - Sabrina Jia Ning Tay
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.,Neurobiology/Aging Program, Centre for Life Sciences, National University of Singapore, Singapore, 117456, Singapore
| | - Qingshu Lin
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.,Neurobiology/Aging Program, Centre for Life Sciences, National University of Singapore, Singapore, 117456, Singapore
| | - Thomas Behnisch
- The Institutes of Brain Science, The State Key Laboratory of Medical Neurobiology, and the Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Tuck Wah Soong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore. .,Neurobiology/Aging Program, Centre for Life Sciences, National University of Singapore, Singapore, 117456, Singapore. .,National Neuroscience Institute, Singapore, 308433, Singapore.
| |
Collapse
|
19
|
Furth KE, McCoy AJ, Dodge C, Walters JR, Buonanno A, Delaville C. Neuronal correlates of ketamine and walking induced gamma oscillations in the medial prefrontal cortex and mediodorsal thalamus. PLoS One 2017; 12:e0186732. [PMID: 29095852 PMCID: PMC5667758 DOI: 10.1371/journal.pone.0186732] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 10/08/2017] [Indexed: 01/19/2023] Open
Abstract
Alterations in the function of the medial prefrontal cortex (mPFC) and its major thalamic source of innervation, the mediodorsal (MD) thalamus, have been hypothesized to contribute to the symptoms of schizophrenia. The NMDAR antagonist ketamine, used to model schizophrenia, elicits a brain state resembling early stage schizophrenia characterized by cognitive deficits and increases in cortical low gamma (40-70 Hz) power. Here we sought to determine how ketamine differentially affects spiking and gamma local field potential (LFP) activity in the rat mPFC and MD thalamus. Additionally, we investigated the ability of drugs targeting the dopamine D4 receptor (D4R) to modify the effects of ketamine on gamma activity as a measure of potential cognitive therapeutic efficacy. Rats were trained to walk on a treadmill to reduce confounds related to hyperactivity after ketamine administration (10 mg/kg s.c.) while recordings were obtained from electrodes chronically implanted in the mPFC and MD thalamus. Ketamine increased gamma LFP power in mPFC and MD thalamus in a similar frequency range, yet did not increase thalamocortical synchronization. Ketamine also increased firing rates and spike synchronization to gamma oscillations in the mPFC but decreased both measures in MD thalamus. Conversely, walking alone increased both firing rates and spike-gamma LFP correlations in both mPFC and MD thalamus. The D4R antagonist alone (L-745,870) had no effect on gamma LFP power during treadmill walking, although it reversed increases induced by the D4R agonist (A-412997) in both mPFC and MD thalamus. Neither drug altered ketamine-induced changes in gamma power or firing rates in the mPFC. However, in MD thalamus, the D4R agonist increased ketamine-induced gamma power and prevented ketamine's inhibitory effect on firing rates. Results provide new evidence that ketamine differentially modulates spiking and gamma power in MD thalamus and mPFC, supporting a potential role for both areas in contributing to ketamine-induced schizophrenia-like symptoms.
Collapse
Affiliation(s)
- Katrina E. Furth
- Neurophysiological Pharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
- Graduate Program for Neuroscience, Boston University, Boston, Massachusetts, United States of America
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alex J. McCoy
- Neurophysiological Pharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Caroline Dodge
- Neurophysiological Pharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Judith R. Walters
- Neurophysiological Pharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Andres Buonanno
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Claire Delaville
- Neurophysiological Pharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
20
|
Neurochemical arguments for the use of dopamine D 4 receptor stimulation to improve cognitive impairment associated with schizophrenia. Pharmacol Biochem Behav 2017; 157:16-23. [DOI: 10.1016/j.pbb.2017.04.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/23/2017] [Accepted: 04/21/2017] [Indexed: 12/26/2022]
|
21
|
Miyauchi M, Neugebauer NM, Meltzer HY. Dopamine D 4 receptor stimulation contributes to novel object recognition: Relevance to cognitive impairment in schizophrenia. J Psychopharmacol 2017; 31:442-452. [PMID: 28347261 DOI: 10.1177/0269881117693746] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Several atypical antipsychotic drugs (APDs) have high affinity for the dopamine (DA) D4 receptor, but the relevance to the efficacy for the treatment of cognitive impairment associated with schizophrenia (CIAS) is poorly understood. The aim of this study was to investigate the effects of D4 receptor stimulation or blockade on novel object recognition (NOR) in normal rats and on the sub-chronic phencyclidine (PCP)-induced novel object recognition deficit. The effect of the D4 agonist, PD168077, and the D4 antagonist, L-745,870, were studied alone, and in combination with clozapine and lurasidone. In normal rats, L-745,870 impaired novel object recognition, whereas PD168077 had no effect. PD168077 acutely reversed the sub-chronic phencyclidine-induced novel object recognition deficit. Co-administration of a sub-effective dose (SED) of PD168077 with a sub-effective dose of lurasidone also reversed this deficit, but a sub-effective dose of PD168077 with a sub-effective dose of clozapine, a more potent D4 antagonist than lurasidone, did not reverse the sub-chronic phencyclidine-induced novel object recognition deficit. At a dose that did not induce a novel object recognition deficit, L-745,870 blocked the ability of clozapine, but not lurasidone, to reverse the novel object recognition deficit. D4 receptor agonism has a beneficial effect on novel object recognition in sub-chronic PCP-treated rats and augments the cognitive enhancing efficacy of an atypical antipsychotic drug that lacks affinity for the D4 receptor, lurasidone.
Collapse
Affiliation(s)
- Masanori Miyauchi
- 1 Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, USA.,2 Sumitomo Dainippon Pharma Co. Ltd, Suita, Osaka, Japan
| | - Nichole M Neugebauer
- 1 Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, USA
| | - Herbert Y Meltzer
- 1 Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, USA
| |
Collapse
|
22
|
Ledonne A, Mercuri NB. Current Concepts on the Physiopathological Relevance of Dopaminergic Receptors. Front Cell Neurosci 2017; 11:27. [PMID: 28228718 PMCID: PMC5296367 DOI: 10.3389/fncel.2017.00027] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/30/2017] [Indexed: 12/21/2022] Open
Abstract
Dopamine (DA) is a key neurotransmitter modulating essential functions of the central nervous system (CNS), like voluntary movement, reward, several cognitive functions and goal-oriented behaviors. The factual relevance of DAergic transmission can be well appreciated by considering that its dysfunction is recognized as a core alteration in several devastating neurological and psychiatric disorders, including Parkinson’s disease (PD) and associated movement disorders, as well as, schizophrenia, bipolar disorder, attention deficit hyperactivity disorder (ADHD) and addiction. Here we present an overview of the current knowledge on the involvement of DAergic receptors in the regulation of key physiological brain activities, and the consequences of their dysfunctions in brain disorders such as PD, schizophrenia and addiction.
Collapse
Affiliation(s)
- Ada Ledonne
- Department of Experimental Neuroscience, Santa Lucia Foundation Rome, Italy
| | - Nicola B Mercuri
- Department of Experimental Neuroscience, Santa Lucia FoundationRome, Italy; Department of Systems Medicine, University of Rome "Tor Vergata"Rome, Italy
| |
Collapse
|
23
|
Hayward A, Tomlinson A, Neill JC. Low attentive and high impulsive rats: A translational animal model of ADHD and disorders of attention and impulse control. Pharmacol Ther 2016; 158:41-51. [DOI: 10.1016/j.pharmthera.2015.11.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
24
|
Nakazawa S, Nakamichi K, Imai H, Ichihara J. Effect of dopamine D4 receptor agonists on sleep architecture in rats. Prog Neuropsychopharmacol Biol Psychiatry 2015; 63:6-13. [PMID: 25985889 DOI: 10.1016/j.pnpbp.2015.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 04/28/2015] [Accepted: 05/11/2015] [Indexed: 01/11/2023]
Abstract
Dopamine plays a key role in the regulation of sleep-wake states, as revealed by the observation that dopamine-releasing agents such as methylphenidate have wake-promoting effects. However, the precise mechanisms for the wake-promoting effect produced by the enhancement of dopamine transmission are not fully understood. Although dopamine D1, D2, and D3 receptors are known to have differential effects on sleep architecture, the role of D4 receptors (D4Rs), and particularly the influence of D4R activation on the sleep-wake state, has not been studied so far. In this study, we investigated for the first time the effects of two structurally different D4R agonists, Ro 10-5824 and A-412997, on the sleep-wake states in rats. We found that both D4R agonists generally increased waking duration, and conversely, reduced non-rapid eye movement (NREM) sleep duration in rats. The onset of NREM sleep was also generally delayed. However, only the A-412997 agonist (but not the Ro 10-5824) influenced rapid eye movement sleep onset and duration. Furthermore, these effects were accompanied with an enhancement of EEG spectral power in the theta and the gamma bands. Our results suggest the involvement of dopamine D4R in the regulation of sleep-wake states. The activation of the D4R could enhance the arousal states as revealed by the behavioral and electrophysiological patterns in this study. Dopamine D4R may contribute to the arousal effects of dopamine-releasing agents such as methylphenidate.
Collapse
Affiliation(s)
- Shunsuke Nakazawa
- Drug Development Research Laboratories, Sumitomo Dainippon Pharma, Co., Ltd., Osaka, Japan.
| | - Keiko Nakamichi
- Drug Development Research Laboratories, Sumitomo Dainippon Pharma, Co., Ltd., Osaka, Japan
| | - Hideaki Imai
- Drug Development Research Laboratories, Sumitomo Dainippon Pharma, Co., Ltd., Osaka, Japan
| | - Junji Ichihara
- Drug Development Research Laboratories, Sumitomo Dainippon Pharma, Co., Ltd., Osaka, Japan
| |
Collapse
|
25
|
Di Ciano P, Pushparaj A, Kim A, Hatch J, Masood T, Ramzi A, Khaled MATM, Boileau I, Winstanley CA, Le Foll B. The Impact of Selective Dopamine D2, D3 and D4 Ligands on the Rat Gambling Task. PLoS One 2015; 10:e0136267. [PMID: 26352802 PMCID: PMC4564230 DOI: 10.1371/journal.pone.0136267] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 08/03/2015] [Indexed: 11/19/2022] Open
Abstract
Gambling is an addictive disorder with serious societal and personal costs. To-date, there are no approved pharmacological treatments for gambling disorder. Evidence suggests a role for dopamine in gambling disorder and thus may provide a therapeutic target. The present study therefore aimed to investigate the effects of selective antagonists and agonists of D2, D3 and D4 receptors in a rodent analogue of the Iowa gambling task used clinically. In this rat gambling task (rGT), animals are trained to associate different response holes with different magnitudes and probabilities of food pellet rewards and punishing time-out periods. As in the Iowa gambling task, the optimal strategy is to avoid the tempting high-risk high-reward options, and instead favor those linked to smaller per-trial rewards but also lower punishments, thereby maximizing the amount of reward earned over time. Administration of those selective ligands did not affect decision making under the rGT. Only the D4 drug had modest effects on latency measures suggesting that D4 may contribute in some ways to decision making under this task.
Collapse
MESH Headings
- Animals
- Conditioning, Operant
- Decision Making/drug effects
- Dopamine Agents/pharmacology
- Dopamine Antagonists/pharmacology
- Dopamine D2 Receptor Antagonists/pharmacology
- Gambling
- Games, Experimental
- Ligands
- Male
- Punishment
- Rats
- Rats, Long-Evans
- Reaction Time/drug effects
- Receptors, Dopamine D2/agonists
- Receptors, Dopamine D2/physiology
- Receptors, Dopamine D3/agonists
- Receptors, Dopamine D3/antagonists & inhibitors
- Receptors, Dopamine D3/physiology
- Receptors, Dopamine D4/agonists
- Receptors, Dopamine D4/antagonists & inhibitors
- Receptors, Dopamine D4/physiology
- Reward
Collapse
Affiliation(s)
- Patricia Di Ciano
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, 33 Russell Street, Toronto, Canada M5S 2S1
| | - Abhiram Pushparaj
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, 33 Russell Street, Toronto, Canada M5S 2S1
| | - Aaron Kim
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, 33 Russell Street, Toronto, Canada M5S 2S1
| | - Jessica Hatch
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Talal Masood
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, 33 Russell Street, Toronto, Canada M5S 2S1
| | - Abby Ramzi
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, 33 Russell Street, Toronto, Canada M5S 2S1
| | - Maram A. T. M. Khaled
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, 33 Russell Street, Toronto, Canada M5S 2S1
- Pain Management Unit, Department of Anaesthesia, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Isabelle Boileau
- Addiction Imaging Research Group, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, Canada M5T 1R
| | | | - Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, 33 Russell Street, Toronto, Canada M5S 2S1
- Alcohol Research and Treatment Clinic, Addiction Medicine Services, Ambulatory Care and Structured Treatments, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, CAMH, Toronto, ON, Canada
- Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, Division of Brain and Therapeutics, University of Toronto, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- * E-mail:
| |
Collapse
|
26
|
|
27
|
Tomlinson A, Grayson B, Marsh S, Hayward A, Marshall KM, Neill JC. Putative therapeutic targets for symptom subtypes of adult ADHD: D4 receptor agonism and COMT inhibition improve attention and response inhibition in a novel translational animal model. Eur Neuropsychopharmacol 2015; 25:454-67. [PMID: 25799918 DOI: 10.1016/j.euroneuro.2014.11.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 10/17/2014] [Accepted: 11/24/2014] [Indexed: 02/01/2023]
Abstract
Prefrontal cortical dopamine plays an important role in cognitive control, specifically in attention and response inhibition; the core deficits in ADHD. We have previously shown that methylphenidate and atomoxetine differentially improve these deficits dependent on baseline performance. The present study extends this work to investigate the effects of putative therapeutic targets in our model. A selective dopamine D4 receptor agonist (A-412997) and the catechol-O-methyl-transferase (COMT) inhibitor; tolcapone, were investigated in the combined subtype of adult ADHD (ADHD-C). Adult female rats were trained to criterion in the 5C-CPT (5-Choice Continuous Performance Task) and then separated into subgroups according to baseline levels of sustained attention, vigilance, and response disinhibition. The subgroups included: high-attentive (HA) and low-attentive with high response disinhibition (ADHD-C). The ADHD-C subgroup was selected to represent the combined subtype of adult ADHD. Effects of tolcapone (3.0, 10.0, 15.0mg/kg) and A-412997 (0.1, 0.3, 1.0µmol/kg) were tested by increasing the variable inter-trial-interval (ITI) duration in the 5C-CPT. Tolcapone (15mg/kg) significantly increased sustained attention, vigilance and response inhibition in ADHD-C animals, and impaired attention in HA animals. A-412997 (1.0µmol/kg) significantly increased vigilance and response inhibition in ADHD-C animals only, with no effect in HA animals. This is the first study to use the translational 5C-CPT to model the adult ADHD-C subtype in rats and to study new targets in this model. Both tolcapone and A-412997 increased vigilance and response inhibition in the ADHD-C subgroup. D4 and COMT are emerging as important potential therapeutic targets in adult ADHD that warrant further investigation.
Collapse
Affiliation(s)
- Anneka Tomlinson
- Manchester Pharmacy School, University of Manchester, Oxford Rd, Manchester M13 9PT, UK.
| | - Ben Grayson
- Manchester Pharmacy School, University of Manchester, Oxford Rd, Manchester M13 9PT, UK
| | - Samuel Marsh
- Manchester Pharmacy School, University of Manchester, Oxford Rd, Manchester M13 9PT, UK
| | - Andrew Hayward
- Manchester Pharmacy School, University of Manchester, Oxford Rd, Manchester M13 9PT, UK
| | - Kay M Marshall
- Manchester Pharmacy School, University of Manchester, Oxford Rd, Manchester M13 9PT, UK
| | - Joanna C Neill
- Manchester Pharmacy School, University of Manchester, Oxford Rd, Manchester M13 9PT, UK.
| |
Collapse
|
28
|
Berry CB, Bubser M, Jones CK, Hayes JP, Wepy JA, Locuson CW, Daniels JS, Lindsley CW, Hopkins CR. Discovery and Characterization of ML398, a Potent and Selective Antagonist of the D4 Receptor with in Vivo Activity. ACS Med Chem Lett 2014; 5:1060-4. [PMID: 25221667 DOI: 10.1021/ml500267c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 07/09/2014] [Indexed: 11/29/2022] Open
Abstract
Herein, we report the structure-activity relationship of a chiral morpholine-based scaffold, which led to the identification of a potent and selective dopamine 4 (D4) receptor antagonist. The 4-chlorobenzyl moiety was identified, and the compound was designated an MLPCN probe molecule, ML398. ML398 is potent against the D4 receptor with IC50 = 130 nM and K i = 36 nM and shows no activity against the other dopamine receptors tested (>20 μM against D1, D2S, D2L, D3, and D5). Further in vivo studies showed that ML398 reversed cocaine-induced hyperlocomotion at 10 mg/kg.
Collapse
Affiliation(s)
- Cynthia B. Berry
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Specialized Chemistry Center for Probe Development (MLPCN), Nashville, Tennessee 37232, United States
| | - Michael Bubser
- Department
of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Carrie K. Jones
- Department
of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - John P. Hayes
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - James A. Wepy
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Charles W. Locuson
- Department
of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Specialized Chemistry Center for Probe Development (MLPCN), Nashville, Tennessee 37232, United States
- Vanderbilt
Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - J. Scott Daniels
- Department
of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Specialized Chemistry Center for Probe Development (MLPCN), Nashville, Tennessee 37232, United States
- Vanderbilt
Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Craig W. Lindsley
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Specialized Chemistry Center for Probe Development (MLPCN), Nashville, Tennessee 37232, United States
- Vanderbilt
Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Corey R. Hopkins
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Specialized Chemistry Center for Probe Development (MLPCN), Nashville, Tennessee 37232, United States
- Vanderbilt
Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| |
Collapse
|
29
|
Lack of dopamine D4 receptor affinity contributes to the procognitive effect of lurasidone. Behav Brain Res 2014; 261:26-30. [DOI: 10.1016/j.bbr.2013.11.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/18/2013] [Accepted: 11/22/2013] [Indexed: 11/21/2022]
|
30
|
Di Ciano P, Grandy DK, Le Foll B. Dopamine D4 receptors in psychostimulant addiction. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 69:301-21. [PMID: 24484981 DOI: 10.1016/b978-0-12-420118-7.00008-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Since the cloning of the D4 receptor in the 1990s, interest has been building in the role of this receptor in drug addiction, given the importance of dopamine in addiction. Like the D3 receptor, the D4 receptor has limited distribution within the brain, suggesting it may have a unique role in drug abuse. However, compared to the D3 receptor, few studies have evaluated the importance of the D4 receptor. This may be due, in part, to the relative lack of compounds selective for the D4 receptor; the early studies were mainly conducted in mice lacking the D4 receptor. In this review, we summarize the literature on the structure and localization of the D4 receptor before reviewing the data from D4 knockout mice that used behavioral models relevant to the understanding of stimulant use. We also present evidence from more recent pharmacological studies using selective D4 agonists and antagonists and animal models of drug-seeking and drug-taking. The data summarized here suggest a role for D4 receptors in relapse to stimulant use. Therefore, treatments based on antagonism of the D4 receptor may be useful treatments for relapse to nicotine, cocaine, and amphetamine use.
Collapse
Affiliation(s)
- Patricia Di Ciano
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
| | - David K Grandy
- Department of Physiology & Pharmacology, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada; Alcohol Research and Treatment Clinic, Addiction Medicine Services, Ambulatory Care and Structured Treatments, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Family and Community Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, Division of Brain and Therapeutics, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
31
|
Sharma A, Couture J. A Review of the Pathophysiology, Etiology, and Treatment of Attention-Deficit Hyperactivity Disorder (ADHD). Ann Pharmacother 2013; 48:209-25. [DOI: 10.1177/1060028013510699] [Citation(s) in RCA: 259] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Objective: To review the pathophysiology, etiology, and treatment of attention-deficit hyperactivity disorder (ADHD). Data Sources and Data Extraction: A literature search was conducted in PubMed and EMBASE using the terms attention deficit hyperactive disorder, ADHD, pathophysiology, etiology, and neurobiology. Limits applied were the following: published in the past 10 years (January 2003 to August 2013), humans, review, meta-analysis, and English language. These yielded 63 articles in PubMed and 74 in EMBASE. After removing duplicate/irrelevant articles, 86 articles and their relevant reference citations were reviewed. Data Synthesis: ADHD is a neurological disorder that affects children, but symptoms may persist into adulthood. Individuals suffering from this disorder exhibit hyperactivity, inattention, impulsivity, and problems in social interaction and academic performance. Medications used to treat ADHD such as methylphenidate, amphetamine, and atomoxetine indicate a dopamine/norepinephrine deficit as the neurochemical basis of ADHD, but the etiology is more complex. Moreover, these agents have poor adverse effect profiles and a multitude of drug interactions. Because these drugs are also dispensed to adults who may have concomitant conditions or medications, a pharmacist needs to be aware of these adverse events and drug interactions. This review, therefore, focuses on the pathophysiology, etiology, and treatment of ADHD and details the adverse effects and drug interaction profiles of the drugs used to treat it. Conclusions: Published research shows the benefit of drug therapy for ADHD in children, but given the poor adverse effect and drug interaction profiles, these must be dispensed with caution.
Collapse
Affiliation(s)
- Alok Sharma
- MCPHS University, Worcester/Manchester, NH, USA
| | | |
Collapse
|
32
|
Nilsson MKL, Carlsson ML. The monoaminergic stabilizer (-)-OSU6162 reverses delay-dependent natural forgetting and improves memory impairment induced by scopolamine in mice. Neuropharmacology 2013; 75:399-406. [PMID: 23994443 DOI: 10.1016/j.neuropharm.2013.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 08/05/2013] [Accepted: 08/18/2013] [Indexed: 12/14/2022]
Abstract
The aim of the present study was to evaluate the effect of the monoaminergic stabilizer (-)-OSU6162 on spatial recognition memory. Male NMRI mice were tested in the object location model which is based on the animals' inherent interest to examine changes in their environment: The animals' propensity to explore relocated objects in relation to unaltered objects, presented in two different sessions (sample and trial), was studied. In a first series of experiments the effect of (-)-OSU6162 on natural forgetting was evaluated. With an inter-session interval (ISI) of 30 min or an hour, untreated mice spent longer time exploring the displaced object, but when the time between sessions was as long as 6 h, the mice did not identify the displaced object. However, using the 6 h ISI design we found that (-)-OSU6162 in doses up to 30 μmol/kg, given directly after the sample session, caused an increased interest for the displaced object. Twenty-four hours after administration, (-)-OSU6162 was still effective in facilitating identification of the displaced object. We also evaluated the effect of (-)-OSU6162 on scopolamine-induced memory deficits in this model - the two agents were given 30 min before the sample session and the ISI was one hour. Under these conditions scopolamine induced a deficit in object location memory and this effect was counteracted by (-)-OSU6162. The data from the present study suggest that (-)-OSU6162 prolongs object location memory in normal mice and reverses scopolamine-induced memory deficits. (-)-OSU6162 might be a valuable drug candidate for memory deficits and other cognitive impairments.
Collapse
Affiliation(s)
- Marie K L Nilsson
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska Science Park, Medicinaregatan 8A, 413 46 Gothenburg, Sweden.
| | - Maria L Carlsson
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sahlgrenska Science Park, Medicinaregatan 8A, 413 46 Gothenburg, Sweden
| |
Collapse
|
33
|
Kocsis B, Lee P, Deth R. Enhancement of gamma activity after selective activation of dopamine D4 receptors in freely moving rats and in a neurodevelopmental model of schizophrenia. Brain Struct Funct 2013; 219:2173-80. [PMID: 23839116 DOI: 10.1007/s00429-013-0607-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 06/26/2013] [Indexed: 01/03/2023]
Abstract
Dopamine D4 receptor (D4R) mechanisms have been implicated in several psychiatric diseases, including schizophrenia, attention-deficit hyperactivity disorder (ADHD), and autism, which are characterized by cognitive deficits. The cellular mechanisms are poorly understood but impaired neuronal synchronization within cortical networks in the gamma frequency band has been proposed to contribute to these deficits. A D4R polymorphism was recently linked to variations in gamma power in both normal and ADHD subjects, and D4R activation was shown to enhance kainate-induced gamma oscillations in brain slices in vitro. The goal of this study was to investigate the effect of D4R activation on gamma oscillations in freely moving rats during natural behavior. Field potentials were recorded in the frontal, prefrontal, parietal, and occipital cortex and hippocampus. Gamma power was assessed before and after subcutaneous injection of a D4R agonist, A-412997, in several doses between 0.3 and 10.0 mg/kg. The experiments were also repeated in a neurodevelopmental model of schizophrenia, in which rats are prenatally treated with methylazoxymethanol (MAM). We found that the D4R agonist increased gamma power in all regions at short latency and lasted for ~2 h, both in normal and MAM-treated rats. The effect was dose dependent indicated by the significant difference between the effects after 3 and 10 mg/kg in pair-wise comparison, whereas 0.3 and 1.0 mg/kg injections were ineffective. This study demonstrates the involvement of D4R in cortical gamma oscillations in vivo and identifies this receptor as potential target for pharmacological treatment of cognitive deficits.
Collapse
Affiliation(s)
- Bernat Kocsis
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA,
| | | | | |
Collapse
|
34
|
Furth KE, Mastwal S, Wang KH, Buonanno A, Vullhorst D. Dopamine, cognitive function, and gamma oscillations: role of D4 receptors. Front Cell Neurosci 2013; 7:102. [PMID: 23847468 PMCID: PMC3698457 DOI: 10.3389/fncel.2013.00102] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 06/11/2013] [Indexed: 12/29/2022] Open
Abstract
Cognitive deficits in individuals with schizophrenia (SCZ) are considered core symptoms of this disorder, and can manifest at the prodromal stage. Antipsychotics ameliorate positive symptoms but only modestly improve cognitive symptoms. The lack of treatments that improve cognitive abilities currently represents a major obstacle in developing more effective therapeutic strategies for this debilitating disorder. While D4 receptor (D4R)-specific antagonists are ineffective in the treatment of positive symptoms, animal studies suggest that D4R drugs can improve cognitive deficits. Moreover, recent work from our group suggests that D4Rs synergize with the neuregulin/ErbB4 signaling pathway, genetically identified as risk factors for SCZ, in parvalbumin (PV)-expressing interneurons to modulate gamma oscillations. These high-frequency network oscillations correlate with attention and increase during cognitive tasks in healthy subjects, and this correlation is attenuated in affected individuals. This finding, along with other observations indicating impaired GABAergic function, has led to the idea that abnormal neural activity in the prefrontal cortex (PFC) in individuals with SCZ reflects a perturbation in the balance of excitation and inhibition. Here we review the current state of knowledge of D4R functions in the PFC and hippocampus, two major brain areas implicated in SCZ. Special emphasis is given to studies focusing on the potential role of D4Rs in modulating GABAergic transmission and to an emerging concept of a close synergistic relationship between dopamine/D4R and neuregulin/ErbB4 signaling pathways that tunes the activity of PV interneurons to regulate gamma frequency network oscillations and potentially cognitive processes.
Collapse
Affiliation(s)
- Katrina E Furth
- Section on Molecular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health Bethesda, MD, USA ; Graduate Program for Neuroscience, Boston University Boston, MA, USA
| | | | | | | | | |
Collapse
|
35
|
Keck TM, Suchland KL, Jimenez CC, Grandy DK. Dopamine D4 receptor deficiency in mice alters behavioral responses to anxiogenic stimuli and the psychostimulant methylphenidate. Pharmacol Biochem Behav 2013; 103:831-41. [DOI: 10.1016/j.pbb.2012.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 11/30/2012] [Accepted: 12/08/2012] [Indexed: 12/31/2022]
|
36
|
Abstract
INTRODUCTION Cholinesterase inhibitors participate in the maintenance of the levels of the neurotransmitter acetylcholine by inhibiting the enzymes implicated in its degradation, namely, butyrylcholinesterase and acetylcholinesterase. This pharmacological action has an important role in several diseases, including neurodegenerative diseases such as Alzheimer's. AREAS COVERED This article reviews recent advances in the development of cholinesterase enzyme inhibitors, covering the development of new chemical entities, new pharmaceutical formulations with known inhibitors or treatments in combination with other drug families. EXPERT OPINION The development of cholinesterase inhibitors has to face several issues, including the fact that the principal indication for these drugs, Alzheimer's disease, is not currently believed to derivate from a cholinergic deficiency, although most of the drugs clinically used for these disease are cholinesterase inhibitors. Moreover, the adverse effects found when administering cholinesterase inhibitors limit their use in other diseases, such as gastrointestinal diseases, glaucoma, or analgesia.
Collapse
Affiliation(s)
- Cristóbal de los Ríos
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, C/Diego de León, 62, 28006 Madrid, Spain.
| |
Collapse
|
37
|
Lyon L, Saksida LM, Bussey TJ. Spontaneous object recognition and its relevance to schizophrenia: a review of findings from pharmacological, genetic, lesion and developmental rodent models. Psychopharmacology (Berl) 2012; 220:647-72. [PMID: 22068459 DOI: 10.1007/s00213-011-2536-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 10/06/2011] [Indexed: 12/12/2022]
Abstract
RATIONALE Spontaneous (novel) object recognition (SOR) is one of the most widely used rodent behavioural tests. The opportunity for rapid data collection has made SOR a popular choice in studies that explore cognitive impairment in rodent models of schizophrenia, and that test the efficacy of drugs intended to reverse these deficits. OBJECTIVES We provide an overview of the many recent studies that have used SOR to explore the mnemonic effects of manipulation of the key transmitter systems relevant to schizophrenia-the dopamine, glutamate, GABA, acetylcholine, serotonin and cannabinoid systems-alone or in combination. We also review the use of SOR in studying memory in genetically modified mouse models of schizophrenia, as well as in neurodevelopmental and lesion models. We end by discussing the construct and predictive validity, and translational relevance, of SOR with respect to cognitive impairment in schizophrenia. RESULTS Perturbation of the dopamine or glutamate systems can generate robust and reliable impairment in SOR. Impaired performance is also seen following antagonism of the muscarinic acetylcholine system, or exposure to cannabinoid agonists. Cognitive enhancement has been reported using alpha7-nicotinic acetylcholine receptor agonists and 5-HT(6) antagonists. Among non-pharmacological models, neonatal ventral hippocampal lesions and maternal immune activation can impair SOR, while mixed results have been obtained with mice carrying mutations in schizophrenia risk-associated genes, including neuregulin and COMT. CONCLUSIONS While SOR is not without its limitations, the task represents a useful method for studying manipulations with relevance to cognitive impairment in schizophrenia, as well as the interactions between them.
Collapse
Affiliation(s)
- L Lyon
- Department of Experimental Psychology, University of Cambridge, Downing St, Cambridge, CB2 3EB, UK
| | | | | |
Collapse
|
38
|
Yan Y, Pushparaj A, Le Strat Y, Gamaleddin I, Barnes C, Justinova Z, Goldberg SR, Le Foll B. Blockade of dopamine d4 receptors attenuates reinstatement of extinguished nicotine-seeking behavior in rats. Neuropsychopharmacology 2012; 37:685-96. [PMID: 22030716 PMCID: PMC3260983 DOI: 10.1038/npp.2011.245] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Since cloning of the dopamine receptor D4 (DRD4), its role in the brain has remained unclear. It has been reported that polymorphism of the DRD4 gene in humans is associated with reactivity to cues related to tobacco smoking. However, the role of DRD4 in animal models of nicotine addiction has seldom been explored. In our study, male Long-Evans rats learned to intravenously self-administer nicotine under a fixed-ratio (FR) schedule of reinforcement. Effects of the selective DRD4 antagonist L-745,870 were evaluated on nicotine self-administration behavior and on reinstatement of extinguished nicotine-seeking behavior induced by nicotine-associated cues or by priming injections of nicotine. L-745,870 was also tested on reinstatement of extinguished food-seeking behavior as a control. In addition, the selective DRD4 agonist PD 168,077 was tested for its ability to reinstate extinguished nicotine-seeking behavior. Finally, L-745,870 was tested in Sprague Dawley rats trained to discriminate administration of 0.4 mg/kg nicotine from vehicle under an FR schedule of food delivery. L-745,870 significantly attenuated reinstatement of nicotine-seeking induced by both nicotine-associated cues and nicotine priming. In contrast, L-745,870 did not affect established nicotine self-administration behavior or reinstatement of food-seeking behavior induced by food cues or food priming. L-745,870 did not produce nicotine-like discriminative-stimulus effects and did not alter discriminative-stimulus effects of nicotine. PD 168,077 did not reinstate extinguished nicotine-seeking behavior. As DRD4 blockade by L-745,870 selectively attenuated both cue- and nicotine-induced reinstatement of nicotine-seeking behavior, without affecting cue- or food-induced reinstatement of food-seeking behavior, DRD4 antagonists are potential therapeutic agents against tobacco smoking relapse.
Collapse
Affiliation(s)
- Yijin Yan
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health Addiction (CAMH), University of Toronto, Toronto, ON, Canada
| | - Abhiram Pushparaj
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health Addiction (CAMH), University of Toronto, Toronto, ON, Canada
| | - Yann Le Strat
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health Addiction (CAMH), University of Toronto, Toronto, ON, Canada
| | - Islam Gamaleddin
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health Addiction (CAMH), University of Toronto, Toronto, ON, Canada
| | - Chanel Barnes
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD, USA
| | - Zuzana Justinova
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD, USA,Department of Psychiatry, Maryland Psychiatric Research Centre, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Steven R Goldberg
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD, USA
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health Addiction (CAMH), University of Toronto, Toronto, ON, Canada,Departments of Family and Community Medicine, Pharmacology, Psychiatry, Institute of Medical Sciences, University of Toronto, Toronto, Canada,Translational Addiction Research Laboratory, Centre for Addiction and Mental Health Addiction (CAMH), University of Toronto, 33 Russell Street, Toronto, ON M5S 2S1 Canada, Tel: +416 535 8501 extension 4772, Fax: +416 595 6922, E-mail:
| |
Collapse
|
39
|
Camarasa J, Rodrigo T, Pubill D, Escubedo E. Memory impairment induced by amphetamine derivatives in laboratory animals and in humans: a review. Biomol Concepts 2012; 3:1-12. [DOI: 10.1515/bmc.2011.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 10/04/2011] [Indexed: 11/15/2022] Open
Abstract
AbstractThe 20th century brought with it the so-called club drugs (the most notorious being amphetamine derivatives), which are used by young adults at all-night dance parties. Methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA or ecstasy) are synthetic drugs with stimulant and psychoactive properties that belong to the amphetamine family. Here, we have reviewed the literature about the cognitive impairment induced by these two amphetamine derivatives and the preclinical and clinical outcomes. Although there is controversial evidence about the effect of methamphetamine and MDMA on learning and memory in laboratory animals, results from published papers demonstrate that amphetamines cause long-term impairment of cognitive functions. A large number of pharmacological receptors have been studied and screened as targets of amphetamine-induced cognitive dysfunction, and extensive research efforts have been invested to provide evidence about the molecular mechanisms behind these cognitive deficits. In humans, there is a considerable body of evidence indicating that methamphetamine and MDMA seriously disrupt memory and learning processes. Although an association between the impairments of memory performance and a history of recreational amphetamine ingestion has also been corroborated, a number of methodological difficulties continue to hamper research in this field, the most important being the concomitant use of other illicit drugs.
Collapse
Affiliation(s)
- Jordi Camarasa
- 1Department of Pharmacology and Therapeutic Chemistry (Pharmacology Section) and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, E-08028 Barcelona, Spain
| | - Teresa Rodrigo
- 2Animal Experimentation Unit, Faculty of Psychology, University of Barcelona, E-08035 Barcelona, Spain
| | - David Pubill
- 1Department of Pharmacology and Therapeutic Chemistry (Pharmacology Section) and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, E-08028 Barcelona, Spain
| | - Elena Escubedo
- 1Department of Pharmacology and Therapeutic Chemistry (Pharmacology Section) and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, E-08028 Barcelona, Spain
| |
Collapse
|
40
|
Halbout B, Quarta D, Valerio E, Heidbreder CA, Hutcheson DM. The GABA-B positive modulator GS39783 decreases psychostimulant conditioned-reinforcement and conditioned-reward. Addict Biol 2011; 16:416-27. [PMID: 21309927 DOI: 10.1111/j.1369-1600.2010.00278.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Baclofen, a γ-amino-butyric-acid (GABA)(B) receptor agonist, can reduce cue-enhanced cocaine-seeking in rats and attenuate cue-evoked craving in cocaine addicts. However, baclofen also has sedative effects that might interfere with its efficacy in reducing cocaine's rewarding effects. The present study aimed at comparing the effects of baclofen with the GABA(B) -receptor positive allosteric modulator GS39783 on psychostimulant conditioned cues. Two identically trained groups of male Lister-Hooded rats were baselined on a new responding for a light stimulus previously paired with cocaine self-administration. One group was treated with the GABA(B) -receptor positive allosteric modulator GS39783 (0, 10, 30, 100 mg/kg, i.p.), the other with baclofen (0, 0.6, 1.25, 1.9, 2.5 mg/kg, i.p.). In another series of experiments, male Wistar rats received GS39783 (0, 10, 30, 100 mg/kg, i.p.) or baclofen (1.25 mg/kg) prior to the expression of a conditioned place preference (CPP) to amphetamine (2 mg/kg i.p.). Both GS39783 (30 and 100 mg/kg) and baclofen (2.5 mg/kg) significantly decreased responding for the cocaine cue; however, only GS39783 (30 mg/kg) reduced lever pressing responding without interfering with locomotor activity. Both GS39783 (30 and 100 mg/kg) and baclofen (1.25 mg/kg), significantly blocked the expression of amphetamine CPP without affecting locomotor activity. These findings suggest that GABA(B) positive allosteric modulators can modulate discrete and contextual psychostimulant conditioned stimuli in a manner dissociable from unwanted sedative effects and may offer a novel therapeutic approach to treat cravings and relapse to drug-taking triggered by stimuli associated with psychostimulant use.
Collapse
|
41
|
Sood P, Idris NF, Cole S, Grayson B, Neill JC, Young AMJ. PD168077, a D(4) receptor agonist, reverses object recognition deficits in rats: potential role for D(4) receptor mechanisms in improving cognitive dysfunction in schizophrenia. J Psychopharmacol 2011; 25:792-800. [PMID: 21088042 DOI: 10.1177/0269881110387840] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This study investigated the effects of the dopamine D(4) receptor agonist, PD168077, on recognition memory using a novel object recognition task, which detects disruption and improvement of recognition memory in rats by measuring their ability to discriminate between familiar and novel objects. When acquisition and test were 6 h apart (experiment 1), control rats failed to discriminate between familiar and novel objects at test. Rats given low doses of PD168077 (0.3; 1.0 mg/kg) also failed to discriminate between the objects, while rats given higher doses (3.0; 10.0 mg/kg) explored the novel object more than the familiar object, indicating retained memory of the familiar object. Thus, at higher doses, PD168077 improved recognition memory in rats. Experiment 2 tested whether PD168077 would attenuate deficits in novel object recognition induced by sub-chronic phencyclidine. Testing was 1 min after acquisition, such that vehicle pre-treated rats differentiated between the novel and familiar objects: however, sub-chronic phencyclidine-treated rats failed to discriminate between the two, indicating disruption of recognition memory. PD168077 (10 mg/kg) restored the ability of phencyclidine-treated rats to differentiate between the novel and familiar objects, indicating improved recognition memory. The results suggest that D(4) receptor activation can improve cognitive dysfunction in an animal model relevant to schizophrenia.
Collapse
Affiliation(s)
- Pooja Sood
- School of Psychology, University of Leicester, Leicester, UK
| | | | | | | | | | | |
Collapse
|
42
|
Young JW, Powell SB, Scott CN, Zhou X, Geyer MA. The effect of reduced dopamine D4 receptor expression in the 5-choice continuous performance task: Separating response inhibition from premature responding. Behav Brain Res 2011; 222:183-92. [PMID: 21458500 DOI: 10.1016/j.bbr.2011.03.054] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 03/22/2011] [Accepted: 03/24/2011] [Indexed: 02/06/2023]
Abstract
Impairments in attention/vigilance and response disinhibition are commonly observed in several neuropsychiatric disorders. Validating animal models could help in developing therapeutics for cognitive deficits and improving functional outcomes in such disorders. The 5-choice continuous performance test (5C-CPT) in mice offers the opportunity to assess vigilance and two forms of impulsivity. Since reduced dopamine D4 receptor (DRD4) function is implicated in several disorders, DRD4 is a potential therapeutic target for cognition enhancement. We trained wildtype (WT), heterozygous (HT), and knockout (KO) mice of the murine Drd4 to perform the 5C-CPT under baseline and variable stimulus duration conditions. To dissect motor impulsivity (premature responding) from behavioral disinhibition (false alarms), we administered the 5-HT(2C) antagonist SB242084 during an extended inter-trial-interval session. We also examined the preattentive and exploratory profile of these mice in prepulse inhibition (PPI) and the Behavioral Pattern Monitor (BPM). Reduced Drd4 expression in HT mice, as confirmed by quantitative RT-PCR, resulted in response disinhibition and impaired 5C-CPT performance, while premature responding was unaffected. Conversely, SB242084 increased premature responding without affecting response inhibition or attentional measures. No genotypic differences were observed in PPI or BPM behavior. Thus, reduced Drd4 expression impairs attentional performance, but not other behaviors associated with neuropsychiatric disorders. Moreover, the use of signal and non-signal stimuli in the 5C-CPT enabled the differentiation of response disinhibition from motor impulsivity in a vigilance task.
Collapse
Affiliation(s)
- Jared W Young
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0804, United States.
| | | | | | | | | |
Collapse
|
43
|
Darvesh AS, Carroll RT, Geldenhuys WJ, Gudelsky GA, Klein J, Meshul CK, Van der Schyf CJ. In vivo brain microdialysis: advances in neuropsychopharmacology and drug discovery. Expert Opin Drug Discov 2011; 6:109-127. [PMID: 21532928 PMCID: PMC3083031 DOI: 10.1517/17460441.2011.547189] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION: Microdialysis is an important in vivo sampling technique, useful in the assay of extracellular tissue fluid. The technique has both pre-clinical and clinical applications but is most widely used in neuroscience. The in vivo microdialysis technique allows measurement of neurotransmitters such as acetycholine (ACh), the biogenic amines including dopamine (DA), norepinephrine (NE) and serotonin (5-HT), amino acids such as glutamate (Glu) and gamma aminobutyric acid (GABA), as well as the metabolites of the aforementioned neurotransmitters, and neuropeptides in neuronal extracellular fluid in discrete brain regions of laboratory animals such as rodents and non-human primates. AREAS COVERED: In this review we present a brief overview of the principles and procedures related to in vivo microdialysis and detail the use of this technique in the pre-clinical measurement of drugs designed to be used in the treatment of chemical addiction, neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD) and as well as psychiatric disorders such as attention-deficit/hyperactivity disorder (ADHD) and schizophrenia. This review offers insight into the tremendous utility and versatility of this technique in pursuing neuropharmacological investigations as well its significant potential in rational drug discovery. EXPERT OPINION: In vivo microdialysis is an extremely versatile technique, routinely used in the neuropharmacological investigation of drugs used for the treatment of neurological disorders. This technique has been a boon in the elucidation of the neurochemical profile and mechanism of action of several classes of drugs especially their effects on neurotransmitter systems. The exploitation and development of this technique for drug discovery in the near future will enable investigational new drug candidates to be rapidly moved into the clinical trial stages and to market thus providing new successful therapies for neurological diseases that are currently in demand.
Collapse
Affiliation(s)
- Altaf S. Darvesh
- Pharmaceutical Sciences-Neurotherapeutics Focus Group, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Rootstown, OH 44272, USA
- Psychiatry, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Rootstown, OH 44272, USA
| | - Richard T. Carroll
- Pharmaceutical Sciences-Neurotherapeutics Focus Group, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Rootstown, OH 44272, USA
| | - Werner J. Geldenhuys
- Pharmaceutical Sciences-Neurotherapeutics Focus Group, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Rootstown, OH 44272, USA
| | - Gary A. Gudelsky
- Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Jochen Klein
- Chemistry, Biochemistry, Pharmacy, Johann Wolfgang Goethe University of Frankfurt, Frankfurt, D-60438, Germany
| | - Charles K. Meshul
- Behavioral Neuroscience, Pathology, School of Medicine, Oregon Health and Science University, Portland, OR 97239, USA
- Portland Veterans Affairs Research Center, Portland, OR 97239, USA
| | - Cornelis J. Van der Schyf
- Pharmaceutical Sciences-Neurotherapeutics Focus Group, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Rootstown, OH 44272, USA
- Neurobiology, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, Rootstown, OH 44272, USA
| |
Collapse
|
44
|
Cognitive enhancers: focus on modulatory signaling influencing memory consolidation. Pharmacol Biochem Behav 2011; 99:155-63. [PMID: 21236291 DOI: 10.1016/j.pbb.2010.12.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 12/20/2010] [Accepted: 12/22/2010] [Indexed: 12/24/2022]
Abstract
Biological research has unraveled many of the molecular and cellular mechanisms involved in the formation of long-lasting memory, providing new opportunities for the development of cognitive-enhancing drugs. Studies of drug enhancement of cognition have benefited from the use of pharmacological treatments given after learning, allowing the investigation of mechanisms regulating the consolidation phase of memory. Modulatory systems influencing consolidation processes include stress hormones and several neurotransmitter and neuropeptide systems. Here, we review some of the findings on memory enhancement by drug administration in animal models, and discuss their implications for the development of cognitive enhancers.
Collapse
|
45
|
Floresco SB, Jentsch JD. Pharmacological enhancement of memory and executive functioning in laboratory animals. Neuropsychopharmacology 2011; 36:227-50. [PMID: 20844477 PMCID: PMC3055518 DOI: 10.1038/npp.2010.158] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Investigating how different pharmacological compounds may enhance learning, memory, and higher-order cognitive functions in laboratory animals is the first critical step toward the development of cognitive enhancers that may be used to ameliorate impairments in these functions in patients suffering from neuropsychiatric disorders. Rather than focus on one aspect of cognition, or class of drug, in this review we provide a broad overview of how distinct classes of pharmacological compounds may enhance different types of memory and executive functioning, particularly those mediated by the prefrontal cortex. These include recognition memory, attention, working memory, and different components of behavioral flexibility. A key emphasis is placed on comparing and contrasting the effects of certain drugs on different cognitive and mnemonic functions, highlighting methodological issues associated with this type of research, tasks used to investigate these functions, and avenues for future research. Viewed collectively, studies of the neuropharmacological basis of cognition in rodents and non-human primates have identified targets that will hopefully open new avenues for the treatment of cognitive disabilities in persons affected by mental disorders.
Collapse
Affiliation(s)
- Stan B Floresco
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.
| | - James D Jentsch
- Departments of Psychology and Psychiatry & Bio-behavioral Sciences, University of California, Los Angeles, CA, USA
| |
Collapse
|
46
|
The dopamine D3 receptor antagonist, S33138, counters cognitive impairment in a range of rodent and primate procedures. Int J Neuropsychopharmacol 2010; 13:1035-51. [PMID: 20663270 DOI: 10.1017/s1461145710000775] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Although dopamine D(3) receptor antagonists have been shown to enhance frontocortical cholinergic transmission and improve cognitive performance in rodents, data are limited and their effects have never been examined in primates. Accordingly, we characterized the actions of the D(3) receptor antagonist, S33138, in rats and rhesus monkeys using a suite of procedures in which cognitive performance was disrupted by several contrasting manipulations. S33138 dose-dependently (0.01-0.63 mg/kg s.c.) blocked a delay-induced impairment of novel object recognition in rats, a model of visual learning and memory. Further, S33138 (0.16-2.5 mg/kg s.c.) similarly reduced a delay-induced deficit in social novelty discrimination in rats, a procedure principally based on olfactory cues. Adult rhesus monkeys were trained to perform cognitive procedures, then chronically exposed to low doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine which produced cognitive impairment without motor disruption. In an attentional set-shifting task of cognitive flexibility involving an extra-dimensional shift, deficits were reversed by S33138 (0.04 and 0.16 mg/kg p.o.). S33138 also significantly improved accuracy (0.04 and 0.16 mg/kg p.o.) at short (but not long) delays in a variable delayed-response task of attention and working memory. Finally, in a separate set of experiments performed in monkeys displaying age-related deficits, S33138 significantly (0.16 and 0.63 mg/kg p.o.) improved task accuracies for long delay intervals in a delayed matching-to-sample task of working memory. In conclusion, S33138 improved performance in several rat and primate procedures of cognitive impairment. These data underpin interest in D(3) receptor blockade as a strategy for improving cognitive performance in CNS disorders like schizophrenia and Parkinson's disease.
Collapse
|
47
|
Rondou P, Haegeman G, Van Craenenbroeck K. The dopamine D4 receptor: biochemical and signalling properties. Cell Mol Life Sci 2010; 67:1971-86. [PMID: 20165900 PMCID: PMC11115718 DOI: 10.1007/s00018-010-0293-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 01/19/2010] [Accepted: 01/26/2010] [Indexed: 01/20/2023]
Abstract
Dopamine is an important neurotransmitter that regulates several key functions in the brain, such as motor output, motivation and reward, learning and memory, and endocrine regulation. Dopamine does not mediate fast synaptic transmission, but rather modulates it by triggering slow-acting effects through the activation of dopamine receptors, which belong to the G-protein-coupled receptor superfamily. Besides activating different effectors through G-protein coupling, dopamine receptors also signal through interaction with a variety of proteins, collectively termed dopamine receptor-interacting proteins. We focus on the dopamine D4 receptor, which contains an important polymorphism in its third intracellular loop. This polymorphism has been the subject of numerous studies investigating links with several brain disorders, such as attention-deficit hyperactivity disorder and schizophrenia. We provide an overview of the structure, signalling properties and regulation of dopamine D4 receptors, and briefly discuss their physiological and pathophysiological role in the brain.
Collapse
Affiliation(s)
- Pieter Rondou
- Laboratory of Eukaryotic Gene Expression and Signal Transduction (LEGEST), Ghent University (UGent), K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
- Present Address: Center for Medical Genetics Ghent (CMGG), Ghent University Hospital, Medical Research Building, De Pintelaan 185, 9000 Ghent, Belgium
| | - Guy Haegeman
- Laboratory of Eukaryotic Gene Expression and Signal Transduction (LEGEST), Ghent University (UGent), K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Kathleen Van Craenenbroeck
- Laboratory of Eukaryotic Gene Expression and Signal Transduction (LEGEST), Ghent University (UGent), K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| |
Collapse
|