1
|
Tang Y, Wang Z, Cao J, Tu Y. Bone-brain crosstalk in osteoarthritis: pathophysiology and interventions. Trends Mol Med 2024:S1471-4914(24)00260-0. [PMID: 39438197 DOI: 10.1016/j.molmed.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024]
Abstract
Osteoarthritis (OA) is a prevalent articular disorder characterized by joint degeneration and persistent pain; it imposes a significant burden on both individuals and society. While OA has traditionally been viewed as a localized peripheral disorder, recent preclinical and clinical studies have revealed the crucial interconnections between the bone and the brain, highlighting the systemic nature of OA. The neuronal pathway, molecular signaling, circadian rhythms, and genetic underpinnings within the bone-brain axis play vital roles in the complex interplay that contributes to OA initiation and progression. This review explores emerging evidence of the crosstalk between the bone and brain in OA progression, and discusses the potential contributions of the bone-brain axis to the development of effective interventions for managing OA.
Collapse
Affiliation(s)
- Yilan Tang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyan Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Cao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100105, China
| | - Yiheng Tu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Khan MA, Koh RGL, Rashidiani S, Liu T, Tucci V, Kumbhare D, Doyle TE. Cracking the Chronic Pain code: A scoping review of Artificial Intelligence in Chronic Pain research. Artif Intell Med 2024; 151:102849. [PMID: 38574636 DOI: 10.1016/j.artmed.2024.102849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 04/06/2024]
Abstract
OBJECTIVE The aim of this review is to identify gaps and provide a direction for future research in the utilization of Artificial Intelligence (AI) in chronic pain (CP) management. METHODS A comprehensive literature search was conducted using various databases, including Ovid MEDLINE, Web of Science Core Collection, IEEE Xplore, and ACM Digital Library. The search was limited to studies on AI in CP research, focusing on diagnosis, prognosis, clinical decision support, self-management, and rehabilitation. The studies were evaluated based on predefined inclusion criteria, including the reporting quality of AI algorithms used. RESULTS After the screening process, 60 studies were reviewed, highlighting AI's effectiveness in diagnosing and classifying CP while revealing gaps in the attention given to treatment and rehabilitation. It was found that the most commonly used algorithms in CP research were support vector machines, logistic regression and random forest classifiers. The review also pointed out that attention to CP mechanisms is negligible despite being the most effective way to treat CP. CONCLUSION The review concludes that to achieve more effective outcomes in CP management, future research should prioritize identifying CP mechanisms, CP management, and rehabilitation while leveraging a wider range of algorithms and architectures. SIGNIFICANCE This review highlights the potential of AI in improving the management of CP, which is a significant personal and economic burden affecting more than 30% of the world's population. The identified gaps and future research directions provide valuable insights to researchers and practitioners in the field, with the potential to improve healthcare utilization.
Collapse
Affiliation(s)
- Md Asif Khan
- Department of Electrical and Computer Engineering at McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Ryan G L Koh
- KITE Research Institute, Toronto Rehabilitation Institute - University Health Network, Toronto, ON M5G 2A2, Canada
| | - Sajjad Rashidiani
- Department of Electrical and Computer Engineering at McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Theodore Liu
- Department of Electrical and Computer Engineering at McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Victoria Tucci
- Faculty of Health Sciences at McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Dinesh Kumbhare
- KITE Research Institute, Toronto Rehabilitation Institute - University Health Network, Toronto, ON M5G 2A2, Canada
| | - Thomas E Doyle
- Department of Electrical and Computer Engineering at McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
3
|
Cheng S, Zeng F, Zhou J, Dong X, Yang W, Yin T, Huang K, Liang F, Li Z. Altered static and dynamic functional brain network in knee osteoarthritis: A resting-state functional magnetic resonance imaging study: Static and dynamic FNC in KOA. Neuroimage 2024; 292:120599. [PMID: 38608799 DOI: 10.1016/j.neuroimage.2024.120599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 03/26/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
This study aimed to investigate altered static and dynamic functional network connectivity (FNC) and its correlation with clinical symptoms in patients with knee osteoarthritis (KOA). One hundred and fifty-nine patients with KOA and 73 age- and gender-matched healthy subjects (HS) underwent resting-state functional magnetic resonance imaging (rs-fMRI) and clinical evaluations. Group independent component analysis (GICA) was applied, and seven resting-state networks were identified. Patients with KOA had decreased static FNC within the default mode network (DM), visual network (VS), and cerebellar network (CB) and increased static FNC between the subcortical network (SC) and VS (p < 0.05, FDR corrected). Four reoccurring FNC states were identified using k-means clustering analysis. Although abnormalities in dynamic FNCs of KOA patients have been found using the common window size (22 TR, 44 s), but the results of the clustering analysis were inconsistent when using different window sizes, suggesting dynamic FNCs might be an unstable method to compare brain function between KOA patients and HS. These recent findings illustrate that patients with KOA have a wide range of abnormalities in the static and dynamic FNCs, which provided a reference for the identification of potential central nervous therapeutic targets for KOA treatment and might shed light on the other musculoskeletal pain neuroimaging studies.
Collapse
Affiliation(s)
- Shirui Cheng
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Acupuncture and Brain Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education, Chengdu 611137, China
| | - Fang Zeng
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Acupuncture and Brain Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education, Chengdu 611137, China
| | - Jun Zhou
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaohui Dong
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Weihua Yang
- Dali Bai Autonomous Prefecture Chinese Medicine Hospital, Dali 671000, China
| | - Tao Yin
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Acupuncture and Brain Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education, Chengdu 611137, China
| | - Kama Huang
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610064, China
| | - Fanrong Liang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education, Chengdu 611137, China.
| | - Zhengjie Li
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Acupuncture and Brain Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education, Chengdu 611137, China.
| |
Collapse
|
4
|
Mazzitelli M, Ponomareva O, Presto P, John J, Neugebauer V. Impaired amygdala astrocytic signaling worsens neuropathic pain-associated neuronal functions and behaviors. Front Pharmacol 2024; 15:1368634. [PMID: 38576475 PMCID: PMC10991799 DOI: 10.3389/fphar.2024.1368634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/06/2024] [Indexed: 04/06/2024] Open
Abstract
Introduction: Pain is a clinically relevant health care issue with limited therapeutic options, creating the need for new and improved analgesic strategies. The amygdala is a limbic brain region critically involved in the regulation of emotional-affective components of pain and in pain modulation. The central nucleus of amygdala (CeA) serves major output functions and receives nociceptive information via the external lateral parabrachial nucleus (PB). While amygdala neuroplasticity has been linked causally to pain behaviors, non-neuronal pain mechanisms in this region remain to be explored. As an essential part of the neuroimmune system, astrocytes that represent about 40-50% of glia cells within the central nervous system, are required for physiological neuronal functions, but their role in the amygdala remains to be determined for pain conditions. In this study, we measured time-specific astrocyte activation in the CeA in a neuropathic pain model (spinal nerve ligation, SNL) and assessed the effects of astrocyte inhibition on amygdala neuroplasticity and pain-like behaviors in the pain condition. Methods and Results: Glial fibrillary acidic protein (GFAP, astrocytic marker) immunoreactivity and mRNA expression were increased at the chronic (4 weeks post-SNL), but not acute (1 week post-SNL), stage of neuropathic pain. In order to determine the contribution of astrocytes to amygdala pain-mechanisms, we used fluorocitric acid (FCA), a selective inhibitor of astrocyte metabolism. Whole-cell patch-clamp recordings were performed from neurons in the laterocapsular division of the CeA (CeLC) obtained from chronic neuropathic rats. Pre-incubation of brain slices with FCA (100 µM, 1 h), increased excitability through altered hyperpolarization-activated current (Ih) functions, without significantly affecting synaptic responses at the PB-CeLC synapse. Intra-CeA injection of FCA (100 µM) had facilitatory effects on mechanical withdrawal thresholds (von Frey and paw pressure tests) and emotional-affective behaviors (evoked vocalizations), but not on facial grimace score and anxiety-like behaviors (open field test), in chronic neuropathic rats. Selective inhibition of astrocytes by FCA was confirmed with immunohistochemical analyses showing decreased astrocytic GFAP, but not NeuN, signal in the CeA. Discussion: Overall, these results suggest a complex modulation of amygdala pain functions by astrocytes and provide evidence for beneficial functions of astrocytes in CeA in chronic neuropathic pain.
Collapse
Affiliation(s)
- Mariacristina Mazzitelli
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Olga Ponomareva
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Peyton Presto
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Julia John
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
5
|
Qiu Z, Zhong X, Yang Q, Shi X, He L, Zhou H, Xu X. Altered spontaneous brain activity in lumbar disc herniation patients: insights from an ALE meta-analysis of neuroimaging data. Front Neurosci 2024; 18:1349512. [PMID: 38379762 PMCID: PMC10876805 DOI: 10.3389/fnins.2024.1349512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
Objective To explore the characteristics of spontaneous brain activity changes in patients with lumbar disc herniation (LDH), and help reconcile the contradictory findings in the literature and enhance the understanding of LDH-related pain. Materials and methods PubMed, Web of Science, Embase, Chinese National Knowledge Infrastructure (CNKI), SinoMed, and Wanfang databases were searched for literature that studies the changes of brain basal activity in patients with LDH using regional homogeneity (ReHo) and amplitude of low-frequency fluctuation/fraction amplitude of low-frequency fluctuation (ALFF/fALFF) analysis methods. Activation likelihood estimation (ALE) was used to perform a meta-analysis of the brain regions with spontaneous brain activity changes in LDH patients compared with healthy controls (HCs). Results A total of 11 studies were included, including 7ALFF, 2fALFF, and 2ReHo studies, with a total of 269 LDH patients and 277 HCs. Combined with the data from the ALFF/fALFF and ReHo studies, the meta-analysis results showed that compared with HCs, LDH patients had increased spontaneous brain activity in the right middle frontal gyrus (MFG), left anterior cingulate cortex (ACC) and the right anterior lobe of the cerebellum, while they had decreased spontaneous brain activity in the left superior frontal gyrus (SFG). Meta-analysis using ALFF/fALFF data alone showed that compared with HCs, LDH patients had increased spontaneous brain activity in the right MFG and left ACC, but no decrease in spontaneous brain activity was found. Conclusion In this paper, through the ALE Meta-analysis method, based on the data of reported rs-fMRI whole brain studies, we found that LDH patients had spontaneous brain activity changes in the right middle frontal gyrus, left anterior cingulate gyrus, right anterior cerebellar lobe and left superior frontal gyrus. However, it is still difficult to assess whether these results are specific and unique to patients with LDH. Further neuroimaging studies are needed to compare the effects of LDH and other chronic pain diseases on the spontaneous brain activity of patients. Furthermore, the lateralization results presented in our study also require further LDH-related pain side-specific grouping study to clarify this causation. Systematic review registration PROSPERO, identifier CRD42022375513.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaoxue Xu
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
6
|
Barroso J, Branco P, Pinto-Ramos J, Vigotsky AD, Reis AM, Schnitzer TJ, Galhardo V, Apkarian AV. Subcortical brain anatomy as a potential biomarker of persistent pain after total knee replacement in osteoarthritis. Pain 2023; 164:2306-2315. [PMID: 37463229 DOI: 10.1097/j.pain.0000000000002932] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 04/02/2023] [Indexed: 07/20/2023]
Abstract
ABSTRACT The neural mechanisms for the persistence of pain after a technically successful arthroplasty in osteoarthritis (OA) remain minimally studied, and direct evidence of the brain as a predisposing factor for pain chronicity in this setting has not been investigated. We undertook this study as a first effort to identify presurgical brain and clinical markers of postarthroplasty pain in knee OA. Patients with knee OA (n = 81) awaiting total arthroplasty underwent clinical and psychological assessment and brain magnetic resonance imagining. Postoperative pain scores were measured at 6 months after surgery. Brain subcortical anatomic properties (volume and shape) and clinical indices were studied as determinants of postoperative pain. We show that presurgical subcortical volumes (bilateral amygdala, thalamus, and left hippocampus), together with shape deformations of the right anterior hippocampus and right amygdala, associate with pain persistence 6 months after surgery in OA. Longer pain duration, higher levels of presurgical anxiety, and the neuropathic character of pain were also prognostic of postsurgical pain outcome. Brain and clinical indices accounted for unique influences on postoperative pain. Our study demonstrates the presence of presurgical subcortical brain factors that relate to postsurgical persistence of OA pain. These preliminary results challenge the current dominant view that mechanisms of OA pain predominantly underlie local joint mechanisms, implying novel clinical management and treatment strategies.
Collapse
Affiliation(s)
- Joana Barroso
- Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde-i3S, Universidade do Porto, Porto, Portugal
- Departments of Physical Medicine and Rehabilitation and
- Neuroscience, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
- Center for Translational Pain Research, Center of Excellence for Chronic Pain and Drug Abuse Research, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| | - Paulo Branco
- Neuroscience, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
- Center for Translational Pain Research, Center of Excellence for Chronic Pain and Drug Abuse Research, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| | | | - Andrew D Vigotsky
- Neuroscience, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
- Center for Translational Pain Research, Center of Excellence for Chronic Pain and Drug Abuse Research, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
- Departments of Biomedical Engineering and Statistics, Northwestern University, Evanston, IL, United States
| | | | - Thomas J Schnitzer
- Departments of Physical Medicine and Rehabilitation and
- Center for Translational Pain Research, Center of Excellence for Chronic Pain and Drug Abuse Research, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
- Departments of Rheumatology and
- Anesthesiology, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| | - Vasco Galhardo
- Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde-i3S, Universidade do Porto, Porto, Portugal
| | - A Vania Apkarian
- Departments of Physical Medicine and Rehabilitation and
- Neuroscience, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
- Center for Translational Pain Research, Center of Excellence for Chronic Pain and Drug Abuse Research, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
- Anesthesiology, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
7
|
Salazar-Méndez J, Cuyul-Vásquez I, Viscay-Sanhueza N, Morales-Verdugo J, Mendez-Rebolledo G, Ponce-Fuentes F, Lluch-Girbés E. Structural and functional brain changes in people with knee osteoarthritis: a scoping review. PeerJ 2023; 11:e16003. [PMID: 37701842 PMCID: PMC10493091 DOI: 10.7717/peerj.16003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/09/2023] [Indexed: 09/14/2023] Open
Abstract
Background Knee osteoarthritis is a highly prevalent disease worldwide that leads to functional disability and chronic pain. It has been shown that not only changes are generated at the joint level in these individuals, but also neuroplastic changes are produced in different brain areas, especially in those areas related to pain perception, therefore, the objective of this research was to identify and compare the structural and functional brain changes in knee OA versus healthy subjects. Methodology Searches in MEDLINE (PubMed), EMBASE, WOS, CINAHL, SCOPUS, Health Source, and Epistemonikos databases were conducted to explore the available evidence on the structural and functional brain changes occurring in people with knee OA. Data were recorded on study characteristics, participant characteristics, and brain assessment techniques. The methodological quality of the studies was analysed with Newcastle Ottawa Scale. Results Sixteen studies met the inclusion criteria. A decrease volume of the gray matter in the insular region, parietal lobe, cingulate cortex, hippocampus, visual cortex, temporal lobe, prefrontal cortex, and basal ganglia was found in people with knee OA. However, the opposite occurred in the frontal lobe, nucleus accumbens, amygdala region and somatosensory cortex, where an increase in the gray matter volume was evidenced. Moreover, a decreased connectivity to the frontal lobe from the insula, cingulate cortex, parietal, and temporal areas, and an increase in connectivity from the insula to the prefrontal cortex, subcallosal area, and temporal lobe was shown. Conclusion All these findings are suggestive of neuroplastic changes affecting the pain matrix in people with knee OA.
Collapse
Affiliation(s)
- Joaquín Salazar-Méndez
- Laboratorio de Investigación Somatosensorial y Motora, Escuela de Kinesiología, Facultad de Salud, Universidad Santo Tomás, Talca, Chile
| | - Iván Cuyul-Vásquez
- Departamento de Procesos Terapéuticos, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Temuco, Chile
- Facultad de las Ciencias de la Salud, Universidad Autónoma de Chile, Temuco, Chile
| | - Nelson Viscay-Sanhueza
- Unidad de medicina física y rehabilitación, Hospital Dr. Gustavo Fricke, Viña del Mar, Chile
| | - Juan Morales-Verdugo
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad Católica del Maule, Talca, Chile
| | - Guillermo Mendez-Rebolledo
- Laboratorio de Investigación Somatosensorial y Motora, Escuela de Kinesiología, Facultad de Salud, Universidad Santo Tomás, Talca, Chile
| | - Felipe Ponce-Fuentes
- Facultad de Medicina y Ciencias de la Salud, Escuela de Kinesiología, Universidad Mayor, Temuco, Chile
| | - Enrique Lluch-Girbés
- Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, Valencia, Spain
| |
Collapse
|
8
|
Erlenwein J, Kästner A, Gram M, Falla D, Drewes AM, Przemeck M, Petzke F. Pain chronification impacts whole-brain functional connectivity in women with hip osteoarthritis during pain stimulation. PAIN MEDICINE (MALDEN, MASS.) 2023; 24:1073-1085. [PMID: 37158606 DOI: 10.1093/pm/pnad057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/27/2023] [Accepted: 04/28/2023] [Indexed: 05/10/2023]
Abstract
OBJECTIVE Previous neuroimaging studies have shown that patients with chronic pain display altered functional connectivity across distributed brain areas involved in the processing of nociceptive stimuli. The aim of the present study was to investigate how pain chronification modulates whole-brain functional connectivity during evoked clinical and tonic pain. METHODS Patients with osteoarthritis of the hip (n = 87) were classified into 3 stages of pain chronification (Grades I-III, Mainz Pain Staging System). Electroencephalograms were recorded during 3 conditions: baseline, evoked clinical hip pain, and tonic cold pain (cold pressor test). The effects of both factors (recording condition and pain chronification stage) on the phase-lag index, as a measure of neuronal connectivity, were examined for different frequency bands. RESULTS In women, we found increasing functional connectivity in the low-frequency range (delta, 0.5-4 Hz) across pain chronification stages during evoked clinical hip pain and tonic cold pain stimulation. In men, elevated functional connectivity in the delta frequency range was observed in only the tonic cold pain condition. CONCLUSIONS Across pain chronification stages, we found that widespread cortical networks increase their synchronization of delta oscillations in response to clinical and experimental nociceptive stimuli. In view of previous studies relating delta oscillations to salience detection and other basic motivational processes, our results hint at these mechanisms playing an important role in pain chronification, mainly in women.
Collapse
Affiliation(s)
- Joachim Erlenwein
- Department of Anesthesiology, Pain Clinic, University Medical Centre, Georg-August-University of Goettingen, 37075 Goettingen, Germany
| | - Anne Kästner
- Department of Anesthesiology, Pain Clinic, University Medical Centre, Georg-August-University of Goettingen, 37075 Goettingen, Germany
| | - Mikkel Gram
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, 9000 Aalborg, Denmark
| | - Deborah Falla
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Asbjørn M Drewes
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, 9000 Aalborg, Denmark
- Clinical Institute, Aalborg University Hospital, 9000 Aalborg, Denmark
| | - Michael Przemeck
- Department of Anesthesiology and Intensive Care, Annastift, 30625 Hannover, Germany
| | - Frank Petzke
- Department of Anesthesiology, Pain Clinic, University Medical Centre, Georg-August-University of Goettingen, 37075 Goettingen, Germany
| |
Collapse
|
9
|
Gonçalves S, Hathway GJ, Woodhams SG, Chapman V, Bast T. No Evidence for Cognitive Impairment in an Experimental Rat Model of Knee Osteoarthritis and Associated Chronic Pain. THE JOURNAL OF PAIN 2023; 24:1478-1492. [PMID: 37044295 DOI: 10.1016/j.jpain.2023.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/08/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023]
Abstract
Although chronic pain states have been associated with impaired cognitive functions, including memory and cognitive flexibility, the cognitive effects of osteoarthritis (OA) pain remain to be clarified. The aim of this study was to measure cognitive function in the mono-iodoacetate (MIA) rat model of chronic OA-like knee pain. We used young adult male Lister hooded rats, which are well-suited for cognitive testing. Rats received either a unilateral knee injection of MIA (3 mg/50 µL) or saline as control. Joint pain at rest was assessed for up to 12 weeks, using weight-bearing asymmetry, and referred pain at a distal site, using determination of hindpaw withdrawal thresholds. The watermaze delayed-matching-to-place test of rapid place learning, novel object recognition memory assay, and an operant response-shift and -reversal task were used to measure memory and behavioral flexibility. Open-field locomotor activity, startle response, and prepulse inhibition were also measured for comparison. MIA-injected rats showed markedly reduced weight-bearing on the injured limb, as well as pronounced cartilage damage and synovitis, but interestingly no changes in paw withdrawal threshold. Rearing was reduced, but otherwise, locomotor activity was normal and no changes in startle and prepulse inhibition were detected. MIA-injected rats had intact watermaze delayed-matching-to-place performance, suggesting no substantial change in hippocampal function, and there were no changes in novel object recognition memory or performance on the operant task of behavioral flexibility. Our finding that OA-like pain does not alter hippocampal function, unlike other chronic pain conditions, is consistent with human neuroimaging findings. PERSPECTIVE: Young adult rats with OA-like knee pain showed no impairments in hippocampal memory function and behavioral flexibility, suggesting that OA pain impacts cognitive functions less than other chronic pain conditions. In patients, OA pain may interact with other factors (e.g., age, socio-economic factors, and medication) to impair cognition.
Collapse
Affiliation(s)
- Sara Gonçalves
- Pain Centre Versus Arthritis, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom; School of Life Sciences, Medical School, Queen's Medical Centre, Nottingham, United Kingdom
| | - Gareth J Hathway
- Pain Centre Versus Arthritis, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom; School of Life Sciences, Medical School, Queen's Medical Centre, Nottingham, United Kingdom
| | - Stephen G Woodhams
- Pain Centre Versus Arthritis, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom; School of Life Sciences, Medical School, Queen's Medical Centre, Nottingham, United Kingdom
| | - Victoria Chapman
- Pain Centre Versus Arthritis, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom; School of Life Sciences, Medical School, Queen's Medical Centre, Nottingham, United Kingdom; NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom
| | - Tobias Bast
- Pain Centre Versus Arthritis, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, United Kingdom; NIHR Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom; School of Psychology and Neuroscience at Nottingham, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
10
|
Hall M, Dobson F, Klyne DM, Zheng CJ, Lima YL, Egorova-Brumley N. Neurobiology of osteoarthritis: a systematic review and activation likelihood estimation meta-analysis. Sci Rep 2023; 13:12442. [PMID: 37528135 PMCID: PMC10394087 DOI: 10.1038/s41598-023-39245-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/21/2023] [Indexed: 08/03/2023] Open
Abstract
Osteoarthritis (OA) affects 240 million people worldwide. Neuroimaging has been increasingly used to investigate brain changes in OA, however, there is considerable heterogeneity in reported results. The goal of this systematic review and meta-analysis was to synthesise existing literature and identify consistent brain alterations in OA. Six databases were searched from inception up to June, 2022. Full-texts of original human studies were included if they had: (i) neuroimaging data by site of OA (e.g. hand, knee, hip); (ii) data in healthy controls (HC); (iii) > 10 participants. Activation likelihood estimation (ALE) was conducted using GingerALE software on studies that reported peak activation coordinates and sample size. Our search strategy identified 6250 articles. Twenty-eight studies fulfilled the eligibility criteria, of which 18 were included in the meta-analysis. There were no significant differences in brain structure or function between OA and healthy control contrasts. In exploratory analysis, the right insula was associated with OA vs healthy controls, with less activity, connectivity and brain volume in OA. This region was implicated in both knee and hip OA, with an additional cluster in the medial prefrontal cortex observed only in the contrast between healthy controls and the hip OA subgroup, suggesting a possible distinction between the neural correlates of OA subtypes. Despite the limitations associated with heterogeneity and poor study quality, this synthesis identified neurobiological outcomes associated with OA, providing insight for future research. PROSPERO registration number: CRD42021238735.
Collapse
Affiliation(s)
- Michelle Hall
- Centre for Health, Exercise and Sports Medicine, Department of Physiotherapy, School of Health Sciences, The University of Melbourne, Melbourne, VIC, Australia.
- Centre for Arthritis Research, School of Medicine, University College Dublin, Dublin, Ireland.
| | - Fiona Dobson
- Centre for Health, Exercise and Sports Medicine, Department of Physiotherapy, School of Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - David Murray Klyne
- School of Health and Rehabilitation Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Carmen Jiamin Zheng
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Yuri Lopes Lima
- School of Health Science and Social Work, Griffith University, Gold Coast, QLD, Australia
| | - Natalia Egorova-Brumley
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
11
|
Li J, Wang Y, Yang R, Ma W, Yan J, Li Y, Chen G, Pan J. Pain in Huntington's disease and its potential mechanisms. Front Aging Neurosci 2023; 15:1190563. [PMID: 37484692 PMCID: PMC10357841 DOI: 10.3389/fnagi.2023.1190563] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Pain is common and frequent in many neurodegenerative diseases, although it has not received much attention. In Huntington's disease (HD), pain is often ignored and under-researched because attention is more focused on motor and cognitive decline than psychiatric symptoms. In HD progression, pain symptoms are complex and involved in multiple etiologies, particularly mental issues such as apathy, anxiety and irritability. Because of psychiatric issues, HD patients rarely complain of pain, although their bodies show severe pain symptoms, ultimately resulting in insufficient awareness and lack of research. In HD, few studies have focused on pain and pain-related features. A detailed and systemic pain history is crucial to assess and explore pain pathophysiology in HD. This review provides an overview concentrating on pain-related factors in HD, including neuropathology, frequency, features, affecting factors and mechanisms. More attention and studies are still needed in this interesting field in the future.
Collapse
Affiliation(s)
- Jiajie Li
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Yan Wang
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Riyun Yang
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Wenjun Ma
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - JunGuo Yan
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Yi Li
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Gang Chen
- Center for Basic Medical Research, Medical School of Nantong University, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu, China
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jingying Pan
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| |
Collapse
|
12
|
Du J, Li A, Shi D, Chen X, Wang Q, Liu Z, Sun K, Guo T. Association of APOE-ε4, Osteoarthritis, β-Amyloid, and Tau Accumulation in Primary Motor and Somatosensory Regions in Alzheimer Disease. Neurology 2023; 101:e40-e49. [PMID: 37188537 PMCID: PMC10351313 DOI: 10.1212/wnl.0000000000207369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/17/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND AND OBJECTIVES One of the most prevalent chronic diseases, osteoarthritis (OA), may work in conjunction with APOE-ε4 to accelerate Alzheimer disease (AD) alterations, particularly in the primary motor (precentral) and somatosensory (postcentral) cortices. To understand the reasoning behind this, we investigated how OA and APOE-ε4 influence the accumulation of β-amyloid (Aβ) and tau accumulation in primary motor and somatosensory regions in Aβ-positive (Aβ+) older individuals. METHODS We selected Aβ+ Alzheimer Disease Neuroimaging Initiative participants, defined by baseline 18F-florbetapir (FBP) Aβ PET standardized uptake value ratio (SUVR) of AD summary cortical regions, who had longitudinal Aβ PET, the records of OA medical history, and APOE-ε4 genotyping. We examined how OA and APOE-ε4 relate to baseline and longitudinal Aβ accumulation and tau deposition measured at follow-up in precentral and postcentral cortical areas and how they modulate Aβ-associated future higher tau levels, adjusting for age, sex, and diagnosis and using multiple comparison corrections. RESULTS A total of 374 individuals (mean age 75 years, 49.2% female, 62.8% APOE-ε4 carriers) who underwent longitudinal FBP PET with a median follow-up of 3.3 years (interquartile range [IQR] 3.4, range 1.6-9.4) were analyzed, and 96 people had 18F-flortaucipir (FTP) tau PET measured at a median of 5.4 (IQR 1.9, range 4.0-9.3) years postbaseline FBP PET. Neither OA nor APOE-ε4 was related to baseline FBP SUVR in precentral and postcentral regions. At follow-up, OA rather than APOE-ε4 was associated with faster Aβ accumulation in postcentral region (β = 0.005, 95% CI 0.001-0.008) over time. In addition, OA but not the APOE-ε4 allele was strongly linked to higher follow-up FTP tau levels in precentral (β = 0.098, 95% CI 0.034-0.162) and postcentral (β = 0.105, 95% CI 0.040-0.169) cortices. OA and APOE-ε4 were also interactively associated with higher follow-up FTP tau deposition in precentral (β = 0.128, 95% CI 0.030-0.226) and postcentral (β = 0.124, 95% CI 0.027-0.223) regions. DISCUSSION This study suggests that OA was associated with faster Aβ accumulation and higher Aβ-dependent future tau deposition in primary motor and somatosensory regions, providing novel insights into how OA increases the risk of AD.
Collapse
Affiliation(s)
- Jing Du
- From the Institute of Biomedical Engineering (J.D., A.L., Z.L., T.G.), Shenzhen Bay Laboratory; Neurology Medicine Center (D.S.), The Seventh Affiliated Hospital, Sun Yat-sen University; Department of Neurology (X.C.), Peking University Shenzhen Hospital; Department of Neurology (Q.W.), University of Chinese Academy of Sciences-Shenzhen Hospital; Institute of Cancer Research (K.S.), Shenzhen Bay Laboratory; and Institute of Biomedical Engineering (T.G.), Peking University Shenzhen Graduate School, China.
| | - Anqi Li
- From the Institute of Biomedical Engineering (J.D., A.L., Z.L., T.G.), Shenzhen Bay Laboratory; Neurology Medicine Center (D.S.), The Seventh Affiliated Hospital, Sun Yat-sen University; Department of Neurology (X.C.), Peking University Shenzhen Hospital; Department of Neurology (Q.W.), University of Chinese Academy of Sciences-Shenzhen Hospital; Institute of Cancer Research (K.S.), Shenzhen Bay Laboratory; and Institute of Biomedical Engineering (T.G.), Peking University Shenzhen Graduate School, China
| | - Dai Shi
- From the Institute of Biomedical Engineering (J.D., A.L., Z.L., T.G.), Shenzhen Bay Laboratory; Neurology Medicine Center (D.S.), The Seventh Affiliated Hospital, Sun Yat-sen University; Department of Neurology (X.C.), Peking University Shenzhen Hospital; Department of Neurology (Q.W.), University of Chinese Academy of Sciences-Shenzhen Hospital; Institute of Cancer Research (K.S.), Shenzhen Bay Laboratory; and Institute of Biomedical Engineering (T.G.), Peking University Shenzhen Graduate School, China
| | - Xuhui Chen
- From the Institute of Biomedical Engineering (J.D., A.L., Z.L., T.G.), Shenzhen Bay Laboratory; Neurology Medicine Center (D.S.), The Seventh Affiliated Hospital, Sun Yat-sen University; Department of Neurology (X.C.), Peking University Shenzhen Hospital; Department of Neurology (Q.W.), University of Chinese Academy of Sciences-Shenzhen Hospital; Institute of Cancer Research (K.S.), Shenzhen Bay Laboratory; and Institute of Biomedical Engineering (T.G.), Peking University Shenzhen Graduate School, China
| | - Qingyong Wang
- From the Institute of Biomedical Engineering (J.D., A.L., Z.L., T.G.), Shenzhen Bay Laboratory; Neurology Medicine Center (D.S.), The Seventh Affiliated Hospital, Sun Yat-sen University; Department of Neurology (X.C.), Peking University Shenzhen Hospital; Department of Neurology (Q.W.), University of Chinese Academy of Sciences-Shenzhen Hospital; Institute of Cancer Research (K.S.), Shenzhen Bay Laboratory; and Institute of Biomedical Engineering (T.G.), Peking University Shenzhen Graduate School, China
| | - Zhen Liu
- From the Institute of Biomedical Engineering (J.D., A.L., Z.L., T.G.), Shenzhen Bay Laboratory; Neurology Medicine Center (D.S.), The Seventh Affiliated Hospital, Sun Yat-sen University; Department of Neurology (X.C.), Peking University Shenzhen Hospital; Department of Neurology (Q.W.), University of Chinese Academy of Sciences-Shenzhen Hospital; Institute of Cancer Research (K.S.), Shenzhen Bay Laboratory; and Institute of Biomedical Engineering (T.G.), Peking University Shenzhen Graduate School, China
| | - Kun Sun
- From the Institute of Biomedical Engineering (J.D., A.L., Z.L., T.G.), Shenzhen Bay Laboratory; Neurology Medicine Center (D.S.), The Seventh Affiliated Hospital, Sun Yat-sen University; Department of Neurology (X.C.), Peking University Shenzhen Hospital; Department of Neurology (Q.W.), University of Chinese Academy of Sciences-Shenzhen Hospital; Institute of Cancer Research (K.S.), Shenzhen Bay Laboratory; and Institute of Biomedical Engineering (T.G.), Peking University Shenzhen Graduate School, China
| | - Tengfei Guo
- From the Institute of Biomedical Engineering (J.D., A.L., Z.L., T.G.), Shenzhen Bay Laboratory; Neurology Medicine Center (D.S.), The Seventh Affiliated Hospital, Sun Yat-sen University; Department of Neurology (X.C.), Peking University Shenzhen Hospital; Department of Neurology (Q.W.), University of Chinese Academy of Sciences-Shenzhen Hospital; Institute of Cancer Research (K.S.), Shenzhen Bay Laboratory; and Institute of Biomedical Engineering (T.G.), Peking University Shenzhen Graduate School, China.
| |
Collapse
|
13
|
Perrot S, Anne-Priscille T. Pain in osteoarthritis from a symptom to a disease. Best Pract Res Clin Rheumatol 2023; 37:101825. [PMID: 37236892 DOI: 10.1016/j.berh.2023.101825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023]
Abstract
Pain is the most frequent symptom of osteoarthritis (OA), occurring much more commonly than stiffness or disability. Classically, OA-related pain has been considered to be a nociceptive pain condition and an alarm signal correlated to the intensity of joint degradation. However, OA-related pain is a specific disease, with a complex pathophysiology, including neuropathic peripheral and central abnormalities, together with local inflammation involving all joint structures. Clinical findings emphasize that it is not a stable and linear condition, that pain experience is poorly correlated to structural modifications, and that the quality of pain in OA is important to consider, aside from its intensity. OA-related pain is modulated by many factors, including the individual patient's psychological and genetic factors, as well as the theoretical role of meteorological influences. Recent findings have improved our knowledge about the central mechanisms of OA pain, especially in persistent cases. A specific questionnaire on OA pain is currently being developed to assess more precisely the patient's experience and target specific pain mechanisms. In conclusion, OA-related pain should be analyzed specifically aside from OA, taking into account the complexity of OA pain as a disease, distinguishing different OA pain phenotypes, to guide more precisely analgesic treatment and OA global management.
Collapse
Affiliation(s)
- Serge Perrot
- Pain Department, Cochin Hospital, Assistance Publique Hôpitaux de Paris, Paris, France; Paris Cité University, INSERM U987, Paris, France.
| | - Trouvin Anne-Priscille
- Pain Department, Cochin Hospital, Assistance Publique Hôpitaux de Paris, Paris, France; Paris Cité University, INSERM U987, Paris, France
| |
Collapse
|
14
|
Branco P, Bosak N, Bielefeld J, Cong O, Granovsky Y, Kahn I, Yarnitsky D, Apkarian AV. Structural brain connectivity predicts early acute pain after mild traumatic brain injury. Pain 2023; 164:1312-1320. [PMID: 36355048 DOI: 10.1097/j.pain.0000000000002818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/20/2022] [Indexed: 11/12/2022]
Abstract
ABSTRACT Mild traumatic brain injury (mTBI), is a leading cause of disability worldwide, with acute pain manifesting as one of its most debilitating symptoms. Understanding acute postinjury pain is important because it is a strong predictor of long-term outcomes. In this study, we imaged the brains of 157 patients with mTBI, following a motorized vehicle collision. We extracted white matter structural connectivity networks and used a machine learning approach to predict acute pain. Stronger white matter tracts within the sensorimotor, thalamiccortical, and default-mode systems predicted 20% of the variance in pain severity within 72 hours of the injury. This result generalized in 2 independent groups: 39 mTBI patients and 13 mTBI patients without whiplash symptoms. White matter measures collected at 6 months after the collision still predicted mTBI pain at that timepoint (n = 36). These white matter connections were associated with 2 nociceptive psychophysical outcomes tested at a remote body site-namely, conditioned pain modulation and magnitude of suprathreshold pain-and with pain sensitivity questionnaire scores. Our findings demonstrate a stable white matter network, the properties of which determine an important amount of pain experienced after acute injury, pinpointing a circuitry engaged in the transformation and amplification of nociceptive inputs to pain perception.
Collapse
Affiliation(s)
- Paulo Branco
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Center for Translational Pain Research, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Noam Bosak
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Jannis Bielefeld
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Center for Translational Pain Research, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Olivia Cong
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Center for Translational Pain Research, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Yelena Granovsky
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Itamar Kahn
- Department of Neuroscience and Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - David Yarnitsky
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - A Vania Apkarian
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Center for Translational Pain Research, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
15
|
Pinto CB, Pacheco-Barrios K, Saleh Velez FG, Gunduz ME, Münger M, Fregni F. Detangling the Structural Neural Correlates Associated with Resting versus Dynamic Phantom Limb Pain Intensity Using a Voxel-based Morphometry Analysis. PAIN MEDICINE (MALDEN, MASS.) 2023; 24:528-537. [PMID: 36583548 PMCID: PMC10406160 DOI: 10.1093/pm/pnac205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 09/23/2022] [Accepted: 10/20/2022] [Indexed: 12/31/2022]
Abstract
The management of phantom limb pain (PLP) is still challenging due to a partial understanding of its neurophysiological mechanisms. Structural neuroimaging features are potential biomarkers. However, only a few studies assessed their correlations with clinical severity and treatment response. This study aims to explore the association between brain gray matter volume (GMV) with phantom limb manifestations severity and PLP improvement after neuromodulatory treatments (transcranial direct current stimulation and mirror therapy). Voxel-based morphometry analyses and functional decoding using a reverse inference term-based meta-analytic approach were used. We included 24 lower limb traumatic amputees with moderate to severe PLP. We found that alterations of cortical GMV were correlated with PLP severity but not with other clinical manifestations. Less PLP severity was associated with larger brain clusters GMV in the non-affected prefrontal, insula (non-affected mid-anterior region), and bilateral thalamus. However, only the insula cluster survived adjustments. Moreover, the reverse inference meta-analytic approach revealed that the found insula cluster is highly functionally connected to the contralateral insula and premotor cortices, and the decoded psychological processes related to this cluster were "rating," "sustained attention," "impulsivity, " and "suffering." Moreover, we found that responders to neuromodulatory treatment have higher GMV in somatosensory areas (total volume of S1 and S2) in the affected hemisphere at baseline, compared to non-responders, even after adjustments.
Collapse
Affiliation(s)
| | | | - Faddi G Saleh Velez
- Department of Neurology, University of Chicago Medical Center, University of Chicago, Chicago, IL 60637, United States
| | - Muhammed E Gunduz
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, United States
| | - Marionna Münger
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, United States
| | - Felipe Fregni
- Corresponding author: Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, 96 13th Street, Charlestown, Boston, MA 02129, USA.
| |
Collapse
|
16
|
Peterson JA, Johnson A, Nordarse CL, Huo Z, Cole J, Fillingim RB, Cruz-Almeida Y. Brain predicted age difference mediates pain impact on physical performance in community dwelling middle to older aged adults. Geriatr Nurs 2023; 50:181-187. [PMID: 36787663 PMCID: PMC10360023 DOI: 10.1016/j.gerinurse.2023.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 02/16/2023]
Abstract
The purpose of the study was to examine associations between physical performance and brain aging in individuals with knee pain and whether the association between pain and physical performance is mediated by brain aging. Participants (n=202) with low impact knee pain (n=111), high impact knee pain (n=60) and pain-free controls (n=31) completed self-reported pain, magnetic resonance imaging (MRI), and a Short Physical Performance Battery (SPPB) that included balance, walking, and sit to stand tasks. Brain predicted age difference, calculated using machine learning from MRI images, significantly mediated the relationships between walking and knee pain impact (CI: -0.124; -0.013), walking and pain-severity (CI: -0.008; -0.001), total SPPB score and knee pain impact (CI: -0.232; -0.025), and total SPPB scores and pain-severity (CI: -0.019; -0.001). Brain-aging begins to explain the association between pain and physical performance, especially walking. This study supports the idea that a brain aging prediction can be calculated from shorter duration MRI sequences and possibly implemented in a clinical setting to be used to identify individuals with pain who are at risk for accelerated brain atrophy and increased likelihood of disability.
Collapse
Affiliation(s)
- Jessica A Peterson
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL, USA; Department of Community Dentistry and Behavioral Science, University of Florida, Gainesville, FL 32610, USA
| | - Alisa Johnson
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL, USA; Department of Community Dentistry and Behavioral Science, University of Florida, Gainesville, FL 32610, USA
| | - Chavier Laffitte Nordarse
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL, USA; Department of Community Dentistry and Behavioral Science, University of Florida, Gainesville, FL 32610, USA
| | - Zhiguang Huo
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - James Cole
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK; Psychology and Neuroscience, King's College London, Institute of Psychiatry, London, UK; Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Roger B Fillingim
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL, USA; Department of Community Dentistry and Behavioral Science, University of Florida, Gainesville, FL 32610, USA
| | - Yenisel Cruz-Almeida
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL, USA; Department of Community Dentistry and Behavioral Science, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
17
|
From Low-Grade Inflammation in Osteoarthritis to Neuropsychiatric Sequelae: A Narrative Review. Int J Mol Sci 2022; 23:ijms232416031. [PMID: 36555670 PMCID: PMC9784931 DOI: 10.3390/ijms232416031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Nowadays, osteoarthritis (OA), a common, multifactorial musculoskeletal disease, is considered to have a low-grade inflammatory pathogenetic component. Lately, neuropsychiatric sequelae of the disease have gained recognition. However, a link between the peripheral inflammatory process of OA and the development of neuropsychiatric pathology is not completely understood. In this review, we provide a narrative that explores the development of neuropsychiatric disease in the presence of chronic peripheral low-grade inflammation with a focus on its signaling to the brain. We describe the development of a pro-inflammatory environment in the OA-affected joint. We discuss inflammation-signaling pathways that link the affected joint to the central nervous system, mainly using primary sensory afferents and blood circulation via circumventricular organs and cerebral endothelium. The review describes molecular and cellular changes in the brain, recognized in the presence of chronic peripheral inflammation. In addition, changes in the volume of gray matter and alterations of connectivity important for the assessment of the efficacy of treatment in OA are discussed in the given review. Finally, the narrative considers the importance of the use of neuropsychiatric diagnostic tools for a disease with an inflammatory component in the clinical setting.
Collapse
|
18
|
Johnson AJ, Buchanan T, Laffitte Nodarse C, Valdes Hernandez PA, Huo Z, Cole JH, Buford TW, Fillingim RB, Cruz-Almeida Y. Cross-Sectional Brain-Predicted Age Differences in Community-Dwelling Middle-Aged and Older Adults with High Impact Knee Pain. J Pain Res 2022; 15:3575-3587. [PMID: 36415658 PMCID: PMC9676000 DOI: 10.2147/jpr.s384229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
Purpose Knee OA-related pain varies in impact across individuals and may relate to central nervous system alterations like accelerated brain aging processes. We previously reported that older adults with chronic musculoskeletal pain had a significantly greater brain-predicted age, compared to pain-free controls, indicating an "older" appearing brain. Yet this association is not well understood. This cross-sectional study examines brain-predicted age differences associated with chronic knee osteoarthritis pain, in a larger, more demographically diverse sample with consideration for pain's impact. Patients and Methods Participants (mean age = 57.8 ± 8.0 years) with/without knee OA-related pain were classified according to pain's impact on daily function (ie, impact): low-impact (n=111), and high-impact (n=60) pain, and pain-free controls (n=31). Participants completed demographic, pain, and psychosocial assessments, and T1-weighted magnetic resonance imaging. Brain-predicted age difference (brain-PAD) was compared across groups using analysis of covariance. Partial correlations examined associations of brain-PAD with pain and psychosocial variables. Results Individuals with high-impact chronic knee pain had significantly "older" brains for their age compared to individuals with low-impact knee pain (p < 0.05). Brain-PAD was also significantly associated with clinical pain, negative affect, passive coping, and pain catastrophizing (p's<0.05). Conclusion Our findings suggest that high impact chronic knee pain is associated with an older appearing brain on MRI. Future studies are needed to determine the impact of pain-related interference and pain management on somatosensory processing and brain aging biomarkers for high-risk populations and effective intervention strategies.
Collapse
Affiliation(s)
- Alisa J Johnson
- Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA,Department of Community Dentistry & Behavioral Science, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Taylor Buchanan
- Department of Medicine, University of Alabama, Birmingham, AL, USA
| | - Chavier Laffitte Nodarse
- Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA,Department of Community Dentistry & Behavioral Science, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Pedro A Valdes Hernandez
- Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA,Department of Community Dentistry & Behavioral Science, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Zhiguang Huo
- Department of Biostatistics, College of Public Health & Health Professions College of Medicine, University of Florida, Gainesville, FL, USA
| | - James H Cole
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK,Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Thomas W Buford
- Department of Medicine, University of Alabama, Birmingham, AL, USA
| | - Roger B Fillingim
- Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA,Department of Community Dentistry & Behavioral Science, College of Dentistry, University of Florida, Gainesville, FL, USA,Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Yenisel Cruz-Almeida
- Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, USA,Department of Community Dentistry & Behavioral Science, College of Dentistry, University of Florida, Gainesville, FL, USA,Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA,Correspondence: Yenisel Cruz-Almeida, University of Florida, PO Box 103628, 1329 SW 16th Street, Ste 5180, Gainesville, FL, 32608, USA, Tel +1 352-294-8584, Fax +1 352-273-5985, Email
| |
Collapse
|
19
|
Yang L, Vigotsky AD, Wu B, Shen B, Yan Z, Apkarian AV, Huang L. Morphometric similarity networks discriminate patients with lumbar disc herniation from healthy controls and predict pain intensity. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:992662. [PMID: 36926079 PMCID: PMC10013053 DOI: 10.3389/fnetp.2022.992662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022]
Abstract
We used a recently advanced technique, morphometric similarity (MS), in a large sample of lumbar disc herniation patients with chronic pain (LDH-CP) to examine morphometric features derived from multimodal MRI data. To do so, we evenly allocated 136 LDH-CPs to exploratory and validation groups with matched healthy controls (HC), randomly chosen from the pool of 157 HCs. We developed three MS-based models to discriminate LDH-CPs from HCs and to predict the pain intensity of LDH-CPs. In addition, we created analogous models using resting state functional connectivity (FC) to perform the above discrimination and prediction of pain, in addition to comparing the performance of FC- and MS-based models and investigating if an ensemble model, combining morphometric features and resting-state signals, could improve performance. We conclude that 1) MS-based models were able to discriminate LDH-CPs from HCs and the MS networks (MSN) model performed best; 2) MSN was able to predict the pain intensity of LDH-CPs; 3) FC networks constructed were able to discriminate LDH-CPs from HCs, but they could not predict pain intensity; and 4) the ensemble model neither improved discrimination nor pain prediction performance. Generally, MSN is sensitive enough to uncover brain morphology alterations associated with chronic pain and provides novel insights regarding the neuropathology of chronic pain.
Collapse
Affiliation(s)
- Lili Yang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Andrew D. Vigotsky
- Departments of Biomedical Engineering and Statistics, Northwestern University, Evanston, IL, United States
| | - Binbin Wu
- Department of Pain Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bangli Shen
- Department of Pain Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhihan Yan
- Department of Radiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - A. Vania Apkarian
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Center for Translational Pain Research, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Lejian Huang
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Center for Translational Pain Research, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
20
|
Jiao X, Yuan M, Li Q, Huang Y, Ji M, Li J, Yan S, Sun H, Wang X, Pan Z, Ren Q, Wang D, Wang G. Brain Morphological and Functional Changes in Adenomyosis with Pain: A Resting State Functional Magnetic Resonance Imaging Study. J Clin Med 2022; 11:jcm11185286. [PMID: 36142933 PMCID: PMC9504732 DOI: 10.3390/jcm11185286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
The absence of clinically objective methods to evaluate adenomyosis-associated pain and the poor understanding of its pathophysiology lead to treatment limitations. We conducted a resting-state functional magnetic resonance imaging study with 49 patients with pain-related adenomyosis and 30 pain-free controls to investigate brain morphological alterations and regional dysfunctions in patients with pain-related adenomyosis. These patients had significantly higher scores for anxiety and depression than the control group (p < 0.05). They also had a lower gray matter volume (GMV) in the bilateral insula, left angular gyrus, precuneus, left inferior temporal gyrus, and left postcentral gyrus (p < 0.05, AlphaSim corrected). Similarly, decreased voxel-mirrored homotopic connectivity was observed in the bilateral insula, posterior cingulate cortex, middle frontal gyrus, and postcentral gyrus in the adenomyosis patient group (p < 0.05, AlphaSim corrected). Regional homogeneity showed significant differences mainly in the bilateral cerebellum, left inferior frontal gyrus, medial prefrontal cortex, and posterior cingulate gyrus. Correlation analysis showed that the degree of depression in patients with adenomyosis was negatively correlated with the GMV of the left angular gyrus. The results show that these patients exhibited changes in multiple brain regions associated with pain as well as emotion perception and processing.
Collapse
Affiliation(s)
- Xue Jiao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, China
- Department of Gynecology, Shandong Provincial Hospital, Jinan 250021, China
- Medical Integration and Practice Center, Shandong University, Jinan 250012, China
| | - Ming Yuan
- Department of Gynecology, Shandong Provincial Hospital, Jinan 250021, China
| | - Qiuju Li
- Department of Gynecology, Shandong Provincial Hospital, Jinan 250021, China
| | - Yufei Huang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, China
- Department of Gynecology, Shandong Provincial Hospital, Jinan 250021, China
- Medical Integration and Practice Center, Shandong University, Jinan 250012, China
| | - Miaomiao Ji
- Maternal and Child Health Care Hospital of Shandong Province, Jinan 250014, China
| | - Jing Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, China
- Department of Gynecology, Shandong Provincial Hospital, Jinan 250021, China
- Medical Integration and Practice Center, Shandong University, Jinan 250012, China
| | - Shumin Yan
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, China
- Department of Gynecology, Shandong Provincial Hospital, Jinan 250021, China
- Medical Integration and Practice Center, Shandong University, Jinan 250012, China
| | - Hao Sun
- Department of Gynecology, Shandong Provincial Hospital, Jinan 250021, China
- Medical Integration and Practice Center, Shandong University, Jinan 250012, China
| | - Xinyu Wang
- Department of Gynecology, Shandong Provincial Hospital, Jinan 250021, China
- Medical Integration and Practice Center, Shandong University, Jinan 250012, China
| | - Zangyu Pan
- Department of Gynecology, Shandong Provincial Hospital, Jinan 250021, China
- Medical Integration and Practice Center, Shandong University, Jinan 250012, China
| | - Qianhui Ren
- Department of Gynecology, Shandong Provincial Hospital, Jinan 250021, China
- Medical Integration and Practice Center, Shandong University, Jinan 250012, China
| | - Dawei Wang
- Department of Radiology, Qilu Hospital of Shandong University, Jinan 250012, China
- Department of Epidemiology and Health Statistics, School of Public Health, Shandong University, Jinan 250012, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China
- Correspondence: (D.W.); (G.W.); Tel.: +86-185-6008-1661 (D.W.); +86-185-6008-1729 (G.W.)
| | - Guoyun Wang
- Department of Gynecology, Shandong Provincial Hospital, Jinan 250021, China
- Medical Integration and Practice Center, Shandong University, Jinan 250012, China
- Correspondence: (D.W.); (G.W.); Tel.: +86-185-6008-1661 (D.W.); +86-185-6008-1729 (G.W.)
| |
Collapse
|
21
|
Tajerian M, Amrami M, Betancourt JM. Is there hemispheric specialization in the chronic pain brain? Exp Neurol 2022; 355:114137. [PMID: 35671801 PMCID: PMC10723052 DOI: 10.1016/j.expneurol.2022.114137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/25/2022]
Abstract
Organismal bilateral symmetry is associated with near-identical halves of the central nervous system, with certain functions displaying specialization through one brain hemisphere. The processing of pain in the brain as well as brain plasticity in the context of painful injuries have garnered much attention in recent decades. Noninvasive brain imaging studies in pain-free human subjects have identified multiple brain regions that are linked to the sensory and affective components of pain. Longlasting adaptations in brains of chronic pain sufferers have likewise been described, suggesting a mechanism for pain chronification. Invasive molecular and biochemical studies in animal models have expanded on these findings, with added emphasis on the role of specific genes and molecules involved. To date, the extent of hemispheric asymmetry in the context of pain is not well-understood. This topical review evaluates the evidence of hemispheric specialization observed in humans and rodent models of pain and compares it to findings where such asymmetry is absent. Our review shows conflicting information regarding the existence of pain-related asymmetry, and if so, the side to which it can be localized. This could be due to the heterogeneity of pain processing pathways, heterogeneity in study parameters, as well as differences in data reporting. With the advent of progressively sophisticated non-invasive tools that can be used in human subjects, in addition to more precise methods to visualize and control specific brain regions or neuronal ensembles in animal models, we predict that the next few decades will witness a better understanding of the supraspinal control and processing of chronic pain, including the role of each of its hemispheres.
Collapse
Affiliation(s)
- Maral Tajerian
- Department of Biology, Queens College, City University of New York, Queens, NY 11367, USA; The Graduate Center, City University of New York, New York, NY 10016, USA.
| | - Michael Amrami
- Department of Biology, Queens College, City University of New York, Queens, NY 11367, USA
| | - John Michael Betancourt
- Neuroscience Graduate Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
22
|
Scrambler Therapy for Chronic Pain after Burns and Its Effect on the Cerebral Pain Network: A Prospective, Double-Blinded, Randomized Controlled Trial. J Clin Med 2022; 11:jcm11154255. [PMID: 35893347 PMCID: PMC9332864 DOI: 10.3390/jcm11154255] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 02/05/2023] Open
Abstract
Chronic pain is common after burn injuries, and post-burn neuropathic pain is the most important complication that is difficult to treat. Scrambler therapy (ST) is a non-invasive modality that uses patient-specific electrocutaneous nerve stimulation and is an effective treatment for many chronic pain disorders. This study used magnetic resonance imaging (MRI) to evaluate the pain network-related mechanisms that underlie the clinical effect of ST in patients with chronic burn-related pain. This prospective, double-blinded, randomized controlled trial (ClinicalTrials.gov: NCT03865693) enrolled 43 patients who were experiencing chronic neuropathic pain after unilateral burn injuries. The patients had moderate or greater chronic pain (a visual analogue scale (VAS) score of ≥5), despite treatment using gabapentin and other physical modalities, and were randomized 1:1 to receive real or sham ST sessions. The ST was performed using the MC5-A Calmare device for ten 45 min sessions (Monday to Friday for 2 weeks). Baseline and post-treatment parameters were evaluated subjectively using the VAS score for pain and the Hamilton Depression Rating Scale; MRI was performed to identify objective central nervous system changes by measuring the cerebral blood volume (CBV). After 10 ST sessions (two weeks), the treatment group exhibited a significant reduction in pain relative to the sham group. Furthermore, relative to the pre-ST findings, the post-ST MRI evaluations revealed significantly decreased CBV in the orbito-frontal gyrus, middle frontal gyrus, superior frontal gyrus, and gyrus rectus. In addition, the CBV was increased in the precentral gyrus and postcentral gyrus of the hemisphere associated with the burned limb in the ST group, as compared with the CBV of the sham group. Thus, a clinical effect from ST on burn pain was observed after 2 weeks, and a potential mechanism for the treatment effect was identified. These findings suggest that ST may be an alternative strategy for managing chronic pain in burn patients.
Collapse
|
23
|
Johnson AJ, Cole J, Fillingim RB, Cruz-Almeida Y. Persistent Non-pharmacological Pain Management and Brain-Predicted Age Differences in Middle-Aged and Older Adults With Chronic Knee Pain. FRONTIERS IN PAIN RESEARCH (LAUSANNE, SWITZERLAND) 2022; 3:868546. [PMID: 35903307 PMCID: PMC9314648 DOI: 10.3389/fpain.2022.868546] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023]
Abstract
Chronic pain has been associated with changes in pain-related brain structure and function, including advanced brain aging. Non-pharmacological pain management is central to effective pain management. However, it is currently unknown how use of non-pharmacological pain management is associated with pain-related brain changes. The objective of the current study was to examine the association between brain-predicted age difference and use of non-pharmacological pain management (NPM) in a sample of middle-aged and older adults with and without chronic knee pain across two time points. One-hundred and 12 adults (mean age = 57.9 ± 8.2 years) completed sociodemographic measures, clinical pain measures, structural T1-weighted brain magnetic resonance imaging, and self-reported non-pharmacological pain management. Using a validated approach, we estimated a brain-predicted age difference (brain-PAD) biomarker, calculated as brain-predicted age minus chronological age, and the change in brain-PAD across 2 years. Repeated measures analysis of covariance was conducted to determine associations of non-pharmacological pain management and brain-PAD, adjusting for age, sex, study site, and clinical pain. There was a significant time*pain/NPM interaction effect in brain-PAD (p < 0.05). Tests of simple main effects indicated that those persistently using NPM had a "younger" brain-PAD over time, suggesting a potential protective factor in persistent NPM use. Future studies are warranted to determine the influence of NPM in brain aging and pain-related neurological changes.
Collapse
Affiliation(s)
- Alisa J. Johnson
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL, United States,Department of Community Dentistry and Behavioral Science, College of Dentistry, University of Florida, Gainesville, FL, United States
| | - James Cole
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom,Dementia Research Centre, Institute of Neurology, University College London, London, United Kingdom
| | - Roger B. Fillingim
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL, United States,Department of Community Dentistry and Behavioral Science, College of Dentistry, University of Florida, Gainesville, FL, United States
| | - Yenisel Cruz-Almeida
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL, United States,Department of Community Dentistry and Behavioral Science, College of Dentistry, University of Florida, Gainesville, FL, United States,*Correspondence: Yenisel Cruz-Almeida
| |
Collapse
|
24
|
Lu QY, Towne JM, Lock M, Jiang C, Cheng ZX, Habes M, Zuo XN, Zang YF. Toward coordinate-based cognition dictionaries: A brainmap and neurosynth demo. Neuroscience 2022; 493:109-118. [DOI: 10.1016/j.neuroscience.2022.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/09/2022] [Accepted: 02/14/2022] [Indexed: 10/18/2022]
|
25
|
Shang X, Zhang X, Huang Y, Zhu Z, Zhang X, Liu J, Wang W, Tang S, Yu H, Ge Z, Yang X, He M. Association of a wide range of individual chronic diseases and their multimorbidity with brain volumes in the UK Biobank: A cross-sectional study. EClinicalMedicine 2022; 47:101413. [PMID: 35518119 PMCID: PMC9065617 DOI: 10.1016/j.eclinm.2022.101413] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/27/2022] [Accepted: 04/05/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Little is known regarding associations of conventional and emerging diseases and their multimorbidity with brain volumes. METHODS This cross-sectional study included 36,647 European ancestry individuals aged 44-81 years with brain magnetic resonance imaging data from UK Biobank. Brain volumes were measured between 02 May 2014 and 31 October 2019. General linear regression models were used to associate 57 individual major diseases with brain volumes. Latent class analysis was used to identify multimorbidity patterns. A multimorbidity score for brain volumes was computed based on the estimates for individual groups of diseases. FINDINGS Out of 57 major diseases, 16 were associated with smaller volumes of total brain, 14 with smaller volumes of grey matter, and six with smaller hippocampus volumes, and four major diseases were associated with higher white matter hyperintensity (WMH) load after adjustment for all other diseases. The leading contributors to the variance of total brain volume were hypertension (R2=0·0229), dyslipidemia (0·0190), cataract (0·0176), coronary heart disease (0·0107), and diabetes (0·0077). We identified six major multimorbidity patterns and multimorbidity patterns of cardiometabolic disorders (CMD), and CMD-multiple disorders, and metabolic disorders were independently associated with smaller volumes of total brain (β (95% CI): -6·6 (-8·9, -4·3) ml, -7·3 (-10·4, -4·1) ml, and -10·4 (-13·5, -7·3) ml, respectively), grey matter (-7·1 (-8·5, -5·7) ml, -9·0 (-10·9, -7·1) ml, and -11·8 (-13·6, -9·9) ml, respectively), and higher WMH load (0·23 (0·19, 0·27), 0·25 (0·19, 0·30), and 0·33 (0·27, 0·39), respectively) after adjustment for geographic, socioeconomic, and lifestyle factors (all P-values<0·0001). The percentage of the variance of total brain volume explained by multimorbidity patterns, multimorbidity defined by the number of diseases, and multimorbidity score was 1·2%, 3·1%, and 7·2%, respectively. Associations between CMD-multiple disorders pattern, and metabolic disorders pattern and volumes of total brain, grey matter, and WMH were stronger in men than in women. Associations between multimorbidity and brain volumes were stronger in younger than in older individuals. INTERPRETATION Besides conventional diseases, we found an association between numerous emerging diseases and smaller brain volumes. CMD-related multimorbidity patterns are associated with smaller brain volumes. Men or younger adults with multimorbidity are more in need of care for promoting brain health. These findings are from an association study and will need confirmation. FUNDING The Fundamental Research Funds of the State Key Laboratory of Ophthalmology, Project of Investigation on Health Status of Employees in Financial Industry in Guangzhou, China (Z012014075), Science and Technology Program of Guangzhou, China (202,002,020,049).
Collapse
Key Words
- AD, Alzheimer’s disease
- APOE4, Apolipoprotein E ε4
- BMI, body mass index
- Brain volume
- CHD, coronary heart disease
- CI, confidence interval
- CKD, chronic kidney disease
- CMD, cardiometabolic disorders
- COPD, chronic obstructive pulmonary disease
- CVD, cardiovascular disease
- FDR, false discovery rate
- Grey matter
- Hippocampus
- Major diseases
- Moderation analysis
- Multimorbidity
- OLS, ordinary least squares
- WMH, white matter hyperintensity
- White matter hyperintensity
Collapse
Affiliation(s)
- Xianwen Shang
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Rd, Yuexiu District, Guangzhou, Guangdong 510080, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Centre for Eye Research Australia, The University of Melbourne, Level 7, 32 Gisborne Street, Melbourne, VIC 3002, Australia
- Corresponding authors at: Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Rd, Yuexiu District, Guangzhou, Guangdong 510080, China.
| | - Xueli Zhang
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Rd, Yuexiu District, Guangzhou, Guangdong 510080, China
| | - Yu Huang
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Rd, Yuexiu District, Guangzhou, Guangdong 510080, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhuoting Zhu
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Rd, Yuexiu District, Guangzhou, Guangdong 510080, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Centre for Eye Research Australia, The University of Melbourne, Level 7, 32 Gisborne Street, Melbourne, VIC 3002, Australia
| | - Xiayin Zhang
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Rd, Yuexiu District, Guangzhou, Guangdong 510080, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jiahao Liu
- Centre for Eye Research Australia, The University of Melbourne, Level 7, 32 Gisborne Street, Melbourne, VIC 3002, Australia
- Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Wei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Shulin Tang
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Rd, Yuexiu District, Guangzhou, Guangdong 510080, China
| | - Honghua Yu
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Rd, Yuexiu District, Guangzhou, Guangdong 510080, China
| | - Zongyuan Ge
- Monash e-Research Center, Faculty of Engineering, Airdoc Research, Nvidia AI Technology Research Center, Monash University, Melbourne, VIC 3800, Australia
| | - Xiaohong Yang
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Rd, Yuexiu District, Guangzhou, Guangdong 510080, China
| | - Mingguang He
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Rd, Yuexiu District, Guangzhou, Guangdong 510080, China
- Centre for Eye Research Australia, The University of Melbourne, Level 7, 32 Gisborne Street, Melbourne, VIC 3002, Australia
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China
- Corresponding authors at: Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Rd, Yuexiu District, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
26
|
Tanner JJ, Cardoso J, Terry EL, Booker SQ, Glover TL, Garvan C, Deshpande H, Deutsch G, Lai S, Staud R, Addison A, Redden D, Goodin BR, Price CC, Fillingim RB, Sibille KT. Chronic Pain Severity and Sociodemographics: An Evaluation of the Neurobiological Interface. THE JOURNAL OF PAIN 2022; 23:248-262. [PMID: 34425249 PMCID: PMC8828699 DOI: 10.1016/j.jpain.2021.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 07/19/2021] [Accepted: 07/27/2021] [Indexed: 02/03/2023]
Abstract
Chronic pain is variably associated with brain structure. Phenotyping based on pain severity may address inconsistencies. Sociodemographic groups also differ in the experience of chronic pain severity. Whether differences by chronic pain severity and/or sociodemographic groups are indicated in pain-related areas of the brain is unknown. Relations between 2 measures of chronic pain severity and brain structure via T1-weighted MRI were investigated and sociodemographic group differences explored. The observational study included 142 community-dwelling (68 non-Hispanic Black [NHB] and 74 non-Hispanic White [NHW]) adults with/at risk for knee osteoarthritis. Relationships between chronic pain severity, sociodemographic groups, and a priori selected brain structures (postcentral gyrus, insula, medial orbitofrontal, anterior cingulate, rostral middle frontal gyrus, hippocampus, amygdala, thalamus) were explored. Chronic pain severity associated with cortical thickness. NHB participants reported lower sociodemographic protective factors and greater clinical pain compared to NHWs who reported higher sociodemographic protective factors and lower clinical pain. Greater chronic pain severity was associated with smaller amygdala volumes in the NHB group and larger amygdala volumes in the NHW group. Brain structure by chronic pain stage differed between and within sociodemographic groups. Overall, chronic pain severity and sociodemographic factors are associated with pain-related brain structures. Our findings highlight the importance of further investigating social and environmental contributions in the experience of chronic pain to unravel the complex array of factors contributing to disparities. PERSPECTIVE: The study presents data demonstrating structural brain relationships with clinical pain severity, characteristic pain intensity and chronic pain stage, differ by sociodemographic groups. Findings yield insights into potential sources of previous inconsistent pain-brain relationships and highlights the need for future investigations to address social and environmental factors in chronic pain disparities research.
Collapse
Affiliation(s)
- Jared J Tanner
- Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida.
| | - Josue Cardoso
- Department of Community Dentistry and Behavioral Science, University of Florida, Gainesville, Florida; Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, Florida
| | - Ellen L Terry
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, Florida; Department of Behavioral Nursing Science, University of Florida, Gainesville, Florida
| | - Staja Q Booker
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, Florida; Department of Behavioral Nursing Science, University of Florida, Gainesville, Florida
| | - Toni L Glover
- School of Nursing, Oakland University, Rochester, Michigan
| | - Cynthia Garvan
- Department of Anesthesiology, University of Florida, Gainesville, Florida
| | - Hrishikesh Deshpande
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Georg Deutsch
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Song Lai
- Department of Radiation Oncology, University of Florida, Gainesville, Florida
| | - Roland Staud
- Department of Medicine, University of Florida, Gainesville, Florida
| | - Adrianna Addison
- Department of Psychology, University of Alabama at Birmingham, Birmingham, Alabama
| | - David Redden
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, Alabama; Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Burel R Goodin
- Department of Psychology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Catherine C Price
- Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida
| | - Roger B Fillingim
- Department of Community Dentistry and Behavioral Science, University of Florida, Gainesville, Florida; Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, Florida
| | - Kimberly T Sibille
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, Florida; Department of Aging & Geriatric Research, University of Florida, Gainesville, Florida
| |
Collapse
|
27
|
Hall M, van der Esch M, Hinman RS, Peat G, de Zwart A, Quicke JG, Runhaar J, Knoop J, van der Leeden M, de Rooij M, Meulenbelt I, Vliet Vlieland T, Lems WF, Holden MA, Foster NE, Bennell KL. How does hip osteoarthritis differ from knee osteoarthritis? Osteoarthritis Cartilage 2022; 30:32-41. [PMID: 34600121 DOI: 10.1016/j.joca.2021.09.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/01/2021] [Accepted: 09/21/2021] [Indexed: 02/02/2023]
Abstract
Hip and knee osteoarthritis (OA) are leading causes of global disability. Most research to date has focused on the knee, with results often extrapolated to the hip, and this extends to treatment recommendations in clinical guidelines. Extrapolating results from research on knee OA may limit our understanding of disease characteristics specific to hip OA, thereby constraining development and implementation of effective treatments. This review highlights differences between hip and knee OA with respect to prevalence, prognosis, epigenetics, pathophysiology, anatomical and biomechanical factors, clinical presentation, pain and non-surgical treatment recommendations and management.
Collapse
Affiliation(s)
- M Hall
- Centre for Health Exercise and Sports Medicine, Department of Physiotherapy, School of Health Sciences, The University of Melbourne, Australia
| | - M van der Esch
- Reade, Center for Rehabilitation and Rheumatology, Amsterdam, the Netherlands; Center of Expertise Urban Vitality, University of Applied Sciences Amsterdam, the Netherlands
| | - R S Hinman
- Centre for Health Exercise and Sports Medicine, Department of Physiotherapy, School of Health Sciences, The University of Melbourne, Australia
| | - G Peat
- Primary Care Centre Versus Arthritis, School of Medicine, Keele University, UK
| | - A de Zwart
- Reade, Center for Rehabilitation and Rheumatology, Amsterdam, the Netherlands
| | - J G Quicke
- Primary Care Centre Versus Arthritis, School of Medicine, Keele University, UK
| | - J Runhaar
- Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - J Knoop
- Vrije Universiteit Amsterdam, the Netherlands
| | - M van der Leeden
- Reade, Center for Rehabilitation and Rheumatology, Amsterdam, the Netherlands; Amsterdam UMC, Location VUmc, Department of Rheumatology, Amsterdam, the Netherlands
| | - M de Rooij
- Reade, Center for Rehabilitation and Rheumatology, Amsterdam, the Netherlands
| | | | | | - W F Lems
- Reade, Center for Rehabilitation and Rheumatology, Amsterdam, the Netherlands; Amsterdam UMC, Location VUmc, Department of Rheumatology, Amsterdam, the Netherlands
| | - M A Holden
- Primary Care Centre Versus Arthritis, School of Medicine, Keele University, UK
| | - N E Foster
- Primary Care Centre Versus Arthritis, School of Medicine, Keele University, UK; STARS Research and Education Alliance, Surgical Treatment and Rehabilitation Service (STARS), The University of Queensland and Metro North Hospital and Health Service, Queensland, Australia
| | - K L Bennell
- Centre for Health Exercise and Sports Medicine, Department of Physiotherapy, School of Health Sciences, The University of Melbourne, Australia.
| |
Collapse
|
28
|
Kang BX, Ma J, Shen J, Xu H, Wang HQ, Zhao C, Xie J, Zhong S, Gao CX, Xu XR, A XY, Gu XL, Xiao L, Xu J. Altered brain activity in end-stage knee osteoarthritis revealed by resting-state functional magnetic resonance imaging. Brain Behav 2022; 12:e2479. [PMID: 34967156 PMCID: PMC8785636 DOI: 10.1002/brb3.2479] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/29/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Knee osteoarthritis (KOA) is characterized by a degenerative change of knee cartilage and secondary bone hyperplasia, resulting in pain, stiffness, and abnormal walking gait. Long-term chronic pain causes considerable cortical plasticity alternations in patients. However, the brain structural and functional alterations associated with the pathological changes in knee joints of end-stage KOA patients remain unclear. This study aimed to analyze the structural and functional connectivity alterations in end-stage KOA to comprehensively understand the main brain-associated mechanisms underlying its development and progression. METHODS In this study, 37 patients with KOA and 37 demographically matched healthy controls (HCs) were enrolled. Alternations in gray matter (GM) volume in patients with KOA were determined using voxel-based morphometry. The region with the largest GM volume alteration was selected as the region of interest to calculate the voxel-wise resting-state functional connectivity (rs-FC) in the two groups. Pearson's correlation coefficient was used to analyze the correlation between clinical measures and GM volume alternations in patients with KOA. RESULTS Compared with HCs, patients with KOAs exhibited significantly decreased GM volumes in the left middle temporal gyrus (left-MTG) and the left inferior temporal gyrus. Results of the voxel-wise rs-FC analysis revealed that compared with HCs, patients with KOA had decreased left-MTG rs-FC to the right dorsolateral superior frontal gyrus, left middle frontal gyrus, and left medial superior frontal gyrus. GM volume in the left-MTG was negatively correlated with the Western Ontario and McMaster Universities Arthritis Index in patients with KOA (r = -0.393, p = .016). CONCLUSION Structural remodeling and functional connectivity alterations may be one of the central brain mechanisms associated with end-stage KOA.
Collapse
Affiliation(s)
- Bing-Xin Kang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jie Ma
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun Shen
- Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Arthritis Institute of Integrated Traditional Chinese and Western Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hui Xu
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Hai-Qi Wang
- Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chi Zhao
- Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun Xie
- Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Arthritis Institute of Integrated Traditional Chinese and Western Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sheng Zhong
- Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Arthritis Institute of Integrated Traditional Chinese and Western Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen-Xin Gao
- Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Arthritis Institute of Integrated Traditional Chinese and Western Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xi-Rui Xu
- Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Arthritis Institute of Integrated Traditional Chinese and Western Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin-Yu A
- Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Li Gu
- Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lianbo Xiao
- Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Arthritis Institute of Integrated Traditional Chinese and Western Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianguang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
29
|
Pratscher S, Mickle AM, Marks JG, Rocha H, Bartsch F, Schmidt J, Tejera L, Garcia S, Custodero C, Jean F, Garvan C, Johnson AJ, Pop R, Greene A, Woods AJ, Staud R, Fillingim RB, Keil A, Sibille KT. Optimizing Chronic Pain Treatment with Enhanced Neuroplastic Responsiveness: A Pilot Randomized Controlled Trial. Nutrients 2021; 13:1556. [PMID: 34063083 PMCID: PMC8147927 DOI: 10.3390/nu13051556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/23/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic pain affects mental and physical health and alters brain structure and function. Interventions that reduce chronic pain are also associated with changes in the brain. A number of non-invasive strategies can promote improved learning and memory and increase neuroplasticity in older adults. Intermittent fasting and glucose administration represent two such strategies with the potential to optimize the neurobiological environment to increase responsiveness to recognized pain treatments. The purpose of the pilot study was to test the feasibility and acceptability of intermittent fasting and glucose administration paired with a recognized pain treatment activity, relaxation and guided imagery. A total of 32 adults (44% W, 56% M), 50 to 85 years of age, with chronic knee pain for three months or greater participated in the study. Four sessions were completed over an approximate two-week period. Findings indicate the ability to recruit, randomize, and retain participants in the protocol. The procedures and measures were reasonable and completed without incident. Participant adherence was high and exit interview feedback positive. In summary, the pilot study was feasible and acceptable, providing the evidence necessary to move forward with a larger clinical trial.
Collapse
Affiliation(s)
- Steven Pratscher
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL 32611, USA; (S.P.); (J.G.M.); (A.J.J.); (R.P.); (R.B.F.)
- Department of Community of Dentistry, University of Florida, Gainesville, FL 32611, USA;
| | - Angela M. Mickle
- Department of Community of Dentistry, University of Florida, Gainesville, FL 32611, USA;
| | - John G. Marks
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL 32611, USA; (S.P.); (J.G.M.); (A.J.J.); (R.P.); (R.B.F.)
| | - Harold Rocha
- Department of Psychology, University of Florida, Gainesville, FL 32611, USA; (H.R.); (F.B.); (S.G.); (A.K.)
| | - Felix Bartsch
- Department of Psychology, University of Florida, Gainesville, FL 32611, USA; (H.R.); (F.B.); (S.G.); (A.K.)
| | - Jeffrey Schmidt
- College of Health Professions and Sciences, University of Central Florida, Orlando, FL 32816, USA;
| | - Lazaro Tejera
- Department of Interdisciplinary Medicine, University of Bari, 70125 Bari, Italy; (L.T.); (C.C.)
| | - Steven Garcia
- Department of Psychology, University of Florida, Gainesville, FL 32611, USA; (H.R.); (F.B.); (S.G.); (A.K.)
| | - Carlo Custodero
- Department of Interdisciplinary Medicine, University of Bari, 70125 Bari, Italy; (L.T.); (C.C.)
| | - Federlin Jean
- Department of Aging & Geriatric Research, University of Florida, Gainesville, FL 32611, USA;
| | - Cynthia Garvan
- Department of Anesthesiology, University of Florida, Gainesville, FL 32611, USA;
| | - Alisa J. Johnson
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL 32611, USA; (S.P.); (J.G.M.); (A.J.J.); (R.P.); (R.B.F.)
- Department of Community of Dentistry, University of Florida, Gainesville, FL 32611, USA;
| | - Ralisa Pop
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL 32611, USA; (S.P.); (J.G.M.); (A.J.J.); (R.P.); (R.B.F.)
| | - Anthony Greene
- Counseling and Wellness Center, University of Florida, Gainesville, FL 32611, USA;
| | - Adam J. Woods
- Department of Clinical and Health Psychology, Center for Cognitive Aging and Memory Clinical Translational Research, University of Florida, Gainesville, FL 32611, USA;
| | - Roland Staud
- Department of Medicine, University of Florida, Gainesville, FL 32611, USA;
| | - Roger B. Fillingim
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL 32611, USA; (S.P.); (J.G.M.); (A.J.J.); (R.P.); (R.B.F.)
- Department of Community of Dentistry, University of Florida, Gainesville, FL 32611, USA;
| | - Andreas Keil
- Department of Psychology, University of Florida, Gainesville, FL 32611, USA; (H.R.); (F.B.); (S.G.); (A.K.)
| | - Kimberly T. Sibille
- Pain Research and Intervention Center of Excellence, University of Florida, Gainesville, FL 32611, USA; (S.P.); (J.G.M.); (A.J.J.); (R.P.); (R.B.F.)
- Department of Aging & Geriatric Research, University of Florida, Gainesville, FL 32611, USA;
- Department of Anesthesiology, University of Florida, Gainesville, FL 32611, USA;
| |
Collapse
|
30
|
Tu Y, Cao J, Bi Y, Hu L. Magnetic resonance imaging for chronic pain: diagnosis, manipulation, and biomarkers. SCIENCE CHINA-LIFE SCIENCES 2020; 64:879-896. [PMID: 33247802 DOI: 10.1007/s11427-020-1822-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/15/2020] [Indexed: 12/16/2022]
Abstract
Pain is a multidimensional subjective experience with biological, psychological, and social factors. Whereas acute pain can be a warning signal for the body to avoid excessive injury, long-term and ongoing pain may be developed as chronic pain. There are more than 100 million people in China living with chronic pain, which has raised a huge socioeconomic burden. Studying the mechanisms of pain and developing effective analgesia approaches are important for basic and clinical research. Recently, with the development of brain imaging and data analytical approaches, the neural mechanisms of chronic pain have been widely studied. In the first part of this review, we briefly introduced the magnetic resonance imaging and conventional analytical approaches for brain imaging data. Then, we reviewed brain alterations caused by several chronic pain disorders, including localized and widespread primary pain, primary headaches and orofacial pain, musculoskeletal pain, and neuropathic pain, and present meta-analytical results to show brain regions associated with the pathophysiology of chronic pain. Next, we reviewed brain changes induced by pain interventions, such as pharmacotherapy, neuromodulation, and acupuncture. Lastly, we reviewed emerging studies that combined advanced machine learning and neuroimaging techniques to identify diagnostic, prognostic, and predictive biomarkers in chronic pain patients.
Collapse
Affiliation(s)
- Yiheng Tu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, 100101, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Jin Cao
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, 02129, USA
| | - Yanzhi Bi
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, 100101, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, 100101, China. .,Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100101, China. .,Department of Pain Management, The State Key Clinical Specialty in Pain Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
31
|
Barroso J, Wakaizumi K, Reis AM, Baliki M, Schnitzer TJ, Galhardo V, Apkarian AV. Reorganization of functional brain network architecture in chronic osteoarthritis pain. Hum Brain Mapp 2020; 42:1206-1222. [PMID: 33210801 PMCID: PMC7856636 DOI: 10.1002/hbm.25287] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/12/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA) manifests with chronic pain, motor impairment, and proprioceptive changes. However, the role of the brain in the disease is largely unknown. Here, we studied brain networks using the mathematical properties of graphs in a large sample of knee and hip OA (KOA, n = 91; HOA, n = 23) patients. We used a robust validation strategy by subdividing the KOA data into discovery and testing groups and tested the generalizability of our findings in HOA. Despite brain global topological properties being conserved in OA, we show there is a network wide pattern of reorganization that can be captured at the subject‐level by a single measure, the hub disruption index. We localized reorganization patterns and uncovered a shift in the hierarchy of network hubs in OA: primary sensory and motor regions and parahippocampal gyrus behave as hubs and insular cortex loses its central placement. At an intermediate level of network structure, frontoparietal and cingulo‐opercular modules showed preferential reorganization. We examined the association between network properties and clinical correlates: global disruption indices and isolated degree properties did not reflect clinical parameters; however, by modeling whole brain nodal degree properties, we identified a distributed set of regions that reliably predicted pain intensity in KOA and generalized to hip OA. Together, our findings reveal that while conserving global topological properties, brain network architecture reorganizes in OA, at both global and local scale. Network connectivity related to OA pain intensity is dissociated from the major hub disruptions, challenging the extent of dependence of OA pain on nociceptive signaling.
Collapse
Affiliation(s)
- Joana Barroso
- Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, Porto, Portugal.,Department of Physical Medicine and Rehabilitation, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kenta Wakaizumi
- Shirley Ryan Ability Lab, Chicago, Illinois, USA.,Department of Anesthesiology, Keio University School of Medicine, Tokyo, Japan
| | | | - Marwan Baliki
- Department of Physical Medicine and Rehabilitation, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA.,Shirley Ryan Ability Lab, Chicago, Illinois, USA
| | - Thomas J Schnitzer
- Department of Physical Medicine and Rehabilitation, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Internal Medicine/Rheumatology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Anesthesia, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Vasco Galhardo
- Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, Porto, Portugal
| | - Apkar Vania Apkarian
- Department of Physical Medicine and Rehabilitation, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Anesthesia, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
32
|
Rieb LM, DeBeck K, Hayashi K, Wood E, Nosova E, Milloy MJ. Withdrawal-associated injury site pain prevalence and correlates among opioid-using people who inject drugs in Vancouver, Canada. Drug Alcohol Depend 2020; 216:108242. [PMID: 32861135 PMCID: PMC7850369 DOI: 10.1016/j.drugalcdep.2020.108242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Pain can return temporarily to old injury sites during opioid withdrawal. The prevalence and impact of opioid withdrawal-associated injury site pain (WISP) in various groups is unknown. METHODS Using data from observational cohorts, we estimated the prevalence and correlates of WISP among opioid-using people who inject drugs (PWID). Between June and December 2015, data on WISP and opioid use behaviours were elicited from participants in three ongoing prospective cohort studies in Vancouver, Canada, who were aged 18 years and older and who self-reported at least daily injection of heroin or non-medical presciption opioids. RESULTS Among 631 individuals, 276 (43.7 %) had a healed injury (usually pain-free), among whom 112 (40.6 %) experienced WISP, representing 17.7 % of opioid-using PWID interviewed. In a multivariable logistic regression model, WISP was positively associated with having a high school diploma or above (Adjusted Odds Ratio [AOR] = 2.23, 95 % Confidence Interval [CI]: 1.31-3.84), any heroin use in the last six months (AOR = 2.00, 95 % CI: 1.14-3.57), feeling daily pain that required medication (AOR = 2.06, CI: 1.18-3.63), and negatively associated with older age at first drug use (AOR = 0.96, 95 % CI: 0.93-0.99). Among 112 individuals with WISP, 79 (70.5 %) said that having this pain affected their opioid use behaviour, of whom 57 (72.2 %) used more opioids, 19 (24.1 %) avoided opioid withdrawal, while 3 (3.8 %) no longer used opioids to avoid WISP. CONCLUSIONS WISP is prevalent among PWID with a previous injury, and may alter opioid use patterns. Improved care strategies for WISP are warrented.
Collapse
Affiliation(s)
- Launette Marie Rieb
- Department of Family Practice, University of British Columbia, 5950 University Boulevard, Vancouver, British Columbia, Canada
| | - Kora DeBeck
- School of Public Policy, Simon Fraser University, 515 West Hastings Street, Office 3269, Vancouver, British Columbia, Canada,British Columbia Centre on Substance Use, 1045 Howe Street, Vancouver, British Columbia, Canada
| | - Kanna Hayashi
- British Columbia Centre on Substance Use, 1045 Howe Street, Vancouver, British Columbia, Canada,Faculty of Health Sciences, Simon Fraser University, Blusson Hall, Room 11300, Burnaby, British Columbia, Canada
| | - Evan Wood
- British Columbia Centre on Substance Use, 1045 Howe Street, Vancouver, British Columbia, Canada,Department of Medicine, University of British Columbia, 2775 Laurel Street, 10thFloor, Vancouver, British Columbia, Canada
| | - Ekaterina Nosova
- British Columbia Centre on Substance Use, 1045 Howe Street, Vancouver, British Columbia, Canada
| | - M-J Milloy
- British Columbia Centre on Substance Use, 1045 Howe Street, Vancouver, British Columbia, Canada; Department of Medicine, University of British Columbia, 2775 Laurel Street, 10thFloor, Vancouver, British Columbia, Canada.
| |
Collapse
|