1
|
Meng Z, Yang Y, Li S, Huang L, Yao Z, Chen Y, Wang J, Shen Y, Liang P, Zhang H, Wang W, Wang F. GSE1 promotes the proliferation and migration of lung adenocarcinoma cells by downregulating KLF6 expression. Cell Biol Int 2024; 48:1490-1506. [PMID: 38886911 DOI: 10.1002/cbin.12208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/01/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
Lung cancer is one of the most prevalent human cancers with a high lethality rate worldwide. In this study, we demonstrated that GSE1 (genetic suppressor element 1) expression is aberrantly upregulated in lung adenocarcinoma and that GSE1 depletion inhibits the proliferation and migration of both A549 and H1299 cells. Immunoprecipitation assays demonstrated that GSE1 interacts with histone deacetylase 1 (HDAC1) and other BRAF-HDAC complex (BHC) components in cells. The transcriptome of GSE1-knockdown A549 cells indicated that 207 genes were upregulated and 159 were downregulated based on a p-value < .05 and fold change ≥ 1.5. Bioinformatics analysis suggested that 140 differentially expressed genes harbor binding sites for HDAC1, including the tumor suppressor gene KLF6 (Kruppel-like factor 6). Indeed, quantitative reverse-transcription polymerase chain reaction and western blot analysis revealed that GSE1 could inhibit the transcription of KLF6 in lung cancer cells. In conclusion, GSE1 cooperates with HDAC1 to promote the proliferation and metastasis of non-small cell lung cancer cells through the downregulation of KLF6 expression.
Collapse
Affiliation(s)
- Ziyu Meng
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of General Surgery, Anhui Public Health Clinical Center, Hefei, China
| | - Yingqian Yang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of General Surgery, Anhui Public Health Clinical Center, Hefei, China
| | - Shupei Li
- College of Life Science, Anhui Medical University, Hefei, China
| | - Liguo Huang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of General Surgery, Anhui Public Health Clinical Center, Hefei, China
| | - Zhoujuan Yao
- College of Life Science, Anhui Medical University, Hefei, China
| | - Yixuan Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of General Surgery, Anhui Public Health Clinical Center, Hefei, China
| | - Junkun Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of General Surgery, Anhui Public Health Clinical Center, Hefei, China
| | - Yiru Shen
- College of Life Science, Anhui Medical University, Hefei, China
| | - Pingping Liang
- College of Life Science, Anhui Medical University, Hefei, China
| | - Hui Zhang
- College of Life Science, Anhui Medical University, Hefei, China
| | - Wenbin Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of General Surgery, Anhui Public Health Clinical Center, Hefei, China
| | - Fengsong Wang
- College of Life Science, Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Liu J, Wang W, Wang K, Liu W, Zhao Y, Han X, Wang L, Jiang BH. HDAC1 and FOXK1 mediate EGFR-TKI resistance of non-small cell lung cancer through miR-33a silencing. J Transl Med 2024; 22:793. [PMID: 39198847 PMCID: PMC11350990 DOI: 10.1186/s12967-024-05563-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/02/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND The development of acquired EGFR-TKI treatment resistance is still a major clinical challenge in the treatment of non-small cell lung cancer (NSCLC). This study aimed to investigate the role of HDAC1/FOXK1/miR-33a signaling in EGFR-TKI resistance. METHODS The expression levels of miR-33a, HDAC1, and FOXK1 were examined using quantitative polymerase chain reaction (PCR) and bioinformatics analysis. Cell proliferation, migration, and apoptosis were explored by cell number assay, Transwell, and flow cytometry assays, respectively. After overexpression or knockdown of HDAC1, miR-33a expression in the cells, cell functions were tested. Immunoprecipitation and correlation analyses were used to evaluate the interaction between HDAC1 and FOXK1 protein. The tumor-suppressive role of miR-33a was investigated by animal experiments. RESULTS The suppression of miR-33a increased TKI resistance by affecting cell proliferation, migration, and apoptosis in gefitinib-resistant cells. HDAC1 is the key upstream molecule that inhibits miR-33 expression. HDAC1 upregulation increased gefitinib resistance by its binding to FOXK1 in cells to silence miR-33a expression. MiR-33a overexpression exerts tumor-suppressive effects by negatively regulating ABCB7 and p70S6K1 expression. Moreover, overexpression of miR-33a inhibited tumor growth in a xenograft nude mouse model. CONCLUSIONS HDAC1/FOXK1 upregulation and miR-33a silencing are new mechanisms of EGFR-TKI resistance in NSCLC.
Collapse
Affiliation(s)
- Jie Liu
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Wei Wang
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Kunkun Wang
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Wenjing Liu
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Yanqiu Zhao
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Xiao Han
- Department of Prenatal Diagnosis Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Lin Wang
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
| | - Bing-Hua Jiang
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| |
Collapse
|
3
|
Bharadwaj KK, Ahmad I, Pati S, Ghosh A, Rabha B, Sarkar T, Bhattacharjya D, Patel H, Baishya D. Screening of Phytocompounds for Identification of Prospective Histone Deacetylase 1 (HDAC1) Inhibitor: An In Silico Molecular Docking, Molecular Dynamics Simulation, and MM-GBSA Approach. Appl Biochem Biotechnol 2024; 196:3747-3764. [PMID: 37776441 DOI: 10.1007/s12010-023-04731-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/02/2023]
Abstract
The upregulation of HDAC1 facilitate the induction of epigenetic repression of genes responsible for suppressing tumourigenesis, thereby triggering the development of cancer. HDAC1 inhibitors have thus emerged as possible therapeutic approaches against a variety of human malignancies, as they can inhibit the activity of certain HDACs, repair the overexpression of tumour suppressor genes, and induce cell differentiation, cell cycle arrest, and apoptosis. In this study, among 810 virtually screened compounds, Pinocembrin (PHUB000396) had a significant binding affinity (-7.99 kcal/mol). In molecular dynamics simulation (MD) studies for 200 ns time scale, the compound Pinocembrin effectively undergoes conformational optimization, thereby enabling its accommodation within the active site of the receptor. This outcome serves as a rational for the observed binding affinity. The optimal binding free energy calculations using the Molecular Mechanics Generalized Born Surface Area (MM-GBSA) (-35.86 ± 7.52 kcal/mol) showed the significant role of van der Waals forces and Coulomb interactions in the stability of the respective complex. The pharmacokinetic study showed its potential as a lead compound. The in-silico cytotoxicity prediction also confirmed its potential as an active anticancer phytocompound in lung and brain cancer. Therefore, it can be predicted that Pinocembrin could be a useful bioactive compound as an HDAC1 inhibitor and could be used in developing epigenetic therapy in cancer such as brain cancer and lung cancer to regulate gene expression.
Collapse
Affiliation(s)
- Kaushik Kumar Bharadwaj
- Department of Bioengineering and Technology, Gauhati University, Guwahati, 781014, Assam, India
| | - Iqrar Ahmad
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Siddhartha Pati
- Skills Innovation & Academic Network (SIAN) Institute-ABC, Balasore, 756001, Odisha, India
- NatNov Bioscience Private Limited, 756001, Balasore, Odisha, India
| | - Arabinda Ghosh
- Microbiology Division, Department of Botany, Gauhati University, Guwahati, Assam, India, 781014
| | - Bijuli Rabha
- Department of Bioengineering and Technology, Gauhati University, Guwahati, 781014, Assam, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, 732102, West Bengal, India
| | - Dorothy Bhattacharjya
- Department of Bioengineering and Technology, Gauhati University, Guwahati, 781014, Assam, India
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Debabrat Baishya
- Department of Bioengineering and Technology, Gauhati University, Guwahati, 781014, Assam, India.
| |
Collapse
|
4
|
Zhang F, Wang J, Li H, Luo X, Xu Q, Liu L, Xu Y, Yang K, Liu Z, Gong R. Blocking lncRNA HCG18 re-sensitizes Taxol resistant lung cancer cells to Taxol through modulating the miR-34a-5p/HDAC1 axis. J Chemother 2024:1-12. [PMID: 38706347 DOI: 10.1080/1120009x.2024.2308979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 01/16/2024] [Indexed: 05/07/2024]
Abstract
Lung cancer is one of the most frequently diagnosed cancers worldwide, associated with a poor survival rate. Taxol (Paclitaxel) is commonly used as a chemotherapeutic treatment for advanced lung cancers. While Taxol has improved clinical outcomes for lung cancer patients, a significant number of them develop resistance to Taxol, resulting in treatment failure. The role of the long noncoding RNA HCG18 in lung cancer and Taxol resistance has not yet been fully understood. To investigate this, we examined the expression of HCG18 and miR-34a-5p in lung tumors and normal lung tissues using qRT-PCR. We also assessed Taxol resistance through cell viability and apoptosis assays. Through the starBase online service, we analyzed the interactions between lncRNA and mRNA as well as miRNA and mRNA. We further validated the association between lncRNA and miRNA through luciferase and RNA pull-down assays. Our findings demonstrated that HCG18 was significantly upregulated in lung cancer tissues compared to normal lung tissues. Silencing HCG18 increased the sensitivity of lung cancer cells to Taxol. Additionally, our study established a Taxol-resistant cell line and observed a substantial upregulation of HCG18 in Taxol-resistant lung cancer cells. Bioinformatic analysis predicted that HCG18 could bind to miR-34a-5p, forming a competing endogenous RNA network, which was confirmed through luciferase assay. We found that miR-34a-5p was downregulated in lung cancer tissues and negatively correlated with Taxol resistance, as it directly bound to the 3'UTR region of HDAC1. Further results showed that inhibition of HCG18 significantly increased miR-34a-5p expression and sensitized lung cancer cells to Taxol. This sensitization could be reversed by inhibiting miR-34a-5p. Finally, we demonstrated in a xenograft mouse model that inhibition of HCG18 sensitized Taxol-resistant lung cancer cells to Taxol treatment by modulating the miR-34a-5p-HDAC1 axis. In conclusion, our in vitro and in vivo results uncover a novel molecular mechanism by which HCG18 promotes Taxol resistance through modulation of the miR-34a-5p/HDAC1 axis. These findings contribute to the diagnosis and treatment of chemo-resistant lung cancer.
Collapse
Affiliation(s)
- Fujun Zhang
- Department of Geriatric Thoracic surgery, The First Affiliated Hospital of Kunming Medical University, Yunnan Province, China
| | - Juan Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Yunnan Province, China
| | - Haoyu Li
- Department of Geriatric Thoracic surgery, The First Affiliated Hospital of Kunming Medical University, Yunnan Province, China
| | - Xiaoyu Luo
- Department of Geriatric Thoracic surgery, The First Affiliated Hospital of Kunming Medical University, Yunnan Province, China
| | - Qiuyue Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Yunnan Province, China
| | - Lin Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Yunnan Province, China
| | - Yunmin Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Yunnan Province, China
| | - Kai Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Yunnan Province, China
| | - Zijie Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Yunnan Province, China
| | - Rong Gong
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Yunnan Province, China
| |
Collapse
|
5
|
Yang X, Chai X, Song Y, Sun Q, Chen X. Deficiency of circ_0103809 Attenuates Non-small Cell Lung Cancer Malignant Progression by Controlling miR-153-3p/HDAC1 Network. Biochem Genet 2024; 62:1160-1181. [PMID: 37561334 DOI: 10.1007/s10528-023-10470-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023]
Abstract
Circular RNAs are vital players in tumorigenesis. We held the purpose to investigate the role and mechanism of circ_0103809 in non-small cell lung cancer (NSCLC). The expressions of circ_0103809, miR-153-3p and HDAC1 mRNA were determined using quantitative real-time PCR assay, and HDAC1 protein was quantified using western blot analysis. MTT, EdU, flow cytometry, tube-formation, wound healing and tube-formation assays were conducted for functional analysis. The predicted relationship among circ_0103809, miR-153-3p and HDAC1 was ascertained using dual-luciferase analysis, RIP assay and pull-down analysis. Animal models were further constructed to realize circ_0103809's role in vivo. Circ_0103809 was upregulated NSCLC specimens, cells and serum-derived exosomes. Serum exosomal circ_0103809 had the potency to be a diagnostic biomarker for NSCLC. Circ_0103809 silencing inhibited NSCLC cell growth, metastasis and angiogenesis and triggered cell cycle arrest and apoptosis. Circ_0103809 deficiency also suppressed the growth of transplanted tumors. Circ_0103809 acted as the miR-153-3p sponge, and the biological effects of circ_0103809 knockdown were relieved by miR-153-3p inhibition. HDAC1 was directly targeted by miR-153-3p, and miR-153-3p enrichment inhibited NSCLC cell malignant phenotypes by sequestering HDAC1. Circ_0103809 knockdown repressed NSCLC malignant progression partly by regulating miR-153-3p/HDAC1 signaling.
Collapse
Affiliation(s)
- Xueliang Yang
- Department of Thoracic Surgery, Shanxi Hospital Affiliated to Cancer Hospital, Shanxi Province Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, No. 3, Beihewan East Street, Worker Street, Xinghualing District, Taiyuan, Shanxi, China
| | - Xinchun Chai
- Department of Thoracic Surgery, Shanxi Hospital Affiliated to Cancer Hospital, Shanxi Province Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, No. 3, Beihewan East Street, Worker Street, Xinghualing District, Taiyuan, Shanxi, China
| | - Yongming Song
- Department of Thoracic Surgery, Shanxi Hospital Affiliated to Cancer Hospital, Shanxi Province Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, No. 3, Beihewan East Street, Worker Street, Xinghualing District, Taiyuan, Shanxi, China
| | - Quan Sun
- Department of Thoracic Surgery, Shanxi Hospital Affiliated to Cancer Hospital, Shanxi Province Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, No. 3, Beihewan East Street, Worker Street, Xinghualing District, Taiyuan, Shanxi, China
| | - Xiaodong Chen
- Department of Thoracic Surgery, Shanxi Hospital Affiliated to Cancer Hospital, Shanxi Province Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, No. 3, Beihewan East Street, Worker Street, Xinghualing District, Taiyuan, Shanxi, China.
| |
Collapse
|
6
|
Patel R, Modi A, Vekariya H. Discovery and Development of HDAC Inhibitors: Approaches for the Treatment of Cancer a Mini-review. Curr Drug Discov Technol 2024; 21:e230224227378. [PMID: 38415493 DOI: 10.2174/0115701638286941240217102948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/29/2024]
Abstract
Histone deacetylase (HDAC) inhibitors have emerged as promising cancer therapeutics due to their ability to induce differentiation, cell cycle arrest, and apoptosis in cancer cells. In the present review, we have described the systemic discovery and development of HDAC inhibitors. Researchers across the globe have identified various small molecules like benzo[d][1,3]dioxol derivatives, belinostat analogs, pyrazine derivatives, quinazolin-4-one-based derivatives, 2,4-imidazolinedione derivatives, acridine hydroxamic acid derivatives, coumarin derivatives, tetrahydroisoquinoline derivatives, thiazole-5-carboxamide, salicylamide derivatives, β-peptoid-capped HDAC inhibitors, quinazoline derivatives, benzimidazole and benzothiazole derivatives, and β- elemene scaffold containing HDAC inhibitors. Most of the scaffolds have shown attractive IC50 (μM) in various cell lines like HDAC1, HDAC2, HDAC6, PI3K, HeLa, MDA-MB-231, MCF-10A, MCF-7, U937, K562 and Bcr-Abl cell lines.
Collapse
Affiliation(s)
- Roshani Patel
- Department of Pharmaceutical Chemistry, R K University, Rajkot, 360020, Gujarat, India
| | - Arjun Modi
- Department of Pharmaceutical Chemistry, R K University, Rajkot, 360020, Gujarat, India
| | - Hitesh Vekariya
- Department of Pharmaceutical Chemistry, School of Pharmacy, R K University, Rajkot, 360020, Gujarat, India
| |
Collapse
|
7
|
Kumari R, Syeda S, Shrivastava A. Nature's Elixir for Cancer Treatment: Targeting Tumor-induced Neovascularization. Curr Med Chem 2024; 31:5281-5304. [PMID: 38425113 DOI: 10.2174/0109298673282525240222050051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/20/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
Angiogenesis, a multistep process, involves sprouting of new vessels from the pre-existing vessels in response to a stimulus in its microenvironment. Normally, angiogenesis is important for tissue maintenance and homeostasis, however it is also known to be associated with various pathologies, including cancer. Importantly, neovascularization is very crucial for tumors to grow and metastasize since it allows delivery of oxygen and nutrients as well as promotes tumor cell dissemination to distant sites. Activation of angiogenic switch is a consequence of imbalance in pro- as well as anti-angiogenic factors, that are immensely impacted by reactive oxygen species and epigenetic regulation. Several reports have suggested that angiogenic inhibitors significantly inhibit tumor growth. Therefore, anti-angiogenic therapy has gained substantial attention and has been considered a rational approach in cancer therapeutics. In this line, several anti- angiogenic drugs have been approved, however, their long term usage caused several side effects. In view of this, researchers switched to plant-based natural compounds for identifying safe and cost-effective anti-angiogenic drugs. Of note, various phytochemicals have been evaluated to reduce tumor growth by inhibiting tumor-induced angiogenesis. Moreover, the implication of nano-carriers to enhance the bioavailability of phytochemicals has proven to be more efficient anti-cancer agents. The present review highlights the existing knowledge on tumor-induced neovascularization and its regulation at the epigenetic level. Further, we emphasize the inhibitory effect of phytochemicals on tumor- induced angiogenesis that will open up new avenues in cancer therapeutics.
Collapse
Affiliation(s)
- Rani Kumari
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Saima Syeda
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Anju Shrivastava
- Department of Zoology, University of Delhi, Delhi, 110007, India
| |
Collapse
|
8
|
Beljkas M, Ilic A, Cebzan A, Radovic B, Djokovic N, Ruzic D, Nikolic K, Oljacic S. Targeting Histone Deacetylases 6 in Dual-Target Therapy of Cancer. Pharmaceutics 2023; 15:2581. [PMID: 38004560 PMCID: PMC10674519 DOI: 10.3390/pharmaceutics15112581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Histone deacetylases (HDACs) are the major regulators of the balance of acetylation of histone and non-histone proteins. In contrast to other HDAC isoforms, HDAC6 is mainly involved in maintaining the acetylation balance of many non-histone proteins. Therefore, the overexpression of HDAC6 is associated with tumorigenesis, invasion, migration, survival, apoptosis and growth of various malignancies. As a result, HDAC6 is considered a promising target for cancer treatment. However, none of selective HDAC6 inhibitors are in clinical use, mainly because of the low efficacy and high concentrations used to show anticancer properties, which may lead to off-target effects. Therefore, HDAC6 inhibitors with dual-target capabilities represent a new trend in cancer treatment, aiming to overcome the above problems. In this review, we summarize the advances in tumor treatment with dual-target HDAC6 inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Katarina Nikolic
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (M.B.); (A.I.); (A.C.); (B.R.); (N.D.); (D.R.)
| | - Slavica Oljacic
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (M.B.); (A.I.); (A.C.); (B.R.); (N.D.); (D.R.)
| |
Collapse
|
9
|
Wang D, Zhang Y, Liao Z, Ge H, Güngör C, Li Y. KDM5 family of demethylases promotes CD44-mediated chemoresistance in pancreatic adenocarcinomas. Sci Rep 2023; 13:18250. [PMID: 37880235 PMCID: PMC10600175 DOI: 10.1038/s41598-023-44536-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023] Open
Abstract
A growing body of evidence suggests that the histone demethylase-lysine demethylase 5 (KDM5) family is associated with drug resistance in cancer cells. However, it is still not clear whether KDM5 family members promote chemotherapy resistance in pancreatic ductal adenocarcinomas (PDAC). Comprehensive bioinformatics analysis was performed to investigate the prognostic value, and functional mechanisms of KDM5 family members in PDAC. The effects of KDM5 family members on drug resistance in PDAC cells and the relationship with CD44, as a stem cell marker, were explored by gene knockout and overexpression strategies. Finally, our findings were validated by functional experiments such as cell viability, colony formation and invasion assays. We found that the expression of KDM5A/C was significantly higher in gemcitabine-resistant cells than in sensitive cells, consistent with the analysis of the GSCALite database. The knockdown of KDM5A/C in PDAC cells resulted in diminished drug resistance, less cell colonies and reduced invasiveness, while KDM5A/C overexpression showed the opposite effect. Of note, the expression of KDM5A/C changed accordingly with the knockdown of CD44. In addition, members of the KDM5 family function in a variety of oncogenic pathways, including PI3K/AKT and Epithelial-Mesenchymal Transition. In conclusion, KDM5 family members play an important role in drug resistance and may serve as new biomarkers or potential therapeutic targets in PDAC patients.
Collapse
Affiliation(s)
- Dan Wang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yingjun Zhang
- Hunan Engineering and Technology Research Center for Agricultural Big Data Analysis and Decision-Making, Hunan Agricultural University, Changsha, China
| | - Zhouning Liao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
- Division of Translational Immunology, III, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Heming Ge
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cenap Güngör
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yuqiang Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
- NHC Key Laboratory of Cancer Proteomics and Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
10
|
Aleksandrova Y, Neganova M. Deciphering the Mysterious Relationship between the Cross-Pathogenetic Mechanisms of Neurodegenerative and Oncological Diseases. Int J Mol Sci 2023; 24:14766. [PMID: 37834214 PMCID: PMC10573395 DOI: 10.3390/ijms241914766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
The relationship between oncological pathologies and neurodegenerative disorders is extremely complex and is a topic of concern among a growing number of researchers around the world. In recent years, convincing scientific evidence has accumulated that indicates the contribution of a number of etiological factors and pathophysiological processes to the pathogenesis of these two fundamentally different diseases, thus demonstrating an intriguing relationship between oncology and neurodegeneration. In this review, we establish the general links between three intersecting aspects of oncological pathologies and neurodegenerative disorders, i.e., oxidative stress, epigenetic dysregulation, and metabolic dysfunction, examining each process in detail to establish an unusual epidemiological relationship. We also focus on reviewing the current trends in the research and the clinical application of the most promising chemical structures and therapeutic platforms that have a modulating effect on the above processes. Thus, our comprehensive analysis of the set of molecular determinants that have obvious cross-functional pathways in the pathogenesis of oncological and neurodegenerative diseases can help in the creation of advanced diagnostic tools and in the development of innovative pharmacological strategies.
Collapse
Affiliation(s)
- Yulia Aleksandrova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Margarita Neganova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russia
| |
Collapse
|
11
|
Yang P, Qin Y, Zeng L, He Y, Xie Y, Cheng X, Huang W, Cao L. Crotonylation and disease: Current progress and future perspectives. Biomed Pharmacother 2023; 165:115108. [PMID: 37392654 DOI: 10.1016/j.biopha.2023.115108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/18/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023] Open
Abstract
Histone lysine crotonylation was first identified as a new type of post-translational modification in 2011. In recent years, prominent progress has been made in the study of histone and nonhistone crotonylation in reproduction, development, and disease. Although the regulatory enzyme systems and targets of crotonylation partially overlap with those of acetylation, the peculiar CC bond structure of crotonylation suggests that crotonylation may have specific biological functions. In this review, we summarize the latest research progress regarding crotonylation, especially its regulatory factors and relationship with diseases, which suggest further research directions for crotonylation and provide new ideas for developing disease intervention and treatment regimens.
Collapse
Affiliation(s)
- Ping Yang
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Sichuan Clinical Research Center for Nephropathy, Luzhou 646000 Sichuan, China
| | - Yuanyuan Qin
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Sichuan Clinical Research Center for Nephropathy, Luzhou 646000 Sichuan, China
| | - Lisha Zeng
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China
| | - Yanqiu He
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Sichuan Clinical Research Center for Nephropathy, Luzhou 646000 Sichuan, China
| | - Yumei Xie
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Sichuan Clinical Research Center for Nephropathy, Luzhou 646000 Sichuan, China
| | - Xi Cheng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Sichuan Clinical Research Center for Nephropathy, Luzhou 646000 Sichuan, China
| | - Wei Huang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Sichuan Clinical Research Center for Nephropathy, Luzhou 646000 Sichuan, China.
| | - Ling Cao
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China.
| |
Collapse
|
12
|
Tasneem S, Alam MM, Parvez S, Pinky, Khan F, Garg M, Amir M, Akhter M, Amin S, Khan MA, Shaquiquzzaman M. Synthesis and HDAC1 inhibitory activity of a novel series of coumarin-based amide derivatives for treatment of cancer. Future Med Chem 2023; 15:1669-1685. [PMID: 37732405 DOI: 10.4155/fmc-2023-0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023] Open
Abstract
Background: Histone deacetylases (HDACs) play a vital role in the epigenetic regulation of transcription and expression. HDAC1 overexpression is seen in many cancers. Methodology: The authors synthesized and evaluated 27 novel coumarin-based amide derivatives for HDAC1 inhibitory activity. The compounds were screened at the US National Cancer Institute, and 5k and 5u were selected for five-dose assays. Compound 5k showed GI50 values of 0.294 and 0.264 μM against MOLT-4 and LOX-IMVI, respectively; whereas 5u had GI50 values of 0.189 and 0.263 μM, respectively. Both derivatives showed better activity than entinostat and suberoylanilide hydroxamic acid. Compound 5k exhibited an IC50 value of 1.00 μM on ACHN cells. Conclusion: Coumarin derivatives exhibited promising HDAC1 inhibitory potential and warrant future development as anticancer agents.
Collapse
Affiliation(s)
- Sharba Tasneem
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - M Mumtaz Alam
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Suhel Parvez
- Department of Elementology & Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Pinky
- Department of Elementology & Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Farah Khan
- Department of Biochemistry, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Manika Garg
- Department of Biochemistry, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Mohd Amir
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mymoona Akhter
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Shaista Amin
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Shaquiquzzaman
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
13
|
Wen C, Lu X, Sun Y, Li Q, Liao J, Li L. Naringenin induces the cell apoptosis of acute myeloid leukemia cells by regulating the lncRNA XIST/miR-34a/HDAC1 signaling. Heliyon 2023; 9:e15826. [PMID: 37206002 PMCID: PMC10189189 DOI: 10.1016/j.heliyon.2023.e15826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/21/2023] Open
Abstract
Acute myeloid leukemia (AML) is a life-threatening aggressive malignancy of the bone marrow and has posed a great challenge to the clinic, due to a lack of fully understanding of the molecular mechanism. Histone deacetylase 1 (HDAC1) has been reported to be a therapeutic target for treating AML. Naringenin (Nar) may act as an anti-leukemic agent and suppress the expression of HDACs. However, the potential underlying mechanism of Nar in suppressing the activity of HDAC1 remains unclear. Here, we found that Nar induced the apoptosis, decreased the expression of lncRNA XIST and HDAC1, and increased the expression of microRNA-34a in HL60 cells. Sh-XIST transfection could induce cell apoptosis. On the contrary, the forced expression of XIST might reverse the biological actions of Nar. XIST could sponge miR-34a, which targeted to degrade HDAC1. The forced expression of HDAC1 could effectively reverse the effects of Nar. Thus, Nar can induce cell apoptosis by mediating the expression of lncRNA XIST/miR-34a/HDAC1 signaling in HL60 cells.
Collapse
Affiliation(s)
- Chao Wen
- School of Nursing, Gannan Medical University, Ganzhou, 341000, China
| | - Xiaoliang Lu
- Department of General Surgery, Ningdu County People's Hospital, Ganzhou, 341000, China
| | - Yingyin Sun
- Gannan Health Vocational College, Ganzhou, 341000, China
| | - Qi Li
- Department of Basic Medicine, Chuxiong Medical and Pharmaceutical College, Chuxiong, 675005, China
| | - Jing Liao
- School of Nursing, Gannan Medical University, Ganzhou, 341000, China
| | - Lin Li
- Department of Hematology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
- Corresponding author.
| |
Collapse
|
14
|
Palamaris K, Tzimou LM, Levidou G, Masaoutis C, Theochari I, Rontogianni D, Theocharis S. Histone Deacetylases (HDACs): Promising Biomarkers and Potential Therapeutic Targets in Thymic Epithelial Tumors. Int J Mol Sci 2023; 24:ijms24054263. [PMID: 36901692 PMCID: PMC10001744 DOI: 10.3390/ijms24054263] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023] Open
Abstract
Histone deacetylases (HDACs) are core epigenetic factors, with pivotal roles in the regulation of various cellular procedures, and their deregulation is a major trait in the acquisition of malignancy properties. In this study we attempt the first comprehensive evaluation of six class I (HDAC1, HDAC2, HDAC3) and II HDACs (HDAC4, HDAC5, HDAC6) expression patterns in thymic epithelial tumors (TETs), with the aim of identifying their possible association with a number of clinicopathological parameters. Our study revealed higher positivity rates and expression levels of class I enzymes compared to class II. Sub-cellular localization and level of staining varied among the six isoforms. HDAC1 was almost exclusively restricted to the nucleus, while HDAC3 demonstrated both nuclear and cytoplasmic reactivity in the majority of examined specimens. HDAC2 expression was higher in more advanced Masaoka-Koga stages, and displayed a positive correlation with dismal prognoses. The three class II HDACs (HDAC4, HDAC5, HDAC6) exhibited similar expression patterns, with predominantly cytoplasmic staining, that was higher in epithelial rich TETs (B3, C) and more advanced tumor stages, while it was also associated with disease recurrence. Our findings could provide useful insights for the effective implementation of HDACs as biomarkers and therapeutic targets for TETs, in the setting of precision medicine.
Collapse
Affiliation(s)
- Kostas Palamaris
- First Department of Pathology, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Luisa-Maria Tzimou
- First Department of Pathology, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Georgia Levidou
- Department of Pathology, Paracelsus Medical University, 90419 Nuremberg, Germany
| | - Christos Masaoutis
- First Department of Pathology, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Irene Theochari
- First Department of Pathology, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitra Rontogianni
- Department of Pathology, Paracelsus Medical University, 90419 Nuremberg, Germany
| | - Stamatios Theocharis
- First Department of Pathology, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Correspondence:
| |
Collapse
|
15
|
Johnson ML, Strauss J, Patel MR, Garon EB, Eaton KD, Neskorik T, Morin J, Chao R, Halmos B. Mocetinostat in Combination With Durvalumab for Patients With Advanced NSCLC: Results From a Phase I/II Study. Clin Lung Cancer 2023; 24:218-227. [PMID: 36890020 DOI: 10.1016/j.cllc.2023.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND Histone deacetylase (HDAC) inhibitors have potential to augment the effectiveness of immune checkpoint inhibitors and overcome treatment resistance. This dose-escalation/expansion study (NCT02805660) investigated mocetinostat (class I/IV HDAC inhibitor) plus durvalumab in patients with advanced non-small cell lung cancer (NSCLC) across cohorts defined by tumor programmed death-ligand 1 (PD-L1) expression and prior experience with anti-programmed cell death protein-1 (anti-PD-1) or anti-PD-L1 regimens. PATIENTS AND METHODS Sequential cohorts of patients with solid tumors received mocetinostat (starting dose: 50 mg TIW) plus durvalumab at a standard dose (1500 mg Q4W) to determine the recommended phase II dose (RP2D: phase I primary endpoint), based on the observed safety profile. RP2D was administered to patients with advanced NSCLC across 4 cohorts grouped by tumor PD-L1 expression (none or low/high) and prior experience with anti-PD-L1 /anti-PD-1 agents (naïve, clinical benefit: yes/no). The phase II primary endpoint was objective response rate (ORR, RECIST v1.1). RESULTS Eighty-three patients were enrolled (phase I [n = 20], phase II [n = 63]). RP2D was mocetinostat 70 mg TIW plus durvalumab. ORR was 11.5% across the phase II cohorts, and responses were durable (median 329 days). Clinical activity was observed in NSCLC patients with disease refractory to prior checkpoint inhibitor treatment: ORR 23.1%. Across all patients, fatigue (41%), nausea (40%), and diarrhea (31%) were the most frequent treatment-related adverse events. CONCLUSION Mocetinostat 70 mg TIW plus durvalumab at the standard dose was generally well tolerated. Clinical activity was observed in patients with NSCLC unresponsive to prior anti-PD-(L)1 therapy.
Collapse
Affiliation(s)
| | | | - Manish R Patel
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota Masonic Cancer Center, Minneapolis, MN
| | - Edward B Garon
- Department of Medicine, David Geffen School of Medicine at UCLA, Santa Monica, CA
| | - Keith D Eaton
- Department of Medicine, Division of Medical Oncology, University of Washington and Fred Hutchinson Cancer Center, Seattle WA
| | - Tavette Neskorik
- Innovative Medicines Development, Mirati Therapeutics Inc., San Diego, CA
| | - Josée Morin
- Innovative Medicines Development, Mirati Therapeutics Inc., San Diego, CA
| | - Richard Chao
- Innovative Medicines Development, Mirati Therapeutics Inc., San Diego, CA
| | - Balazs Halmos
- Department of Oncology, Montefiore Medical Center, Bronx, NY.
| |
Collapse
|
16
|
Histone Deacetylase 1 Expression and Regulatory Network in Lung Adenocarcinoma Based on Data Mining and Implications for Targeted Treatment. JOURNAL OF ONCOLOGY 2023; 2023:2745074. [PMID: 36644230 PMCID: PMC9833904 DOI: 10.1155/2023/2745074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 11/12/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023]
Abstract
Background and Aims Histone deacetylase 1 (HDAC1) codes a protein that is a component of the histone deacetylase complex. The abnormal expression of HDAC1 is strongly correlated with cell proliferation, differentiation, transcription, and translation. Through continuous screening of genes associated with changes in lung adenocarcinoma (LUAD), gene networks are formed to explore tumor pathogenesis and new therapeutic targets. Methods We evaluated HDAC1 gene survival analysis and its expression of LUAD using relevant websites and databases (TCGA and GEO databases). Through data mining, we determined the frequency and type of HDAC1 mutation, obtained the relevant heat map of the gene interaction network, completed the analysis of gene ontology and function enrichment, and understood the pharmaceutic of HDAC1. Results We found that HDAC1 expression was associated with the prognosis of patients with LUAD. In gene expression analysis, HDAC1 was highly expressed in LUAD, and the HDAC1 interaction gene network (MARCKSL, eIF3I) was closely related to cellular gene expression. Functional network analysis shows that the expression of HDAC1 is related to the monitoring point of the G1-S phase of the cell cycle and the activation of the Notch signaling pathway (CSL transcription factor), which is involved in the process of cell proliferation and differentiation and gene expression associated with new therapeutic targets. Conclusion Our data revealed the expression and potential regulatory factors of HDAC1 in LUAD of data mining, which laid a foundation for the study of the occurrence, development, and treatment of HDAC1 in LUAD.
Collapse
|
17
|
Histone deacetylase inhibitors as sanguine epitherapeutics against the deadliest lung cancer. Adv Cancer Res 2023; 158:163-198. [PMID: 36990532 DOI: 10.1016/bs.acr.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The back-breaking resistance mechanisms generated by lung cancer cells against epidermal growth factor receptor (EGFR), KRAS and Janus kinase 2 (JAK2) directed therapies strongly prioritizes the requirement of novel therapies which are perfectly tolerated, potentially cytotoxic and can reinstate the drug-sensitivity in lung cancer cells. Enzymatic proteins modifying the post-translational modifications of nucleosome-integrated histone substrates are appearing as current targets for defeating various malignancies. Histone deacetylases (HDACs) are hyperexpressed in diverse lung cancer types. Blocking the active pocket of these acetylation erasers through HDAC inhibitors (HDACi) has come out as an optimistic therapeutic recourse for annihilating lung cancer. This article in the beginning gives an overview about lung cancer statistics and predominant lung cancer types. Succeeding this, compendium about conventional therapies and their serious drawbacks has been provided. Then, connection of uncommon expression of classical HDACs in lung cancer onset and expansion has been detailed. Moreover, keeping the main theme in view this article deeply discusses HDACi in the context of aggressive lung cancer as single agents and spotlights various molecular targets suppressed or induced by these inhibitors for engendering cytotoxic effect. Most particularly, the raised pharmacological effects achieved on using these inhibitors in concerted form with other therapeutic molecules and the cancer-linked pathways altered by this procedure are described. The positive direction towards further heightening of efficacy and the pressing requirement of exhaustive clinical assessment has been proposed as a new focus point.
Collapse
|
18
|
Liu Y, Han J, Kong T, Xiao N, Mei Q, Liu J. DriverMP enables improved identification of cancer driver genes. Gigascience 2022; 12:giad106. [PMID: 38091511 PMCID: PMC10716827 DOI: 10.1093/gigascience/giad106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/30/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Cancer is widely regarded as a complex disease primarily driven by genetic mutations. A critical concern and significant obstacle lies in discerning driver genes amid an extensive array of passenger genes. FINDINGS We present a new method termed DriverMP for effectively prioritizing altered genes on a cancer-type level by considering mutated gene pairs. It is designed to first apply nonsilent somatic mutation data, protein‒protein interaction network data, and differential gene expression data to prioritize mutated gene pairs, and then individual mutated genes are prioritized based on prioritized mutated gene pairs. Application of this method in 10 cancer datasets from The Cancer Genome Atlas demonstrated its great improvements over all the compared state-of-the-art methods in identifying known driver genes. Then, a comprehensive analysis demonstrated the reliability of the novel driver genes that are strongly supported by clinical experiments, disease enrichment, or biological pathway analysis. CONCLUSIONS The new method, DriverMP, which is able to identify driver genes by effectively integrating the advantages of multiple kinds of cancer data, is available at https://github.com/LiuYangyangSDU/DriverMP. In addition, we have developed a novel driver gene database for 10 cancer types and an online service that can be freely accessed without registration for users. The DriverMP method, the database of novel drivers, and the user-friendly online server are expected to contribute to new diagnostic and therapeutic opportunities for cancers.
Collapse
Affiliation(s)
- Yangyang Liu
- School of Mathematics and Statistics, Shandong University (Weihai), Weihai 264209, China
| | - Jiyun Han
- School of Mathematics and Statistics, Shandong University (Weihai), Weihai 264209, China
| | - Tongxin Kong
- School of Mathematics and Statistics, Shandong University (Weihai), Weihai 264209, China
| | - Nannan Xiao
- School of Mathematics and Statistics, Shandong University (Weihai), Weihai 264209, China
| | - Qinglin Mei
- MOE Key Laboratory of Bioinformatics, BNRIST Bioinformatics Division, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Juntao Liu
- School of Mathematics and Statistics, Shandong University (Weihai), Weihai 264209, China
| |
Collapse
|
19
|
Khan FH, Bhat BA, Sheikh BA, Tariq L, Padmanabhan R, Verma JP, Shukla AC, Dowlati A, Abbas A. Microbiome dysbiosis and epigenetic modulations in lung cancer: From pathogenesis to therapy. Semin Cancer Biol 2022; 86:732-742. [PMID: 34273520 DOI: 10.1016/j.semcancer.2021.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/25/2021] [Accepted: 07/11/2021] [Indexed: 02/07/2023]
Abstract
The lung microbiome plays an essential role in maintaining healthy lung function, including host immune homeostasis. Lung microbial dysbiosis or disruption of the gut-lung axis can contribute to lung carcinogenesis by causing DNA damage, inducing genomic instability, or altering the host's susceptibility to carcinogenic insults. Thus far, most studies have reported the association of microbial composition in lung cancer. Mechanistic studies describing host-microbe interactions in promoting lung carcinogenesis are limited. Considering cancer as a multifaceted disease where epigenetic dysregulation plays a critical role, epigenetic modifying potentials of microbial metabolites and toxins and their roles in lung tumorigenesis are not well studied. The current review explains microbial dysbiosis and epigenetic aberrations in lung cancer and potential therapeutic opportunities.
Collapse
Affiliation(s)
- Faizan Haider Khan
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | | | | | - Lubna Tariq
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Roshan Padmanabhan
- Department of Medicine, Case Western Reserve University, and University Hospital, Cleveland, OH, 44106, USA
| | - Jay Prakash Verma
- Institute of Environment and Sustainable Development, Banaras Hindu University Varanasi, India
| | | | - Afshin Dowlati
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA; University Hospitals Seidman Cancer Center, Cleveland, OH, 44106, USA; Developmental Therapeutics Program, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44116, USA
| | - Ata Abbas
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA; Developmental Therapeutics Program, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44116, USA.
| |
Collapse
|
20
|
Kundu R, Banerjee S, Baidya SK, Adhikari N, Jha T. A quantitative structural analysis of AR-42 derivatives as HDAC1 inhibitors for the identification of promising structural contributors. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2022; 33:861-883. [PMID: 36412121 DOI: 10.1080/1062936x.2022.2145353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Alteration and abnormal epigenetic mechanisms can lead to the aberration of normal biological functions and the occurrence of several diseases. The histone deacetylase (HDAC) family of enzymes is one of the prime regulators of epigenetic functions modifying the histone proteins, and thus, regulating epigenetics directly. HDAC1 is one of those HDACs which have important contributions to cellular epigenetics. The abnormality of HDAC is correlated to the occurrence, progression, and poor prognosis in several disease conditions namely neurodegenerative disorders, cancer cell proliferation, metastasis, chemotherapy resistance, and survival in various cancers. Therefore, the progress of potent and effective HDAC1 inhibitors is one of the prime approaches to combat such diseases. In this study, both regression and classification-based molecular modelling studies were conducted on some AR-42 derivatives as HDAC1 inhibitors to elucidate the crucial structural aspects that are responsible for regulating their biological responses. This study revealed that the molecular polarizability, van der Waals volume, the presence of aromatic rings as well as the higher number of hydrogen bond acceptors might affect prominently their inhibitory activity and might be responsible for proper fitting and interactions at the HDAC1 active site to pertain effective inhibition.
Collapse
Affiliation(s)
- R Kundu
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - S Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - S K Baidya
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - N Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - T Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
21
|
Fang Y, Zhao J, Guo X, Dai Y, Zhang H, Yin F, Zhang X, Sun C, Han Z, Wang H, Han Y. Establishment, immunological analysis, and drug prediction of a prognostic signature of ovarian cancer related to histone acetylation. Front Pharmacol 2022; 13:947252. [PMID: 36172179 PMCID: PMC9510621 DOI: 10.3389/fphar.2022.947252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
In recent years, epigenetic modifications have been increasingly regarded as an important hallmark of cancer. Histone acetylation, as an important part of epigenetic modification, plays a key role in the progress, treatment, and prognosis of many cancers. In this study, based on the TCGA database, we performed LASSO regression and the Cox algorithm to establish a prognostic signature of ovarian cancer associated with histone acetylation modulator genes and verified it externally in the GEO database. Subsequently, we performed an immunological bioinformatics analysis of the model from multiple perspectives using the CIBERSORT algorithm, ESTIMATE algorithm, and TIDE algorithm to verify the accuracy of the model. Based on the prognostic model, we divided ovarian cancer patients into high-risk and low-risk groups, and assessed survival and the efficacy of accepting immunosuppressive therapy. In addition, based on the analysis of characteristics of the model, we also screened targeted drugs for high-risk patients and predicted potential drugs that inhibit platinum resistance through the connectivity map method. We ultimately constructed a histone acetylation modulator-related signature containing 10 histone acetylation modulators, among which HDAC1, HDAC10, and KAT7 can act as independent prognostic factors for ovarian cancer and are related to poor prognosis. In the analysis of the tumor microenvironment, the proportion of the B-infiltrating cells and the macrophages was significantly different between the high- and low-risk groups. Also, the samples with high-risk scores had higher tumor purity and lower immune scores. In terms of treatment, patients in the high-risk group who received immunotherapy had a higher likelihood of immune escape or rejection and were less likely to respond to platinum/paclitaxel therapy. Finally, we screened 20 potential drugs that could target the model for reference.
Collapse
Affiliation(s)
- Yujie Fang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dalian, China
| | - Jing Zhao
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dalian, China
| | - Xu Guo
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dalian, China
| | - Yunfeng Dai
- Department of Radiotherapy, Yingkou Central Hospital, Yingkou, China
| | - Hao Zhang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dalian, China
| | - Fanxin Yin
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dalian, China
| | - Xiaoxu Zhang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dalian, China
| | - Chenxi Sun
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dalian, China
| | - Zequan Han
- Department of Pathology, Yingkou Fangda Hospital, Yingkou, China
| | - Hecheng Wang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dalian, China
- *Correspondence: Yanshuo Han, ;, Hecheng Wang,
| | - Yanshuo Han
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dalian, China
- *Correspondence: Yanshuo Han, ;, Hecheng Wang,
| |
Collapse
|
22
|
Puerarin ameliorates acute lung injury by modulating NLRP3 inflammasome-induced pyroptosis. Cell Death Dis 2022; 8:368. [PMID: 35977927 PMCID: PMC9385627 DOI: 10.1038/s41420-022-01137-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022]
Abstract
We commenced to analyze putative anti-pyroptosis effects of puerarin (PU) as mediated by the PP2A-HDAC1-NLRP3 pathway in acute lung injury (ALI). ALI animal and cell models were constructed, followed by treatment of PU. Then, the effect of HDAC1, PP2A, and NLRP3 on cell inflammation and pyroptosis was explored. The interaction between HDAC1 and PP2A as well as between PP2A and NLRP3 was analyzed. Our findings suggested that PU downregulated HDAC1 expression to alleviate symptoms of ALI. HDAC1 overexpression promoted inflammation induced by LPS, which reversed the inhibitory effect of PU on ALI. HDAC1 overexpression also decreased PP2A expression, suggesting that PP2A was involved in the effects of HDAC1 on LPS-induced inflammation. PP2A exerted inhibitory effects on NLRP3. Meanwhile, PU hindered the progression of ALI by silencing HDAC1 or overexpressing PP2A both in vivo and in vitro. Taken together, PU restrained pyroptosis of cells induced by NLRP3 inflammasome to abate ALI.
Collapse
|
23
|
The Potential Mechanism of HDAC1-Catalyzed Histone Crotonylation of Caspase-1 in Nonsmall Cell Lung Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5049116. [PMID: 35958929 PMCID: PMC9363190 DOI: 10.1155/2022/5049116] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/18/2022]
Abstract
Nonsmall cell lung cancer (NSCLC) is a predominant subtype of lung cancer and accounts for over 80% of all lung cancer cases. The resistance to pemetrexed (PEM) is frequently occurred and severely affects the NSCLC therapy. Proteomic analysis of histones indicated that the histone deacetylase 1 (HDAC1) complex could hydrolyze lysine crotonylation on histone3 (H3K18cr), affecting epigenetic regulation in cancers. However, the effect of HDAC1-mediated H3K18cr on the PEM resistance of NSCLC is still unclear. Here, we aimed to explore the function of HDAC1-mediated H3K18cr in NSCLC PEM resistance. The expression of HDAC1 was upregulated in clinical NSCLC tissues and cell lines and correlated with the poor prognosis of NSCLC samples. We constructed the PEM-resistant NSCLC cell lines, and the depletion of HDAC1 remarkably reduced the viability of the cells. The proliferation of PEM-resistant NSCLC cells was decreased by HDAC1 knockdown, and the IC50 of PEM was repressed by the silencing of HDAC1 in the cells. Mechanically, we identified the enrichment of HDAC1 on the promoter of caspase-1 in PEM-resistant NSCLC cells. The depletion of HDAC1 inhibited the enrichment of histone H3K18cr and RNA polymerase II (RNA pol II) on the caspase-1 promoter in the cells. The expression of caspase-1 was suppressed by HDAC1 knockdown. The knockdown of HDAC1 reduced proliferation of PEM-resistant NSCLC cells, in which caspase-1 or GSDMD depletion reversed the effect. Clinically, the HDAC1 expression was negatively associated with caspase-1 and GSDMD in clinical NSCLC tissues, while caspase-1 and GSDMD expression was positively correlated in the samples. Therefore, we concluded that HDAC1-catalyzed histone crotonylation of caspase-1 modulates PEM sensitivity of NSCLC by targeting GSDMD.
Collapse
|
24
|
Wu Y, Zhang B, Dong X, Ma S, Hu S. Discovery of Novel Small Molecule HDAC1, 2, 3 Inhibitors -- Combined
Receptor-Based and Ligand-Based Virtual Screening Strategy. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180819666211220124300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aims:
This study aims to investigate and validate the potential drug target to HDAC1.
Background:
Human histone deacetylase 1 (HDAC1) can catalyze the deacetylation of histones belonging
to the family of human histone deacetylases (HDACs). Amide hydrolase HDAC1 plays a key role in
the development of many serious cancers such as prostate cancer, gastric cancer, lung cancer, esophageal
cancer, colon cancer, and breast cancer. Therefore, HDAC1 inhibitors, promoting the transcription of a
series of key genes such as the p53 gene and inhibiting the development of cancer through various downstream
mechanisms, have great potential for the treatment of cancer.
Objective:
The objective of this study is to discover new skeleton HDAC1 inhibitors efficiently and conveniently
with therapeutic potential for cancer.
Method:
Based on the crystal structure of HDAC1, through the combination of receptor-based and ligand-
based virtual screening from the commercial compound library, the top-ranked compounds are selected
for purchase through binding modes analysis, and their activities were verified through in vitro
HDAC1 inhibitory biological experiments.
Results:
Based on LeDock, 5ICN showed good distinguishing ability and was used as the receptor. According
to the results of the LeDock docking scoring from receptor-based virtual screening, 69 compounds
with binding energy less than -7.5 kcal/mol were obtained and used for ligand-based virtual
screening. A total of 21 novel compounds with high potential HDAC1 inhibitory activity were collected
by combining the similarity searching (NN) and the multinomial Naive Bayes machine learning model
(NB) methods. Through binding modes analysis, 10 compounds with different structures with potential
HDAC1 inhibitory activity were selected and screened HDAC1 inhibitory in vitro. May267 showed moderate
HDAC1 inhibitory activity, and the inhibition rate was 48% at a concentration of 20 μM.
Conclusion:
This study discovers novel small molecule HDAC1 inhibitors by combined receptor-based
and ligand-based virtual screening strategy, which provides an efficient method for the discovery of other
small molecule drugs. May267 shows moderate HDAC1 inhibitory activity, which can be further optimized
as a lead compound. However, it still has the problem of poor kinase selectivity to be solved.
Collapse
Affiliation(s)
- Yi Wu
- Department of General Surgery, Nanjing Medical University, Hangzhou First People’s Hospital, Hangzhou, Zhejiang
310006, P.R. China
| | - Bo Zhang
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology
and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People\'s Hospital, Cancer Center,
Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Xiaowu Dong
- Hangzhou Institute of Innovative
Medicine, Innovation Institute for Artificial Intelligence in Medicine, College of Pharmaceutical Sciences, Zhejiang
University, Hangzhou, Zhejiang 310058, P.R. China
| | - Shenglin Ma
- Department of Oncology, Nanjing Medical University, Hangzhou First People’s Hospital, Hangzhou,
Zhejiang 310006, P.R. China
| | - Shengquan Hu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou,
Zhejiang 310058, P.R. China
| |
Collapse
|
25
|
Shen P, Wang Y, Jia X, Xu P, Qin L, Feng X, Li Z, Qiu Z. Dual-target Janus kinase (JAK) inhibitors: Comprehensive review on the JAK-based strategies for treating solid or hematological malignancies and immune-related diseases. Eur J Med Chem 2022; 239:114551. [PMID: 35749986 DOI: 10.1016/j.ejmech.2022.114551] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/19/2022]
Abstract
Janus kinases (JAKs) are the non-receptor tyrosine kinases covering JAK1, JAK2, JAK3, and TYK2 which regulate signal transductions of hematopoietic cytokines and growth factors to play essential roles in cell growth, survival, and development. Dysregulated JAK activity leading to a constitutively activated signal transducers and activators of transcription (STAT) is strongly associated with immune-related diseases and cancers. Targeting JAK to interfere the signaling of JAK/STAT pathway has achieved quite success in the treatment of these diseases. However, inadequate clinical response and serious adverse events come along by the treatment of monotherapy of JAK inhibitors. With better and deeper understanding of JAK/STAT pathway in the pathogenesis of diseases, researchers start to show huge interest in combining inhibition of JAK and other oncogenic targets to realize a broader regulation on pathological processes to block disease development and progression, which has hastened extensive research of dual JAK inhibitors over the past decades. Until now, studies of dual JAK inhibitors have added BTK, SYK, FLT3, HDAC, Src, and Aurora kinases to the overall inhibitory profile and demonstrated significant advantage and superiority over single-target inhibitors. In this review, we elucidated the possible mechanism of synergic effects caused by dual JAK inhibitors and briefly describe the development of these agents.
Collapse
Affiliation(s)
- Pei Shen
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Yezhi Wang
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Xiangxiang Jia
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Pengfei Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Lian Qin
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Xi Feng
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Zhiyu Li
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 21009, PR China.
| | - Zhixia Qiu
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 21009, PR China.
| |
Collapse
|
26
|
Milan TM, Eskenazi APE, Bighetti-Trevisan RL, de Almeida LO. Epigenetic modifications control loss of adhesion and aggressiveness of cancer stem cells derived from head and neck squamous cell carcinoma with intrinsic resistance to cisplatin. Arch Oral Biol 2022; 141:105468. [DOI: 10.1016/j.archoralbio.2022.105468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/17/2022] [Accepted: 05/29/2022] [Indexed: 11/17/2022]
|
27
|
Histone Modification on Parathyroid Tumors: A Review of Epigenetics. Int J Mol Sci 2022; 23:ijms23105378. [PMID: 35628190 PMCID: PMC9140881 DOI: 10.3390/ijms23105378] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/02/2022] [Accepted: 05/07/2022] [Indexed: 01/27/2023] Open
Abstract
Parathyroid tumors are very prevalent conditions among endocrine tumors, being the second most common behind thyroid tumors. Secondary hyperplasia can occur beyond benign and malignant neoplasia in parathyroid glands. Adenomas are the leading cause of hyperparathyroidism, while carcinomas represent less than 1% of the cases. Tumor suppressor gene mutations such as MEN1 and CDC73 were demonstrated to be involved in tumor development in both familiar and sporadic types; however, the epigenetic features of the parathyroid tumors are still a little-explored subject. We present a review of epigenetic mechanisms related to parathyroid tumors, emphasizing advances in histone modification and its perspective of becoming a promising area in parathyroid tumor research.
Collapse
|
28
|
Abstract
In mammalian cells, genomic DNA is packaged with histone proteins and condensed into chromatin. To gain access to the DNA, chromatin remodelling is required that is enhanced through histone post-translational modifications, which subsequently stimulate processes including DNA repair and transcription. Histone acetylation is one of the most well understood modifications and is controlled by histone acetyltransferases (HATs) and histone deacetylases (HDACs). These enzymes play critical roles in normal cellular functioning, and the dysregulation of HDAC expression in particular has been linked with the development of a number of different cancer types. Conversely, tumour cell killing following radiotherapy is triggered through DNA damage and HDACs can help co-ordinate the cellular DNA damage response which promotes radioresistance. Consequently, HDAC inhibitors have been investigated as potential radiosensitizers in vitro and in vivo to improve the efficacy or radiotherapy in specific tumour types. In this review, we provide an up-to-date summary of HDACs and their cellular functions, including in DNA damage repair. We also review evidence demonstrating that HDAC inhibitors can effectively enhance tumour radiosensitisation, and which therefore show potential for translation into the clinic for cancer patient benefit.
Collapse
|
29
|
Situ Y, Gao R, Lei L, Deng L, Xu Q, Shao Z. System analysis of FHIT in LUAD and LUSC: The expression, prognosis, gene regulation network, and regulation targets. Int J Biol Markers 2022; 37:158-169. [PMID: 35254116 DOI: 10.1177/03936155221084056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Fragile histidine triad (FHIT) is a strong tumor suppressor gene, and cells deficient in FHIT are prone to acquiring cancer-promoting mutations. Due to its location, deletions within FHIT are common in cancer. Over 50% of cancers show loss of FHIT expression. However, to date, expression levels, gene regulatory networks, prognostic value, and target prediction of FHIT in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) have not been fully reported. Therefore, systematic analysis of FHIT expression, gene regulatory network, prognostic value, and targeted prediction in patients with LUAD and LUSC has important guiding significance, providing new therapeutic targets and strategies for clinical treatment of lung cancer to further improve the therapeutic effect of lung cancer. METHODS Multiple free online databases were used for the abovementioned analysis in this study, including cBioPortal, TRRUST, Human Protein Atlas, GeneMANIA, GEPIA, Metascape, UALCAN, LinkedOmics, and TIMER. RESULTS FHIT was upregulated in patients with LUAD, and downregulated in patients with LUSC. Genetic alterations of FHIT were found in patients with LUAD (7%), and LUSC (10%). The promoter methylation of FHIT was lower in patients with LUAD and LUSC. FHIT expression significantly correlated with LUSC pathological stages. Furthermore, patients with LUAD and LUSC having low FHIT expression levels had a longer survival than those having high FHIT expression levels. FHIT and its neighboring genes (the 50 most frequently altered neighboring genes of FHIT) functioned in the regulation of protein kinase and DNA binding in patients with LUAD, as well as cell channels and membrane potential in patients with LUSC. Gene ontology enrichment analysis revealed that the functions of FHIT and its neighboring genes are mainly related to disordered domain-specific binding, protein kinase binding, and ion gated channel activity in patients with LUAD, as well as calcium ion binding and intracellular ligand-gated ion channel activity in patients with LUSC. Transcription factor targets of FHIT and its neighboring genes in patients with lung cancer were found: USF1, SOX6, USF2, SIRT1, VHL, LEF1, EZH2, TP53, HDAC1, ESR1, EGR1, YY1, MYC, RELA, NFKB1, and E2F1 in LUAD; and HDAC1, DNMT1, and E2F1 in LUSC. We further explored the FHIT-associated kinase (PRKCQ, AURKB and ATM in LUAD as well as PLK3 in LUSC) and FHIT-associated miRNA targets (MIR-188, MIR-323, and MIR-518A-2 in LUAD). Furthermore, the following genes had the strongest correlation with FHIT expression in patients with lung cancer: NICN1, HEMK1, and BDH2 in LUAD, and ZMAT1, TTC21A, and NICN1 in LUSC. FHIT expression was positively associated with immune cell infiltration (B cell) in patients with LUAD, as well as B cell, CD8 + T, CD4 + T cells, macrophages, and dendritic cells in patients with LUSC. Nevertheless, FHIT expression was negatively associated with CD8 + T cells and neutrophils in patients with LUAD. CONCLUSIONS The expression, gene regulatory network, prognostic value and targeted prediction of FHIT in patients with LUAD and LUSC were systematically analyzed and revealed in this study, thereby laying a foundation for further research on the role of FHIT in LUAD and LUSC occurrence. This study provides new LUAD and LUSC therapeutic targets and prognostic biomarkers as a reference for fundamental and clinical research.
Collapse
Affiliation(s)
- Yongli Situ
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, Guangdong, China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Ruxiu Gao
- Department of Parasitology, 12453Guangdong Medical University, Zhanjiang 524023,Guangdong, China
| | - Lei Lei
- Department of Parasitology, 12453Guangdong Medical University, Zhanjiang 524023,Guangdong, China
| | - Li Deng
- Department of Parasitology, 12453Guangdong Medical University, Zhanjiang 524023,Guangdong, China
| | - Qinying Xu
- Department of Parasitology, 12453Guangdong Medical University, Zhanjiang 524023,Guangdong, China
| | - Zheng Shao
- Department of Parasitology, 12453Guangdong Medical University, Zhanjiang 524023,Guangdong, China
| |
Collapse
|
30
|
Dai Q, Ye Y. Development and Validation of a Novel Histone Acetylation-Related Gene Signature for Predicting the Prognosis of Ovarian Cancer. Front Cell Dev Biol 2022; 10:793425. [PMID: 35252174 PMCID: PMC8894724 DOI: 10.3389/fcell.2022.793425] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/26/2022] [Indexed: 12/21/2022] Open
Abstract
Histone acetylation is one of the most common epigenetic modifications, which plays an important role in tumorigenesis. However, the prognostic role of histone acetylation-regulators in ovarian cancer (OC) remains little known. We compared the expression levels of 40 histone acetylation-related genes between 379 OC samples and 88 normal ovarian tissues and identified 37 differently expressed genes (DEGs). We further explored the prognostic roles of these DEGs, and 8 genes were found to be correlated with overall survival (p < 0.1). In the training stage, an 8 gene‐based signature was conducted by the least absolute shrinkage and selector operator (LASSO) Cox regression. Patients in the training cohort were divided into two risk subgroups according to the risk score calculated by the 8-gene signature, and a notable difference of OS was found between the two subgroups (p < 0.001). The 8-gene risk model was then verified to have a well predictive role on OS in the external validation cohort. Combined with the clinical characteristics, the risk score was proved to be an independent risk factor for OS. In conclusion, the histone acetylation-based gene signature has a well predictive effect on the prognosis of OC and can potentially be applied for clinical treatments.
Collapse
Affiliation(s)
- Qinjin Dai
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ying Ye
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Ying Ye,
| |
Collapse
|
31
|
Discovery of potent HDAC2 inhibitors based on virtual screening in combination with drug repurposing. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131399] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
32
|
Liu H, Wang H, Ma J, Qiao Z, Zhang L, Ge G. MicroRNA-146a-3p/HDAC1/KLF5/IKBα signal axis modulates plaque formation of atherosclerosis mice. Life Sci 2021; 284:119615. [PMID: 34004248 DOI: 10.1016/j.lfs.2021.119615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Atherosclerosis (AS) is a multifocal, smoldering immune inflammatory disease of medium and large arteries driven by lipids. The aim of this study is to discuss the mechanism of microRNA-146a-3p (miR-146a-3p)/histone deacetylase 1 (HDAC1)/Krüppel-like factor 5 (KLF5)/inhibitors of kappa B α (IKBα) signal axis in plaque formation of AS mice. METHODS ApoE-/- mice were fed with high-fat feed for 12 weeks to establish AS mice model. The expression of miR-146a-3p, KLF5, HDAC1 and IKBα in aortic wall tissues of AS mice was tested. The targeting relationship between miR-146a-3p and HDAC1 was verified. AS mice were injected with miR-146a-3p antagomir or HDAC1 overexpression to verify the impacts of miR-146a-3p and HDAC1 on blood lipids and inflammatory factors in serum, aortic wall apoptotic cells, antioxidant stress capacity and the plaque area in AS mice. VECs proliferation and apoptosis were also measured in vitro. RESULTS miR-146a-3p and KLF5 were increased while HDAC1 and IKBα were reduced in aortic wall tissues of AS mice. miR-146a-3p directly targeted to HDAC1. Depletion of miR-146a-3p or restoration of HDAC1 was correlated to lower plasma lipid level, reduced inflammatory factors in serum, attenuated aortic wall apoptosis, increased antioxidant stress capacity and improved the stability of pathological plaque of AS mice. miR-146a-3p down-regulation or HDAC1 up-regulation promoted VECs proliferation and inhibited apoptosis. CONCLUSION Functional studies show that depleted miR-146a-3p advances HDAC1 and IKBα expression as well as inhibits KLF5 expression to facilitate the stability of pathological plaques in AS mice.
Collapse
Affiliation(s)
- Huajin Liu
- Department of Cardiology, Fengxian District Central Hospital, Shanghai, China.
| | - Hongwei Wang
- Department of Cardiology, Fengxian District Central Hospital, Shanghai, China
| | - Jiangwei Ma
- Department of Cardiology, Fengxian District Central Hospital, Shanghai, China
| | - Zengyong Qiao
- Department of Cardiology, Fengxian District Central Hospital, Shanghai, China
| | - Li Zhang
- Department of Cardiology, Fengxian District Central Hospital, Shanghai, China
| | - Guanghao Ge
- Department of Cardiology, Fengxian District Central Hospital, Shanghai, China
| |
Collapse
|
33
|
Wu Q, Zhang W, Liu Y, Huang Y, Wu H, Ma C. Histone deacetylase 1 facilitates aerobic glycolysis and growth of endometrial cancer. Oncol Lett 2021; 22:721. [PMID: 34429761 PMCID: PMC8371952 DOI: 10.3892/ol.2021.12982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/24/2021] [Indexed: 01/20/2023] Open
Abstract
The deregulation of histone deacetylase 1 (HDAC1) is reportedly involved in the progression of several cancer types. However, its function in endometrial cancer remains unknown. The aim of the present study was to clarify the role of HDAC1 in aerobic glycolysis and the progression of endometrial cancer. Lentiviral vector transfection was used to up- and downregulate HDAC1 expression in HEC-1-A endometrial cancer cells. The effects of HDAC1 on cellular proliferation, apoptosis, migration, invasiveness and tumorigenesis were determined by CCK-8, flow cytometry, wound-healing, transwell chamber and in vivo tumor formation experiments, respectively. HDAC1 level was significantly increased in endometrial cancer tissues and cells, and its high expression was associated with advanced clinicopathological progression. HEC-1-A cell proliferation, invasiveness, migration and tumorigenesis were enhanced, and apoptosis was inhibited when HDAC1 was overexpressed. Moreover, upregulation of HDAC1 significantly promoted the epithelial-mesenchymal transition of HEC-1-A cells, and increased glucose consumption, lactate secretion and ATP levels. Collectively, the present study revealed that HDAC1 promoted the aerobic glycolysis and progression of endometrial cancer, which may provide a potential target for endometrial cancer treatment.
Collapse
Affiliation(s)
- Qiongwei Wu
- Gynecology Department, Shanghai Changning Maternity and Infant Health Hospital, Shanghai 200051, P.R. China
| | - Wenying Zhang
- Gynecology Department, Shanghai Changning Maternity and Infant Health Hospital, Shanghai 200051, P.R. China
| | - Yu Liu
- Gynecology Department, Shanghai Changning Maternity and Infant Health Hospital, Shanghai 200051, P.R. China
| | - Yuhua Huang
- Gynecology Department, Shanghai Changning Maternity and Infant Health Hospital, Shanghai 200051, P.R. China
| | - Huiheng Wu
- Gynecology Department, Shanghai Changning Maternity and Infant Health Hospital, Shanghai 200051, P.R. China
| | - Chengbin Ma
- Gynecology Department, Shanghai Changning Maternity and Infant Health Hospital, Shanghai 200051, P.R. China
| |
Collapse
|
34
|
Du M, Gong P, Zhang Y, Liu Y, Liu X, Zhang F, Wang X. Histone methyltransferase SETD1A participates in lung cancer progression. Thorac Cancer 2021; 12:2247-2257. [PMID: 34219384 PMCID: PMC8365002 DOI: 10.1111/1759-7714.14065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/06/2021] [Accepted: 06/11/2021] [Indexed: 12/18/2022] Open
Abstract
Lung cancer is the leading cause of cancer‐related death worldwide, with an estimated 1.2 million deaths each year. Despite advances in lung cancer treatment, 5‐year survival rates are lower than ~15%, which is attributes to diagnosis limitations and current clinical drug resistance. Recently, more evidence has suggested that epigenome dysregulation is associated with the initiation and progress of cancer, and targeting epigenome‐related molecules improves cancer symptoms. Interestingly, some groups reported that the level of methylation of histone 3 lysine 4 (H3K4me3) was increased in lung tumors and participated in abnormal transcriptional regulation. However, a mechanistic analysis is not available. In this report, we found that the SET domain containing 1A (SETD1A), the enzyme for H3K4me3, was elevated in lung cancer tissue compared to normal lung tissue. Knockdown of SETD1A in A549 and H1299 cells led to defects in cell proliferation and epithelial‐mesenchymal transition (EMT), as evidenced by inhibited WNT and transforming growth factor β (TGFβ) pathways, compared with the control group. Xenograft assays also revealed a decreased tumor growth and EMT in the SETD1A silenced group compared with the control group. Mechanistic analysis suggested that SETD1A might regulate tumor progression via several critical oncogenes, which exhibited enhanced H3K4me3 levels around transcriptional start sites in lung cancer. This study illustrates the important role of SETD1A in lung cancer and provides a potential drug target for treatment.
Collapse
Affiliation(s)
- Mei Du
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Oncology, Linyi People's Hospital Affiliated to Shandong University, Linyi, China
| | - Piping Gong
- Department of Oncology, Linyi People's Hospital Affiliated to Shandong University, Linyi, China
| | - Yun Zhang
- Department of Oncology, Linyi People's Hospital Affiliated to Shandong University, Linyi, China
| | - Yanguo Liu
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaozhen Liu
- Department of Oncology, Linyi People's Hospital Affiliated to Shandong University, Linyi, China
| | - Feng Zhang
- Department of Oncology, Linyi People's Hospital Affiliated to Shandong University, Linyi, China
| | - Xiuwen Wang
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
35
|
Bahl S, Ling H, Acharige NPN, Santos-Barriopedro I, Pflum MKH, Seto E. EGFR phosphorylates HDAC1 to regulate its expression and anti-apoptotic function. Cell Death Dis 2021; 12:469. [PMID: 33976119 PMCID: PMC8113371 DOI: 10.1038/s41419-021-03697-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 02/03/2023]
Abstract
HDAC1 is the prototypical human histone deacetylase (HDAC) enzyme responsible for catalyzing the removal of acetyl group from lysine residues on many substrate proteins. By deacetylating histones and non-histone proteins, HDAC1 has a profound effect on the regulation of gene transcription and many processes related to cell growth and cell death, including cell cycle progression, DNA repair, and apoptosis. Early studies reveal that, like most eukaryotic proteins, the functions and activities of HDAC1 are regulated by post-translational modifications. For example, serine phosphorylation of HDAC1 by protein kinase CK2 promotes HDAC1 deacetylase enzymatic activity and alters its interactions with proteins in corepressor complexes. Here, we describe an alternative signaling pathway by which HDAC1 activities are regulated. Specifically, we discover that EGFR activity promotes the tyrosine phosphorylation of HDAC1, which is necessary for its protein stability. A key EGFR phosphorylation site on HDAC1, Tyr72, mediates HDAC1's anti-apoptotic function. Given that HDAC1 overexpression and EGFR activity are strongly related with tumor progression and cancer cell survival, HDAC1 tyrosine phosphorylation may present a possible target to manipulate HDAC1 protein levels in future potential cancer treatment strategies.
Collapse
Affiliation(s)
- Sonali Bahl
- Department of Biochemistry & Molecular Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
- GW Cancer Center, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Hongbo Ling
- Department of Biochemistry & Molecular Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
- GW Cancer Center, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | | | - Irene Santos-Barriopedro
- Department of Biochemistry & Molecular Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
- GW Cancer Center, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Mary Kay H Pflum
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| | - Edward Seto
- Department of Biochemistry & Molecular Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA.
- GW Cancer Center, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA.
| |
Collapse
|
36
|
Abdullah O, Omran Z, Hosawi S, Hamiche A, Bronner C, Alhosin M. Thymoquinone Is a Multitarget Single Epidrug That Inhibits the UHRF1 Protein Complex. Genes (Basel) 2021; 12:genes12050622. [PMID: 33922029 PMCID: PMC8143546 DOI: 10.3390/genes12050622] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
Silencing of tumor suppressor genes (TSGs) through epigenetic mechanisms, mainly via abnormal promoter DNA methylation, is considered a main mechanism of tumorigenesis. The abnormal DNA methylation profiles are transmitted from the cancer mother cell to the daughter cells through the involvement of a macromolecular complex in which the ubiquitin-like containing plant homeodomain (PHD), and an interesting new gene (RING) finger domains 1 (UHRF1), play the role of conductor. Indeed, UHRF1 interacts with epigenetic writers, such as DNA methyltransferase 1 (DNMT1), histone methyltransferase G9a, erasers like histone deacetylase 1 (HDAC1), and functions as a hub protein. Thus, targeting UHRF1 and/or its partners is a promising strategy for epigenetic cancer therapy. The natural compound thymoquinone (TQ) exhibits anticancer activities by targeting several cellular signaling pathways, including those involving UHRF1. In this review, we highlight TQ as a potential multitarget single epidrug that functions by targeting the UHRF1/DNMT1/HDAC1/G9a complex. We also speculate on the possibility that TQ might specifically target UHRF1, with subsequent regulatory effects on other partners.
Collapse
Affiliation(s)
- Omeima Abdullah
- College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (O.A.); (Z.O.)
| | - Ziad Omran
- College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; (O.A.); (Z.O.)
| | - Salman Hosawi
- Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Ali Hamiche
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Université de Strasbourg, 67404 Illkirch, France; (A.H.); (C.B.)
| | - Christian Bronner
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Université de Strasbourg, 67404 Illkirch, France; (A.H.); (C.B.)
| | - Mahmoud Alhosin
- Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Correspondence: ; Tel.: +966-597-959-354
| |
Collapse
|
37
|
Ma T, Yan B, Hu Y, Zhang Q. HOXA10 promotion of HDAC1 underpins the development of lung adenocarcinoma through the DNMT1-KLF4 axis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:71. [PMID: 33596966 PMCID: PMC7891037 DOI: 10.1186/s13046-021-01867-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Previous research has highlighted the ability of Homeobox A10 (HOXA10) to the promote proliferation, migration, and epithelial-mesenchymal transformation of various cancers, including lung adenocarcinoma (LAD), which is characterized by an aggressive disease course that exhibits rapid proliferation and migration, with studies suggesting histone deacetylase 1 (HDAC1) to be a downstream mediator of HOXA10. The current study aimed to investigate the mechanism by which HOXA10-mediated HDAC1 influences the development of LAD. Methods The expression patterns of HOXA10, HDAC1, DNA methyltransferase 1 (DNMT1), and Kruppel-like factor 4 (KLF4) were determined. Additionally, the effect of HOXA10, HDAC1, or DNMT1 on invasive phenotypes of LAD was analyzed using depletion experiments. The interactions among HOXA10, HDAC1, DNMT1, and KLF4 were evaluated via chromatin immunoprecipitation, dual luciferase assay or co-immunoprecipitation. Furthermore, the tumorigenic ability of the LAD cells following HOXA10 silencing and/or HDAC1 overexpression in vivo was also investigated. Results In the LAD tissues and cells, HOXA10, HDAC1, and DNMT1 all exhibited high levels of expression, while KLF4 was poorly expressed. HOXA10 silencing inhibited the expression of HDAC1, reduced LAD cell proliferation, migration, and invasion, and promoted the apoptosis. HDAC1 promoted DNMT1 expression through deacetylation, and DNMT1 inhibited the KLF4 expression through DNA methyltransferase. The in vitro findings were further attested through the use of in vivo assays. Conclusion Taken together, the key observations of the current study highlight the role of HOXA10 and HDAC1 in promoting the proliferation and migration of LAD cells. HOXA10-induced upregulation of HDAC1 interacts with DNMT1-KLF4 axis, while the inhibition of HOXA10 or HDAC1 represents a promising anti-tumor therapy target for LAD. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01867-0.
Collapse
Affiliation(s)
- Tiangang Ma
- Department of Respiratory and Critical Care Medicine, the 2nd Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041, P.R. China
| | - Bingdi Yan
- Department of Respiratory and Critical Care Medicine, the 2nd Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041, P.R. China
| | - Yanbing Hu
- Department of Ultrasound, the 2nd Hospital of Jilin University, Changchun, 130041, P.R. China
| | - Qinghua Zhang
- Department of Respiratory and Critical Care Medicine, the 2nd Hospital of Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130041, P.R. China.
| |
Collapse
|
38
|
Liu J, Qiu J, Zhang Z, Zhou L, Li Y, Ding D, Zhang Y, Zou D, Wang D, Zhou Q, Lang T. SOX4 maintains the stemness of cancer cells via transcriptionally enhancing HDAC1 revealed by comparative proteomics study. Cell Biosci 2021; 11:23. [PMID: 33482915 PMCID: PMC7821488 DOI: 10.1186/s13578-021-00539-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/11/2021] [Indexed: 12/20/2022] Open
Abstract
Background Cancer stem cells (CSCs) are the root of human cancer development and the major cause of treatment failure. Aberrant elevation of SOX4, a member of SOX (SRY-related HMG-box) family transcription factors, has been identified in many types of human cancer and promotes cancer development. However, the role of SOX4 in CSCs, especially at a proteome-wide level, has remained elusive. The aim of this study is to investigate the effect of SOX4 on the stemness of CSCs and reveal the underlying mechanisms by identification of SOX4-induced proteome changes through proteomics study. Results Overexpression of SOX4 promotes sphere formation and self-renewal of colorectal cancer cells in vitro and in vivo and elevates the expression levels of CSCs markers. Through iTRAQ-based quantitative proteomics analysis, 215 differentially expressed proteins (128 upregulated, 87 downregulated) in SOX4-overexpressing HCT-116 spheres were identified. The bioinformatic analysis highlighted the importance of HDAC1 as the fundamental roles of its impacted pathways in stem cell maintenance, including Wnt, Notch, cell cycle, and transcriptional misregulation in cancer. The mechanistic study showed that SOX4 directly binds to the promoter of HDAC1, promotes HDAC1 transcription, thereby supporting the stemness of colorectal cancer cells. HDAC1 hallmarks colorectal cancer stem cells and depletion of HDAC1 abolished the stimulatory effect of SOX4. Furthermore, SOX4-HDAC1 axis is conserved in multiple types of cancer. Conclusions The results of this study reveal SOX4-induced proteome changes in HCT-116 spheres and demonstrates that transcriptional activation of HDAC1 is the primary mechanism underlying SOX4 maintaining CSCs. This finding suggests that HDAC1 is a potential drug target for eradicating SOX4-driven human CSCs.
Collapse
Affiliation(s)
- Jingshu Liu
- College of Bioengineering, Chongqing University, 400044, Chongqing, People's Republic of China.,Department of Gynecologic Oncology, Chongqing University Cancer Hospital, 400030, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, 400030, Chongqing, People's Republic of China.,Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital, 400044, Chongqing, People's Republic of China
| | - Jiangfeng Qiu
- Department of Gastrointestinal Surgery, Renji Hospital Shanghai Jiao Tong University School of Medicine, 200127, Shanghai, People's Republic of China
| | - Zhiqi Zhang
- Department of General Surgery, School of Medicine, Shanghai Fourth People's Hospital Affiliated to Tongji University, 200081, Shanghai, People's Republic of China
| | - Lei Zhou
- Singapore Eye Research Institute, The academia, 20 College Road, Discovery Tower Level 6, 169856, Singapore, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Ophthalmology and Visual Sciences Academic Clinical Research Program, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Yunzhe Li
- College of Bioengineering, Chongqing University, 400044, Chongqing, People's Republic of China.,Department of Gynecologic Oncology, Chongqing University Cancer Hospital, 400030, Chongqing, People's Republic of China
| | - Dongyan Ding
- College of Bioengineering, Chongqing University, 400044, Chongqing, People's Republic of China.,Department of Gynecologic Oncology, Chongqing University Cancer Hospital, 400030, Chongqing, People's Republic of China
| | - Yang Zhang
- Laboratory Department, Chongqing University Cancer Hospital, 400030, Chongqing, People's Republic of China
| | - Dongling Zou
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital, 400030, Chongqing, People's Republic of China
| | - Dong Wang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital, 400030, Chongqing, People's Republic of China
| | - Qi Zhou
- College of Bioengineering, Chongqing University, 400044, Chongqing, People's Republic of China. .,Department of Gynecologic Oncology, Chongqing University Cancer Hospital, 400030, Chongqing, People's Republic of China. .,Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, 400030, Chongqing, People's Republic of China. .,Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital, 400044, Chongqing, People's Republic of China.
| | - Tingyuan Lang
- College of Bioengineering, Chongqing University, 400044, Chongqing, People's Republic of China. .,Department of Gynecologic Oncology, Chongqing University Cancer Hospital, 400030, Chongqing, People's Republic of China. .,Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, 400030, Chongqing, People's Republic of China. .,Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital, 400044, Chongqing, People's Republic of China.
| |
Collapse
|
39
|
Kong J, Shen S, Zhang Z, Wang W. Identification of hub genes and pathways in cholangiocarcinoma by coexpression analysis. Cancer Biomark 2020; 27:505-517. [PMID: 32116234 DOI: 10.3233/cbm-190038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is the most common biliary malignancy worldwide. However, the molecular mechanisms of its tumorigenesis and progression are still largely unclear. OBJECTIVE This study aimed to explore the hub genes and pathways associated with CCA prognosis by coexpression analysis. METHODS A coexpression network complex was constructed using the top 20% most variant genes in the GSE89748 dataset to find modules associated with prognosis related clinical trait-histology. The hub genes in the clinically significant modules were defined as candidates if they were common in both the coexpression network and protein-protein interaction (PPI) network. Afterwards, survival analysis, expression level analysis and a series of bioinformatic analysis were used to validate the hub genes. RESULTS Twenty-five modules were obtained, and the cyan, light cyan and red modules regarded as closely associated with histology were selected. Subsequently, combining the PPI network complexes and coexpression networks, we screened 20 candidates. After expression and survival analysis, 10 real hub genes (LIMA1, HDAC1, ITGA3, ACTR3, GSK3B, ITGA2, THOC2, PTGES3, HEATR1 and ILF2) were finally identified. Additionally, functional enrichment analysis revealed that the hub genes were mainly enriched in cell cycle-related pathways. CONCLUSIONS Overall, this study identified 10 hub genes and cell cycle-related pathways were closely related to CCA development, progression and prognosis, which may contribute to CCA diagnosis and treatment.
Collapse
|
40
|
Luo Y, Li H. Structure-Based Inhibitor Discovery of Class I Histone Deacetylases (HDACs). Int J Mol Sci 2020; 21:E8828. [PMID: 33266366 PMCID: PMC7700698 DOI: 10.3390/ijms21228828] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/17/2022] Open
Abstract
Class I histone deacetylases (HDACs) are promising targets for epigenetic therapies for a range of diseases such as cancers, inflammations, infections and neurological diseases. Although six HDAC inhibitors are now licensed for clinical treatments, they are all pan-inhibitors with little or no HDAC isoform selectivity, exhibiting undesirable side effects. A major issue with the currently available HDAC inhibitors is that they have limited specificity and target multiple deacetylases. Except for HDAC8, Class I HDACs (1, 2 and 3) are recruited to large multiprotein complexes to function. Therefore, there are rising needs to develop new, hopefully, therapeutically efficacious HDAC inhibitors with isoform or complex selectivity. Here, upon the introduction of the structures of Class I HDACs and their complexes, we provide an up-to-date overview of the structure-based discovery of Class I HDAC inhibitors, including pan-, isoform-selective and complex-specific inhibitors, aiming to provide an insight into the discovery of additional HDAC inhibitors with greater selectivity, specificity and therapeutic utility.
Collapse
Affiliation(s)
- Yuxiang Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, No.132 Wai Huan Dong lu, Guangzhou Higher Education Mega Center, Guangzhou 510006, Guangdong, China;
| | - Huilin Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, No.132 Wai Huan Dong lu, Guangzhou Higher Education Mega Center, Guangzhou 510006, Guangdong, China;
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
| |
Collapse
|
41
|
Huo X, Qi J, Huang K, Bu S, Yao W, Chen Y, Nie J. Identification of an autophagy-related gene signature that can improve prognosis of hepatocellular carcinoma patients. BMC Cancer 2020; 20:771. [PMID: 32807131 PMCID: PMC7433127 DOI: 10.1186/s12885-020-07277-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 08/09/2020] [Indexed: 12/21/2022] Open
Abstract
Background Autophagy is a programmed cell degradation mechanism that has been associated with several physiological and pathophysiological processes, including malignancy. Improper induction of autophagy has been proposed to play a pivotal role in the progression of hepatocellular carcinoma (HCC). Methods Univariate Cox regression analysis of overall survival (OS) was performed to identify risk-associated autophagy-related genes (ARGs) in HCC data set from The Cancer Genome Atlas (TCGA). Multivariate cox regression was then performed to develop a risk prediction model for the prognosis of 370 HCC patients. The multi-target receiver operating characteristic (ROC) curve was used to determine the model’s accuracy. Besides, the relationship between drug sensitivity and ARGs expression was also examined. Results A total of 62 differentially expressed ARGs were identified in HCC patients. Univariate and multivariate regression identified five risk-associated ARGs (HDAC1, RHEB, ATIC, SPNS1 and SQSTM1) that were correlated with OS in HCC patients. Of importance, the risk-associated ARGs were independent risk factors in the multivariate risk model including clinical parameters such as malignant stage (HR = 1.433, 95% CI = 1.293–1.589, P < 0.001). In addition, the area under curve for the prognostic risk model was 0.747, which indicates the high accuracy of the model in prediction of HCC outcomes. Interestingly, the risk-associated ARGs were also correlated with drug sensitivity in HCC cell lines. Conclusion We developed a novel prognostic risk model by integrating the molecular signature and clinical parameters of HCC, which can effectively predict the outcomes of HCC patients.
Collapse
Affiliation(s)
- Xingxing Huo
- University of Science and Technology of China, Hefei, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China.,Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Experimental Center of Clinical Research, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Jian Qi
- University of Science and Technology of China, Hefei, China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China.,Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Kaiquan Huang
- Experimental Center of Clinical Research, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Su Bu
- Experimental Center of Clinical Research, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Wei Yao
- Experimental Center of Clinical Research, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Ying Chen
- Experimental Center of Clinical Research, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Jinfu Nie
- University of Science and Technology of China, Hefei, China. .,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China. .,Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.
| |
Collapse
|
42
|
Wang W, Liu Y, Zhao L. Tambulin Targets Histone Deacetylase 1 Inhibiting Cell Growth and Inducing Apoptosis in Human Lung Squamous Cell Carcinoma. Front Pharmacol 2020; 11:1188. [PMID: 32903420 PMCID: PMC7434869 DOI: 10.3389/fphar.2020.01188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/22/2020] [Indexed: 12/20/2022] Open
Abstract
There is an urgent unmet need to develop new therapeutics for lung squamous cell carcinoma (LSCC) as the current gold standard treatment regimens are dominated by chemotherapy. In this study, we observed the treatment effects of the natural compound tambulin on LSCC and explored its mechanism of action. LSCC cell lines H226 and H520 were cultured in vitro to observe the effects of tambulin on cell proliferation and apoptosis. Western blotting was used to detect the expression of histone deacetylase 1 (HDAC1) and apoptosis-related proteins. Cell derived xenografts (CDX) of H226 and H520 in nude mice were established to examine the inhibitory effects of tambulin in vivo. Results showed that tambulin inhibited the proliferation of H226 and H520 cells in a dose-dependent manner and inhibited the growth of CDX tumors. Tambulin also promoted the apoptosis of H226 and H520 cells, up-regulated the protein expression of cleaved caspase-3, cleaved caspase-9 and Bax, and down-regulated HDAC1 and Bcl-2 protein expression. In support of this, immunohistochemical analysis of CDX tumors from mice treated with tambulin showed increased expression of cleaved caspase-3 and Bax, while the expression of HDAC1 and Bcl-2 were decreased. What’s more, when HDAC1 was over-expressed via adenovirus transduction in H226 or H520 cells, the effects of tambulin were significantly attenuated. Interestingly, we found that combining tambulin with cisplatin treatment in CDX models was more effective than single drug treatment, suggesting that tambulin may enhance the sensitivity of LSCC to cisplatin. Taken together, this study proves that tambulin has a definite therapeutic effect on LSCC. Mechanistically, tambulin downregulates HDAC1, which in turn regulates the Bcl-2/caspase signaling pathway and promotes cancer cell apoptosis.
Collapse
Affiliation(s)
- Wuming Wang
- Department of Thoracic Surgery, Jiangxi Provincial Chest Hospital, Nanchang, China
| | - Yuzhen Liu
- Department of Thoracic Surgery, Jiangxi Provincial Chest Hospital, Nanchang, China
| | - Long Zhao
- Department of Thoracic Surgery, Jiangxi Provincial Chest Hospital, Nanchang, China
| |
Collapse
|
43
|
Menbari MN, Rahimi K, Ahmadi A, Mohammadi-Yegane S, Elyasi A, Darvishi N, Hosseini V, Abdi M. Association of HDAC8 Expression with Pathological Findings in Triple Negative and Non-Triple Negative Breast Cancer: Implications for Diagnosis. IRANIAN BIOMEDICAL JOURNAL 2020; 24:288-94. [PMID: 32429642 PMCID: PMC7392136 DOI: 10.29252/ibj.24.5.283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background: Previous data have shown the tumorigenicity roles of HDAC8 in breast cancer. More recently, the oncogenic effects of this molecule have been revealed in TNBC. The present study aimed to determine the diagnostic value of HDAC8 for the differentiation of TNBC from nTNBC tumors. Methods: A total of 50 cancerous and normal adjacent tumor specimens were obtained, and the clinical and pathological findings of studied subjects were recorded. The expression of HDAC8 gene was determined by qRT-PCR. Also, immunohistochemical staining was performed on tissue samples. Results: Our results showed that the expression of HDAC8 in breast cancer tissues was significantly higher than the normal adjacent tissues (p = 0.0011). HDAC8 expression was also observed to be higher in TNBC patients than nTNBC group (p = 0.0013). In addition, in the TNBC group, there was a significant association between the HDAC8 overexpression and tumor characteristics, including tumor size (p = 0.039), lymphatic invasion (p = 0.01), tumor grade (p = 0.02), and perineural invasion (p < 0.05). The cut-off value was fixed at 0.6279 r.u., and the corresponding sensitivity and specificity were found to be 73.91% and 70.37%, respectively. Conclusion: According to the findings, among the other markers, HDAC8 oncogene may be used as a potential tumor marker in diagnosis of TNBC tumors.
Collapse
Affiliation(s)
- Mohammad-Nazir Menbari
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Karim Rahimi
- Department of Molecular Biology and Genetics, Gene Expression and Gene Medicine, Aarhus University, Aarhus, Denmark.,Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Abbas Ahmadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Samira Mohammadi-Yegane
- Medical Nanotechnology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anvar Elyasi
- Department of Surgery, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Nikoo Darvishi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Vahedeh Hosseini
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Abdi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
44
|
Predicting chromosome 1p/19q codeletion by RNA expression profile: a comparison of current prediction models. Aging (Albany NY) 2020; 11:974-985. [PMID: 30710490 PMCID: PMC6382420 DOI: 10.18632/aging.101795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 01/24/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Chromosome 1p/19q codeletion is increasingly being recognized as the crucial genetic marker for glioma patients and have been included in WHO classification of glioma in 2016. Fluorescent in situ hybridization, a widely used method in detecting 1p/19q status, has some methodological limitations which might influence the clinical management for doctors. Here, we attempted to explore an RNA sequencing computational method to detect 1p/19q status. METHODS We included 692 samples with 1p/19q status information from TCGA cohort as training set and 222 samples with 1p/19q status information from REMBRANDT cohort as validation set. We reviewed and compared five tools: TSPairs, GSVA, PAM, Caret, smoother, with respect to their accuracy, sensitivity and specificity. RESULTS In TCGA cohort, the GSVA method showed the highest accuracy (98.4%) in predicting 1p/19q status (sensitivity=95.5%, specificity=99.6%) and smoother method showed the second-highest accuracy (accuracy=97.8%, sensitivity=96.4%, specificity=98.3%). While in REMBRANDT cohort, smoother method exhibited the highest accuracy (98.6%) (sensitivity= 96.7%, specificity=98.9%) in 1p/19q status prediction. CONCLUSIONS Our independent assessment of five tools revealed that smoother method was selected as the most stable and accurate method in predicting 1p/19q status. This method could be regarded as a potential alternative method for clinical practice in future.
Collapse
|
45
|
Sanaei M, Kavoosi F. Histone Deacetylases and Histone Deacetylase Inhibitors: Molecular Mechanisms of Action in Various Cancers. Adv Biomed Res 2019; 8:63. [PMID: 31737580 PMCID: PMC6839273 DOI: 10.4103/abr.abr_142_19] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/22/2019] [Accepted: 09/23/2019] [Indexed: 01/15/2023] Open
Abstract
Epigenetic modifications such as histone modification play an important role in tumorigenesis. There are several evidence that histone deacetylases (HDACs) play a key role in cancer induction and progression by histone deacetylation. Besides, histone acetylation is being accessed as a therapeutic target because of its role in regulating gene expression. HDAC inhibitors (HDACIs) are a family of synthetic and natural compounds that differ in their target specificities and activities. They affect markedly cancer cells, inducing cell differentiation, cell cycle arrest and cell death, reduction of angiogenesis, and modulation of the immune system. Here, we summarize the mechanisms of HDACs and the HDACIs in several cancers. An online search of different sources such as PubMed, ISI, and Scopus was performed to find available data on mechanisms and pathways of HDACs and HDACIs in different cancers. The result indicated that HDACs induce cancer through multiple mechanisms in various tissues. This effect can be inhibited by HDACIs which affect cancer cell by different pathways such as cell differentiation, cell cycle arrest, and cell death. In conclusion, these findings indicate that the HDACs play a major role in carcinogenesis through various pathways, and HDACIs can inhibit HDAC activity by multiple mechanisms resulting in cell cycle arrest, cell growth inhibition, and apoptosis induction.
Collapse
Affiliation(s)
- Masumeh Sanaei
- From the Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Fraidoon Kavoosi
- From the Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
| |
Collapse
|
46
|
Zhang L, Bu L, Hu J, Xu Z, Ruan L, Fang Y, Wang P. HDAC1 knockdown inhibits invasion and induces apoptosis in non-small cell lung cancer cells. Biol Chem 2019. [PMID: 29537214 DOI: 10.1515/hsz-2017-0306] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Non-small cell lung cancer (NSCLC) is a common malignant tumor. Although the abnormal expression and potential clinical prognostic value of histone deacetylase 1 (HDAC1) were recently discovered in many kinds of cancer, the roles and molecular mechanisms of HDAC1 in NSCLC is still limited. The CCK-8 assay is used to evaluate the viability of NSCLC cells. Downregulation of HDAC1 by shRNA. The TUNEL assay was used to evaluate the role of HDAC1 in NSCLC apoptosis. To evaluate the role of HDAC1 in NSCLC cells migration, the Boyden chamber transwell assay and wound healing assay were used. To evaluate the cells invasion, the matrigel precoated Transwell assay was used. Enzyme-linked immunosorbent assays (ELISAs) were used to detect the level of vascular endothelial growth factor (VEGF) and IL-8 in NSCLC. To investigate the role of HDAC1 in angiogenesis, the tube formation assay was investigated. In this study, we showed that HDAC1 expression was elevated in NSCLC lines compared to that in normal liver cells LO2. Furthermore, downregulation of HDAC1 inhibited cell proliferation, prevented cell migration, decreased cell invasion, reduced tumor angiogenesis and induced cell apoptosis. In summary, HDAC1 may be regarded as a potential indicator for NSCLC patient treatment.
Collapse
Affiliation(s)
- Libin Zhang
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, No.157 Jinbi Road, Kunming City, 650032 Yunnan Province, China
| | - Liang Bu
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, No.157 Jinbi Road, Kunming City, 650032 Yunnan Province, China
| | - Jiang Hu
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, No.157 Jinbi Road, Kunming City, 650032 Yunnan Province, China
| | - Zheyuan Xu
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, No.157 Jinbi Road, Kunming City, 650032 Yunnan Province, China
| | - Libo Ruan
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, No.157 Jinbi Road, Kunming City, 650032 Yunnan Province, China
| | - Yan Fang
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, No.157 Jinbi Road, Kunming City, 650032 Yunnan Province, China
| | - Ping Wang
- Department of Thoracic Surgery, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, No.157 Jinbi Road, Kunming City, 650032 Yunnan Province, China
| |
Collapse
|
47
|
Ilisso CP, Delle Cave D, Mosca L, Pagano M, Coppola A, Mele L, Caraglia M, Cacciapuoti G, Porcelli M. S-Adenosylmethionine regulates apoptosis and autophagy in MCF-7 breast cancer cells through the modulation of specific microRNAs. Cancer Cell Int 2018; 18:197. [PMID: 30533999 PMCID: PMC6278132 DOI: 10.1186/s12935-018-0697-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/29/2018] [Indexed: 12/19/2022] Open
Abstract
Background To get insight into the molecular mechanisms underlying the anti-tumor activity of S-adenosyl-l-methionine (AdoMet), we analyzed AdoMet-induced modulation of microRNAs (miRNAs) expression profile in MCF-7 breast cell line and its correlation with cancer-related biological pathways. Methods MiRNA expression profiling was performed using a TaqMan MiRNA Array, following 500 µM AdoMet-treatment. The results were confirmed by Quantitative real-time PCR analysis. MCF-7 were transfected with miR-34a, miR-34c and miR-486-5p, mimics and inhibitors in presence or not of 500 µM AdoMet for 72 h. Apoptosis and autophagy were analyzed by flow cytometry and the modulation of the main antiproliferative signaling pathways were evaluated by Western blotting. The potential mRNA targets for each miRNA were identified by the TargetScan miRNA target prediction software. Results Twenty-eight microRNAs resulted differentially expressed in AdoMet-treated MCF-7 cells compared to control cells. Among them, miRNA-34a and miRNA-34c were up-regulated while miRNA-486-5p was down-regulated. Moreover, we confirmed the ability of AdoMet to regulate these miRNAs in MDA-MB 231 breast cancer cell line. We demonstrate that, in MCF7 cells, the combination of either miR-34a or miR-34c mimic with AdoMet greatly potentiated the pro-apoptotic effect of AdoMet, by a caspase-dependent mechanism and activates p53 acetylation by inhibiting SIRT1 and HDAC1 expression. We also showed that miR-486-5p inhibitor induces autophagy and enhances AdoMet-induced autophagic process by increasing PTEN expression and by inhibiting AKT signaling. Conclusions Our findings provide the first evidence that AdoMet can regulate miRNA expression in MCF-7 increasing our knowledge on the molecular basis of the antitumor effect of the sulfonium compound and suggest the use of AdoMet as an attractive miRNA-mediated chemopreventive and therapeutic strategy in breast cancer.
Collapse
Affiliation(s)
- Concetta Paola Ilisso
- 1Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Donatella Delle Cave
- 1Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Laura Mosca
- 1Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Martina Pagano
- 1Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Alessandra Coppola
- 1Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Luigi Mele
- 2Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Michele Caraglia
- 1Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Giovanna Cacciapuoti
- 1Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Marina Porcelli
- 1Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| |
Collapse
|
48
|
Zhou L, Xu X, Liu H, Hu X, Zhang W, Ye M, Zhu X. Prognosis Analysis of Histone Deacetylases mRNA Expression in Ovarian Cancer Patients. J Cancer 2018; 9:4547-4555. [PMID: 30519361 PMCID: PMC6277648 DOI: 10.7150/jca.26780] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 09/09/2018] [Indexed: 12/14/2022] Open
Abstract
Histone deacetylases modulate the dynamic balance of histone acetylation and deacetylation in cells, which participate in epigenetic regulations. Accumulated evidence has demonstrated that histone deacetylases are associated with angiogenesis, cell proliferation and survival in a variety of human cancers. However, the expression and distinct prognostic value of histone deacetylases in ovarian cancer have not been well elucidated. In the present study, we collected the overall survival (OS), progress free survival (PFS), and histone deacetylases (HDAC1-11) mRNA expression in ovarian cancer from the Kaplan-Meier plotter online database. We investigated the relationship between histone deacetylases mRNA level and the clinicopathological parameters of the ovarian cancer patients, such as histology subtypes, clinical stages, grades and TP53 mutation. Our analysis data showed that over-expression of HDAC1, HDAC2, HDAC4, HDAC5 and HDAC11 were correlated to poor overall survival and unfavorable progress free survival in all ovarian cancer patients. Notably, the higher level of HDAC11 was associated with the worse OS and PFS for serous/ stage III+IV/ grade III/ TP53 mutation ovarian cancer patients. In conclusion, HDACs may play a crucial role in the prognosis of ovarian cancer, but it is worth noting that HDAC11 may be a biomarker for poor prognosis in ovarian cancer patients.
Collapse
Affiliation(s)
- Lulu Zhou
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xiaohui Xu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Hailing Liu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xiaoli Hu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Wenwen Zhang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Miaomiao Ye
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
49
|
Zhang Y, Wang Z, Huang Y, Ying M, Wang Y, Xiong J, Liu Q, Cao F, Joshi R, Liu Y, Xu D, Zhang M, Yuan K, Zhou N, Koropatnick J, Min W. TdIF1: a putative oncogene in NSCLC tumor progression. Signal Transduct Target Ther 2018; 3:28. [PMID: 30345081 PMCID: PMC6194072 DOI: 10.1038/s41392-018-0030-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 12/17/2022] Open
Abstract
TdT-interacting factor 1 (TdIF1) is a ubiquitously expressed DNA- and protein-binding protein that directly binds to terminal deoxynucleotidyl transferase (TdT) polymerase. Little is known about the functional role of TdIF1 in cancer cellular signaling, nor has it previously been identified as aberrant in any type of cancer. We report here for the first time that TdIF1 is abundantly expressed in clinical lung cancer patients and that high expression of TdIF1 is associated with poor patient prognosis. We further established that TdIF1 is highly expressed in human non-small cell lung cancer (NSCLC) cell lines compared to a normal lung cell line. shRNA-mediated gene silencing of TdIF1 resulted in the suppression of proliferation and anchorage-independent colony formation of the A549 adenocarcinoma cell line. Moreover, when these TdIF1-silenced cells were used to establish a mouse xenograft model of human NSCLC, tumor size was greatly reduced. These data suggest that TdIF1 is a potent regulator of lung tumor development. Several cell cycle-related and tumor growth signaling pathways, including the p53 and HDAC1/2 pathways, were identified as participating in the TdIF1 signaling network by in silico analysis. Microarray, transcriptome and protein-level analyses validated p53 and HDAC1/2 modulation upon TdIF1 downregulation in an NSCLC cellular model. Moreover, several other cell cycle regulators were affected at the transcript level by TdIF1 silencing, including an increase in CDKN1A/p21 transcripts. Taken together, these results indicate that TdIF1 is a bona fide tumor-promoting factor in NSCLC and a potential target for therapy. A protein involved in the immune system also plays a role in the most common type of lung cancer. Weiping Min, of the University of Western Ontario in Canada, and international colleagues found, for the first time, that the protein TdIF1 is significantly upregulated in non-small cell lung cancer (NSCLC) tissues in patients. High expression levels of this protein were correlated with poor prognosis. NSCLC tumor tissues grown in mice where TdIF1 expression was ‘knocked down’ were significantly smaller than in those without TdIF1 knockdown. Further analyses showed the protein was involved in known cell signaling pathways with roles in NSCLC progression. The findings indicate TdIF1 should be further investigated as a biomarker of NSCLC or as a molecular target for its treatment.
Collapse
Affiliation(s)
- Yujuan Zhang
- 1Institute of Immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China.,3Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, USA
| | - Zhigang Wang
- 1Institute of Immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Yanqing Huang
- 1Institute of Immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Muying Ying
- 1Institute of Immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Yifan Wang
- 1Institute of Immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China.,4Department of Surgery, Pathology and Oncology, University of Western Ontario, London, Canada
| | - Juan Xiong
- 5Department of Preventive Medicine, School of Medicine, Shenzhen University, Shenzhen, China
| | - Qi Liu
- 1Institute of Immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Fan Cao
- 1Institute of Immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Rakesh Joshi
- 4Department of Surgery, Pathology and Oncology, University of Western Ontario, London, Canada
| | - Yanling Liu
- 1Institute of Immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Derong Xu
- 6Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Meng Zhang
- 1Institute of Immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China.,4Department of Surgery, Pathology and Oncology, University of Western Ontario, London, Canada
| | - Keng Yuan
- 1Institute of Immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Nanjin Zhou
- 1Institute of Immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - James Koropatnick
- 4Department of Surgery, Pathology and Oncology, University of Western Ontario, London, Canada
| | - Weiping Min
- 1Institute of Immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.,Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China.,4Department of Surgery, Pathology and Oncology, University of Western Ontario, London, Canada
| |
Collapse
|
50
|
Qiao W, Liu H, Liu R, Liu Q, Zhang T, Guo W, Li P, Deng M. Prognostic and clinical significance of histone deacetylase 1 expression in breast cancer: A meta-analysis. Clin Chim Acta 2018; 483:209-215. [DOI: 10.1016/j.cca.2018.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 01/11/2023]
|