1
|
El-Serafi I, Steele S. Cyclophosphamide Pharmacogenomic Variation in Cancer Treatment and Its Effect on Bioactivation and Pharmacokinetics. Adv Pharmacol Pharm Sci 2024; 2024:4862706. [PMID: 38966316 PMCID: PMC11223907 DOI: 10.1155/2024/4862706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024] Open
Abstract
Cyclophosphamide (Cy) is a prodrug that is mainly bioactivated by cytochrome P450 (CYP) 2B6 enzyme. Several other enzymes are also involved in its bioactivation and affect its kinetics. Previous studies have shown the effect of the enzymes' genetic polymorphisms on Cy kinetics and its clinical outcome. These results were controversial primarily because of the involvement of several interacting enzymes in the Cy metabolic pathway, which can also be affected by several clinical factors as well as other drug interactions. In this review article, we present the effect of CYP2B6 polymorphisms on Cy kinetics since it is the main bioactivating enzyme, as well as discussing all previously reported enzymes and clinical factors that can alter Cy efficacy. Additionally, we present explanations for key Cy side effects related to the nature and site of its bioactivation. Finally, we discuss the role of busulphan in conditioning regimens in the Cy metabolic pathway as a clinical example of drug-drug interactions involving several enzymes. By the end of this article, our aim is to have provided a comprehensive summary of Cy pharmacogenomics and the effect on its kinetics. The utility of these findings in the development of new strategies for Cy personalized patient dose adjustment will aid in the future optimization of patient specific Cy dosages and ultimately in improving clinical outcomes. In conclusion, CYP2B6 and several other enzyme polymorphisms can alter Cy kinetics and consequently the clinical outcomes. However, the precise quantification of Cy kinetics in any individual patient is complex as it is clearly under multifactorial genetic control. Additionally, other clinical factors such as the patient's age, diagnosis, concomitant medications, and clinical status should also be considered.
Collapse
Affiliation(s)
- Ibrahim El-Serafi
- Basic Medical Sciences DepartmentCollege of MedicineAjman University, Ajman, UAE
- Department of Hand Surgery, and Plastic Surgery and BurnsLinköping University Hospital, Linkoöping, Sweden
| | - Sinclair Steele
- Pathological Sciences DepartmentCollege of MedicineAjman University, Ajman, UAE
| |
Collapse
|
2
|
Zhao FL, Zhang Q, Wang SH, Hong Y, Zhou S, Zhou Q, Geng PW, Luo QF, Yang JF, Chen H, Cai JP, Dai DP. Identification and drug metabolic characterization of four new CYP2C9 variants CYP2C9*72- *75 in the Chinese Han population. Front Pharmacol 2022; 13:1007268. [PMID: 36582532 PMCID: PMC9792615 DOI: 10.3389/fphar.2022.1007268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
Cytochrome 2C9 (CYP2C9), one of the most important drug metabolic enzymes in the human hepatic P450 superfamily, is required for the metabolism of 15% of clinical drugs. Similar to other CYP2C family members, CYP2C9 gene has a high genetic polymorphism which can cause significant racial and inter-individual differences in drug metabolic activity. To better understand the genetic distribution pattern of CYP2C9 in the Chinese Han population, 931 individuals were recruited and used for the genotyping in this study. As a result, seven synonymous and 14 non-synonymous variations were identified, of which 4 missense variants were designated as new alleles CYP2C9*72, *73, *74 and *75, resulting in the amino acid substitutions of A149V, R150C, Q214H and N418T, respectively. When expressed in insect cell microsomes, all four variants exhibited comparable protein expression levels to that of the wild-type CYP2C9 enzyme. However, drug metabolic activity analysis revealed that these variants exhibited significantly decreased catalytic activities toward three CYP2C9 specific probe drugs, as compared with that of the wild-type enzyme. These data indicate that the amino acid substitution in newly designated variants can cause reduced function of the enzyme and its clinical significance still needs further investigation in the future.
Collapse
Affiliation(s)
- Fang-Ling Zhao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China,Peking University Fifth School of Clinical Medicine, Beijing, China
| | - Qing Zhang
- Department of Cardiovascular, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Shuang-Hu Wang
- Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People’s Hospital of Lishui, Lishui, China
| | - Yun Hong
- Department of Gastroenterology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Shan Zhou
- Peking University Fifth School of Clinical Medicine, Beijing, China
| | - Quan Zhou
- Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People’s Hospital of Lishui, Lishui, China
| | - Pei-Wu Geng
- Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People’s Hospital of Lishui, Lishui, China
| | - Qing-Feng Luo
- Department of Gastroenterology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie-Fu Yang
- Department of Cardiovascular, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Hao Chen
- Department of Cardiovascular, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China,*Correspondence: Da-Peng Dai, ; Jian-Ping Cai, ; Hao Chen,
| | - Jian-Ping Cai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China,*Correspondence: Da-Peng Dai, ; Jian-Ping Cai, ; Hao Chen,
| | - Da-Peng Dai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China,Peking University Fifth School of Clinical Medicine, Beijing, China,*Correspondence: Da-Peng Dai, ; Jian-Ping Cai, ; Hao Chen,
| |
Collapse
|
3
|
Prevalence of five pharmacologically most important CYP2C9 and CYP2C19 allelic variants in the population from the Republic of Srpska in Bosnia and Herzegovina. ACTA ACUST UNITED AC 2021; 72:129-134. [PMID: 34187105 PMCID: PMC8265196 DOI: 10.2478/aiht-2021-72-3499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 05/01/2021] [Indexed: 12/01/2022]
Abstract
The enzymes of the cytochrome P450 superfamily play a critical role in phase I drug metabolism. Among them, CYP2C9 and CYP2C19 are clinically important, as they can mediate severe toxicity, therapy failure, and increased susceptibility to cancer and other diseases caused by chemicals. The aim of this study was to determine the prevalence of pharmacologically most important allelic variants of the CYP2C9 and CYP2C19 genes in the general population of the Republic of Srpska (Bosnia and Herzegovina) and to compare them with other populations. For this purpose we determined the genotype profile and allele frequency of 216 randomly selected healthy volunteers using real-time polymerase chain reaction (RT-PCR). The prevalence of the CYP2C9 *2 and *3 alleles was 13.6 and 7.4 %, respectively. Based on these frequencies, of the 216 participants four (1.86 %) were predicted to be poor metabolisers, 78 (36.11 %) intermediate, and the remaining 134 (62.03 %) normal metabolisers. Based on the prevalence of CYP2C19 *2 and *17 variants – 16.2 and 20.4 %, respectively – nine (4.17 %) were predicted to be poor, 57 (26.39 %) rapid, and nine (4.17 %) ultra-rapid metabolisers. We found no significant differences in allele frequencies in our population and populations from other European countries. These findings suggest that genetically determined phenotypes of CYP2C9 and CYP2C19 should be taken into consideration to minimise individual risk and improve benefits of drug therapy in the Republic of Srpska.
Collapse
|
4
|
Chen L, Li JH, Kaur V, Muhammad A, Fernandez M, Hudson MS, Goldfine AB, Florez JC. The presence of two reduced function variants in CYP2C9 influences the acute response to glipizide. Diabet Med 2020; 37:2124-2130. [PMID: 31709648 PMCID: PMC7211120 DOI: 10.1111/dme.14176] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/07/2019] [Indexed: 01/27/2023]
Abstract
AIMS To examine whether the presence of two common missense variants in the CYP2C9 gene (rs1799853, encoding Arg144Cys and denoted as *2, and rs1057910, encoding Ile359Leu and denoted as *3) influences the acute physiological response to a single glipizide dose in individuals naïve to diabetes medications. METHODS In the Study to Understand the Genetics of the Acute Response to Metformin and Glipizide in Humans (SUGAR-MGH), 786 individuals genotyped for rs1799853/rs41291560 (*2) and rs1057910/rs9332214 (*3) were treated with 5 mg glipizide in the fasting state. Glucose and insulin levels were measured at baseline, 30, 60, 90, 120, 180 and 240 min for calculation of phenotypic endpoints of glipizide response. The challenge was aborted as a result of hypoglycaemia, defined as glucose <2.8 mmol/l or hypoglycaemia-related symptoms. RESULTS Carriers with two reduced function alleles had a 50% larger insulin area under the curve than carriers with zero or one copy (P=0.037), although this finding was primarily driven by an individual with a robust insulin response. In adjusted analyses, the risk of aborting the glipizide challenge was doubled in two-copy carriers (P=0.034). No significant findings were observed in glucose-based endpoints. CONCLUSIONS Carriers of two reduced function alleles in CYP2C9 may experience an increased insulin response to glipizide and be predisposed to a higher risk of hypoglycaemia, although no effect of genotype was seen in glucose-based measurements. Further studies are needed to clarify the utility of CYP2C9 genotyping to guide sulfonylurea treatment.
Collapse
Affiliation(s)
- L Chen
- Centre for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Diabetes Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA
| | - J H Li
- Centre for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Diabetes Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - V Kaur
- Centre for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Diabetes Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA
| | - A Muhammad
- Centre for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Diabetes Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA
| | - M Fernandez
- Centre for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Diabetes Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA
| | - M S Hudson
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - A B Goldfine
- Department of Medicine, Harvard Medical School, Boston, MA
- Joslin Diabetes Centre, Boston, MA, USA
| | - J C Florez
- Centre for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Diabetes Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
5
|
Parween S, DiNardo G, Baj F, Zhang C, Gilardi G, Pandey AV. Differential effects of variations in human P450 oxidoreductase on the aromatase activity of CYP19A1 polymorphisms R264C and R264H. J Steroid Biochem Mol Biol 2020; 196:105507. [PMID: 31669572 DOI: 10.1016/j.jsbmb.2019.105507] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 01/08/2023]
Abstract
Aromatase (CYP19A1) converts androgens into estrogens and is required for female sexual development and growth and development in both sexes. CYP19A1 is a member of cytochrome P450 family of heme-thiolate monooxygenases located in the endoplasmic reticulum and depends on reducing equivalents from the reduced nicotinamide adenine dinucleotide phosphate via the cytochrome P450 oxidoreductase coded by POR. Both the CYP19A1 and POR genes are highly polymorphic, and mutations in both these genes are linked to disorders of steroid biosynthesis. We have previously shown that R264C and R264H mutations in CYP19A1, as well as mutations in POR, reduce CYP19A1 activity. The R264C is a common polymorphic variant of CYP19A1, with high frequency in Asian and African populations. Polymorphic alleles of POR are found in all populations studied so far and, therefore, may influence activities of CYP19A1 allelic variants. So far, the effects of variations in POR on enzymatic activities of allelic variants of CYP19A1 or any other steroid metabolizing cytochrome P450 proteins have not been studied. Here we are reporting the effects of three POR variants on the aromatase activities of two CYP19A1 variants, R264C, and R264H. We used bacterially expressed and purified preparations of WT and variant forms of CYP19A1 and POR and constructed liposomes with embedded CYP19A1 and POR proteins and assayed the CYP19A1 activities using radiolabeled androstenedione as a substrate. With the WT-POR as a redox partner, the R264C-CYP19A1 showed only 15% of aromatase activity, but the R264H had 87% of aromatase activity compared to WT-CYP19A1. With P284L-POR as a redox partner, R264C-CYP19A1 lost all activity but retained 6.7% of activity when P284T-POR was used as a redox partner. The R264H-CYP19A1 showed low activities with both the POR-P284 L as well as the POR-P284 T. When the POR-Y607C was used as a redox partner, the R264C-CYP19A1 retained approximately 5% of CYP19A1 activity. Remarkably, The R264H-CYP19A1 had more than three-fold higher activity compared to WT-CYP19A1 when the POR-Y607C was used as the redox partner, pointing toward a beneficial effect. The slight increase in activity of R264C-CYP19A1 with the P284T-POR and the three-fold increase in activity of the R264H-CYP19A1 with the Y607C-POR point toward a conformational effect and role of protein-protein interaction governed by the R264C and R264H substitutions in the CYP19A1 as well as P284 L, P284 T and Y607C variants of POR. These studies demonstrate that the allelic variants of P450 when present with a variant form of POR may show different activities, and combined effects of variations in the P450 enzymes as well as in the POR should be considered when genetic data are available. Recent trends in the whole-exome and whole-genome sequencing as diagnostic tools will permit combined evaluation of variations in multiple genes that are interdependent and may guide treatment options by adjusting therapeutic interventions based on laboratory analysis.
Collapse
Affiliation(s)
- Shaheena Parween
- Pediatric Endocrinology, Diabetology, and Metabolism, Department of Pediatrics, University Children's Hospital Bern, 3010, Bern, Switzerland; Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| | - Giovanna DiNardo
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy
| | - Francesca Baj
- Pediatric Endocrinology, Diabetology, and Metabolism, Department of Pediatrics, University Children's Hospital Bern, 3010, Bern, Switzerland; Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland; Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy
| | - Chao Zhang
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy.
| | - Amit V Pandey
- Pediatric Endocrinology, Diabetology, and Metabolism, Department of Pediatrics, University Children's Hospital Bern, 3010, Bern, Switzerland; Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland.
| |
Collapse
|
6
|
Parween S, Rojas Velazquez MN, Udhane SS, Kagawa N, Pandey AV. Variability in Loss of Multiple Enzyme Activities Due to the Human Genetic Variation P284T Located in the Flexible Hinge Region of NADPH Cytochrome P450 Oxidoreductase. Front Pharmacol 2019; 10:1187. [PMID: 31749697 PMCID: PMC6843080 DOI: 10.3389/fphar.2019.01187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/17/2019] [Indexed: 11/25/2022] Open
Abstract
Cytochromes P450 located in the endoplasmic reticulum require NADPH cytochrome P450 oxidoreductase (POR) for their catalytic activities. Mutations in POR cause multiple disorders in humans related to the biosynthesis of steroid hormones and also affect drug-metabolizing cytochrome P450 activities. Electron transfer in POR occurs from NADH to FAD to FMN, and the flexible hinge region in POR is essential for domain movements to bring the FAD and FMN close together for electron transfer. We tested the effect of variations in the hinge region of POR to check if the effects would be similar across all redox partners or there will be differences in activities. Here we are reporting the effects of a POR genetic variant P284T located in the hinge region of POR that is necessary for the domain movements and internal electron transfer between co-factors. Human wild-type and P284T mutant of POR and cytochrome P450 proteins were expressed in bacteria, purified, and reconstituted for enzyme assays. We found that for the P284T variant of POR, the cytochrome c reduction activity was reduced to 47% of the WT and MTT reduction was reduced to only 15% of the WT. No impact on ferricyanide reduction activity was observed, indicating intact direct electron transfer from FAD to ferricyanide, but a severe loss of CYP19A1 (aromatase) activity was observed (9% of WT). In the assays of drug-metabolizing cytochrome P450 enzymes, the P284T variant of POR showed 26% activity for CYP2C9, 44% activity for CYP2C19, 23% activity for CYP3A4, and 44% activity in CYP3A5 assays compared to the WT POR. These results indicate a severe effect on several cytochrome P450 activities due to the P284T variation in POR, which suggests a negative impact on both the steroid as well as drug metabolism in the individuals carrying this variation. The negative impact of P284T mutation in the hinge region of POR seems to be due to disruption of FAD to FMN electron transfer. These results further emphasize the importance of hinge region in POR for protein flexibility and electron transfer within POR as well as the interaction of POR with different redox partners.
Collapse
Affiliation(s)
- Shaheena Parween
- Pediatric Endocrinology, Diabetology, and Metabolism, Department of Pediatrics, University Children's Hospital Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Maria Natalia Rojas Velazquez
- Pediatric Endocrinology, Diabetology, and Metabolism, Department of Pediatrics, University Children's Hospital Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland.,Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Sameer S Udhane
- Pediatric Endocrinology, Diabetology, and Metabolism, Department of Pediatrics, University Children's Hospital Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Norio Kagawa
- School of Medicine, Nagoya University, Nagoya, Japan
| | - Amit V Pandey
- Pediatric Endocrinology, Diabetology, and Metabolism, Department of Pediatrics, University Children's Hospital Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
7
|
Challenges to assess substrate-dependent allelic effects in CYP450 enzymes and the potential clinical implications. THE PHARMACOGENOMICS JOURNAL 2019; 19:501-515. [DOI: 10.1038/s41397-019-0105-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 09/09/2019] [Accepted: 10/02/2019] [Indexed: 12/12/2022]
|
8
|
Hao C, Guo J, Guo R, Qi Z, Li W, Ni X. Compound heterozygous variants in POR gene identified by whole-exome sequencing in a Chinese pedigree with cytochrome P450 oxidoreductase deficiency. Pediatr Investig 2018; 2:90-95. [PMID: 32851239 PMCID: PMC7331414 DOI: 10.1002/ped4.12035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/05/2018] [Indexed: 01/11/2023] Open
Abstract
IMPORTANCE Cytochrome P450 oxidoreductase deficiency (PORD) is a rare disease exhibiting a variety of clinical manifestations. This condition specifically leads to disordered steroidogenesis, which can affect the development of the reproductive system, skeleton, and other parts of the body. The severe form of PORD is difficult to differentiate with Antley-Bixler syndrome (ABS). The genetic characters and clinical evaluation of PORD are still unclear in China. OBJECTIVE To perform an exome analysis and identify the pathogenic cause in order to assist clinicians to obtain a proper evaluation on the genetic condition. METHODS The proband underwent detailed physical evaluations. DNA of the proband and his parents was isolated and whole-exome sequencing (WES) was performed. Variants were analyzed and evaluation according to the ACMG guideline. RESULTS A 1-year-old Chinese boy with midface hypoplasia, choanal stenosis, multiple joint contractures, micropenis and right cryptorchidism was misdiagnosed with Crouzon syndrome. By trio-whole-exome sequencing, we identified an unreported compound heterozygous mutation (c.667C>T, p.R223* and c.1370G>A, p.R457H) in POR in the proband. This mutation was inherited from healthy heterozygous parents, supporting the diagnosis of PORD, which was further confirmed by biochemical characteristics. INTERPRETATION We have identified a pathogenic variant with an unreported compound heterozygous POR mutation, which expands the clinical and genetic spectra of PORD and emphasizes the usefulness of WES for genetic diagnosis.
Collapse
Affiliation(s)
- Chanjuan Hao
- Beijing Key Laboratory for Genetics of Birth DefectsMOE Key Laboratory of Major Diseases in ChildrenCenter for Medical GeneticsBeijing Pediatric Research InstituteCapital Medical UniversityNational Center for Children's HealthBeijingChina
| | - Jun Guo
- Beijing Key Laboratory for Genetics of Birth DefectsMOE Key Laboratory of Major Diseases in ChildrenCenter for Medical GeneticsBeijing Pediatric Research InstituteCapital Medical UniversityNational Center for Children's HealthBeijingChina
| | - Ruolan Guo
- Beijing Key Laboratory for Genetics of Birth DefectsMOE Key Laboratory of Major Diseases in ChildrenCenter for Medical GeneticsBeijing Pediatric Research InstituteCapital Medical UniversityNational Center for Children's HealthBeijingChina
| | - Zhan Qi
- Beijing Key Laboratory for Genetics of Birth DefectsMOE Key Laboratory of Major Diseases in ChildrenCenter for Medical GeneticsBeijing Pediatric Research InstituteCapital Medical UniversityNational Center for Children's HealthBeijingChina
| | - Wei Li
- Beijing Key Laboratory for Genetics of Birth DefectsMOE Key Laboratory of Major Diseases in ChildrenCenter for Medical GeneticsBeijing Pediatric Research InstituteCapital Medical UniversityNational Center for Children's HealthBeijingChina
| | - Xin Ni
- Beijing Pediatric Research InstituteDepartment of Otolaryngology, Head and Neck SurgeryBeijing Children's HospitalCapital Medical UniversityNational Center for Children's HealthBeijingChina
| |
Collapse
|
9
|
Song T, Wang B, Chen H, Zhu J, Sun H. In vitro fertilization-frozen embryo transfer in a patient with cytochrome P450 oxidoreductase deficiency: a case report. Gynecol Endocrinol 2018; 34:385-388. [PMID: 29069987 DOI: 10.1080/09513590.2017.1393663] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Cytochrome P450 enzymes are required for the synthesis of cholesterol and steroid hormones. Cytochrome P450 oxidoreductase (POR) donates electrons to microsomal cytochrome P450 enzymes. POR deficiency (PORD) is a rare autosomal recessive disease. In patients with PORD, steroid hormone synthesis is disrupted, which can cause infertility. The objective of this study was to report on a case of in vitro fertilization-frozen embryo transfer (IVF-FET) in a patient with PORD. The patient's hormone (i.e. 17α-hydroxyprogesterone) and electrolyte levels were within normal ranges ordinarily. Upon controlled ovarian stimulation, follicle growth was normal, but serum estrogen and progesterone levels were low and high, respectively. The serum progesterone level was elevated after long-acting gonadotropin-releasing hormone agonist treatment, and an endometrial biopsy showed a change in the proliferative phase. Genetic tests detected homozygous mutations (c.976 T > G, p.Y326D) in exon 10 of the POR gene. The frozen embryo was transferred during the administration of hormone replacement therapy. No significant morphological or metabolic abnormalities were observed in the neonate. Our findings suggest that infertile women with normal hormone levels may have metabolic diseases such as PORD. Further studies are needed to determine the cause of these diseases and to assist pregnancy in such women.
Collapse
Affiliation(s)
- Tianran Song
- a Reproductive Medicine Center, Department of Obstetrics and Gynecology , Nanjing Drum Tower Hospital, The Affiliated Drum Tower Hospital of Nanjing University Medical School , Nanjing , China
| | - Bin Wang
- a Reproductive Medicine Center, Department of Obstetrics and Gynecology , Nanjing Drum Tower Hospital, The Affiliated Drum Tower Hospital of Nanjing University Medical School , Nanjing , China
| | - Huan Chen
- a Reproductive Medicine Center, Department of Obstetrics and Gynecology , Nanjing Drum Tower Hospital, The Affiliated Drum Tower Hospital of Nanjing University Medical School , Nanjing , China
| | - Jingjing Zhu
- a Reproductive Medicine Center, Department of Obstetrics and Gynecology , Nanjing Drum Tower Hospital, The Affiliated Drum Tower Hospital of Nanjing University Medical School , Nanjing , China
| | - Haixiang Sun
- a Reproductive Medicine Center, Department of Obstetrics and Gynecology , Nanjing Drum Tower Hospital, The Affiliated Drum Tower Hospital of Nanjing University Medical School , Nanjing , China
| |
Collapse
|
10
|
Dujic T, Zhou K, Donnelly LA, Leese G, Palmer CNA, Pearson ER. Interaction between variants in the CYP2C9 and POR genes and the risk of sulfonylurea-induced hypoglycaemia: A GoDARTS Study. Diabetes Obes Metab 2018; 20:211-214. [PMID: 28656666 PMCID: PMC5724509 DOI: 10.1111/dom.13046] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/12/2017] [Accepted: 06/21/2017] [Indexed: 12/22/2022]
Abstract
Data on the association of CYP2C9 genetic polymorphisms with sulfonylurea (SU)-induced hypoglycaemia (SH) are inconsistent. Recent studies showed that variants in the P450 oxidoreductase (POR) gene could affect CYP2C9 activity. In this study, we explored the effects of POR*28 and combined CYP2C9*2 and CYP2C9*3 genotypes on SH and the efficacy of SU treatment in type 2 diabetes. A total of 1770 patients were included in the analysis of SU efficacy, assessed as the combined outcome of the HbA1c reduction and the prescribed SU daily dose. Sixty-nine patients with severe SH were compared with 311 control patients. The number of CYP2C9 deficient alleles was associated with nearly three-fold higher odds of hypoglycaemia (OR, 2.81; 95% CI, 1.30-6.09; P = .009) and better response to SU treatment (β, -0.218; SE, 0.074; P = .003) only in patients carrying the POR*1/*1 genotype. Our results indicate that interaction between CYP2C9 and POR genes may be an important determinant of efficacy and severe adverse effects of SU treatment.
Collapse
Affiliation(s)
- Tanja Dujic
- Department of Biochemistry and Clinical Analysis, Faculty of PharmacyUniversity of SarajevoSarajevoBosnia and Herzegovina
- Division of Molecular and Clinical Medicine, School of MedicineUniversity of DundeeDundeeScotland, UK
| | - Kaixin Zhou
- Division of Molecular and Clinical Medicine, School of MedicineUniversity of DundeeDundeeScotland, UK
| | - Louise A. Donnelly
- Division of Molecular and Clinical Medicine, School of MedicineUniversity of DundeeDundeeScotland, UK
| | - Graham Leese
- Department of Endocrinology and Diabetes, Ninewells Hospital and Medical SchoolUniversity of DundeeDundeeScotland, UK
| | - Colin N. A. Palmer
- Division of Molecular and Clinical Medicine, School of MedicineUniversity of DundeeDundeeScotland, UK
| | - Ewan R. Pearson
- Division of Molecular and Clinical Medicine, School of MedicineUniversity of DundeeDundeeScotland, UK
| |
Collapse
|
11
|
Qi G, Li D, Zhang X. Genetic variation of cytochrome P450 in Uyghur Chinese population. Drug Metab Pharmacokinet 2017; 33:55-60. [PMID: 29233455 DOI: 10.1016/j.dmpk.2017.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/29/2016] [Accepted: 02/24/2017] [Indexed: 12/01/2022]
Abstract
Interindividual and interethnic variability of drug responses could be attributed to the differences of genetic polymorphisms in the drug metabolizing enzymes and transporters genes among the populations. Here we reviewed the studies of genetic variations in Uyghur Chinese of fifteen CYP450 genes including CYP1A1, CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP2J2, CYP2W1, CYP3A4, CYP3A5, CYP4A11, and CYP17A1, which totally covered 277 variants. We also collected the data of 277 variants covered in our study in two extensive population sequencing projects, the International HapMap Project (Hap-Map) and the 1000 Genomes Project and compared them with the data of Uyghur Chinese. The results suggested that remarkable differences of variants allele frequencies of CYP450 genes were existed among Uyghur Chinese and other world populations and drug doses should be adjusted clinically in Uyghur in contrast to Han Chinese and Caucasians.
Collapse
Affiliation(s)
- Guangzhao Qi
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Duolu Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
12
|
El-Serafi I, Terelius Y, Abedi-Valugerdi M, Naughton S, Saghafian M, Moshfegh A, Mattsson J, Potácová Z, Hassan M. Flavin-containing monooxygenase 3 (FMO3) role in busulphan metabolic pathway. PLoS One 2017; 12:e0187294. [PMID: 29121650 PMCID: PMC5679629 DOI: 10.1371/journal.pone.0187294] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/17/2017] [Indexed: 12/21/2022] Open
Abstract
Busulphan (Bu) is an alkylating agent used in the conditioning regimen prior to hematopoietic stem cell transplantation (HSCT). Bu is extensively metabolized in the liver via conjugations with glutathione to form the intermediate metabolite (sulfonium ion) which subsequently is degraded to tetrahydrothiophene (THT). THT was reported to be oxidized forming THT-1-oxide that is further oxidized to sulfolane and finally 3-hydroxysulfolane. However, the underlying mechanisms for the formation of these metabolites remain poorly understood. In the present study, we performed in vitro and in vivo investigations to elucidate the involvement of flavin-containing monooxygenase-3 (FMO3) and cytochrome P450 enzymes (CYPs) in Bu metabolic pathway. Rapid clearance of THT was observed when incubated with human liver microsomes. Furthermore, among different recombinant microsomal enzymes, the highest intrinsic clearance for THT was obtained via FMO3 followed by several CYPs including 2B6, 2C8, 2C9, 2C19, 2E1 and 3A4. In Bu- or THT-treated mice, inhibition of FMO3 by phenylthiourea significantly suppressed the clearance of both Bu and THT. Moreover, the simultaneous administration of a high dose of THT (200μmol/kg) to Bu-treated mice reduced the clearance of Bu. Consistently, in patients undergoing HSCT, repeated administration of Bu resulted in a significant up-regulation of FMO3 and glutathione-S-transfrase -1 (GSTA1) genes. Finally, in a Bu-treated patient, additional treatment with voriconazole (an antimycotic drug known as an FMO3-substrate) significantly altered the Bu clearance. In conclusion, we demonstrate for the first time that FMO3 along with CYPs contribute a major part in busulphan metabolic pathway and certainly can affect its kinetics. The present results have high clinical impact. Furthermore, these findings might be important for reducing the treatment-related toxicity of Bu, through avoiding interaction with other concomitant used drugs during conditioning and hence improving the clinical outcomes of HSCT.
Collapse
Affiliation(s)
- Ibrahim El-Serafi
- Experimental Cancer Medicine (ECM), Clinical Research Centre (KFC), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Ylva Terelius
- Experimental Cancer Medicine (ECM), Clinical Research Centre (KFC), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Manuchehr Abedi-Valugerdi
- Experimental Cancer Medicine (ECM), Clinical Research Centre (KFC), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Seán Naughton
- Experimental Cancer Medicine (ECM), Clinical Research Centre (KFC), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Maryam Saghafian
- Experimental Cancer Medicine (ECM), Clinical Research Centre (KFC), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Ali Moshfegh
- Cancer Center of Karolinska (CCK), Department of Oncology-Pathology, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Jonas Mattsson
- Centre for Allogeneic Stem Cell Transplantation, Karolinska University Hospital-Huddinge, Stockholm, Sweden.,Department of Oncology and Pathology, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Zuzana Potácová
- Experimental Cancer Medicine (ECM), Clinical Research Centre (KFC), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden.,ECM, Clinical Research Centre (KFC), Novum, Karolinska University Hospital, Huddinge, Sweden
| | - Moustapha Hassan
- Experimental Cancer Medicine (ECM), Clinical Research Centre (KFC), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden.,ECM, Clinical Research Centre (KFC), Novum, Karolinska University Hospital, Huddinge, Sweden
| |
Collapse
|
13
|
Polymorphisms in cytochrome P450 oxidoreductase and its effect on drug metabolism and efficacy. Pharmacogenet Genomics 2017; 27:337-346. [DOI: 10.1097/fpc.0000000000000297] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Tong HY, Borobia AM, Martínez Ávila JC, Lubomirov R, Muñoz M, Blanco Bañares MJ, Hernández R, Fernández Capitán C, Ramírez E, Frías J, Carcas AJ. Influence of two variants of CYP450 oxidoreductase on the stable dose of acenocoumarol in a Spanish population. Pharmacogenomics 2017; 18:797-805. [PMID: 28592191 DOI: 10.2217/pgs-2017-0021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
AIM To evaluate the influence of two variants of P450 oxidoreductase (POR), rs2868177 and POR*28, on the stable dosage of acenocoumarol. PATIENTS & METHODS For this observational, cross-sectional study, patients were undergone stable anticoagulant treatment with acenocoumarol. Univariate and multiple regression analyses were performed to assess the influence of POR polymorphisms. RESULTS About 340 patients were enrolled. Multiple regression had a coefficient of determination (R2) of 51.5% and an Akaike information criterion of 234.22. The inclusion of POR*28 polymorphisms increased the R2 to 52.0% and reduced the Akaike information criteria to 230.58. The POR*28 heterozygote showed statistical significance in the algorithm. CONCLUSION The POR*28 heterozygote appears to be associated with the stable dose of acenocoumarol, but its clinical contribution to the prediction of the dosing of this drug is minimal.
Collapse
Affiliation(s)
- Hoi Y Tong
- Clinical Pharmacology Department, La Paz University Hospital, IdiPAZ, Madrid, Spain
| | - Alberto M Borobia
- Clinical Pharmacology Department, La Paz University Hospital, IdiPAZ, Madrid, Spain.,Pharmacology Department, School of Medicine, Autonomous University of Madrid, IdiPAZ, Madrid, Spain
| | | | - Rubin Lubomirov
- Pharmacology Department, School of Medicine, Autonomous University of Madrid, IdiPAZ, Madrid, Spain
| | - Mario Muñoz
- Clinical Pharmacology Department, La Paz University Hospital, IdiPAZ, Madrid, Spain
| | | | - Rafael Hernández
- Clinical Pharmacology Department, La Paz University Hospital, IdiPAZ, Madrid, Spain
| | | | - Elena Ramírez
- Clinical Pharmacology Department, La Paz University Hospital, IdiPAZ, Madrid, Spain.,Pharmacology Department, School of Medicine, Autonomous University of Madrid, IdiPAZ, Madrid, Spain
| | - Jesús Frías
- Clinical Pharmacology Department, La Paz University Hospital, IdiPAZ, Madrid, Spain.,Pharmacology Department, School of Medicine, Autonomous University of Madrid, IdiPAZ, Madrid, Spain
| | - Antonio J Carcas
- Clinical Pharmacology Department, La Paz University Hospital, IdiPAZ, Madrid, Spain.,Pharmacology Department, School of Medicine, Autonomous University of Madrid, IdiPAZ, Madrid, Spain
| |
Collapse
|
15
|
Bai Y, Li J, Wang X. Cytochrome P450 oxidoreductase deficiency caused by R457H mutation in POR gene in Chinese: case report and literature review. J Ovarian Res 2017; 10:16. [PMID: 28288674 PMCID: PMC5348910 DOI: 10.1186/s13048-017-0312-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/07/2017] [Indexed: 11/23/2022] Open
Abstract
Background Cytochrome P450 oxidoreductase deficiency (PORD) is a rare disease exhibiting a variety of clinical manifestations. It can be difficult to differentiate with other diseases such as 21-hydroxylase deficiency (21-OHD), polycystic ovary syndrome (PCOS) and Antley–Bixler syndrome (ABS). Nearly 100 cases of PORD have been reported worldwide. However, the genetic characters and clinical management are still unclear, especially in China. Case presentation In this study, we report a 27-year-old female Chinese patient who first presented with amenorrhea and recurrence of large ovary cyst. She was misdiagnosed with PCOS and non-classical 21-OHD due to ovary cysts and elevated 17-hydroxy-progesterone. The patient’s complaining of a mild difficulty of bending the metacarpophalangeal joints reminded us to consider PORD, which usually presents with skeletal deformities and sexual dysfunction. The diagnosis of PORD was confirmed by genetic analyses, which showed the patient harboring a homozygous missense mutation in the POR gene (R457H) and her parents carrying the heterozygous mutation. The patient was treated with low-dose corticosteroids and estrogen/progesterone sequential therapy, and her ovarian cyst gradually reduced with regular menstruation in the follow-up. Moreover, the clinical and genetic characteristics of 104 previously reported PORD cases were also summarized and analyzed. Conclusions PORD is a very rare disease which can be easily misdiagnosed in mild cases. Clinicians should keep in mind of this disease in patients with sexual dysfunction, especially combined with special skeletal deformities. Our data could provide a consciously understanding of this disease for clinic practicers. Low-dose corticosteroids combined with estrogen/progesterone sequential therapy will be effective in PORD patients with recurrence of large ovary cyst. The fact that the reported PORD patients in China carrying an identical variant R457H in POR gene also give us a viewpoint that R457H mutation in POR gene maybe important in causing PORD in Chinese as same as in Japanese.
Collapse
Affiliation(s)
- Yang Bai
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Nanjing North Street, NO 155, Shenyang, 110001, People's Republic of China
| | - Jinhui Li
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Nanjing North Street, NO 155, Shenyang, 110001, People's Republic of China
| | - Xiaoli Wang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Nanjing North Street, NO 155, Shenyang, 110001, People's Republic of China.
| |
Collapse
|
16
|
Burkhard FZ, Parween S, Udhane SS, Flück CE, Pandey AV. P450 Oxidoreductase deficiency: Analysis of mutations and polymorphisms. J Steroid Biochem Mol Biol 2017; 165:38-50. [PMID: 27068427 DOI: 10.1016/j.jsbmb.2016.04.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 10/22/2022]
Abstract
Cytochrome P450 oxidoreductase (POR) is required for metabolic reactions of steroid and drug metabolizing cytochrome P450 proteins located in endoplasmic reticulum. Mutations in POR cause a complex set of disorders resembling combined deficiencies of multiple steroid metabolizing enzymes. The P450 oxidoreductase deficiency (PORD) was first reported in patients with symptoms of defects in steroidogenic cytochrome P450 enzymes and ambiguous genitalia, and bone malformation features resembling Antley-Bixler syndrome. POR is now classified as a separate and rare form of congenital adrenal hyperplasia (CAH), which may cause disorder of sexual development (DSD). Since the initial description of PORD in 2004, a large number of POR mutations and polymorphisms have been described. In this report we have performed computational analysis of mutations and polymorphisms in POR linked to metabolism of steroids and xenobiotics and pathology of PORD from the reported cases. The mutations in POR that were identified in patients with disruption of steroidogenesis also have severe effects on cytochrome P450 proteins involved in metabolism of drugs. Different variations in POR show a range of diverse effects on different partner proteins that are often linked to the location of the particular variants. The variations in POR that cause defective binding of co-factors always have damaging effects on all partner proteins, while the mutations causing subtle structural changes may lead to altered interaction with partner proteins and the overall effect may be different for each individual partner. Computational analysis of available sequencing data and mutation analysis shows that Japanese (R457H), Caucasian (A287P) and Turkish (399-401) populations can be linked to unique founder mutations. Other mutations identified so far were identified as rare alleles or in single isolated reports. The common polymorphism of POR is the variant A503V which can be found in about 27% of alleles in general population but there are remarkable differences among different sub populations.
Collapse
Affiliation(s)
- Fabian Z Burkhard
- Division of Pediatric Endocrinology, Department of Pediatrics, University Children's Hospital Bern, and Department of Clinical Research, University of Bern, Switzerland
| | - Shaheena Parween
- Division of Pediatric Endocrinology, Department of Pediatrics, University Children's Hospital Bern, and Department of Clinical Research, University of Bern, Switzerland
| | - Sameer S Udhane
- Division of Pediatric Endocrinology, Department of Pediatrics, University Children's Hospital Bern, and Department of Clinical Research, University of Bern, Switzerland
| | - Christa E Flück
- Division of Pediatric Endocrinology, Department of Pediatrics, University Children's Hospital Bern, and Department of Clinical Research, University of Bern, Switzerland
| | - Amit V Pandey
- Division of Pediatric Endocrinology, Department of Pediatrics, University Children's Hospital Bern, and Department of Clinical Research, University of Bern, Switzerland.
| |
Collapse
|
17
|
Hatta FHM, Aklillu E. P450 (Cytochrome) Oxidoreductase Gene (POR) Common Variant (POR*28) Significantly Alters CYP2C9 Activity in Swedish, But Not in Korean Healthy Subjects. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2016; 19:777-81. [PMID: 26669712 DOI: 10.1089/omi.2015.0159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
CYP2C9 enzyme contributes to the metabolism of several pharmaceuticals and xenobiotics and yet displays large person-to-person and interethnic variation. Understanding the mechanisms of CYP2C9 variation is thus of immense importance for personalized medicine and rational therapeutics. A genetic variant of P450 (cytochrome) oxidoreductase (POR), a CYP450 redox partner, is reported to influence CYP2C9 metabolic activity in vitro. We investigated the impact of a common variant, POR*28, on CYP2C9 metabolic activity in humans. 148 healthy Swedish and 146 healthy Korean volunteers were genotyped for known CYP2C9 defective variant alleles (CYP2C9*2, *3). The CYP2C9 phenotype was determined using a single oral dose of 50 mg losartan. Excluding oral contraceptive (OC) users and carriers of 2C9*2 and *3 alleles, 117 Korean and 65 Swedish were genotyped for POR*5, *13 and *28 using Taqman assays. The urinary losartan to its metabolite E-3174 metabolic ratio (MR) was used as an index of CYP2C9 metabolic activity. The allele frequency of the POR*28 variant allele in Swedes and Koreans was 29% and 44%, respectively. POR*5 and *13 were absent in both study populations. Considering the CYP2C9*1/*1 genotypes only, the CYP2C9 metabolic activity was 1.40-fold higher in carriers of POR*28 allele than non-carriers among Swedes (p = 0.02). By contrast, no influence of the POR*28 on CYP2C9 activity was found in Koreans (p = 0.68). The multivariate analysis showed that ethnicity, POR genotype, and smoking were strong predictors of CYP2C9 MR (p < 0.05). This is the first report to implicate the importance of POR*28 genetic variation for CYP2C9 metabolic activity in humans. These findings contribute to current efforts for global personalized medicine and using medicines by taking into account pharmacogenetic and phenotypic variations.
Collapse
Affiliation(s)
- Fazleen H M Hatta
- 1 Department of Laboratory Medicine, Karolinska Institutet, Division of Clinical Pharmacology, Karolinska University Hospital , Huddinge, Sweden .,2 Faculty of Pharmacy, Universiti Teknologi MARA , Selangor, Malaysia
| | - Eleni Aklillu
- 1 Department of Laboratory Medicine, Karolinska Institutet, Division of Clinical Pharmacology, Karolinska University Hospital , Huddinge, Sweden
| |
Collapse
|
18
|
El-Serafi I, Afsharian P, Moshfegh A, Hassan M, Terelius Y. Cytochrome P450 Oxidoreductase Influences CYP2B6 Activity in Cyclophosphamide Bioactivation. PLoS One 2015; 10:e0141979. [PMID: 26544874 PMCID: PMC4636385 DOI: 10.1371/journal.pone.0141979] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 10/15/2015] [Indexed: 12/19/2022] Open
Abstract
Introduction Cyclophosphamide is commonly used as an important component in conditioning prior to hematopoietic stem cell transplantation, a curative treatment for several hematological diseases. Cyclophosphamide is a prodrug activated mainly by cytochrome P450 2B6 (CYP2B6) in the liver. A high degree of inter- and intra-individual variation in cyclophosphamide kinetics has been reported in several studies. Materials and Methods Hydroxylation of cyclophosphamide was investigated in vitro using three microsomal batches of CYP2B6*1 with different ratios of POR/CYP expression levels. Twenty patients undergoing hematopoietic stem cell transplantation were also included in the study. All patients received an i.v. infusion of cyclophosphamide (60 mg/kg/day, for two days) as a part of their conditioning. Blood samples were collected from each patient before cyclophosphamide infusion, 6 h after the first dose and before and 6 h after the second dose. POR gene expression was measured by mRNA analysis and the pharmacokinetics of cyclophosphamide and its active metabolite were determined. Results A strong correlation between the in vitro intrinsic clearance of cyclophosphamide and the POR/CYP ratio was found. The apparent Km for CYP2B6.1 was almost constant (3-4 mM), while the CLint values were proportional to the POR/CYP ratio (3-34 μL/min/nmol CYP). In patients, the average expression of the POR gene in blood was significantly (P <0.001) up-regulated after cyclophosphamide infusion, with high inter-individual variations and significant correlation with the concentration ratio of the active metabolite 4-hydroxy-cyclophosphamide/cyclophosphamide. Nine patients were carriers for POR*28; four patients had relatively high POR expression. Conclusions This investigation shows for the first time that POR besides CYP2B6 can influence cyclophosphamide metabolism. Our results indicate that not only CYPs are important, but also POR expression and/or activity may influence cyclophosphamide bioactivation, affecting therapeutic efficacy and treatment related toxicity and hence on clinical outcome. Thus, both POR and CYP genotype and expression levels may have to be taken into account when personalizing treatment schedules to achieve optimal therapeutic drug plasma concentrations of cyclophosphamide.
Collapse
Affiliation(s)
- Ibrahim El-Serafi
- Experimental Cancer Medicine (ECM), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Parvaneh Afsharian
- Experimental Cancer Medicine (ECM), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Ali Moshfegh
- Cancer Center of Karolinska (CCK), Department of Oncology-Pathology, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Moustapha Hassan
- Experimental Cancer Medicine (ECM), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
- Department of Clinical Research Centre, Karolinska University Hospital-Huddinge, Stockholm, Sweden
- * E-mail:
| | - Ylva Terelius
- Department of Discovery Research, Medivir AB, Huddinge, Sweden
| |
Collapse
|
19
|
Drogari E, Ragia G, Mollaki V, Elens L, Van Schaik RHN, Manolopoulos VG. POR*28 SNP is associated with lipid response to atorvastatin in children and adolescents with familial hypercholesterolemia. Pharmacogenomics 2015; 15:1963-72. [PMID: 25521355 DOI: 10.2217/pgs.14.138] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In children and adolescents with familial hypercholesterolemia (FH) pharmacotherapy with statins is the cornerstone in the current regimen to reduce low-density lipoprotein cholesterol (LDLc) and premature coronary heart disease risk. There is, however, a great interindividual variation in response to therapy, partially attributed to genetic factors. The polymorphic enzyme POR transfers electrons from NADPH to CYP450 enzymes including CYP3A, which metabolize atorvastatin. POR*28 polymorphism is associated with increased CYP3A enzyme activity. We analyzed the association of POR*28 allele with response to atorvastatin. MATERIALS & METHODS One hundred and five FH children and adolescents treated with atorvastatin at doses 10-40 mg were included in the study. Total cholesterol (TChol) and LDLc were measured at baseline and after 6 months of treatment. POR*28 allele was analyzed with TaqMan assay. CYP3A4*22, CYP3A5*3 and SLCO1B1 521T>C and 388A>G genotypes were also determined with TaqMan or PCR-RFLP methods. RESULTS POR*28 carriers had significantly lower percent mean reduction of TChol (33.1% in *1/*1, 29.8% in *1/*28 and 25.9% in *28/*28 individuals, p = 0.045) and of LDLc (43.9% in *1/*1, 40.9% in *1/*28 and 30.8% in *28/*28 individuals, p = 0.013). In multivariable linear regression adjusted for confounding factors, POR*28 genotypes, additionally to baseline cholesterol level, accounted for an estimated 8.3% and 7.3% of overall variability in % TChol and LDLc reduction (β: 4.05; 95% CI: 1.73-6.37; p = 0.001 and β: 5.08; 95% CI: 1.62-8.54; p = 0.004, respectively). CYP3A4*22, CYP3A5*3 and SLCO1B1 521T>C and 388A>G polymorphisms were not associated with lipid reductions and did not modify the effect of POR*28 on atorvastatin response. CONCLUSION In children with FH, carriage of POR*28 allele is associated with reduced effect of atorvastatin on TChol and LDLc and therefore identifies FH children that may require higher atorvastatin doses to achieve full therapeutic benefits. Additional studies in different populations are needed to replicate this association.
Collapse
Affiliation(s)
- Euridiki Drogari
- Unit of Metabolic Diseases, 1st Department of Pediatrics, Choremio Research Laboratory, Aghia Sophia Children's Hospital, Medical School, University of Athens, Athens, Greece
| | | | | | | | | | | |
Collapse
|
20
|
Electron transfer by human wild-type and A287P mutant P450 oxidoreductase assessed by transient kinetics: functional basis of P450 oxidoreductase deficiency. Biochem J 2015; 468:25-31. [PMID: 25728647 DOI: 10.1042/bj20141410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cytochrome P450 oxidoreductase (POR) is a 2-flavin protein that transfers electrons from NADPH via its FAD and FMN moieties to all microsomal cytochrome P450 enzymes, including steroidogenic and drug-metabolizing P450s. Defects in the POR gene can cause POR deficiency (PORD), manifested clinically by disordered steroidogenesis, genital anomalies and skeletal malformations. We examined the POR mutant A287P, which is the most frequent cause of PORD in patients of European ancestry and partially disrupts most P450 activities in vitro. Flavin content analysis showed that A287P is deficient in FAD and FMN binding, although the mutation site is distant from the binding sites of both flavins. Externally added flavin partially restored the cytochrome c reductase activity of A287P, suggesting that flavin therapy may be useful for this frequent form of PORD. Transient kinetic dissection of the reaction of POR with NADPH and the reduction in cytochrome c by POR using stopped-flow techniques revealed defects in individual electron transfer steps mediated by A287P. A287P had impaired ability to accept electrons from NADPH, but was capable of a fast FMN → cytochrome c electron donation reaction. Thus the reduced rates of P450 activities with A287P may be due to deficient flavin and impaired electron transfer from NADPH.
Collapse
|
21
|
Pulk RA, Schladt DS, Oetting WS, Guan W, Israni AK, Matas AJ, Remmel RP, Jacobson PA. Multigene predictors of tacrolimus exposure in kidney transplant recipients. Pharmacogenomics 2015; 16:841-54. [PMID: 26067485 DOI: 10.2217/pgs.15.42] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
AIM Determine the effect of the genetic variants beyond CYP3A5*3 on tacrolimus disposition. PATIENTS & METHODS We studied genetic correlates of tacrolimus trough concentrations with POR*28, CYP3A4*22 and ABCC2 haplotypes in a large, ethnically diverse kidney transplant cohort (n = 2008). RESULTS Subjects carrying one or more CYP3A5*1 alleles had lower tacrolimus trough concentrations (p = 9.2 × 10(-75)). The presence of one or two POR*28 alleles was associated with a 4.63% reduction in tacrolimus trough concentrations after adjusting for CYP3A5*1 and clinical factors (p = 0.037). In subset analyses, POR*28 was significant only in CYP3A5*3/*3 carriers (p = 0.03). The CYP3A4*22 variant and the ABBC2 haplotypes were not associated. CONCLUSION This study confirmed that CYP3A5*1 was associated with lower tacrolimus trough concentrations. POR*28 was associated with decreased tacrolimus trough concentrations although the effect was small possibly through enhanced CYP3A4 enzyme activity. CYP3A4*22 and ABCC2 haplotypes did not influence tacrolimus trough concentrations. Original submitted 19 December 2014; Revision submitted 2 April 2015.
Collapse
Affiliation(s)
- Rebecca A Pulk
- Department of Experimental & Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - David S Schladt
- Department of Nephrology & Chronic Disease Research Group, Minneapolis Medical Research Foundation, Hennepin County Medical Center, MN, USA
| | - William S Oetting
- Department of Experimental & Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, MN, USA
| | - Ajay K Israni
- Department of Nephrology & Chronic Disease Research Group, Minneapolis Medical Research Foundation, Hennepin County Medical Center, MN, USA
| | - Arthur J Matas
- Division of Transplantation, Department of Surgery, University of Minnesota, MN, USA
| | - Rory P Remmel
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, MN, USA
| | - Pamala A Jacobson
- Department of Experimental & Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
22
|
Tomková M, Panda SP, Šeda O, Baxová A, Hůlková M, Siler Masters BS, Martásek P. Genetic variations in NADPH-CYP450 oxidoreductase in a Czech Slavic cohort. Pharmacogenomics 2015; 16:205-15. [PMID: 25712184 DOI: 10.2217/pgs.14.169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Estimating polymorphic allele frequencies of the NADPH-CYP450 oxidoreductase (POR) gene in a Czech Slavic population. METHODS The POR gene was analyzed in 322 individuals from a control cohort by sequencing and high resolution melting analysis. RESULTS We identified seven unreported SNP genetic variations, including two SNPs in the 5' flanking region (g.4965C>T and g.4994G>T), one intronic variant (c.1899-20C>T), one synonymous SNP (p.20Ala=) and three nonsynonymous SNPs (p.Thr29Ser, p.Pro384Leu and p.Thr529Met). The p.Pro384Leu variant exhibited reduced enzymatic activities compared with wild-type. CONCLUSION New POR variant identification indicates the number of uncommon variants might be specific for each subpopulation being investigated, particularly germane to the singular role that POR plays in providing reducing equivalents to all CYP450s in the endoplasmic reticulum. Original submitted 15 September 2014; Revision submitted 17 November 2014.
Collapse
Affiliation(s)
- Mária Tomková
- Department of Pediatrics, First Faculty of Medicine, Charles University, 128 08 Prague, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
23
|
Dai DP, Geng PW, Wang SH, Cai J, Hu LM, Nie JJ, Hu JH, Hu GX, Cai JP. In VitroFunctional Assessment of 22 Newly Identified CYP2D6 Allelic Variants in the Chinese Population. Basic Clin Pharmacol Toxicol 2015; 117:39-43. [PMID: 25469868 DOI: 10.1111/bcpt.12363] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 11/25/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Da-Peng Dai
- The Key Laboratory of Geriatrics; Beijing Hospital & Beijing Institute of Geriatrics; Ministry of Health; Beijing China
| | - Pei-Wu Geng
- Department of Pharmacology; School of Pharmacy Wenzhou Medical University; Wenzhou Zhejiang China
- The Laboratory of Clinical Pharmacy; The People's Hospital of Lishui; Lishui Zhejiang China
| | - Shuang-Hu Wang
- The Laboratory of Clinical Pharmacy; The People's Hospital of Lishui; Lishui Zhejiang China
| | - Jie Cai
- Department of Pharmacology; School of Pharmacy Wenzhou Medical University; Wenzhou Zhejiang China
| | - Li-Ming Hu
- The First People's Hospital of Wenling; Wenling Zhejiang China
| | - Jing-Jing Nie
- The Key Laboratory of Geriatrics; Beijing Hospital & Beijing Institute of Geriatrics; Ministry of Health; Beijing China
| | - Ji-Hong Hu
- The Key Laboratory of Geriatrics; Beijing Hospital & Beijing Institute of Geriatrics; Ministry of Health; Beijing China
| | - Guo-Xin Hu
- Department of Pharmacology; School of Pharmacy Wenzhou Medical University; Wenzhou Zhejiang China
| | - Jian-Ping Cai
- The Key Laboratory of Geriatrics; Beijing Hospital & Beijing Institute of Geriatrics; Ministry of Health; Beijing China
| |
Collapse
|
24
|
Ogata K, Takamura N, Tokunaga J, Ikeda T, Setoguchi N, Tanda K, Yamasaki T, Nishio T, Kawai K. A novel injection strategy of flurbiprofen axetil by inhibiting protein binding with 6-methoxy-2-naphthylacetic acid. Eur J Drug Metab Pharmacokinet 2014; 41:179-86. [PMID: 25537338 DOI: 10.1007/s13318-014-0248-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 12/17/2014] [Indexed: 10/24/2022]
Abstract
Flurbiprofen axetil (FPA) is an injection product and a prodrug of a non-steroidal anti-inflammatory drug (NSAID). After injection, it is rapidly hydrolyzed to the active form, flurbiprofen (FP). Since frequent injections of FPA can lead to abnormal physiology, an administration strategy is necessary to ensure there is enhancement of the analgesic efficiency of FP after a single dose and to reduce the total number of doses. FP strongly binds to site II of albumin, and thus the free (unbound) FP concentration is low. This study focused on 6-methoxy-2-naphthylacetic acid (6-MNA), the active metabolite of nabumetone (a prodrug of NSAID). We performed ultrafiltration experiments and pharmacokinetics analysis in rats to investigate whether the inhibitory effect of 6-MNA on FP binding to albumin increased the free FP concentration in vitro and in vivo. Results indicated that 6-MNA inhibited the binding of FP to albumin competitively. When 6-MNA was injected in rats, there was a significant increase in the free FP concentration and the area under concentration-time curve (AUC) calculated from the free FP concentration, while there was a significant decrease in the total (bound + free) FP concentration and the AUC calculated from the total FP concentration. These findings indicate that 6-MNA inhibits the protein binding of FP in vivo. This suggests that the frequency of FPA injections can be reduced when administered with nabumetone, as there is increase in the free FP concentration associated with pharmacological effect.
Collapse
Affiliation(s)
- Kenji Ogata
- Second Department of Clinical Pharmacy, Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare, 1714-1 Yoshino, Nobeoka, Miyazaki, 882-8508, Japan.
| | - Norito Takamura
- Second Department of Clinical Pharmacy, Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare, 1714-1 Yoshino, Nobeoka, Miyazaki, 882-8508, Japan
| | - Jin Tokunaga
- Second Department of Clinical Pharmacy, Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare, 1714-1 Yoshino, Nobeoka, Miyazaki, 882-8508, Japan
| | - Tetsuya Ikeda
- Division of Neurobiology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, Miyazaki, 889-1692, Japan
| | - Nao Setoguchi
- Second Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kyushu University of Health and Welfare, 1714-1 Yoshino, Nobeoka, Miyazaki, 882-8508, Japan
| | - Kazuhiro Tanda
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Kyushu University of Health and Welfare, 1714-1 Yoshino, Nobeoka, Miyazaki, 882-8508, Japan
| | - Tetsuo Yamasaki
- Department of Pharmaceutical Chemistry, Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare, 1714-1 Yoshino, Nobeoka, Miyazaki, 882-8508, Japan
| | - Toyotaka Nishio
- Shounan-Hiratuka Pharmacy, Kouei Inc., 6-2 Miyanomae, Hiratuka, Kanagawa, 254-0035, Japan
| | - Keiichi Kawai
- School of Health Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 5-11-80 Kadatsuno, Kanazawa, Ishikawa, 920-0942, Japan
| |
Collapse
|
25
|
Shahabi P, Siest G, Meyer UA, Visvikis-Siest S. Human cytochrome P450 epoxygenases: Variability in expression and role in inflammation-related disorders. Pharmacol Ther 2014; 144:134-61. [DOI: 10.1016/j.pharmthera.2014.05.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/15/2014] [Indexed: 12/19/2022]
|
26
|
Kandel SE, Lampe JN. Role of protein-protein interactions in cytochrome P450-mediated drug metabolism and toxicity. Chem Res Toxicol 2014; 27:1474-86. [PMID: 25133307 PMCID: PMC4164225 DOI: 10.1021/tx500203s] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
![]()
Through their unique oxidative chemistry,
cytochrome P450 monooxygenases
(CYPs) catalyze the elimination of most drugs and toxins from the
human body. Protein–protein interactions play a critical role
in this process. Historically, the study of CYP–protein interactions
has focused on their electron transfer partners and allosteric mediators,
cytochrome P450 reductase and cytochrome b5. However, CYPs can bind
other proteins that also affect CYP function. Some examples include
the progesterone receptor membrane component 1, damage resistance
protein 1, human and bovine serum albumin, and intestinal fatty acid
binding protein, in addition to other CYP isoforms. Furthermore, disruption
of these interactions can lead to altered paths of metabolism and
the production of toxic metabolites. In this review, we summarize
the available evidence for CYP protein–protein interactions
from the literature and offer a discussion of the potential impact
of future studies aimed at characterizing noncanonical protein–protein
interactions with CYP enzymes.
Collapse
Affiliation(s)
- Sylvie E Kandel
- XenoTech, LLC , 16825 West 116th Street, Lenexa, Kansas 66219, United States
| | | |
Collapse
|
27
|
Pandey AV, Sproll P. Pharmacogenomics of human P450 oxidoreductase. Front Pharmacol 2014; 5:103. [PMID: 24847272 PMCID: PMC4023047 DOI: 10.3389/fphar.2014.00103] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/21/2014] [Indexed: 12/19/2022] Open
Abstract
Cytochrome P450 oxidoreductase (POR) supports reactions of microsomal cytochrome P450 which metabolize drugs and steroid hormones. Mutations in POR cause disorders of sexual development. P450 oxidoreductase deficiency (PORD) was initially identified in patients with Antley–Bixler syndrome (ABS) but now it has been established as a separate disorder of sexual development (DSD). Here we are summarizing the work on variations in POR related to metabolism of drugs and xenobiotics. We have compiled mutation data on reported cases of PORD from clinical studies. Mutations found in patients with defective steroid profiles impact metabolism of steroid hormones as well as drugs. Some trends are emerging that establish certain founder mutations in distinct populations, with Japanese (R457H), Caucasian (A287P), and Turkish (399–401) populations showing repeated findings of similar mutations. Most other mutations are found as single occurrences. A large number of different variants in POR gene with more than 130 amino acid changes are now listed in databases. Among the polymorphisms, the A503V is found in about 30% of all alleles but there are some differences across different population groups.
Collapse
Affiliation(s)
- Amit V Pandey
- Division of Pediatric Endocrinology, Department of Pediatrics, University Children's Hospital Bern Bern, Switzerland ; Program in Molecular Life Sciences, Department of Biology, University of Bern Bern, Switzerland
| | - Patrick Sproll
- Program in Molecular Life Sciences, Department of Biology, University of Bern Bern, Switzerland
| |
Collapse
|
28
|
Llerena A, Alvarez M, Dorado P, González I, Peñas-LLedó E, Pérez B, Cobaleda J, Calzadilla LR. Interethnic differences in the relevance of CYP2C9 genotype and environmental factors for diclofenac metabolism in Hispanics from Cuba and Spain. THE PHARMACOGENOMICS JOURNAL 2013; 14:229-34. [DOI: 10.1038/tpj.2013.28] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 05/24/2013] [Accepted: 07/22/2013] [Indexed: 12/22/2022]
|
29
|
Coexpression of CPR from Various Origins Enhances Biotransformation Activity of Human CYPs in S. pombe. Appl Biochem Biotechnol 2013; 170:1751-66. [DOI: 10.1007/s12010-013-0303-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 05/16/2013] [Indexed: 10/26/2022]
|
30
|
Pharmacogenetics of P450 oxidoreductase: implications in drug metabolism and therapy. Pharmacogenet Genomics 2013; 22:812-9. [PMID: 23047293 DOI: 10.1097/fpc.0b013e328358d92b] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The redox reaction of cytochrome P450 enzymes (CYP) is an important physiological and biochemical reaction in the human body, as it is involved in the oxidative metabolism of both endogenous and exogenous substrates. Cytochrome P450 oxidoreductase (POR) is the only obligate electron donor for all of the hepatic microsomal CYP enzymes. It plays a crucial role in drug metabolism and treatment by not only acting as an electron donor involved in drug metabolism mediated by CYP enzymes but also by directly inducing the transformation of some antitumor precursors. Studies have found that the gene encoding human POR is highly polymorphic, which is of considerable clinical significance as it affects the metabolism and curative effects of clinically used drugs. This review aims to discuss the effect of POR and its genetic polymorphisms on drug metabolism and therapy, as well as the potential mechanisms of POR pharmacogenetics.
Collapse
|
31
|
Pandey AV, Flück CE. NADPH P450 oxidoreductase: structure, function, and pathology of diseases. Pharmacol Ther 2013; 138:229-54. [PMID: 23353702 DOI: 10.1016/j.pharmthera.2013.01.010] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 12/26/2012] [Indexed: 01/18/2023]
Abstract
Cytochrome P450 oxidoreductase (POR) is an enzyme that is essential for multiple metabolic processes, chiefly among them are reactions catalyzed by cytochrome P450 proteins for metabolism of steroid hormones, drugs and xenobiotics. Mutations in POR cause a complex set of disorders that often resemble defects in steroid metabolizing enzymes 17α-hydroxylase, 21-hydroxylase and aromatase. Since our initial reports of POR mutations in 2004, more than 200 different mutations and polymorphisms in POR gene have been identified. Several missense variations in POR have been tested for their effect on activities of multiple steroid and drug metabolizing P450 proteins. Mutations in POR may have variable effects on different P450 partner proteins depending on the location of the mutation. The POR mutations that disrupt the binding of co-factors have negative impact on all partner proteins, while mutations causing subtle structural changes may lead to altered interaction with specific partner proteins and the overall effect may be different for each partner. This review summarizes the recent discoveries related to mutations and polymorphisms in POR and discusses these mutations in the context of historical developments in the discovery and characterization of POR as an electron transfer protein. The review is focused on the structural, enzymatic and clinical implications of the mutations linked to newly identified disorders in humans, now categorized as POR deficiency.
Collapse
Affiliation(s)
- Amit V Pandey
- Department of Pediatrics, Division of Pediatric Endocrinology and Diabetology, University Children's Hospital Bern, and Department of Clinical Research, University of Bern, 3004 Bern, Switzerland.
| | | |
Collapse
|
32
|
Cabaleiro T, Román M, Ochoa D, Talegón M, Prieto-Pérez R, Wojnicz A, López-Rodríguez R, Novalbos J, Abad-Santos F. Evaluation of the Relationship between Sex, Polymorphisms in CYP2C8 and CYP2C9, and Pharmacokinetics of Angiotensin Receptor Blockers. Drug Metab Dispos 2012; 41:224-9. [DOI: 10.1124/dmd.112.046292] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|