1
|
Bar-On O, Mei-Zahav M, Levine H, Mussaffi H, Blau H, Ben Zvi H, Prais D, Stafler P. The Association of Achromobacter xylosoxidans Airway Infection with Disease Severity in Cystic Fibrosis. J Clin Med 2025; 14:2437. [PMID: 40217889 PMCID: PMC11989260 DOI: 10.3390/jcm14072437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/18/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025] Open
Abstract
Background/Objectives: The prevalence of Achromobacter xylosoxidans is increasing in people with Cystic Fibrosis (pwCF), yet its clinical pathogenicity remains controversial. The objective of this study was to chart the longitudinal prevalence and examine clinical associations before and after infection. Methods: This observational, retrospective study was conducted at a single CF center over a 14-year period. Data were collated from patient charts and clinic databases. Patients with Achromobacter sputum cultures were compared to those without the bacterium and analyzed according to whether they had single, intermittent, or chronic infections. Results: During the study period, an annual average of 124 pwCF were followed up at our clinic, with a median age of 13.6 years (IQR = 7.6-27.7). The Achromobacter detection rate increased from 0 to 6.1%. Twenty-three percent (29/124) of patients had at least one positive culture. The median age at acquisition was 17 years (IQR = 14.5-33). At the time of acquisition, the median FEV1 was 81% (IQR = 46-94), compared to 90% (IQR = 72-99) for patients without Achromobacter, p < 0.001. Patients with Achromobacter tended to demonstrate more chronic Pseudomonas (55% vs. 27%, p = 0.06) and pancreatic insufficiency (66% vs. 47%, p = 0.07). At two years post-acquisition, the median FEV1 for patients with intermittent and chronically infected decreased by 11.5% (IQR = -3.75-7.5), compared to 1.5% (IQR = -2.5-12.5) for those with a single positive culture, p = 0.03. Similarly, pulmonary exacerbations per year became more frequent post-acquisition in intermittent and chronically infected patients: Median (range) 2.5 (0-8) pre-, versus 3.0 (0-9) post-acquisition, p = 0.036. Conclusions: Chronic and intermittent infection with Achromobacter were associated with accelerated lung function decline and increased exacerbation frequency. Larger prospective studies are needed to confirm these findings and examine the effect of eradication on the clinical course.
Collapse
Affiliation(s)
- Ophir Bar-On
- Graub CF Center, Pulmonary Institute, Schneider Children’s Medical Center of Israel, Petach Tikva 4920235, Israel; (O.B.-O.); (M.M.-Z.); (H.L.); (H.M.); (H.B.); (D.P.)
- School of Medicine, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel Aviv 6997801, Israel;
| | - Meir Mei-Zahav
- Graub CF Center, Pulmonary Institute, Schneider Children’s Medical Center of Israel, Petach Tikva 4920235, Israel; (O.B.-O.); (M.M.-Z.); (H.L.); (H.M.); (H.B.); (D.P.)
- School of Medicine, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel Aviv 6997801, Israel;
| | - Hagit Levine
- Graub CF Center, Pulmonary Institute, Schneider Children’s Medical Center of Israel, Petach Tikva 4920235, Israel; (O.B.-O.); (M.M.-Z.); (H.L.); (H.M.); (H.B.); (D.P.)
- School of Medicine, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel Aviv 6997801, Israel;
| | - Huda Mussaffi
- Graub CF Center, Pulmonary Institute, Schneider Children’s Medical Center of Israel, Petach Tikva 4920235, Israel; (O.B.-O.); (M.M.-Z.); (H.L.); (H.M.); (H.B.); (D.P.)
- School of Medicine, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel Aviv 6997801, Israel;
| | - Hannah Blau
- Graub CF Center, Pulmonary Institute, Schneider Children’s Medical Center of Israel, Petach Tikva 4920235, Israel; (O.B.-O.); (M.M.-Z.); (H.L.); (H.M.); (H.B.); (D.P.)
- School of Medicine, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel Aviv 6997801, Israel;
| | - Haim Ben Zvi
- School of Medicine, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel Aviv 6997801, Israel;
- Clinical Microbiology Laboratory, Rabin Medical Center, Beilinson Hospital, Petah Tikva 4941492, Israel
| | - Dario Prais
- Graub CF Center, Pulmonary Institute, Schneider Children’s Medical Center of Israel, Petach Tikva 4920235, Israel; (O.B.-O.); (M.M.-Z.); (H.L.); (H.M.); (H.B.); (D.P.)
- School of Medicine, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel Aviv 6997801, Israel;
| | - Patrick Stafler
- Graub CF Center, Pulmonary Institute, Schneider Children’s Medical Center of Israel, Petach Tikva 4920235, Israel; (O.B.-O.); (M.M.-Z.); (H.L.); (H.M.); (H.B.); (D.P.)
- School of Medicine, Faculty of Medical and Health Sciences, Tel-Aviv University, Tel Aviv 6997801, Israel;
| |
Collapse
|
2
|
Harwood K, Duffull S, Lai T, Lei A, Manning S, Pell C, Ranganathan S, Robinson P, Rogers G, Sandaradura I, Satzke C, Shanthikumar S, Taylor S, Gwee A. Relationship between sputum bacterial load and lung function in children with cystic fibrosis receiving tobramycin. Respir Med 2025; 240:108042. [PMID: 40090524 DOI: 10.1016/j.rmed.2025.108042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/06/2025] [Accepted: 03/13/2025] [Indexed: 03/18/2025]
Abstract
BACKGROUND Chronic pulmonary infection with pathogens such as Pseudomonas aeruginosa is associated with lung function decline and increased mortality in people with cystic fibrosis (CF). The relationship between sputum bacterial load and the severity of pulmonary exacerbations remains unclear. This study aimed to explore the relationship between sputum bacterial load and clinical response to antibiotic treatment of pulmonary exacerbations in children with CF. METHODS Multicentre prospective longitudinal study of children with CF receiving IV tobramycin for a pulmonary exacerbation who had prior isolation of Gram-negative bacteria and able to expectorate sputum. Lung function (FEV1) and sputum bacterial load were assessed. Bacterial load was performed using quantitative PCR on either intact (live) bacterial cells or all bacterial DNA (live + dead) and targeted either P. aeruginosa only or all bacteria. RESULTS Twelve children (14 admissions) were enrolled and each provided ≥2 sputum samples; 11 children (13 admissions) also had ≥2 FEV1 measurements. In 10 admissions where FEV1 improved, five showed a reduction in all live bacteria, with a median reduction by 8.65 × 106 copies/g (73 % reduction). Live P. aeruginosa was detected in 8/10 children and in seven, a median reduction of 2.99 × 107 copies/g (90 % reduction) was observed. Improved FEV1 correlated with greater reductions in live + dead P. aeruginosa (ρ = -0.63, p = 0.04). CONCLUSION A greater reduction in total sputum P. aeruginosa bacterial load (live + dead) was associated with improved lung function (FEV1) in children with CF receiving tobramycin.
Collapse
Affiliation(s)
- Kiera Harwood
- Department of Paediatrics, The University of Melbourne, Parkville, Australia; Antimicrobials Group, Murdoch Children's Research Institute, Parkville, Australia.
| | | | - Tony Lai
- The Children's Hospital at Westmead, Sydney, Australia; University of Sydney, Sydney, Australia
| | - Alice Lei
- Antimicrobials Group, Murdoch Children's Research Institute, Parkville, Australia
| | - Sarah Manning
- Microbiome and Host Health, South Australian Health and Medical Research Institute, South Australia, Australia
| | - Casey Pell
- Translational Microbiology Group, Murdoch Children's Research Institute, Parkville, Australia
| | - Sarath Ranganathan
- Department of Paediatrics, The University of Melbourne, Parkville, Australia; Department of Respiratory and Sleep Medicine, Royal Children's Hospital, Parkville, Australia; Respiratory Diseases Group, Murdoch Children's Research Institute, Parkville, Australia
| | - Phil Robinson
- Department of Paediatrics, The University of Melbourne, Parkville, Australia; Department of Respiratory and Sleep Medicine, Royal Children's Hospital, Parkville, Australia; Respiratory Diseases Group, Murdoch Children's Research Institute, Parkville, Australia
| | - Geraint Rogers
- Microbiome and Host Health, South Australian Health and Medical Research Institute, South Australia, Australia; Infection and Immunity, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - Indy Sandaradura
- The Children's Hospital at Westmead, Sydney, Australia; University of Sydney, Sydney, Australia
| | - Catherine Satzke
- Department of Paediatrics, The University of Melbourne, Parkville, Australia; Translational Microbiology Group, Murdoch Children's Research Institute, Parkville, Australia; Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, Australia
| | - Shivanthan Shanthikumar
- Department of Paediatrics, The University of Melbourne, Parkville, Australia; Department of Respiratory and Sleep Medicine, Royal Children's Hospital, Parkville, Australia; Respiratory Diseases Group, Murdoch Children's Research Institute, Parkville, Australia
| | - Steven Taylor
- Microbiome and Host Health, South Australian Health and Medical Research Institute, South Australia, Australia; Infection and Immunity, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - Amanda Gwee
- Department of Paediatrics, The University of Melbourne, Parkville, Australia; Antimicrobials Group, Murdoch Children's Research Institute, Parkville, Australia; Department of General Medicine and Infectious Diseases, Royal Children's Hospital, Parkville, Australia
| |
Collapse
|
3
|
Neff RJ, Radka CD. Exploring Oxylipins in Host-Microbe Interactions and Their Impact on Infection and Immunity. Curr Issues Mol Biol 2025; 47:190. [PMID: 40136444 PMCID: PMC11941309 DOI: 10.3390/cimb47030190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/27/2025] Open
Abstract
Plasma lipids are essential components of biological systems, transported through interactions with proteins to maintain cellular functions. These lipids exist in various forms, such as fatty acids, glycerolipids, glycerophospholipids, sphingolipids, sterols, and prenol lipids, derived from dietary intake, adipose tissue, and biosynthesis. While the association between certain fatty acids and cardiovascular diseases has been widely recognized, polyunsaturated fatty acids (PUFAs) exhibit cardioprotective effects, reducing risks of arrhythmias and heart-related mortality. This is due to their role in the production of eicosanoids, which modulate inflammation. Chronic inflammation, particularly in obesity, is significantly influenced by fatty acids, with saturated fatty acids promoting inflammation and PUFAs mitigating it. Oxylipins, bioactive molecules derived from the oxidation of PUFAs, play crucial roles in immune regulation across various organisms, including plants, fungi, and bacteria. These molecules, such as prostaglandins, leukotrienes, and resolvins, regulate immune responses during infection and inflammation. The production of oxylipins extends beyond mammals, with fungi and bacteria synthesizing these molecules to modulate immune responses, promoting both defense and pathogenesis. This review delves into the multifaceted effects of oxylipins, exploring their impact on host and microbial interactions, with a focus on their potential for therapeutic applications in modulating infection and immune response.
Collapse
Affiliation(s)
| | - Christopher D. Radka
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA;
| |
Collapse
|
4
|
Saitta GM, Veschetti L, Feletti R, Sandri A, Boaretti M, Melotti P, Carelli M, Lleò MM, Malerba G, Signoretto C. Development of a Simple and Accurate Molecular Protocol Using 16SrRNA for Species-Specific Identification of Achromobacter spp. Pathogens 2025; 14:271. [PMID: 40137756 PMCID: PMC11945698 DOI: 10.3390/pathogens14030271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
The Achromobacter genus comprises 22 species and various genogroups. Some species with higher virulence or antibiotic resistance are more likely to cause chronic infections in people with cystic fibrosis (CF). Current identification methods often fail to accurately distinguish between the species or result in misidentifications due to biochemical similarities. This study aims to develop an accurate qPCR protocol for species-level identification that is applicable in clinical diagnostic laboratories. Whole-genome sequencing of clinical isolates from different Achromobacter species identified species-specific single-nucleotide polymorphisms (SNPs) in two 16S gene regions. Based on these SNPs, two sets of primers and qPCR probes were designed to generate unique identification profiles. Thermal profiles were optimized, and qPCR was performed on serial bacterial DNA dilutions to determine the detection limit (LOD). Four probes successfully identified three species: A. xylosoxidans, A. dolens, and A. insuavis. Two additional probes were designed for novel genotypes unrelated to publicly available sequences. The LOD ranged from 0.005 pg/µL to 1 pg/µL. Combined probes achieved 100% sensitivity, with specificity ranging from 97.95% to 100%. This qPCR protocol enables accurate species identification, overcoming the limitations of current methods, and represents a reliable tool for clinical diagnostics.
Collapse
Affiliation(s)
- Giulia Maria Saitta
- Diagnostic and Public Health Department, University of Verona, 37134 Verona, Italy; (G.M.S.); (R.F.); (A.S.); (M.B.)
| | - Laura Veschetti
- Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy;
- Vita-Salute San Raffaele University, 20132 Milano, Italy
| | - Rebecca Feletti
- Diagnostic and Public Health Department, University of Verona, 37134 Verona, Italy; (G.M.S.); (R.F.); (A.S.); (M.B.)
| | - Angela Sandri
- Diagnostic and Public Health Department, University of Verona, 37134 Verona, Italy; (G.M.S.); (R.F.); (A.S.); (M.B.)
- General and Upper GI Surgery Division, Azienda Ospedaliera Universitaria Integrata Verona, Piazzale A. Stefani 1, 37126 Verona, Italy
| | - Marzia Boaretti
- Diagnostic and Public Health Department, University of Verona, 37134 Verona, Italy; (G.M.S.); (R.F.); (A.S.); (M.B.)
| | - Paola Melotti
- Cystic Fibrosis Centre, Azienda Ospedaliera Universitaria Integrata Verona, Piazzale A. Stefani 1, 37126 Verona, Italy;
| | - Maria Carelli
- Cardiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Maria M. Lleò
- Diagnostic and Public Health Department, University of Verona, 37134 Verona, Italy; (G.M.S.); (R.F.); (A.S.); (M.B.)
| | - Giovanni Malerba
- GMLab, Department of Surgical Sciences, Dentistry, Gynaecology and Paediatrics, University of Verona, 37134 Verona, Italy;
| | - Caterina Signoretto
- Diagnostic and Public Health Department, University of Verona, 37134 Verona, Italy; (G.M.S.); (R.F.); (A.S.); (M.B.)
| |
Collapse
|
5
|
Vazquez Cegla AJ, Jones KT, Cui G, Cottrill KA, Koval M, McCarty NA. Effects of hyperglycemia on airway epithelial barrier function in WT and CF 16HBE cells. Sci Rep 2024; 14:25095. [PMID: 39443580 PMCID: PMC11500396 DOI: 10.1038/s41598-024-76526-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
Cystic fibrosis related diabetes (CFRD), the main co-morbidity in cystic fibrosis (CF), is associated with higher rates of lung function decline. We hypothesize that airway epithelial barrier function is impaired in CF and is further exacerbated under hyperglycemia, worsening pulmonary outcomes. Using 16HBE cells, we studied the effects of hyperglycemia in airway epithelial barrier function. Results show increased paracellular dye flux in CF cells in response to insulin under hyperglycemia. Gene expression experiments identified claudin-4 (CLDN4) as a key tight junction protein dysregulated in CF cells. CLDN4 protein localization by confocal microscopy showed that CLDN4 was tightly localized at tight junctions in WT cells, which did not change under hyperglycemia. ln contrast, CLDN4 was less well-localized in CF cells at normal glucose and localization was worsened under hyperglycemia. Treatment with highly effective modulator compounds (ETI) reversed this trend, and CFTR rescue was not affected by insulin or hyperglycemia. Bulk RNA sequencing showed differences in transcriptional responses in CF compared to WT cells under normal or high glucose, highlighting promising targets for future investigation. One of these targets is protein tyrosine phosphatase receptor type G (PTPRG), which has been previously found to play a role in defective Akt signaling and insulin resistance.
Collapse
Affiliation(s)
- Analia J Vazquez Cegla
- Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
- Emory+Children's Cystic Fibrosis Center of Excellence, Emory University and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Kymry T Jones
- Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
- Emory+Children's Cystic Fibrosis Center of Excellence, Emory University and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Guiying Cui
- Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Kirsten A Cottrill
- Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
- Emory+Children's Cystic Fibrosis Center of Excellence, Emory University and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Michael Koval
- Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Nael A McCarty
- Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA.
- Emory+Children's Cystic Fibrosis Center of Excellence, Emory University and Children's Healthcare of Atlanta, Atlanta, GA, USA.
| |
Collapse
|
6
|
Di Gioacchino M, Santilli F, Pession A. Is There a Role for Immunostimulant Bacterial Lysates in the Management of Respiratory Tract Infection? Biomolecules 2024; 14:1249. [PMID: 39456182 PMCID: PMC11505618 DOI: 10.3390/biom14101249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
Bacterial Lysates are immunostimulants clinically prescribed for the prevention of respiratory tract infections (RTIs). It has been shown that Bacterial Lysates upregulate the immune system, acting both on innate and adaptive reactions. In fact, there are demonstrations of their efficacy in restoring the integrity and immune function of epithelial barriers, activating ILC3 and dendritic cells with an enhanced Th1 response, and producing serum IgG and serum and salivary IgA specific to the administered bacterial antigens. The activated immune system also protects against other bacteria and viruses due to a trained immunity effect. Most studies show that the number of RTIs and their severity decrease in Bacterial Lysates-pretreated patients, without relevant side effects. The Bacterial Lysates treatment, in addition to reducing the number of RTIs, also prevents the deterioration of the underlying disease (i.e., COPD) induced by repeated infections. Despite these positive data, the most recent meta-analyses evidence the weakness of the studies performed, which are of low quality and have an inadequate number of patients, some of which were non-randomized while others were without a control group or were performed contemporarily in different clinical conditions or with different ages. The high heterogeneity of the studies does not allow us to state Bacterial Lysates' effectiveness in preventing RTIs with sufficient certainty. To completely define their indications, double-blind, placebo-controlled, multicenter, randomized clinical trials should be performed for each product and for each indication. The study population should be adequate for each indication. For this purpose, an adequate run-in phase will be necessary.
Collapse
Affiliation(s)
- Mario Di Gioacchino
- Institute for Clinical Immunotherapy and Advanced Biological Treatments, 65100 Pescara, Italy
| | - Francesca Santilli
- Center for Advanced Science and Technology (CAST), G. d’Annunzio University, 66100 Chieti, Italy;
- Department of Medicine and Science of Aging, G. d’Annunzio University, 66100 Chieti, Italy
| | - Andrea Pession
- Department of Medicine and Surgery, “Alma Mater Studiorum”-University of Bologna, 40100 Bologna, Italy;
| |
Collapse
|
7
|
Shull LM, Wolter DJ, Kunkle DE, Legg KA, Giedroc DP, Skaar EP, Hoffman LR, Reniere ML. Analysis of genetic requirements and nutrient availability for Staphylococcus aureus growth in cystic fibrosis sputum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614743. [PMID: 39386554 PMCID: PMC11463553 DOI: 10.1101/2024.09.24.614743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Staphylococcus aureus is one of the most common pathogens isolated from the lungs of people with cystic fibrosis (CF), but little is known about its ability to colonize this niche. We performed a Tn-seq screen to identify genes necessary for S. aureus growth in media prepared from ex vivo CF sputum. We identified 19 genes that were required for growth in all sputum media tested and dozens more that were required for growth in at least one sputum medium. Depleted mutants of interest included insertions in many genes important for surviving metal starvation as well as the primary regulator of cysteine metabolism cymR. To investigate the mechanisms by which these genes contribute to S. aureus growth in sputum, we quantified low-molecular-weight thiols, nutrient transition metals, and the host metal-sequestration protein calprotectin in sputum from 11 individuals with CF. In all samples, the abundance of calprotectin exceeded nutrient metal concentration, explaining the S. aureus requirement for metal-starvation genes. Further, all samples contain potentially toxic quantities of cysteine and sufficient glutathione to satisfy the organic sulfur requirements of S. aureus. Deletion of the cysteine importer genes tcyA and tcyP in the ∆cymR background restored growth to wild-type levels in CF sputum, suggesting that the mechanism by which cymR is required for growth in sputum is to prevent uncontrolled import of cysteine or cystine from this environment. Overall, this work demonstrates that calprotectin and cysteine limit S. aureus growth in CF sputum.
Collapse
Affiliation(s)
- Lauren M. Shull
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Daniel J. Wolter
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Dillon E. Kunkle
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Katherine A. Legg
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - David P. Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, USA
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Lucas R. Hoffman
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Michelle L. Reniere
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
8
|
Wu M, Chen JH. CFTR dysfunction leads to defective bacterial eradication on cystic fibrosis airways. Front Physiol 2024; 15:1385661. [PMID: 38699141 PMCID: PMC11063615 DOI: 10.3389/fphys.2024.1385661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/04/2024] [Indexed: 05/05/2024] Open
Abstract
Dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel by genetic mutations causes the inherited disease cystic fibrosis (CF). CF lung disease that involves multiple disorders of epithelial function likely results from loss of CFTR function as an anion channel conducting chloride and bicarbonate ions and its function as a cellular regulator modulating the activity of membrane and cytosol proteins. In the absence of CFTR activity, abundant mucus accumulation, bacterial infection and inflammation characterize CF airways, in which inflammation-associated tissue remodeling and damage gradually destroys the lung. Deciphering the link between CFTR dysfunction and bacterial infection in CF airways may reveal the pathogenesis of CF lung disease and guide the development of new treatments. Research efforts towards this goal, including high salt, low volume, airway surface liquid acidosis and abnormal mucus hypotheses are critically reviewed.
Collapse
Affiliation(s)
| | - Jeng-Haur Chen
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| |
Collapse
|
9
|
Han X, Li D, Zhu Y, Schneider-Futschik EK. Recommended Tool Compounds for Modifying the Cystic Fibrosis Transmembrane Conductance Regulator Channel Variants. ACS Pharmacol Transl Sci 2024; 7:933-950. [PMID: 38633590 PMCID: PMC11019735 DOI: 10.1021/acsptsci.3c00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 04/19/2024]
Abstract
Cystic fibrosis (CF) is a genetic disorder arising from variations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, leading to multiple organ system defects. CFTR tool compounds are molecules that can modify the activity of the CFTR channel. Especially, patients that are currently not able to benefit from approved CFTR modulators, such as patients with rare CFTR variants, benefit from further research in discovering novel tools to modulate CFTR. This Review explores the development and classification of CFTR tool compounds, including CFTR blockers (CFTRinh-172, GlyH-101), potentiators (VRT-532, Genistein), correctors (VRT-325, Corr-4a), and other approved and unapproved modulators, with detailed descriptions and discussions for each compound. The challenges and future directions in targeting rare variants and optimizing drug delivery, and the potential synergistic effects in combination therapies are outlined. CFTR modulation holds promise not only for CF treatment but also for generating CF models that contribute to CF research and potentially treating other diseases such as secretory diarrhea. Therefore, continued research on CFTR tool compounds is critical.
Collapse
Affiliation(s)
- XiaoXuan Han
- Department of Biochemistry & Pharmacology,
School of Biomedical Sciences, Faculty of Medicine, Dentistry and
Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Danni Li
- Department of Biochemistry & Pharmacology,
School of Biomedical Sciences, Faculty of Medicine, Dentistry and
Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Yimin Zhu
- Department of Biochemistry & Pharmacology,
School of Biomedical Sciences, Faculty of Medicine, Dentistry and
Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Elena K. Schneider-Futschik
- Department of Biochemistry & Pharmacology,
School of Biomedical Sciences, Faculty of Medicine, Dentistry and
Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
10
|
Ravenel K, Guegan H, Gastebois A, Bouchara JP, Gangneux JP, Giraud S. Fungal Colonization of the Airways of Patients with Cystic Fibrosis: the Role of the Environmental Reservoirs. Mycopathologia 2024; 189:19. [PMID: 38407729 DOI: 10.1007/s11046-023-00818-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/23/2023] [Indexed: 02/27/2024]
Abstract
Filamentous fungi frequently colonize the airways of patients with cystic fibrosis and may cause severe diseases, such as the allergic bronchopulmonary aspergillosis. The most common filamentous fungi capable to chronically colonize the respiratory tract of the patients are Aspergillus fumigatus and Scedosporium species. Defining the treatment strategy may be challenging, the number of available drugs being limited and some of the causative agents being multiresistant microorganisms. The knowledge of the fungal niches in the outdoor and indoor environment is needed for understanding the origin of the contamination of the patients. In light of the abundance of some of the causative molds in compost, agricultural and flower fields, occupational activities related to such environments should be discouraged for patients with cystic fibrosis (CF). In addition, the microbiological monitoring of their indoor environment, including analysis of air and dust on surfaces, is essential to propose preventive measures aiming to reduce the exposure to environmental molds. Nevertheless, some specific niches were also identified in the indoor environment, in relation with humidity which favors the growth of thermotolerant molds. Potted plants were reported as indoor reservoirs for Scedosporium species. Likewise, Exophiala dermatitidis may be spread in the kitchen via dishwashers. However, genotype studies are still required to establish the link between dishwashers and colonization of the airways of CF patients by this black yeast. Moreover, as nothing is known regarding the other filamentous fungi associated with CF, further studies should be conducted to identify other potential specific niches in the habitat.
Collapse
Affiliation(s)
- Kévin Ravenel
- IRF (Infections Respiratoires Fongiques), SFR ICAT 4208, Univ Angers, Univ Brest, Angers, France
| | - Hélène Guegan
- EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail), UMR_S 1085, CHU Rennes, INSERM, Univ Rennes, 35000, Rennes, France
| | - Amandine Gastebois
- IRF (Infections Respiratoires Fongiques), SFR ICAT 4208, Univ Angers, Univ Brest, Angers, France
| | - Jean-Philippe Bouchara
- IRF (Infections Respiratoires Fongiques), SFR ICAT 4208, Univ Angers, Univ Brest, Angers, France
| | - Jean-Pierre Gangneux
- EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail), UMR_S 1085, CHU Rennes, INSERM, Univ Rennes, 35000, Rennes, France
| | - Sandrine Giraud
- IRF (Infections Respiratoires Fongiques), SFR ICAT 4208, Univ Angers, Univ Brest, Angers, France.
| |
Collapse
|
11
|
Adekoya AE, Kargbo HA, Ibberson CB. Defining microbial community functions in chronic human infection with metatranscriptomics. mSystems 2023; 8:e0059323. [PMID: 37823640 PMCID: PMC10734476 DOI: 10.1128/msystems.00593-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/31/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE The microbial diversity in polymicrobial infections (PMIs) allows for community members to establish interactions with one another, which can result in enhanced disease outcomes such as increased antibiotic tolerance and chronicity. Chronic PMIs result in large burdens on health systems, as they affect a significant proportion of the population and are expensive and difficult to treat. However, investigations into physiology of microbial communities in actual human infection sites are lacking. Here, we highlight that the predominant functions in chronic PMIs differ, and anaerobes, often described as bystanders, may be significant in the progression of chronic infections. Determining the community structure and functions in PMIs is a critical step toward understanding the molecular mechanisms that increase the virulence potential of the microbial community in these environments.
Collapse
Affiliation(s)
- Aanuoluwa E. Adekoya
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Hoody A. Kargbo
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Carolyn B. Ibberson
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
12
|
Kragh KN, Tolker-Nielsen T, Lichtenberg M. The non-attached biofilm aggregate. Commun Biol 2023; 6:898. [PMID: 37658117 PMCID: PMC10474055 DOI: 10.1038/s42003-023-05281-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023] Open
Abstract
Biofilms have conventionally been perceived as dense bacterial masses on surfaces, following the five-step model of development. Initial biofilm research focused on surface-attached formations, but detached aggregates have received increasing attention in the past decade due to their pivotal role in chronic infections. Understanding their nature sparked fervent discussions in biofilm conferences and scientific literature. This review consolidates current insights on non-attached aggregates, offering examples of their occurrence in nature and diseases. We discuss their formation and dispersion mechanisms, resilience to antibiotics and immune-responses, drawing parallels to surface-attached biofilms. Moreover, we outline available in vitro models for studying non-attached aggregates.
Collapse
Affiliation(s)
- Kasper N Kragh
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Mads Lichtenberg
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
13
|
Adekoya AE, Kargbo HA, Ibberson CB. Defining Microbial Community Functions in Chronic Human Infection with Metatranscriptomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543868. [PMID: 37333206 PMCID: PMC10274682 DOI: 10.1101/2023.06.06.543868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Chronic polymicrobial infections (cPMIs) harbor complex bacterial communities with diverse metabolic capacities, leading to competitive and cooperative interactions. Although the microbes present in cPMIs have been established through culture-dependent and-independent methods, the key functions that drive different cPMIs and the metabolic activities of these complex communities remain unknown. To address this knowledge gap, we analyzed 102 published metatranscriptomes collected from cystic fibrosis sputum (CF) and chronic wound infections (CW) to identify key bacterial members and functions in cPMIs. Community composition analysis identified a high prevalence of pathogens, particularly Staphylococcus and Pseudomonas, and anaerobic members of the microbiota, including Porphyromonas, Anaerococcus, and Prevotella. Functional profiling with HUMANn3 and SAMSA2 revealed that while functions involved in bacterial competition, oxidative stress response, and virulence were conserved across both chronic infection types, >40% of the functions were differentially expressed (padj < 0.05, fold-change >2). Higher expression of antibiotic resistance and biofilm functions were observed in CF, while tissue destructive enzymes and oxidative stress response functions were highly expressed in CW samples. Of note, strict anaerobes had negative correlations with traditional pathogens in both CW (P = -0.43) and CF (P = -0.27) samples and they significantly contributed to the expression of these functions. Additionally, we show microbial communities have unique expression patterns and distinct organisms fulfill the expression of key functions in each site, indicating the infection environment strongly influences bacterial physiology and that community structure influences function. Collectively, our findings indicate that community composition and function should guide treatment strategies for cPMIs.
Collapse
Affiliation(s)
- Aanuoluwa E. Adekoya
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019
| | - Hoody A. Kargbo
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019
| | - Carolyn B. Ibberson
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019
| |
Collapse
|
14
|
Pitiot A, Ferreira M, Parent C, Boisseau C, Cortes M, Bouvart L, Paget C, Heuzé-Vourc'h N, Sécher T. Mucosal administration of anti-bacterial antibodies provide long-term cross-protection against Pseudomonas aeruginosa respiratory infection. Mucosal Immunol 2023; 16:312-325. [PMID: 36990281 DOI: 10.1016/j.mucimm.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/22/2023] [Accepted: 03/12/2023] [Indexed: 03/30/2023]
Abstract
Bacterial respiratory infections, either acute or chronic, are major threats to human health. Direct mucosal administration, through the airways, of therapeutic antibodies (Abs) offers a tremendous opportunity to benefit patients with respiratory infections. The mode of action of anti-infective Abs relies on pathogen neutralization and crystallizable fragment (Fc)-mediated recruitment of immune effectors to facilitate their elimination. Using a mouse model of acute pneumonia induced by Pseudomonas aeruginosa, we depicted the immunomodulatory mode of action of a neutralizing anti-bacterial Abs. Beyond the rapid and efficient containment of the primary infection, the Abs delivered through the airways harnessed genuine innate and adaptive immune responses to provide long-term protection, preventing secondary bacterial infection. In vitro antigen-presenting cells stimulation assay, as well as in vivo bacterial challenges and serum transfer experiments indicate an essential contribution of immune complexes with the Abs and pathogen in the induction of the sustained and protective anti-bacterial humoral response. Interestingly, the long-lasting response protected partially against secondary infections with heterologous P. aeruginosa strains. Overall, our findings suggest that Abs delivered mucosally promotes bacteria neutralization and provides protection against secondary infection. This opens novel perspectives for the development of anti-infective Abs delivered to the lung mucosa, to treat respiratory infections.
Collapse
Affiliation(s)
- Aubin Pitiot
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université de Tours, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France
| | - Marion Ferreira
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université de Tours, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France
| | - Christelle Parent
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université de Tours, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France
| | - Chloé Boisseau
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université de Tours, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France
| | - Mélanie Cortes
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université de Tours, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France
| | - Laura Bouvart
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université de Tours, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France
| | - Christophe Paget
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université de Tours, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France
| | - Nathalie Heuzé-Vourc'h
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université de Tours, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France
| | - Thomas Sécher
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université de Tours, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France.
| |
Collapse
|
15
|
Sandri A, Saitta GM, Veschetti L, Boschi F, Passarelli Mantovani R, Carelli M, Melotti P, Signoretto C, Boaretti M, Malerba G, Lleò MM. In Vivo Inflammation Caused by Achromobacter spp. Cystic Fibrosis Clinical Isolates Exhibiting Different Pathogenic Characteristics. Int J Mol Sci 2023; 24:ijms24087432. [PMID: 37108596 PMCID: PMC10139000 DOI: 10.3390/ijms24087432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Achromobacter spp. lung infection in cystic fibrosis has been associated with inflammation, increased frequency of exacerbations, and decline of respiratory function. We aimed to evaluate in vivo the inflammatory effects of clinical isolates exhibiting different pathogenic characteristics. Eight clinical isolates were selected based on different pathogenic characteristics previously assessed: virulence in Galleria mellonella larvae, cytotoxicity in human bronchial epithelial cells, and biofilm formation. Acute lung infection was established by intratracheal instillation with 10.5 × 108 bacterial cells in wild-type and CFTR-knockout (KO) mice expressing a luciferase gene under control of interleukin-8 promoter. Lung inflammation was monitored by in vivo bioluminescence imaging up to 48 h after infection, and mortality was recorded up to 96 h. Lung bacterial load was evaluated by CFU count. Virulent isolates caused higher lung inflammation and mice mortality, especially in KO animals. Isolates both virulent and cytotoxic showed higher persistence in mice lungs, while biofilm formation was not associated with lung inflammation, mice mortality, or bacterial persistence. A positive correlation between virulence and lung inflammation was observed. These results indicate that Achromobacter spp. pathogenic characteristics such as virulence and cytotoxicity may be associated with clinically relevant effects and highlight the importance of elucidating their mechanisms.
Collapse
Affiliation(s)
- Angela Sandri
- Department of Diagnostics and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy
| | - Giulia Maria Saitta
- Department of Diagnostics and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy
| | - Laura Veschetti
- GMLab, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| | - Federico Boschi
- Department of Engineering for Innovation Medicine, University of Verona, 37134 Verona, Italy
| | - Rebeca Passarelli Mantovani
- Department of Diagnostics and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy
| | - Maria Carelli
- Department of Diagnostics and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy
| | - Paola Melotti
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata Verona, 37126 Verona, Italy
| | - Caterina Signoretto
- Department of Diagnostics and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy
| | - Marzia Boaretti
- Department of Diagnostics and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy
| | - Giovanni Malerba
- GMLab, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy
| | - Maria M Lleò
- Department of Diagnostics and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy
| |
Collapse
|
16
|
Bellavita R, Maione A, Braccia S, Sinoca M, Galdiero S, Galdiero E, Falanga A. Myxinidin-Derived Peptide against Biofilms Caused by Cystic Fibrosis Emerging Pathogens. Int J Mol Sci 2023; 24:ijms24043092. [PMID: 36834512 PMCID: PMC9964602 DOI: 10.3390/ijms24043092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Chronic lung infections in cystic fibrosis (CF) patients are triggered by multidrug-resistant bacteria such as Pseudomonas aeruginosa, Achromobacter xylosoxidans, and Stenotrophomonas maltophilia. The CF airways are considered ideal sites for the colonization and growth of bacteria and fungi that favor the formation of mixed biofilms that are difficult to treat. The inefficacy of traditional antibiotics reinforces the need to find novel molecules able to fight these chronic infections. Antimicrobial peptides (AMPs) represent a promising alternative for their antimicrobial, anti-inflammatory, and immunomodulatory activities. We developed a more serum-stable version of the peptide WMR (WMR-4) and investigated its ability to inhibit and eradicate C. albicans, S. maltophilia, and A. xylosoxidans biofilms in both in vitro and in vivo studies. Our results suggest that the peptide is able better to inhibit than to eradicate both mono and dual-species biofilms, which is further confirmed by the downregulation of some genes involved in biofilm formation or in quorum-sensing signaling. Biophysical data help to elucidate its mode of action, showing a strong interaction of WMR-4 with lipopolysaccharide (LPS) and its insertion in liposomes mimicking Gram-negative and Candida membranes. Our results support the promising therapeutic application of AMPs in the treatment of mono- and dual-species biofilms during chronic infections in CF patients.
Collapse
Affiliation(s)
- Rosa Bellavita
- Department of Pharmacy, School of Medicine, University of Naples ‘Federico II’, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Angela Maione
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy
| | - Simone Braccia
- Department of Pharmacy, School of Medicine, University of Naples ‘Federico II’, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Marica Sinoca
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy
| | - Stefania Galdiero
- Department of Pharmacy, School of Medicine, University of Naples ‘Federico II’, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Emilia Galdiero
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy
| | - Annarita Falanga
- Department of Agricultural Sciences, University of Naples ‘Federico II’, Via dell’ Università 100, 80055 Portici, Italy
- Correspondence: ; Tel.: +39-081-253-4525
| |
Collapse
|
17
|
Hatziagorou E, Avramidou V, Gioulvanidou M, Talimtzi P, Kouroukli E, Mantsiou C, Lialias I, Nousia L, Tsanakas J. Pulmonary exacerbations, airway pathogens, and long-term course of lung clearance index in children and young adults with cystic fibrosis. Pediatr Pulmonol 2022; 57:3069-3076. [PMID: 36059241 DOI: 10.1002/ppul.26136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 07/29/2022] [Accepted: 08/11/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Pulmonary exacerbations (PEx), pathogens colonizing the respiratory tract, and patients' age are associated with progressive worsening of lung function among patients with cystic fibrosis (CF). However, the effect of these factors on longitudinal changes of Lung Clearance Index (LCI) remains unclear. AIM To assess the role of age, different types of bronchial infection, and PEx on LCI deterioration. METHODS We conducted a retrospective study assessing multiple-breath washout (MBW) and spirometry changes among CF patients evaluated at quarterly outpatient clinic visits over 8 years. MBW and spirometry were performed at each visit, sputum samples and/or cough swabs were obtained for culture, whereas respiratory symptoms and clinical examination findings were recorded. Patients who had ≥5 serial MBW measurements, one of which coincided with a pulmonary exacerbation, were reviewed. RESULTS Seventy-six patients were included in the study: mean age of 10.61 years (range 1.75-23.75). A total of 1152 MBW tests and 1047 spirometry tests were performed. LCI was significantly higher among CF patients aged 11-15, 16-20, and over 20 years than those under 5 years of age; ΔLCI: 1.16 (confidence interval [CI] 0.43-1.90) and 3.25 (CI 2.33-4.17), respectively. Furthermore, LCI was significantly elevated in CF patients with positive cultures for Pseudomonas aeruginosa (0.52 LCI [CI -0.12 to 0.71]) and Stenotrophomonas Maltophilia (1.41 LCI [CI 0.61-2.21]). Moreover, increased values of LCI in CF patients were significantly associated with increased risk of PEx (odds ratio [OR] 1.19, CI [1.14-1.25], p < 0.001). CONCLUSION LCI demonstrates a progression of lung disease and corresponds to changes in bacterial infections and PEx among patients with CF. LCI may be a valuable marker for tracking disease deterioration and may have a role in the routine clinical care of patients with CF.
Collapse
Affiliation(s)
- Elpis Hatziagorou
- Pediatric Pulmonology and CF Unit, 3rd Pediatric Department, Hippokration Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vasiliki Avramidou
- Pediatric Pulmonology and CF Unit, 3rd Pediatric Department, Hippokration Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Gioulvanidou
- Pediatric Pulmonology and CF Unit, 3rd Pediatric Department, Hippokration Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Persefoni Talimtzi
- Department of Hygiene, Social-Preventive Medicine & Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleana Kouroukli
- Pediatric Pulmonology and CF Unit, 3rd Pediatric Department, Hippokration Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Chrysanthi Mantsiou
- Pediatric Pulmonology and CF Unit, 3rd Pediatric Department, Hippokration Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Lialias
- Pediatric Pulmonology and CF Unit, 3rd Pediatric Department, Hippokration Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Lemonia Nousia
- Pediatric Pulmonology and CF Unit, 3rd Pediatric Department, Hippokration Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - John Tsanakas
- Pediatric Pulmonology and CF Unit, 3rd Pediatric Department, Hippokration Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
18
|
Investigation of the Mechanism and Chemistry Underlying Staphylococcus aureus ' Ability to Inhibit Pseudomonas aeruginosa Growth In Vitro. J Bacteriol 2022; 204:e0017422. [PMID: 36218351 DOI: 10.1128/jb.00174-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa inhibits or eradicates Staphylococcus aureus in most in vitro settings. Nonetheless, P. aeruginosa and S. aureus are commonly isolated from chronically infected, nonhealing wounds and lungs of people with cystic fibrosis (CF). Therefore, we hypothesized that S. aureus could protect itself from P. aeruginosa through glucose-derived metabolites, such as small organic acids, preventing it from being eradicated. This in vitro study demonstrated that S. aureus populations, in the presence of glucose, secrete one or more substances that efficiently eradicate P. aeruginosa in a concentration-dependent manner. These substances had a molecular mass lower than three kDa, were hydrophilic, heat- and proteinase-resistant, and demonstrated a pH-dependent effect. Nuclear magnetic resonance analysis identified acetoin, acetic acid, and oligopeptides or cyclic peptides in glucose-grown S. aureus supernatants. All the tested wild-type and clinical S. aureus strain inhibited P. aeruginosa growth. Thus, we proposed a model in which a cocktail of these compounds, produced by established S. aureus populations in glucose presence, facilitated these two species' coexistence in chronic infections. IMPORTANCE Chronic infections affect a growing part of the population and are associated with high societal and personal costs. Multiple bacterial species are often present in these infections, and multispecies infections are considered more severe than single-species infections. Staphylococcus aureus and Pseudomonas aeruginosa often coexist in chronic infections. However, the interactions between these two species and their coexistence in chronic infections are not fully understood. By exploring in vitro interactions, we found a novel S. aureus-mediated inhibition of P. aeruginosa, and we suggested a model of the coexistence of the two species in chronic infections. With this study, we enhanced our understanding of the pathogenesis of chronic multispecies infections, which is crucial to paving the way for developing improved treatment strategies.
Collapse
|
19
|
The natural history and genetic diversity of Haemophilus influenzae infecting the airways of adults with cystic fibrosis. Sci Rep 2022; 12:15765. [PMID: 36131075 PMCID: PMC9492733 DOI: 10.1038/s41598-022-19240-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/26/2022] [Indexed: 12/04/2022] Open
Abstract
Haemophilus influenzae is a Gram-negative pathobiont, frequently recovered from the airways of persons with cystic fibrosis (pwCF). Previous studies of H. influenzae infection dynamics and transmission in CF predominantly used molecular methods, lacking resolution. In this retrospective cohort study, representative yearly H. influenzae isolates from all pwCF attending the Calgary Adult CF Clinic with H. influenzae positive sputum cultures between 2002 and 2016 were typed by pulsed-field gel electrophoresis. Isolates with shared pulsotypes common to ≥ 2 pwCF were sequenced by Illumina MiSeq. Phylogenetic and pangenomic analyses were used to assess genetic relatedness within shared pulsotypes, and epidemiological investigations were performed to assess potential for healthcare associated transmission. H. influenzae infection was observed to be common (33% of patients followed) and dynamic in pwCF. Most infected pwCF exhibited serial infections with new pulsotypes (75% of pwCF with ≥ 2 positive cultures), with up to four distinct pulsotypes identified from individual patients. Prolonged infection by a single pulsotype was only rarely observed. Intra-patient genetic diversity was observed at the single-nucleotide polymorphism and gene content levels. Seven shared pulsotypes encompassing 39% of pwCF with H. influenzae infection were identified, but there was no evidence, within our sampling scheme, of direct patient-to-patient infection transmission.
Collapse
|
20
|
Lamberti YA, Debandi M, Carrica MDC, Hayes JA, Rodriguez ME. Intracellular replication of Inquilinus limosus in bronchial epithelial cells. Microb Pathog 2022; 171:105742. [PMID: 36049652 DOI: 10.1016/j.micpath.2022.105742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022]
Abstract
Inquilinus limosus is an emerging multi-resistant opportunistic pathogen documented mainly in cystic fibrosis patients. Infection with I. limosus is accompanied by either an acute respiratory exacerbation or a progressive loss of pulmonary function. This study examined the interaction of Inquilinus limosus with the bronquial human epithelial cell line 16HBE14o-. Almost 100% of the bacteria that attached to the bronquial cells were found internalized and located in acidic LAMP2 positive compartments. According to confocal studies combined with antibiotic protection assays, I. limosus is able to survive and eventually replicate in these compartments. I. limosus was found nontoxic to cells and did not induce neither IL-6 nor IL-8 cytokine production, a characteristic that may help the bacteria to evade host immune response. Overall, this study indicates that I. limosus displays pathogenic properties based on its ability to survive intracellularly in epithelial cells eventually leading to antibiotic failure and chronic infection.
Collapse
Affiliation(s)
- Yanina Andrea Lamberti
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina.
| | - Martina Debandi
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Mariela Del Carmen Carrica
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Jimena Alvarez Hayes
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - María Eugenia Rodriguez
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
21
|
Hall KM, Pursell ZF, Morici LA. The role of the Pseudomonas aeruginosa hypermutator phenotype on the shift from acute to chronic virulence during respiratory infection. Front Cell Infect Microbiol 2022; 12:943346. [PMID: 35937684 PMCID: PMC9355025 DOI: 10.3389/fcimb.2022.943346] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic respiratory infection (CRI) with Pseudomonas aeruginosa (Pa) presents many unique challenges that complicate treatment. One notable challenge is the hypermutator phenotype which is present in up to 60% of sampled CRI patient isolates. Hypermutation can be caused by deactivating mutations in DNA mismatch repair (MMR) genes including mutS, mutL, and uvrD. In vitro and in vivo studies have demonstrated hypermutator strains to be less virulent than wild-type Pa. However, patients colonized with hypermutators display poorer lung function and a higher incidence of treatment failure. Hypermutation and MMR-deficiency create increased genetic diversity and population heterogeneity due to elevated mutation rates. MMR-deficient strains demonstrate higher rates of mucoidy, a hallmark virulence determinant of Pa during CRI in cystic fibrosis patients. The mucoid phenotype results from simple sequence repeat mutations in the mucA gene made in the absence of functional MMR. Mutations in Pa are further increased in the absence of MMR, leading to microcolony biofilm formation, further lineage diversification, and population heterogeneity which enhance bacterial persistence and host immune evasion. Hypermutation facilitates the adaptation to the lung microenvironment, enabling survival among nutritional complexity and microaerobic or anaerobic conditions. Mutations in key acute-to-chronic virulence “switch” genes, such as retS, bfmS, and ampR, are also catalyzed by hypermutation. Consequently, strong positive selection for many loss-of-function pathoadaptive mutations is seen in hypermutators and enriched in genes such as lasR. This results in the characteristic loss of Pa acute infection virulence factors, including quorum sensing, flagellar motility, and type III secretion. Further study of the role of hypermutation on Pa chronic infection is needed to better inform treatment regimens against CRI with hypermutator strains.
Collapse
Affiliation(s)
- Kalen M. Hall
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Zachary F. Pursell
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Lisa A. Morici
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
- *Correspondence: Lisa A. Morici,
| |
Collapse
|
22
|
Neutralization of ionic interactions by dextran-based single-chain nanoparticles improves tobramycin diffusion into a mature biofilm. NPJ Biofilms Microbiomes 2022; 8:52. [PMID: 35787627 PMCID: PMC9253323 DOI: 10.1038/s41522-022-00317-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022] Open
Abstract
The extracellular matrix protects biofilm cells by reducing diffusion of antimicrobials. Tobramycin is an antibiotic used extensively to treat P. aeruginosa biofilms, but it is sequestered in the biofilm periphery by the extracellular negative charge matrix and loses its efficacy significantly. Dispersal of the biofilm extracellular matrix with enzymes such as DNase I is another promising therapy that enhances antibiotic diffusion into the biofilm. Here, we combine the charge neutralization of tobramycin provided by dextran-based single-chain polymer nanoparticles (SCPNs) together with DNase I to break the biofilm matrix. Our study demonstrates that the SCPNs improve the activity of tobramycin and DNase I by neutralizing the ionic interactions that keep this antibiotic in the biofilm periphery. Moreover, the detailed effects and interactions of nanoformulations with extracellular matrix components were revealed through time-lapse imaging of the P. aeruginosa biofilms by laser scanning confocal microscopy with specific labeling of the different biofilm components.
Collapse
|
23
|
Le Goff M, Vastel M, Lebrun R, Mansuelle P, Diarra A, Grandjean T, Triponney P, Imbert G, Gosset P, Dessein R, Garnier F, Durand E. Characterization of the Achromobacter xylosoxidans Type VI Secretion System and Its Implication in Cystic Fibrosis. Front Cell Infect Microbiol 2022; 12:859181. [PMID: 35782124 PMCID: PMC9245596 DOI: 10.3389/fcimb.2022.859181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Bacteria of the genus Achromobacter are environmental germs, with an unknown reservoir. It can become opportunistic pathogens in immunocompromised patients, causing bacteremia, meningitis, pneumonia, or peritonitis. In recent years, Achromobacter xylosoxidans has emerged with increasing incidence in patients with cystic fibrosis (CF). Recent studies showed that A. xylosoxidans is involved in the degradation of the respiratory function of patients with CF. The respiratory ecosystem of patients with CF is colonized by bacterial species that constantly fight for space and access to nutrients. The type VI secretion system (T6SS) empowers this constant bacterial antagonism, and it is used as a virulence factor in several pathogenic bacteria. This study aimed to investigate the prevalence of the T6SS genes in A. xylosoxidans isolated in patients with CF. We also evaluated clinical and molecular characteristics of T6SS-positive A. xylosoxidans strains. We showed that A. xylosoxidans possesses a T6SS gene cluster and that some environmental and clinical isolates assemble a functional T6SS nanomachine. A. xylosoxidans T6SS is used to target competing bacteria, including other CF-specific pathogens. Finally, we demonstrated the importance of the T6SS in the internalization of A. xylosoxidans in lung epithelial cells and that the T6SS protein Hcp is detected in the sputum of patients with CF. Altogether, these results suggest for the first time a role of T6SS in CF-lung colonization by A. xylosoxidans and opens promising perspective to target this virulence determinant as innovative theranostic options for CF management.
Collapse
Affiliation(s)
- Mélanie Le Goff
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies et Biotechnologie (IM2B), Aix-Marseille Université - Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7255, Marseille, France
| | - Manon Vastel
- Université de Limoges, INSERM, Centre Hospitalier Universitaire (CHU) Limoges, Unité Mixte de Recherche (UMR) 1092, Limoges, France
| | - Régine Lebrun
- Plateforme Protéomique de l’Institut de Microbiologie de la Méditerranée, Marseille Protéomique, Aix Marseille Université, Centre National de la Recherche Scientifique (CNRS) FR 3479, Marseille, France
| | - Pascal Mansuelle
- Plateforme Protéomique de l’Institut de Microbiologie de la Méditerranée, Marseille Protéomique, Aix Marseille Université, Centre National de la Recherche Scientifique (CNRS) FR 3479, Marseille, France
| | - Ava Diarra
- Université de Lille, Centre National de la Recherche Scientifique (CNRS), INSERM, Centre Hospitalier Universitaire (CHU) Lille, Institut Pasteur de Lille, U1019-Unité Mixte de Recherche (UMR) 9017-CIIL-Centre d’Infection et d’Immunité de Lille, University of Lille, Lille, France
| | - Teddy Grandjean
- Université de Lille, Centre National de la Recherche Scientifique (CNRS), INSERM, Centre Hospitalier Universitaire (CHU) Lille, Institut Pasteur de Lille, U1019-Unité Mixte de Recherche (UMR) 9017-CIIL-Centre d’Infection et d’Immunité de Lille, University of Lille, Lille, France
| | - Pauline Triponney
- Centre National de Référence de la Résistance aux Antibiotiques , Centre Hospitalier Universitaire de Besançon, Besançon, France
| | | | - Philippe Gosset
- Université de Lille, Centre National de la Recherche Scientifique (CNRS), INSERM, Centre Hospitalier Universitaire (CHU) Lille, Institut Pasteur de Lille, U1019-Unité Mixte de Recherche (UMR) 9017-CIIL-Centre d’Infection et d’Immunité de Lille, University of Lille, Lille, France
| | - Rodrigue Dessein
- Université de Lille, Centre National de la Recherche Scientifique (CNRS), INSERM, Centre Hospitalier Universitaire (CHU) Lille, Institut Pasteur de Lille, U1019-Unité Mixte de Recherche (UMR) 9017-CIIL-Centre d’Infection et d’Immunité de Lille, University of Lille, Lille, France
| | - Fabien Garnier
- Université de Limoges, INSERM, Centre Hospitalier Universitaire (CHU) Limoges, Unité Mixte de Recherche (UMR) 1092, Limoges, France
- *Correspondence: Eric Durand, ; ; Fabien Garnier,
| | - Eric Durand
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies et Biotechnologie (IM2B), Aix-Marseille Université - Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7255, Marseille, France
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies et Biotechnologie (IM2B), Aix-Marseille Université - Unité Mixte de Recherche (UMR) 7255, INSERM, Marseille, France
- *Correspondence: Eric Durand, ; ; Fabien Garnier,
| |
Collapse
|
24
|
Wan Z, Li X, Sun J, Li X, Liu Z, Dong H, Zhou Q, Qiu H, Xu J, Yang T, Wang WJ, Ou Y. Peripheral Blood Transcripts Predict Preoperative Obstructive Total Anomalous Pulmonary Venous Connection. Front Cardiovasc Med 2022; 9:892000. [PMID: 35711367 PMCID: PMC9194086 DOI: 10.3389/fcvm.2022.892000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
The lack of accessible noninvasive tools to examine the molecular alterations limits our understanding of the causes of total anomalous pulmonary venous connection (TAPVC), as well as the identification of effective operational strategies. Here, we consecutively enrolled peripheral leukocyte transcripts of 26 preoperative obstructive and 22 non-obstructive patients with TAPVC. Two-hundred and fifty six differentially expressed mRNA and 27 differentially expressed long noncoding RNA transcripts were dysregulated. The up-regulated mRNA was enriched in the hydrogen peroxide catabolic process, response to mechanical stimulus, neutrophil degranulation, hemostasis, response to bacterium, and the NABA CORE MATRISOME pathway, all of which are associated with the development of fibrosis. Furthermore, we constructed predictive models using multiple machine-learning algorithms and tested the performance in the validation set. The mRNA NR3C2 and lncRNA MEG3 were screened based on multiple iterations. The random forest prediction model can predict preoperative obstruction patients in the validation set with high accuracy (area under curve = 1; sensitivity = 1). These data highlight the potential of peripheral leukocyte transcripts to evaluate obstructive-related pathophysiological alterations, leading to precision healthcare solutions that could improve patient survival after surgery. It also provides a novel direction for the study of preoperative obstructive TAPVC.
Collapse
Affiliation(s)
- Zunmin Wan
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaohong Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jinghua Sun
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | - Xiaohua Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | | | - Haojian Dong
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | | | - Hailong Qiu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | | | - Tingyu Yang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI-Shenzhen, Shenzhen, China
| | | | - Yanqiu Ou
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Yanqiu Ou
| |
Collapse
|
25
|
Bouch S, Litvack ML, Litman K, Luo L, Post A, Williston E, Park AJ, Roach EJ, Berezuk AM, Khursigara CM, Post M. Therapeutic stem cell-derived alveolar-like macrophages display bactericidal effects and resolve Pseudomonas aeruginosa-induced lung injury. J Cell Mol Med 2022; 26:3046-3059. [PMID: 35441437 PMCID: PMC9097833 DOI: 10.1111/jcmm.17324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 12/24/2021] [Accepted: 01/28/2022] [Indexed: 01/19/2023] Open
Abstract
Bacterial lung infections lead to greater than 4 million deaths per year with antibiotic treatments driving an increase in antibiotic resistance and a need to establish new therapeutic approaches. Recently, we have generated mouse and rat stem cell‐derived alveolar‐like macrophages (ALMs), which like primary alveolar macrophages (1'AMs), phagocytose bacteria and promote airway repair. Our aim was to further characterize ALMs and determine their bactericidal capabilities. The characterization of ALMs showed that they share known 1'AM cell surface markers, but unlike 1'AMs are highly proliferative in vitro. ALMs effectively phagocytose and kill laboratory strains of P. aeruginosa (P.A.), E. coli (E.C.) and S. aureus, and clinical strains of P.A. In vivo, ALMs remain viable, adapt additional features of native 1'AMs, but proliferation is reduced. Mouse ALMs phagocytose P.A. and E.C. and rat ALMs phagocytose and kill P.A. within the lung 24 h post‐instillation. In a pre‐clinical model of P.A.‐induced lung injury, rat ALM administration mitigated weight loss and resolved lung injury observed seven days post‐instillation. Collectively, ALMs attenuate pulmonary bacterial infections and promote airway repair. ALMs could be utilized as an alternative or adjuvant therapy where current treatments are ineffective against antibiotic‐resistant bacteria or to enhance routine antibiotic delivery.
Collapse
Affiliation(s)
- Sheena Bouch
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael L Litvack
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kymberly Litman
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Laboratory Medicine and Pathobiology, The University of Toronto, Toronto, Ontario, Canada
| | - Lisha Luo
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Alex Post
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Emma Williston
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Amber J Park
- Department of Molecular and Cellular Biology, The University of Guelph, Ontario, Canada
| | - Elyse J Roach
- Department of Molecular and Cellular Biology, The University of Guelph, Ontario, Canada
| | - Alison M Berezuk
- Department of Molecular and Cellular Biology, The University of Guelph, Ontario, Canada
| | - Cezar M Khursigara
- Department of Molecular and Cellular Biology, The University of Guelph, Ontario, Canada
| | - Martin Post
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Laboratory Medicine and Pathobiology, The University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Sandri A, Haagensen JAJ, Veschetti L, Johansen HK, Molin S, Malerba G, Signoretto C, Boaretti M, Lleo MM. Adaptive Interactions of Achromobacter spp. with Pseudomonas aeruginosa in Cystic Fibrosis Chronic Lung Co-Infection. Pathogens 2021; 10:978. [PMID: 34451442 PMCID: PMC8400197 DOI: 10.3390/pathogens10080978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/17/2021] [Accepted: 07/26/2021] [Indexed: 12/23/2022] Open
Abstract
In the lungs of patients with cystic fibrosis (CF), the main pathogen Pseudomonas aeruginosa is often co-isolated with other microbes, likely engaging in inter-species interactions. In the case of chronic co-infections, this cohabitation can last for a long time and evolve over time, potentially contributing to the clinical outcome. Interactions involving the emerging pathogens Achromobacter spp. have only rarely been studied, reporting inhibition of P. aeruginosa biofilm formation. To evaluate the possible evolution of such interplay, we assessed the ability of Achromobacter spp. isolates to affect the biofilm formation of co-isolated P. aeruginosa strains during long-term chronic co-infections. We observed both competition and cohabitation. An Achromobacter sp. isolate secreted exoproducts interfering with the adhesion ability of a co-isolated P. aeruginosa strain and affected its biofilm formation. Conversely, a clonal Achromobacter sp. strain later isolated from the same patient, as well as two longitudinal strains from another patient, did not show similar competitive behavior against its P. aeruginosa co-isolates. Genetic variants supporting the higher virulence of the competitive Achromobacter sp. isolate were found in its genome. Our results confirm that both inter-species competition and cohabitation are represented during chronic co-infections in CF airways, and evolution of these interplays can happen even at the late stages of chronic infection.
Collapse
Affiliation(s)
- Angela Sandri
- Department of Diagnostics and Public Health, Section of Microbiology, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (A.S.); (C.S.); (M.B.)
| | - Janus Anders Juul Haagensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; (J.A.J.H.); (S.M.)
| | - Laura Veschetti
- Laboratory of Computational Genomics, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (L.V.); (G.M.)
| | - Helle Krogh Johansen
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark;
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Søren Molin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark; (J.A.J.H.); (S.M.)
| | - Giovanni Malerba
- Laboratory of Computational Genomics, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (L.V.); (G.M.)
| | - Caterina Signoretto
- Department of Diagnostics and Public Health, Section of Microbiology, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (A.S.); (C.S.); (M.B.)
| | - Marzia Boaretti
- Department of Diagnostics and Public Health, Section of Microbiology, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (A.S.); (C.S.); (M.B.)
| | - Maria M. Lleo
- Department of Diagnostics and Public Health, Section of Microbiology, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (A.S.); (C.S.); (M.B.)
| |
Collapse
|
27
|
Treghini C, Dell'Accio A, Fusi F, Romano G. Aerosol-based antimicrobial photoinactivation in the lungs: an action spectrum study. Photochem Photobiol Sci 2021; 20:985-996. [PMID: 34275118 DOI: 10.1007/s43630-021-00066-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 06/15/2021] [Indexed: 12/20/2022]
Abstract
Chronic lung infections are among the most diffused human infections, being often associated with multidrug-resistant bacteria. In this framework, the European project "Light4Lungs" aims at synthesizing and testing an inhalable light source to control lung infections by antimicrobial photoinactivation (aPDI), addressing endogenous photosensitizers only (porphyrins) in the representative case of S. aureus and P. aeruginosa. In the search for the best emission characteristics for the aerosolized light source, this work defines and calculates the photo-killing action spectrum for lung aPDI in the exemplary case of cystic fibrosis. This was obtained by applying a semi-theoretical modelling with Monte Carlo simulations, according to previously published methodology related to stomach infections and applied to the infected trachea, bronchi, bronchioles and alveoli. In each of these regions, the two low and high oxygen concentration cases were considered to account for the variability of in vivo conditions, together with the presence of endogenous porphyrins and other relevant absorbers/diffusers inside the illuminated biofilm/mucous layer. Furthermore, an a priori method to obtain the "best illumination wavelengths" was defined, starting from maximizing porphyrin and light absorption at any depth. The obtained action spectrum is peaked at 394 nm and mostly follows porphyrin extinction coefficient behavior. This is confirmed by the results from the best illumination wavelengths, which reinforces the robustness of our approach. These results can offer important indications for the synthesis of the aerosolized light source and definition of its most effective emission spectrum, suggesting a flexible platform to be considered in further applications.
Collapse
Affiliation(s)
- Chiara Treghini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, viale Pieraccini 6, 50139, Florence, Italy
| | - Alfonso Dell'Accio
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, viale Pieraccini 6, 50139, Florence, Italy
| | - Franco Fusi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, viale Pieraccini 6, 50139, Florence, Italy.
| | - Giovanni Romano
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, viale Pieraccini 6, 50139, Florence, Italy
| |
Collapse
|
28
|
Gabrielaite M, Nielsen FC, Johansen HK, Marvig RL. Achromobacter spp. genetic adaptation in cystic fibrosis. Microb Genom 2021; 7:000582. [PMID: 34232117 PMCID: PMC8477396 DOI: 10.1099/mgen.0.000582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/12/2021] [Indexed: 11/23/2022] Open
Abstract
Achromobacter spp. are emerging pathogens in patients with cystic fibrosis (CF) and Achromobacter spp. caused infections are associated with more severe disease outcomes and high intrinsic antibiotic resistance. While conventional CF pathogens are studied extensively, little is known about the genetic determinants leading to antibiotic resistance and the genetic adaptation in Achromobacter spp. infections. Here, we analysed 101 Achromobacter spp. genomes from 51 patients with CF isolated during the course of up to 20 years of infection to identify within-host adaptation, mutational signatures and genetic variation associated with increased antibiotic resistance. We found that the same regulatory and inorganic ion transport genes were frequently mutated in persisting clone types within and between Achromobacter species, indicating convergent genetic adaptation. Genome-wide association study of six antibiotic resistance phenotypes revealed the enrichment of associated genes involved in inorganic ion transport, transcription gene enrichment in β-lactams, and energy production and translation gene enrichment in the trimethoprim/sulfonamide group. Overall, we provide insights into the pathogenomics of Achromobacter spp. infections in patients with CF airways. Since emerging pathogens are increasingly recognized as an important healthcare issue, our findings on evolution of antibiotic resistance and genetic adaptation can facilitate better understanding of disease progression and how mutational changes have implications for patients with CF.
Collapse
Affiliation(s)
| | - Finn C. Nielsen
- Center for Genomic Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Helle K. Johansen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus L. Marvig
- Center for Genomic Medicine, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
29
|
Khademi SMH, Gabrielaite M, Paulsson M, Knulst M, Touriki E, Marvig RL, Påhlman LI. Genomic and Phenotypic Evolution of Achromobacter xylosoxidans during Chronic Airway Infections of Patients with Cystic Fibrosis. mSystems 2021; 6:e0052321. [PMID: 34184916 PMCID: PMC8269239 DOI: 10.1128/msystems.00523-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/02/2021] [Indexed: 11/22/2022] Open
Abstract
Bacterial pathogens evolve during chronic colonization of the human host by selection for pathoadaptive mutations. One of the emerging and understudied bacterial species causing chronic airway infections in patients with cystic fibrosis (CF) is Achromobacter xylosoxidans. It can establish chronic infections in patients with CF, but the genetic and phenotypic changes associated with adaptation during these infections are not completely understood. In this study, we analyzed the whole-genome sequences of 55 clinical A. xylosoxidans isolates longitudinally collected from the sputum of 6 patients with CF. Four genes encoding regulatory proteins and two intergenic regions showed convergent evolution, likely driven by positive selection for pathoadaptive mutations, across the different clones of A. xylosoxidans. Most of the evolved isolates had lower swimming motility and were resistant to multiple classes of antibiotics, while fewer of the evolved isolates had slower growth or higher biofilm production than the first isolates. Using a genome-wide association study method, we identified several putative genetic determinants of biofilm formation, motility and β-lactam resistance in this pathogen. With respect to antibiotic resistance, we discovered that a combination of mutations in pathoadaptive genes (phoQ and bigR) and two other genes encoding regulatory proteins (spoT and cpxA) were associated with increased resistance to meropenem and ceftazidime. Altogether, our results suggest that genetic changes within regulatory loci facilitate within-host adaptation of A. xylosoxidans and the emergence of adaptive phenotypes, such as antibiotic resistance or biofilm formation. IMPORTANCE A thorough understanding of bacterial pathogen adaptation is essential for the treatment of chronic bacterial infections. One unique challenge in the analysis and interpretation of genomics data is identifying the functional impact of mutations accumulated in the bacterial genome during colonization in the human host. Here, we investigated the genomic and phenotypic evolution of A. xylosoxidans in chronic airway infections of patients with CF and identified several mutations associated with the phenotypic evolution of this pathogen using genome-wide associations. Identification of phenotypes under positive selection and the associated mutations can enlighten the adaptive processes of this emerging pathogen in human infections and pave the way for novel therapeutic interventions.
Collapse
Affiliation(s)
- S. M. Hossein Khademi
- Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, Lund, Sweden
| | | | - Magnus Paulsson
- Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, Lund, Sweden
- Division of Infectious Diseases, Skåne University Hospital Lund, Lund, Sweden
| | - Mattis Knulst
- Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Eleni Touriki
- Clinical Microbiology, Labmedicin Skåne, Lund, Sweden
| | - Rasmus L. Marvig
- Center for Genomic Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Lisa I. Påhlman
- Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, Lund, Sweden
- Division of Infectious Diseases, Skåne University Hospital Lund, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
30
|
Transmission and Antibiotic Resistance of Achromobacter in Cystic Fibrosis. J Clin Microbiol 2021; 59:JCM.02911-20. [PMID: 33472899 PMCID: PMC8092725 DOI: 10.1128/jcm.02911-20] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/11/2021] [Indexed: 12/22/2022] Open
Abstract
Achromobacter species are increasingly being detected in patients with cystic fibrosis (CF), and this emerging pathogen is associated with antibiotic resistance and more-severe disease outcomes. Nonetheless, little is known about the extent of transmission and antibiotic resistance development in Achromobacter infections. We sequenced the genomes of 101 Achromobacter clinical isolates (identified as Achromobacter xylosoxidans based on matrix-assister laser desorption ionization-time of flight [MALDI-TOF] or API N20 typing) collected from 51 patients with CF-the largest longitudinal data set to date. We performed phylogenetic analysis on the genomes and combined this with epidemiological and antibiotic resistance data to identify patient-to-patient transmission and the development of antibiotic resistance. We confirmed that the MALDI-TOF or API N20 method was not sufficient for Achromobacter species-level typing and that the population of Achromobacter isolates was composed of five different species, among which A. xylosoxidans accounted for 52% of infections. Most patients were infected by unique Achromobacter clone types; nonetheless, suspected patient-to-patient transmission cases identified by shared clone types were observed in 35% (n = 18) of patients. In 15 of 16 cases, the suspected transmissions were further supported by genome- or clinic visit-based epidemiological analysis. Finally, we found that resistance developed over time. We show that whole-genome sequencing (WGS) is essential for Achromobacter species typing and identification of patient-to-patient transmission, which was revealed for Achromobacter ruhlandii, A. xylosoxidans, and, for the first time, Achromobacter insuavis Furthermore, we show that the development of antibiotic resistance is associated with chronic Achromobacter infections. Our findings emphasize that transmission and antibiotic resistance should be considered in future treatment strategies.
Collapse
|
31
|
Paulsson M, Kragh KN, Su YC, Sandblad L, Singh B, Bjarnsholt T, Riesbeck K. Peptidoglycan-Binding Anchor Is a Pseudomonas aeruginosa OmpA Family Lipoprotein With Importance for Outer Membrane Vesicles, Biofilms, and the Periplasmic Shape. Front Microbiol 2021; 12:639582. [PMID: 33717034 PMCID: PMC7947798 DOI: 10.3389/fmicb.2021.639582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/28/2021] [Indexed: 01/02/2023] Open
Abstract
The outer membrane protein A (OmpA) family contains an evolutionary conserved domain that links the outer membrane in Gram-negative bacteria to the semi-rigid peptidoglycan (PG) layer. The clinically significant pathogen Pseudomonas aeruginosa carries several OmpA family proteins (OprF, OprL, PA0833, and PA1048) that share the PG-binding domain. These proteins are important for cell morphology, membrane stability, and biofilm and outer membrane vesicle (OMV) formation. In addition to other OmpAs, in silico analysis revealed that the putative outer membrane protein (OMP) with gene locus PA1041 is a lipoprotein with an OmpA domain and, hence, is a potential virulence factor. This study aimed to evaluate PA1041 as a PG-binding protein and describe its effect on the phenotype. Clinical strains were confirmed to contain the lipoprotein resulting from PA1041 expression with Western blot, and PG binding was verified in enzyme-linked immunosorbent assay (ELISA). By using a Sepharose bead-based ELISA, we found that the lipoprotein binds to meso-diaminopimelic acid (mDAP), an amino acid in the pentapeptide portion of PGs. The reference strain PAO1 and the corresponding transposon mutant PW2884 devoid of the lipoprotein were examined for phenotypic changes. Transmission electron microscopy revealed enlarged periplasm spaces near the cellular poles in the mutant. In addition, we observed an increased release of OMV, which could be confirmed by nanoparticle tracking analysis. Importantly, mutants without the lipoprotein produced a thick, but loose and unorganized, biofilm in flow cells. In conclusion, the lipoprotein from gene locus PA1041 tethers the outer membrane to the PG layer, and mutants are viable, but display severe phenotypic changes including disordered biofilm formation. Based upon the phenotype of the P. aeruginosa PW2884 mutant and the function of the protein, we designate the lipoprotein with locus tag PA1041 as “peptidoglycan-binding anchor” (Pba).
Collapse
Affiliation(s)
- Magnus Paulsson
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden.,Division for Infectious Diseases, Skåne University Hospital, Lund, Sweden
| | - Kasper Nørskov Kragh
- Faculty of Health and Medical Sciences, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| | - Yu-Ching Su
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Linda Sandblad
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Birendra Singh
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Thomas Bjarnsholt
- Faculty of Health and Medical Sciences, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
32
|
Influence of relevant cystic fibrosis bacteria on Scedosporium apiospermum and Scedosporium boydii growth and viability. Braz J Microbiol 2021; 52:185-193. [PMID: 33442865 DOI: 10.1007/s42770-020-00415-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 12/18/2020] [Indexed: 10/22/2022] Open
Abstract
Cystic fibrosis (CF) causes a variety of symptoms in different organs, but the majority of the morbidity and mortality of CF is related with pulmonary conditions. Primary infections are usually bacterial, and when treated with antibiotics, yeast infections appear or become more evident. Studies show that different microorganisms can co-inhabit the same environment and the interactions could be synergistic or antagonistic. Using techniques including viable and non-viable cell-to-cell interactions, mixed culture in liquid, and solid media sharing or not the supernatant, this study has evaluated interactions between the fungal species Scedosporium apiospermum and Scedosporium boydii with the bacterial species Staphylococcus aureus, Pseudomonas aeruginosa, and Burkholderia cepacia. Cell-to-cell interactions in liquid medium showed that P. aeruginosa and B. cepacia were able to reduce fungal viability but only in the presence of alive bacteria. Interactions without cell contact using a semi-permeable membrane showed that all bacteria were able to inhibit both fungal growths/viabilities. Cell-free supernatants from bacterial growth reduced fungal viability in planktonic fungal cells as well as in some conditions for preformed fungal biomass. According to the chemical analysis of the bacterial supernatants, the predominant component is protein. In this work, we verified that bacterial cells and their metabolites, present in the supernatants, can play anti-S. apiospermum and anti-S. boydii roles on fungal growth and viability.
Collapse
|
33
|
de Oliveira EB, Xisto MIDDS, Rollin-Pinheiro R, Rochetti VP, Barreto-Bergter E. Peptidorhamnomannans From Scedosporium and Lomentospora Species Display Microbicidal Activity Against Bacteria Commonly Present in Cystic Fibrosis Patients. Front Cell Infect Microbiol 2020; 10:598823. [PMID: 33251161 PMCID: PMC7673444 DOI: 10.3389/fcimb.2020.598823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/07/2020] [Indexed: 11/13/2022] Open
Abstract
Scedosporium and Lomentospora species are filamentous fungi that cause a wide range of infections in humans. They are usually found in the lungs of cystic fibrosis (CF) patients and are the second most frequent fungal genus after Aspergillus species. Several studies have been recently performed in order to understand how fungi and bacteria interact in CF lungs, since both can be isolated simultaneously from patients. In this context, many bacterial molecules were shown to inhibit fungal growth, but little is known about how fungi could interfere in bacterial development in CF lungs. Scedosporium and Lomentospora species present peptidorhamnomannans (PRMs) in their cell wall that play crucial roles in fungal adhesion and interaction with host epithelial cells and the immune system. The present study aimed to analyze whether PRMs extracted from Lomentospora prolificans, Scedosporium apiospermum, Scedosporium boydii, and Scedosporium aurantiacum block bacterial growth and biofilm formation in vitro. PRM from L. prolificans and S. boydii displayed the best bactericidal effect against methicillin resistant Staphylococcus aureus (MRSA), Burkholderia cepacia, and Escherichia coli, but not Pseudomonas aeruginosa, all of which are the most frequently found bacteria in CF lungs. In addition, biofilm formation was inhibited in all bacteria tested using PRMs at minimal inhibitory concentration (MIC). These results suggest that PRMs from the Scedosporium and Lomentospora surface seem to play an important role in Scedosporium colonization in CF patients, helping to clarify how these pathogens interact to each other in CF lungs.
Collapse
Affiliation(s)
- Evely Bertulino de Oliveira
- Laboratório de Química Biológica de Microrganismos, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Mariana Ingrid Dutra da Silva Xisto
- Laboratório de Química Biológica de Microrganismos, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Rodrigo Rollin-Pinheiro
- Laboratório de Química Biológica de Microrganismos, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Victor Pereira Rochetti
- Laboratório de Química Biológica de Microrganismos, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Eliana Barreto-Bergter
- Laboratório de Química Biológica de Microrganismos, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
34
|
Static Growth Promotes PrrF and 2-Alkyl-4(1 H)-Quinolone Regulation of Type VI Secretion Protein Expression in Pseudomonas aeruginosa. J Bacteriol 2020; 202:JB.00416-20. [PMID: 33020221 DOI: 10.1128/jb.00416-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/29/2020] [Indexed: 12/21/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that is frequently associated with both acute and chronic infections. P. aeruginosa possesses a complex regulatory network that modulates nutrient acquisition and virulence, but our knowledge of these networks is largely based on studies with shaking cultures, which are not likely representative of conditions during infection. Here, we provide proteomic, metabolic, and genetic evidence that regulation by iron, a critical metallonutrient, is altered in static P. aeruginosa cultures. Specifically, we observed a loss of iron-induced expression of proteins for oxidative phosphorylation, tricarboxylic acid (TCA) cycle metabolism under static conditions. Moreover, we identified type VI secretion as a target of iron regulation in P. aeruginosa cells under static but not shaking conditions, and we present evidence that this regulation occurs via PrrF small regulatory RNA (sRNA)-dependent production of 2-alkyl-4(1H)-quinolone metabolites. These results yield new iron regulation paradigms in an important opportunistic pathogen and highlight the need to redefine iron homeostasis in static microbial communities.IMPORTANCE Host-mediated iron starvation is a broadly conserved signal for microbial pathogens to upregulate expression of virulence traits required for successful infection. Historically, global iron regulatory studies in microorganisms have been conducted in shaking cultures to ensure culture homogeneity, yet these conditions are likely not reflective of growth during infection. Pseudomonas aeruginosa is a well-studied opportunistic pathogen and model organism for iron regulatory studies. Iron homeostasis is maintained through the Fur protein and PrrF small regulatory sRNAs, the functions of which are highly conserved in many other bacterial species. In the current study, we examined how static growth affects the known iron and PrrF regulons of P. aeruginosa, leading to the discovery of novel PrrF-regulated virulence processes. This study demonstrates how the utilization of distinct growth models can enhance our understanding of basic physiological processes that may also affect pathogenesis.
Collapse
|
35
|
Kuek LE, Lee RJ. First contact: the role of respiratory cilia in host-pathogen interactions in the airways. Am J Physiol Lung Cell Mol Physiol 2020; 319:L603-L619. [PMID: 32783615 PMCID: PMC7516383 DOI: 10.1152/ajplung.00283.2020] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
Respiratory cilia are the driving force of the mucociliary escalator, working in conjunction with secreted airway mucus to clear inhaled debris and pathogens from the conducting airways. Respiratory cilia are also one of the first contact points between host and inhaled pathogens. Impaired ciliary function is a common pathological feature in patients with chronic airway diseases, increasing susceptibility to respiratory infections. Common respiratory pathogens, including viruses, bacteria, and fungi, have been shown to target cilia and/or ciliated airway epithelial cells, resulting in a disruption of mucociliary clearance that may facilitate host infection. Despite being an integral component of airway innate immunity, the role of respiratory cilia and their clinical significance during airway infections are still poorly understood. This review examines the expression, structure, and function of respiratory cilia during pathogenic infection of the airways. This review also discusses specific known points of interaction of bacteria, fungi, and viruses with respiratory cilia function. The emerging biological functions of motile cilia relating to intracellular signaling and their potential immunoregulatory roles during infection will also be discussed.
Collapse
Affiliation(s)
- Li Eon Kuek
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Robert J Lee
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
36
|
Menetrey Q, Dupont C, Chiron R, Jumas-Bilak E, Marchandin H. High Occurrence of Bacterial Competition Among Clinically Documented Opportunistic Pathogens Including Achromobacter xylosoxidans in Cystic Fibrosis. Front Microbiol 2020; 11:558160. [PMID: 33013789 PMCID: PMC7513574 DOI: 10.3389/fmicb.2020.558160] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022] Open
Abstract
Cystic Fibrosis (CF) airways favor abnormal microbial development. Infections are considered as polymicrobial and competition can be observed between microorganisms. The current literature on bacterial competition in CF mostly consists of studies with limited numbers of strains, mainly focused on the major pathogens Pseudomonas aeruginosa (Pa) and Staphylococcus aureus (Sa) and does not give a comprehensive overview of the overall importance of bacterial interactions or the behavior of less often encountered emerging bacteria such as Achromobacter. In this context, we screened a panel of 39 strains from six CF patients, of either clinical or domestic environmental origin, distinguished according to genotype and belonging to four opportunistic pathogens, Pa (n = 15), Sa (n = 3), Stenotrophomonas maltophilia (Sm, n = 10) and Achromobacter xylosoxidans (Ax, n = 11). We investigated their capacity to compete in terms of growth, motility, and pigment production on agar media through 203 crossing experiments. Eleven strains selected via the initial screening results were further studied for competitive growth in liquid medium and biofilm formation. Competition was noted for 33% (67/203) of the pairs of strains with 85 modifications observed between monocultures and co-cultures, impacting growth (23.6%), motility (13.8%), and/or pigment production (6.1%). Under all conditions of the study (clinical, environmental strains; intra-, inter-patients; intra-, inter-species levels), competition was significantly more frequent among pairs of strains with at least one clinical strain. While Pa mainly outcompeted other species, in one patient with chronic colonization by Ax and sporadic colonization by Pa, we showed that some Ax inhibited the growth and pigmentation of Pa whereas biofilm formation was drastically reduced. Enlarging the panel of strains tested in competition assays gave new perspectives on the complex interactions taking place among the CF airway community. Indeed, the frequent occurrence of varied, strain-dependent interactions is revealed here. We report the first results of competition assays for Ax with the ability of certain strains to outcompete Pa. Our results are linked to the patient’s colonization history and question the importance of bacterial competitiveness in the colonization pattern of CF airways.
Collapse
Affiliation(s)
- Quentin Menetrey
- HydroSciences Montpellier, Univ Montpellier, CNRS, IRD, Montpellier, France
| | - Chloé Dupont
- HydroSciences Montpellier, Univ Montpellier, CNRS, IRD, Montpellier, France.,HydroSciences Montpellier, Univ Montpellier, CNRS, IRD, Laboratoire d'Ecologie Microbienne Hospitalière, CHU Montpellier, Montpellier, France
| | - Raphaël Chiron
- HydroSciences Montpellier, Univ Montpellier, CNRS, IRD, Montpellier, France.,HydroSciences Montpellier, Univ Montpellier, CNRS, IRD, Centre de Ressources et de Compétences de la Mucoviscidose, CHU Montpellier, Montpellier, France
| | - Estelle Jumas-Bilak
- HydroSciences Montpellier, Univ Montpellier, CNRS, IRD, Montpellier, France.,HydroSciences Montpellier, Univ Montpellier, CNRS, IRD, Laboratoire d'Ecologie Microbienne Hospitalière, CHU Montpellier, Montpellier, France
| | - Hélène Marchandin
- HydroSciences Montpellier, Univ Montpellier, CNRS, IRD, Montpellier, France.,HydroSciences Montpellier, Univ Montpellier, CNRS, IRD, Département de Microbiologie, CHU Nîmes, Nîmes, France
| |
Collapse
|
37
|
Currie AJ, Main ET, Wilson HM, Armstrong-James D, Warris A. CFTR Modulators Dampen Aspergillus-Induced Reactive Oxygen Species Production by Cystic Fibrosis Phagocytes. Front Cell Infect Microbiol 2020; 10:372. [PMID: 32793514 PMCID: PMC7393064 DOI: 10.3389/fcimb.2020.00372] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/17/2020] [Indexed: 12/17/2022] Open
Abstract
Excessive inflammation by phagocytes during Aspergillus fumigatus infection is thought to promote lung function decline in CF patients. CFTR modulators have been shown to reduce A. fumigatus colonization in vivo, however, their antifungal and anti-inflammatory mechanisms are unclear. Other treatments including azithromycin and acebilustat may dampen Aspergillus-induced inflammation due to their immunomodulatory properties. Therefore, we set out in this study to determine the effects of current CF therapies on ROS production and fungal killing, either direct or indirect by enhancing antifungal immune mechanisms in peripheral blood immune cells from CF patients upon A. fumigatus infection. Isolated peripheral blood mononuclear cells (PBMCs) and polymorphonuclear cells (PMNs) from CF patients and healthy volunteers were challenged with A. fumigatus following pre-treatment with CFTR modulators, azithromycin or acebilustat. Ivacaftor/lumacaftor treated CF and control subject PMNs resulted in a significant reduction (p < 0.05) in Aspergillus-induced ROS. For CF PBMC, Aspergillus-induced ROS was significantly reduced when pre-treated with ivacaftor alone (p < 0.01) or in combination with lumacaftor (p < 0.01), with a comparable significant reduction in control subject PBMC (p < 0.05). Azithromycin and acebilustat had no effect on ROS production by CF or control subject phagocytes. None of the treatments showed an indirect or direct antifungal activity. In summary, CFTR modulators have potential for additional immunomodulatory benefits to prevent or treat Aspergillus-induced inflammation in CF. The comparable effects of CFTR modulators observed in phagocytes from control subjects questions their exact mechanism of action.
Collapse
Affiliation(s)
- Alexander J Currie
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.,Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Ellen T Main
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Heather M Wilson
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | | | - Adilia Warris
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
38
|
Hatziagorou E, Orenti A, Drevinek P, Kashirskaya N, Mei-Zahav M, De Boeck K, Pfleger A, Sciensano MT, Lammertyn E, Macek M, Olesen HV, Farge A, Naehrlich L, Ujhelyi R, Fletcher G, Padoan R, Timpare Z, Malakauskas K, Fustik S, Gulmans V, Turcu O, Pereira L, Mosescu S, Rodic M, Kayserova H, Krivec U, Vazquez-Cordero C, de Monestrol I, Lindblad A, Jung A, Makukh H, Carr SB, Cosgriff R, Zolin A. Changing epidemiology of the respiratory bacteriology of patients with cystic fibrosis–data from the European cystic fibrosis society patient registry. J Cyst Fibros 2020; 19:376-383. [DOI: 10.1016/j.jcf.2019.08.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/02/2019] [Accepted: 08/11/2019] [Indexed: 01/04/2023]
|
39
|
Cryptides Identified in Human Apolipoprotein B as New Weapons to Fight Antibiotic Resistance in Cystic Fibrosis Disease. Int J Mol Sci 2020; 21:ijms21062049. [PMID: 32192076 PMCID: PMC7139702 DOI: 10.3390/ijms21062049] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 01/24/2023] Open
Abstract
Chronic respiratory infections are the main cause of morbidity and mortality in cystic fibrosis (CF) patients, and are characterized by the development of multidrug resistance (MDR) phenotype and biofilm formation, generally recalcitrant to treatment with conventional antibiotics. Hence, novel effective strategies are urgently needed. Antimicrobial peptides represent new promising therapeutic agents. Here, we analyze for the first time the efficacy of three versions of a cryptide identified in human apolipoprotein B (ApoB, residues 887-922) towards bacterial strains clinically isolated from CF patients. Antimicrobial and anti-biofilm properties of ApoB-derived cryptides have been analyzed by broth microdilution assays, crystal violet assays, confocal laser scanning microscopy and scanning electron microscopy. Cell proliferation assays have been performed to test cryptide effects on human host cells. ApoB-derived cryptides have been found to be endowed with significant antimicrobial and anti-biofilm properties towards Pseudomonas and Burkholderia strains clinically isolated from CF patients. Peptides have been also found to be able to act in combination with the antibiotic ciprofloxacin, and they are harmless when tested on human bronchial epithelial mesothelial cells. These findings open interesting perspectives to cryptide applicability in the treatment of chronic lung infections associated with CF disease.
Collapse
|
40
|
Ibberson CB, Whiteley M. The social life of microbes in chronic infection. Curr Opin Microbiol 2020; 53:44-50. [PMID: 32145635 DOI: 10.1016/j.mib.2020.02.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/24/2020] [Accepted: 02/02/2020] [Indexed: 01/21/2023]
Abstract
Chronic infections place a significant burden on healthcare systems, requiring over $25 billion in treatment annually in the United States alone [1,2]. Notably, the majority of chronic infections, which include cystic fibrosis (CF), chronic wounds, otitis media, periodontitis, urinary tract infections, and osteomyelitis, are considered polymicrobial and are often recalcitrant to antibiotic treatment [1-9]. Although we know that diverse communities of microbes comprise these infections, how microbes interact and the impacts of these interactions on human disease are less understood. Here, we discuss recent advances in our understanding of how bacteria communicate in chronic infection, with a focus on Staphylococcus aureus and Pseudomonas aeruginosa, and we highlight outstanding questions and controversies in the field.
Collapse
Affiliation(s)
- Carolyn B Ibberson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, United States; Emory-Children's Cystic Fibrosis Center, Atlanta, GA 30332, United States; Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30332, United States.
| | - Marvin Whiteley
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, United States; Emory-Children's Cystic Fibrosis Center, Atlanta, GA 30332, United States; Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30332, United States
| |
Collapse
|
41
|
Bacterial dominance is due to effective utilisation of secondary metabolites produced by competitors. Sci Rep 2020; 10:2316. [PMID: 32047185 PMCID: PMC7012823 DOI: 10.1038/s41598-020-59048-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/08/2020] [Indexed: 12/23/2022] Open
Abstract
Interactions between bacteria govern the progression of respiratory infections; however, the mechanisms underpinning these interactions are still unclear. Understanding how a bacterial species comes to dominate infectious communities associated with respiratory infections has direct relevance to treatment. In this study, Burkholderia, Pseudomonas, and Staphylococcus species were isolated from the sputum of an individual with Cystic Fibrosis and assembled in a fully factorial design to create simple microcosms. Measurements of growth and habitat modification were recorded over time, the later using proton Nuclear Magnetic Resonance spectra. The results showed interactions between the bacteria became increasingly neutral over time. Concurrently, the bacteria significantly altered their ability to modify the environment, with Pseudomonas able to utilise secondary metabolites produced by the other two isolates, whereas the reverse was not observed. This study indicates the importance of including data about the habitat modification of a community, to better elucidate the mechanisms of bacterial interactions.
Collapse
|
42
|
Schwensen HF, Moser C, Perch M, Pressler T, Høiby N. Pseudomonas aeruginosa antibody response in cystic fibrosis decreases rapidly following lung transplantation. J Cyst Fibros 2020; 19:587-594. [PMID: 32044245 DOI: 10.1016/j.jcf.2020.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/04/2019] [Accepted: 01/28/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Specific Pseudomonas aeruginosa (PA) precipitating immunoglobulin G antibodies in serum are correlated with PA biofilm infection and are used as diagnostic and prognostic markers in cystic fibrosis (CF). The aim of this study was to examine the change of PA antibody response in CF patients after bilateral sequential lung transplantation (LTx). METHODS PA antibodies and airway bacteriology were retrospectively evaluated in 20 chronically infected CF patients, who underwent LTx between 2001 and 2016 at Rigshospitalet, Copenhagen. Yearly precipitin counts from one year before LTx and up to five years after LTx were compared. Monthly airway cultures were examined in the five-year period after LTx. In addition, crossed immunoelectrophoresis (CIE) were analysed for each patient for antigenic similarities from time of infection, pre-LTx and post-LTx. RESULTS All patients experienced a significant drop in PA antibodies from one year pre-LTx to one year post-LTx (p < 0.0001). The PA antibody level did not differ between those, who became reinfected immediately after LTx, and those, who did not. No patients regained the high pre-LTx precipitin levels in the following five years. The antigenic specificities of the sera post-LTx were in each patient similar to the antigenic specificities at the beginning of infection indicating a decades long memory of their immune response like an "immunological fingerprint". CONCLUSIONS After LTx a significant and continuous reduction in PA antibodies was observed. The reduction was independent of immediate reinfection after LTx. A novel three-factor explanatory model is presented.
Collapse
Affiliation(s)
- Hanna Ferløv Schwensen
- Department of Clinical Microbiology, Rigshospitalet (Copenhagen University Hospital), Denmark.
| | - Claus Moser
- Department of Clinical Microbiology, Rigshospitalet (Copenhagen University Hospital), Denmark
| | - Michael Perch
- Department of Cardiology, Section for Lung transplantation, Rigshospitalet, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Tacjana Pressler
- Department of Infectious Diseases, Cystic Fibrosis Center Copenhagen, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Niels Høiby
- Department of Clinical Microbiology, Rigshospitalet (Copenhagen University Hospital), Denmark; Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, Panum Institute, University of Copenhagen, Denmark
| |
Collapse
|
43
|
Development and bioanalytical method validation of an LC-MS/MS assay for simultaneous quantitation of 2-alkyl-4(1H)-quinolones for application in bacterial cell culture and lung tissue. Anal Bioanal Chem 2020; 412:1521-1534. [PMID: 31993728 PMCID: PMC7223165 DOI: 10.1007/s00216-019-02374-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/13/2019] [Accepted: 12/23/2019] [Indexed: 12/19/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that produces numerous exoproducts during infection that help it evade the host immune system and procure nutrients from the host environment. Among these products are a family of secreted 2-alkyl-4(1H)-quinolone metabolites (AQs), which exhibit a range of biological activities. Here, we describe the validation of a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based method for quantifying multiple AQ congeners in complex biological matrices. The assay was validated for selectivity, sensitivity, linearity, accuracy, precision, carryover, dilution integrity, recovery, matrix effects, and various aspects of stability (freeze-thaw, bench-top, long-term storage, and autosampler/post-preparative). Using authentic standards for 6 distinct AQ congeners, we report accurate quantitation within a linear range between 25 and 1000 nmol/L for all of the validated AQ standards. This method was successfully applied to quantify AQ concentrations in P. aeruginosa cell culture and in the lungs of mice infected with P. aeruginosa. Further, we confirmed the presence of unsaturated forms of several AQ congeners in cell culture. Graphical abstract ![]()
Collapse
|
44
|
Hypermutation as an Evolutionary Mechanism for Achromobacter xylosoxidans in Cystic Fibrosis Lung Infection. Pathogens 2020; 9:pathogens9020072. [PMID: 31973169 PMCID: PMC7168687 DOI: 10.3390/pathogens9020072] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/18/2022] Open
Abstract
Achromobacter xylosoxidans can cause chronic infections in the lungs of patients with cystic fibrosis (CF) by adapting to the specific environment. The study of longitudinal isolates allows to investigate its within-host evolution to unravel the adaptive mechanisms contributing to successful colonization. In this study, four clinical isolates longitudinally collected from two chronically infected patients underwent whole genome sequencing, de novo assembly and sequence analysis. Phenotypic assays were also performed. The isolates coming from one of the patients (patient A) presented a greater number of genetic variants, diverse integrative and conjugative elements, and different protease secretion. In the first of these isolates (strain A1), we also found a large deletion in the mutS gene, involved in DNA mismatch repair (MMR). In contrast, isolates from patient B showed a lower number of variants, only one integrative and mobilizable element, no phenotypic changes, and no mutations in the MMR system. These results suggest that in the two patients the establishment of a chronic infection was mediated by different adaptive mechanisms. While the strains isolated from patient B showed a longitudinal microevolution, strain A1 can be clearly classified as a hypermutator, confirming the occurrence and importance of this adaptive mechanism in A. xylosoxidans infection.
Collapse
|
45
|
Mahan K, Martinmaki R, Larus I, Sikdar R, Dunitz J, Elias M. Effects of Signal Disruption Depends on the Substrate Preference of the Lactonase. Front Microbiol 2020; 10:3003. [PMID: 31993034 PMCID: PMC6971184 DOI: 10.3389/fmicb.2019.03003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/12/2019] [Indexed: 12/19/2022] Open
Abstract
Many bacteria produce and use extracellular signaling molecules such as acyl homoserine lactones (AHLs) to communicate and coordinate behavior in a cell-density dependent manner, via a communication system called quorum sensing (QS). This system regulates behaviors including but not limited to virulence and biofilm formation. We focused on Pseudomonas aeruginosa, a human opportunistic pathogen that is involved in acute and chronic lung infections and which disproportionately affects people with cystic fibrosis. P. aeruginosa infections are becoming increasingly challenging to treat with the spread of antibiotic resistance. Therefore, QS disruption approaches, known as quorum quenching, are appealing due to their potential to control the virulence of resistant strains. Interestingly, P. aeruginosa is known to simultaneously utilize two main QS circuits, one based on C4-AHL, the other with 3-oxo-C12-AHL. Here, we evaluated the effects of signal disruption on 39 cystic fibrosis clinical isolates of P. aeruginosa, including drug resistant strains. We used two enzymes capable of degrading AHLs, known as lactonases, with distinct substrate preference: one degrading 3-oxo-C12-AHL, the other degrading both C4-AHL and 3-oxo-C12-AHL. Two lactonases were used to determine the effects of signal disruption on the clinical isolates, and to evaluate the importance of the QS circuits by measuring effects on virulence factors (elastase, protease, and pyocyanin) and biofilm formation. Signal disruption results in at least one of these factors being inhibited for most isolates (92%). Virulence factor activity or production were inhibited by up to 100% and biofilm was inhibited by an average of 2.3 fold. Remarkably, the treatments led to distinct inhibition profiles of the isolates; the treatment with the lactonase degrading both signaling molecules resulted in a higher fraction of inhibited isolates (77% vs. 67%), and the simultaneous inhibition of more virulence factors per strain (2 vs. 1.5). This finding suggests that the lactonase AHL preference is key to its inhibitory spectrum and is an essential parameter to improve quorum quenching strategies.
Collapse
Affiliation(s)
- Kathleen Mahan
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Ryan Martinmaki
- Department of Biochemistry, Molecular Biology and Biophysics, Biotechnology Institute, University of Minnesota, Saint Paul, MN, United States
| | - Isabel Larus
- Department of Biochemistry, Molecular Biology and Biophysics, Biotechnology Institute, University of Minnesota, Saint Paul, MN, United States
| | - Rakesh Sikdar
- Department of Biochemistry, Molecular Biology and Biophysics, Biotechnology Institute, University of Minnesota, Saint Paul, MN, United States
| | - Jordan Dunitz
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Department of Medicine, Minnesota Cystic Fibrosis Center and Adult CF Program, University of Minnesota, Minneapolis, MN, United States
| | - Mikael Elias
- Department of Biochemistry, Molecular Biology and Biophysics, Biotechnology Institute, University of Minnesota, Saint Paul, MN, United States
| |
Collapse
|
46
|
Ibberson CB, Whiteley M. The Staphylococcus aureus Transcriptome during Cystic Fibrosis Lung Infection. mBio 2019; 10:e02774-19. [PMID: 31744924 PMCID: PMC6867902 DOI: 10.1128/mbio.02774-19] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 12/16/2022] Open
Abstract
Laboratory models have been invaluable for the field of microbiology for over 100 years and have provided key insights into core aspects of bacterial physiology such as regulation and metabolism. However, it is important to identify the extent to which these models recapitulate bacterial physiology within a human infection environment. Here, we performed transcriptomics (RNA-seq), focusing on the physiology of the prominent pathogen Staphylococcus aureusin situ in human cystic fibrosis (CF) infection. Through principal-component and hierarchal clustering analyses, we found remarkable conservation in S. aureus gene expression in the CF lung despite differences in the patient clinic, clinical status, age, and therapeutic regimen. We used a machine learning approach to identify an S. aureus transcriptomic signature of 32 genes that can reliably distinguish between S. aureus transcriptomes in the CF lung and in vitro The majority of these genes were involved in virulence and metabolism and were used to improve a common CF infection model. Collectively, these results advance our knowledge of S. aureus physiology during human CF lung infection and demonstrate how in vitro models can be improved to better capture bacterial physiology in infection.IMPORTANCE Although bacteria have been studied in infection for over 100 years, the majority of these studies have utilized laboratory and animal models that often have unknown relevance to the human infections they are meant to represent. A primary challenge has been to assess bacterial physiology in the human host. To address this challenge, we performed transcriptomics of S. aureus during human cystic fibrosis (CF) lung infection. Using a machine learning framework, we defined a "human CF lung transcriptome signature" that primarily included genes involved in metabolism and virulence. In addition, we were able to apply our findings to improve an in vitro model of CF infection. Understanding bacterial gene expression within human infection is a critical step toward the development of improved laboratory models and new therapeutics.
Collapse
Affiliation(s)
- Carolyn B Ibberson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Emory-Children's Cystic Fibrosis Center, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Marvin Whiteley
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Emory-Children's Cystic Fibrosis Center, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
47
|
Costabile G, Provenzano R, Azzalin A, Scoffone VC, Chiarelli LR, Rondelli V, Grillo I, Zinn T, Lepioshkin A, Savina S, Miro A, Quaglia F, Makarov V, Coenye T, Brocca P, Riccardi G, Buroni S, Ungaro F. PEGylated mucus-penetrating nanocrystals for lung delivery of a new FtsZ inhibitor against Burkholderia cenocepacia infection. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 23:102113. [PMID: 31669084 DOI: 10.1016/j.nano.2019.102113] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 09/16/2019] [Accepted: 10/05/2019] [Indexed: 01/15/2023]
Abstract
C109 is a potent but poorly soluble FtsZ inhibitor displaying promising activity against Burkholderia cenocepacia, a high-risk pathogen for cystic fibrosis (CF) sufferers. To harness C109 for inhalation, we developed nanocrystal-embedded dry powders for inhalation suspension consisting in C109 nanocrystals stabilized with D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) embedded in hydroxypropyl-β-cyclodextrin (CD). The powders could be safely re-dispersed in water for in vitro aerosolization. Owing to the presence of a PEG shell, the rod shape and the peculiar aspect ratio, C109 nanocrystals were able to diffuse through artificial CF mucus. The promising technological features were completed by encouraging in vitro/in vivo effects. The formulations displayed no toxicity towards human bronchial epithelial cells and were active against planktonic and sessile B. cenocepacia strains. The efficacy of C109 nanosuspensions in combination with piperacillin was confirmed in a Galleria mellonella infection model, strengthening their potential for combined therapy of B. cenocepacia lung infections.
Collapse
Affiliation(s)
| | - Romina Provenzano
- Department of Pharmacy, University of Napoli "Federico II", Napoli, Italy
| | - Alberto Azzalin
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Viola Camilla Scoffone
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Laurent R Chiarelli
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Valeria Rondelli
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Segrate, (MI), Italy
| | | | - Thomas Zinn
- ESRF-The European Synchrotron, Grenoble, France
| | - Alexander Lepioshkin
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia
| | - Svetlana Savina
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia
| | - Agnese Miro
- Department of Pharmacy, University of Napoli "Federico II", Napoli, Italy
| | - Fabiana Quaglia
- Department of Pharmacy, University of Napoli "Federico II", Napoli, Italy
| | - Vadim Makarov
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Paola Brocca
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Segrate, (MI), Italy
| | - Giovanna Riccardi
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Silvia Buroni
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy.
| | - Francesca Ungaro
- Department of Pharmacy, University of Napoli "Federico II", Napoli, Italy.
| |
Collapse
|
48
|
Potentiation of Aminoglycoside Lethality by C 4-Dicarboxylates Requires RpoN in Antibiotic-Tolerant Pseudomonas aeruginosa. Antimicrob Agents Chemother 2019; 63:AAC.01313-19. [PMID: 31383655 DOI: 10.1128/aac.01313-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 07/29/2019] [Indexed: 01/26/2023] Open
Abstract
Antibiotic tolerance contributes to the inability of standard antimicrobial therapies to clear the chronic Pseudomonas aeruginosa lung infections that often afflict patients with cystic fibrosis (CF). Metabolic potentiation of bactericidal antibiotics with carbon sources has emerged as a promising strategy to resensitize tolerant bacteria to antibiotic killing. Fumarate (FUM), a C4-dicarboxylate, has been recently shown to resensitize tolerant P. aeruginosa to killing by tobramycin (TOB), an aminoglycoside antibiotic, when used in combination (TOB+FUM). Fumarate and other C4-dicarboxylates are taken up intracellularly by transporters regulated by the alternative sigma factor RpoN. Once in the cell, FUM is metabolized, leading to enhanced electron transport chain activity, regeneration of the proton motive force, and increased TOB uptake. In this work, we demonstrate that a ΔrpoN mutant displays impaired FUM uptake and, consequently, nonsusceptibility to TOB+FUM treatment. RpoN was also found to be essential for susceptibility to other aminoglycoside and C4-dicarboxylate combinations. Importantly, RpoN loss-of-function mutations have been documented to evolve in the CF lung, and these loss-of-function alleles can also result in TOB+FUM nonsusceptibility. In a mixed-genotype population of wild-type and ΔrpoN cells, TOB+FUM specifically killed cells with RpoN function and spared the cells that lacked RpoN function. Unlike C4-dicarboylates, both d-glucose and l-arginine were able to potentiate TOB killing of ΔrpoN stationary-phase cells. Our findings raise the question of whether TOB+FUM will be a suitable treatment option in the future for CF patients infected with P. aeruginosa isolates that lack RpoN function.
Collapse
|
49
|
Salli K, Anglenius H, Hirvonen J, Hibberd AA, Ahonen I, Saarinen MT, Tiihonen K, Maukonen J, Ouwehand AC. The effect of 2'-fucosyllactose on simulated infant gut microbiome and metabolites; a pilot study in comparison to GOS and lactose. Sci Rep 2019; 9:13232. [PMID: 31520068 PMCID: PMC6744565 DOI: 10.1038/s41598-019-49497-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 08/27/2019] [Indexed: 01/01/2023] Open
Abstract
Human milk oligosaccharides (HMOs) shape gut microbiota during infancy by acting as fermentable energy source. Using a semi-continuous colon simulator, effect of an HMO, 2'-fucosyllactose (2'-FL), on composition of the infant microbiota and microbial metabolites was evaluated in comparison to galacto-oligosaccharide (GOS) and lactose and control without additional carbon source. Data was analysed according to faecal sample donor feeding type: breast-fed (BF) or formula-fed (FF), and to rate of 2'-FL fermentation: fast or slow. Variation was found between the simulations in the ability to utilise 2'-FL. The predominant phyla regulated by 2'-FL, GOS and lactose were significant increase in Firmicutes, numerical in Actinobacteria, and numerical decrease in Proteobacteria compared to control. Verrucomicrobia increased in FF accounted for Akkermansia, whereas in fast-fermenting simulations Actinobacteria increased with trend for higher Bifidobacterium, and Proteobacteria decrease accounted for Enterobacteriaceae. Short-chain fatty acids and lactic acid with 2'-FL were produced in intermediate levels being between ones generated by the control and GOS or lactose. In 2'-FL fast-fermenting group, acetic acid specifically increased with 2'-FL, whereas lactose and GOS also increased lactic acid. The results highlight specificity of 2'-FL as energy source for only certain microbes over GOS and lactose in the simulated gut model.
Collapse
Affiliation(s)
- Krista Salli
- DuPont Nutrition & Biosciences, Global Health & Nutrition Science, Kantvik, Finland.
| | - Heli Anglenius
- DuPont Nutrition & Biosciences, Global Health & Nutrition Science, Kantvik, Finland
| | - Johanna Hirvonen
- DuPont Nutrition & Biosciences, Global Health & Nutrition Science, Kantvik, Finland
| | - Ashley A Hibberd
- DuPont Nutrition & Biosciences, Genomics & Microbiome Science, Madison, WI, USA
| | | | - Markku T Saarinen
- DuPont Nutrition & Biosciences, Global Health & Nutrition Science, Kantvik, Finland
| | - Kirsti Tiihonen
- DuPont Nutrition & Biosciences, Global Health & Nutrition Science, Kantvik, Finland
| | - Johanna Maukonen
- DuPont Nutrition & Biosciences, Global Health & Nutrition Science, Kantvik, Finland
| | - Arthur C Ouwehand
- DuPont Nutrition & Biosciences, Global Health & Nutrition Science, Kantvik, Finland
| |
Collapse
|
50
|
Teopompi E, Risé P, Pisi R, Buccellati C, Aiello M, Pisi G, Tripodi C, Fainardi V, Clini E, Chetta A, Rovati GE, Sala A. Arachidonic Acid and Docosahexaenoic Acid Metabolites in the Airways of Adults With Cystic Fibrosis: Effect of Docosahexaenoic Acid Supplementation. Front Pharmacol 2019; 10:938. [PMID: 31507425 PMCID: PMC6716427 DOI: 10.3389/fphar.2019.00938] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/22/2019] [Indexed: 12/31/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disorder, caused by genetic mutations in CF transmembrane conductance regulator protein. Several reports have indicated the presence of specific fatty acid alterations in CF patients, most notably decreased levels of plasmatic and tissue docosahexaenoic acid (DHA), the precursor of specialized pro-resolving mediators. We hypothesized that DHA supplementation could restore the production of DHA-derived products and possibly contribute to a better control of the chronic pulmonary inflammation observed in CF subjects. Sputum samples from 15 CF and 10 chronic obstructive pulmonary disease (COPD) subjects were collected and analyzed by LC/MS/MS, and blood fatty acid were profiled by gas chromatography upon lipid extraction and transmethylation. Interestingly, CF subjects showed increased concentrations of leukotriene B4 (LTB4), prostaglandin E2 (PGE2), and 15-hydroxyeicosatetraenoic acid (15-HETE), when compared with COPD patients, whereas the concentrations of DHA metabolites did not differ between the two groups. After DHA supplementation, not only DHA/arachidonic acid (AA) ratio and highly unsaturated fatty acid index were significantly increased in the subjects completing the study (p < 0.05) but also a reduction in LTB4 and 15-HETE was observed, together with a tendency for a decrease in PGE2, and an increase in 17-hydroxy-docosahexaenoic acid (17OH-DHA) levels. At the end of the washout period, LTB4, PGE2, 15-HETE, and 17OH-DHA showed a trend to return to baseline values. In addition, 15-HETE/17OH-DHA ratio in the same sample significantly decreased after DHA supplementation (p < 0.01) when compared with baseline. In conclusion, our results show here that in CF patients, an impairment in fatty acid metabolism, characterized by increased AA-derived metabolites and decreased DHA-derived metabolites, could be partially corrected by DHA supplementation.
Collapse
Affiliation(s)
- Elisabetta Teopompi
- Respiratory Disease Unit, Department of Medicine and Surgery, University Hospital, Parma, Parma, Italy
| | - Patrizia Risé
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milano, Italy
| | - Roberta Pisi
- Respiratory Disease Unit, Department of Medicine and Surgery, University Hospital, Parma, Parma, Italy
| | - Carola Buccellati
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milano, Italy
| | - Marina Aiello
- Respiratory Disease Unit, Department of Medicine and Surgery, University Hospital, Parma, Parma, Italy
| | - Giovanna Pisi
- Department of Pediatrics, CF Unit Children Hospital, University Hospital of Parma, Parma, Italy
| | - Candida Tripodi
- Department of Pediatrics, CF Unit Children Hospital, University Hospital of Parma, Parma, Italy
| | - Valentina Fainardi
- Department of Pediatrics, CF Unit Children Hospital, University Hospital of Parma, Parma, Italy
| | - Enrico Clini
- Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy.,Department of Medical and Surgical Sciences SMECHIMAI, University Hospital of Modena, Modena, Italy
| | - Alfredo Chetta
- Respiratory Disease Unit, Department of Medicine and Surgery, University Hospital, Parma, Parma, Italy
| | - G Enrico Rovati
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milano, Italy
| | - Angelo Sala
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milano, Italy.,IBIM, Consiglio Nazionale delle Ricerche, Palermo, Italy
| |
Collapse
|