1
|
Osorio-Llanes E, Castellar-López J, Rosales W, Montoya Y, Bustamante J, Zalaquett R, Bravo-Sagua R, Riquelme JA, Sánchez G, Chiong M, Lavandero S, Mendoza-Torres E. Novel Strategies to Improve the Cardioprotective Effects of Cardioplegia. Curr Cardiol Rev 2024; 20:CCR-EPUB-137763. [PMID: 38275069 PMCID: PMC11071679 DOI: 10.2174/011573403x263956231129064455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/17/2023] [Accepted: 10/20/2023] [Indexed: 01/27/2024] Open
Abstract
The use of cardioprotective strategies as adjuvants of cardioplegic solutions has become an ideal alternative for the improvement of post-surgery heart recovery. The choice of the optimal cardioplegia, as well as its distribution mechanism, remains controversial in the field of cardiovascular surgery. There is still a need to search for new and better cardioprotective methods during cardioplegic procedures. New techniques for the management of cardiovascular complications during cardioplegia have evolved with new alternatives and additives, and each new strategy provides a tool to neutralize the damage after ischemia/reperfusion events. Researchers and clinicians have committed themselves to studying the effect of new strategies and adjuvant components with the potential to improve the cardioprotective effect of cardioplegic solutions in preventing myocardial ischemia/reperfusion-induced injury during cardiac surgery. The aim of this review is to explore the different types of cardioplegia, their protection mechanisms, and which strategies have been proposed to enhance the function of these solutions in hearts exposed to cardiovascular pathologies that require surgical alternatives for their corrective progression.
Collapse
Affiliation(s)
- Estefanie Osorio-Llanes
- Faculty of Exact and Natural Sciences, Grupo de Investigación Avanzada en Biomedicina, Universidad Libre Barranquilla, Atlantico, Colombia
| | - Jairo Castellar-López
- Faculty of Exact and Natural Sciences, Grupo de Investigación Avanzada en Biomedicina, Universidad Libre Barranquilla, Atlantico, Colombia
| | - Wendy Rosales
- Faculty of Exact and Natural Sciences, Grupo de Investigación Avanzada en Biomedicina, Universidad Libre Barranquilla, Atlantico, Colombia
| | - Yuliet Montoya
- Grupo de Dinámica Cardiovascular (GDC), Escuela de Ciencias de la Salud, Universidad Pontificia Bolivariana, Medellin, Colombia
| | - John Bustamante
- Grupo de Dinámica Cardiovascular (GDC), Escuela de Ciencias de la Salud, Universidad Pontificia Bolivariana, Medellin, Colombia
| | - Ricardo Zalaquett
- Department of Cardiovascular Diseases, Faculty of Medicine, Universidad Finis Terrae - Clínica Las Condes, Santiago, Chile
| | - Roberto Bravo-Sagua
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Laboratorio OMEGA, INTA, University of Chile, Santiago, Chile
| | - Jaime A. Riquelme
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Gina Sánchez
- Physiopathology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Evelyn Mendoza-Torres
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Faculty of Health Sciences, Grupo de Investigación Avanzada en Biomedicina, Universidad Libre Seccional Barranquilla, Barranquilla, Colombia
| |
Collapse
|
2
|
Gamiño-Gutiérrez JA, Terán-Hernández IM, Castellar-Lopez J, Villamizar-Villamizar W, Osorio-Llanes E, Palacios-Cruz M, Rosales W, Chang AY, Díaz-Ariza LA, Ospino MC, Mendoza-Torres E. Novel Insights into the Cardioprotective Effects of the Peptides of the Counter-Regulatory Renin-Angiotensin System. Biomedicines 2024; 12:255. [PMID: 38397857 PMCID: PMC10887066 DOI: 10.3390/biomedicines12020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 02/25/2024] Open
Abstract
Currently, cardiovascular diseases are a major contributor to morbidity and mortality worldwide, having a significant negative impact on both the economy and public health. The renin-angiotensin system contributes to a high spectrum of cardiovascular disorders and is essential for maintaining normal cardiovascular homeostasis. Overactivation of the classical renin-angiotensin system is one of the most important pathophysiological mechanisms in the progression of cardiovascular diseases. The counter-regulatory renin-angiotensin system is an alternate pathway which favors the synthesis of different peptides, including Angiotensin-(1-7), Angiotensin-(1-9), and Alamandine. These peptides, via the angiotensin type 2 receptor (AT2R), MasR, and MrgD, initiate multiple downstream signaling pathways that culminate in the activation of various cardioprotective mechanisms, such as decreased cardiac fibrosis, decreased myocardial hypertrophy, vasodilation, decreased blood pressure, natriuresis, and nitric oxide synthesis. These cardioprotective effects position them as therapeutic alternatives for reducing the progression of cardiovascular diseases. This review aims to show the latest findings on the cardioprotective effects of the main peptides of the counter-regulatory renin-angiotensin system.
Collapse
Affiliation(s)
| | - Ivana María Terán-Hernández
- Grupo de Investigación Avanzada en Biomedicina, Faculty of Health Sciences, Universidad Libre Seccional Barranquilla, Barranquilla 081001, Colombia; (I.M.T.-H.); (W.V.-V.); (L.A.D.-A.); (M.C.O.)
| | - Jairo Castellar-Lopez
- Grupo de Investigación Avanzada en Biomedicina, Faculty of Exact and Natural Sciences, Universidad Libre Seccional Barranquilla, Barranquilla 081001, Colombia; (J.C.-L.); (E.O.-L.); (W.R.)
| | - Wendy Villamizar-Villamizar
- Grupo de Investigación Avanzada en Biomedicina, Faculty of Health Sciences, Universidad Libre Seccional Barranquilla, Barranquilla 081001, Colombia; (I.M.T.-H.); (W.V.-V.); (L.A.D.-A.); (M.C.O.)
| | - Estefanie Osorio-Llanes
- Grupo de Investigación Avanzada en Biomedicina, Faculty of Exact and Natural Sciences, Universidad Libre Seccional Barranquilla, Barranquilla 081001, Colombia; (J.C.-L.); (E.O.-L.); (W.R.)
| | | | - Wendy Rosales
- Grupo de Investigación Avanzada en Biomedicina, Faculty of Exact and Natural Sciences, Universidad Libre Seccional Barranquilla, Barranquilla 081001, Colombia; (J.C.-L.); (E.O.-L.); (W.R.)
| | - Aileen Y. Chang
- School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA;
| | - Luis Antonio Díaz-Ariza
- Grupo de Investigación Avanzada en Biomedicina, Faculty of Health Sciences, Universidad Libre Seccional Barranquilla, Barranquilla 081001, Colombia; (I.M.T.-H.); (W.V.-V.); (L.A.D.-A.); (M.C.O.)
| | - María Clara Ospino
- Grupo de Investigación Avanzada en Biomedicina, Faculty of Health Sciences, Universidad Libre Seccional Barranquilla, Barranquilla 081001, Colombia; (I.M.T.-H.); (W.V.-V.); (L.A.D.-A.); (M.C.O.)
| | - Evelyn Mendoza-Torres
- Grupo de Investigación Avanzada en Biomedicina, Faculty of Health Sciences, Universidad Libre Seccional Barranquilla, Barranquilla 081001, Colombia; (I.M.T.-H.); (W.V.-V.); (L.A.D.-A.); (M.C.O.)
| |
Collapse
|
3
|
Ma H, Mao C, Hu Y, Wang L, Guo X, Li L, Wang F, Guan R. Angiotensin-(1-9) attenuates adriamycin-induced cardiomyopathy in rats via the angiotensin type 2 receptor. Mol Cell Biochem 2024; 479:73-83. [PMID: 36995547 DOI: 10.1007/s11010-023-04718-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/19/2023] [Indexed: 03/31/2023]
Abstract
Adriamycin (ADR) causes irreversible damage to the heart, leading to ADR-induced cardiomyopathy (ACM). Angiotensin-(1-9) [Ang-(1-9)] is a peptide from the counter-regulatory renin-angiotensin system, but the effects on ACM is unclear. Our study was aimed to explore the effects and underlying molecular mechanisms of Ang-(1-9) against ACM in Wistar rats. Rats were injected intraperitoneally with ADR via six equal doses (each containing 2.5 mg/kg) within a period of 2 weeks to induce ACM. After 2 weeks of ADR treatment, the rats were treated with Ang-(1-9) (200 ng/kg/min) or angiotensin type 2 receptor (AT2R) antagonist PD123319 (100 ng/kg/min) for 4 weeks. Although Ang-(1-9) treatment did not influence blood pressure, it significantly improved left ventricular function and remodeling in ADR-treated rats, by inhibiting collagen deposition, the expression of TGF-β1, inflammatory response, cardiomyocyte apoptosis and oxidative stress. Moreover, Ang-(1-9) reduced ERK1/2 and P38 MAPK phosphorylation. The therapeutic effects of Ang-(1-9) were blocked by the AT2R antagonist PD123319, which also offset the down-regulation protein expression of pERK1/2 and pP38 MAPK induced by Ang-(1-9). These data suggest that Ang-(1-9) improved left ventricular function and remodeling in ADR-treated rats by an AT2R/ ERK1/2 and P38 MAPK-dependent mechanism. Thus, the Ang-(1-9)/AT2R axis may provide a novel and promising target to the prevention and treatment of ACM.
Collapse
Affiliation(s)
- Hui Ma
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Chenggang Mao
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yang Hu
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Liqin Wang
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xingqing Guo
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Lei Li
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Fang Wang
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Renzheng Guan
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| |
Collapse
|
4
|
Garcia B, Zarbock A, Bellomo R, Legrand M. The alternative renin-angiotensin system in critically ill patients: pathophysiology and therapeutic implications. Crit Care 2023; 27:453. [PMID: 37986086 PMCID: PMC10662652 DOI: 10.1186/s13054-023-04739-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023] Open
Abstract
The renin-angiotensin system (RAS) plays a crucial role in regulating blood pressure and the cardio-renal system. The classical RAS, mainly mediated by angiotensin I, angiotensin-converting enzyme, and angiotensin II, has been reported to be altered in critically ill patients, such as those in vasodilatory shock. However, recent research has highlighted the role of some components of the counterregulatory axis of the classical RAS, termed the alternative RAS, such as angiotensin-converting Enzyme 2 (ACE2) and angiotensin-(1-7), or peptidases which can modulate the RAS like dipeptidyl-peptidase 3, in many critical situations. In cases of shock, dipeptidyl-peptidase 3, an enzyme involved in the degradation of angiotensin and opioid peptides, has been associated with acute kidney injury and mortality and preclinical studies have tested its neutralization. Angiotensin-(1-7) has been shown to prevent septic shock development and improve outcomes in experimental models of sepsis. In the context of experimental acute lung injury, ACE2 activity has demonstrated a protective role, and its inactivation has been associated with worsened lung function, leading to the use of active recombinant human ACE2, in preclinical and human studies. Angiotensin-(1-7) has been tested in experimental models of acute lung injury and in a recent randomized controlled trial for patients with COVID-19 related hypoxemia. Overall, the alternative RAS appears to have a role in the pathogenesis of disease in critically ill patients, and modulation of the alternative RAS may improve outcomes. Here, we review the available evidence regarding the methods of analysis of the RAS, pathophysiological disturbances of this system, and discuss how therapeutic manipulation may improve outcomes in the critically ill.
Collapse
Affiliation(s)
- Bruno Garcia
- Department of Anesthesia and Peri-Operative Care, Division of Critical Care Medicine, University of California, San Francisco (UCSF), San Francisco, CA, USA
- Department of Intensive Care, Centre Hospitalier Universitaire de Lille, Lille, France
- Experimental Laboratory of the Department of Intensive Care, Université Libre de Bruxelles, Brussels, Belgium
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital of Münster, Münster, Germany
| | - Rinaldo Bellomo
- Department of Intensive Care, Austin Hospital, Melbourne, VIC, 3084, Australia
- Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, Australia
- Department of Critical Care, Melbourne Medical School, University of Melbourne, Melbourne, VIC, Australia
| | - Matthieu Legrand
- Department of Anesthesia and Peri-Operative Care, Division of Critical Care Medicine, University of California, San Francisco (UCSF), San Francisco, CA, USA.
| |
Collapse
|
5
|
Caputo I, Bertoldi G, Driussi G, Cacciapuoti M, Calò LA. The RAAS Goodfellas in Cardiovascular System. J Clin Med 2023; 12:6873. [PMID: 37959338 PMCID: PMC10649249 DOI: 10.3390/jcm12216873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
In the last two decades, the study of the renin-angiotensin-aldosterone system (RAAS) has revealed a counterregulatory protective axis. This protective arm is characterized by ACE2/Ang 1-7/MasR and Ang 1-9 that largely counteracts the classic arm of the RAAS mediated by ACE/Ang II/AT1R/aldosterone and plays an important role in the prevention of inflammation, oxidative stress, hypertension, and cardiovascular remodeling. A growing body of evidence suggests that enhancement of this counterregulatory arm of RAAS represents an important therapeutic approach to facing cardiovascular comorbidities. In this review, we provide an overview of the beneficial effects of ACE2, Ang 1-7/MasR, and Ang 1-9 in the context of oxidative stress, vascular dysfunction, and organ damage.
Collapse
Affiliation(s)
| | | | | | | | - Lorenzo A. Calò
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine—DIMED, University of Padua, Via Giustiniani, 2, 35128 Padova, Italy; (I.C.); (G.B.); (G.D.); (M.C.)
| |
Collapse
|
6
|
Zhou G, Liu J. Prognostic value of elevated plasma angiotensin-converting enzyme 2 in cardiometabolic diseases: A review. Medicine (Baltimore) 2023; 102:e33251. [PMID: 36897667 PMCID: PMC9997766 DOI: 10.1097/md.0000000000033251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
Angiotensin-converting enzyme 2, as an internal anti regulator of the renin-angiotensin hormone cascade reaction, plays a protective role in vasodilation, inhibition of fibrosis, and initiation of anti-inflammatory and antioxidative stress by degrading angiotensin II and generating angiotensin (1-7). Multiple studies have shown that plasma angiotensin-converting enzyme 2 activity is low in healthy populations without significant cardiometabolic disease, and elevated plasma angiotensin-converting enzyme 2 levels can be used as a novel biomarker of abnormal myocardial structure and/or adverse events in cardiometabolic diseases. This article aims to elaborate the determinants of plasma angiotensin-converting enzyme 2 concentration, the relevance between angiotensin-converting enzyme 2 and cardiometabolic disease risk markers, and its relative importance compared with known cardiovascular disease risk factors. Confronted with the known cardiovascular risk factors, plasma angiotensin-converting enzyme 2 (ACE2) concentration uniformly emerged as a firm predictor of abnormal myocardial structure and/or adverse events in cardiometabolic diseases and may improve the risk prediction of cardiometabolic diseases when combined with other conventional risk factors. Cardiovascular disease is the leading cause of death worldwide, while the renin-angiotensin system is the main hormone cascade system involved in the pathophysiology of cardiovascular disease. A multi-ancestry global cohort study from the general population by Narula et al revealed that plasma ACE2 concentration was strongly associated with cardiometabolic disease and might be an easily measurable indicator of renin-angiotensin system disorder. The association between this atypical hormone disorder marker and cardiometabolic disease is isolated from conventional cardiac risk factors and brain natriuretic peptide, suggesting that a clearer comprehending of the changes in plasma ACE2 concentration and activity may help us to improve the risk prediction of cardiometabolic disease, guide early diagnosis and feasible therapies, and develop and test new therapeutic targets.
Collapse
Affiliation(s)
- Gang Zhou
- Department of First Clinical Medical College, Guangxi Medical University, Nanning, Guangxi, China
| | - Jingchen Liu
- Department of Anesthesiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
7
|
Chen H, Peng J, Wang T, Wen J, Chen S, Huang Y, Zhang Y. Counter-regulatory renin-angiotensin system in hypertension: Review and update in the era of COVID-19 pandemic. Biochem Pharmacol 2023; 208:115370. [PMID: 36481346 PMCID: PMC9721294 DOI: 10.1016/j.bcp.2022.115370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease is the major cause of mortality and disability, with hypertension being the most prevalent risk factor. Excessive activation of the renin-angiotensin system (RAS) under pathological conditions, leading to vascular remodeling and inflammation, is closely related to cardiovascular dysfunction. The counter-regulatory axis of the RAS consists of angiotensin-converting enzyme 2 (ACE2), angiotensin (1-7), angiotensin (1-9), alamandine, proto-oncogene Mas receptor, angiotensin II type-2 receptor and Mas-related G protein-coupled receptor member D. Each of these components has been shown to counteract the effects of the overactivated RAS. In this review, we summarize the latest insights into the complexity and interplay of the counter-regulatory RAS axis in hypertension, highlight the pathophysiological functions of ACE2, a multifunctional molecule linking hypertension and COVID-19, and discuss the function and therapeutic potential of targeting this counter-regulatory RAS axis to prevent and treat hypertension in the context of the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Hongyin Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518000, Guangdong, China
| | - Jiangyun Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Tengyao Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Jielu Wen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Sifan Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China,Corresponding authors
| | - Yang Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518000, Guangdong, China,Corresponding authors
| |
Collapse
|
8
|
Steckelings UM, Widdop RE, Sturrock ED, Lubbe L, Hussain T, Kaschina E, Unger T, Hallberg A, Carey RM, Sumners C. The Angiotensin AT 2 Receptor: From a Binding Site to a Novel Therapeutic Target. Pharmacol Rev 2022; 74:1051-1135. [PMID: 36180112 PMCID: PMC9553111 DOI: 10.1124/pharmrev.120.000281] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/19/2022] [Accepted: 06/27/2022] [Indexed: 11/22/2022] Open
Abstract
Discovered more than 30 years ago, the angiotensin AT2 receptor (AT2R) has evolved from a binding site with unknown function to a firmly established major effector within the protective arm of the renin-angiotensin system (RAS) and a target for new drugs in development. The AT2R represents an endogenous protective mechanism that can be manipulated in the majority of preclinical models to alleviate lung, renal, cardiovascular, metabolic, cutaneous, and neural diseases as well as cancer. This article is a comprehensive review summarizing our current knowledge of the AT2R, from its discovery to its position within the RAS and its overall functions. This is followed by an in-depth look at the characteristics of the AT2R, including its structure, intracellular signaling, homo- and heterodimerization, and expression. AT2R-selective ligands, from endogenous peptides to synthetic peptides and nonpeptide molecules that are used as research tools, are discussed. Finally, we summarize the known physiological roles of the AT2R and its abundant protective effects in multiple experimental disease models and expound on AT2R ligands that are undergoing development for clinical use. The present review highlights the controversial aspects and gaps in our knowledge of this receptor and illuminates future perspectives for AT2R research. SIGNIFICANCE STATEMENT: The angiotensin AT2 receptor (AT2R) is now regarded as a fully functional and important component of the renin-angiotensin system, with the potential of exerting protective actions in a variety of diseases. This review provides an in-depth view of the AT2R, which has progressed from being an enigma to becoming a therapeutic target.
Collapse
Affiliation(s)
- U Muscha Steckelings
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Robert E Widdop
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Edward D Sturrock
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Lizelle Lubbe
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Tahir Hussain
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Elena Kaschina
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Thomas Unger
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Anders Hallberg
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Robert M Carey
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| | - Colin Sumners
- Institute of Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark (U.M.S.); Cardiovascular Disease Program, Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Clayton, Victoria, Australia (R.E.W.); Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa (E.D.S., L.L.); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (T.H.); Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal (CMR) Research Center, DZHK (German Centre for Cardiovascular Research), Berlin, Germany (E.K.); CARIM - School for Cardiovascular Diseases, Maastricht University, The Netherlands (T.U.); Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden (A.H.); Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia (R.M.C.); and Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida (C.S.)
| |
Collapse
|
9
|
Li S, Hao X, Yuan K, Zhang F, Xun L, Hao Q, Zhang Q, Xie Y. Impact of High-Dose Perindopril on Cardiac Function and Angiotensin Converting Enzyme 2/Ang-(1-9)/Ang-(1-7) in Rabbits with Ischemic Cardiac Dysfunction. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Aim: To investigate the impact of high-dose of perindopril on cardiac function and ACE2/AT2R pathway in rabbits with ischemic cardiac dysfunction. Methods: The thirty rabbits with ischemic cardiac dysfunction were divided into high-dose group (Perindopril, 2 mg/kg/d),
low-dose group (Perindopril, 0.66 mg/kg/d), and control groups (Saline, 2 ml/kg/d) by a random number table. After four weeks, we measured the cardiac function, The level of Ang-(1-7) and Ang-(1-9), mRNA expression level of ACE2 and AT2R. Results: The results showed that high dose and
low dose of perindopril could improve cardiac function (p < 0.001), and high-dose perindopril had more significant improvement (p = 0.041). After treatment, in high-dose group, mRNA level of ACE2, AT2R in myocardium (p < 0.001) and Ang-(1-9) level in serum (p = 0.012)
were higher than low-dose group, while Ang-(1-7) levels in serum didn’t show a significant difference (p = 0.829). LVEF and serum Ang-(1-9) were significantly correlated (p = 0.002), LVEF and ACE2 (p = 0.001), LVEF and AT2R (p = 0.007); however, it was no
correlation between LVEF and serum Ang-(1-7) (p = 0.067). Conclusion: A high-dose of perindopril could improve ischemic cardiac dysfunction by ACE2/Ang-(1-9)/Ang-(1-7) pathway.
Collapse
Affiliation(s)
- Shuren Li
- The First Department of Heart Center, Hebei General Hospital, Shijiazhuang, 050000, China
| | - Xiao Hao
- The First Department of Heart Center, Hebei General Hospital, Shijiazhuang, 050000, China
| | - Kexin Yuan
- The First Department of Heart Center, Hebei General Hospital, Shijiazhuang, 050000, China
| | - Feifei Zhang
- The First Department of Heart Center, Hebei General Hospital, Shijiazhuang, 050000, China
| | - Liying Xun
- The First Department of Heart Center, Hebei General Hospital, Shijiazhuang, 050000, China
| | - Qingqing Hao
- The First Department of Heart Center, Hebei General Hospital, Shijiazhuang, 050000, China
| | - Qianhui Zhang
- The First Department of Heart Center, Hebei General Hospital, Shijiazhuang, 050000, China
| | - Yuetao Xie
- The First Department of Heart Center, Hebei General Hospital, Shijiazhuang, 050000, China
| |
Collapse
|
10
|
Norambuena-Soto I, Lopez-Crisosto C, Martinez-Bilbao J, Hernandez-Fuentes C, Parra V, Lavandero S, Chiong M. Angiotensin-(1-9) in hypertension. Biochem Pharmacol 2022; 203:115183. [PMID: 35870482 DOI: 10.1016/j.bcp.2022.115183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/02/2022]
Abstract
Angiotensin-(1-9) [Ang-(1-9)] is a peptide of the non-canonical renin-angiotensin system (RAS) synthesized from angiotensin I by the monopeptidase angiotensin-converting enzyme type 2 (ACE2). Using osmotic minipumps, infusion of Ang-(1-9) consistently reduces blood pressure in several rat hypertension models. In these animals, hypertension-induced end-organ damage is also decreased. Several pieces of evidence suggest that Ang-(1-9) is the endogenous ligand that binds and activates the type-2 angiotensin II receptor (AT2R). Activation of AT2R triggers different tissue-specific signaling pathways. This phenomenon could be explained by the ability of AT2R to form different heterodimers with other G protein-coupled receptors. Because of the antihypertensive and protective effects of AT2R activation by Ang-(1-9), associated with a short half-life of RAS peptides, several synthetic AT2R agonists have been synthesized and assayed. Some of them, particularly CGP42112, C21 and novokinin, have demonstrated antihypertensive properties. Only two synthetic AT2R agonists, C21 and LP2-3, have been tested in clinical trials, but none of them like an antihypertensive. Therefore, Ang-(1-9) is a promising antihypertensive drug that reduces hypertension-induced end-organ damage. However, further research is required to translate this finding successfully to the clinic.
Collapse
Affiliation(s)
- Ignacio Norambuena-Soto
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Camila Lopez-Crisosto
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Javiera Martinez-Bilbao
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Carolina Hernandez-Fuentes
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Valentina Parra
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile; Network for the Study of High-lethality Cardiopulmonary Diseases (REECPAL), Universidad de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile; Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|
11
|
Feng F, Chen J, Zhao J, Li Y, Li M, Sun C. Killing Two Birds with One Stone by Administration of Soluble ACE2: A Promising Strategy to Treat Both Cardiovascular Diseases and SARS-CoV-2 Infection. Viruses 2021; 13:2243. [PMID: 34835049 PMCID: PMC8622942 DOI: 10.3390/v13112243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 12/19/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters host cells mainly by the angiotensin converting enzyme 2 (ACE2) receptor, which can recognize the spike (S) protein by its extracellular domain. Previously, recombinant soluble ACE2 (sACE2) has been clinically used as a therapeutic treatment for cardiovascular diseases. Recent data demonstrated that sACE2 can also be exploited as a decoy to effectively inhibit the cell entry of SARS-CoV-2, through blocking SARS-CoV-2 binding to membrane-anchored ACE2. In this study, we summarized the current findings on the optimized sACE2-based strategies as a therapeutic agent, including Fc fusion to prolong the half-life of sACE2, deep mutagenesis to create high-affinity decoys for SARS-CoV-2, or designing the truncated functional fragments to enhance its safety, among others. Considering that COVID-19 patients are often accompanied by manifestations of cardiovascular complications, we think that administration of sACE2 in COVID-19 patients may be a promising therapeutic strategy to simultaneously treat both cardiovascular diseases and SARS-CoV-2 infection. This review would provide insights for the development of novel therapeutic agents against the COVID-19 pandemic.
Collapse
Affiliation(s)
- Fengling Feng
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (F.F.); (J.C.); (J.Z.); (Y.L.); (M.L.)
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou 510080, China
| | - Jiaoshan Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (F.F.); (J.C.); (J.Z.); (Y.L.); (M.L.)
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou 510080, China
| | - Jin Zhao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (F.F.); (J.C.); (J.Z.); (Y.L.); (M.L.)
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou 510080, China
| | - Yanjun Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (F.F.); (J.C.); (J.Z.); (Y.L.); (M.L.)
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou 510080, China
| | - Minchao Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (F.F.); (J.C.); (J.Z.); (Y.L.); (M.L.)
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou 510080, China
| | - Caijun Sun
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (F.F.); (J.C.); (J.Z.); (Y.L.); (M.L.)
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou 510080, China
| |
Collapse
|
12
|
Almutlaq M, Alamro AA, Alroqi F, Barhoumi T. Classical and Counter-Regulatory Renin-Angiotensin System: Potential Key Roles in COVID-19 Pathophysiology. CJC Open 2021; 3:1060-1074. [PMID: 33875979 PMCID: PMC8046706 DOI: 10.1016/j.cjco.2021.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/08/2021] [Indexed: 02/08/2023] Open
Abstract
In the current COVID-19 pandemic, severe acute respiratory syndrome coronavirus 2 uses angiotensin-converting enzyme-2 (ACE-2) receptors for cell entry, leading to ACE-2 dysfunction and downregulation, which disturb the balance between the classical and counter-regulatory renin-angiotensin system (RAS) in favor of the classical RAS. RAS dysregulation is one of the major characteristics of several cardiovascular diseases; thus, adjustment of this system is the main therapeutic target. RAS inhibitors-particularly angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin II type 1 receptor blockers (ARBs)-are commonly used for treatment of hypertension and cardiovascular disease. Patients with cardiovascular diseases are the group most commonly seen among those with COVID-19 comorbidity. At the beginning of this pandemic, a dilemma occurred regarding the use of ACEIs and ARBs, potentially aggravating cardiovascular and pulmonary dysfunction in COVID-19 patients. Urgent clinical trials from different countries and hospitals reported that there is no association between RAS inhibitor treatment and COVID-19 infection or comorbidity complication. Nevertheless, the disturbance of the RAS that is associated with COVID-19 infection and the potential treatment targeting this area have yet to be resolved. In this review, the link between the dysregulation of classical RAS and counter-regulatory RAS activities in COVID-19 patients with cardiovascular metabolic diseases is investigated. In addition, the latest findings based on ACEI and ARB administration and ACE-2 availability in relation to COVID-19, which may provide a better understanding of the RAS contribution to COVID-19 pathology, are discussed, as they are of the utmost importance amid the current pandemic.
Collapse
Affiliation(s)
- Moudhi Almutlaq
- King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
- Moudhi Almutlaq, King Abdullah International Medical Research Centre, Ministry of National Guard Health Affairs, Riyadh 11461, Saudi Arabia. Tel.: +1-966-543-159145.
| | - Abir Abdullah Alamro
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Fayhan Alroqi
- King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- Department of Pediatrics, King Abdulaziz Medical City, King Abdullah Specialized Children's Hospital, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Tlili Barhoumi
- King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Corresponding authors: Dr Tlili Barhoumi, King Abdullah International Medical Research Centre, Ministry of National Guard Health Affairs, Riyadh 11461, Saudi Arabia. Tel.: +1-966-543-159145.
| |
Collapse
|
13
|
Taha R, Abureesh S, Alghamdi S, Hassan RY, Cheikh MM, Bagabir RA, Almoallim H, Abdulkhaliq A. The Relationship Between Vitamin D and Infections Including COVID-19: Any Hopes? Int J Gen Med 2021; 14:3849-3870. [PMID: 34335050 PMCID: PMC8318784 DOI: 10.2147/ijgm.s317421] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/22/2021] [Indexed: 12/17/2022] Open
Abstract
Vitamin D is proposed to have a potential role in the pathogenicity, clinical presentation, prognosis, complications, and treatment of several diseases. In addition to its well-known role in calcium metabolism, vitamin D regulates both innate and adaptive immunity, and subsequently modulates the antiviral and antibacterial inflammatory immune responses. In view of the emerging coronavirus disease 2019 (COVID-19) pandemic, searching for potential therapeutic and protective strategies is of urgent interest, and vitamin D is one of the promising agents in this field. In this review, we present data from literature that supports the promising role of vitamin D in treatment and/or prevention of several infections including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This review summarizes vitamin D metabolism and its role in inflammation, thrombosis and immune regulation. It also reviews, in short, the role of vitamin D and the impact of its deficiency in several infections namely tuberculosis, influenza, human immunodeficiency virus (HIV), and SARS-CoV-2. Considering the roles of vitamin D on immune modulation, controlling of thrombosis, and attacking several microorganisms, the current review will elaborate on the association between these salient roles of vitamin D and the pathogenicity of various infectious agents including COVID-19. Consequently, the comprehensive finding of the current review shows a possible significant impact of vitamin D supplement as a hope in preventing, treating, and/or improving the progression of certain infections, specifically during the worldwide attempts to fight against the COVID-19 pandemic and minimize the severity of health complications encountered accordingly. In addition, avoiding a status of vitamin D deficiency to obtain its positive effects on the immune system and its protective mechanism during infections will be a general benefit overall.
Collapse
Affiliation(s)
- Rbab Taha
- Department of Transplant Infectious Disease, University Health Network, Toronto, Ontario, Canada
| | - Shahd Abureesh
- Department of Medicine, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Shuruq Alghamdi
- Department of Medicine, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Rola Y Hassan
- Department of Internal Medicine, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia
| | - Mohamed M Cheikh
- Department of Internal Medicine, Doctor Soliman Fakeeh Hospital, Jeddah, Saudi Arabia
- Department of Medicine, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia
| | - Rania A Bagabir
- Department of Immunology and Hematology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hani Almoallim
- Department of Medicine, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
- Alzaidi Chair of Research in Rheumatic Diseases, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Altaf Abdulkhaliq
- Department of Clinical Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
14
|
Sepúlveda-Rivas S, Leal MS, Pedrozo Z, Kogan MJ, Ocaranza MP, Morales JO. Nanoparticle-Mediated Angiotensin-(1-9) Drug Delivery for the Treatment of Cardiac Hypertrophy. Pharmaceutics 2021; 13:pharmaceutics13060822. [PMID: 34206106 PMCID: PMC8228229 DOI: 10.3390/pharmaceutics13060822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/19/2021] [Accepted: 05/26/2021] [Indexed: 01/19/2023] Open
Abstract
Ang-(1-9) peptide is a bioactive vasodilator peptide that prevents cardiomyocyte hypertrophy in vitro and in vivo as well as lowers blood pressure and pathological cardiovascular remodeling; however, it has a reduced half-life in circulation, requiring a suitable carrier for its delivery. In this work, hybrid nanoparticles composed of polymeric nanoparticles (pNPs) based on Eudragit® E/Alginate (EE/Alg), and gold nanospheres (AuNS), were developed to evaluate their encapsulation capacity and release of Ang-(1-9) under different experimental conditions. Hybrid pNPs were characterized by dynamic light scattering, zeta potential, transmission and scanning electron microscopy, size distribution, and concentration by nanoparticle tracking analysis. Nanometric pNPs, with good polydispersity index and colloidally stable, produced high association efficiency of Ang-(1-9) and controlled release. Finally, the treatment of neonatal cardiomyocytes in culture with EE/Alg/AuNS 2% + Ang-(1-9) 20% pNPs decreased the area and perimeter, demonstrating efficacy in preventing norepinephrine-induced cardiomyocyte hypertrophy. On the other hand, the incorporation of AuNS did not cause negative effects either on the cytotoxicity or on the association capacity of Ang-(1-9), suggesting that the hybrid carrier EE/Alg/AuNS pNPs could be used for the delivery of Ang-(1-9) in the treatment of cardiovascular hypertrophy.
Collapse
Affiliation(s)
- Sabrina Sepúlveda-Rivas
- Medical Technology School, Faculty of Sciences, Universidad Mayor, Camino la Piramide 5750, Huechuraba, Santiago 8580745, Chile;
| | - Matías S. Leal
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile;
| | - Zully Pedrozo
- Red Para el Estudio de Enfermedades Cardiopulmonares de Alta Letalidad (REECPAL), Santiago 8380453, Chile;
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile & Pontificia Universidad Católica de Chile, Santiago 8380494, Chile;
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Marcelo J. Kogan
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile & Pontificia Universidad Católica de Chile, Santiago 8380494, Chile;
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile
| | - María Paz Ocaranza
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile & Pontificia Universidad Católica de Chile, Santiago 8380494, Chile;
- División de Enfermedades Cardiovasculares, Facultad Medicina, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
- Center of New Drugs for Hypertension, Universidad de Chile & Pontificia Universidad Católica de Chile, Santiago 8380494, Chile
- Correspondence: (M.P.O.); (J.O.M.)
| | - Javier O. Morales
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile & Pontificia Universidad Católica de Chile, Santiago 8380494, Chile;
- Center of New Drugs for Hypertension, Universidad de Chile & Pontificia Universidad Católica de Chile, Santiago 8380494, Chile
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile
- Correspondence: (M.P.O.); (J.O.M.)
| |
Collapse
|
15
|
Park BM, Li W, Kim SH. Cardio-protective effects of angiotensin-(1-5) via mas receptor in rats against ischemic-perfusion injury. Peptides 2021; 139:170516. [PMID: 33582209 DOI: 10.1016/j.peptides.2021.170516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/04/2021] [Accepted: 02/07/2021] [Indexed: 11/28/2022]
Abstract
Angiotensin-(1-5) [Ang-(1-5)], which is a metabolite of Ang-(1-7) catalyzed by angiotensin-converting enzyme, is a novel pentapeptide of the renin-angiotensin system. Ang-(1-7), Ang III and Ang IV have a cardio-protective effect via Mas receptor, Ang II type 2 receptor (AT2R) and AT4R, respectively. However, it is not clear whether Ang-(1-5) has cardio-protective effects. The aim of this study is to investigate whether Ang-(1-5) protects the heart against ischemia-reperfusion (I/R) injury. After sacrificing Sprague-Dawley rats, the hearts were perfused with Krebs-Henseleit buffer for a 20 min pre-ischemic period with and without Ang-(1-5) followed by 20 min global ischemia and 50 min reperfusion. Ang-(1-5) (1 μM) improved changes in post-ischemic left ventricular developed pressure (LVDP), ±dP/dt, and post-ischemic left ventricular end-diastolic pressure (LVEDP) induced by reperfusion compared to control hearts. Ang-(1-5) decreased myocardial infarct size and LDH activity, and increased coronary flow and the amount of atrial natriuretic peptide (ANP) in coronary effluent during reperfusion compared to control hearts. Pretreatment with Mas receptor antagonist but not with AT1R or AT2R antagonist attenuated the improvement of changes in I/R-induced ventricular hemodynamics by Ang-(1-5). Ang-(1-5) treatment decreased Bax, caspase-3 and caspase-9 protein levels, and increased Bcl-2 protein level, which were attenuated by A779 pretreatment. Ang-(1-5) treatment increased Mn-superoxide dismutase, catalase, and heme oxygenase-1 protein levels, which was attenuated by A779 pretreatment. These results suggest that the cardio-protective effects of Ang-(1-5) against I/R injury may be partly related to activating anti-oxidant and anti-apoptotic enzymes via Mas receptor.
Collapse
Affiliation(s)
- Byung Mun Park
- Department of Physiology, Research Institute for Endocrine Sciences, Jeonbuk National University Medical School, 20 Geonji-ro, Deokjin-gu, Jeonju, Jeollabuk-do 54907, Republic of Korea
| | - Weijian Li
- Department of Physiology, Research Institute for Endocrine Sciences, Jeonbuk National University Medical School, 20 Geonji-ro, Deokjin-gu, Jeonju, Jeollabuk-do 54907, Republic of Korea
| | - Suhn Hee Kim
- Department of Physiology, Research Institute for Endocrine Sciences, Jeonbuk National University Medical School, 20 Geonji-ro, Deokjin-gu, Jeonju, Jeollabuk-do 54907, Republic of Korea.
| |
Collapse
|
16
|
Mehrabadi ME, Hemmati R, Tashakor A, Homaei A, Yousefzadeh M, Hemati K, Hosseinkhani S. Induced dysregulation of ACE2 by SARS-CoV-2 plays a key role in COVID-19 severity. Biomed Pharmacother 2021; 137:111363. [PMID: 33582450 PMCID: PMC7862910 DOI: 10.1016/j.biopha.2021.111363] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/24/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the cause of COVID-19, is reported to increase the rate of mortality worldwide. COVID-19 is associated with acute respiratory symptoms as well as blood coagulation in the vessels (thrombosis), heart attack and stroke. Given the requirement of angiotensin converting enzyme 2 (ACE2) receptor for SARS-CoV-2 entry into host cells, here we discuss how the downregulation of ACE2 in the COVID-19 patients and virus-induced shift in ACE2 catalytic equilibrium, change the concentrations of substrates such as angiotensin II, apelin-13, dynorphin-13, and products such as angiotensin (1-7), angiotensin (1-9), apelin-12, dynorphin-12 in the human body. Substrates accumulation ultimately induces inflammation, angiogenesis, thrombosis, neuronal and tissue damage while diminished products lead to the loss of the anti-inflammatory, anti-thrombotic and anti-angiogenic responses. In this review, we focus on the viral-induced imbalance between ACE2 substrates and products which exacerbates the severity of COVID-19. Considering the roadmap, we propose multiple therapeutic strategies aiming to rebalance the products of ACE2 and to ameliorate the symptoms of the disease.
Collapse
Affiliation(s)
| | - Roohullah Hemmati
- Department of Biology, Faculty of Basic Sciences, Shahrekord University, Sharekord, Iran; Biotechnology Research Institute, Shahrekord University, Shahrekord, Iran; COVID-19 research group, Faculty of Basic Sciences, Shahrekord Univesity, Shahrekord, Iran.
| | - Amin Tashakor
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland; School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | | | - Karim Hemati
- Department of Anesthesiology and Pain, Iran University of Medical Sciences, Tehran, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
17
|
Vitiello A, Pelliccia C, Ferrara F. Drugs acting on the renin-angiotensin system and SARS-CoV-2. Drug Discov Today 2021; 26:870-874. [PMID: 33486116 PMCID: PMC7825840 DOI: 10.1016/j.drudis.2021.01.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/30/2020] [Accepted: 01/15/2021] [Indexed: 02/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the ongoing global Coronavirus 2019 (COVID-19) pandemic, resulting in thousands of deaths worldwide and representing a health challenge with few precedents in human history. Angiotensin-converting enzyme 2 (ACE-2) facilitates the access of SARS-CoV-2 to cells. Therapeutic agents acting on the renin–angiotensin system (RAS) might be able to modulate the concentration of ACE-2 and the various components of the system. Here, we discuss current pharmacological, molecular, and clinical evidence to investigate whether drugs acting on RAS with modulation of the ACE-2 concentration have added value in combating SARS-CoV-2 infection. We also highlight the possible deleterious action of the ACE/Ang-II/AT-1r axis and possible beneficial role of the ACE-2/Ang 1-7/MasR axis in acute respiratory distress syndrome (ARDS) caused by SARS-CoV-2, discussing the possibility of addressing the various RAS components with drug treatments to improve clinical outcomes.
Collapse
|
18
|
McFall A, Nicklin SA, Work LM. The counter regulatory axis of the renin angiotensin system in the brain and ischaemic stroke: Insight from preclinical stroke studies and therapeutic potential. Cell Signal 2020; 76:109809. [PMID: 33059037 PMCID: PMC7550360 DOI: 10.1016/j.cellsig.2020.109809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 01/01/2023]
Abstract
Stroke is the 2nd leading cause of death worldwide and the leading cause of physical disability and cognitive issues. Although we have made progress in certain aspects of stroke treatment, the consequences remain substantial and new treatments are needed. Hypertension has long been recognised as a major risk factor for stroke, both haemorrhagic and ischaemic. The renin angiotensin system (RAS) plays a key role in blood pressure regulation and this, plus local expression and signalling of RAS in the brain, both support the potential for targeting this axis therapeutically in the setting of stroke. While historically, focus has been on suppressing classical RAS signalling through the angiotensin type 1 receptor (AT1R), the identification of a counter-regulatory axis of the RAS signalling via the angiotensin type 2 receptor (AT2R) and Mas receptor has renewed interest in targeting the RAS. This review describes RAS signalling in the brain and the potential of targeting the Mas receptor and AT2R in preclinical models of ischaemic stroke. The animal and experimental models, and the route and timing of intervention, are considered from a translational perspective.
Collapse
Affiliation(s)
- Aisling McFall
- Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Stuart A Nicklin
- Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Lorraine M Work
- Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
19
|
Light-induced release of the cardioprotective peptide angiotensin-(1–9) from thermosensitive liposomes with gold nanoclusters. J Control Release 2020; 328:859-872. [DOI: 10.1016/j.jconrel.2020.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/11/2020] [Accepted: 11/01/2020] [Indexed: 11/24/2022]
|
20
|
Sotomayor-Flores C, Rivera-Mejías P, Vásquez-Trincado C, López-Crisosto C, Morales PE, Pennanen C, Polakovicova I, Aliaga-Tobar V, García L, Roa JC, Rothermel BA, Maracaja-Coutinho V, Ho-Xuan H, Meister G, Chiong M, Ocaranza MP, Corvalán AH, Parra V, Lavandero S. Angiotensin-(1-9) prevents cardiomyocyte hypertrophy by controlling mitochondrial dynamics via miR-129-3p/PKIA pathway. Cell Death Differ 2020; 27:2586-2604. [PMID: 32152556 PMCID: PMC7429871 DOI: 10.1038/s41418-020-0522-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 02/19/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022] Open
Abstract
Angiotensin-(1-9) is a peptide from the noncanonical renin-angiotensin system with anti-hypertrophic effects in cardiomyocytes via an unknown mechanism. In the present study we aimed to elucidate it, basing us initially on previous work from our group and colleagues who proved a relationship between disturbances in mitochondrial morphology and calcium handling, associated with the setting of cardiac hypertrophy. Our first finding was that angiotensin-(1-9) can induce mitochondrial fusion through DRP1 phosphorylation. Secondly, angiotensin-(1-9) blocked mitochondrial fission and intracellular calcium dysregulation in a model of norepinephrine-induced cardiomyocyte hypertrophy, preventing the activation of the calcineurin/NFAT signaling pathway. To further investigate angiotensin-(1-9) anti-hypertrophic mechanism, we performed RNA-seq studies, identifying the upregulation of miR-129 under angiotensin-(1-9) treatment. miR-129 decreased the transcript levels of the protein kinase A inhibitor (PKIA), resulting in the activation of the protein kinase A (PKA) signaling pathway. Finally, we showed that PKA activity is necessary for the effects of angiotensin-(1-9) over mitochondrial dynamics, calcium handling and its anti-hypertrophic effects.
Collapse
Affiliation(s)
- Cristian Sotomayor-Flores
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Pablo Rivera-Mejías
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - César Vásquez-Trincado
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Camila López-Crisosto
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Pablo E Morales
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Christian Pennanen
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Iva Polakovicova
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Víctor Aliaga-Tobar
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Lorena García
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juan Carlos Roa
- Departamento de Patologia, Facultad de Medicina, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Beverly A Rothermel
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vinicius Maracaja-Coutinho
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Hung Ho-Xuan
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Gunter Meister
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - María Paz Ocaranza
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for New Drugs for Hypertension (CENDH), Universidad de Chile & Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alejandro H Corvalán
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Corporación Centro de Estudios Científicos de las Enfermedades Crónicas (CECEC), Santiago, Chile
| | - Valentina Parra
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.
- Autophagy Research Center, Universidad de Chile, Santiago, Chile.
- Network for the Study of High-Lethality Cardiopulmonary Diseases (REECPAL), Universidad de Chile, Santiago, Chile.
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile.
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Corporación Centro de Estudios Científicos de las Enfermedades Crónicas (CECEC), Santiago, Chile.
| |
Collapse
|
21
|
Norambuena-Soto I, Ocaranza MP, Cancino-Arenas N, Sanhueza-Olivares F, Villar-Fincheira P, Leiva-Navarrete S, Mancilla-Medina C, Moya J, Novoa U, Jalil JE, Castro PF, Lavandero S, Chiong M. Angiotensin-(1-9) prevents vascular remodeling by decreasing vascular smooth muscle cell dedifferentiation through a FoxO1-dependent mechanism. Biochem Pharmacol 2020; 180:114190. [PMID: 32768401 DOI: 10.1016/j.bcp.2020.114190] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 12/30/2022]
Abstract
The renin-angiotensin system, one of the main regulators of vascular function, controls vasoconstriction, inflammation and vascular remodeling. Antagonistic actions of the counter-regulatory renin-angiotensin system, which include vasodilation, anti-proliferative, anti-inflammatory and anti-remodeling effects, have also been described. However, little is known about the direct effects of angiotensin-(1-9), a peptide of the counter-regulatory renin-angiotensin system, on vascular smooth muscle cells. Here, we studied the anti-vascular remodeling effects of angiotensin-(1-9), with special focus on the control of vascular smooth muscle cell phenotype. Angiotensin-(1-9) decreased blood pressure and aorta media thickness in spontaneously hypertensive rats. Reduction of media thickness was associated with decreased vascular smooth muscle cell proliferation. In the A7r5 VSMC cell line and in primary cultures of rat aorta smooth muscle cells, angiotensin-(1-9) did not modify basal proliferation. However, angiotensin-(1-9) inhibited proliferation, migration and contractile protein decrease induced by platelet derived growth factor-BB. Moreover, angiotensin-(1-9) reduced Akt and FoxO1 phosphorylation at 30 min, followed by an increase of total FoxO1 protein content. Angiotensin-(1-9) effects were blocked by the AT2R antagonist PD123319, Akt-Myr overexpression and FoxO1 siRNA. These data suggest that angiotensin-(1-9) inhibits vascular smooth muscle cell dedifferentiation by an AT2R/Akt/FoxO1-dependent mechanism.
Collapse
Affiliation(s)
- Ignacio Norambuena-Soto
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Maria Paz Ocaranza
- Division de Enfermedades Cardiovasculares, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Center of New Drugs for Hypertension (CENDHY), Universidad de Chile & Pontificia Universidad Católica de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicole Cancino-Arenas
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Fernanda Sanhueza-Olivares
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Paulina Villar-Fincheira
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Sebastian Leiva-Navarrete
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Cristian Mancilla-Medina
- Division de Enfermedades Cardiovasculares, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Center of New Drugs for Hypertension (CENDHY), Universidad de Chile & Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jacqueline Moya
- Division de Enfermedades Cardiovasculares, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Center of New Drugs for Hypertension (CENDHY), Universidad de Chile & Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ulises Novoa
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Chile
| | - Jorge E Jalil
- Division de Enfermedades Cardiovasculares, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Center of New Drugs for Hypertension (CENDHY), Universidad de Chile & Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo F Castro
- Division de Enfermedades Cardiovasculares, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile; Corporacion Centro de Estudios Científicos de las Enfermedades Crónicas (CECEC), Santiago, Chile; Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, USA
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
22
|
Biesalski HK. Vitamin D deficiency and co-morbidities in COVID-19 patients – A fatal relationship? NFS JOURNAL 2020. [PMCID: PMC7276229 DOI: 10.1016/j.nfs.2020.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
23
|
Sobczuk P, Czerwińska M, Kleibert M, Cudnoch-Jędrzejewska A. Anthracycline-induced cardiotoxicity and renin-angiotensin-aldosterone system-from molecular mechanisms to therapeutic applications. Heart Fail Rev 2020; 27:295-319. [PMID: 32472524 PMCID: PMC8739307 DOI: 10.1007/s10741-020-09977-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Few millions of new cancer cases are diagnosed worldwide every year. Due to significant progress in understanding cancer biology and developing new therapies, the mortality rates are decreasing with many of patients that can be completely cured. However, vast majority of them require chemotherapy which comes with high medical costs in terms of adverse events, of which cardiotoxicity is one of the most serious and challenging. Anthracyclines (doxorubicin, epirubicin) are a class of cytotoxic agents used in treatment of breast cancer, sarcomas, or hematological malignancies that are associated with high risk of cardiotoxicity that is observed in even up to 30% of patients and can be diagnosed years after the therapy. The mechanism, in which anthracyclines cause cardiotoxicity are not well known, but it is proposed that dysregulation of renin-angiotensin-aldosterone system (RAAS), one of main humoral regulators of cardiovascular system, may play a significant role. There is increasing evidence that drugs targeting this system can be effective in the prevention and treatment of anthracycline-induced cardiotoxicity what has recently found reflection in the recommendation of some scientific societies. In this review, we comprehensively describe possible mechanisms how anthracyclines affect RAAS and lead to cardiotoxicity. Moreover, we critically review available preclinical and clinical data on use of RAAS inhibitors in the primary and secondary prevention and treatment of cardiac adverse events associated with anthracycline-based chemotherapy.
Collapse
Affiliation(s)
- Paweł Sobczuk
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland.,Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Magdalena Czerwińska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Kleibert
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Cudnoch-Jędrzejewska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
24
|
Gheblawi M, Wang K, Viveiros A, Nguyen Q, Zhong JC, Turner AJ, Raizada MK, Grant MB, Oudit GY. Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System: Celebrating the 20th Anniversary of the Discovery of ACE2. Circ Res 2020; 126:1456-1474. [PMID: 32264791 PMCID: PMC7188049 DOI: 10.1161/circresaha.120.317015] [Citation(s) in RCA: 1330] [Impact Index Per Article: 266.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
ACE2 (angiotensin-converting enzyme 2) has a multiplicity of physiological roles that revolve around its trivalent function: a negative regulator of the renin-angiotensin system, facilitator of amino acid transport, and the severe acute respiratory syndrome-coronavirus (SARS-CoV) and SARS-CoV-2 receptor. ACE2 is widely expressed, including, in the lungs, cardiovascular system, gut, kidneys, central nervous system, and adipose tissue. ACE2 has recently been identified as the SARS-CoV-2 receptor, the infective agent responsible for coronavirus disease 2019, providing a critical link between immunity, inflammation, ACE2, and cardiovascular disease. Although sharing a close evolutionary relationship with SARS-CoV, the receptor-binding domain of SARS-CoV-2 differs in several key amino acid residues, allowing for stronger binding affinity with the human ACE2 receptor, which may account for the greater pathogenicity of SARS-CoV-2. The loss of ACE2 function following binding by SARS-CoV-2 is driven by endocytosis and activation of proteolytic cleavage and processing. The ACE2 system is a critical protective pathway against heart failure with reduced and preserved ejection fraction including, myocardial infarction and hypertension, and against lung disease and diabetes mellitus. The control of gut dysbiosis and vascular permeability by ACE2 has emerged as an essential mechanism of pulmonary hypertension and diabetic cardiovascular complications. Recombinant ACE2, gene-delivery of Ace2, Ang 1-7 analogs, and Mas receptor agonists enhance ACE2 action and serve as potential therapies for disease conditions associated with an activated renin-angiotensin system. rhACE2 (recombinant human ACE2) has completed clinical trials and efficiently lowered or increased plasma angiotensin II and angiotensin 1-7 levels, respectively. Our review summarizes the progress over the past 20 years, highlighting the critical role of ACE2 as the novel SARS-CoV-2 receptor and as the negative regulator of the renin-angiotensin system, together with implications for the coronavirus disease 2019 pandemic and associated cardiovascular diseases.
Collapse
Affiliation(s)
- Mahmoud Gheblawi
- From the Department of Physiology (M.G., A.V., G.Y.O.)
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada (M.G., K.W., A.V., Q.N., G.Y.O.)
| | - Kaiming Wang
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Canada (K.W., Q.N., G.Y.O.)
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada (M.G., K.W., A.V., Q.N., G.Y.O.)
| | - Anissa Viveiros
- From the Department of Physiology (M.G., A.V., G.Y.O.)
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada (M.G., K.W., A.V., Q.N., G.Y.O.)
| | - Quynh Nguyen
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Canada (K.W., Q.N., G.Y.O.)
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada (M.G., K.W., A.V., Q.N., G.Y.O.)
| | - Jiu-Chang Zhong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, China (J.-C.Z.)
| | - Anthony J. Turner
- School of Biomedical Sciences, University of Leeds, United Kingdom (A.J.T.)
| | - Mohan K. Raizada
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville (M.K.R.)
| | - Maria B. Grant
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (M.B.G.)
| | - Gavin Y. Oudit
- From the Department of Physiology (M.G., A.V., G.Y.O.)
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Canada (K.W., Q.N., G.Y.O.)
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada (M.G., K.W., A.V., Q.N., G.Y.O.)
| |
Collapse
|
25
|
Patel DM, Bose M, Cooper ME. Glucose and Blood Pressure-Dependent Pathways-The Progression of Diabetic Kidney Disease. Int J Mol Sci 2020; 21:ijms21062218. [PMID: 32210089 PMCID: PMC7139394 DOI: 10.3390/ijms21062218] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/17/2020] [Accepted: 03/17/2020] [Indexed: 12/11/2022] Open
Abstract
The major clinical associations with the progression of diabetic kidney disease (DKD) are glycemic control and systemic hypertension. Recent studies have continued to emphasize vasoactive hormone pathways including aldosterone and endothelin which suggest a key role for vasoconstrictor pathways in promoting renal damage in diabetes. The role of glucose per se remains difficult to define in DKD but appears to involve key intermediates including reactive oxygen species (ROS) and dicarbonyls such as methylglyoxal which activate intracellular pathways to promote fibrosis and inflammation in the kidney. Recent studies have identified a novel molecular interaction between hemodynamic and metabolic pathways which could lead to new treatments for DKD. This should lead to a further improvement in the outlook of DKD building on positive results from RAAS blockade and more recently newer classes of glucose-lowering agents such as SGLT2 inhibitors and GLP1 receptor agonists.
Collapse
Affiliation(s)
- Devang M. Patel
- Department of Diabetes, Monash University Central, Clinical School, Melbourne, VIC 3004, Australia;
- Correspondence: (D.M.P.); (M.E.C.)
| | - Madhura Bose
- Department of Diabetes, Monash University Central, Clinical School, Melbourne, VIC 3004, Australia;
| | - Mark E. Cooper
- Department of Diabetes, Monash University Central, Clinical School, Melbourne, VIC 3004, Australia;
- Department of Endocrinology and Diabetes, The Alfred Hospital, Melbourne, VIC 3004, Australia
- Correspondence: (D.M.P.); (M.E.C.)
| |
Collapse
|
26
|
Ocaranza MP, Moya J, Jalil JE, Lavandero S, Kalergis AM, Molina C, Gabrielli L, Godoy I, Córdova S, Castro P, Mac Nab P, Rossel V, García L, González J, Mancilla C, Fierro C, Farías L. Rho-kinase pathway activation and apoptosis in circulating leucocytes in patients with heart failure with reduced ejection fraction. J Cell Mol Med 2019; 24:1413-1427. [PMID: 31778027 PMCID: PMC6991691 DOI: 10.1111/jcmm.14819] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/11/2019] [Accepted: 09/01/2019] [Indexed: 01/01/2023] Open
Abstract
Background Increased Rho‐kinase activity in circulating leucocytes is observed in heart failure with reduced ejection fraction (HFrEF). However, there is little information in HFrEF regarding other Rho‐kinase pathway components an on the relationship between Rho‐kinase and apoptosis. Here, Rho‐kinase activation levels and phosphorylation of major downstream molecules and apoptosis levels were measured for the first time both in HFrEF patients and healthy individuals. Methods Cross‐sectional study comparing HFrEF patients (n = 20) and healthy controls (n = 19). Rho‐kinase activity in circulating leucocytes (peripheral blood mononuclear cells, PBMCs) was determined by myosin light chain phosphatase 1 (MYPT1) and ezrin‐radixin‐moesin (ERM) phosphorylation. Rho‐kinase cascade proteins phosphorylation p38‐MAPK, myosin light chain‐2, JAK and JNK were also analysed along with apoptosis. Results MYPT1 and ERM phosphorylation were significantly elevated in HFrEF patients, (3.9‐ and 4.8‐fold higher than in controls, respectively). JAK phosphorylation was significantly increased by 300% over controls. Phosphorylation of downstream molecules p38‐MAPK and myosin light chain‐2 was significantly higher by 360% and 490%, respectively, while JNK phosphorylation was reduced by 60%. Catecholamine and angiotensin II levels were significantly higher in HFrEF patients, while angiotensin‐(1‐9) levels were lower. Apoptosis in circulating leucocytes was significantly increased in HFrEF patients by 2.8‐fold compared with controls and significantly correlated with Rho‐kinase activation. Conclusion Rho‐kinase pathway is activated in PMBCs from HFrEF patients despite optimal treatment, and it is closely associated with neurohormonal activation and with apoptosis. ROCK cascade inhibition might induce clinical benefits in HFrEF patients, and its assessment in PMBCs could be useful to evaluate reverse remodelling and disease regression.
Collapse
Affiliation(s)
- Maria Paz Ocaranza
- Department of Cardiovascular Diseases, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jackeline Moya
- Department of Cardiovascular Diseases, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge E Jalil
- Department of Cardiovascular Diseases, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sergio Lavandero
- Faculty of Chemical and Pharmaceutical Sciences, Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile.,Cardiology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Alexis M Kalergis
- Departament of Molecular Genetics and Microbiology, Faculty of Biological Sciences, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristián Molina
- Department of Cardiovascular Diseases, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luigi Gabrielli
- Department of Cardiovascular Diseases, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Iván Godoy
- Department of Cardiovascular Diseases, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Samuel Córdova
- Department of Cardiovascular Diseases, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Castro
- Department of Cardiovascular Diseases, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paul Mac Nab
- Department of Cardiovascular Diseases, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Victor Rossel
- Department of Medicine, Hospital del Salvador, Medical School, Universidad de Chile, Santiago, Chile
| | - Lorena García
- Faculty of Chemical and Pharmaceutical Sciences, Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
| | - Javier González
- Department of Cardiovascular Diseases, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristián Mancilla
- Department of Cardiovascular Diseases, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camila Fierro
- Department of Cardiovascular Diseases, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis Farías
- Department of Cardiovascular Diseases, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
27
|
Arendse LB, Danser AHJ, Poglitsch M, Touyz RM, Burnett JC, Llorens-Cortes C, Ehlers MR, Sturrock ED. Novel Therapeutic Approaches Targeting the Renin-Angiotensin System and Associated Peptides in Hypertension and Heart Failure. Pharmacol Rev 2019; 71:539-570. [PMID: 31537750 PMCID: PMC6782023 DOI: 10.1124/pr.118.017129] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite the success of renin-angiotensin system (RAS) blockade by angiotensin-converting enzyme (ACE) inhibitors and angiotensin II type 1 receptor (AT1R) blockers, current therapies for hypertension and related cardiovascular diseases are still inadequate. Identification of additional components of the RAS and associated vasoactive pathways, as well as new structural and functional insights into established targets, have led to novel therapeutic approaches with the potential to provide improved cardiovascular protection and better blood pressure control and/or reduced adverse side effects. The simultaneous modulation of several neurohumoral mediators in key interconnected blood pressure-regulating pathways has been an attractive approach to improve treatment efficacy, and several novel approaches involve combination therapy or dual-acting agents. In addition, increased understanding of the complexity of the RAS has led to novel approaches aimed at upregulating the ACE2/angiotensin-(1-7)/Mas axis to counter-regulate the harmful effects of the ACE/angiotensin II/angiotensin III/AT1R axis. These advances have opened new avenues for the development of novel drugs targeting the RAS to better treat hypertension and heart failure. Here we focus on new therapies in preclinical and early clinical stages of development, including novel small molecule inhibitors and receptor agonists/antagonists, less conventional strategies such as gene therapy to suppress angiotensinogen at the RNA level, recombinant ACE2 protein, and novel bispecific designer peptides.
Collapse
Affiliation(s)
- Lauren B Arendse
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| | - A H Jan Danser
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| | - Marko Poglitsch
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| | - Rhian M Touyz
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| | - John C Burnett
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| | - Catherine Llorens-Cortes
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| | - Mario R Ehlers
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| | - Edward D Sturrock
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa (L.B.A., E.D.S.); Division of Pharmacology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands (A.H.J.D.); Attoquant Diagnostics, Vienna, Austria (M.P.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (R.M.T.); Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota (J.C.B.); Institut National de la Santé et de la Recherche Médicale, Paris, France (C.L.-C.); and Clinical Trials Group, Immune Tolerance Network, San Francisco, California (M.R.E.)
| |
Collapse
|
28
|
Liu J, Li X, Lu Q, Ren D, Sun X, Rousselle T, Li J, Leng J. AMPK: a balancer of the renin-angiotensin system. Biosci Rep 2019; 39:BSR20181994. [PMID: 31413168 PMCID: PMC6722492 DOI: 10.1042/bsr20181994] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 07/24/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023] Open
Abstract
The renin-angiotensin system (RAS) is undisputedly well-studied as one of the oldest and most critical regulators for arterial blood pressure, fluid volume, as well as renal function. In recent studies, RAS has also been implicated in the development of obesity, diabetes, hyperlipidemia, and other diseases, and also involved in the regulation of several signaling pathways such as proliferation, apoptosis and autophagy, and insulin resistance. AMP-activated protein kinase (AMPK), an essential cellular energy sensor, has also been discovered to be involved in these diseases and cellular pathways. This would imply a connection between the RAS and AMPK. Therefore, this review serves to draw attention to the cross-talk between RAS and AMPK, then summering the most recent literature which highlights AMPK as a point of balance between physiological and pathological functions of the RAS.
Collapse
Affiliation(s)
- Jia Liu
- Department of Geriatrics, The First Hospital of Jilin University, Changchun 130021, China
- Department of Surgery, University of South Florida, Tampa, FL 33612, U.S.A
| | - Xuan Li
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Qingguo Lu
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Di Ren
- Department of Surgery, University of South Florida, Tampa, FL 33612, U.S.A
| | - Xiaodong Sun
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Thomas Rousselle
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Ji Li
- Department of Surgery, University of South Florida, Tampa, FL 33612, U.S.A
| | - Jiyan Leng
- Department of Geriatrics, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
29
|
Kostyunin AE, Ovcharenko EA, Barbarash OL. [The renin-angiotensin-aldosterone system as a potential target for therapy in patients with calcific aortic stenosis: a literature review]. ACTA ACUST UNITED AC 2019; 59:4-17. [PMID: 31884936 DOI: 10.18087/cardio.n328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/14/2019] [Indexed: 11/18/2022]
Abstract
Calcific aortic valve stenosis (CAVS) is a serious socio-economic problem in developed countries because this disease is the most common indication for aortic valve replacement. Currently, there are no methods for non-invasive treatment of CAVS. Nevertheless, it is assumed that effective drug therapy for CAVS can be developed on the basis of modulators of the renin-angiotensin-aldosterone system (RAAS), which is involved in the pathogenesis of this disease. The purpose of this paper is to compile and analyze current information on the role of RAAS in the CAVS pathophysiology. Recent data on the effectiveness of RAAS inhibition are reviewed.
Collapse
Affiliation(s)
- A E Kostyunin
- Research Institute for Complex Issues of Cardiovascular Diseases
| | - E A Ovcharenko
- Research Institute for Complex Issues of Cardiovascular Diseases
| | - O L Barbarash
- Research Institute for Complex Issues of Cardiovascular Diseases
| |
Collapse
|
30
|
Abstract
The renin-angiotensin system is an important component of the cardiovascular system. Mounting evidence suggests that the metabolic products of angiotensin I and II - initially thought to be biologically inactive - have key roles in cardiovascular physiology and pathophysiology. This non-canonical axis of the renin-angiotensin system consists of angiotensin 1-7, angiotensin 1-9, angiotensin-converting enzyme 2, the type 2 angiotensin II receptor (AT2R), the proto-oncogene Mas receptor and the Mas-related G protein-coupled receptor member D. Each of these components has been shown to counteract the effects of the classical renin-angiotensin system. This counter-regulatory renin-angiotensin system has a central role in the pathogenesis and development of various cardiovascular diseases and, therefore, represents a potential therapeutic target. In this Review, we provide the latest insights into the complexity and interplay of the components of the non-canonical renin-angiotensin system, and discuss the function and therapeutic potential of targeting this system to treat cardiovascular disease.
Collapse
|
31
|
Zhou X, Zhang P, Liang T, Chen Y, Liu D, Yu H. Relationship between circulating levels of angiotensin-converting enzyme 2-angiotensin-(1-7)-MAS axis and coronary heart disease. Heart Vessels 2019; 35:153-161. [PMID: 31359146 PMCID: PMC7100072 DOI: 10.1007/s00380-019-01478-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023]
Abstract
As a counter-regulatory arm of the renin angiotensin system (RAS), the angiotensin-converting enzyme 2-angiotensin-(1–7)-MAS axis (ACE2-Ang-(1–7)-MAS axis) plays a protective role in cardiovascular diseases. However, the link between circulating levels of ACE2-Ang-(1–7)-Mas axis and coronary atherosclerosis in humans is not determined. The object of present study was to investigate the association of circulating levels of ACE2, Ang-(1–7) and Ang-(1–9) with coronary heart disease (CHD) defined by coronary angiography (CAG). 275 patients who were referred to CAG for the evaluation of suspected CHD were enrolled and divided into two groups: CHD group (diameter narrowing ≥ 50%, n = 218) and non-CHD group (diameter narrowing < 50%, n = 57). Circulating ACE2, Ang-(1–7) and Ang-(1–9) levels were detected by enzyme-linked immunosorbent assay (ELISA). In females, circulating ACE2 levels were higher in the CHD group than in the non-CHD group (5617.16 ± 5206.67 vs. 3124.06 ± 3005.36 pg/ml, P = 0.009), and subgroup analysis showed the significant differences in ACE2 levels between the two groups only exist in patients with multi-vessel lesions (P = 0.009). In multivariate logistic regression, compared with the people in the lowest ACE2 quartile, those in the highest quartile had an OR of 4.33 (95% CI 1.20–15.61) for the CHD (P for trend = 0.025), the OR was 5.94 (95% CI 1.08–32.51) for the third ACE2 quartile and 9.58 (95% CI 1.61–56.95) for the highest ACE2 quartile after adjusting for potential confounders (P for trend = 0.022). However, circulating Ang-(1–7) and Ang-(1–9) levels had no significant differences between the two groups. In males, there were no significant differences in the levels of ACE2-Ang-(1–7)-MAS axis between two groups. Together, circulating ACE2 levels, but not Ang-(1–7) and Ang-(1–9) levels, significantly increased in female CHD group when compared with non-CHD group, increased ACE2 was independently associated with CHD in female and in patients with multi-vessel lesions even after adjusting for the confounding factors, indicating that ACE2 may participate as a compensatory mechanism in CHD.
Collapse
Affiliation(s)
- Xiaomin Zhou
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Ping Zhang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Tao Liang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yongyue Chen
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Department of Cardiology, Shantou Central Hospital and Affiliated Shantou Hospital of SunYat-Sen University, Shantou, China
| | - Dan Liu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Department of Cardiology, Hospital of Panyu District, Guangzhou, China
| | - Huimin Yu
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China. .,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China. .,Department of Cardiology, Guangdong General Hospital's Nanhai Hospital, Foshan, China.
| |
Collapse
|
32
|
Garrido-Moreno V, Díaz-Vegas A, López-Crisosto C, Troncoso MF, Navarro-Marquez M, García L, Estrada M, Cifuentes M, Lavandero S. GDF-11 prevents cardiomyocyte hypertrophy by maintaining the sarcoplasmic reticulum-mitochondria communication. Pharmacol Res 2019; 146:104273. [PMID: 31096010 DOI: 10.1016/j.phrs.2019.104273] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 12/20/2022]
Abstract
Growth differentiation factor 11 (GDF11) is a novel factor with controversial effects on cardiac hypertrophy both in vivo and in vitro. Although recent evidence has corroborated that GDF11 prevents the development of cardiac hypertrophy, its molecular mechanism remains unclear. In our previous work, we showed that norepinephrine (NE), a physiological pro-hypertrophic agent, increases cytoplasmic Ca2+ levels accompanied by a loss of physical and functional communication between sarcoplasmic reticulum (SR) and mitochondria, with a subsequent reduction in the mitochondrial Ca2+ uptake and mitochondrial metabolism. In order to study the anti-hypertrophic mechanism of GDF11, our aim was to investigate whether GDF11 prevents the loss of SR-mitochondria communication triggered by NE. Our results show that: a) GDF11 prevents hypertrophy in cultured neonatal rat ventricular myocytes treated with NE. b) GDF11 attenuates the NE-induced loss of contact sites between both organelles. c) GDF11 increases oxidative mitochondrial metabolism by stimulating mitochondrial Ca2+ uptake. In conclusion, the GDF11-dependent maintenance of physical and functional communication between SR and mitochondria is critical to allow Ca2+ transfer between both organelles and energy metabolism in the cardiomyocyte and to avoid the activation of Ca2+-dependent pro-hypertrophic signaling pathways.
Collapse
Affiliation(s)
- Valeria Garrido-Moreno
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, University of Chile, Santiago, Chile
| | - Alexis Díaz-Vegas
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, University of Chile, Santiago, Chile
| | - Camila López-Crisosto
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, University of Chile, Santiago, Chile
| | - Mayarling Francisca Troncoso
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, University of Chile, Santiago, Chile
| | - Mario Navarro-Marquez
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, University of Chile, Santiago, Chile
| | - Lorena García
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, University of Chile, Santiago, Chile
| | - Manuel Estrada
- Institute of of Nutrition and Technology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Mariana Cifuentes
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, University of Chile, Santiago, Chile; Food Technology & Nutrition Institute (INTA), University of Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, University of Chile, Santiago, Chile; Institute of of Nutrition and Technology, Faculty of Medicine, University of Chile, Santiago, Chile; Departament of Internal Medicine, Cardiology Division, University of Texas Southwestern Medical Center, Dallas, Texas, United States.
| |
Collapse
|
33
|
Santos RAS, Oudit GY, Verano-Braga T, Canta G, Steckelings UM, Bader M. The renin-angiotensin system: going beyond the classical paradigms. Am J Physiol Heart Circ Physiol 2019; 316:H958-H970. [PMID: 30707614 PMCID: PMC7191626 DOI: 10.1152/ajpheart.00723.2018] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Thirty years ago, a novel axis of the renin-angiotensin system (RAS) was unveiled by the discovery of angiotensin-(1−7) [ANG-(1−7)] generation in vivo. Later, angiotensin-converting enzyme 2 (ACE2) was shown to be the main mediator of this reaction, and Mas was found to be the receptor for the heptapeptide. The functional analysis of this novel axis of the RAS that followed its discovery revealed numerous protective actions in particular for cardiovascular diseases. In parallel, similar protective actions were also described for one of the two receptors of ANG II, the ANG II type 2 receptor (AT2R), in contrast to the other, the ANG II type 1 receptor (AT1R), which mediates deleterious actions of this peptide, e.g., in the setting of cardiovascular disease. Very recently, another branch of the RAS was discovered, based on angiotensin peptides in which the amino-terminal aspartate was replaced by alanine, the alatensins. Ala-ANG-(1−7) or alamandine was shown to interact with Mas-related G protein-coupled receptor D, and the first functional data indicated that this peptide also exerts protective effects in the cardiovascular system. This review summarizes the presentations given at the International Union of Physiological Sciences Congress in Rio de Janeiro, Brazil, in 2017, during the symposium entitled “The Renin-Angiotensin System: Going Beyond the Classical Paradigms,” in which the signaling and physiological actions of ANG-(1−7), ACE2, AT2R, and alatensins were reported (with a focus on noncentral nervous system-related tissues) and the therapeutic opportunities based on these findings were discussed.
Collapse
Affiliation(s)
- Robson Augusto Souza Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Federal University of Minas Gerais , Belo Horizonte, Minas Gerais , Brazil
| | - Gavin Y Oudit
- Division of Cardiology, Department of Medicine, Mazankowski Alberta Heart Institute, University of Alberta , Edmonton , Canada
| | - Thiago Verano-Braga
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Federal University of Minas Gerais , Belo Horizonte, Minas Gerais , Brazil
| | - Giovanni Canta
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Federal University of Minas Gerais , Belo Horizonte, Minas Gerais , Brazil
| | - Ulrike Muscha Steckelings
- Department of Molecular Medicine, Cardiovascular & Renal Research, University of Southern Denmark, Odense, Denmark
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine , Berlin , Germany.,Deutsches Zentrum für Herz-Kreislaufforschung, Partner Site Berlin, Berlin , Germany.,Berlin Institute of Health , Berlin , Germany.,Charité-University Medicine, Berlin , Germany.,Institute for Biology, University of Lübeck , Lübeck , Germany
| |
Collapse
|
34
|
Mendoza-Torres E, Riquelme JA, Vielma A, Sagredo AR, Gabrielli L, Bravo-Sagua R, Jalil JE, Rothermel BA, Sanchez G, Ocaranza MP, Lavandero S. Protection of the myocardium against ischemia/reperfusion injury by angiotensin-(1–9) through an AT2R and Akt-dependent mechanism. Pharmacol Res 2018; 135:112-121. [DOI: 10.1016/j.phrs.2018.07.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/29/2018] [Accepted: 07/22/2018] [Indexed: 01/01/2023]
|
35
|
Gonzalez L, Novoa U, Moya J, Gabrielli L, Jalil JE, García L, Chiong M, Lavandero S, Ocaranza MP. Angiotensin-(1-9) reduces cardiovascular and renal inflammation in experimental renin-independent hypertension. Biochem Pharmacol 2018; 156:357-370. [PMID: 30179588 DOI: 10.1016/j.bcp.2018.08.045] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/30/2018] [Indexed: 02/06/2023]
Abstract
Hypertension-induced cardiovascular and renal damage can be mediated by activation of the renin-angiotensin-aldosterone system. There are different factors beyond renin-angiotensin-aldosterone system involved in hypertension and renal damage. Inflammation has emerged as an important mediator of hypertension and cardiovascular and kidney damage. Angiotensin-(1-9), a peptide of the renin-angiotensin system, counter-regulates both the physiological and pathological actions of angiotensin II. Recent data has shown that angiotensin-(1-9) protects the heart and blood vessels from adverse cardiovascular remodeling in experimental models of hypertension and/or heart failure and reduces cardiac fibrosis in stroke-prone, spontaneously hypertensive rats. These effects are mediated by the angiotensin II type 2 receptor (AT2R). However, it remains unknown whether angiotensin-(1-9) also has an anti-inflammatory effect. In the present study, we investigate whether angiotensin-(1-9) reduces inflammation and fibrosis in the heart, arteries, and kidney in a DOCA-salt hypertensive model and explore the mechanisms underlying the amelioration of end-organ damage. DOCA-salt hypertensive rats received: a) vehicle, b) angiotensin-(1-9), c) PD123319 (AT2R blocker), d) angiotensin-(1-9) plus A779 (a Mas receptor blocker) or e) angiotensin-(1-9) plus PD123319, and sham rats were used as a control. Our results showed that angiotensin-(1-9) decreased hypertension and increased vasodilation in DOCA-salt hypertensive rats. These actions were partially inhibited by PD123319. Moreover, angiotensin-(1-9) decreased diuresis, fibrosis, and inflammation. These beneficial effects were not mediated by Mas or AT2R blockers. We concluded that angiotensin-(1-9) protects against volume overload-induced hypertensive cardiovascular and kidney damage by decreasing inflammation in the heart, aortic wall, and kidney, through mechanisms independent of the Mas or AT2R.
Collapse
Affiliation(s)
- Leticia Gonzalez
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Pontificia, Universidad Catolica de Chile, Santiago 8330024, Chile; Division Enfermedades Cardiovasculares, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Catolica de Chile, Santiago 8330024, Chile
| | - Ulises Novoa
- Departmento de Ciencias Basicas Biomedicas, Facultad de Ciencias de la Salud, Universidad de Talca, Chile
| | - Jackeline Moya
- Division Enfermedades Cardiovasculares, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Catolica de Chile, Santiago 8330024, Chile
| | - Luigi Gabrielli
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Pontificia, Universidad Catolica de Chile, Santiago 8330024, Chile; Division Enfermedades Cardiovasculares, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Catolica de Chile, Santiago 8330024, Chile
| | - Jorge E Jalil
- Division Enfermedades Cardiovasculares, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Catolica de Chile, Santiago 8330024, Chile
| | - Lorena García
- Advanced Center for Chronic Diseases (ACCDiS) & Centro de Estudios en Ejercicio, Metabolismo y Cancer (CEMC), Facultad Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS) & Centro de Estudios en Ejercicio, Metabolismo y Cancer (CEMC), Facultad Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS) & Centro de Estudios en Ejercicio, Metabolismo y Cancer (CEMC), Facultad Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile; Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - María Paz Ocaranza
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Pontificia, Universidad Catolica de Chile, Santiago 8330024, Chile; Division Enfermedades Cardiovasculares, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Catolica de Chile, Santiago 8330024, Chile.
| |
Collapse
|
36
|
Cannata' A, Merlo M, Artico J, Gentile P, Camparini L, Cristallini J, Porcari A, Loffredo F, Sinagra G. Cardiovascular aging: the unveiled enigma from bench to bedside. J Cardiovasc Med (Hagerstown) 2018; 19:517-526. [PMID: 30024423 DOI: 10.2459/jcm.0000000000000694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
: The rapid increase in the median age of the world's population requires particular attention towards older and more fragile people. Cardiovascular risk factors, time and comorbidities play a vicious role in the development of heart failure, both with reduced and preserved ejection fraction, in the elderly. Understanding the mechanisms underlying the pathophysiological processes observed with aging is pivotal to target those patients and their therapeutic needs properly. This review aims to investigate and to dissect the main pathways leading to the aging cardiomyopathy, helping to understand the relationship from bench to bedside of the clinical phenotype.
Collapse
Affiliation(s)
- Antonio Cannata'
- Cardiovascular and Thoracic Department, Azienda Sanitaria Universitaria Integrata di Trieste and University of Trieste.,International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Marco Merlo
- Cardiovascular and Thoracic Department, Azienda Sanitaria Universitaria Integrata di Trieste and University of Trieste
| | - Jessica Artico
- Cardiovascular and Thoracic Department, Azienda Sanitaria Universitaria Integrata di Trieste and University of Trieste
| | - Piero Gentile
- Cardiovascular and Thoracic Department, Azienda Sanitaria Universitaria Integrata di Trieste and University of Trieste
| | - Luca Camparini
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Jacopo Cristallini
- Cardiovascular and Thoracic Department, Azienda Sanitaria Universitaria Integrata di Trieste and University of Trieste
| | - Aldostefano Porcari
- Cardiovascular and Thoracic Department, Azienda Sanitaria Universitaria Integrata di Trieste and University of Trieste
| | - Francesco Loffredo
- Cardiovascular and Thoracic Department, Azienda Sanitaria Universitaria Integrata di Trieste and University of Trieste.,International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Gianfranco Sinagra
- Cardiovascular and Thoracic Department, Azienda Sanitaria Universitaria Integrata di Trieste and University of Trieste
| |
Collapse
|
37
|
Cha SA, Park BM, Kim SH. Angiotensin-(1-9) ameliorates pulmonary arterial hypertension via angiotensin type II receptor. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:447-456. [PMID: 29962859 PMCID: PMC6019878 DOI: 10.4196/kjpp.2018.22.4.447] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 03/26/2018] [Accepted: 04/16/2018] [Indexed: 12/28/2022]
Abstract
Angiotensin-(1-9) [Ang-(1-9)], generated from Ang I by Ang II converting enzyme 2, has been reported to have protective effects on cardiac and vascular remodeling. However, there is no report about the effect of Ang-(1-9) on pulmonary hypertension. The aim of the present study is to investigate whether Ang-(1-9) improves pulmonary vascular remodeling in monocrotaline (MCT)-induced pulmonary hypertensive rats. Sprague-Dawley rats received Ang-(1-9) (576 µg/kg/day) or saline via osmotic mini-pumps for 3 weeks. Three days after implantation of osmotic mini-pumps, 50 mg/kg MCT or vehicle were subcutaneously injected. MCT caused increases in right ventricular weight and systolic pressure, which were reduced by co-administration of Ang-(1-9). Ang-(1-9) also attenuated endothelial damage and medial hypertrophy of pulmonary arterioles as well as pulmonary fibrosis induced by MCT. The protective effects of Ang-(1-9) against pulmonary hypertension were inhibited by Ang type 2 receptor (AT2R) blocker, but not by Mas receptor blocker. Additionally, the levels of LDH and inflammatory cytokines, such as TNF-α, MCP-1, IL-1β, and IL-6, in plasma were lower in Ang-(1-9) co-treated MCT group than in vehicle-treated MCT group. Changes in expressions of apoptosis-related proteins such as Bax, Bcl-2, Caspase-3 and -9 in the lung tissue of MCT rats were attenuated by the treatment with Ang-(1-9). These results indicate that Ang-(1-9) improves MCT-induced pulmonary hypertension by decreasing apoptosis and inflammatory reaction via AT2R.
Collapse
Affiliation(s)
- Seung Ah Cha
- Department of Physiology, Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju 54907, Korea
| | - Byung Mun Park
- Department of Physiology, Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju 54907, Korea
| | - Suhn Hee Kim
- Department of Physiology, Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju 54907, Korea
| |
Collapse
|
38
|
Kittana N. Angiotensin-converting enzyme 2-Angiotensin 1-7/1-9 system: novel promising targets for heart failure treatment. Fundam Clin Pharmacol 2017; 32:14-25. [DOI: 10.1111/fcp.12318] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 08/17/2017] [Indexed: 01/28/2023]
Affiliation(s)
- Naim Kittana
- Department of Biomedical Sciences; An-Najah National University; New Campus, Pharmacy Building, 2nd Floor, Akademia Street, PO Box: 7 Nablus West-Bank Palestine
| |
Collapse
|
39
|
Fattah C, Nather K, McCarroll CS, Hortigon-Vinagre MP, Zamora V, Flores-Munoz M, McArthur L, Zentilin L, Giacca M, Touyz RM, Smith GL, Loughrey CM, Nicklin SA. Gene Therapy With Angiotensin-(1-9) Preserves Left Ventricular Systolic Function After Myocardial Infarction. J Am Coll Cardiol 2017; 68:2652-2666. [PMID: 27978950 PMCID: PMC5158000 DOI: 10.1016/j.jacc.2016.09.946] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 09/08/2016] [Accepted: 09/29/2016] [Indexed: 01/16/2023]
Abstract
Background Angiotensin-(1-9) [Ang-(1-9)] is a novel peptide of the counter-regulatory axis of the renin-angiotensin-aldosterone system previously demonstrated to have therapeutic potential in hypertensive cardiomyopathy when administered via osmotic mini-pump. Here, we investigate whether gene transfer of Ang-(1-9) is cardioprotective in a murine model of myocardial infarction (MI). Objectives The authors evaluated effects of Ang-(1-9) gene therapy on myocardial structural and functional remodeling post-infarction. Methods C57BL/6 mice underwent permanent left anterior descending coronary artery ligation and cardiac function was assessed using echocardiography for 8 weeks followed by a terminal measurement of left ventricular pressure volume loops. Ang-(1-9) was delivered by adeno-associated viral vector via single tail vein injection immediately following induction of MI. Direct effects of Ang-(1-9) on cardiomyocyte excitation/contraction coupling and cardiac contraction were evaluated in isolated mouse and human cardiomyocytes and in an ex vivo Langendorff-perfused whole-heart model. Results Gene delivery of Ang-(1-9) reduced sudden cardiac death post-MI. Pressure volume measurements revealed complete restoration of end-systolic pressure, ejection fraction, end-systolic volume, and the end-diastolic pressure volume relationship by Ang-(1-9) treatment. Stroke volume and cardiac output were significantly increased versus sham. Histological analysis revealed only mild effects on cardiac hypertrophy and fibrosis, but a significant increase in scar thickness. Direct assessment of Ang-(1-9) on isolated cardiomyocytes demonstrated a positive inotropic effect via increasing calcium transient amplitude and contractility. Ang-(1-9) increased contraction in the Langendorff model through a protein kinase A–dependent mechanism. Conclusions Our novel findings showed that Ang-(1-9) gene therapy preserved left ventricular systolic function post-MI, restoring cardiac function. Furthermore, Ang-(1-9) directly affected cardiomyocyte calcium handling through a protein kinase A–dependent mechanism. These data emphasized Ang-(1-9) gene therapy as a potential new strategy in the context of MI.
Collapse
Affiliation(s)
- Caroline Fattah
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Katrin Nather
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Charlotte S McCarroll
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Maria P Hortigon-Vinagre
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Victor Zamora
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Monica Flores-Munoz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom; Universidad Veracruzana, Xalapa, Mexico
| | - Lisa McArthur
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Lorena Zentilin
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Mauro Giacca
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Godfrey L Smith
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Christopher M Loughrey
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Stuart A Nicklin
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
40
|
Delbridge LMD, Bienvenu LA, Mellor KM. Angiotensin-(1-9): New Promise for Post-Infarct Functional Therapy. J Am Coll Cardiol 2016; 68:2667-2669. [PMID: 27978951 DOI: 10.1016/j.jacc.2016.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 10/12/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Lea M D Delbridge
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia; Department of Physiology, University of Auckland, Auckland, New Zealand.
| | - Laura A Bienvenu
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Kimberley M Mellor
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia; Department of Physiology, University of Auckland, Auckland, New Zealand; Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
41
|
Yu L, Yuan K, Phuong HTA, Park BM, Kim SH. Angiotensin-(1-5), an active mediator of renin-angiotensin system, stimulates ANP secretion via Mas receptor. Peptides 2016; 86:33-41. [PMID: 27660028 DOI: 10.1016/j.peptides.2016.09.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/17/2016] [Accepted: 09/19/2016] [Indexed: 01/29/2023]
Abstract
Angiotensin-(1-5) [Ang-(1-5)], which is a metabolite of Angiotensin-(1-7) [Ang-(1-7)] catalyzed by angiotensin-converting enzyme (ACE), is a pentapeptide of the renin-angiotensin system (RAS). It has been reported that Ang-(1-7) and Ang-(1-9) stimulate the secretion of atrial natriuretic peptide (ANP) via Mas receptor (Mas R) and Ang II type 2 receptor (AT2R), respectively. However, it still remains unknown whether Ang-(1-5) has a similar function to Ang-(1-7). We investigated the effect of Ang-(1-5) on ANP secretion and to define its signaling pathway using isolated perfused beating rat atria. Ang-(1-5) (0.3, 3, 10μM) stimulated high pacing frequency-induced ANP secretion in a dose-dependent manner. Ang-(1-5)-induced ANP secretion (3μM) was attenuated by the pretreatment with an antagonist of Mas R (A-779) but not by an antagonist of AT1R (losartan) or AT2R (PD123,319). An inhibitor for phosphatidylinositol 3-kinase (PI3K; wortmannin), protein kinase B (Akt; API-2), or nitric oxide synthase (NOS; L-NAME) also attenuated the augmentation of ANP secretion induced by Ang-(1-5). Ang-(1-5)-induced ANP secretion was markedly attenuated in isoproterenol-treated hypertrophied atria. The secretagogue effect of Ang-(1-5) on ANP secretion was similar to those induced by Ang-(1-9) and Ang-(1-7). These results suggest that Ang-(1-5) is an active mediator of renin-angiotensin system to stimulate ANP secretion via Mas R and PI3K-Akt-NOS pathway.
Collapse
Affiliation(s)
- Lamei Yu
- Department of Physiology, Research Institute for Endocrine Sciences Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Kuichang Yuan
- Department of Internal Medicine, Yanbian University, China
| | - Hoang Thi Ai Phuong
- Department of Physiology, Research Institute for Endocrine Sciences Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Byung Mun Park
- Department of Physiology, Research Institute for Endocrine Sciences Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Suhn Hee Kim
- Department of Physiology, Research Institute for Endocrine Sciences Chonbuk National University Medical School, Jeonju, Republic of Korea.
| |
Collapse
|
42
|
Patel VB, Zhong JC, Grant MB, Oudit GY. Role of the ACE2/Angiotensin 1-7 Axis of the Renin-Angiotensin System in Heart Failure. Circ Res 2016; 118:1313-26. [PMID: 27081112 DOI: 10.1161/circresaha.116.307708] [Citation(s) in RCA: 601] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/19/2016] [Indexed: 11/16/2022]
Abstract
Heart failure (HF) remains the most common cause of death and disability, and a major economic burden, in industrialized nations. Physiological, pharmacological, and clinical studies have demonstrated that activation of the renin-angiotensin system is a key mediator of HF progression. Angiotensin-converting enzyme 2 (ACE2), a homolog of ACE, is a monocarboxypeptidase that converts angiotensin II into angiotensin 1-7 (Ang 1-7) which, by virtue of its actions on the Mas receptor, opposes the molecular and cellular effects of angiotensin II. ACE2 is widely expressed in cardiomyocytes, cardiofibroblasts, and coronary endothelial cells. Recent preclinical translational studies confirmed a critical counter-regulatory role of ACE2/Ang 1-7 axis on the activated renin-angiotensin system that results in HF with preserved ejection fraction. Although loss of ACE2 enhances susceptibility to HF, increasing ACE2 level prevents and reverses the HF phenotype. ACE2 and Ang 1-7 have emerged as a key protective pathway against HF with reduced and preserved ejection fraction. Recombinant human ACE2 has been tested in phase I and II clinical trials without adverse effects while lowering and increasing plasma angiotensin II and Ang 1-7 levels, respectively. This review discusses the transcriptional and post-transcriptional regulation of ACE2 and the role of the ACE2/Ang 1-7 axis in cardiac physiology and in the pathophysiology of HF. The pharmacological and therapeutic potential of enhancing ACE2/Ang 1-7 action as a novel therapy for HF is highlighted.
Collapse
Affiliation(s)
- Vaibhav B Patel
- From the Division of Cardiology, Department of Medicine (V.B.P., G.Y.O.), Mazankowski Alberta Heart Institute (V.B.P., G.Y.O.), and Department of Physiology (G.Y.O.), University of Alberta, Edmonton, Canada; State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (J.-C.Z.); Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai, China (J.-C.Z.); and Department of Ophthalmology, Indiana University School of Medicine, Indianapolis (M.B.G.)
| | - Jiu-Chang Zhong
- From the Division of Cardiology, Department of Medicine (V.B.P., G.Y.O.), Mazankowski Alberta Heart Institute (V.B.P., G.Y.O.), and Department of Physiology (G.Y.O.), University of Alberta, Edmonton, Canada; State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (J.-C.Z.); Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai, China (J.-C.Z.); and Department of Ophthalmology, Indiana University School of Medicine, Indianapolis (M.B.G.)
| | - Maria B Grant
- From the Division of Cardiology, Department of Medicine (V.B.P., G.Y.O.), Mazankowski Alberta Heart Institute (V.B.P., G.Y.O.), and Department of Physiology (G.Y.O.), University of Alberta, Edmonton, Canada; State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (J.-C.Z.); Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai, China (J.-C.Z.); and Department of Ophthalmology, Indiana University School of Medicine, Indianapolis (M.B.G.)
| | - Gavin Y Oudit
- From the Division of Cardiology, Department of Medicine (V.B.P., G.Y.O.), Mazankowski Alberta Heart Institute (V.B.P., G.Y.O.), and Department of Physiology (G.Y.O.), University of Alberta, Edmonton, Canada; State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (J.-C.Z.); Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai, China (J.-C.Z.); and Department of Ophthalmology, Indiana University School of Medicine, Indianapolis (M.B.G.).
| |
Collapse
|
43
|
Pathological Ace2-to-Ace enzyme switch in the stressed heart is transcriptionally controlled by the endothelial Brg1-FoxM1 complex. Proc Natl Acad Sci U S A 2016; 113:E5628-35. [PMID: 27601681 DOI: 10.1073/pnas.1525078113] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Genes encoding angiotensin-converting enzymes (Ace and Ace2) are essential for heart function regulation. Cardiac stress enhances Ace, but suppresses Ace2, expression in the heart, leading to a net production of angiotensin II that promotes cardiac hypertrophy and fibrosis. The regulatory mechanism that underlies the Ace2-to-Ace pathological switch, however, is unknown. Here we report that the Brahma-related gene-1 (Brg1) chromatin remodeler and forkhead box M1 (FoxM1) transcription factor cooperate within cardiac (coronary) endothelial cells of pathologically stressed hearts to trigger the Ace2-to-Ace enzyme switch, angiotensin I-to-II conversion, and cardiac hypertrophy. In mice, cardiac stress activates the expression of Brg1 and FoxM1 in endothelial cells. Once activated, Brg1 and FoxM1 form a protein complex on Ace and Ace2 promoters to concurrently activate Ace and repress Ace2, tipping the balance to Ace2 expression with enhanced angiotensin II production, leading to cardiac hypertrophy and fibrosis. Disruption of endothelial Brg1 or FoxM1 or chemical inhibition of FoxM1 abolishes the stress-induced Ace2-to-Ace switch and protects the heart from pathological hypertrophy. In human hypertrophic hearts, BRG1 and FOXM1 expression is also activated in endothelial cells; their expression levels correlate strongly with the ACE/ACE2 ratio, suggesting a conserved mechanism. Our studies demonstrate a molecular interaction of Brg1 and FoxM1 and an endothelial mechanism of modulating Ace/Ace2 ratio for heart failure therapy.
Collapse
|
44
|
Duggan DJ, Tabrizchi R. Angiotensin II control of regional haemodynamics in rats with aortocaval fistula. Exp Physiol 2016; 101:1192-1205. [PMID: 27427425 DOI: 10.1113/ep085717] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 07/12/2016] [Indexed: 12/17/2022]
Abstract
NEW FINDINGS What is the central question of this study? Hyperdynamic circulation because of arteriovenous fistula results in reduction of blood flow to organs but is a model of low circulatory resistance with activated renin-angiotensin system. The aim was to determine contributions of different subtypes of angiotensin II receptors to regional blood flow and vascular conductance in a hyperdynamic circulatory state. What is the main finding and its importance? The renin-angiotensin system plays a pivotal role in control of regional blood flow in animals with arteriovenous fistula and makes a major contribution to the maintenance of normal arterial blood pressure. In this hyperdynamic circulatory state model, angiotensin II type 1 receptors predominated in regulating regional haemodynamics. Regional perfusion is reduced and the renin-angiotensin system activated in rats with aortocaval fistula. The effects of captopril (angiotensin-converting enzyme inhibitor), losartan (angiotensin II type 1 receptor antagonist) and PD 123319 (angiotensin II type 2 receptor antagonist) on regional blood flow and vascular conductance were assessed in rats with aortocaval fistula and sham-operated rats. Control of blood flow and vascular conductance by angiotensin II was evaluated by serial bolus injections of captopril, losartan and PD 123319 in anaesthetized rats. In rats with fistula, PD 123319 significantly decreased, whereas captopril and losartan increased, mesenteric blood flow. The decrease in mesenteric blood flow induced by PD 123319 was significantly greater in rats with fistula compared with sham operation. Captopril and PD 123319 significantly decreased renal blood flow compared with losartan, which increased it. In sham-operated rats, captopril and losartan significantly increased, whereas PD 123319 decreased, mesenteric and renal conductance. In rats with fistula, captopril and losartan significantly increased, whereas PD 123319 decreased, mesenteric conductance. The significant increase produced by losartan on mesenteric conductance was greater in rats with fistula compared with sham operation. PD 123319 produced a significantly greater decrease in renal conductance of rats with aortocaval fistula compared with sham-operated rats. Captopril, losartan and PD 123319 did not significantly affect perfusion in the hindquarter in rats with fistula or sham-operated. The renin-angiotensin system is more active in the control of regional haemodynamics in rats with aortocaval fistula and acts as a mechanism of maintaining normal arterial blood pressure in these animals. In rats with fistula, angiotensin II type 1 receptors predominate in regulating regional haemodynamics.
Collapse
Affiliation(s)
- Daniel J Duggan
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University, St John's, Newfoundland and Labrador, Canada
| | - Reza Tabrizchi
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University, St John's, Newfoundland and Labrador, Canada
| |
Collapse
|
45
|
Ocaranza MP, Jalil JE. On Endogenous Angiotensin II Antagonism in Hypertension: The Role of Dipeptidyl Peptidase III. Hypertension 2016; 68:552-4. [PMID: 27456520 DOI: 10.1161/hypertensionaha.116.07471] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- María Paz Ocaranza
- Division of Cardiovascular Diseases, School of Medicine, Pontificia Universidad Católica de Chile (M.P.O., J.E.J.) and Advanced Center for Chronic Diseases, Division of Cardiovascular Diseases, School of Medicine, Pontificia Universidad Católica de Chile (ACCDis), Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago (M.P.O.)
| | - Jorge E Jalil
- Division of Cardiovascular Diseases, School of Medicine, Pontificia Universidad Católica de Chile (M.P.O., J.E.J.) and Advanced Center for Chronic Diseases, Division of Cardiovascular Diseases, School of Medicine, Pontificia Universidad Católica de Chile (ACCDis), Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago (M.P.O.).
| |
Collapse
|
46
|
Cannatà A, Camparini L, Sinagra G, Giacca M, Loffredo FS. Pathways for salvage and protection of the heart under stress: novel routes for cardiac rejuvenation. Cardiovasc Res 2016; 111:142-53. [DOI: 10.1093/cvr/cvw106] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/10/2016] [Indexed: 01/07/2023] Open
|
47
|
Simões E Silva AC, Teixeira MM. ACE inhibition, ACE2 and angiotensin-(1-7) axis in kidney and cardiac inflammation and fibrosis. Pharmacol Res 2016; 107:154-162. [PMID: 26995300 DOI: 10.1016/j.phrs.2016.03.018] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/03/2016] [Accepted: 03/14/2016] [Indexed: 12/21/2022]
Abstract
The Renin Angiotensin System (RAS) is a pivotal physiological regulator of heart and kidney homeostasis, but also plays an important role in the pathophysiology of heart and kidney diseases. Recently, new components of the RAS have been discovered, including angiotensin converting enzyme 2 (ACE2), Angiotensin(Ang)-(1-7), Mas receptor, Ang-(1-9) and Alamandine. These new components of RAS are formed by the hydrolysis of Ang I and Ang II and, in general, counteract the effects of Ang II. In experimental models of heart and renal diseases, Ang-(1-7), Ang-(1-9) and Alamandine produced vasodilation, inhibition of cell growth, anti-thrombotic, anti-inflammatory and anti-fibrotic effects. Recent pharmacological strategies have been proposed to potentiate the effects or to enhance the formation of Ang-(1-7) and Ang-(1-9), including ACE2 activators, Ang-(1-7) in hydroxypropyl β-cyclodextrin, cyclized form of Ang-(1-7) and nonpeptide synthetic Mas receptor agonists. Here, we review the role and effects of ACE2, ACE2 activators, Ang-(1-7) and synthetic Mas receptor agonists in the control of inflammation and fibrosis in cardiovascular and renal diseases and as counter-regulators of the ACE-Ang II-AT1 axis. We briefly comment on the therapeutic potential of the novel members of RAS, Ang-(1-9) and alamandine, and the interactions between classical RAS inhibitors and new players in heart and kidney diseases.
Collapse
Affiliation(s)
- Ana Cristina Simões E Silva
- Laboratório Interdisciplinar de Investigação Médica, Unidade de Nefrologia Pediátrica, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Brazil.
| | - Mauro Martins Teixeira
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, UFMG, Brazil
| |
Collapse
|
48
|
Jalil JE, Ocaranza MP. Regression of cardiovascular remodeling in hypertension: Novel relevant mechanisms. World J Hypertens 2016; 6:1-17. [DOI: 10.5494/wjh.v6.i1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/30/2015] [Accepted: 12/04/2015] [Indexed: 02/06/2023] Open
Abstract
Asymptomatic organ damage due to progressive kidney damage, cardiac hypertrophy and remodeling put hypertensive patients at high risk for developing heart and renal failure, myocardial infarction and stroke. Current antihypertensive treatment normalizes high blood pressure, partially reverses organ damage, and reduces the incidence of heart and renal failure. Activation of the renin-angiotensin system (RAS) is a primary mechanism of progressive organ damage and, specifically, a major cause of both renal and cardiovascular fibrosis. Currently, inhibition of the RAS system [mainly with angiotensin I converting enzyme inhibitors or angiotensin II (Ang II) receptor antagonists] is the most effective antihypertensive strategy for normalizing blood pressure and preventing target organ damage. However, residual organ damage and consequently high risk for cardiovascular events and renal failure still persist. Accordingly, in hypertension, it is relevant to develop new therapeutic perspectives, beyond reducing blood pressure to further prevent/reduce target organ damage by acting on pathways that trigger and maintain cardiovascular and renal remodeling. We review here relevant novel mechanisms of target organ damage in hypertension, their role and evidence in prevention/regression of cardiovascular remodeling and their possible clinical impact as well. Specifically, we focus on the signaling pathway RhoA/Rho kinase, on the impact of the vasodilatory peptides from the RAS and some insights on the role of estrogens and myocardial chymase in cardiovascular hypertensive remodeling.
Collapse
|
49
|
Novel players in cardioprotection: Insulin like growth factor-1, angiotensin-(1–7) and angiotensin-(1–9). Pharmacol Res 2015; 101:41-55. [DOI: 10.1016/j.phrs.2015.06.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 06/27/2015] [Accepted: 06/28/2015] [Indexed: 12/14/2022]
|
50
|
Mendoza-Torres E, Oyarzún A, Mondaca-Ruff D, Azocar A, Castro PF, Jalil JE, Chiong M, Lavandero S, Ocaranza MP. ACE2 and vasoactive peptides: novel players in cardiovascular/renal remodeling and hypertension. Ther Adv Cardiovasc Dis 2015; 9:217-37. [PMID: 26275770 DOI: 10.1177/1753944715597623] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The renin-angiotensin system (RAS) is a key component of cardiovascular physiology and homeostasis due to its influence on the regulation of electrolyte balance, blood pressure, vascular tone and cardiovascular remodeling. Deregulation of this system contributes significantly to the pathophysiology of cardiovascular and renal diseases. Numerous studies have generated new perspectives about a noncanonical and protective RAS pathway that counteracts the proliferative and hypertensive effects of the classical angiotensin-converting enzyme (ACE)/angiotensin (Ang) II/angiotensin type 1 receptor (AT1R) axis. The key components of this pathway are ACE2 and its products, Ang-(1-7) and Ang-(1-9). These two vasoactive peptides act through the Mas receptor (MasR) and AT2R, respectively. The ACE2/Ang-(1-7)/MasR and ACE2/Ang-(1-9)/AT2R axes have opposite effects to those of the ACE/Ang II/AT1R axis, such as decreased proliferation and cardiovascular remodeling, increased production of nitric oxide and vasodilation. A novel peptide from the noncanonical pathway, alamandine, was recently identified in rats, mice and humans. This heptapeptide is generated by catalytic action of ACE2 on Ang A or through a decarboxylation reaction on Ang-(1-7). Alamandine produces the same effects as Ang-(1-7), such as vasodilation and prevention of fibrosis, by interacting with Mas-related GPCR, member D (MrgD). In this article, we review the key roles of ACE2 and the vasoactive peptides Ang-(1-7), Ang-(1-9) and alamandine as counter-regulators of the ACE-Ang II axis as well as the biological properties that allow them to regulate blood pressure and cardiovascular and renal remodeling.
Collapse
Affiliation(s)
- Evelyn Mendoza-Torres
- Advanced Center for Chronic Diseases (ACCDiS), Centro de Estudios Moleculares de la Célula, Facultad de Ciencias Quimicas y Farmaceuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alejandra Oyarzún
- Advanced Center for Chronic Diseases (ACCDiS), Centro de Estudios Moleculares de la Célula, Facultad de Ciencias Quimicas y Farmaceuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - David Mondaca-Ruff
- Advanced Center for Chronic Diseases (ACCDiS), Centro de Estudios Moleculares de la Célula, Facultad de Ciencias Quimicas y Farmaceuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Andrés Azocar
- Advanced Center for Chronic Diseases (ACCDiS), Centro de Estudios Moleculares de la Célula, Facultad de Ciencias Quimicas y Farmaceuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Pablo F Castro
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile Division Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge E Jalil
- Division Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Centro de Estudios Moleculares de la Célula, Facultad de Ciencias Quimicas y Farmaceuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Centro de Estudios Moleculares de la Célula, Facultad de Ciencias Quimicas y Farmaceuticas and Facultad de Medicina, Universidad de Chile, Santiago, Chile Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - María Paz Ocaranza
- Advanced Center for Chronic Diseases(ACCDiS), Facultad de Medicina, PontificiaUniversidad Católica de Chile, Santiago, Chile.Division Enfermedades Cardiovasculares,Facultad de Medicina, Pontificia UniversidadCatólica de Chile, Santiago, Chile
| |
Collapse
|