1
|
Merlo Pich LM, Ziogas A, Netea MG. Genetic and epigenetic dysregulation of innate immune mechanisms in autoinflammatory diseases. FEBS J 2024; 291:4414-4432. [PMID: 38468589 DOI: 10.1111/febs.17116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/17/2024] [Accepted: 03/01/2024] [Indexed: 03/13/2024]
Abstract
Dysregulation and hyperactivation of innate immune responses can lead to the onset of systemic autoinflammatory diseases. Monogenic autoinflammatory diseases are caused by inborn genetic errors and based on molecular mechanisms at play, can be divided into inflammasomopathies, interferonopathies, relopathies, protein misfolding, and endogenous antagonist deficiencies. On the other hand, more common autoinflammatory diseases are multifactorial, with both genetic and non-genetic factors playing an important role. During the last decade, long-term memory characteristics of innate immune responses have been described (also called trained immunity) that in physiological conditions provide enhanced host protection from pathogenic re-infection. However, if dysregulated, induction of trained immunity can become maladaptive, perpetuating chronic inflammatory activation. Here, we describe the mechanisms of genetic and epigenetic dysregulation of the innate immune system and maladaptive trained immunity that leads to the onset and perpetuation of the most common and recently described systemic autoinflammatory diseases.
Collapse
Affiliation(s)
- Laura M Merlo Pich
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Athanasios Ziogas
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- Department for Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Germany
| |
Collapse
|
2
|
Mallo-Miranda MV, Morales-Angulo C. Otorhinolaryngological manifestations of autoinflammatory diseases. Systematic review. ACTA OTORRINOLARINGOLOGICA ESPANOLA 2024:S2173-5735(24)00093-0. [PMID: 39341593 DOI: 10.1016/j.otoeng.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
OBJECTIVES To detail the main otorhinolaryngological manifestations of autoinflammatory diseases, aiming to contribute to early diagnosis and treatment. DATA SOURCES Searches were conducted in PubMed, LILACS, Cochrane Library. REVIEW METHODS A systematic review of the medical literature on autoinflammatory diseases was conducted to identify characteristic head and neck manifestations, using PRISMA criteria. Observational studies or systematic reviews with a minimum of 10 cases per disease were included. Qualitative synthesis and a risk assessment were carried out. RESULTS Our review included 29 articles that met the inclusion criteria, with 10 to 486 patients per study. Autoinflammatory diseases with characteristic head and neck manifestations included VEXAS syndrome (auricular, nasal, or laryngotracheal chondritis), NPRL3-AID (hearing loss), NPRL12-AID (cervical lymphadenopathies, hearing loss and oral ulcers), HIDSs syndrome (painful cervical nodes and oral ulcers), haploinsufficiency A20 (oral ulcers), TRAPS (pharyngitis, aphthous stomatitis, periorbital edema, and cervical lymphadenopathies), Behcet's disease (oral and pharyngeal ulcers), PFAPA syndrome (recurrent tonsillitis, oral ulcers, and painful cervical adenopathies), Kawasaki disease (cervical nodes, pharyngitis and changes in oral mucosa) and undefined periodic fever (pharyngitis, oral ulcers, and painful cervical nodes). CONCLUSION Given their complex diagnosis and unique head and neck manifestations, otolaryngologists must be well-versed in these diseases for early detection and treatment. ENT specialists should consider the possibility of an autoinflammatory disease when encountering symptoms such as auricular, nasal, or laryngeal chondritis, recurrent oral ulcers, painful inflammatory lymphadenopathies, periorbital edema, recurrent pharyngitis, or hearing loss within the context of compatible systemic conditions.
Collapse
Affiliation(s)
| | - Carmelo Morales-Angulo
- Department of Otolaryngology and Head and Neck Surgery, Marqués de Valdecilla University Hospital, Santander, Spain; Cell Cycle, Stem Cell Fate and Cancer Laboratory, Institute for Research Marqués de Valdecilla (IDIVAL), 39011 Santander, Spain.
| |
Collapse
|
3
|
Li C, Chen X, Tang X, Zeng H, Zhou J. Tocilizumab effectively reduces flares of hyperimmunoglobulin D syndrome in children: Three cases in China. Mol Genet Metab Rep 2024; 40:101105. [PMID: 38983106 PMCID: PMC11231588 DOI: 10.1016/j.ymgmr.2024.101105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024] Open
Abstract
Hyperimmunoglobulin D syndrome (HIDS) is a rare but severe autoinflammatory disease with a poor prognosis if not diagnosed and treated early. Here, we report three cases of HIDS in children with typical clinical manifestations and a clear genetic diagnosis. Patient 1 experienced recurrent fever flares with a maculo-papular skin rash. Patient 2 presented with periodic fever, cholestasis, lymphadenopathy, aphthous stomatitis, arthralgia, and abdominal pain and underwent surgery for intestinal obstruction. Patient 3, a sibling of patient 2, presented with periodic fever and underwent a surgical procedure for intussusception. All three patients were administered interleukin (IL)-6 receptor antagonist (tocilizumab). The results showed that tocilizumab effectively reduced inflammatory flares. Early diagnosis and tocilizumab treatment are effective at improving the prognosis of HIDS patients.
Collapse
Affiliation(s)
- Chenxi Li
- School of Pediatrics, Guangzhou Medical University, Guangzhou 510180, China
| | - Xiangyuan Chen
- Department of Allergy, Immunology and Rheumatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China
| | - Xilong Tang
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Huasong Zeng
- Department of Allergy, Immunology and Rheumatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China
| | - Juan Zhou
- Department of Allergy, Immunology and Rheumatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China
| |
Collapse
|
4
|
Politiek FA, Turkenburg M, Ofman R, Waterham HR. Mevalonate kinase-deficient THP-1 cells show a disease-characteristic pro-inflammatory phenotype. Front Immunol 2024; 15:1379220. [PMID: 38550596 PMCID: PMC10972877 DOI: 10.3389/fimmu.2024.1379220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/29/2024] [Indexed: 04/02/2024] Open
Abstract
Objective Bi-allelic pathogenic variants in the MVK gene, which encodes mevalonate kinase (MK), an essential enzyme in isoprenoid biosynthesis, cause the autoinflammatory metabolic disorder mevalonate kinase deficiency (MKD). We generated and characterized MK-deficient monocytic THP-1 cells to identify molecular and cellular mechanisms that contribute to the pro-inflammatory phenotype of MKD. Methods Using CRISPR/Cas9 genome editing, we generated THP-1 cells with different MK deficiencies mimicking the severe (MKD-MA) and mild end (MKD-HIDS) of the MKD disease spectrum. Following confirmation of previously established disease-specific biochemical hallmarks, we studied the consequences of the different MK deficiencies on LPS-stimulated cytokine release, glycolysis versus oxidative phosphorylation rates, cellular chemotaxis and protein kinase activity. Results Similar to MKD patients' cells, MK deficiency in the THP-1 cells caused a pro-inflammatory phenotype with a severity correlating with the residual MK protein levels. In the MKD-MA THP-1 cells, MK protein levels were barely detectable, which affected protein prenylation and was accompanied by a profound pro-inflammatory phenotype. This included a markedly increased LPS-stimulated release of pro-inflammatory cytokines and a metabolic switch from oxidative phosphorylation towards glycolysis. We also observed increased activity of protein kinases that are involved in cell migration and proliferation, and in innate and adaptive immune responses. The MKD-HIDS THP-1 cells had approximately 20% residual MK activity and showed a milder phenotype, which manifested mainly upon LPS stimulation or exposure to elevated temperatures. Conclusion MK-deficient THP-1 cells show the biochemical and pro-inflammatory phenotype of MKD and are a good model to study underlying disease mechanisms and therapeutic options of this autoinflammatory disorder.
Collapse
Affiliation(s)
- Frouwkje A. Politiek
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, Netherlands
| | - Marjolein Turkenburg
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, Netherlands
| | - Rob Ofman
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, Netherlands
| | - Hans R. Waterham
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, Netherlands
- Amsterdam Reproduction & Development, Amsterdam, Netherlands
| |
Collapse
|
5
|
Politiek FA, Turkenburg M, Koster J, Ofman R, Waterham HR. Identification of FDA-approved drugs that increase mevalonate kinase in hyper IgD syndrome. J Inherit Metab Dis 2024; 47:302-316. [PMID: 38131282 DOI: 10.1002/jimd.12698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/13/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
Mevalonate kinase deficiency (MKD) is an autoinflammatory metabolic disorder caused by bi-allelic loss-of-function variants in the MVK gene, resulting in decreased activity of the encoded mevalonate kinase (MK). Clinical presentation ranges from the severe early-lethal mevalonic aciduria to the milder hyper-IgD syndrome (MKD-HIDS), and is in the majority of patients associated with recurrent inflammatory episodes with often unclear cause. Previous studies with MKD-HIDS patient cells indicated that increased temperature, as caused by fever during an inflammatory episode, lowers the residual MK activity, which causes a temporary shortage of non-sterol isoprenoids that promotes the further development of inflammation. Because an increase of the residual MK activity is expected to make MKD-HIDS patients less sensitive to developing inflammatory episodes, we established a cell-based screen that can be used to identify compounds and/or therapeutic targets that promote this increase. Using a reporter HeLa cell line that stably expresses the most common MKD-HIDS variant, MK-V377I, C-terminally tagged with bioluminescent NanoLuc luciferase (nLuc), we screened the Prestwick Chemical Library®, which includes 1280 FDA-approved compounds. Multiple compounds increased MK-V377I-nLuc bioluminescence, including steroids (i.e., glucocorticoids, estrogens, and progestogens), statins and antineoplastic drugs. The glucocorticoids increased MK-V377I-nLuc bioluminescence through glucocorticoid receptor signaling. Subsequent studies in MKD-HIDS patient cells showed that the potent glucocorticoid clobetasol propionate increases gene transcription of MVK and other genes regulated by the transcription factor sterol regulatory element-binding protein 2 (SREBP-2). Our results suggest that increasing the flux through the isoprenoid biosynthesis pathway by targeting the glucocorticoid receptor or SREBP-2 could be a potential therapeutic strategy in MKD-HIDS.
Collapse
Affiliation(s)
- Frouwkje A Politiek
- Department of Laboratory Medicine, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Marjolein Turkenburg
- Department of Laboratory Medicine, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, the Netherlands
| | - Janet Koster
- Department of Laboratory Medicine, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, the Netherlands
| | - Rob Ofman
- Department of Laboratory Medicine, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, the Netherlands
| | - Hans R Waterham
- Department of Laboratory Medicine, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
- Amsterdam Reproduction & Development, Amsterdam, the Netherlands
| |
Collapse
|
6
|
Cetin Gedik K, Arici ZS, Kul Cinar O, Garcia-Bournissen F, Romano M, Demirkaya E. Practical Approach to Diagnosis and Management of IL-1-Mediated Autoinflammatory Diseases (CAPS, TRAPS, MKD, and DIRA). Paediatr Drugs 2024; 26:113-126. [PMID: 38376736 DOI: 10.1007/s40272-023-00615-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/11/2023] [Indexed: 02/21/2024]
Abstract
Systemic autoinflammatory diseases (SAIDs) are a group of rare genetic and nongenetic immune dysregulatory disorders associated with high morbidity and mortality if left untreated. Therefore, early diagnosis and initiation of targeted treatment is vital in SAID patients to control the disease activity and prevent long-term immune-mediated damage. A specific group of genetically defined SAIDs is associated with increased inflammasome-mediated production of active interleukin (IL)-1. Even though progress in immunobiology and genetics has brought forth diagnostic tools and novel treatments that have been described in the literature extensively, many challenges remain in the clinical setting. Some challenges that health care providers may face on a day-to-day basis include the requirement of a multidisciplinary approach due to the complexity of these diseases, limited evidence-based treatment options, and barriers to access available therapies. Primarily, IL-1 inhibitors anakinra, canakinumab, and rilonacept are used to control the inflammation in these patients, with the goal of achieving sustainable remission. Recently published provisional points to consider from the European Alliance of Associations for Rheumatology (EULAR) and American College of Rheumatology (ACR) provide diagnosis, management, and monitoring recommendations for four IL-1-mediated autoinflammatory diseases: cryopyrin-associated periodic syndromes (CAPS), tumour necrosis factor receptor-associated periodic syndrome (TRAPS), mevalonate kinase deficiency (MKD), and deficiency of the IL-1 receptor antagonist (DIRA). The goal of this paper is to aid health care professionals by providing a practical approach to diagnosis and management of these four IL-1 mediated SAIDs on the basis of the recent EULAR/ACR recommendations.
Collapse
Affiliation(s)
- Kader Cetin Gedik
- Division of Pediatric Rheumatology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Zehra Serap Arici
- Division of Rheumatology, Malatya Training and Research Hospital, Malatya, Turkey
| | - Ovgu Kul Cinar
- Department of Paediatric Rheumatology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London, WC1N 3JH, UK
| | - Facundo Garcia-Bournissen
- Department of Pediatrics, Division of Pediatric Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, N6A 5W9, Canada
| | - Micol Romano
- Department of Pediatrics, Division of Pediatric Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, N6A 5W9, Canada
- Canadian Behcet and Autoinflammatory Disease Center (CAN-BE-AID), University of Western Ontario, London, ON, N6A 4V2, Canada
| | - Erkan Demirkaya
- Department of Pediatrics, Division of Pediatric Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, N6A 5W9, Canada
- Canadian Behcet and Autoinflammatory Disease Center (CAN-BE-AID), University of Western Ontario, London, ON, N6A 4V2, Canada
- Department of Epidemiology and Biostatistics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, N6A 5W9, Canada
| |
Collapse
|
7
|
La Bella S, Di Ludovico A, Di Donato G, Basaran O, Ozen S, Gattorno M, Chiarelli F, Breda L. The pyrin inflammasome, a leading actor in pediatric autoinflammatory diseases. Front Immunol 2024; 14:1341680. [PMID: 38250061 PMCID: PMC10796709 DOI: 10.3389/fimmu.2023.1341680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024] Open
Abstract
The activation of the pyrin inflammasome represents a highly intriguing mechanism employed by the innate immune system to effectively counteract pathogenic agents. Despite its key role in innate immunity, pyrin has also garnered significant attention due to its association with a range of autoinflammatory diseases (AIDs) including familial Mediterranean fever caused by disruption of the MEFV gene, or in other genes involved in its complex regulation mechanisms. Pyrin activation is strictly dependent on homeostasis-altering molecular processes, mostly consisting of the disruption of the small Ras Homolog Family Member A (RhoA) GTPases by pathogen toxins. The downstream pathways are regulated by the phosphorylation of specific pyrin residues by the kinases PKN1/2 and the binding of the chaperone 14-3-3. Furthermore, a key role in pyrin activation is played by the cytoskeleton and gasdermin D, which is responsible for membrane pores in the context of pyroptosis. In addition, recent evidence has highlighted the role of steroid hormone catabolites and alarmins S100A8/A9 and S100A12 in pyrin-dependent inflammation. The aim of this article is to offer a comprehensive overview of the most recent evidence on the pyrin inflammasome and its molecular pathways to better understand the pathogenesis behind the significant group of pyrin-related AIDs.
Collapse
Affiliation(s)
- Saverio La Bella
- Department of Pediatrics, "G. D'Annunzio" University of Chieti, Chieti, Italy
| | - Armando Di Ludovico
- Department of Pediatrics, "G. D'Annunzio" University of Chieti, Chieti, Italy
| | - Giulia Di Donato
- Department of Pediatrics, "G. D'Annunzio" University of Chieti, Chieti, Italy
| | - Ozge Basaran
- Department of Pediatrics, Division of Rheumatology, Hacettepe University Faculty of Medicine, Ankara, Türkiye
| | - Seza Ozen
- Department of Pediatrics, Division of Rheumatology, Hacettepe University Faculty of Medicine, Ankara, Türkiye
| | - Marco Gattorno
- UOC Rheumatology and Autoinflammatory Diseases, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Francesco Chiarelli
- Department of Pediatrics, "G. D'Annunzio" University of Chieti, Chieti, Italy
| | - Luciana Breda
- Department of Pediatrics, "G. D'Annunzio" University of Chieti, Chieti, Italy
| |
Collapse
|
8
|
Li Y, Lu M. Tocilizumab for treating mevalonate kinase deficiency and TNF receptor-associated periodic syndrome: a case series and literature review. Pediatr Rheumatol Online J 2024; 22:11. [PMID: 38183017 PMCID: PMC10768362 DOI: 10.1186/s12969-023-00952-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Mevalonate kinase deficiency (MKD) and TNF receptor-associated periodic syndrome (TRAPS) are categorized as systemic autoinflammatory diseases (SAIDs), which are rare diseases characterized by early onset, severe conditions, and challenging diagnosis and treatment. Although different SAIDs have varying standard treatments, some SAIDs are poorly controlled after routine treatment, seriously affecting the growth and development of children and their quality of life. This study aims to provide more treatment strategies for SAIDs. CASE PRESENTATION We present two Chinese patients with MKD and TRAPS who were resistant to TNF- (tumor necrosis factor-) α blockade. After using etanercept, baricitinib, and glucocorticoid, patients with MKD and TRAPS still had periodic fever and rash. Due to the unavailability of IL-1 antagonists in the Chinese Mainland, we started administering intravenous tocilizumab (TCZ) at a dosage of 240 mg every three weeks. They had not experienced fever or rash after receiving one or two doses of TCZ. Before treatment with TCZ in the MKD patient, white blood cell (WBC) count, and TNF-α level were normal, erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) increased significantly, and IL-6 increased slightly. After treatment with TCZ, ESR and CRP levels returned to normal; however, IL-6 increased occasionally. In the TRAPS patient, ESR, CRP, WBC, IL-6, and TNF-α levels were increased significantly. After TCZ treatment, ESR, CRP, WBC, IL-6, and TNF-α levels returned to normal. The two patients were treated with TCZ for more than six months and achieved clinical and serological remission. Furthermore, they had no adverse reactions after injection of TCZ. CONCLUSION In the absence of IL-1 antagonists in mainland China, tocilizumab emerges as an alternative drug in SAIDs that are resistant to TNF-α blockade.
Collapse
Affiliation(s)
- Yandie Li
- Department of Rheumatology Immunology and Allergy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Heath, NO.3333, Bin-sheng Road, 310052, Hangzhou, China
| | - Meiping Lu
- Department of Rheumatology Immunology and Allergy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Heath, NO.3333, Bin-sheng Road, 310052, Hangzhou, China.
| |
Collapse
|
9
|
Ozdemir Isik O, Karadag DT, Tekeoglu S, Yazici A, Cefle K, Cefle A. Long-term efficacy of canakinumab in hyperimmunoglobulin D syndrome. Int J Rheum Dis 2024; 27:e14857. [PMID: 37578023 DOI: 10.1111/1756-185x.14857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/17/2023] [Accepted: 07/22/2023] [Indexed: 08/15/2023]
Abstract
Hyperimmunoglobulin D syndrome (HIDS) is a rare autoinflammatory disorder with autosomal recessive inheritance. It is caused by specific mutations in the mevalonate kinase gene (MVK). No treatment specific to HIDS has been approved to date; however, nonsteroidal anti-inflammatory drugs, steroids, colchicine, tumor necrosis factor-α inhibitors, and anti-interleukin-1 treatments are used, based on case reports and observational studies. Herein, we report a case with recurrent fever and arthritis attacks who did not respond to anakinra and was successfully treated with canakinumab. Long-term remission was achieved without any side effects with 300 mg canakinumab treatment every 4 weeks for 5 years.
Collapse
Affiliation(s)
- Ozlem Ozdemir Isik
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Duygu Temiz Karadag
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Senem Tekeoglu
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Ayten Yazici
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Kıvanc Cefle
- Division of Medical Genetics, Department of Internal Medicine, School of Medicine, Istanbul University, Istanbul, Turkey
| | - Ayse Cefle
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Kocaeli University, Kocaeli, Turkey
| |
Collapse
|
10
|
Wouters F, Bogie J, Wullaert A, van der Hilst J. Recent Insights in Pyrin Inflammasome Activation: Identifying Potential Novel Therapeutic Approaches in Pyrin-Associated Autoinflammatory Syndromes. J Clin Immunol 2023; 44:8. [PMID: 38129719 DOI: 10.1007/s10875-023-01621-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Pyrin is a cytosolic protein encoded by the MEFV gene, predominantly expressed in innate immune cells. Upon activation, it forms an inflammasome, a multimolecular complex that enables the activation and secretion of IL-1β and IL-18. In addition, the Pyrin inflammasome activates Gasdermin D leading to pyroptosis, a highly pro-inflammatory cell death. Four autoinflammatory syndromes are associated with Pyrin inflammasome dysregulation: familial Mediterranean fever, hyper IgD syndrome/mevalonate kinase deficiency, pyrin-associated autoinflammation with neutrophilic dermatosis, and pyogenic arthritis, pyoderma gangrenosum, and acne syndrome. In this review, we discuss recent advances in understanding the molecular mechanisms regulating the two-step model of Pyrin inflammasome activation. Based on these insights, we discuss current pharmacological options and identify a series of existing molecules with therapeutic potential for the treatment of pyrin-associated autoinflammatory syndromes.
Collapse
Affiliation(s)
- Flore Wouters
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590, Diepenbeek, Belgium.
| | - Jeroen Bogie
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590, Diepenbeek, Belgium
- University MS Center Hasselt, 3900, Pelt, Belgium
| | - Andy Wullaert
- Department of Internal Medicine and Paediatrics, Ghent University, 9052, Ghent, Belgium
- VIB-UGent Center for Inflammation Research VIB, 9052, Ghent, Belgium
- Laboratory of Protein Science, Proteomics and Epigenetic Signalling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Jeroen van der Hilst
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590, Diepenbeek, Belgium.
- Department of Infectious Diseases and Immune Pathology, Jessa General Hospital and Limburg Clinical Research Center, Hasselt, Belgium.
| |
Collapse
|
11
|
Berner J, van de Wetering C, Jimenez Heredia R, Rashkova C, Ferdinandusse S, Koster J, Weiss JG, Frohne A, Giuliani S, Waterham HR, Castanon I, Brunner J, Boztug K. Phosphomevalonate kinase deficiency expands the genetic spectrum of systemic autoinflammatory diseases. J Allergy Clin Immunol 2023; 152:1025-1031.e2. [PMID: 37364720 PMCID: PMC10549927 DOI: 10.1016/j.jaci.2023.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND In the isoprenoid biosynthesis pathway, mevalonate is phosphorylated in 2 subsequent enzyme steps by MVK and PMVK to generate mevalonate pyrophosphate that is further metabolized to produce sterol and nonsterol isoprenoids. Biallelic pathogenic variants in MVK result in the autoinflammatory metabolic disorder MVK deficiency. So far, however, no patients with proven PMVK deficiency due to biallelic pathogenic variants in PMVK have been reported. OBJECTIVES This study reports the first patient with functionally confirmed PMVK deficiency, including the clinical, biochemical, and immunological consequences of a homozygous missense variant in PMVK. METHODS The investigators performed whole-exome sequencing and functional studies in cells from a patient who, on clinical and immunological evaluation, was suspected of an autoinflammatory disease. RESULTS The investigators identified a homozygous PMVK p.Val131Ala (NM_006556.4: c.392T>C) missense variant in the index patient. Pathogenicity was supported by genetic algorithms and modeling analysis and confirmed in patient cells that revealed markedly reduced PMVK enzyme activity due to a virtually complete absence of PMVK protein. Clinically, the patient showed various similarities as well as distinct features compared to patients with MVK deficiency and responded well to therapeutic IL-1 inhibition. CONCLUSIONS This study reported the first patient with proven PMVK deficiency due to a homozygous missense variant in PMVK, leading to an autoinflammatory disease. PMVK deficiency expands the genetic spectrum of systemic autoinflammatory diseases, characterized by recurrent fevers, arthritis, and cytopenia and thus should be included in the differential diagnosis and genetic testing for systemic autoinflammatory diseases.
Collapse
Affiliation(s)
- Jakob Berner
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria; St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria; Department of Dermatology, Venereology and Allergology, Klinik Landstraße, Vienna, Austria
| | - Cheryl van de Wetering
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Raul Jimenez Heredia
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Medical University of Vienna, Vienna, Austria
| | - Christina Rashkova
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria; Medical University of Vienna, Vienna, Austria
| | - Sacha Ferdinandusse
- Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, the Netherlands
| | - Janet Koster
- Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, the Netherlands
| | - Johannes G Weiss
- Department of Pediatrics, Medical University Innsbruck, Innsbruck, Austria; Institute of Developmental Immunology, Medical University Innsbruck, Innsbruck, Austria
| | - Alexandra Frohne
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Sarah Giuliani
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Hans R Waterham
- Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, Amsterdam, the Netherlands
| | - Irinka Castanon
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Jürgen Brunner
- Department of Pediatrics, Medical University Innsbruck, Innsbruck, Austria; Faculty of Medicine and Dentistry, Danube Private University, Krems, Austria
| | - Kaan Boztug
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria; St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
12
|
Abstract
Children with intermittent fevers present to pediatricians and other primary care child health providers for evaluation. Most patients will have self-limited, benign infectious illnesses. However, the possibility of a periodic fever syndrome should be considered if febrile episodes become recurrent over an extended period and are associated with particular signs and symptoms during each attack. This review discusses the current conceptualization of autoinflammatory diseases with specific focus and detail on familial Mediterranean fever; tumor necrosis factor receptor-associated periodic syndrome; mevalonate kinase deficiency; NLRP3-associated autoinflammatory disease; and periodic fever, aphthous stomatitis, pharyngitis, and adenitis. The genetic mutations associated with these clinical entities are identified, along with the historical nomenclature that predates the current pathogenetic understanding of these diseases. The episodic signs and symptoms seen across these periodic fever syndromes can be overlapping, but there are some distinguishing features that can be useful, and these are described. The disease course and potential complications, particularly amyloidosis, which is a variable risk in these conditions and a potential source of significant morbidity and mortality, are addressed. Treatment strategies are outlined, highlighting the advances in therapy that have resulted from the advent of proinflammatory cytokine-targeting biological agents.
Collapse
Affiliation(s)
- Christina Schutt
- Department of Pediatrics, Golisano Children's Hospital, University of Rochester, Rochester, NY
| | - David M Siegel
- Department of Pediatrics, Golisano Children's Hospital, University of Rochester, Rochester, NY
| |
Collapse
|
13
|
Loret A, Jacob C, Mammou S, Bigot A, Blasco H, Audemard-Verger A, Schwartz IV, Mulleman D, Maillot F. Joint manifestations revealing inborn metabolic diseases in adults: a narrative review. Orphanet J Rare Dis 2023; 18:239. [PMID: 37563694 PMCID: PMC10416490 DOI: 10.1186/s13023-023-02810-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 07/06/2023] [Indexed: 08/12/2023] Open
Abstract
Inborn metabolic diseases (IMD) are rare conditions that can be diagnosed during adulthood. Patients with IMD may have joint symptoms and the challenge is to establish an early diagnosis in order to institute appropriate treatment and prevent irreversible damage. This review describes the joint manifestations of IMD that may be encountered in adults. The clinical settings considered were arthralgia and joint stiffness as well as arthritis. Unspecific arthralgias are often the first symptoms of hereditary hemochromatosis, chronic low back pain may reveal an intervertebral disc calcification in relation with alkaptonuria, and progressive joint stiffness may correspond to a mucopolysaccharidosis or mucolipidosis. Gaucher disease is initially revealed by painful acute attacks mimicking joint pain described as "bone crises". Some IMD may induce microcrystalline arthropathy. Beyond classical gout, there are also gouts in connection with purine metabolism disorders known as "enzymopathic gouts". Pyrophosphate arthropathy can also be part of the clinical spectrum of Gitelman syndrome or hypophosphatasia. Oxalate crystals arthritis can reveal a primary hyperoxaluria. Destructive arthritis may be indicative of Wilson's disease. Non-destructive arthritis may be seen in mevalonate kinase deficiency and familial hypercholesterolemia.
Collapse
Affiliation(s)
- Amaury Loret
- Department of Internal Medicine, University Hospital of Tours, Tours, France.
- Department of Rheumatology, University Hospital of Tours, Tours, France.
- Department of Internal Medicine, Hôpital Bretonneau, 2 Boulevard Tonnellé, CHRU de Tours, Tours cedex, 37044, France.
| | - Claire Jacob
- Department of Internal Medicine, University Hospital of Tours, Tours, France
| | - Saloua Mammou
- Department of Rheumatology, University Hospital of Tours, Tours, France
| | - Adrien Bigot
- Department of Internal Medicine, University Hospital of Tours, Tours, France
| | - Hélène Blasco
- Biochemistry laboratory, University Hospital of Tours, Tours, France
- UMR INSERM 1253, Tours, France
- Reference center for inherited metabolic diseases, Tours, France
| | | | - Ida Vd Schwartz
- Medical Genetics Service/Genetics Department, Hospital de Clinicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre - RS, Brazil
| | - Denis Mulleman
- Department of Rheumatology, University Hospital of Tours, Tours, France
| | - François Maillot
- Department of Internal Medicine, University Hospital of Tours, Tours, France
- UMR INSERM 1253, Tours, France
- Reference center for inherited metabolic diseases, Tours, France
| |
Collapse
|
14
|
Vyzhga Y, Hentgen V, Caorsi R, Wittkowski H, Hofer M, Ruperto N, Lainka E, Theodoropoulou K, Foell D, Mosci E, Gattorno M. Breaking down the fences among registries on autoinflammatory diseases: the E-Merge project. Orphanet J Rare Dis 2023; 18:191. [PMID: 37461074 DOI: 10.1186/s13023-023-02812-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Among the various numbers of different autoinflammatory diseases (AIDs), the absolute majority of them remains rare, with a single representative in large populations. This project, endorsed by PRES, supported by the EMERGE fellowship program, and performed in line with the Metadata registry for the ERN RITA (MeRITA), has the objective of performing a data synchronization attempt of the most relevant research questions regarding clinical features, diagnostic strategies, and optimal management of autoinflammatory diseases. RESULTS An analysis of three large European registries: Eurofever, JIR-cohort and AID-Net, with a total coverage of 7825 patients from 278 participating centers from different countries, was performed in the context of epidemiological and clinical data merging. The data collected and evaluated in the registries does not cover only pediatric patients, but also adults with newly diagnosed AIDs. General aspects of the existing epidemiological data have been discussed in the context of patient global distribution, potential diagnostic delays, access to genetic testing, and the availability of the treatment. CONCLUSIONS In general, the results indicate a great potential for upcoming collaborative work using existing data in cohorts that enhance the quality of medical care performed for patients with autoinflammatory diseases.
Collapse
Affiliation(s)
- Y Vyzhga
- National Pirogov Memorial Medical University, Vinnytsya, Ukraine.
| | - V Hentgen
- Department for Pediatrics, National Referral Centre of Auto-Inflammatory Diseases and Inflammatory Amyloidosis - CEREMAIA, Versailles Hospital, Le Chesnay, Paris, France
| | - R Caorsi
- Centre for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - H Wittkowski
- Department of Pediatric Rheumatology and Immunology, University Hospital Munster, Münster, Germany
| | - M Hofer
- Department of Pediatrics, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
- University Hospital of Geneva, Geneva, Switzerland
| | - N Ruperto
- Gaslini Trial Centre, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - E Lainka
- Department of Pediatric Rheumatology, University Children's Hospital Essen, Essen, Germany
| | - K Theodoropoulou
- Department of Pediatrics, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - D Foell
- Department of Pediatric Rheumatology and Immunology, University Hospital Munster, Münster, Germany
| | - E Mosci
- Gaslini Trial Centre, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - M Gattorno
- Centre for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
15
|
La Bella S, Di Ludovico A, Di Donato G, Scorrano G, Chiarelli F, Vivarelli M, Breda L. Renal involvement in monogenic autoinflammatory diseases: A narrative review. Nephrology (Carlton) 2023. [PMID: 37142240 DOI: 10.1111/nep.14166] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/06/2023]
Abstract
Autoinflammatory diseases (AIDs) are mostly caused by dysfunctions in single genes encoding for proteins with a prominent role in the regulation of innate immunity, such as complement factors, inflammasome components, tumour necrosis factor (TNF)-α, and proteins belonging to type I-interferon (IFN) signalling pathways. Due to the deposition of amyloid A (AA) fibrils in the glomeruli, unprovoked inflammation in AIDs frequently affects renal health. In fact, secondary AA amyloidosis is the most common form of amyloidosis in children. It is caused by the extracellular deposition of fibrillar low-molecular weight protein subunits resulting from the degradation and accumulation of serum amyloid A (SAA) in numerous tissues and organs, primarily the kidneys. The molecular mechanisms underlying AA amyloidosis in AIDs are the elevated levels of SAA, produced by the liver in response to pro-inflammatory cytokines, and a genetic predisposition due to specific SAA isoforms. Despite the prevalence of amyloid kidney disease, non-amyloid kidney diseases may also be responsible for chronic renal damage in children with AIDs, albeit with distinct characteristics. Glomerular damage can result in various forms of glomerulonephritis with distinct histologic characteristics and a different underlying pathophysiology. This review aims to describe the potential renal implications in patients with inflammasomopathies, type-I interferonopathies, and other rare AIDs in an effort to improve the clinical course and quality of life in paediatric patients with renal involvement.
Collapse
Affiliation(s)
- Saverio La Bella
- Department of Pediatrics, University of Chieti-Pescara "G. d'Annunzio", Chieti, Italy
| | - Armando Di Ludovico
- Department of Pediatrics, University of Chieti-Pescara "G. d'Annunzio", Chieti, Italy
| | - Giulia Di Donato
- Department of Pediatrics, University of Chieti-Pescara "G. d'Annunzio", Chieti, Italy
| | - Giovanna Scorrano
- Department of Pediatrics, University of Chieti-Pescara "G. d'Annunzio", Chieti, Italy
| | - Francesco Chiarelli
- Department of Pediatrics, University of Chieti-Pescara "G. d'Annunzio", Chieti, Italy
| | - Marina Vivarelli
- Division of Nephrology, Laboratory of Nephrology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Luciana Breda
- Department of Pediatrics, University of Chieti-Pescara "G. d'Annunzio", Chieti, Italy
| |
Collapse
|
16
|
de Boer L, Cambi A, Verhagen LM, de Haas P, van Karnebeek CDM, Blau N, Ferreira CR. Clinical and biochemical footprints of inherited metabolic diseases. XII. Immunological defects. Mol Genet Metab 2023; 139:107582. [PMID: 37087816 PMCID: PMC10182388 DOI: 10.1016/j.ymgme.2023.107582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/14/2023] [Accepted: 04/14/2023] [Indexed: 04/25/2023]
Abstract
Immunological problems are increasingly acknowledged manifestations in many inherited metabolic diseases (IMDs), ranging from exaggerated inflammation, autoimmunity and abnormal cell counts to recurrent microbial infections. A subgroup of IMDs, the congenital disorders of glycosylation (CDG), includes CDG types that are even classified as primary immunodeficiencies. Here, we reviewed the list of metabolic disorders reported to be associated with various immunological defects and identified 171 IMDs accompanied by immunological manifestations. Most IMDs are accompanied by immune dysfunctions of which immunodeficiency and infections, innate immune defects, and autoimmunity are the most common abnormalities reported in 144/171 (84%), 44/171 (26%) and 33/171 (19%) of IMDs with immune system involvement, respectively, followed by autoinflammation 17/171 (10%). This article belongs to a series aiming at creating and maintaining a comprehensive list of clinical and metabolic differential diagnoses according to organ system involvement.
Collapse
Affiliation(s)
- Lonneke de Boer
- Radboud University Medical Center, Amalia Children's Hospital, Nijmegen, the Netherlands.
| | - Alessandra Cambi
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lilly M Verhagen
- Radboud University Medical Center, Amalia Children's Hospital, Nijmegen, the Netherlands; Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Paola de Haas
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Clara D M van Karnebeek
- Departments of Pediatrics and Human Genetics, Emma Center for Personalized Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Nenad Blau
- Division of Metabolism, University Children's Hospital, Zurich, Switzerland.
| | - Carlos R Ferreira
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States of America.
| |
Collapse
|
17
|
Hosono K, Matsumoto K, Shimbo M, Tsumiyama I, Kato C. Real-world safety and effectiveness of canakinumab in patients with tumour necrosis factor receptor-associated periodic syndrome or hyperimmunoglobulinaemia D syndrome: Interim results from post-marketing surveillance in Japan. Mod Rheumatol 2023; 33:381-391. [PMID: 35575279 DOI: 10.1093/mr/roac041] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/12/2022] [Accepted: 04/24/2022] [Indexed: 11/14/2022]
Abstract
OBJECTIVES To assess the real-world safety and effectiveness of canakinumab in patients in Japan with tumour necrosis factor receptor-associated periodic syndrome (TRAPS) or mevalonate kinase deficiency/hyperimmunoglobulinaemia D with periodic fever syndrome (MKD/HIDS). METHODS All patients with TRAPS or MKD/HIDS who received canakinumab following drug approval in Japan were registered in a post-marketing all-patient surveillance with a 2-year observation period. Herein, the interim results are reported. RESULTS Fifteen patients with TRAPS and seven with MKD/HIDS were included in the safety and effectiveness analysis set. Adverse drug reactions were reported in 26.67% (n = 4) and 42.86% (n = 3) of TRAPS and MKD/HIDS patients, respectively. Most common adverse drug reactions were upper respiratory tract inflammation (13.33%, n = 2) and pyrexia (42.86%, n = 3) in TRAPS and MKD/HIDS patients, respectively. No serious adverse drug reactions were observed in either TRAPS or MKD/HIDS patients. The proportion of responders was 46.67% and 14.29% in the TRAPS and MKD/HIDS groups, respectively; 72.73% and 66.67% achieved clinical remission, while 90.91% and 66.67% achieved serological remission by Week 4 in the TRAPS and MKD/HIDS groups, respectively. CONCLUSIONS These interim results provide the first evidence of the real-world effectiveness of canakinumab in patients with TRAPS or MKD/HIDS in Japan. No new safety concerns were identified.
Collapse
Affiliation(s)
- Kumiko Hosono
- Medical Division, Novartis Pharma K.K., Tokyo, Japan
| | | | - Miki Shimbo
- Medical Division, Novartis Pharma K.K., Tokyo, Japan
| | - Isao Tsumiyama
- Clinical Development & Analytics Japan Integrated Biostatistics Japan Biostatistics Pharma, Novartis Pharma K.K., Tokyo, Japan
| | - Chihiro Kato
- Clinical Development & Analytics Japan CDD and Re-examination CDD2, Novartis Pharma K.K., Tokyo, Japan
| |
Collapse
|
18
|
Oktem A, Rasulova G, Cavdarli B, Bostanci S, Heper A, Vural S. Successful treatment with anakinra in generalized spiculated porokeratosis and severe hidradenitis suppurativa in a patient with MVK and MEFV mutations. Clin Exp Dermatol 2023; 48:161-165. [PMID: 36730507 DOI: 10.1093/ced/llac023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/10/2022] [Accepted: 10/17/2022] [Indexed: 01/22/2023]
Abstract
The synergistic effect of two mutations of the innate immune system may facilitate hyperactivation and dysregulation of the inflammasome in skin macrophages. This case connects two diseases, hidradenitis suppurativa and porokeratosis, by the central role of autoinflammation.
Collapse
Affiliation(s)
- Ayse Oktem
- Department of Dermatology, Faculty of Medicine, Ankara University, Ankara, Turkiye
| | - Gunel Rasulova
- Department of Dermatology, Faculty of Medicine, Koc University, İstanbul, Turkiye
| | - Busra Cavdarli
- Department of Medical Genetics, Ankara Bilkent City Hospital, Ankara, Turkiye
| | - Seher Bostanci
- Department of Dermatology, Faculty of Medicine, Ankara University, Ankara, Turkiye
| | - Aylin Heper
- Department of Pathology, Faculty of Medicine, Ankara University, Ankara, Turkiye
| | - Secil Vural
- Department of Dermatology, Faculty of Medicine, Koc University, İstanbul, Turkiye
| |
Collapse
|
19
|
Muacevic A, Adler JR, Grangeia A, Aguiar F, Rodrigues M, Brito I. Two Siblings With Recurrent Fevers: The Path to Mevalonate Kinase Deficiency Diagnosis. Cureus 2023; 15:e33613. [PMID: 36788924 PMCID: PMC9911135 DOI: 10.7759/cureus.33613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/11/2023] Open
Abstract
Systemic autoinflammatory diseases (SAIDs) are a group of disorders that constitute a rare cause of recurrent fevers. Recurrent fevers are defined as periodic febrile episodes lasting from days to weeks, separated by symptom-free intervals of variable duration. They present multiple etiologies, representing a diagnostic challenge. Mevalonate kinase deficiency (MKD) is a genetic SAID, a rare hereditary recurrent fever syndrome (HRF) caused by pathogenic variants in the mevalonate kinase (MVK) gene. It is characterized by the early onset of periodic fever flares, frequently associated with joint, gastrointestinal, skin, and lymph node involvement. Although elevated serum immunoglobulin D (IgD) levels were previously considered an MKD's hallmark, normal values do not exclude it. High serum immunoglobulin A (IgA) is frequent. An acute-phase response and elevated urinary mevalonic acid (UAV) excretion during flares may aid in the diagnosis. Genetic testing is an essential tool to confirm the diagnosis. The authors report two siblings presenting with early infancy onset of recurrent febrile illness and characteristic associated symptoms, one of which was initially misdiagnosed with periodic fever, aphthous stomatitis, pharyngitis, and adenitis (PFAPA) syndrome. MKD diagnoses were only established at 12 and nine years old, respectively, after the identification of the same two MVKgene variants. The diagnosis in the eldest favored the earlier recognition of MKD in the youngest. Owing to its wide spectrum of manifestations, with many being nonspecific and/or shared with other more frequent entities, a significant proportion of MKD patients present a long delay until its final establishment. These cases illustrate the MKD diagnosis and management's difficulties, reinforcing the importance of a careful clinical history and HRF awareness for its prompt diagnosis and appropriate precocious referral.
Collapse
|
20
|
Recurrent macrophage activation syndrome due to hyperimmunoglobulin D syndrome: a case-based review. Clin Rheumatol 2023; 42:277-283. [PMID: 36149537 DOI: 10.1007/s10067-022-06384-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/05/2022] [Accepted: 09/19/2022] [Indexed: 01/11/2023]
Abstract
Hyperimmunoglobulin D syndrome (HIDS) is a hereditary autoinflammatory disease characterized by recurrent inflammatory attacks with fever, abdominal pain, lymphadenopathy, aphthous stomatitis, and skin lesions. There are few reports on HIDS patients complicated with macrophage activation syndrome (MAS); however, to our knowledge, there is no case of HIDS with recurrent MAS attacks. We report two pediatric patients initially diagnosed as Kawasaki disease and systemic juvenile idiopathic arthritis presented with recurrent MAS episodes with prolonged fever, skin rash, hepatosplenomegaly, cervical lymphadenopathy, aphthous stomatitis, headache, pancytopenia, hyperferritinemia, and hypofibrinogenemia, finally diagnosed as HIDS with a documented homozygous MVK gene mutation. This is the first report on recurrent MAS attacks due to HIDS in pediatric patients who were successful treated with corticosteroids and anti-IL-1 therapies. Thus, clinicians should be vigilantly investigated signs of autoinflammatory diseases in patients with recurrent MAS attacks during their disease course, and HIDS should be considered an underlying disease for triggering recurrent MAS attacks. We have also reviewed the current literature regarding HIDS cases complicated with a MAS attack and summarized their demographic, treatment, and outcome characteristics. Key points • Hyperimmunoglobulin D syndrome should be considered in differential diagnosis in patients who experienced recurrent macrophage activation syndrome attacks.
Collapse
|
21
|
Efthimiou P, Petryna O, Nakasato P, Kontzias A. New insights on multigenic autoinflammatory diseases. Ther Adv Musculoskelet Dis 2022; 14:1759720X221117880. [PMID: 36081748 PMCID: PMC9445512 DOI: 10.1177/1759720x221117880] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
Autoinflammatory diseases are disorders of the innate immune system, which can be either monogenic due to a specific genetic mutation or complex multigenic due to the involvement of multiple genes. The aim of this review is to explore and summarize the recent advances in pathogenesis, diagnosis, and management of genetically complex autoinflammatory diseases, such as Schnitzler's syndrome; adult-onset Still's disease; synovitis, acne, pustulosis, hyperostosis, osteitis syndrome/chronic recurrent multifocal osteomyelitis/chronic non-bacterial osteomyelitis; Adamantiades-Behçet's disease; Yao syndrome; and periodic fever with aphthous stomatitis, pharyngitis, and adenitis syndrome. The PubMed database was screened for relevant articles using free text words and specific search strings. The search was limited to English-language articles, reporting the results of studies in humans, published through March 2021. Evidence from literature suggest that these rare multigenic autoinflammatory diseases can present with different clinical features and the diagnosis of these diseases can be challenging due to a combination of nonspecific manifestations that can be seen in a variety of other conditions. Diagnostic delays and disease complications may occur due to low disease awareness and the lack of pathognomonic markers. The pathogeneses of these diseases are complex and in some cases precise pathogenesis is not clearly understood. Conventional treatments are commonly used for the management of these conditions, but biologics have shown promising results. Biologics targeting proinflammatory cytokines including IL-1, IL-6, TNF-α, IL-17A and IL-18 have been shown to ameliorate signs and symptoms of different multigenic autoinflammatory diseases.
Collapse
Affiliation(s)
- Petros Efthimiou
- New York Rheumatology Care, Ross University School of Medicine, New York, USA
| | - Olga Petryna
- NYU Grossman School of Medicine, New York, NY, USA
| | | | - Apostolos Kontzias
- Department of Rheumatology, Stony Brook University School of Medicine, Stony Brook, NY, USA
| |
Collapse
|
22
|
Dvaladze A, Tavares E, Di Scipio M, Nimmo G, Grudzinska-Pechhacker MK, Paton T, Tumber A, Li S, Eileen C, Ertl-Wagner B, Mamak E, Hoffmann G, Marshall CR, Haas D, Mayatepek E, Schulze A, Heon E, Vincent A. Deep Intronic Variant in MVK as a Cause for Mevalonic Aciduria Initially Presenting as Non-syndromic Retinitis Pigmentosa. Clin Genet 2022; 102:524-529. [PMID: 35916082 DOI: 10.1111/cge.14207] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022]
Abstract
Non-syndromic retinitis pigmentosa (NSRP) is a clinically and genetically heterogeneous group of disorders characterized by progressive degeneration of the rod and cone photoreceptors, often leading to blindness. The evolving association of syndromic genes to cause NSRP and the increasing role of intronic variants in explaining missing heritability in genetic disorders present challenges in establishing conclusive clinical and genetic diagnoses. This study sought to identify and validate the causative genetic variant(s) in a 13-year-old male initially diagnosed with NSRP. Genome sequencing identified a pathogenic missense variant in MVK [NM_000431.3:c.803T>C (p. Ile268Thr)], in trans with a novel intronic variant predicted to create a new donor splice site (c.768+71C>A). Proband cDNA analysis confirmed the inclusion of the first 68 base pairs of intron 8 that resulted in a frameshift in MVK (r.768_769ins[768+1_768+68]) and significantly reduced the expression of reference transcript (17.6%). Patient re-phenotyping revealed ataxia, cerebellar atrophy, elevated urinary mevalonate and LTE4 , in keeping with mild mevalonic aciduria and associated syndromic retinitis pigmentosa. Leakage of reference transcript likely explains the milder phenotype observed. This is the first association of a deep intronic splice variant to cause MVK-related disorder. This report highlights the importance of variant validation and patient re-phenotyping in establishing accurate diagnosis in the era of genome sequencing.
Collapse
Affiliation(s)
- Anna Dvaladze
- Genetics and Genome Biology, The Hospital for Sick Children (HSC), Toronto, Canada
| | - Erika Tavares
- Genetics and Genome Biology, The Hospital for Sick Children (HSC), Toronto, Canada
| | - Matteo Di Scipio
- Genetics and Genome Biology, The Hospital for Sick Children (HSC), Toronto, Canada
| | - Graeme Nimmo
- Clinical and Metabolic Genetics, HSC, Canada.,Fred A Litwin Family Centre for Genetic Medicine, The University Health Network, Toronto, Canada
| | - Monika K Grudzinska-Pechhacker
- Genetics and Genome Biology, The Hospital for Sick Children (HSC), Toronto, Canada.,Department of Ophthalmology and Vision Sciences, HSC and University of Toronto, Canada
| | - Tara Paton
- The Centre for Applied Genomics, HSC, Canada
| | - Anupreet Tumber
- Department of Ophthalmology and Vision Sciences, HSC and University of Toronto, Canada
| | - Shuning Li
- Genetics and Genome Biology, The Hospital for Sick Children (HSC), Toronto, Canada
| | - Christabel Eileen
- Genetics and Genome Biology, The Hospital for Sick Children (HSC), Toronto, Canada
| | - Birgit Ertl-Wagner
- Division of Neuroradiology, HSC, Canada.,Department of Medical Imaging, University of Toronto, Canada
| | - Eva Mamak
- Department of Psychology, HSC, Canada
| | - Georg Hoffmann
- Neuropaediatrics and Paediatric Metabolic Medicine, University Hospital Heidelberg, Germany
| | | | - Dorothea Haas
- Neuropaediatrics and Paediatric Metabolic Medicine, University Hospital Heidelberg, Germany
| | - Ertan Mayatepek
- Department of General Paediatrics, Neonatology and Paediatric Cardiology, University Children's Hospital, Heinrich Heine University, Dusseldorf, Germany
| | - Andreas Schulze
- Clinical and Metabolic Genetics, HSC, Canada.,Department of Paediatrics, University of Toronto, Canada.,Department of Biochemistry, University of Toronto, Canada
| | - Elise Heon
- Genetics and Genome Biology, The Hospital for Sick Children (HSC), Toronto, Canada.,Department of Ophthalmology and Vision Sciences, HSC and University of Toronto, Canada
| | - Ajoy Vincent
- Genetics and Genome Biology, The Hospital for Sick Children (HSC), Toronto, Canada.,Department of Ophthalmology and Vision Sciences, HSC and University of Toronto, Canada
| |
Collapse
|
23
|
The efficacy and safety of allogeneic stem cell transplantation in Mevalonate Kinase Deficiency. Pediatr Rheumatol Online J 2022; 20:56. [PMID: 35906690 PMCID: PMC9338460 DOI: 10.1186/s12969-022-00716-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/16/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES Mevalonate kinase deficiency (MKD) is a rare autoinflammatory syndrome. Several reports have described allogeneic hematopoietic stem cell transplantation in severely affected patients, sometimes with promising results. In view of the scarcity of data, this study aims to analyse the efficacy and safety of allogeneic hematopoietic stem cell transplantation (HSCT) to give a more complete overview of this treatment. METHODS This multicentre retrospective study on behalf of the European Society for Blood and Marrow Transplantation aimed to include all MKD patients who had undergone allogeneic HSCT. All centres related to EMBT and centres that have reported cases of allogeneic HSCT in the literature were contacted via the EBMT data office. RESULTS We analyzed 9 patients (5 male). Treosulfan based conditioning was the most frequently used conditioning regimen. Engraftment occurred in all but one patient. Source of stem cells was cord blood (n = 2), peripheral blood stem cells (n = 4) and bone marrow (n = 5). Two patients needed a second transplantation due to an incomplete response or primary graft failure. Seven patients went into complete remission after stem cell transplantation. At final follow-up these patients reported no symptoms of MKD. Four patients suffered from grade II-IV acute graft-versus-host disease (GvHD). During follow-up two patients died due to transplantation related complications. CONCLUSION In conclusion, allogeneic stem cell transplantation represents an effective treatment for the most severely affected MKD patients. However, treatment-related morbidity and mortality are significant. Transplantation may be justified in patients with a severe disease course on conservative therapy.
Collapse
|
24
|
Espin Diaz PC, Singh K, Kher P, Avanthika C, Jhaveri S, Saad Y, Gosh S. Periodic Fever in Children: Etiology and Diagnostic Challenges. Cureus 2022; 14:e27239. [PMID: 36035053 PMCID: PMC9399680 DOI: 10.7759/cureus.27239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2022] [Indexed: 11/05/2022] Open
Abstract
Periodic fever in children is an autoinflammatory illness with an unknown cause. Symptoms include frequent episodes of fever that are followed by an increase in inflammatory markers. A genetic background for periodic fever of unknown origin has been hypothesized, based on its family clustering and parallels to other autoinflammatory illnesses such as familial Mediterranean fever. Genome analysis has been used in studies to look for related gene variations in periodic fever of unknown origin in the pediatric population. Children with periodic fevers might be a diagnostic challenge. After ruling out the most prevalent causes, a wide variety of other possibilities are investigated. Infectious and noninfectious causes of periodic fever in children are discussed in this article. Inflammasomes (intracellular proteins that activate interleukin (IL)-1b and IL-18) and genetic/hereditary variations are thought to be implicated in the pathogenesis of periodic fever. Evaluation and ruling out possible infective or noninfective causes is vital in the diagnosis of periodic fever in children. Investigations demonstrate that there isn't a single gene linked to it, suggesting that it may have a multifactorial or polygenic origin, with an environmental trigger causing inflammasome activation and fever flares. Treatment is usually symptomatic, with drugs such as colchicine and cimetidine having shown promising results in trials. We explored the literature on periodic fever in children for its epidemiology, pathophysiology, the role of various genes and how they influence the disease and associated complications, and its various treatment modalities.
Collapse
|
25
|
The Clinical Chameleon of Autoinflammatory Diseases in Children. Cells 2022; 11:cells11142231. [PMID: 35883675 PMCID: PMC9318468 DOI: 10.3390/cells11142231] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/12/2022] [Accepted: 07/17/2022] [Indexed: 01/27/2023] Open
Abstract
The very first line of defense in humans is innate immunity, serving as a critical strongpoint in the regulation of inflammation. Abnormalities of the innate immunity machinery make up a motley group of rare diseases, named ‘autoinflammatory’, which are caused by mutations in genes involved in different immune pathways. Self-limited inflammatory bouts involving skin, serosal membranes, joints, gut and other districts of the human body burst and recur with variable periodicity in most autoinflammatory diseases (ADs), often leading to secondary amyloidosis as a long-term complication. Dysregulated inflammasome activity, overproduction of interleukin (IL)-1 or other IL-1-related cytokines and delayed shutdown of inflammation are pivotal keys in the majority of ADs. The recent progress of cellular biology has clarified many molecular mechanisms behind monogenic ADs, such as familial Mediterranean fever, tumor necrosis factor receptor-associated periodic syndrome (or ‘autosomal dominant familial periodic fever’), cryopyrin-associated periodic syndrome, mevalonate kinase deficiency, hereditary pyogenic diseases, idiopathic granulomatous diseases and defects of the ubiquitin-proteasome pathway. A long-lasting history of recurrent fevers should require the ruling out of chronic infections and malignancies before considering ADs in children. Little is known about the potential origin of polygenic ADs, in which sterile cytokine-mediated inflammation results from the activation of the innate immunity network, without familial recurrency, such as periodic fever/aphthous stomatitis/pharyngitis/cervical adenopathy (PFAPA) syndrome. The puzzle of febrile attacks recurring over time with chameleonic multi-inflammatory symptoms in children demands the inspection of the mixture of clinical data, inflammation parameters in the different disease phases, assessment of therapeutic efficacy of a handful of drugs such as corticosteroids, colchicine or IL-1 antagonists, and genotype analysis to exclude or confirm a monogenic origin.
Collapse
|
26
|
Koker O, Aktay Ayaz N. Autoimmune and autoinflammatory diseases with mucocutaneous manifestations: A pediatric rheumatology perspective. Int J Dermatol 2022; 62:723-736. [PMID: 35843911 DOI: 10.1111/ijd.16352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/25/2022] [Accepted: 06/24/2022] [Indexed: 12/01/2022]
Abstract
The presence of mucocutaneous manifestations has clinical significance, as it may be a part of the initial presentation or activation stage of both autoimmune and autoinflammatory rheumatic diseases. The cutaneous signs may display a particular morphological and topographic distribution according to taxonomy, whereas heterogeneity is likely observed among the individuals. The review aims to cluster and systematically approach the mucocutaneous manifestations met in autoimmune and autoinflammatory rheumatic diseases of childhood. The search strategy involved a comprehensive inquiry on Web of Science, PubMed, MEDLINE, and Embase databases using relevant search terms such as "dermatologic, cutaneous, mucocutaneous, skin, rash" for each disease and category. The awareness of the distinctive mucocutaneous manifestations and their correlation with rheumatic diseases provides a convenient definition, well-timed control of the underlying condition, and prevention of cosmetic issues. In the management of rheumatic diseases, planning the pertinent differential diagnosis and determining the requirement of histopathological assessment are essential with a multidisciplinary approach to rheumatology, dermatology, and allergy-immunology specialties.
Collapse
Affiliation(s)
- Oya Koker
- Istanbul Faculty of Medicine, Department of Pediatric Rheumatology, Istanbul University, Istanbul, Turkey
| | - Nuray Aktay Ayaz
- Istanbul Faculty of Medicine, Department of Pediatric Rheumatology, Istanbul University, Istanbul, Turkey
| |
Collapse
|
27
|
Elhani I, Hentgen V, Grateau G, Georgin-Lavialle S. Neurological manifestations in mevalonate kinase deficiency: A systematic review. Mol Genet Metab 2022; 136:85-93. [PMID: 35525811 DOI: 10.1016/j.ymgme.2022.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Mevalonate kinase deficiency (MKD) is a monogenic auto-inflammatory disease. Its manifestations range from partial MKD to mevalonic aciduria (MVA). All patients display a periodic fever, and MVA patients additionally exhibit severe neurological involvement. The objective of this work was to describe neurological manifestations of MKD. METHODS A systematic literature review was performed from January 1990 to January 2022. Forty-five patients from 18 case reports and five cohort studies were included in the analysis. RESULTS In cohort studies, the most-reported manifestations were headaches (41%) and fatigue (31%). Serious involvements including ataxia and developmental delay were described less than 1% of patients but 22-31% of case reports. They consistently appeared in the first years of life. Retinal dystrophy was frequently reported (31%) in case reports. Other manifestations, including uveitis, aseptic meningitis, and stroke remained rare. DISCUSSION Severe neurological manifestations are rare in MKD but are responsible for major functional disabilities. They are present at onset and never appear at follow-up of patients with mild MKD. Conversely, headaches and fatigue are frequent symptoms that should be investigated. Visual examinations should be performed on the appearance of visual symptoms. The efficacy of anti-IL-1β therapy on neurological manifestations should be further investigated.
Collapse
Affiliation(s)
- Inès Elhani
- Sorbonne University, Department of Internal Medicine, AP-HP, Hôpital Tenon, Centre de Référence des Maladies Auto-Inflammatoires et des Amyloses Inflammatoire (CEREMAIA), Paris, France; Department of Pediatrics, National Reference Center for Auto-inflammatory Diseases and Amyloidosis, CEREMAIA, Versailles Hospital, Versailles, France
| | - Véronique Hentgen
- Department of Pediatrics, National Reference Center for Auto-inflammatory Diseases and Amyloidosis, CEREMAIA, Versailles Hospital, Versailles, France
| | - Gilles Grateau
- Sorbonne University, Department of Internal Medicine, AP-HP, Hôpital Tenon, Centre de Référence des Maladies Auto-Inflammatoires et des Amyloses Inflammatoire (CEREMAIA), Paris, France
| | - Sophie Georgin-Lavialle
- Sorbonne University, Department of Internal Medicine, AP-HP, Hôpital Tenon, Centre de Référence des Maladies Auto-Inflammatoires et des Amyloses Inflammatoire (CEREMAIA), Paris, France.
| |
Collapse
|
28
|
Romano M, Arici ZS, Piskin D, Alehashemi S, Aletaha D, Barron K, Benseler S, Berard RA, Broderick L, Dedeoglu F, Diebold M, Durrant K, Ferguson P, Foell D, Hausmann JS, Jones OY, Kastner D, Lachmann HJ, Laxer RM, Rivera D, Ruperto N, Simon A, Twilt M, Frenkel J, Hoffman HM, de Jesus AA, Kuemmerle-Deschner JB, Ozen S, Gattorno M, Goldbach-Mansky R, Demirkaya E. The 2021 EULAR/American College of Rheumatology Points to Consider for Diagnosis, Management and Monitoring of the Interleukin-1 Mediated Autoinflammatory Diseases: Cryopyrin-Associated Periodic Syndromes, Tumour Necrosis Factor Receptor-Associated Periodic Syndrome, Mevalonate Kinase Deficiency, and Deficiency of the Interleukin-1 Receptor Antagonist. Arthritis Rheumatol 2022; 74:1102-1121. [PMID: 35621220 DOI: 10.1002/art.42139] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/02/2022] [Accepted: 03/02/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND The interleukin-1 (IL-1) mediated systemic autoinflammatory diseases, including the cryopyrin- associated periodic syndromes (CAPS), tumour necrosis factor receptor-associated periodic syndrome (TRAPS), mevalonate kinase deficiency (MKD) and deficiency of the IL-1 receptor antagonist (DIRA), belong to a group of rare immunodysregulatory diseases that primarily present in early childhood with variable multiorgan involvement. When untreated, patients with severe clinical phenotypes have a poor prognosis, and diagnosis and management of these patients can be challenging. However, approved treatments targeting the proinflammatory cytokine IL-1 have been life changing and have significantly improved patient outcomes. OBJECTIVE To establish evidence-based recommendations for diagnosis, treatment and monitoring of patients with IL-1 mediated autoinflammatory diseases to standardise their management. METHODS A multinational, multidisciplinary task force consisting of physician experts, including rheumatologists, patients or caregivers and allied healthcare professionals, was established. Evidence synthesis, including systematic literature review and expert consensus (Delphi) via surveys, was conducted. Consensus methodology was used to formulate and vote on statements to guide optimal patient care. RESULTS The task force devised five overarching principles, 14 statements related to diagnosis, 10 on therapy, and nine focused on long-term monitoring that were evidence and/or consensus-based for patients with IL-1 mediated diseases. An outline was developed for disease-specific monitoring of inflammation-induced organ damage progression and reported treatments of CAPS, TRAPS, MKD and DIRA. CONCLUSION The 2021 EULAR/American College of Rheumatology points to consider represent state-of-the-art knowledge based on published data and expert opinion to guide diagnostic evaluation, treatment and monitoring of patients with CAPS, TRAPS, MKD and DIRA, and to standardise and improve care, quality of life and disease outcomes.
Collapse
Affiliation(s)
- Micol Romano
- University of Western Ontario, London, Ontario, Canada
| | - Z Serap Arici
- Sanliurfa Training and Research Hospital, Sanliurfa, Turkey
| | - David Piskin
- University of Western Ontario, London, Ontario, Canada
| | - Sara Alehashemi
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | | | - Karyl Barron
- National Institute of Allergy and Immunology, NIH, Bethesda, Maryland
| | | | | | - Lori Broderick
- University of California and Rady Children's Hospital, San Diego, California
| | | | | | - Karen Durrant
- Autoinflammatory Alliance and Kaiser Foundation Hospital, San Francisco, California
| | | | - Dirk Foell
- University of Muenster, Muenster, Germany
| | - Jonathan S Hausmann
- Boston Children's Hospital and Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Olcay Y Jones
- Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Daniel Kastner
- National Human Genome Research Institute, NIH, Bethesda, Maryland
| | | | - Ronald M Laxer
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Anna Simon
- Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | - Joost Frenkel
- Wilhelmina Kinderziekenhuis, Utrecht, The Netherlands
| | - Hal M Hoffman
- University of California and Rady Children's Hospital, San Diego, California
| | - Adriana A de Jesus
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | | | - Seza Ozen
- Hacettepe University, Ankara, Turkey
| | | | | | | |
Collapse
|
29
|
Romano M, Arici ZS, Piskin D, Alehashemi S, Aletaha D, Barron KS, Benseler S, Berard R, Broderick L, Dedeoglu F, Diebold M, Durrant KL, Ferguson P, Foell D, Hausmann J, Jones OY, Kastner DL, Lachmann HJ, Laxer RM, Rivera D, Ruperto N, Simon A, Twilt M, Frenkel J, Hoffman H, de Jesus AA, Kuemmerle-Deschner JB, Ozen S, Gattorno M, Goldbach-Mansky R, Demirkaya E. The 2021 EULAR/American College of Rheumatology points to consider for diagnosis, management and monitoring of the interleukin-1 mediated autoinflammatory diseases: cryopyrin-associated periodic syndromes, tumour necrosis factor receptor-associated periodic syndrome, mevalonate kinase deficiency, and deficiency of the interleukin-1 receptor antagonist. Ann Rheum Dis 2022; 81:907-921. [PMID: 35623638 DOI: 10.1136/annrheumdis-2021-221801] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/02/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND The interleukin-1 (IL-1) mediated systemic autoinflammatory diseases, including the cryopyrin-associated periodic syndromes (CAPS), tumour necrosis factor receptor-associated periodic syndrome (TRAPS), mevalonate kinase deficiency (MKD) and deficiency of the IL-1 receptor antagonist (DIRA), belong to a group of rare immunodysregulatory diseases that primarily present in early childhood with variable multiorgan involvement. When untreated, patients with severe clinical phenotypes have a poor prognosis, and diagnosis and management of these patients can be challenging. However, approved treatments targeting the proinflammatory cytokine IL-1 have been life changing and have significantly improved patient outcomes. OBJECTIVE To establish evidence-based recommendations for diagnosis, treatment and monitoring of patients with IL-1 mediated autoinflammatory diseases to standardise their management. METHODS A multinational, multidisciplinary task force consisting of physician experts, including rheumatologists, patients or caregivers and allied healthcare professionals, was established. Evidence synthesis, including systematic literature review and expert consensus (Delphi) via surveys, was conducted. Consensus methodology was used to formulate and vote on statements to guide optimal patient care. RESULTS The task force devised five overarching principles, 14 statements related to diagnosis, 10 on therapy, and nine focused on long-term monitoring that were evidence and/or consensus-based for patients with IL-1 mediated diseases. An outline was developed for disease-specific monitoring of inflammation-induced organ damage progression and reported treatments of CAPS, TRAPS, MKD and DIRA. CONCLUSION The 2021 EULAR/American College of Rheumatology points to consider represent state-of-the-art knowledge based on published data and expert opinion to guide diagnostic evaluation, treatment and monitoring of patients with CAPS, TRAPS, MKD and DIRA, and to standardise and improve care, quality of life and disease outcomes.
Collapse
Affiliation(s)
- Micol Romano
- Department of Pediatrics, Division of Pediatric Rheumatology, Behcet and Autoinflammatory Disease Center, Western University, London, Ontario, Canada
| | - Z Serap Arici
- Department of Pediatric Rheumatology, Sanliurfa Mehmet Akif Inan Training and Research Hospital, Sanliurfa, Sanliurfa, Turkey
| | - David Piskin
- Lawson Health Research Institute and Department of Epidemiology and Biostatistics, Western University, London, Ontario, Canada
| | - Sara Alehashemi
- Translational Autoinflammatory Diseases Section (TADS), Laboratory of Clinical Immunology and Microbiology (LCIM), NIAID, NIH, Bethesda, Maryland, USA
| | - Daniel Aletaha
- Division of Rheumatology, Medical University of Vienna, Wien, Austria
| | - Karyl S Barron
- Division of Intramural Research, National Institute of Allergy and Immunology, NIH, Bethesda, Maryland, USA
| | - Susanne Benseler
- Division of Rheumatology, Department of Pediatrics, Alberta Children's Hospital, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Roberta Berard
- Division of Pediatric Rheumatology, Department of Paediatrics, Schulich School of Medicine&Dentistry, Western University, London, Ontario, Canada
| | - Lori Broderick
- Division of Pediatric Allergy, Immunology, and Rheumatology, University of California and Rady Children's Hospital, San Diego, California, USA
| | - Fatma Dedeoglu
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Michelle Diebold
- Division of Pediatric Rheumatology, Department of Paediatrics, LHSC Children's Hospital, London, Ontario, Canada
| | | | - Polly Ferguson
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Dirk Foell
- Department of Pediatric Rheumatology and Immunology, University of Muenster, Muenster, Germany
| | - Jonathan Hausmann
- Department of Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Olcay Y Jones
- Department of Pediatrics, Walter Reed National Military Medical Center (WRNMMC), Bethesda, Maryland, USA
| | - Daniel L Kastner
- Division of Intramural Research, National Institute of Allergy and Immunology, NIH, Bethesda, Maryland, USA
| | | | - Ronald M Laxer
- Division of Rheumatology, University of Toronto, Toronto, Ontario, Canada
| | - Dorelia Rivera
- Autoinflammatory Alliance, San Francisco, California, USA
| | - Nicolino Ruperto
- IRCCS Istituto Giannina Gaslini, UOSID Centro Trial, Genova, Italy
| | - Anna Simon
- Department of General Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Marinka Twilt
- Division of Rheumatology, Department of Pediatrics, Alberta Children's Hospital, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Joost Frenkel
- Department of Pediatrics, Wilhelmina Kinderziekenhuis Polikliniek Algemene Kindergeneeskunde, Utrecht, Utrecht, The Netherlands
| | - Hal Hoffman
- Division of Pediatric Allergy, Immunology, and Rheumatology, University of California at San Diego, San Diego, California, USA
| | - Adriana A de Jesus
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | | | - Seza Ozen
- Department of Pediatric Rheumatology, Hacettepe University, Ankara, Turkey
| | - Marco Gattorno
- UOSD Centro Malattie Autoinfiammatorie e Immunodeficienze, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Clinica Pediatrica e Reumatologia, IRCCS Istituto Giannina Gaslini
| | - Raphaela Goldbach-Mansky
- Translational Autoinflammatory Diseases Section (TADS), National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Erkan Demirkaya
- Division of Paediatric Rheumatology, Department of Paediatrics, Behcet and Autoinflammatory Disease Center and Department of Epidemiology and Biostatistics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
30
|
Zinterl C, Costa-Reis P, Esteves IC, Marques JG, Sousa AB, Fonseca JE, Oliveira Ramos F. The Added Value of a Multidisciplinary Clinic for Systemic Autoinflammatory Diseases. J Multidiscip Healthc 2022; 15:999-1010. [PMID: 35548670 PMCID: PMC9081005 DOI: 10.2147/jmdh.s351546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/05/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Carolina Zinterl
- Pediatric Rheumatology Unit, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- Rheumatology Research Unit, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- Correspondence: Carolina Zinterl, Serviço de Reumatologia, Centro Hospitalar Lisboa Norte, Hospital de Santa Maria, EPE, R. Prof. Egas Moniz, Lisboa, 1700, Portugal, Tel +351 217805139, Email
| | - Patrícia Costa-Reis
- Pediatric Rheumatology Unit, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- Pediatrics Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Isabel Castro Esteves
- Pediatrics Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - José Gonçalo Marques
- Pediatrics Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Ana Berta Sousa
- Pediatrics Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- Department of Basic Immunology, Faculty of Medicine, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - João Eurico Fonseca
- Rheumatology Research Unit, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Filipa Oliveira Ramos
- Pediatric Rheumatology Unit, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- Rheumatology Research Unit, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
- Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| |
Collapse
|
31
|
Reji M, Thapa R. Cyclic Fevers in Adult Diagnosed As Hyperimmunoglobulin D Syndrome. Cureus 2022; 14:e23878. [PMID: 35530832 PMCID: PMC9074909 DOI: 10.7759/cureus.23878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2022] [Indexed: 11/30/2022] Open
Abstract
Hyper immunoglobulin D Syndrome (HIDS) is a rare autosomal recessive disease often presents during infancy. The disease is caused by an abnormal gene that codes for mevalonate kinase (MVK). This results in recurrent fever episodes and gastrointestinal discomfort (including diarrhea, joint pain, and oral sores). High fever is the most common symptom, occurring every few weeks to months. Patients may also have other findings, including lymphadenopathy and arthralgia. In this report, we discuss a rare diagnosis of HIDS is an adult and discuss our case in the context of existing literature. Given the nonspecific symptoms and the fact that it is often diagnosed in childhood, HIDS can be a challenging but essential diagnosis in adults with persistent, cyclical fevers.
Collapse
|
32
|
Borst C, Symmank D, Drach M, Weninger W. Cutaneous signs and mechanisms of inflammasomopathies. Ann Rheum Dis 2022; 81:454-465. [PMID: 35039323 DOI: 10.1136/annrheumdis-2021-220977] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/20/2021] [Indexed: 11/03/2022]
Abstract
The emerging group of autoinflammatory diseases (AIDs) is caused by a dysregulation of the innate immune system while lacking the typical footprint of adaptive immunity. A prominent subgroup of AIDs are inflammasomopathies, which are characterised by periodic flares of cutaneous signs as well as systemic organ involvement and fever. The range of possible skin lesions is vast, ranging from urticarial, erysipelas-like and pustular rashes to erythematous patches, violaceous plaques and eventual necrosis and ulceration. This review provides a structured overview of the pathogenesis and the clinical picture with a focus on dermatological aspects of inflammasomopathies. Current treatment options for these conditions are also discussed.
Collapse
Affiliation(s)
- Carina Borst
- Department of Dermatology, Medical University of Vienna, Wien, Austria
| | - Dörte Symmank
- Department of Dermatology, Medical University of Vienna, Wien, Austria
| | - Mathias Drach
- Department of Dermatology, Medical University of Vienna, Wien, Austria
| | - Wolfgang Weninger
- Department of Dermatology, Medical University of Vienna, Wien, Austria
| |
Collapse
|
33
|
Kul Cinar O, Putland A, Wynne K, Eleftheriou D, Brogan PA. Hereditary Systemic Autoinflammatory Diseases: Therapeutic Stratification. Front Pediatr 2022; 10:867679. [PMID: 35573950 PMCID: PMC9096795 DOI: 10.3389/fped.2022.867679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/29/2022] [Indexed: 11/30/2022] Open
Abstract
Hereditary systemic autoinflammatory diseases (SAIDs) are rare, often severe conditions characterised by mutations in the key regulators of innate immune responses. Dramatic advances in the molecular genetics and next-generation sequencing in the past decade enabled identification of novel mutations that play a pivotal role in the mechanistic pathways of inflammation. Although genetic testing may not always provide straightforward guidance in diagnosis and clinical decision making, through translational research, it sheds light into molecular immunopathogenesis, particularly in IL-1 inflammasome and cytokine signalling pathways. These remarkable insights provided a better understanding of autoinflammatory conditions and their association with the innate and adaptive immune systems, as well as leading to development of cytokine-targetted biologic treatments. Use of targetted therapeutics not only helps control disease flares, reduce acute-phase responses and prevent devastating complications such as amyloidosis, but also improves health-related quality of lives and support patients to pursue almost a normal life. Herein, we discuss the commonest monogenic SAIDs, describe their immunopathology, and summarise the approaches in the management and targetted treatment of these conditions, including presentation of novel data based on a cohort of children with these rare diseases from a single quaternary referral centre in London.
Collapse
Affiliation(s)
- Ovgu Kul Cinar
- Department of Paediatric Rheumatology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom.,Division of Medicine, National Amyloidosis Centre and Centre for Acute Phase Proteins, University College London, Royal Free Campus, London, United Kingdom
| | - Amber Putland
- Department of Paediatric Rheumatology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Karen Wynne
- Department of Paediatric Rheumatology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Despina Eleftheriou
- Department of Paediatric Rheumatology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom.,Section of Infection, Immunity and Inflammation, Institute of Child Health, University College London Great Ormond Street, London, United Kingdom.,Paediatric Rheumatology, ARUK Centre for Adolescent Rheumatology, Institute of Child Health, University College London (UCL) Great Ormond Street Hospital, London, United Kingdom
| | - Paul A Brogan
- Department of Paediatric Rheumatology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom.,Section of Infection, Immunity and Inflammation, Institute of Child Health, University College London Great Ormond Street, London, United Kingdom
| |
Collapse
|
34
|
Systemic Autoinflammatory Diseases: A Growing Family of Disorders of Overlapping Immune Dysfunction. Rheum Dis Clin North Am 2021; 48:371-395. [PMID: 34798958 DOI: 10.1016/j.rdc.2021.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Systemic autoinflammatory diseases (SAIDs) are characterized by unprovoked exaggerated inflammation on a continuum from benign recurrent oral ulceration to life-threatening strokes or amyloidosis, with renal failure as a potential sequela. The ability to discriminate these diagnoses rests on the genetic and mechanistic defect of each disorder, considering potential overlapping autoinflammation, autoimmunity, and immune deficiency. A comprehensive and strategic genetic investigation influences management as well as the consequential expected prognoses in these subsets of rare diseases. The ever-expanding therapeutic armamentarium reflects international collaborations, which will hasten genetic discovery and consensus-driven treatment.
Collapse
|
35
|
Vinit C, Georgin-Lavialle S, Theodoropoulou A, Barbier C, Belot A, Mejbri M, Pillet P, Pachlopnik J, Poignant S, Rebelle C, Woerner A, Koné-Paut I, Hentgen V. Real-Life Indications of Interleukin-1 Blocking Agents in Hereditary Recurrent Fevers: Data From the JIRcohort and a Literature Review. Front Immunol 2021; 12:744780. [PMID: 34858402 PMCID: PMC8632237 DOI: 10.3389/fimmu.2021.744780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/19/2021] [Indexed: 12/02/2022] Open
Abstract
Background Interleukin (IL)-1 inhibitors represent the main treatment in patients with colchicine-resistant/intolerant familial Mediterranean fever (crFMF), mevalonate kinase deficiency (MKD), and tumor necrosis factor receptor-associated periodic syndrome (TRAPS). However, the reasons for the use of IL-1 inhibitors in these diseases are still not completely clarified. Objective Identify real-life situations that led to initiating anakinra or canakinumab treatment in hereditary recurrent fevers (HRFs), combining data from an international registry and an up-to-date literature review. Patients and Methods Data were extracted from the JIRcohort, in which clinical information (demographic data, treatment, disease activity, and quality of life) on patients with FMF, MKD, and TRAPS was retrospectively collected. A literature search was conducted using Medline, EMBASE, and Cochrane databases. Results Complete data of 93 patients with HRF (53.8% FMF, 31.2% MKD, and 15.1% TRAPS) were analyzed. Data from both the registry and the literature review confirmed that the main reasons for use of IL-1 blockers were the following: failure of previous treatment (n = 57, 61.3% and n = 964, 75.3%, respectively), persistence of disease activity with frequent attacks (n = 44, 47.3% and n = 1,023, 79.9%) and/or uncontrolled inflammatory syndrome (n = 46, 49.5% and n = 398, 31.1%), severe disease complication or associated comorbidities (n = 38, 40.9% and n = 390, 30.4%), and worsening of patients' quality of life (n = 36, 38.7% and n = 100, 7,8%). No reasons were specified for 12 (16.4%) JIRcohort patients and 154 (12%) patients in the literature. Conclusion In the absence of standardized indications for IL-1 inhibitors in crFMF, MKD, and TRAPS, these results could serve as a basis for developing a treat-to-target strategy that would help clinicians codify the therapeutic escalation with IL-1 inhibitors.
Collapse
Affiliation(s)
- Caroline Vinit
- General Pediatrics, Versailles Hospital, Versailles, France
- CEREMAIA (French reference center for auto-inflammatory diseases and inflammatory amyloidosis), Kremlin-Bicêtre, France
| | - Sophie Georgin-Lavialle
- CEREMAIA (French reference center for auto-inflammatory diseases and inflammatory amyloidosis), Kremlin-Bicêtre, France
- Department of Internal Medicine, Sorbonne University, Tenon Hospital (APHP), Paris, France
| | - Aikaterini Theodoropoulou
- Pediatric Immuno-Rheumatology of Western Switzerland, Department Women-Mother-Child, Lausanne University Hospital, Lausanne, Switzerland
- Pediatric Immuno-Rheumatology Department, University Hospital, Geneva, Switzerland
| | | | - Alexandre Belot
- Pediatric Nephrology Rheumatology and Dermatology, CHU Lyon, Lyon, France
- RAISE (Centre de référence des rhumatismes inflammatoires et maladies auto-immunes systémiques de l’enfant), Paris, France
| | - Manel Mejbri
- Pediatric Immuno-Rheumatology of Western Switzerland, Department Women-Mother-Child, Lausanne University Hospital, Lausanne, Switzerland
- Pediatric Immuno-Rheumatology Department, University Hospital, Geneva, Switzerland
| | - Pascal Pillet
- Pediatrics and Immunology, CHU Pellegrin, Bordeaux, France
| | | | | | | | - Andreas Woerner
- Pediatric Cardiology and Rheumatology, UKBB Hospital, Bâle, Switzerland
| | - Isabelle Koné-Paut
- CEREMAIA (French reference center for auto-inflammatory diseases and inflammatory amyloidosis), Kremlin-Bicêtre, France
- Pediatric Rheumatology Department, Bicêtre Hospital, APHP, University of Paris Saclay, Kremlin Bicêtre, France
| | - Véronique Hentgen
- General Pediatrics, Versailles Hospital, Versailles, France
- CEREMAIA (French reference center for auto-inflammatory diseases and inflammatory amyloidosis), Kremlin-Bicêtre, France
| |
Collapse
|
36
|
Diprose WK, Jordan A, Anderson NE. Autoinflammatory syndromes in neurology: when our first line of defence misbehaves. Pract Neurol 2021; 22:145-153. [PMID: 34599092 DOI: 10.1136/practneurol-2021-003031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 02/03/2023]
Abstract
Autoinflammatory syndromes result from a defective innate immune system. They are characterised by unexplained fever and systemic inflammation involving the skin, muscle, joints, serosa and eyes, along with elevated acute phase reactants. Autoinflammatory syndromes are increasingly recognised as a cause of neurological disease with a diverse range of manifestations. Corticosteroids, colchicine and targeted therapies are effective if started early, and hence the importance of recognising these syndromes. Here, we review the neurological features of specific autoinflammatory syndromes and our approach (as adult neurologists) to their diagnosis.
Collapse
Affiliation(s)
- William K Diprose
- Department of Neurology, Auckland City Hospital, Auckland, New Zealand .,Department of Medicine, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Anthony Jordan
- Department of Clinical Immunology and Allergy, Auckland City Hospital, Auckland, New Zealand
| | - Neil E Anderson
- Department of Neurology, Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|
37
|
Barko PC, Williams DA. Untargeted analysis of the serum metabolome in cats with exocrine pancreatic insufficiency. PLoS One 2021; 16:e0257856. [PMID: 34591942 PMCID: PMC8483406 DOI: 10.1371/journal.pone.0257856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/12/2021] [Indexed: 11/18/2022] Open
Abstract
Exocrine pancreatic insufficiency (EPI) causes chronic digestive dysfunction in cats, but its pathogenesis and pathophysiology are poorly understood. Untargeted metabolomics is a promising analytic methodology that can reveal novel metabolic features and biomarkers of clinical disease syndromes. The purpose of this preliminary study was to use untargeted analysis of the serum metabolome to discover novel aspects of the pathobiology of EPI in cats. Serum samples were collected from 5 cats with EPI and 8 healthy controls. The diagnosis of EPI was confirmed by measurement of subnormal serum feline trypsin-like immunoreactivity (fTLI). Untargeted quantification of serum metabolite utilized ultra-high-performance liquid chromatography-tandem mass spectroscopy. Cats with EPI had significantly increased serum quantities of long-chain fatty acids, polyunsaturated fatty acids, mevalonate pathway intermediates, and endocannabinoids compared with healthy controls. Diacylglycerols, phosphatidylethanolamines, amino acid derivatives, and microbial metabolites were significantly decreased in cats with EPI compared to healthy controls. Diacyclglycerols and amino acid metabolites were positively correlated, and sphingolipids and long-chain fatty acids were negatively correlated with serum fTLI, respectively. These results suggest that EPI in cats is associated with increased lipolysis of peripheral adipose stores, dysfunction of the mevalonate pathway, and altered amino acid metabolism. Differences in microbial metabolites indicate that feline EPI is also associated with enteric microbial dysbiosis. Targeted studies of the metabolome of cats with EPI are warranted to further elucidate the mechanisms of these metabolic derangements and their influence on the pathogenesis and pathophysiology of EPI in cats.
Collapse
Affiliation(s)
- Patrick C. Barko
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| | - David A. Williams
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
38
|
Politiek FA, Waterham HR. Compromised Protein Prenylation as Pathogenic Mechanism in Mevalonate Kinase Deficiency. Front Immunol 2021; 12:724991. [PMID: 34539662 PMCID: PMC8446354 DOI: 10.3389/fimmu.2021.724991] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/12/2021] [Indexed: 12/25/2022] Open
Abstract
Mevalonate kinase deficiency (MKD) is an autoinflammatory metabolic disorder characterized by life-long recurring episodes of fever and inflammation, often without clear cause. MKD is caused by bi-allelic pathogenic variants in the MVK gene, resulting in a decreased activity of the encoded enzyme mevalonate kinase (MK). MK is an essential enzyme in the isoprenoid biosynthesis pathway, which generates both non-sterol and sterol isoprenoids. The inflammatory symptoms of patients with MKD point to a major role for isoprenoids in the regulation of the innate immune system. In particular a temporary shortage of the non-sterol isoprenoid geranylgeranyl pyrophosphate (GGPP) is increasingly linked with inflammation in MKD. The shortage of GGPP compromises protein prenylation, which is thought to be one of the main causes leading to the inflammatory episodes in MKD. In this review, we discuss current views and the state of knowledge of the pathogenetic mechanisms in MKD, with particular focus on the role of compromised protein prenylation.
Collapse
Affiliation(s)
- Frouwkje A Politiek
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology & Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
39
|
Leyens J, Bender TTA, Mücke M, Stieber C, Kravchenko D, Dernbach C, Seidel MF. The combined prevalence of classified rare rheumatic diseases is almost double that of ankylosing spondylitis. Orphanet J Rare Dis 2021; 16:326. [PMID: 34294115 PMCID: PMC8296612 DOI: 10.1186/s13023-021-01945-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rare diseases (RDs) affect less than 5/10,000 people in Europe and fewer than 200,000 individuals in the United States. In rheumatology, RDs are heterogeneous and lack systemic classification. Clinical courses involve a variety of diverse symptoms, and patients may be misdiagnosed and not receive appropriate treatment. The objective of this study was to identify and classify some of the most important RDs in rheumatology. We also attempted to determine their combined prevalence to more precisely define this area of rheumatology and increase awareness of RDs in healthcare systems. We conducted a comprehensive literature search and analyzed each disease for the specified criteria, such as clinical symptoms, treatment regimens, prognoses, and point prevalences. If no epidemiological data were available, we estimated the prevalence as 1/1,000,000. The total point prevalence for all RDs in rheumatology was estimated as the sum of the individually determined prevalences. RESULTS A total of 76 syndromes and diseases were identified, including vasculitis/vasculopathy (n = 15), arthritis/arthropathy (n = 11), autoinflammatory syndromes (n = 11), myositis (n = 9), bone disorders (n = 11), connective tissue diseases (n = 8), overgrowth syndromes (n = 3), and others (n = 8). Out of the 76 diseases, 61 (80%) are classified as chronic, with a remitting-relapsing course in 27 cases (35%) upon adequate treatment. Another 34 (45%) diseases were predominantly progressive and difficult to control. Corticosteroids are a therapeutic option in 49 (64%) syndromes. Mortality is variable and could not be determined precisely. Epidemiological studies and prevalence data were available for 33 syndromes and diseases. For an additional eight diseases, only incidence data were accessible. The summed prevalence of all RDs was 28.8/10,000. CONCLUSIONS RDs in rheumatology are frequently chronic, progressive, and present variable symptoms. Treatment options are often restricted to corticosteroids, presumably because of the scarcity of randomized controlled trials. The estimated combined prevalence is significant and almost double that of ankylosing spondylitis (18/10,000). Thus, healthcare systems should assign RDs similar importance as any other common disease in rheumatology.
Collapse
Affiliation(s)
- Judith Leyens
- Center for Rare Diseases Bonn (ZSEB), University Hospital, Bonn, Germany
- Department of Neonatology and Pediatric Care, Children's University Hospital, Bonn, Germany
| | - Tim Th A Bender
- Center for Rare Diseases Bonn (ZSEB), University Hospital, Bonn, Germany
- Institute of Human Genetics, University Hospital, Bonn, Germany
| | - Martin Mücke
- Center for Rare Diseases Bonn (ZSEB), University Hospital, Bonn, Germany
| | - Christiane Stieber
- Institute of General Practice and Family Medicine, University Hospital, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Dmitrij Kravchenko
- Center for Rare Diseases Bonn (ZSEB), University Hospital, Bonn, Germany
- Department of Radiology, University Hospital, Bonn, Germany
| | - Christian Dernbach
- Division of Medical Psychology and Department of Psychiatry, University Hospital, Bonn, Germany
| | - Matthias F Seidel
- Department of Rheumatology, Spitalzentrum-Centre hospitalier, Biel-Bienne, Switzerland.
| |
Collapse
|
40
|
Georgin-Lavialle S, Hentgen V, Truchetet ME, Romier M, Hérasse M, Maillard H, Pha M, Pillet P, Reumaux H, Duquesne A, Larbre JP, Belot A. [Transition from pediatric to adult care: Recommendations of the French network for autoimmune and autoinflammatory diseases (FAI 2R)]. Rev Med Interne 2021; 42:633-638. [PMID: 34147259 DOI: 10.1016/j.revmed.2021.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/07/2021] [Indexed: 11/24/2022]
Abstract
Autoimmune and autoinflammatory diseases (AIDs) are a heterogeneous group of diseases. They can occur in childhood and account for significant morbidity and mortality. Transitioning from pediatric to adult healthcare can be difficult for patients and their families. It can interfere with patient follow-up and management, and eventually lead to complications. Although recommendations exist for the successful transition of patients with chronic diseases, few are specifically adapted to children and adults with AIDs (Suris et al., 2015-Solau-Gervais, 2012). The French working group on transition of the rare autoimmune and autoinflammatory diseases presents its reflections and recommendations for a successful transition. Preparation for transition should start early. Its goals are to empower adolescents by providing them with the knowledge to manage their own care, respond appropriately to changes in their condition, and evolve within the adult healthcare system. This requires the active participation of the patient, his or her family, as well as the pediatric and adult medical teams. The transition process involves multidisciplinary care and dedicated therapeutic education programs. Finally, the identification of medical specialists by region, trained in rare AIDs and accompanied by expert patients, may improve the management of patients with rare AIDs from adolescence to adulthood.
Collapse
Affiliation(s)
- S Georgin-Lavialle
- Sorbonne Université, Service de médecine interne, Centre de Référence des Maladies Auto-Inflammatoire et de l'Amylose inflammatoire (CeRéMAIA), Hôpital Tenon, 4, rue de la Chine, Paris, France.
| | - V Hentgen
- Service de pédiatrie, Centre de Référence des Maladies Auto-Inflammatoire et de l'Amylose inflammatoire (CeRéMAIA), Centre Hospitalier de Versailles André Mignot, 178, rue de Versailles, Le Chesnay, France
| | - M E Truchetet
- Service de rhumatologie, Centre de Référence des maladies auto-immunes systémiques rares de l'Est et du Sud-Ouest (RESO), Hôpital Pellegrin, CHU de Bordeaux, place Amélie Raba Léon, Bordeaux, France
| | - M Romier
- Filière nationale des maladies auto-immunes et auto-inflammatoires rares (FAI(2)R), CHU de Lille, Lille, France; Le Pass'âge, Hôpital-Femme-Mère-Enfant, Hospices Civils de Lyon, 59, boulevard Pinel, Bron, France
| | - M Hérasse
- Filière nationale des maladies auto-immunes et auto-inflammatoires rares (FAI(2)R), CHU de Lille, Lille, France
| | - H Maillard
- Filière nationale des maladies auto-immunes et auto-inflammatoires rares (FAI(2)R), CHU de Lille, Lille, France; Service de médecine interne et immunologie clinique, Centre de Référence des maladies Auto-Immunes systémiques rares du Nord et Nord-Ouest (CeRAINO), Hôpital Claude Huriez, CHU de Lille, rue Michel Polonowski, Lille, France
| | - M Pha
- Service de médecine interne, Centre de référence du lupus, syndrome des anticorps antiphospholipides et autres maladies auto-immunes rares, Groupement Hospitalier Pitié-Salpêtrière (GHPS), AP-HP, boulevard de l'Hôpital, Paris, France
| | - P Pillet
- Service de pédiatrie, Centre de compétence pédiatrique pour les maladies auto-inflammatoires, l'amylose inflammatoire, les rhumatismes inflammatoires et les maladies auto-immunes systémiques rares de l'enfant, Hôpital Pellegrin-Enfants, place Amélie Raba Léon, CHU de Bordeaux, Bordeaux, France
| | - H Reumaux
- Rhumatologie pédiatrique, Centre de compétence pédiatrique pour les maladies auto-inflammatoires, l'amylose inflammatoire, les rhumatismes inflammatoires et les maladies auto-immunes systémiques rares de l'enfant, clinique de pédiatrie, Hôpital Jeanne de Flandre, CHU Lille, avenue Eugène Avinée, Lille, France
| | - A Duquesne
- Service de néphrologie, rhumatologie, dermatologie pédiatriques, Centre de référence des Rhumatismes inflammatoires et maladies Auto-Immunes Systémiques de l'Enfant (RAISE), Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, 59, boulevard Pinel, Bron, France
| | - J P Larbre
- Service de rhumatologie, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, 165, chemin du Grand Revoyet, Pierre-Bénite, France
| | - A Belot
- Filière nationale des maladies auto-immunes et auto-inflammatoires rares (FAI(2)R), CHU de Lille, Lille, France; Le Pass'âge, Hôpital-Femme-Mère-Enfant, Hospices Civils de Lyon, 59, boulevard Pinel, Bron, France; Service de néphrologie, rhumatologie, dermatologie pédiatriques, Centre de référence des Rhumatismes inflammatoires et maladies Auto-Immunes Systémiques de l'Enfant (RAISE), Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, 59, boulevard Pinel, Bron, France.
| |
Collapse
|
41
|
Monogenic Autoinflammatory Diseases: State of the Art and Future Perspectives. Int J Mol Sci 2021; 22:ijms22126360. [PMID: 34198614 PMCID: PMC8232320 DOI: 10.3390/ijms22126360] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/18/2022] Open
Abstract
Systemic autoinflammatory diseases are a heterogeneous family of disorders characterized by a dysregulation of the innate immune system, in which sterile inflammation primarily develops through antigen-independent hyperactivation of immune pathways. In most cases, they have a strong genetic background, with mutations in single genes involved in inflammation. Therefore, they can derive from different pathogenic mechanisms at any level, such as dysregulated inflammasome-mediated production of cytokines, intracellular stress, defective regulatory pathways, altered protein folding, enhanced NF-kappaB signalling, ubiquitination disorders, interferon pathway upregulation and complement activation. Since the discover of pathogenic mutations of the pyrin-encoding gene MEFV in Familial Mediterranean Fever, more than 50 monogenic autoinflammatory diseases have been discovered thanks to the advances in genetic sequencing: the advent of new genetic analysis techniques and the discovery of genes involved in autoinflammatory diseases have allowed a better understanding of the underlying innate immunologic pathways and pathogenetic mechanisms, thus opening new perspectives in targeted therapies. Moreover, this field of research has become of great interest, since more than a hundred clinical trials for autoinflammatory diseases are currently active or recently concluded, allowing us to hope for considerable acquisitions for the next few years. General paediatricians need to be aware of the importance of this group of diseases and they should consider autoinflammatory diseases in patients with clinical hallmarks, in order to guide further examinations and refer the patient to a specialist rheumatologist. Here we resume the pathogenesis, clinical aspects and diagnosis of the most important autoinflammatory diseases in children.
Collapse
|
42
|
Sharma P, Jain A, Scaria V. Genetic Landscape of Rare Autoinflammatory Disease Variants in Qatar and Middle Eastern Populations Through the Integration of Whole-Genome and Exome Datasets. Front Genet 2021; 12:631340. [PMID: 34054914 PMCID: PMC8155677 DOI: 10.3389/fgene.2021.631340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/24/2021] [Indexed: 11/13/2022] Open
Abstract
Rare monogenic autoinflammatory diseases are a group of recurrent inflammatory genetic disorders caused due to genetic variants in over 37 genes. While a number of these disorders have been identified and reported in Middle Eastern populations, the carrier frequency of these genetic variants in the Middle Eastern population is not known. The availability of whole-genome and exome datasets of over 1,000 individuals from Qatar persuaded us to explore the genetic epidemiology of rare autoinflammatory genetic variants. We have systematically analyzed genetic variants in genome-scale datasets from Qatar with a compendium of variants associated with autoinflammatory diseases. The variants were systematically reclassified according to the American College of Medical Genetics and Genomics guidelines for interpretation of variant pathogenicity. Our analysis identified seven pathogenic and likely pathogenic variants with significant differences in their allele frequencies compared to the global population. The cumulative carrier frequency of these variants was found to be 2.58%. Furthermore, our analysis revealed that five genes, implicated in rare autoinflammatory diseases, were under natural selection. To the best of our knowledge, this is the first and most comprehensive study on the population-scale analysis and genetic epidemiology of genetic variants that cause rare autoinflammatory disease in Middle Eastern populations.
Collapse
Affiliation(s)
- Parul Sharma
- Center for Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Abhinav Jain
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Vinod Scaria
- Center for Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India.,CSIR-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
43
|
Lainka E, Kallinich T, Wittkowski H. Rekurrierende Fiebersyndrome – Subgruppe der autoinflammatorischen Erkrankungen. Monatsschr Kinderheilkd 2021. [DOI: 10.1007/s00112-021-01149-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
44
|
Teke Kisa P, Arslan N. Inborn errors of immunity and metabolic disorders: current understanding, diagnosis, and treatment approaches. J Pediatr Endocrinol Metab 2021; 34:277-294. [PMID: 33675210 DOI: 10.1515/jpem-2020-0277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/19/2020] [Indexed: 12/31/2022]
Abstract
Inborn errors of metabolism consist of a heterogeneous group of disorders with various organ systems manifestations, and some metabolic diseases also cause immunological disorders or dysregulation. In this review, metabolic diseases that affect the immunological system and particularly lead to primary immune deficiency will be reviewed. In a patient with frequent infections and immunodeficiency, the presence of symptoms such as growth retardation, abnormal facial appearance, heart, skeletal, lung deformities, skin findings, arthritis, motor developmental retardation, seizure, deafness, hepatomegaly, splenomegaly, impairment of liver function tests, the presence of anemia, thrombocytopenia and eosinophilia in hematological examinations should suggest metabolic diseases for the underlying cause. In some patients, these phenotypic findings may appear before the immunodeficiency picture. Metabolic diseases leading to immunological disorders are likely to be rare but probably underdiagnosed. Therefore, the presence of recurrent infections or autoimmune findings in a patient with a suspected metabolic disease should suggest that immune deficiency may also accompany the picture, and diagnostic examinations in this regard should be deepened.
Collapse
Affiliation(s)
- Pelin Teke Kisa
- Division of Pediatric Metabolism and Nutrition, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - Nur Arslan
- Division of Pediatric Metabolism and Nutrition, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| |
Collapse
|
45
|
Meier-Schiesser B, French LE. Autoinflammationssyndrome. J Dtsch Dermatol Ges 2021; 19:400-428. [PMID: 33709590 DOI: 10.1111/ddg.14332_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 01/07/2020] [Indexed: 11/29/2022]
Affiliation(s)
| | - Lars E French
- Klinik und Poliklinik für Dermatologie und Allergologie, Ludwigs-Maximilians-Universität München, Deutschland
| |
Collapse
|
46
|
Meier-Schiesser B, French LE. Autoinflammatory syndromes. J Dtsch Dermatol Ges 2021; 19:400-426. [PMID: 33620111 DOI: 10.1111/ddg.14332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 01/07/2021] [Indexed: 01/05/2023]
Abstract
Autoinflammatory syndromes are a steadily growing group of inflammatory diseases caused by abnormal regulations of the innate immune system. The clinical presentation is multifaceted, but recurrent fever, skin involvement, joint inflammation and other systemic symptoms of inflammation are characteristic. In contrast to classic autoimmune diseases, autoantibodies or specific T cells are not involved in the pathogenesis. In fact, innate immunity plays the most important role in autoinflammation. While activation of the innate immune system is usually self-limiting in healthy individuals, mutations and dysregulation can lead to chronic and excessive activation of innate immune responses and to the development of autoinflammatory diseases.
Collapse
Affiliation(s)
| | - Lars E French
- Department of Dermatology, Ludwig-Maximilians University Hospital, Munich, Germany
| |
Collapse
|
47
|
Jain A, Sharma D, Bajaj A, Gupta V, Scaria V. Founder variants and population genomes-Toward precision medicine. ADVANCES IN GENETICS 2021; 107:121-152. [PMID: 33641745 DOI: 10.1016/bs.adgen.2020.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Human migration and community specific cultural practices have contributed to founder events and enrichment of the variants associated with genetic diseases. While many founder events in isolated populations have remained uncharacterized, the application of genomics in clinical settings as well as for population scale studies in the recent years have provided an unprecedented push towards identification of founder variants associated with human health and disease. The discovery and characterization of founder variants could have far reaching implications not only in understanding the history or genealogy of the disease, but also in implementing evidence based policies and genetic testing frameworks. This further enables precise diagnosis and prevention in an attempt towards precision medicine. This review provides an overview of founder variants along with methods and resources cataloging them. We have also discussed the public health implications and examples of prevalent disease associated founder variants in specific populations.
Collapse
Affiliation(s)
- Abhinav Jain
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Disha Sharma
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Anjali Bajaj
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Vishu Gupta
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Vinod Scaria
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
48
|
Malcova H, Strizova Z, Milota T, Striz I, Sediva A, Cebecauerova D, Horvath R. IL-1 Inhibitors in the Treatment of Monogenic Periodic Fever Syndromes: From the Past to the Future Perspectives. Front Immunol 2021; 11:619257. [PMID: 33603750 PMCID: PMC7884884 DOI: 10.3389/fimmu.2020.619257] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Autoinflammatory diseases (AIDs) represent a rare and heterogeneous group of disorders characterized by recurrent episodes of inflammation and a broad range of clinical manifestations. The most common symptoms involve recurrent fevers, musculoskeletal symptoms, and serositis; however, AIDs can also lead to life-threatening complications, such as macrophage activation syndrome (MAS) and systemic AA amyloidosis. Typical monogenic periodic fever syndromes include cryopyrin-associated periodic fever syndrome (CAPS), tumor necrosis factor receptor-associated periodic syndrome (TRAPS), mevalonate kinase deficiency/hyper IgD syndrome (MKD/HIDS), and familial Mediterranean fever (FMF). However, a number of other clinical entities, such as systemic juvenile idiopathic arthritis (sJIA), adult-onset Still’s disease (AOSD), Kawasaki disease (KD) and idiopathic recurrent pericarditis (IRP), display similar phenotypical and immunological features to AIDs. All these diseases are pathophysiologicaly characterized by dysregulation of the innate immune system and the central pathogenic role is attributed to the IL-1 cytokine family (IL-1α, IL-1β, IL-1Ra, IL-18, IL-36Ra, IL-36α, IL-37, IL-36β, IL-36g, IL-38, and IL-33). Therefore, reasonable therapeutic approaches aim to inhibit these cytokines and their pathways. To date, several anti-IL-1 therapies have evolved. Each drug differs in structure, mechanism of action, efficacy for the treatment of selected diseases, and side effects. Most of the available data regarding the efficacy and safety of IL-1 inhibitors are related to anakinra, canakinumab, and rilonacept. Other promising therapeutics, such as gevokizumab, tadekinig alfa, and tranilast are currently undergoing clinical trials. In this review, we provide sophisticated and up-to-date insight into the therapeutic uses of different IL-1 inhibitors in monogenic periodic fever syndromes.
Collapse
Affiliation(s)
- Hana Malcova
- Department of Paediatric and Adult Rheumatology, University Hospital Motol, Prague, Czechia
| | - Zuzana Strizova
- Department of Immunology, Second Faculty of Medicine Charles University and University Hospital Motol, Prague, Czechia
| | - Tomas Milota
- Department of Paediatric and Adult Rheumatology, University Hospital Motol, Prague, Czechia.,Department of Immunology, Second Faculty of Medicine Charles University and University Hospital Motol, Prague, Czechia
| | - Ilja Striz
- Department of Clinical Immunology and Allergology, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Anna Sediva
- Department of Immunology, Second Faculty of Medicine Charles University and University Hospital Motol, Prague, Czechia
| | - Dita Cebecauerova
- Department of Paediatric and Adult Rheumatology, University Hospital Motol, Prague, Czechia
| | - Rudolf Horvath
- Department of Paediatric and Adult Rheumatology, University Hospital Motol, Prague, Czechia.,Department of Immunology, Second Faculty of Medicine Charles University and University Hospital Motol, Prague, Czechia
| |
Collapse
|
49
|
Moghaddas F. Monogenic autoinflammatory disorders: beyond the periodic fever. Intern Med J 2021; 50:151-164. [PMID: 31260149 DOI: 10.1111/imj.14414] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 04/29/2019] [Accepted: 06/16/2019] [Indexed: 12/27/2022]
Abstract
The past two decades have seen an exponential increase in the number of monogenic autoinflammatory disorders described, coinciding with improved genetic sequencing techniques. This group of disorders has evolved to be heterogeneous and certainly more complex than the original four 'periodic fever syndromes' caused by innate immune over-activation. This review aims to provide an update on the classic periodic fever syndromes as well as introducing the broadening spectrum of clinical features seen in more recently described conditions.
Collapse
Affiliation(s)
- Fiona Moghaddas
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia.,Department of Immunology and Allergy, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
50
|
Maniscalco V, Abu-Rumeileh S, Mastrolia MV, Marrani E, Maccora I, Pagnini I, Simonini G. The off-label use of anakinra in pediatric systemic autoinflammatory diseases. Ther Adv Musculoskelet Dis 2020; 12:1759720X20959575. [PMID: 33149772 PMCID: PMC7580132 DOI: 10.1177/1759720x20959575] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/26/2020] [Indexed: 12/19/2022] Open
Abstract
Interleukin 1 (IL-1), a central mediator of innate immunity, is considered a master cytokine of local and systemic inflammation. IL-1 has emerged as pivotal in the pathogenesis of autoinflammatory diseases (AIDs), and blockade of its pathway has become a crucial target for therapy. Anakinra (ANA), a recombinant IL-1β receptor antagonist, was the first anti-IL-1 agent employed in clinical practice. ANA is currently approved for the treatment of rheumatoid arthritis, systemic juvenile idiopathic arthritis, adult-onset Still’s disease, and cryopyrin-associated autoinflammatory syndrome. It has also been successfully used for off-label treatment of various monogenic, polygenic, or undefined etiology systemic AIDs. This review describes currently available evidence for the off-label use of ANA in pediatric rheumatologic diseases. Specifically, the use of ANA in Kawasaki disease, idiopathic recurrent pericarditis, Behçet disease, monogenic AIDs, undifferentiated AIDs, chronic non-bacterial osteomyelitis, macrophage activation syndrome, and febrile infection-related epilepsy, in terms of its safety and efficacy. In selected pediatric rheumatic disorders, the off-label administration of ANA appears to be effective and safe. In order to control severe and/or relapsing disease, ANA should be considered as a valuable treatment option in children suffering from rare inflammatory diseases. However, currently available data consist of retrospective studies and short case series; thus, randomized controlled trials and larger series with long-term follow up are mandatory to better assess the efficacy and cost effectiveness of ANA in these challenging patients.
Collapse
Affiliation(s)
- Valerio Maniscalco
- Rheumatology Unit, Meyer Children's University Hospital, Florence, Italy
| | - Sarah Abu-Rumeileh
- Rheumatology Unit, Meyer Children's University Hospital, Florence, Italy
| | | | - Edoardo Marrani
- Rheumatology Unit, Meyer Children's University Hospital, Florence, Italy
| | - Ilaria Maccora
- Rheumatology Unit, Meyer Children's University Hospital, Florence, Italy
| | - Ilaria Pagnini
- Rheumatology Unit, Meyer Children's University Hospital, Florence, Italy
| | - Gabriele Simonini
- Rheumatology Unit, Meyer Children's University Hospital, Viale Gaetano Pieraccini, 24, Firenze, Toscana 50139, Italy
| |
Collapse
|