1
|
Chen MC, Lee CJ, Lin YL, Wang CH, Hsu BG. The Association between Serum Adiponectin Levels and Endothelial Function in Non-Dialysis-Dependent Chronic Kidney Disease Patients. Biomedicines 2023; 11:2174. [PMID: 37626670 PMCID: PMC10452815 DOI: 10.3390/biomedicines11082174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Adiponectin is the richest human circulating adipokine with anti-inflammatory, antioxidant, and insulin-sensitizing effects. We evaluated the association between serum adiponectin levels and endothelial function in chronic kidney disease (CKD) patients, obtaining fasting blood samples from 130 non-dialysis CKD subjects. We measured the endothelial function-represented by the vascular reactivity index (VRI)-via non-invasive digital thermal monitoring, and serum adiponectin concentrations by enzyme immunoassay kits. A total of 22 (16.9%), 39 (30.0%), and 69 (53.1%) patients had poor (VRI < 1.0), intermediate (1.0 ≤ VRI < 2.0), and good (VRI ≥ 2.0) vascular reactivity. Elevated serum blood urea nitrogen (BUN) level was negatively correlated with VRI values, but serum adiponectin and estimated glomerular filtration rate were positively associated with VRI values by univariate linear regression analysis. After applying multivariate stepwise linear regression analysis adjustment, the significantly positive association of adiponectin (p < 0.001), and the significantly negative association of log-BUN (p = 0.021) with VRI values in CKD subjects remained. In an animal study using in vitro blood-vessel myography, treatment with adiponectin enhancing acetylcholine-mediated vasorelaxation in 5/6 nephrectomy CKD mice. Our study results indicated that adiponectin concentration was positively associated with VRI values and modulated endothelial function in non-dialysis CKD patients.
Collapse
Affiliation(s)
- Ming-Chun Chen
- Department of Pediatrics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan;
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan; (Y.-L.L.); (C.-H.W.)
| | - Chung-Jen Lee
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien 97005, Taiwan;
| | - Yu-Li Lin
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan; (Y.-L.L.); (C.-H.W.)
- Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
| | - Chih-Hsien Wang
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan; (Y.-L.L.); (C.-H.W.)
- Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
| | - Bang-Gee Hsu
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan; (Y.-L.L.); (C.-H.W.)
- Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
| |
Collapse
|
2
|
Kurtz T, Pravenec M, DiCarlo S. Mechanism-based strategies to prevent salt sensitivity and salt-induced hypertension. Clin Sci (Lond) 2022; 136:599-620. [PMID: 35452099 PMCID: PMC9069470 DOI: 10.1042/cs20210566] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 12/15/2022]
Abstract
High-salt diets are a major cause of hypertension and cardiovascular (CV) disease. Many governments are interested in using food salt reduction programs to reduce the risk for salt-induced increases in blood pressure and CV events. It is assumed that reducing the salt concentration of processed foods will substantially reduce mean salt intake in the general population. However, contrary to expectations, reducing the sodium density of nearly all foods consumed in England by 21% had little or no effect on salt intake in the general population. This may be due to the fact that in England, as in other countries including the U.S.A., mean salt intake is already close to the lower normal physiologic limit for mean salt intake of free-living populations. Thus, mechanism-based strategies for preventing salt-induced increases in blood pressure that do not solely depend on reducing salt intake merit attention. It is now recognized that the initiation of salt-induced increases in blood pressure often involves a combination of normal increases in sodium balance, blood volume and cardiac output together with abnormal vascular resistance responses to increased salt intake. Therefore, preventing either the normal increases in sodium balance and cardiac output, or the abnormal vascular resistance responses to salt, can prevent salt-induced increases in blood pressure. Suboptimal nutrient intake is a common cause of the hemodynamic disturbances mediating salt-induced hypertension. Accordingly, efforts to identify and correct the nutrient deficiencies that promote salt sensitivity hold promise for decreasing population risk of salt-induced hypertension without requiring reductions in salt intake.
Collapse
Affiliation(s)
- Theodore W. Kurtz
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94017-0134, U.S.A
| | - Michal Pravenec
- Institute of Physiology, Czech Academy of Sciences, Prague 14220, Czech Republic
| | - Stephen E. DiCarlo
- Department of Physiology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, U.S.A
| |
Collapse
|
3
|
Kurtz TW, DiCarlo SE, Pravenec M, Morris RC. No evidence of racial disparities in blood pressure salt sensitivity when potassium intake exceeds levels recommended in the US dietary guidelines. Am J Physiol Heart Circ Physiol 2021; 320:H1903-H1918. [PMID: 33797275 DOI: 10.1152/ajpheart.00980.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
On average, black individuals are widely believed to be more sensitive than white individuals to blood pressure (BP) effects of changes in salt intake. However, few studies have directly compared the BP effects of changing salt intake in black versus white individuals. In this narrative review, we analyze those studies and note that when potassium intake substantially exceeds the recently recommended US dietary goal of 87 mmol/day, black adults do not appear more sensitive than white adults to BP effects of short-term or long-term increases in salt intake (from an intake ≤50 mmol/day up to 150 mmol/day or more). However, with lower potassium intakes, racial differences in salt sensitivity are observed. Mechanistic studies suggest that racial differences in salt sensitivity are related to differences in vascular resistance responses to changes in salt intake mediated by vasodilator and vasoconstrictor pathways. With respect to cause and prevention of racial disparities in salt sensitivity, it is noteworthy that 1) on average, black individuals consume less potassium than white individuals and 2) consuming supplemental potassium bicarbonate, or potassium rich foods can prevent racial disparities in salt sensitivity. However, the new US dietary guidelines reduced the dietary potassium goal well below the amount associated with preventing racial disparities in salt sensitivity. These observations should motivate research on the impact of the new dietary potassium guidelines on racial disparities in salt sensitivity, the risks and benefits of potassium-containing salt substitutes or supplements, and methods for increasing consumption of foods rich in nutrients that protect against salt-induced hypertension.
Collapse
Affiliation(s)
- Theodore W Kurtz
- Department of Laboratory Medicine, University of California, San Francisco, California
| | - Stephen E DiCarlo
- Department of Physiology, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan
| | - Michal Pravenec
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - R Curtis Morris
- Department of Medicine, University of California, San Francisco, California
| |
Collapse
|
4
|
Kawarazaki W, Fujita T. Role of Rho in Salt-Sensitive Hypertension. Int J Mol Sci 2021; 22:ijms22062958. [PMID: 33803946 PMCID: PMC8001214 DOI: 10.3390/ijms22062958] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/21/2022] Open
Abstract
A high amount of salt in the diet increases blood pressure (BP) and leads to salt-sensitive hypertension in individuals with impaired renal sodium excretion. Small guanosine triphosphatase (GTP)ase Rho and Rac, activated by salt intake, play important roles in the pathogenesis of salt-sensitive hypertension as key switches of intracellular signaling. Focusing on Rho, high salt intake in the central nervous system increases sodium concentrations of cerebrospinal fluid in salt-sensitive subjects via Rho/Rho kinase and renin-angiotensin system activation and causes increased brain salt sensitivity and sympathetic nerve outflow in BP control centers. In vascular smooth muscle cells, Rho-guanine nucleotide exchange factors and Rho determine sensitivity to vasoconstrictors such as angiotensin II (Ang II), and facilitate vasoconstriction via G-protein and Wnt pathways, leading to increased vascular resistance, including in the renal arteries, in salt-sensitive subjects with high salt intake. In the vascular endothelium, Rho/Rho kinase inhibits nitric oxide (NO) production and function, and high salt amounts further augment Rho activity via asymmetric dimethylarginine, an endogenous inhibitor of NO synthetase, causing aberrant relaxation and increased vascular tone. Rho-associated mechanisms are deeply involved in the development of salt-sensitive hypertension, and their further elucidation can help in developing effective protection and new therapies.
Collapse
|
5
|
Wu J, Agbor LN, Fang S, Mukohda M, Nair AR, Nakagawa P, Sharma A, Morgan DA, Grobe JL, Rahmouni K, Weiss RM, McCormick JA, Sigmund CD. Failure to vasodilate in response to salt loading blunts renal blood flow and causes salt-sensitive hypertension. Cardiovasc Res 2021; 117:308-319. [PMID: 32428209 PMCID: PMC7797211 DOI: 10.1093/cvr/cvaa147] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/22/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
AIMS Salt-sensitive (SS) hypertension is accompanied by impaired vasodilation in the systemic and renal circulation. However, the causal relationship between vascular dysfunction and salt-induced hypertension remains controversial. We sought to determine whether primary vascular dysfunction, characterized by a failure to vasodilate during salt loading, plays a causal role in the pathogenesis of SS hypertension. METHODS AND RESULTS Mice selectively expressing a peroxisome proliferator-activated receptor γ dominant-negative mutation in vascular smooth muscle (S-P467L) exhibited progressive SS hypertension during a 4 week high salt diet (HSD). This was associated with severely impaired vasodilation in systemic and renal vessels. Salt-induced impairment of vasodilation occurred as early as 3 days after HSD, which preceded the onset of SS hypertension. Notably, the overt salt-induced hypertension in S-P467L mice was not driven by higher cardiac output, implying elevations in peripheral vascular resistance. In keeping with this, HSD-fed S-P467L mice exhibited decreased smooth muscle responsiveness to nitric oxide (NO) in systemic vessels. HSD-fed S-P467L mice also exhibited elevated albuminuria and a blunted increase in urinary NO metabolites which was associated with blunted renal blood flow and increased sodium retention mediated by a lack of HSD-induced suppression of NKCC2. Blocking NKCC2 function prevented the salt-induced increase in blood pressure in S-P467L mice. CONCLUSION We conclude that failure to vasodilate in response to salt loading causes SS hypertension by restricting renal perfusion and reducing renal NO through a mechanism involving NKCC2 in a mouse model of vascular peroxisome proliferator-activated receptor γ impairment.
Collapse
Affiliation(s)
- Jing Wu
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-248 BSB, Iowa City, IA 52242, USA
| | - Larry N Agbor
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-248 BSB, Iowa City, IA 52242, USA
| | - Shi Fang
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-248 BSB, Iowa City, IA 52242, USA
| | - Masashi Mukohda
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-248 BSB, Iowa City, IA 52242, USA
| | - Anand R Nair
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-248 BSB, Iowa City, IA 52242, USA
| | - Pablo Nakagawa
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-248 BSB, Iowa City, IA 52242, USA
| | - Avika Sharma
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, L334, Portland, OR 97239, USA
| | - Donald A Morgan
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-248 BSB, Iowa City, IA 52242, USA
| | - Justin L Grobe
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-248 BSB, Iowa City, IA 52242, USA
| | - Kamal Rahmouni
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-248 BSB, Iowa City, IA 52242, USA
- Veteran Affairs Health Care System, 601 Hwy 6 West, Iowa City, IA 52242, USA
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-248 BSB, Iowa City, IA 52242, USA
| | - Robert M Weiss
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-248 BSB, Iowa City, IA 52242, USA
| | - James A McCormick
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, L334, Portland, OR 97239, USA
| | - Curt D Sigmund
- Department of Physiology, Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd., 2-248 BSB, Iowa City, IA 52242, USA
| |
Collapse
|
6
|
Kwon YJ, Kim JO, Park JM, Choi JE, Park DH, Song Y, Kim SJ, Lee JW, Hong KW. Identification of Genetic Factors Underlying the Association between Sodium Intake Habits and Hypertension Risk. Nutrients 2020; 12:E2580. [PMID: 32854392 PMCID: PMC7551216 DOI: 10.3390/nu12092580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/16/2020] [Accepted: 08/22/2020] [Indexed: 12/13/2022] Open
Abstract
The role of sodium in hypertension remains unresolved. Although genetic factors have a significant impact on high blood pressure, studies comparing genetic susceptibility between people with low and high sodium diets are lacking. We aimed to investigate the genetic variations related to hypertension according to sodium intake habits in a large Korean population-based study. Data for a total of 57,363 participants in the Korean Genome and Epidemiology Study Health Examination were analyzed. Sodium intake was measured by a semi-quantitative food frequency questionnaire. We classified participants according to sodium intake being less than or greater than 2 g/day. We used logistic regression to test single-marker variants for genetic association with a diagnosis of hypertension, adjusting for age, sex, body mass index, exercise, alcohol, smoking, potassium intake, principal components 1, and principal components 2. Significant associations were defined as p < 5 × 10-8. In participants whose sodium intake was greater than 2 g/day, chromosome 6 open reading frame 10 (C6orf10)-human leukocyte antigen (HLA)-DQB1 rs6913309, ring finger protein (RNF)213 rs112735431, glycosylphosphatidylinositol anchored molecule-like (GML)- cytochrome P450 family 11 subfamily B member 1(CYP11B1) rs3819496, myosin light chain 2 (MYL2)-cut like homeobox 2 (CUX2) rs12229654, and jagged1 (JAG1) rs1887320 were significantly associated with hypertension. In participants whose intake was less than 2 g/day, echinoderm microtubule-associated protein-like 6(EML6) rs67617923 was significantly associated with hypertension. Genetic susceptibility associated with hypertension differed according to sodium intake. Identifying gene variants that contribute to the dependence of hypertension on sodium intake status could make possible more individualized nutritional recommendations for preventing cardiovascular diseases.
Collapse
Affiliation(s)
- Yu-Jin Kwon
- Department of Family Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, 363, Dongbaekjukjeon-daero, Giheung-gu, Yongin-si 16995, Korea;
| | - Jung Oh Kim
- Theragen Bio Co., Ltd., Suwon 16229, Korea; (J.O.K.); (J.-E.C.); (D.-H.P.); (S.-J.K.)
| | - Jae-Min Park
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul 06273, Korea; (J.-M.P.); (Y.S.)
| | - Ja-Eun Choi
- Theragen Bio Co., Ltd., Suwon 16229, Korea; (J.O.K.); (J.-E.C.); (D.-H.P.); (S.-J.K.)
| | - Da-Hyun Park
- Theragen Bio Co., Ltd., Suwon 16229, Korea; (J.O.K.); (J.-E.C.); (D.-H.P.); (S.-J.K.)
| | - Youhyun Song
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul 06273, Korea; (J.-M.P.); (Y.S.)
| | - Seong-Jin Kim
- Theragen Bio Co., Ltd., Suwon 16229, Korea; (J.O.K.); (J.-E.C.); (D.-H.P.); (S.-J.K.)
| | - Ji-Won Lee
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul 06273, Korea; (J.-M.P.); (Y.S.)
| | - Kyung-Won Hong
- Theragen Bio Co., Ltd., Suwon 16229, Korea; (J.O.K.); (J.-E.C.); (D.-H.P.); (S.-J.K.)
| |
Collapse
|
7
|
Schütten MT, Kusters YH, Houben AJ, Niessen HE, Op 't Roodt J, Scheijen JL, van de Waardenburg MP, Schalkwijk CG, de Leeuw PW, Stehouwer CDA. Glucocorticoids affect metabolic but not muscle microvascular insulin sensitivity following high versus low salt intake. JCI Insight 2020; 5:127530. [PMID: 32107343 DOI: 10.1172/jci.insight.127530] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 02/20/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUNDSalt-sensitive hypertension is often accompanied by insulin resistance in obese individuals, but the underlying mechanisms are obscure. Microvascular function is known to affect both salt sensitivity of blood pressure and metabolic insulin sensitivity. We hypothesized that excessive salt intake increases blood pressure and decreases insulin-mediated glucose disposal, at least in part by impairing insulin-mediated muscle microvascular recruitment (IMMR).METHODSIn 20 lean and 20 abdominally obese individuals, we assessed mean arterial pressure (MAP; 24-hour ambulatory blood pressure measurements), insulin-mediated whole-body glucose disposal (M/I value; hyperinsulinemic-euglycemic clamp technique), IMMR (contrast-enhanced ultrasound), osmolyte and water balance, and excretion of mineralocorticoids, glucocorticoids, and amino and organic acids after a low- and high-salt diet during 7 days in a randomized, double-blind, crossover design.RESULTSOn a low-, as compared with a high-salt, intake, MAP was lower, M/I value was lower, and IMMR was greater in both lean and abdominally obese individuals. In addition, natural logarithm IMMR was inversely associated with MAP in lean participants on a low-salt diet only. On a high-salt diet, free water clearance decreased, and excretion of glucocorticoids and of amino acids involved in the urea cycle increased.CONCLUSIONOur findings imply that hemodynamic and metabolic changes resulting from alterations in salt intake are not necessarily associated. Moreover, they are consistent with the concept that a high-salt intake increases muscle glucose uptake as a response to high salt-induced, glucocorticoid-driven muscle catabolism to stimulate urea production and thereby renal water conservation.TRIAL REGISTRATIONClinicalTrials.gov, NCT02068781.
Collapse
|
8
|
Choi HM, Doss HM, Kim KS. Multifaceted Physiological Roles of Adiponectin in Inflammation and Diseases. Int J Mol Sci 2020; 21:ijms21041219. [PMID: 32059381 PMCID: PMC7072842 DOI: 10.3390/ijms21041219] [Citation(s) in RCA: 241] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 12/28/2022] Open
Abstract
Adiponectin is the richest adipokine in human plasma, and it is mainly secreted from white adipose tissue. Adiponectin circulates in blood as high-molecular, middle-molecular, and low-molecular weight isoforms. Numerous studies have demonstrated its insulin-sensitizing, anti-atherogenic, and anti-inflammatory effects. Additionally, decreased serum levels of adiponectin is associated with chronic inflammation of metabolic disorders including Type 2 diabetes, obesity, and atherosclerosis. However, recent studies showed that adiponectin could have pro-inflammatory roles in patients with autoimmune diseases. In particular, its high serum level was positively associated with inflammation severity and pathological progression in rheumatoid arthritis, chronic kidney disease, and inflammatory bowel disease. Thus, adiponectin seems to have both pro-inflammatory and anti-inflammatory effects. This indirectly indicates that adiponectin has different physiological roles according to an isoform and effector tissue. Knowledge on the specific functions of isoforms would help develop potential anti-inflammatory therapeutics to target specific adiponectin isoforms against metabolic disorders and autoimmune diseases. This review summarizes the current roles of adiponectin in metabolic disorders and autoimmune diseases.
Collapse
Affiliation(s)
- Hyung Muk Choi
- Department of Clinical Pharmacology and Therapeutics, Kyung Hee University School of Medicine, Seoul 02447, Korea; (H.M.C.); (H.M.D.)
| | - Hari Madhuri Doss
- Department of Clinical Pharmacology and Therapeutics, Kyung Hee University School of Medicine, Seoul 02447, Korea; (H.M.C.); (H.M.D.)
- East-West Bone & Joint Disease Research Institute, Kyung Hee University Hospital at Gangdong, Gandong-gu, Seoul 02447, Korea
| | - Kyoung Soo Kim
- Department of Clinical Pharmacology and Therapeutics, Kyung Hee University School of Medicine, Seoul 02447, Korea; (H.M.C.); (H.M.D.)
- East-West Bone & Joint Disease Research Institute, Kyung Hee University Hospital at Gangdong, Gandong-gu, Seoul 02447, Korea
- Correspondence: ; Tel.: +82-2-961-9619
| |
Collapse
|
9
|
Yu CX, Zhang YY, Wu XY, Tang HX, Liang XQ, Xue ZM, Xue YD, Li J, Zhu H, Huo R, Ban T. Transient receptor potential melastatin 4 contributes to early-stage endothelial injury induced by arsenic trioxide. Toxicol Lett 2019; 312:98-108. [DOI: 10.1016/j.toxlet.2019.04.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/03/2019] [Accepted: 04/30/2019] [Indexed: 01/09/2023]
|
10
|
Bahadoran Z, Mirmiran P, Jeddi S, Carlström M, Azizi F, Ghasemi A. Circulating markers of nitric oxide homeostasis and cardiometabolic diseases: insights from population-based studies. Free Radic Res 2019; 53:359-376. [PMID: 30821533 DOI: 10.1080/10715762.2019.1587168] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Emerging data suggest that impaired nitric oxide (NO) homeostasis has a key role in development of cardiometabolic disorders. The association between circulating levels of NO metabolites, i.e. nitrate and nitrite (NOx), and risk of chronic diseases has not yet been fully clarified. This work aims to address epidemiologic aspects of NO metabolism and discusses different physiologic and pathophysiologic conditions influencing circulating NOx. Further, cross-sectional associations of serum NOx with metabolic disorders are described and along the way, potential short-term and long-term power of serum NOx for predicting cardiometabolic outcomes are reviewed. Results from population-based studies show that circulating NOx is affected by aging, smoking habits, pregnancy, menopause status, thyroid hormones, and various pathologic conditions including type 2 diabetes, insulin resistance, hypertension, and renal dysfunction. Lifestyle factors, especially dietary habits, but also smoking habits and the degree of physical activity influence NO homeostasis and the circulating levels of NOx. Elevated serum NOx, due to increased iNOS activity, is associated with increased incidence of metabolic syndrome, different obesity phenotypes, and cardiovascular events.
Collapse
Affiliation(s)
- Zahra Bahadoran
- a Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Parvin Mirmiran
- b Department of Clinical Nutrition and Diet Therapy, Faculty of Nutrition Sciences and Food Technology , National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Sajad Jeddi
- c Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Mattias Carlström
- d Department of Physiology and Pharmacology , Karolinska Institutet , Stockholm , Sweden
| | - Fereidoun Azizi
- e Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Asghar Ghasemi
- c Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| |
Collapse
|
11
|
Sodium sensitivity of blood pressure in Chinese populations. J Hum Hypertens 2019; 34:94-107. [PMID: 30631129 DOI: 10.1038/s41371-018-0152-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/15/2018] [Accepted: 12/06/2018] [Indexed: 12/12/2022]
Abstract
Hypertension is an enormous public-health challenge in the world due to its high prevalence and consequent increased cardiovascular disease morbidity and mortality. Observational epidemiologic studies and clinical trials have demonstrated a causal relationship between sodium intake and elevated blood pressure (BP). However, BP changes in response to sodium intervention vary among individuals-a trait called sodium sensitivity. This paper aims to review the recent advances in sodium-sensitivity research in Chinese and other populations. Older age, female gender, and black race are associated with high sodium sensitivity. Both genetic and environmental factors influence BP sodium sensitivity. Physical activity and dietary potassium intake are associated with reduced sodium sensitivity while obesity, metabolic syndrome, and elevated BP are associated with increased sodium sensitivity. Familial studies have documented a moderate heritability of sodium sensitivity. Candidate gene association studies, genome-wide association studies, whole-exome, and whole-genome sequencing studies have been conducted to elucidate the genomic mechanisms of sodium sensitivity. The Genetic Epidemiology Network of Salt Sensitivity (GenSalt) study, the largest family-based feeding study to date, was conducted among 1906 Han Chinese in rural northern China. This study showed that ~32.4% of Chinese adults were sodium sensitive. Additionally, several genetic variants were found to be associated with sodium sensitivity. Findings from the GenSalt Study and others indicate that sodium sensitivity is a reproducible trait and both lifestyle factors and genetic variants play a role in this complex trait. Discovering biomarkers and underlying mechanisms for sodium sensitivity will help to develop individualized intervention strategies for hypertension.
Collapse
|
12
|
Qi H, Liu B, Guo C, Liu Z, Cao H, Liu K, Sun W, Zhang L. Effects of environmental and genetic risk factors for salt sensitivity on blood pressure in northern China: the systemic epidemiology of salt sensitivity (EpiSS) cohort study. BMJ Open 2018; 8:e023042. [PMID: 30593548 PMCID: PMC6318536 DOI: 10.1136/bmjopen-2018-023042] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/29/2018] [Accepted: 10/12/2018] [Indexed: 12/19/2022] Open
Abstract
PURPOSE The systemic epidemiology of salt sensitivity (EpiSS) study aims to combine molecular biology, epidemiology and bioinformatics methods to discover the potential causes of salt sensitivity of blood pressure (SSBP) using single-nucleotide polymorphisms in the genome and non-coding RNAs in the transcriptome to uncover both the genetic and environmental factors of SSBP. PARTICIPANTS Between July 2014 and July 2016, we enrolled adults from 11 study centres in Beijing and Liaoning Province; participants were of the Han population and were 35-70 years of age. We collected blood samples, spot urine samples and 24-hour urine samples, in addition to baseline data on demographics, health-related lifestyle factors, chronic diseases, family history of illness and anthropometric information through face-to-face interviews using a standardised questionnaire. EpiSS uses the modified Sullivan's acute oral saline load and diuresis shrinkage test (MSAOSL-DST) to evaluate the effects of salt on blood pressure. FINDINGS TO DATE In total, 2163 participants were included in the EpiSS, of which 2144 participants completed the questionnaire, 2120 (98.0%) completed the MSAOSL-DST and 2083 (96.3%) provided a 24-hour urine sample. A total of 2057 participants (1501 women and 556 men) completed all the steps of the investigation and were included in the analysis. Among them, 583 (28.3%) subjects were classified as having salt sensitivity of blood pressure, and 1061 (51.6%) had hypertension. FUTURE PLANS The next step of our study is to evaluate the incidence of cardiovascular disease in the participants. Biennial follow-up, including face-to-face questionnaire surveys, laboratory measurements of blood, urinary creatinine, glomerular filtration rate and anthropometric measurements, will occur two additional times. DNA and RNA will be collected for subsequent genetic biomarker studies. We plan on screening the salt-sensitive-related gene loci and non-coding RNAs based on relative environmental risk factors. TRIAL REGISTRATION NUMBER ChiCTR-EOC-16009980; Pre-results.
Collapse
Affiliation(s)
- Han Qi
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Bin Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Chunyue Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Zheng Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Han Cao
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Kuo Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Weiping Sun
- Department of Cardiology, Luhe Hospital, Capital Medical University, Beijing, China
| | - Ling Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| |
Collapse
|
13
|
Kurtz TW, DiCarlo SE, Pravenec M, Morris RC. Changing views on the common physiologic abnormality that mediates salt sensitivity and initiation of salt-induced hypertension: Japanese research underpinning the vasodysfunction theory of salt sensitivity. Hypertens Res 2018; 42:6-18. [DOI: 10.1038/s41440-018-0122-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/24/2022]
|
14
|
Reduced secretion of parathyroid hormone and hypocalcemia in systemic heterozygous ATP2B1-null hypertensive mice. Hypertens Res 2018; 41:699-707. [PMID: 29950683 PMCID: PMC8076045 DOI: 10.1038/s41440-018-0067-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 01/11/2023]
Abstract
The ATP2B1 gene is associated with hypertension. We previously reported that systemic heterozygous ATP2B1-null (ATP2B1+/−) mice exhibited hypertension due to impaired endothelial nitric oxide synthase (eNOS) activity and decreased nitric oxide (NO) production. The ATP2B1 gene encodes plasma membrane calcium ATPase 1 (PMCA1), which has been thought to regulate only intracellular Ca2+ concentration. However, recently, it has been suggested that ATP2B1 works not only at cellular levels, but also throughout the entire body, including in the calcium metabolism, using small intestine-specific ATP2B1 knockout mice. To clarify the roles of ATP2B1 in the entire body and the effects of ATP2B1 on blood pressure, we examined the alterations of calcium related factors in ATP2B1+/− mice. ATP2B1+/− mice exhibited hypocalcemia. The expression of ATP2B1 in the kidney and small intestine decreased, and hypercalciuria was confirmed in ATP2B1+/− mice. The intact-PTH levels were lower, and bone mineral density was increased in these mice. These results suggest that hypocalcemia is mainly a result of inhibited bone resorption without compensation by PTH secretion in the case of ATP2B1 knockout. Moreover, NO production may be affected by reduced PTH secretion, which may cause the increase in vascular contractility in these mice. The ATP2B1 gene is important for not only intra-cellular calcium regulation but also for calcium homeostasis and blood pressure control.
Collapse
|
15
|
The American Heart Association Scientific Statement on salt sensitivity of blood pressure: Prompting consideration of alternative conceptual frameworks for the pathogenesis of salt sensitivity? J Hypertens 2018. [PMID: 28650918 DOI: 10.1097/hjh.0000000000001458] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
: Recently, the American Heart Association (AHA) published a scientific statement on salt sensitivity of blood pressure which emphasized a decades old conceptual framework for the pathogenesis of this common disorder. Here we examine the extent to which the conceptual framework for salt sensitivity emphasized in the AHA Statement accommodates contemporary findings and views of the broader scientific community on the pathogenesis of salt sensitivity. In addition, we highlight alternative conceptual frameworks and important contemporary theories of salt sensitivity that are little discussed in the AHA Statement. We suggest that greater consideration of conceptual frameworks and theories for salt sensitivity beyond those emphasized in the AHA Statement may help to advance understanding of the pathogenesis of salt-induced increases in blood pressure and, in consequence, may lead to improved approaches to preventing and treating this common disorder.
Collapse
|
16
|
Functional foods for augmenting nitric oxide activity and reducing the risk for salt-induced hypertension and cardiovascular disease in Japan. J Cardiol 2018; 72:42-49. [PMID: 29544657 DOI: 10.1016/j.jjcc.2018.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 12/24/2022]
Abstract
High salt intake is one of the major dietary determinants of hypertension and cardiovascular disease in Japan and throughout the world. Although dietary salt restriction may be of clinical benefit in salt-sensitive individuals, many individuals may not wish, or be able to, reduce their intake of salt. Thus, identification of functional foods that can help protect against mechanistic abnormalities mediating salt-induced hypertension is an issue of considerable medical and scientific interest. According to the "vasodysfunction" theory of salt-induced hypertension, the hemodynamic abnormality initiating salt-induced increases in blood pressure usually involves subnormal vasodilation and abnormally increased vascular resistance in response to increased salt intake. Because disturbances in nitric oxide activity can contribute to subnormal vasodilator responses to increased salt intake that often mediate blood pressure salt sensitivity, increased intake of functional foods that support nitric oxide activity may help to reduce the risk for salt-induced hypertension. Mounting evidence indicates that increased consumption of traditional Japanese vegetables and other vegetables with high nitrate content such as table beets and kale can promote the formation of nitric oxide through an endothelial independent pathway that involves reduction of dietary nitrate to nitrite and nitric oxide. In addition, recent studies in animal models have demonstrated that modest increases in nitrate intake can protect against the initiation of salt-induced hypertension. These observations are: (1) consistent with the view that increased intake of many traditional Japanese vegetables and other nitrate rich vegetables, and of functional foods derived from such vegetables, may help maintain healthy blood pressure despite a high salt diet; (2) support government recommendations to increase vegetable intake in the Japanese population.
Collapse
|
17
|
Liang B, Zhao YN, Wang X, Yu XJ, Li Y, Yang HY, Su Q, Kang YM, Yang ZM. Angiotensin-(1-7) attenuates hypertension and cardiac hypertrophy via modulation of nitric oxide and neurotransmitter levels in the paraventricular nucleus in salt-sensitive hypertensive rats. RSC Adv 2018; 8:8779-8786. [PMID: 35547241 PMCID: PMC9087825 DOI: 10.1039/c7ra09136b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 02/15/2018] [Indexed: 01/15/2023] Open
Abstract
Angiotensin-(1-7) [Ang-(1-7)] is a multifunctional bioactive angiotensin peptide which exerts a cardiovascular protective function mainly by opposing the effects of angiotensin II. We aimed to determine whether brain Ang-(1-7) regulates nitric oxide (NO) and neurotransmitter levels in the hypothalamic paraventricular nucleus (PVN), and influences sympathetic activity, blood pressure and cardiac hypertrophy in salt-sensitive hypertension. Dahl salt-sensitive rats receiving a high-salt (HS, 8% NaCl) or a normal-salt (NS, 0.3% NaCl) diet were treated with an intracerebroventricular (ICV) infusion of Ang-(1-7) for 6 weeks. Seven rats were measured in each group. In comparison with NS rats, HS rats exhibited significantly increased mean arterial pressure, plasma norepinephrine (NE) and cardiac hypertrophy. In addition, HS rats (compared to NS rats) had increased glutamate, NE and tyrosine hydroxylase (TH) expression, and reduced NO levels as well as reduced expression of γ-aminobutyric acid (GABA) and the 67 kDa isoform of glutamate decarboxylase (GAD67) in the PVN. Treatment with ICV infusion of Ang-(1-7) reversed these changes in the salt-sensitive hypertensive rats. The results suggest that the beneficial effects of brain Ang-(1-7) on salt-sensitive hypertension and cardiac hypertrophy are partly due to an elevation in the NO level and restoration of neurotransmitter balance in the PVN. Angiotensin-(1-7) [Ang-(1-7)] is a multifunctional bioactive angiotensin peptide which exerts a cardiovascular protective function mainly by opposing the effects of angiotensin II.![]()
Collapse
Affiliation(s)
- Bin Liang
- Department of Cardiology
- The Second Hospital of Shanxi Medical University
- Taiyuan 030001
- China
- Key Laboratory of Cardiovascular Medicine and Clinical Pharmacology of Shanxi Province
| | - Ya-Nan Zhao
- Department of Cardiology
- The Second Hospital of Shanxi Medical University
- Taiyuan 030001
- China
- Department of Respiratory
| | - Xin Wang
- Key Laboratory of Cardiovascular Medicine and Clinical Pharmacology of Shanxi Province
- Taiyuan 030001
- China
| | - Xiao-Jing Yu
- Department of Physiology and Pathophysiology
- Xi'an Jiaotong University School of Basic Medical Sciences
- Xi'an Jiaotong University Health Science Center
- Xi'an 710061
- China
| | - Ying Li
- Department of Physiology and Pathophysiology
- Xi'an Jiaotong University School of Basic Medical Sciences
- Xi'an Jiaotong University Health Science Center
- Xi'an 710061
- China
| | - Hui-Yu Yang
- Department of Cardiology
- The Second Hospital of Shanxi Medical University
- Taiyuan 030001
- China
- Key Laboratory of Cardiovascular Medicine and Clinical Pharmacology of Shanxi Province
| | - Qing Su
- Department of Physiology and Pathophysiology
- Xi'an Jiaotong University School of Basic Medical Sciences
- Xi'an Jiaotong University Health Science Center
- Xi'an 710061
- China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology
- Xi'an Jiaotong University School of Basic Medical Sciences
- Xi'an Jiaotong University Health Science Center
- Xi'an 710061
- China
| | - Zhi-Ming Yang
- Department of Cardiology
- The Second Hospital of Shanxi Medical University
- Taiyuan 030001
- China
- Key Laboratory of Cardiovascular Medicine and Clinical Pharmacology of Shanxi Province
| |
Collapse
|
18
|
Palygin O, Ilatovskaya DV, Levchenko V, Endres BT, Geurts AM, Staruschenko A. Nitric oxide production by glomerular podocytes. Nitric Oxide 2017; 72:24-31. [PMID: 29128399 DOI: 10.1016/j.niox.2017.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 09/27/2017] [Accepted: 11/07/2017] [Indexed: 01/18/2023]
Abstract
Nitric Oxide (NO), a potent vasodilator and vital signaling molecule, has been shown to contribute to the regulation of glomerular ultrafiltration. However, whether changes in NO occur in podocytes during the pathogenesis of salt-sensitive hypertension has not yet been thoroughly examined. We showed here that podocytes produce NO, and further hypothesized that hypertensive animals would exhibit reduced NO production in these cells in response to various paracrine factors, which might contribute to the damage of glomeruli filtration barrier and development of proteinuria. To test this, we isolated glomeruli from the kidneys of Dahl salt-sensitive (SS) rats fed a low salt (LS; 0.4% NaCl) or high salt (HS; 4% NaCl, 3 weeks) diets and loaded podocytes with either a combination of NO and Ca2+ fluorophores (DAF-FM and Fura Red, respectively) or DAF-FM alone. Changes in fluorescence were observed with confocal microscopy in response to adenosine triphosphate (ATP), angiotensin II (Ang II), and hydrogen peroxide (H2O2). Application of Ang II resulted in activation of both NO and intracellular calcium ([Ca2+]i) transients. In contrast, ATP promoted [Ca2+]i transients, but did not have any effects on NO production. SS rats fed a HS diet for 3 weeks demonstrated impaired NO production: the response to Ang II or H2O2 in podocytes of glomeruli isolated from SS rats fed a HS diet was significantly reduced compared to rats fed a LS diet. Therefore, glomerular podocytes from hypertensive rats showed a diminished NO release in response to Ang II or oxidative stress, suggesting that podocytic NO signaling is dysfunctional in this condition and likely contributes to the development of kidney injury.
Collapse
Affiliation(s)
- Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Daria V Ilatovskaya
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Vladislav Levchenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Bradley T Endres
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | |
Collapse
|
19
|
Ko SC, Jung WK, Lee SH, Lee DH, Jeon YJ. Antihypertensive effect of an enzymatic hydrolysate from Styela clava flesh tissue in type 2 diabetic patients with hypertension. Nutr Res Pract 2017; 11:396-401. [PMID: 28989576 PMCID: PMC5621362 DOI: 10.4162/nrp.2017.11.5.396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 05/14/2017] [Accepted: 07/20/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND/OBJECTIVES In this randomized, placebo-controlled, double-blind study, we evaluated the antihypertensive effects of enzymatic hydrolysate from Styela clava flesh tissue in patients with type 2 diabetes mellitus (T2DM) and hypertension. SUBJECTS/METHODS S. clava flesh tissue hydrolysate (SFTH) (n = 34) and placebo (n = 22) were randomly allocated to the study subjects. Each subject ingested two test capsules (500 mg) containing powdered SFTH (SFTH group) or placebo capsules (placebo group) during four weeks. RESULTS In the SFTH group, systolic and diastolic blood pressure decreased significantly 4 weeks after ingestion by 9.9 mmHg (P < 0.01) and 7.8 mmHg (P < 0.01), respectively. In addition, the SFTH group exhibited a significant decrease in hemoglobin A1c with a tendency toward improvement in homeostasis model assessment of insulin resistance, triglyceride, apolipoprotein B and plasma insulin levels after 4 weeks. No adverse effects were observed in other indexes, including biochemical and hematological parameters in both groups. CONCLUSION The results of our study suggested that SFTH exerts a regulatory, antihypertensive effect in patients with T2DM and hypertension.
Collapse
Affiliation(s)
- Seok-Chun Ko
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, Korea
| | - Won-Kyo Jung
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, Korea.,Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan 48513, Korea
| | - Seung-Hong Lee
- Department of Pharmaceutical Engineering, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan-si, Chungnam 31538, Korea
| | - Dae Ho Lee
- Department of Internal Medicine, Gachon University Gil Medical Center, 21 Namdong-daero 774 road, Incheon 21565, Korea
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju 63243, Korea
| |
Collapse
|
20
|
Morris RC, Schmidlin O, Sebastian A, Tanaka M, Kurtz TW. Vasodysfunction That Involves Renal Vasodysfunction, Not Abnormally Increased Renal Retention of Sodium, Accounts for the Initiation of Salt-Induced Hypertension. Circulation 2016; 133:881-93. [PMID: 26927006 DOI: 10.1161/circulationaha.115.017923] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- R Curtis Morris
- From the Departments of Medicine (R.C.M., O.S., A.S., M.T.) and Laboratory Medicine (T.W.K.), University of California, San Francisco.
| | - Olga Schmidlin
- From the Departments of Medicine (R.C.M., O.S., A.S., M.T.) and Laboratory Medicine (T.W.K.), University of California, San Francisco
| | - Anthony Sebastian
- From the Departments of Medicine (R.C.M., O.S., A.S., M.T.) and Laboratory Medicine (T.W.K.), University of California, San Francisco
| | - Masae Tanaka
- From the Departments of Medicine (R.C.M., O.S., A.S., M.T.) and Laboratory Medicine (T.W.K.), University of California, San Francisco
| | - Theodore W Kurtz
- From the Departments of Medicine (R.C.M., O.S., A.S., M.T.) and Laboratory Medicine (T.W.K.), University of California, San Francisco.
| |
Collapse
|
21
|
Cao Y, Fang Y, Mu J, Liu X. High salt medium activates RhoA/ROCK and downregulates eNOS expression via the upregulation of ADMA. Mol Med Rep 2016; 14:606-12. [PMID: 27175806 DOI: 10.3892/mmr.2016.5241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 04/18/2016] [Indexed: 11/05/2022] Open
Abstract
Endothelial dysfunction has an important role in the development and progression of salt-sensitive hypertension. Asymmetric dimethylarginine (ADMA), which is an endogenous inhibitor of nitric oxide synthase (NOS), has been demonstrated to be involved in the pathophysiological processes of endothelial dysfunction and salt‑sensitive hypertension. However, it is currently unclear how high salt intake may induce these processes. The present study investigated the effects of high salt medium on ADMA, endothelial NOS (eNOS) and the Ras homolog gene family, member A (RhoA)/Rho-associated protein kinase (ROCK) pathway in the EA.hy926 umbilical vein cell line. The results demonstrated that high salt medium significantly increased the concentration of ADMA, the expression of protein arginine methyltransferase 1 (PRMT‑1) and RhoA, and the activity of ROCK, and downregulated the expression of eNOS. Knockdown of PRMT-1 with small interfering RNA (siRNA) significantly abrogated the aforementioned effects. These results indicated that ADMA has a key role in high salt‑mediated activation of the RhoA/ROCK pathway and inhibition of eNOS biosynthesis. siRNA‑PRMT‑1 may be considered a novel remedy for the treatment of endothelial dysfunction.
Collapse
Affiliation(s)
- Yu Cao
- Department of Pediatrics, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yuan Fang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jianjun Mu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaohong Liu
- Department of Pediatrics, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
22
|
Ko SC, Jung WK, Kang SM, Lee SH, Kang MC, Heo SJ, Kang KH, Kim YT, Park SJ, Jeong Y, Kim M, Byun HG, Jeon YJ. Angiotensin I-converting enzyme (ACE) inhibition and nitric oxide (NO)-mediated antihypertensive effect of octaphlorethol A isolated from Ishige sinicola: In vitro molecular mechanism and in vivo SHR model. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
23
|
Kusche-Vihrog K, Schmitz B, Brand E. Salt controls endothelial and vascular phenotype. Pflugers Arch 2014; 467:499-512. [DOI: 10.1007/s00424-014-1657-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/11/2014] [Accepted: 11/14/2014] [Indexed: 01/11/2023]
|
24
|
Houston M. The role of nutrition and nutraceutical supplements in the treatment of hypertension. World J Cardiol 2014; 6:38-66. [PMID: 24575172 PMCID: PMC3935060 DOI: 10.4330/wjc.v6.i2.38] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/22/2013] [Accepted: 12/17/2013] [Indexed: 02/06/2023] Open
Abstract
Vascular biology, endothelial and vascular smooth muscle and cardiac dysfunction play a primary role in the initiation and perpetuation of hypertension, cardiovascular disease and target organ damage. Nutrient-gene interactions and epigenetics are predominant factors in promoting beneficial or detrimental effects in cardiovascular health and hypertension. Macronutrients and micronutrients can prevent, control and treat hypertension through numerous mechanisms related to vascular biology. Oxidative stress, inflammation and autoimmune dysfunction initiate and propagate hypertension and cardiovascular disease. There is a role for the selected use of single and component nutraceutical supplements, vitamins, antioxidants and minerals in the treatment of hypertension based on scientifically controlled studies which complement optimal nutrition, coupled with other lifestyle modifications.
Collapse
Affiliation(s)
- Mark Houston
- Mark Houston, Hypertension Institute, Saint Thomas Medical Plaza, Nashville, TN 37205, United States
| |
Collapse
|
25
|
Influence of the C242T polymorphism of the p22-phox gene (CYBA) on the interaction between urinary sodium excretion and blood pressure in an urban Brazilian population. PLoS One 2013; 8:e81054. [PMID: 24339896 PMCID: PMC3855219 DOI: 10.1371/journal.pone.0081054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 10/08/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Reactive oxygen species are implicated in the physiopathogenesis of salt-induced hypertension and the C242T polymorphism of the p22-phox gene has been associated with higher superoxide production. This study investigated the impact of this polymorphism on the relationship between urinary sodium excretion (USE) and blood pressure levels in an urban Brazilian population. METHODS We cross-sectionally evaluated 1,298 subjects from the city of Vitoria-ES, located in the Southeast region of Brazil, by clinical history, physical examination, anthropometry, analysis of laboratory parameters, USE measurement and p22-phox C242T polymorphism genotyping. RESULTS No significant differences in studied parameters were detected between the studied genotype groups (CC vs. CT+TT). Systolic blood pressure exhibited significant correlation with USE only in T allele carriers (r = 0.166; p<0.001), while diastolic blood pressure and hypertension status correlated with USE in both genotypes albeit more weakly in subjects with CC genotype (r = 0.098; p = 0.021 and r = 0.105; p = 0.013, respectively) than in T carriers (r = 0.236; p<0.001 and r = 0.213; p<0.001, respectively). Regression analyses adjusted for confounding factors showed that USE remained independently associated with systolic (p<0.001) and diastolic blood pressure (p<0.001) and hypertension status (p = 0.004) only in T allele carriers. Finally, higher diastolic and systolic blood pressure levels were detected in T allele carriers than in CC genotype individuals in the highest tertile of USE. CONCLUSIONS The p22-phox 242T allele is associated with higher blood pressure levels among subjects with higher USE in an urban Brazilian population.
Collapse
|
26
|
|
27
|
Toda N, Toda H, Okamura T. Regulation of myometrial circulation and uterine vascular tone by constitutive nitric oxide. Eur J Pharmacol 2013; 714:414-23. [DOI: 10.1016/j.ejphar.2013.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 07/01/2013] [Accepted: 07/04/2013] [Indexed: 01/13/2023]
|
28
|
Toda N, Nakanishi S, Tanabe S. Aldosterone affects blood flow and vascular tone regulated by endothelium-derived NO: therapeutic implications. Br J Pharmacol 2013. [PMID: 23190073 DOI: 10.1111/j.1476-5381.2012.02194.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aldosterone, in doses inappropriate to the salt status, plays an important role in the development of cardiovascular injury, including endothelial dysfunction, independent of its hypertensive effects. Acute non-genomic effects of aldosterone acting on mineralocorticoid receptors are inconsistent in healthy humans: vasoconstriction or forearm blood flow decrease via endothelial dysfunction, vasodilatation mediated by increased NO actions, or no effects. However, in studies with experimental animals, aldosterone mostly enhances vasodilatation mediated by endothelium-derived NO. Chronic exposure to aldosterone, which induces genomic responses, results in impairments of endothelial function through decreased NO synthesis and action in healthy individuals, experimental animals and isolated endothelial cells. Chronic aldosterone reduces NO release from isolated human endothelial cells only when extracellular sodium is raised. Oxidative stress is involved in the impairment of endothelial function by promoting NO degradation. Aldosterone liberates endothelin-1 (ET-1) from endothelial cells, which elicits ET(A) receptor-mediated vasoconstriction by inhibiting endothelial NO synthesis and action and through its own direct vasoconstrictor action. Ca(2+) flux through T-type Ca(2+) channels activates aldosterone synthesis and thus enhances unwanted effects of aldosterone on the endothelium. Mineralocorticoid receptor inhibitors, ET(A) receptor antagonists and T-type Ca(2) + channel blockers appear to diminish the pathophysiological participation of aldosterone in cardiovascular disease and exert beneficial actions on bioavailability of endothelium-derived NO, particularly in resistant hypertension and aldosteronism.
Collapse
Affiliation(s)
- Noboru Toda
- Toyama Institute for Cardiovascular Pharmacology Research, Osaka, Japan.
| | | | | |
Collapse
|
29
|
Defagó MD, Gu D, Hixson JE, Shimmin LC, Rice TK, Gu CC, Jaquish CE, Liu DP, He J, Kelly TN. Common genetic variants in the endothelial system predict blood pressure response to sodium intake: the GenSalt study. Am J Hypertens 2013; 26:643-56. [PMID: 23443727 DOI: 10.1093/ajh/hps099] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND We examined the association between 14 endothelial system genes and salt-sensitivity of blood pressure (BP). METHODS After a 3-day baseline examination, during which time the usual diet was consumed, 1,906 Chinese participants received a 7-day low-sodium diet (51.3 mmol of sodium/day) followed by a 7-day high-sodium diet (307.8 mmol of sodium/day). BP measurements were obtained at baseline and at the end of each intervention using a random-zero sphygmomanometer. RESULTS The DDAH1 rs11161637 variant was associated with reduced BP salt sensitivity, conferring attenuated systolic BP (SBP) and mean arterial pressure (MAP) decreases from baseline to the low-sodium intervention (both P = 2×10(-4)). Examination of genotype-sex interactions revealed that this relation was driven by the strong associations observed in men (P for interactions = 1.10×10(-4) and 0.008, respectively). When switching from the low- to high-sodium intervention, increases in diastolic BP (DBP) and MAP were attenuated by the COL18A1 rs2838944 minor A allele (P = 1.41×10(-4) and 1.55×10(-4), respectively). Conversely, the VWF rs2239153 C variant was associated with increased salt sensitivity, conferring larger DBP and MAP reductions during low-sodium intervention (P = 1.22×10(-4) and 4.44×10(-5), respectively). Ten variants from 3 independent SELE loci displayed significant genotype-sex interactions on DBP and MAP responses to low-sodium (P for interaction = 1.56×10(-3) to 1.00×10(-4)). Among men, minor alleles of 4 correlated markers attenuated BP responses to low-sodium intake, whereas minor alleles of another 4 correlated markers increased BP responses. No associations were observed in women for these variants. Further, qualitative interactions were shown for 2 correlated SELE markers. CONCLUSIONS These data support a role for the endothelial system genes in salt sensitivity.
Collapse
Affiliation(s)
- Maria Daniela Defagó
- Centro de Excelencia en Salud Cardiovascular para el Cono Sur, Instituto de Efectividad Clínica y Sanitaria, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Impact of high salt independent of blood pressure on PRMT/ADMA/DDAH pathway in the aorta of Dahl salt-sensitive rats. Int J Mol Sci 2013; 14:8062-72. [PMID: 23584024 PMCID: PMC3645731 DOI: 10.3390/ijms14048062] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 04/01/2013] [Accepted: 04/01/2013] [Indexed: 12/24/2022] Open
Abstract
Endothelial dysfunction participates in the development and progression of salt-sensitive hypertension. Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of nitric oxide synthase (NOS). The objectives of this study were to investigate the impact of a high salt diet on the PRMT/ADMA/DDAH (protein arginine methyltransferases; dimethylarginine dimethylaminohydrolase) pathway in Dahl salt-sensitive (DS) rats and SS-13BN consomic (DR) rats, and to explore the mechanisms that regulate ADMA metabolism independent of blood pressure reduction. Plasma levels of nitric oxide (NO) in DS rats given a high salt diet and subjected to intragastric administration of hydralazine (SH + HYD group) were lower than those given a normal salt diet (SN group). There were significant decreases in expression and activity of dimethylarginine dimethylaminohydrolase (DDAH) and endothelial NO synthase (eNOS) in DS rats given a high diet (SH group) in comparison to the SN group. The activity of DDAH and expression of eNOS in the SH + HYD group decreased more significantly than SN group. The mRNA expression of DDAH-1 and DDAH-2 were lowest in the SH group. The results suggest that salt, independent of blood pressure, can affect the PRMT-1/ADMA/DDAH system to a certain degree and lead to endothelial dysfunction in Dahl salt-sensitive rats.
Collapse
|
31
|
Houston MC. The role of nutrition and nutraceutical supplements in the prevention and treatment of hypertension. ACTA ACUST UNITED AC 2013. [DOI: 10.2217/cpr.13.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Toda N, Tanabe S, Nakanishi S. Nitric oxide-mediated coronary flow regulation in patients with coronary artery disease: recent advances. Int J Angiol 2012; 20:121-34. [PMID: 22942627 DOI: 10.1055/s-0031-1283220] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Nitric oxide (NO) formed via endothelial NO synthase (eNOS) plays crucial roles in the regulation of coronary blood flow through vasodilatation and decreased vascular resistance, and in inhibition of platelet aggregation and adhesion, leading to the prevention of coronary circulatory failure, thrombosis, and atherosclerosis. Endothelial function is impaired by several pathogenic factors including smoking, chronic alcohol intake, hypercholesterolemia, obesity, hyperglycemia, and hypertension. The mechanisms underlying endothelial dysfunction include reduced NO synthase (NOS) expression and activity, decreased NO bioavailability, and increased production of oxygen radicals and endogenous NOS inhibitors. Atrial fibrillation appears to be a risk factor for endothelial dysfunction. Endothelial dysfunction is an important predictor of coronary artery disease (CAD) in humans. Penile erectile dysfunction, associated with impaired bioavailability of NO produced by eNOS and neuronal NOS, is also considered to be highly predictive of ischemic heart disease. There is evidence suggesting an important role of nitrergic innervation in coronary blood flow regulation. Prophylactic and therapeutic measures to eliminate pathogenic factors inducing endothelial and nitrergic nerve dysfunction would be quite important in preventing the genesis and development of CAD.
Collapse
|
33
|
Abstract
High blood pressure (BP) is a complex trait determined by genetic and environmental factors, as well as their interactions. Over the past few decades, there has been substantial progress elucidating the genetic determinants underlying BP response to sodium intake, or BP salt sensitivity. Research of monogenic BP disorders has highlighted the importance of renal salt handling in BP regulation, implicating genes and biological pathways subsequently identified in candidate gene studies of salt sensitivity. Despite these advancements, certain candidate gene findings await replication evidence, and some biological pathways warrant further investigation. Furthermore, results from genome-wide association studies (GWASs) and sequencing work have yet to be reported. GWAS will be valuable for uncovering novel mechanisms underlying salt sensitivity, whereas future sequencing efforts promise the discovery of functional variants related to this complex trait. Delineating the genetic architecture of salt sensitivity will be critical to understanding how genes and dietary sodium interact to influence BP.
Collapse
|
34
|
Neurogenic and Endothelial Nitric Oxide Regulates Blood Circulation in Lingual and Other Oral Tissues. J Cardiovasc Pharmacol 2012; 60:100-8. [DOI: 10.1097/fjc.0b013e318252452a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
35
|
Reply. J Hypertens 2012. [DOI: 10.1097/hjh.0b013e3283517426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Age-related changes in endothelial function and blood flow regulation. Pharmacol Ther 2012; 133:159-76. [DOI: 10.1016/j.pharmthera.2011.10.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 10/14/2011] [Indexed: 01/12/2023]
|
37
|
Gene-sodium interaction and blood pressure: findings from genomics research of blood pressure salt sensitivity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 108:237-60. [PMID: 22656380 DOI: 10.1016/b978-0-12-398397-8.00010-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
High blood pressure (BP) is a complex trait determined by both genetic and environmental factors, as well as the interactions between these factors. Over the past few decades, there has been substantial progress in elucidating the genetic determinants underlying the BP response to sodium intake, or BP salt sensitivity. Research of monogenic BP disorders has highlighted the importance of renal salt handling in BP regulation, implicating genes and biological pathways related to salt sensitivity. Candidate gene studies have contributed important information toward understanding the genomic mechanisms underlying the BP response to salt intake, identifying genes in the renin-angiotensin-aldosterone system, renal sodium channels/transporters, and the endothelial system related to this phenotype. Despite these advancements, genome-wide association studies are still needed to uncover novel mechanisms underlying salt sensitivity, while future sequencing efforts promise the discovery of functional variants related to this complex trait. Delineating the genetic architecture of salt sensitivity will be critical to understanding how genes and dietary sodium interact to influence BP.
Collapse
|
38
|
Otani L, Sugimoto N, Kaji M, Murai M, Chang SJ, Kato H, Murakami T. Role of the renin-angiotensin-aldosterone system in the enhancement of salt sensitivity caused by prenatal protein restriction in stroke-prone spontaneously hypertensive rats. J Nutr Biochem 2011; 23:892-9. [PMID: 21937213 DOI: 10.1016/j.jnutbio.2011.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 04/08/2011] [Accepted: 04/13/2011] [Indexed: 12/11/2022]
Abstract
We previously demonstrated that maternal protein restriction during pregnancy enhanced salt sensitivity and shortened life span in stroke-prone spontaneously hypertensive rats (SHRSP). The present study was conducted to investigate the participation of the renin-angiotensin-aldosterone system in the development of salt sensitivity in the offspring of dams fed a low-protein diet during pregnancy. We used SHRSP offspring from dams fed a 20% casein diet (CN) or a 9% casein diet (LP) during pregnancy. The CN and LP SHRSP offspring were further subdivided into tap-water-drinking and 1%-saline-drinking groups from the postnatal 10th week. A remarkable elevation in blood pressure in response to salt loading was observed in the LP SHRSP offspring. The protein levels of CYP11B2, an enzyme for aldosterone synthesis, were markedly elevated in response to salt loading in the kidneys of LP offspring. Treatment of the LP offspring with an aldosterone receptor antagonist prevented the blood pressure from elevating and lengthened the average life span in LP offspring in response to the drinking of 1% saline. No difference in the activity of angiotensin-converting enzyme or in the protein level of the angiotensin type 1 receptor was found between the CN and LP offspring in either the tap-water-drinking or saline-drinking conditions. In conclusion, the increment of aldosterone production in response to high-salt loading may contribute to the elevated salt sensitivity of the offspring of protein-restricted dams.
Collapse
Affiliation(s)
- Lila Otani
- Department of Food Science and Nutrition, Faculty of Agriculture, Kinki University, Nakamachi, Nara, Japan
| | | | | | | | | | | | | |
Collapse
|