1
|
Jahangiri Esfahani S, Ao X, Oveisi A, Diatchenko L. Rare variant association studies: Significance, methods, and applications in chronic pain studies. Osteoarthritis Cartilage 2024:S1063-4584(24)01505-X. [PMID: 39725155 DOI: 10.1016/j.joca.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/27/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Rare genetic variants, characterized by their low frequency in a population, have emerged as essential components in the study of complex disease genetics. The biology of rare variants underscores their significance, as they can exert profound effects on phenotypic variation and disease susceptibility. Recent advancements in sequencing technologies have yielded the availability of large-scale sequencing data such as the UK Biobank whole-exome sequencing (WES) cohort empowered researchers to conduct rare variant association studies (RVASs). This review paper discusses the significance of rare variants, available methodologies, and applications. We provide an overview of RVASs, emphasizing their relevance in unraveling the genetic architecture of complex diseases with special focus on chronic pain and Arthritis. Additionally, we discuss the strengths and limitations of various rare variant association testing methods, outlining a typical pipeline for conducting rare variant association. This pipeline encompasses crucial steps such as quality control of WES data, rare variant annotation, and association testing. It serves as a comprehensive guide for researchers in the field of chronic pain diseases interested in rare variant association studies in large-scale sequencing datasets like the UK Biobank WES cohort. Lastly, we discuss how the identified variants can be further investigated through detailed experimental studies in animal models to elucidate their functional impact and underlying mechanisms.
Collapse
Affiliation(s)
- Sahel Jahangiri Esfahani
- Faculty of Medicine and Health Sciences, Department of Human Genetics, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| | - Xiang Ao
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| | - Anahita Oveisi
- Department of Neuroscience, Faculty of Science, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| | - Luda Diatchenko
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada.
| |
Collapse
|
2
|
Li W, Xia C, Wang K, Xue L, Wang Y, Yang JY, Zhang M, Yin M, Ju C, Miao Z, Li Y, Zhao X, Yang Z, Tang R, Yang W. Technical considerations and strategies for generating and optimizing humanized mouse tumor models in immuno-oncology research. Int Immunopharmacol 2024; 139:112722. [PMID: 39033663 DOI: 10.1016/j.intimp.2024.112722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
The field of cancer immunotherapy has experienced significant progress, resulting in the emergence of numerous biological drug candidates requiring in vivo efficacy testing and a better understanding of their mechanism of action (MOA). Humanized immune system (HIS) models are valuable tools in this regard. However, there is a lack of systematic guidance on HIS modeling. To address this issue, the present study aimed to establish and optimize a variety of HIS models for immune-oncology (IO) study, including genetically engineered mouse models and HIS models with human immune components reconstituted in severely immunocompromised mice. The efficacy and utility of these models were tested with several marketed or investigational IO drugs according to their MOA, followed by immunophenotypic analysis and efficacy evaluation. The results of the present study demonstrated that the HIS models responded to various IO drugs as expected and that each model had unique niches, utilities and limitations. Researchers should carefully choose the appropriate models based on the MOA and the targeted immune cell populations of the investigational drug. The present study provides valuable methodologies and actionable technical guidance on designing, generating or utilizing appropriate HIS models to address specific questions in translational IO.
Collapse
Affiliation(s)
- Wenjing Li
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing 210000, China; Simcere Zaiming Pharmaceutical Co, Ltd., Shanghai 200120, China
| | - Chunlei Xia
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing 210000, China; Simcere Zaiming Pharmaceutical Co, Ltd., Shanghai 200120, China
| | - Kun Wang
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing 210000, China; Simcere Zaiming Pharmaceutical Co, Ltd., Shanghai 200120, China
| | - Liting Xue
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing 210000, China; Simcere Zaiming Pharmaceutical Co, Ltd., Shanghai 200120, China
| | - Yan Wang
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing 210000, China; Simcere Zaiming Pharmaceutical Co, Ltd., Shanghai 200120, China
| | | | | | - Ming Yin
- Beijing Vitalstar Biotechnology Co., Ltd., Beijing 100000, China
| | - Cunxiang Ju
- Gempharmatech Co., Ltd., Nanjing 210000, China
| | - Zhenchuan Miao
- Beijing Vitalstar Biotechnology Co., Ltd., Beijing 100000, China
| | - Ying Li
- Gempharmatech Co., Ltd., Nanjing 210000, China
| | - Xiaofeng Zhao
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing 210000, China; Jiangsu Simcere Pharmaceutical Co, Ltd., Nanjing 210000, China
| | - Zhijian Yang
- ClinBridge Biotech Co., Ltd., Nanjing 210000, China
| | - Renhong Tang
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing 210000, China; Simcere Zaiming Pharmaceutical Co, Ltd., Shanghai 200120, China.
| | - WenQing Yang
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing 210000, China; Simcere Zaiming Pharmaceutical Co, Ltd., Shanghai 200120, China.
| |
Collapse
|
3
|
Ritchlin CT, Rangel-Moreno J, Martino D, Isett B, Paine A, Bhattacharya S, Fox J, Meyer EM, Bao R, Bruno T, Tausk F, de la Luz Garcia-Hernandez M. Psoriatic arthritis subtypes are phenocopied in humanized mice. JCI Insight 2024; 9:e178213. [PMID: 39114979 PMCID: PMC11383598 DOI: 10.1172/jci.insight.178213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 06/26/2024] [Indexed: 09/13/2024] Open
Abstract
Psoriatic arthritis (PsA) is a complex inflammatory disease that challenges diagnosis and complicates the rational selection of effective therapies. Although T cells are considered active effectors in psoriasis and PsA, the role of CD8+ T cells in pathogenesis is not well understood. We selected the humanized mouse model NSG-SGM3 transgenic strain to examine psoriasis and PsA endotypes. Injection of PBMCs and sera from patients with psoriasis and PsA generated parallel skin and joint phenotypes in the recipient mouse. The transfer of human circulating memory T cells was followed by migration and accumulation in the skin and synovia of these immunodeficient mice. Unexpectedly, immunoglobulins were required for recapitulation of the clinical phenotype of psoriasiform lesions and PsA domains (dactylitis, enthesitis, bone erosion). Human CD8+ T cells expressing T-bet, IL-32 and CXCL14 were detected by spatial transcriptomics in murine synovia and by immunofluorescence in the human PsA synovia. Importantly, depletion of human CD8+ T cells prevented skin and synovial inflammation in mice humanized with PsA peripheral blood cells. The humanized model of psoriasis and PsA represents a valid platform for accelerating the understanding of disease pathogenesis, improving the design of personalized therapies, and revealing psoriatic disease targets.
Collapse
Affiliation(s)
| | | | - Delaney Martino
- University of Rochester Medical Center, Rochester, New York, USA
| | - Brian Isett
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Ananta Paine
- University of Rochester Medical Center, Rochester, New York, USA
| | | | - Jeffrey Fox
- Center for Musculoskeletal Research, University of Rochester Medical Center, University of Rochester Medical Center, Rochester, New York, USA
| | - Ernest M Meyer
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Riyue Bao
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine and
| | - Tullia Bruno
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Francisco Tausk
- University of Rochester Medical Center, Rochester, New York, USA
| | | |
Collapse
|
4
|
Bailey SL, Bochenek M, Chauhan A, Miller B, Stolla M. Biotin labeling allows for post-transfusion functional assessment of stored human platelets in mice. Transfusion 2024; 64:1306-1314. [PMID: 38757806 DOI: 10.1111/trf.17879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/01/2024] [Accepted: 05/05/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Platelet radiolabeling with radioisotopes is currently used for human platelet recovery and survival studies. Biotinylation enables ex vivo post-transfusion platelet function testing. Whether platelet biotinylation itself affects platelet function is controversial. STUDY DESIGN AND METHODS Platelet concentrates from healthy humans were stored for 6 days. Samples were obtained at 1 or 2 and 6 days, and platelets were labeled following a radiolabeling protocol using saline instead of radioactive indium-111 (sham radiolabeling [sham-RL]). Alternatively, a newly developed biotinylation protocol, a washing protocol, or an unmanipulated control sample were used. Platelet function was assessed by flow cytometry after stimulation with platelet agonists and labeling of platelets with platelet activation markers. To test whether platelets can be activated after transfusion, labeled platelets were transfused into nonobese diabetic/severe combined immunodeficiency mice, and samples were obtained 1 h after transfusion. RESULTS The activation profile of biotinylated platelets was comparable to sham-RL platelets before transfusion except for significantly less α-degranulation and more phosphatidyl serine exposure on storage day 1/2. There was no significant difference between sham-RL and biotinylated platelets on storage day 6. Sham-RL and biotinylated platelets were significantly less activatable than washed and unmanipulated control platelets. After transfusion, the activation profile of biotinylated platelets was largely indistinguishable from unmanipulated ones. DISCUSSION The decrease in activation level in biotinylated platelets we and others observed appears mainly due to the physical manipulation during the labeling process. In conclusion, biotinylated platelets allow for post-transfusion function assessment, a major advantage over radiolabeling.
Collapse
Affiliation(s)
| | - Martin Bochenek
- Bloodworks Northwest Research Institute, Seattle, Washington, USA
| | - Aastha Chauhan
- Bloodworks Northwest Research Institute, Seattle, Washington, USA
| | - Brandon Miller
- Bloodworks Northwest Research Institute, Seattle, Washington, USA
| | - Moritz Stolla
- Bloodworks Northwest Research Institute, Seattle, Washington, USA
- Department of Medicine, Division of Hematology and Oncology, University of Washington School of Medicine, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
5
|
Arthur JD, Mullen JL, Uzal FA, Nagamine CM, Casey KM. Epizootic of enterocolitis and clostridial overgrowth in NSG and NSG-related mouse strains. Vet Pathol 2024; 61:653-663. [PMID: 38140953 DOI: 10.1177/03009858231217197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
While the immunodeficient status of NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) and NSG-related mice provides utility for numerous research models, it also results in increased susceptibility to opportunistic pathogens. Over a 9-week period, a high rate of mortality was reported in a housing room of NSG and NSG-related mice. Diagnostics were performed to determine the underlying etiopathogenesis. Mice submitted for evaluation included those found deceased (n = 2), cage mates of deceased mice with or without diarrhea (n = 17), and moribund mice (n = 8). Grossly, mice exhibited small intestinal and cecal dilation with abundant gas and/or digesta (n = 18), serosal hemorrhage and congestion (n = 6), or were grossly normal (n = 3). Histologically, there was erosive to ulcerative enterocolitis (n = 7) of the distal small and large intestine or widespread individual epithelial cell death with luminal sloughing (n = 13) and varying degrees of submucosal edema and mucosal hyperplasia. Cecal dysbiosis, a reduction in typical filamentous bacteria coupled with overgrowth of bacterial rods, was identified in 18 of 24 (75%) mice. Clostridium spp. and Paeniclostridium sordellii were identified in 13 of 23 (57%) and 7 of 23 (30%) mice, respectively. Clostridium perfringens (7 of 23, 30%) was isolated most frequently. Toxinotyping of C. perfringens positive mice (n = 2) identified C. perfringens type A. Luminal immunoreactivity to several clostridial species was identified within lesioned small intestine by immunohistochemistry. Clinicopathologic findings were thus associated with overgrowth of various clostridial species, though direct causality could not be ascribed. A diet shift preceding the mortality event may have contributed to loss of intestinal homeostasis.
Collapse
|
6
|
Yang SN, Shi Y, Berggren PO. The anterior chamber of the eye technology and its anatomical, optical, and immunological bases. Physiol Rev 2024; 104:881-929. [PMID: 38206586 PMCID: PMC11381035 DOI: 10.1152/physrev.00024.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/30/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024] Open
Abstract
The anterior chamber of the eye (ACE) is distinct in its anatomy, optics, and immunology. This guarantees that the eye perceives visual information in the context of physiology even when encountering adverse incidents like inflammation. In addition, this endows the ACE with the special nursery bed iris enriched in vasculatures and nerves. The ACE constitutes a confined space enclosing an oxygen/nutrient-rich, immune-privileged, and less stressful milieu as well as an optically transparent medium. Therefore, aside from visual perception, the ACE unexpectedly serves as an excellent transplantation site for different body parts and a unique platform for noninvasive, longitudinal, and intravital microimaging of different grafts. On the basis of these merits, the ACE technology has evolved from the prototypical through the conventional to the advanced version. Studies using this technology as a versatile biomedical research platform have led to a diverse range of basic knowledge and in-depth understanding of a variety of cells, tissues, and organs as well as artificial biomaterials, pharmaceuticals, and abiotic substances. Remarkably, the technology turns in vivo dynamic imaging of the morphological characteristics, organotypic features, developmental fates, and specific functions of intracameral grafts into reality under physiological and pathological conditions. Here we review the anatomical, optical, and immunological bases as well as technical details of the ACE technology. Moreover, we discuss major achievements obtained and potential prospective avenues for this technology.
Collapse
Affiliation(s)
- Shao-Nian Yang
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Yue Shi
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Alamaw ED, Casey KM, Tien K, Franco BD, Gorman G, Cotton RM, Nagamine C, Jampachaisri K, Sharp P, Pacharinsak C, Huss MK. Carprofen Attenuates Postoperative Mechanical and Thermal Hypersensitivity after Plantar Incision in Immunodeficient NSG Mice. Comp Med 2024; 74:105-114. [PMID: 38553034 PMCID: PMC11078281 DOI: 10.30802/aalas-cm-23-000058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/28/2023] [Accepted: 02/27/2024] [Indexed: 05/12/2024]
Abstract
Immunodeficient NSG mice are reported to be less responsive to buprenorphine analgesia. Here, we used NSG mice to compare the efficacy of the commonly used dose of carprofen (5 mg/kg) with 5 and 10 times that dose (25 and 50 mg/kg) for attenuating postoperative mechanical and thermal hypersensitivity following an incisional pain model. Male and female NSG mice (n = 45) were randomly assigned to one of 4 groups and received daily subcutaneous injections for 3 d: saline (5 mL/kg), 5 mg/kg carprofen (Carp5), 25 mg/kg carprofen (Carp25), and 50 mg/kg carprofen (Carp50). Mechanical and thermal hypersensitivity were assessed 24 h before and at 4, 24, and 48 h after surgery. Plasma carprofen concentrations were measured in a separate group of mice (n = 56) on days 0 (at 2, 4, 12, and 23 h), 1, and 2 after the first, second, and third doses, respectively. Toxicity was assessed through daily fecal occult blood testing (n = 27) as well as gross and histopathologic evaluation (n = 15). Our results indicated that the saline group showed both mechanical and thermal hypersensitivity throughout the study. Carp5 did not attenuate mechanical or thermal hypersensitivity at any time point. Carp25 attenuated mechanical and thermal (except for the 4-h time point) hypersensitivity. Carp50 attenuated only thermal hypersensitivity at 24 h. Fecal occult blood was detected in 1 of 8 Carp25-treated mice at 48 and 72 h. Histopathologic abnormalities (gastric ulceration, ulcerative enteritis, and renal lesions) were observed in some Carp50-treated mice. Plasma carprofen concentrations were dose and time dependent. Our results indicate that Carp25 attenuated postoperative mechanical and thermal hypersensitivity more effectively than Carp5 or Carp50 in NSG mice with incisional pain. Therefore, we recommend providing carprofen at 25 mg/kg SID for incisional pain procedures using immunodeficient NSG mouse.
Collapse
Affiliation(s)
- Eden D Alamaw
- Department of Comparative Medicine, Stanford University, Stanford, California;,
| | - Kerriann M Casey
- Department of Comparative Medicine, Stanford University, Stanford, California
| | - Krystal Tien
- Department of Comparative Medicine, Stanford University, Stanford, California
| | - Benjamin D Franco
- Department of Comparative Medicine, Stanford University, Stanford, California
| | - Gregory Gorman
- Department of Pharmaceutical, Social and Administrative Sciences, Samford University, Birmingham, Alabama
| | - Renee M Cotton
- Department of Comparative Medicine, Stanford University, Stanford, California
| | - Claude Nagamine
- Department of Comparative Medicine, Stanford University, Stanford, California
| | | | | | | | - Monika K Huss
- Department of Comparative Medicine, Stanford University, Stanford, California
| |
Collapse
|
8
|
Xhonneux I, Marei WFA, Meulders B, Andries S, Leroy JLMR. The interplay of maternal and offspring obesogenic diets: the impact on offspring metabolism and muscle mitochondria in an outbred mouse model. Front Physiol 2024; 15:1354327. [PMID: 38585221 PMCID: PMC10995298 DOI: 10.3389/fphys.2024.1354327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/01/2024] [Indexed: 04/09/2024] Open
Abstract
Consumption of obesogenic (OB) diets increases the prevalence of maternal obesity worldwide, causing major psychological and social burdens in women. Obesity not only impacts the mother's health and fertility but also elevates the risk of obesity and metabolic disorders in the offspring. Family lifestyle is mostly persistent through generations, possibly contributing to the growing prevalence of obesity. We hypothesized that offspring metabolic health is dependent on both maternal and offspring diet and their interaction. We also hypothesized that the sensitivity of the offspring to the diet may be influenced by the match or mismatch between offspring and maternal diets. To test these hypotheses, outbred Swiss mice were fed a control (C, 10% fat, 7% sugar, and n = 14) or OB diet (60% fat, 20% sugar, and n = 15) for 7 weeks and then mated with the same control males. Mice were maintained on the same corresponding diet during pregnancy and lactation, and the offspring were kept with their mothers until weaning. The study focused only on female offspring, which were equally distributed at weaning and fed C or OB diets for 7 weeks, resulting in four treatment groups: C-born offspring fed C or OB diets (C » C and C » OB) and OB-born offspring fed C or OB diets (OB » C and OB » OB). Adult offspring's systemic blood profile (lipid and glucose metabolism) and muscle mitochondrial features were assessed. We confirmed that the offspring's OB diet majorly impacted the offspring's health by impairing the offspring's serum glucose and lipid profiles, which are associated with abnormal muscle mitochondrial ultrastructure. Contrarily, maternal OB diet was associated with increased expression of mitochondrial complex markers and mitochondrial morphology in offspring muscle, but no additive effects of (increased sensitivity to) an offspring OB diet were observed in pups born to obese mothers. In contrast, their metabolic profile appeared to be healthier compared to those born to lean mothers and fed an OB diet. These results are in line with the thrifty phenotype hypothesis, suggesting that OB-born offspring are better adapted to an environment with high energy availability later in life. Thus, using a murine outbred model, we could not confirm that maternal obesogenic diets contribute to female familial obesity in the following generations.
Collapse
Affiliation(s)
- Inne Xhonneux
- Department of Veterinary Sciences, Laboratory of Veterinary Physiology and Biochemistry, Gamete Research Centre, University of Antwerp, Wilrijk, Belgium
| | - Waleed F. A. Marei
- Department of Veterinary Sciences, Laboratory of Veterinary Physiology and Biochemistry, Gamete Research Centre, University of Antwerp, Wilrijk, Belgium
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ben Meulders
- Department of Veterinary Sciences, Laboratory of Veterinary Physiology and Biochemistry, Gamete Research Centre, University of Antwerp, Wilrijk, Belgium
| | - Silke Andries
- Department of Veterinary Sciences, Laboratory of Veterinary Physiology and Biochemistry, Gamete Research Centre, University of Antwerp, Wilrijk, Belgium
| | - Jo L. M. R. Leroy
- Department of Veterinary Sciences, Laboratory of Veterinary Physiology and Biochemistry, Gamete Research Centre, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
9
|
Doloff JC, Ma M, Sadraei A, Tam HH, Farah S, Hollister-Lock J, Vegas AJ, Veiseh O, Quiroz VM, Rakoski A, Aresta-DaSilva S, Bader AR, Griffin M, Weir GC, Brehm MA, Shultz LD, Langer R, Greiner DL, Anderson DG. Identification of a humanized mouse model for functional testing of immune-mediated biomaterial foreign body response. SCIENCE ADVANCES 2023; 9:eade9488. [PMID: 37327334 PMCID: PMC10275594 DOI: 10.1126/sciadv.ade9488] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 05/05/2023] [Indexed: 06/18/2023]
Abstract
Biomedical devices comprise a major component of modern medicine, however immune-mediated fibrosis and rejection can limit their function over time. Here, we describe a humanized mouse model that recapitulates fibrosis following biomaterial implantation. Cellular and cytokine responses to multiple biomaterials were evaluated across different implant sites. Human innate immune macrophages were verified as essential to biomaterial rejection in this model and were capable of cross-talk with mouse fibroblasts for collagen matrix deposition. Cytokine and cytokine receptor array analysis confirmed core signaling in the fibrotic cascade. Foreign body giant cell formation, often unobserved in mice, was also prominent. Last, high-resolution microscopy coupled with multiplexed antibody capture digital profiling analysis supplied spatial resolution of rejection responses. This model enables the study of human immune cell-mediated fibrosis and interactions with implanted biomaterials and devices.
Collapse
Affiliation(s)
- Joshua C. Doloff
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St., Cambridge, MA 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave., Boston, MA 02115, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Minglin Ma
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St., Cambridge, MA 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave., Boston, MA 02115, USA
| | - Atieh Sadraei
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St., Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - Hok Hei Tam
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St., Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - Shady Farah
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St., Cambridge, MA 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave., Boston, MA 02115, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - Jennifer Hollister-Lock
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA
| | - Arturo J. Vegas
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St., Cambridge, MA 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave., Boston, MA 02115, USA
| | - Omid Veiseh
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St., Cambridge, MA 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave., Boston, MA 02115, USA
| | - Victor M. Quiroz
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Amanda Rakoski
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Stephanie Aresta-DaSilva
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St., Cambridge, MA 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave., Boston, MA 02115, USA
| | - Andrew R. Bader
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St., Cambridge, MA 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave., Boston, MA 02115, USA
| | - Marissa Griffin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St., Cambridge, MA 02139, USA
| | - Gordon C. Weir
- Section on Islet Cell and Regenerative Biology, Research Division, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA
| | - Michael A. Brehm
- Program in Molecular Medicine, Diabetes Centre of Excellence, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | | | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St., Cambridge, MA 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave., Boston, MA 02115, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - Dale L. Greiner
- Program in Molecular Medicine, Diabetes Centre of Excellence, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Daniel G. Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St., Cambridge, MA 02139, USA
- Department of Anesthesiology, Boston Children’s Hospital, 300 Longwood Ave., Boston, MA 02115, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| |
Collapse
|
10
|
Aryee KE, Shultz LD, Burzenski LM, Greiner DL, Brehm MA. NOD-scid IL2rγnull mice lacking TLR4 support human immune system development and the study of human-specific innate immunity. J Leukoc Biol 2023; 113:418-433. [PMID: 36801998 DOI: 10.1093/jleuko/qiac020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Indexed: 01/12/2023] Open
Abstract
Agents that induce inflammation have been used since the 18th century for the treatment of cancer. The inflammation induced by agents such as Toll-like receptor agonists is thought to stimulate tumor-specific immunity in patients and augment control of tumor burden. While NOD-scid IL2rγnull mice lack murine adaptive immunity (T cells and B cells), these mice maintain a residual murine innate immune system that responds to Toll-like receptor agonists. Here we describe a novel NOD-scid IL2rγnull mouse lacking murine TLR4 that fails to respond to lipopolysaccharide. NSG-Tlr4null mice support human immune system engraftment and enable the study of human-specific responses to TLR4 agonists in the absence of the confounding effects of a murine response. Our data demonstrate that specific stimulation of TLR4 activates human innate immune systems and delays the growth kinetics of a human patient-derived xenograft melanoma tumor.
Collapse
Affiliation(s)
- Ken-Edwin Aryee
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Chan Medical School, 368 Plantation Street, AS7-2053, Worcester, MA 01605, United States
| | - Leonard D Shultz
- The Jackson Laboratory, 600 Main St, Bar Harbor, ME 04609, United States
| | - Lisa M Burzenski
- The Jackson Laboratory, 600 Main St, Bar Harbor, ME 04609, United States
| | - Dale L Greiner
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Chan Medical School, 368 Plantation Street, AS7-2053, Worcester, MA 01605, United States
| | - Michael A Brehm
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Chan Medical School, 368 Plantation Street, AS7-2053, Worcester, MA 01605, United States
| |
Collapse
|
11
|
Spencer Clinton JL, Vogt MB, Kneubehl AR, Hibl BM, Paust S, Rico-Hesse R. Sialokinin in mosquito saliva shifts human immune responses towards intracellular pathogens. PLoS Negl Trop Dis 2023; 17:e0011095. [PMID: 36735632 PMCID: PMC9897557 DOI: 10.1371/journal.pntd.0011095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023] Open
Abstract
Mosquito saliva is a mix of numerous proteins that are injected into the skin while the mosquito searches for a blood meal. While mosquito saliva is known to be immunogenic, the salivary components driving these immune responses, as well as the types of immune responses that occur, are not well characterized. We investigated the effects of one potential immunomodulatory mosquito saliva protein, sialokinin, on the human immune response. We used flow cytometry to compare human immune cell populations between humanized mice bitten by sialokinin knockout mosquitoes or injected with sialokinin, and compared them to those bitten by wild-type mosquitoes, unbitten, or saline-injected control mice. Humanized mice received 4 mosquito bites or a single injection, were euthanized after 7 days, and skin, spleen, bone marrow, and blood were harvested for immune cell profiling. Our results show that bites from sialokinin knockout mosquitoes induced monocyte and macrophage populations in the skin, blood, bone marrow, and spleens, and primarily affected CD11c- cell populations. Other increased immune cells included plasmacytoid dendritic cells in the blood, natural killer cells in the skin and blood, and CD4+ T cells in all samples analyzed. Conversely, we observed that mice bitten with sialokinin knockout mosquitoes had decreased NKT cell populations in the skin, and fewer B cells in the blood, spleen, and bone marrow. Taken together, we demonstrated that sialokinin knockout saliva induces elements of a TH1 cellular immune response, suggesting that the sialokinin peptide is inducing a TH2 cellular immune response during wild-type mosquito biting. These findings are an important step towards understanding how mosquito saliva modulates the human immune system and which components of saliva may be critical for arboviral infection. By identifying immunomodulatory salivary proteins, such as sialokinin, we can develop vaccines against mosquito saliva components and direct efforts towards blocking arboviral infections.
Collapse
Affiliation(s)
- Jennifer L. Spencer Clinton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Megan B. Vogt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas, United States of America
| | - Alexander R. Kneubehl
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Brianne M. Hibl
- Center for Comparative Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Silke Paust
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, California, United States of America
| | - Rebecca Rico-Hesse
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
12
|
Hopkins CE, Brock T, Caulfield TR, Bainbridge M. Phenotypic screening models for rapid diagnosis of genetic variants and discovery of personalized therapeutics. Mol Aspects Med 2022; 91:101153. [PMID: 36411139 PMCID: PMC10073243 DOI: 10.1016/j.mam.2022.101153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/22/2022] [Accepted: 10/23/2022] [Indexed: 11/19/2022]
Abstract
Precision medicine strives for highly individualized treatments for disease under the notion that each individual's unique genetic makeup and environmental exposures imprints upon them not only a disposition to illness, but also an optimal therapeutic approach. In the realm of rare disorders, genetic predisposition is often the predominant mechanism driving disease presentation. For such, mostly, monogenic disorders, a causal gene to phenotype association is likely. As a result, it becomes important to query the patient's genome for the presence of pathogenic variations that are likely to cause the disease. Determining whether a variant is pathogenic or not is critical to these analyses and can be challenging, as many disease-causing variants are novel and, ergo, have no available functional data to help categorize them. This problem is exacerbated by the need for rapid evaluation of pathogenicity, since many genetic diseases present in young children who will experience increased morbidity and mortality without rapid diagnosis and therapeutics. Here, we discuss the utility of animal models, with a focus mainly on C. elegans, as a contrast to tissue culture and in silico approaches, with emphasis on how these systems are used in determining pathogenicity of variants with uncertain significance and then used to screen for novel therapeutics.
Collapse
Affiliation(s)
| | | | - Thomas R Caulfield
- Mayo Clinic, Department of Neuroscience, Department of Computational Biology, Department of Clinical Genomics, Jacksonville, FL, 32224, Rochester, MN, 55905, USA
| | | |
Collapse
|
13
|
Arthur JD, Alamaw ED, Jampachairsri K, Sharp P, Nagamine CM, Huss MK, Pacharinsak C. Efficacy of 3 Buprenorphine Formulations for the Attenuation of Hypersensitivity after Plantar Incision in Immunodeficient NSG Mice. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2022; 61:448-456. [PMID: 36068076 PMCID: PMC9536821 DOI: 10.30802/aalas-jaalas-22-000058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Buprenorphine is perhaps the most prescribed analgesic for management of postoperative pain in mice. Although various buprenorphine formulations are effective in commonly used immunocompetent mouse strains, a knowledge gap exists regarding its efficacy in immunodeficient mice. Here we used a plantar incision to evaluate the efficacy of 3 buprenorphine formulations for attenuating postoperative mechanical and thermal hypersensitivity in the immunodeficient NSG mouse strain. We also characterized the pharmacokinetics of these formulations over a 72-h period. We hypothesized that all 3 buprenorphine formulations evaluated-the standard preparation and 2 extended-release products (Bup-HCl, Bup-ER, and Bup-XR, respectively)-would attenuate postoperative mechanical and thermal hypersensitivity resulting from a plantar incision in NSG mice. Male and female NSG mice (n = 48) were allocated to 4 treatment groups: saline (0.9% NaCl, 5 mL/kg SC once); Bup-HCl (0.1 mg/kg SC, BID for 2 d); Bup-ER (1.0 mg/kg SC once); and Bup-XR (3.25 mg/kg SC once). Mechani- cal and thermal hypersensitivity assessments were conducted 24 h before surgery and at 4, 8, 24, 48, and 72 h afterward. All groups of mice showed mechanical and thermal hypersensitivity within the first 24 h after surgery. Behavioral pain indicators (guarding, toe-touching [intermittent partial weight bearing], licking the incision, vocalizations) were observed in some mice from each group at every postoperative time point. Plasma buprenorphine was measured in a separate group of mice and concentrations surpassed the suggested therapeutic level (1.0 ng/mL) for less than 4 h for Bup-HCl, for at least 24 h for Bup-ER, and for 72 h for Bup-XR. Our results indicate that at the dosages studied, these buprenorphine formulations do not adequately attenuate postoperative mechanical and thermal hypersensitivity in the plantar incisional model in NSG mice. These findings support the need for strain-specific analgesic protocols for mice used in research.
Collapse
Affiliation(s)
- Justin D Arthur
- Department of Comparative Medicine, Stanford University, Stanford, California;,Corresponding author.
| | - Eden D Alamaw
- Department of Comparative Medicine, Stanford University, Stanford, California
| | | | - Patrick Sharp
- Department of Animal Research Services, University of California, Merced, Merced, California;,School of Veterinary and Life Sciences, Murdoch University, Murdoch, Australia
| | - Claude M Nagamine
- Department of Comparative Medicine, Stanford University, Stanford, California
| | - Monika K Huss
- Department of Comparative Medicine, Stanford University, Stanford, California
| | | |
Collapse
|
14
|
Genetically modified mice for research on human diseases: A triumph for Biotechnology or a work in progress? THE EUROBIOTECH JOURNAL 2022. [DOI: 10.2478/ebtj-2022-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
Abstract
Abstract
Genetically modified mice are engineered as models for human diseases. These mouse models include inbred strains, mutants, gene knockouts, gene knockins, and ‘humanized’ mice. Each mouse model is engineered to mimic a specific disease based on a theory of the genetic basis of that disease. For example, to test the amyloid theory of Alzheimer’s disease, mice with amyloid precursor protein genes are engineered, and to test the tau theory, mice with tau genes are engineered. This paper discusses the importance of mouse models in basic research, drug discovery, and translational research, and examines the question of how to define the “best” mouse model of a disease. The critiques of animal models and the caveats in translating the results from animal models to the treatment of human disease are discussed. Since many diseases are heritable, multigenic, age-related and experience-dependent, resulting from multiple gene-gene and gene-environment interactions, it will be essential to develop mouse models that reflect these genetic, epigenetic and environmental factors from a developmental perspective. Such models would provide further insight into disease emergence, progression and the ability to model two-hit and multi-hit theories of disease. The summary examines the biotechnology for creating genetically modified mice which reflect these factors and how they might be used to discover new treatments for complex human diseases such as cancers, neurodevelopmental and neurodegenerative diseases.
Collapse
|
15
|
Schubert T, Reisch N, Naumann R, Reichardt I, Landgraf D, Quitter F, Thirumalasetty SR, Heninger AK, Sarov M, Peitzsch M, Huebner A, Koehler K. CYP21A2 gene expression in a humanized 21-hydroxylase mouse model does not affect adrenocortical morphology and function. J Endocr Soc 2022; 6:bvac062. [PMID: 35592511 PMCID: PMC9113096 DOI: 10.1210/jendso/bvac062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Indexed: 11/19/2022] Open
Abstract
Steroid 21-hydroxylase is an enzyme of the steroid pathway that is involved in the biosynthesis of cortisol and aldosterone by hydroxylation of 17α-hydroxyprogesterone and progesterone at the C21 position. Mutations in CYP21A2, the gene encoding 21-hydroxylase, cause the most frequent form of the autosomal recessive disorder congenital adrenal hyperplasia (CAH). In this study, we generated a humanized 21-hydroxylase mouse model as the first step to the generation of mutant mice with different CAH-causing mutations. We replaced the mouse Cyp21a1 gene with the human CYP21A2 gene using homologous recombination in combination with CRISPR/Cas9 technique. The aim of this study was to characterize the new humanized mouse model. All results described are related to the homozygous animals in comparison with wild-type mice. We show analogous expression patterns of human 21-hydroxylase by the murine promoter and regulatory elements in comparison to murine 21-hydroxylase in wild-type animals. As expected, no Cyp21a1 transcript was detected in homozygous CYP21A2 adrenal glands. Alterations in adrenal gene expression were observed for Cyp11a1, Star, and Cyb11b1. These differences, however, were not pathological. Outward appearance, viability, growth, and fertility were not affected in the humanized CYP21A2 mice. Plasma steroid levels of corticosterone and aldosterone showed no pathological reduction. In addition, adrenal gland morphology and zonation were similar in both the humanized and the wild-type mice. In conclusion, humanized homozygous CYP21A2 mice developed normally and showed no differences in histological analyses, no reduction in adrenal and gonadal gene expression, or in plasma steroids in comparison with wild-type littermates.
Collapse
Affiliation(s)
- Tina Schubert
- Children’s Hospital, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Nicole Reisch
- Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität München, Ziemssenstrasse 1, 80336 Munich, Germany
| | - Ronald Naumann
- Transgenic Core Facility, Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Ilka Reichardt
- Genome Engineering Facility, Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Dana Landgraf
- Children’s Hospital, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Friederike Quitter
- Children’s Hospital, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Shamini Ramkumar Thirumalasetty
- Children’s Hospital, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Anne-Kristin Heninger
- Genome Engineering Facility, Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
- University Cancer Center (UCC) Dresden, Medical Systems Biology, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Mihail Sarov
- Genome Engineering Facility, Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Mirko Peitzsch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Angela Huebner
- Children’s Hospital, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Katrin Koehler
- Children’s Hospital, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| |
Collapse
|
16
|
Boehnke N, Hammond PT. Power in Numbers: Harnessing Combinatorial and Integrated Screens to Advance Nanomedicine. JACS AU 2022; 2:12-21. [PMID: 35098219 PMCID: PMC8791056 DOI: 10.1021/jacsau.1c00313] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Indexed: 05/02/2023]
Abstract
Nanocarriers have significant potential to advance personalized medicine through targeted drug delivery. However, to date, efforts to improve nanoparticle accumulation at target disease sites have largely failed to translate clinically, stemming from an incomplete understanding of nano-bio interactions. While progress has been made to evaluate the effects of specific physical and chemical nanoparticle properties on trafficking and uptake, there is much to be gained from controlling these properties singularly and in combination to determine their interactions with different cell types. We and others have recently begun leveraging library-based nanoparticle screens to study structure-function relationships of lipid- and polymer-based drug delivery systems to guide nanoparticle design. These combinatorial screening efforts are showing promise in leading to the successful identification of critical characteristics that yield improved and specific accumulation at target sites. However, there is a crucial need to equally consider the influence of biological complexity on nanoparticle delivery, particularly in the context of clinical translation. For example, tissue and cellular heterogeneity presents an additional dimension to nanoparticle trafficking, uptake, and accumulation; applying imaging and screening tools as well as bioinformatics may further expand our understanding of how nanoparticles engage with cells and tissues. Given recent advances in the fields of omics and machine learning, there is substantial promise to revolutionize nanocarrier development through the use of integrated screens, harnessing the combinatorial parameter space afforded both by nanoparticle libraries and clinically annotated biological data sets in combination with high throughput in vivo studies.
Collapse
Affiliation(s)
- Natalie Boehnke
- Koch
Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
| | - Paula T. Hammond
- Koch
Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, 25 Ames
Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
17
|
Avdoshina DV, Kondrashova AS, Belikova MG, Bayurova EO. Murine Models of Chronic Viral Infections and Associated Cancers. Mol Biol 2022; 56:649-667. [PMID: 36217336 PMCID: PMC9534466 DOI: 10.1134/s0026893322050028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/07/2022]
Abstract
Viruses are now recognized as bona fide etiologic factors of human cancer. Carcinogenic viruses include Epstein– Barr virus (EBV), high-risk human papillomaviruses (HPVs), hepatitis B virus (HBV), hepatitis C virus (HCV), human T-cell leukemia virus type 1 (HTLV-1), human immunodeficiency virus type 1 (HIV-1, indirectly), and several candidate human cancer viruses. It is estimated that 15% of all human tumors worldwide are caused by viruses. Tumor viruses establish long-term persistent infections in humans, and cancer is an accidental side effect of viral replication strategies. Viruses are usually not complete carcinogens, supporting the concept that cancer results from the accumulation of multiple cooperating events, in which human cancer viruses display different, often opposing roles. The laboratory mouse Mus musculus is one of the best in vivo experimental systems for modeling human pathology, including viral infections and cancer. However, mice are unsusceptible to infection with the known carcinogenic viruses. Many murine models were developed to overcome this limitation and to address various aspects of virus-associated carcinogenesis, from tumors resulting from xenografts of human tissues and cells, including cancerous and virus infected, to genetically engineered mice susceptible to viral infections and associated cancer. The review considers the main existing models, analyzes their advantages and drawbacks, describes their applications, outlines the prospects of their further development.
Collapse
Affiliation(s)
- D. V. Avdoshina
- Chumakov Federal Scientific Center for Research and Development of Immunobiological Products, Russian Academy of Sciences (Polio Institute), 108819 Moscow, Russia
| | - A. S. Kondrashova
- Chumakov Federal Scientific Center for Research and Development of Immunobiological Products, Russian Academy of Sciences (Polio Institute), 108819 Moscow, Russia
| | - M. G. Belikova
- Chumakov Federal Scientific Center for Research and Development of Immunobiological Products, Russian Academy of Sciences (Polio Institute), 108819 Moscow, Russia ,Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia ,Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - E. O. Bayurova
- Chumakov Federal Scientific Center for Research and Development of Immunobiological Products, Russian Academy of Sciences (Polio Institute), 108819 Moscow, Russia ,Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| |
Collapse
|
18
|
Zhang L, Chen S, Zhang W, Yang H, Jin Y, Duan G. An Update on Animal Models for Severe Acute Respiratory Syndrome Coronavirus 2 Infection and Countermeasure Development. Front Microbiol 2021; 12:770935. [PMID: 34819926 PMCID: PMC8606789 DOI: 10.3389/fmicb.2021.770935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/11/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a pandemic since March 2020 and led to significant challenges to over 200 countries and regions all over the world. The establishment of highly pathogenic coronavirus animal model is beneficial for the study of vaccines and pathogenic mechanism of the virus. Laboratory mice, Syrian hamsters, Non-human primates and Ferrets have been used to establish animal models of emerging coronavirus infection. Different animal models can reproduce clinical infection symptoms at different levels. Appropriate animal models are of great significance for the pathogenesis of COVID-19 and the research progress related to vaccines. This review aims to introduce the current progress about experimental animal models for SARS-CoV-2, and collectively generalize critical aspects of disease manifestation in humans and increase their usefulness in research into COVID-19 pathogenesis and developing new preventions and treatments.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Weiguo Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Molecular Medicine, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
19
|
Animal Models Utilized for the Development of Influenza Virus Vaccines. Vaccines (Basel) 2021; 9:vaccines9070787. [PMID: 34358203 PMCID: PMC8310120 DOI: 10.3390/vaccines9070787] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 12/25/2022] Open
Abstract
Animal models have been an important tool for the development of influenza virus vaccines since the 1940s. Over the past 80 years, influenza virus vaccines have evolved into more complex formulations, including trivalent and quadrivalent inactivated vaccines, live-attenuated vaccines, and subunit vaccines. However, annual effectiveness data shows that current vaccines have varying levels of protection that range between 40–60% and must be reformulated every few years to combat antigenic drift. To address these issues, novel influenza virus vaccines are currently in development. These vaccines rely heavily on animal models to determine efficacy and immunogenicity. In this review, we describe seasonal and novel influenza virus vaccines and highlight important animal models used to develop them.
Collapse
|
20
|
Adigbli G, Hua P, Uchiyama M, Roberts I, Hester J, Watt SM, Issa F. Development of LT-HSC-Reconstituted Non-Irradiated NBSGW Mice for the Study of Human Hematopoiesis In Vivo. Front Immunol 2021; 12:642198. [PMID: 33868276 PMCID: PMC8044770 DOI: 10.3389/fimmu.2021.642198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/03/2021] [Indexed: 11/26/2022] Open
Abstract
Humanized immune system (HIS) mouse models are useful tools for the in vivo investigation of human hematopoiesis. However, the majority of HIS models currently in use are biased towards lymphocyte development and fail to support long-term multilineage leucocytes and erythrocytes. Those that achieve successful multilineage reconstitution often require preconditioning steps which are expensive, cause animal morbidity, are technically demanding, and poorly reproducible. In this study, we address this challenge by using HSPC-NBSGW mice, in which NOD,B6.SCID IL-2rγ-/-KitW41/W41 (NBSGW) mice are engrafted with human CD133+ hematopoietic stem and progenitor cells (HSPCs) without the need for preconditioning by sublethal irradiation. These HSPCs are enriched in long-term hematopoietic stem cells (LT-HSCs), while NBSGW mice are permissive to human hematopoietic stem cell (HSC) engraftment, thus reducing the cell number required for successful HIS development. B cells reconstitute with the greatest efficiency, including mature B cells capable of class-switching following allogeneic stimulation and, within lymphoid organs and peripheral blood, T cells at a spectrum of stages of maturation. In the thymus, human thymocytes are identified at all major stages of development. Phenotypically distinct subsets of myeloid cells, including dendritic cells and mature monocytes, engraft to a variable degree in the bone marrow and spleen, and circulate in peripheral blood. Finally, we observe human erythrocytes which persist in the periphery at high levels following macrophage clearance. The HSPC-NBSGW model therefore provides a useful platform for the study of human hematological and immunological processes and pathologies.
Collapse
Affiliation(s)
- George Adigbli
- Transplantation Research and Immunology Group, John Radcliffe Hospital, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Peng Hua
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, Oxford, United Kingdom
- Nuffield Division of Clinical Laboratory Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Masateru Uchiyama
- Transplantation Research and Immunology Group, John Radcliffe Hospital, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Irene Roberts
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, Oxford, United Kingdom
- Department of Paediatrics, Children’s Hospital, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Joanna Hester
- Transplantation Research and Immunology Group, John Radcliffe Hospital, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Suzanne M. Watt
- Nuffield Division of Clinical Laboratory Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, and Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Fadi Issa
- Transplantation Research and Immunology Group, John Radcliffe Hospital, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
21
|
Vichi J, Salazar E, Jacinto VJ, Rodriguez LO, Grande R, Dantán-González E, Morett E, Hernández-Mendoza A. High-throughput transcriptome sequencing and comparative analysis of Escherichia coli and Schizosaccharomyces pombe in respiratory and fermentative growth. PLoS One 2021; 16:e0248513. [PMID: 33730068 PMCID: PMC7968713 DOI: 10.1371/journal.pone.0248513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/26/2021] [Indexed: 12/13/2022] Open
Abstract
In spite of increased complexity in eukaryotes compared to prokaryotes, several basic metabolic and regulatory processes are conserved. Here we explored analogies in the eubacteria Escherichia coli and the unicellular fission yeast Schizosaccharomyces pombe transcriptomes under two carbon sources: 2% glucose; or a mix of 2% glycerol and 0.2% sodium acetate using the same growth media and growth phase. Overall, twelve RNA-seq libraries were constructed. A total of 593 and 860 genes were detected as differentially expressed for E. coli and S. pombe, respectively, with a log2 of the Fold Change ≥ 1 and False Discovery Rate ≤ 0.05. In aerobic glycolysis, most of the expressed genes were associated with cell proliferation in both organisms, including amino acid metabolism and glycolysis. In contrast in glycerol/acetate condition, genes related to flagellar assembly and membrane proteins were differentially expressed such as the general transcription factors fliA, flhD, flhC, and flagellum assembly genes were detected in E. coli, whereas in S. pombe genes for hexose transporters, integral membrane proteins, galactose metabolism, and ncRNAs related to cellular stress were overexpressed. In general, our study shows that a conserved "foraging behavior" response is observed in these eukaryotic and eubacterial organisms in gluconeogenic carbon sources.
Collapse
Affiliation(s)
- Joivier Vichi
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Emmanuel Salazar
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Verónica Jiménez Jacinto
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Leticia Olvera Rodriguez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Ricardo Grande
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Edgar Dantán-González
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Enrique Morett
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Armando Hernández-Mendoza
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
- * E-mail:
| |
Collapse
|
22
|
Humanization of Immunodeficient Animals for the Modeling of Transplantation, Graft Versus Host Disease, and Regenerative Medicine. Transplantation 2021; 104:2290-2306. [PMID: 32068660 PMCID: PMC7590965 DOI: 10.1097/tp.0000000000003177] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The humanization of animals is a powerful tool for the exploration of human disease pathogenesis in biomedical research, as well as for the development of therapeutic interventions with enhanced translational potential. Humanized models enable us to overcome biologic differences that exist between humans and other species, while giving us a platform to study human processes in vivo. To become humanized, an immune-deficient recipient is engrafted with cells, tissues, or organoids. The mouse is the most well studied of these hosts, with a variety of immunodeficient strains available for various specific uses. More recently, efforts have turned to the humanization of other animal species such as the rat, which offers some technical and immunologic advantages over mice. These advances, together with ongoing developments in the incorporation of human transgenes and additional mutations in humanized mouse models, have expanded our opportunities to replicate aspects of human allotransplantation and to assist in the development of immunotherapies. In this review, the immune and tissue humanization of various species is presented with an emphasis on their potential for use as models for allotransplantation, graft versus host disease, and regenerative medicine.
Collapse
|
23
|
Woo XY, Giordano J, Srivastava A, Zhao ZM, Lloyd MW, de Bruijn R, Suh YS, Patidar R, Chen L, Scherer S, Bailey MH, Yang CH, Cortes-Sanchez E, Xi Y, Wang J, Wickramasinghe J, Kossenkov AV, Rebecca VW, Sun H, Mashl RJ, Davies SR, Jeon R, Frech C, Randjelovic J, Rosains J, Galimi F, Bertotti A, Lafferty A, O’Farrell AC, Modave E, Lambrechts D, ter Brugge P, Serra V, Marangoni E, El Botty R, Kim H, Kim JI, Yang HK, Lee C, Dean DA, Davis-Dusenbery B, Evrard YA, Doroshow JH, Welm AL, Welm BE, Lewis MT, Fang B, Roth JA, Meric-Bernstam F, Herlyn M, Davies MA, Ding L, Li S, Govindan R, Isella C, Moscow JA, Trusolino L, Byrne AT, Jonkers J, Bult CJ, Medico E, Chuang JH. Conservation of copy number profiles during engraftment and passaging of patient-derived cancer xenografts. Nat Genet 2021; 53:86-99. [PMID: 33414553 PMCID: PMC7808565 DOI: 10.1038/s41588-020-00750-6] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 11/18/2020] [Indexed: 02/03/2023]
Abstract
Patient-derived xenografts (PDXs) are resected human tumors engrafted into mice for preclinical studies and therapeutic testing. It has been proposed that the mouse host affects tumor evolution during PDX engraftment and propagation, affecting the accuracy of PDX modeling of human cancer. Here, we exhaustively analyze copy number alterations (CNAs) in 1,451 PDX and matched patient tumor (PT) samples from 509 PDX models. CNA inferences based on DNA sequencing and microarray data displayed substantially higher resolution and dynamic range than gene expression-based inferences, and they also showed strong CNA conservation from PTs through late-passage PDXs. CNA recurrence analysis of 130 colorectal and breast PT/PDX-early/PDX-late trios confirmed high-resolution CNA retention. We observed no significant enrichment of cancer-related genes in PDX-specific CNAs across models. Moreover, CNA differences between patient and PDX tumors were comparable to variations in multiregion samples within patients. Our study demonstrates the lack of systematic copy number evolution driven by the PDX mouse host.
Collapse
Grants
- NC/T001267/1 National Centre for the Replacement, Refinement and Reduction of Animals in Research
- P30 CA016672 NCI NIH HHS
- 29567 Cancer Research UK
- U54 CA233223 NCI NIH HHS
- P30 CA034196 NCI NIH HHS
- P01 CA114046 NCI NIH HHS
- HHSN261201400008C NCI NIH HHS
- P30 CA091842 NCI NIH HHS
- U24 CA224067 NCI NIH HHS
- P50 CA196510 NCI NIH HHS
- U54 CA224070 NCI NIH HHS
- U54 CA224076 NCI NIH HHS
- U54 CA224065 NCI NIH HHS
- U54 CA233306 NCI NIH HHS
- P30 CA010815 NCI NIH HHS
- U24 CA204781 NCI NIH HHS
- U54 CA224083 NCI NIH HHS
- HHSN261201500003C NCI NIH HHS
- HHSN261200800001C NCI NIH HHS
- T32 HG008962 NHGRI NIH HHS
- R50 CA211199 NCI NIH HHS
- P30 CA125123 NCI NIH HHS
- P50 CA070907 NCI NIH HHS
- HHSN261201500003I NCI NIH HHS
- HHSN261200800001E NCI NIH HHS
- P30 CA042014 NCI NIH HHS
- U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
- KWF Kankerbestrijding (Dutch Cancer Society)
- Oncode Institute
- Fondazione AIRC under 5 per Mille 2018 - ID. 21091 EU H2020 Research and Innovation Programme, grant agreement no. 731105 European Research Council Consolidator Grant 724748
- EU H2020 Research and Innovation Programme, grant Agreement No. 754923
- EU H2020 Research and Innovation Programme, grant agreement no. 731105 ISCIII - Miguel Servet program CP14/00228 GHD-Pink/FERO Foundation grant
- Fondazione Piemontese per la Ricerca sul Cancro-ONLUS 5 per mille Ministero della Salute 2015
- Korean Health Industry Development Institute HI13C2148
- Korean Health Industry Development Institute HI13C2148 The First Affiliated Hospital of Xi’an Jiaotong University Ewha Womans University Research Grant
- CPRIT RP170691
- SCU | Ignatian Center for Jesuit Education, Santa Clara University
- Breast Cancer Research Foundation (BCRF)
- Fashion Footwear Charitable Foundation of New York The Foundation for Barnes-Jewish Hospital’s Cancer Frontier Fund
- My First AIRC Grant 19047
- Fondazione AIRC under 5 per Mille 2018 - ID. 21091 AIRC Investigator Grants 18532 and 20697 AIRC/CRUK/FC AECC Accelerator Award 22795 Fondazione Piemontese per la Ricerca sul Cancro-ONLUS 5 per mille Ministero della Salute 2015, 2014, 2016 EU H2020 Research and Innovation Programme, grant Agreement No. 754923 EU H2020 Research and Innovation Programme, grant agreement no. 731105
- Science Foundation Ireland (SFI)
- EU H2020 Research and Innovation Programme, grant agreement no. 731105 EU H2020 Research and Innovation Programme, grant Agreement No. 754923 Irish Health Research Board grant ILP-POR-2019-066
- Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Netherlands Organisation for Scientific Research)
- EU H2020 Research and Innovation Programme, grant agreement no. 731105 European Research Council (ERC) Synergy project CombatCancer Oncode Institute
Collapse
Affiliation(s)
- Xing Yi Woo
- grid.249880.f0000 0004 0374 0039The Jackson Laboratory for Genomic Medicine, Farmington, CT USA
| | - Jessica Giordano
- grid.7605.40000 0001 2336 6580Department of Oncology, University of Turin, Turin, Italy ,grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Anuj Srivastava
- grid.249880.f0000 0004 0374 0039The Jackson Laboratory for Genomic Medicine, Farmington, CT USA
| | - Zi-Ming Zhao
- grid.249880.f0000 0004 0374 0039The Jackson Laboratory for Genomic Medicine, Farmington, CT USA
| | - Michael W. Lloyd
- grid.249880.f0000 0004 0374 0039The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME USA
| | - Roebi de Bruijn
- grid.430814.aNetherlands Cancer Institute, Amsterdam, the Netherlands
| | - Yun-Suhk Suh
- grid.31501.360000 0004 0470 5905College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Rajesh Patidar
- grid.418021.e0000 0004 0535 8394Frederick National Laboratory for Cancer Research, Frederick, MD USA
| | - Li Chen
- grid.418021.e0000 0004 0535 8394Frederick National Laboratory for Cancer Research, Frederick, MD USA
| | - Sandra Scherer
- grid.223827.e0000 0001 2193 0096Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT USA
| | - Matthew H. Bailey
- grid.223827.e0000 0001 2193 0096Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT USA ,grid.223827.e0000 0001 2193 0096Department of Human Genetics, University of Utah, Salt Lake City, UT USA
| | - Chieh-Hsiang Yang
- grid.223827.e0000 0001 2193 0096Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT USA
| | - Emilio Cortes-Sanchez
- grid.223827.e0000 0001 2193 0096Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT USA
| | - Yuanxin Xi
- grid.240145.60000 0001 2291 4776Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Jing Wang
- grid.240145.60000 0001 2291 4776Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | | | | | - Vito W. Rebecca
- grid.251075.40000 0001 1956 6678The Wistar Institute, Philadelphia, PA USA
| | - Hua Sun
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO USA
| | - R. Jay Mashl
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO USA
| | - Sherri R. Davies
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO USA
| | - Ryan Jeon
- grid.492568.4Seven Bridges Genomics, Charlestown, MA USA
| | | | | | | | - Francesco Galimi
- grid.7605.40000 0001 2336 6580Department of Oncology, University of Turin, Turin, Italy ,grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Andrea Bertotti
- grid.7605.40000 0001 2336 6580Department of Oncology, University of Turin, Turin, Italy ,grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Adam Lafferty
- grid.4912.e0000 0004 0488 7120Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Alice C. O’Farrell
- grid.4912.e0000 0004 0488 7120Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Elodie Modave
- grid.5596.f0000 0001 0668 7884Center for Cancer Biology, VIB, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Diether Lambrechts
- grid.5596.f0000 0001 0668 7884Center for Cancer Biology, VIB, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Laboratory of Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Petra ter Brugge
- grid.430814.aNetherlands Cancer Institute, Amsterdam, the Netherlands
| | - Violeta Serra
- grid.411083.f0000 0001 0675 8654Vall d´Hebron Institute of Oncology, Barcelona, Spain
| | - Elisabetta Marangoni
- grid.418596.70000 0004 0639 6384Department of Translational Research, Institut Curie, PSL Research University, Paris, France
| | - Rania El Botty
- grid.418596.70000 0004 0639 6384Department of Translational Research, Institut Curie, PSL Research University, Paris, France
| | - Hyunsoo Kim
- grid.249880.f0000 0004 0374 0039The Jackson Laboratory for Genomic Medicine, Farmington, CT USA
| | - Jong-Il Kim
- grid.31501.360000 0004 0470 5905College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Han-Kwang Yang
- grid.31501.360000 0004 0470 5905College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Charles Lee
- grid.249880.f0000 0004 0374 0039The Jackson Laboratory for Genomic Medicine, Farmington, CT USA ,grid.452438.cPrecision Medicine Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, People’s Republic of China ,grid.255649.90000 0001 2171 7754Department of Life Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Dennis A. Dean
- grid.492568.4Seven Bridges Genomics, Charlestown, MA USA
| | | | - Yvonne A. Evrard
- grid.418021.e0000 0004 0535 8394Frederick National Laboratory for Cancer Research, Frederick, MD USA
| | - James H. Doroshow
- grid.48336.3a0000 0004 1936 8075Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD USA
| | - Alana L. Welm
- grid.223827.e0000 0001 2193 0096Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT USA
| | - Bryan E. Welm
- grid.223827.e0000 0001 2193 0096Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT USA ,grid.223827.e0000 0001 2193 0096Department of Surgery, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT USA
| | - Michael T. Lewis
- grid.39382.330000 0001 2160 926XLester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX USA
| | - Bingliang Fang
- grid.240145.60000 0001 2291 4776Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Jack A. Roth
- grid.240145.60000 0001 2291 4776Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Funda Meric-Bernstam
- grid.240145.60000 0001 2291 4776Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Meenhard Herlyn
- grid.251075.40000 0001 1956 6678The Wistar Institute, Philadelphia, PA USA
| | - Michael A. Davies
- grid.240145.60000 0001 2291 4776Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Li Ding
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO USA
| | - Shunqiang Li
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO USA
| | - Ramaswamy Govindan
- grid.4367.60000 0001 2355 7002Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO USA
| | - Claudio Isella
- grid.7605.40000 0001 2336 6580Department of Oncology, University of Turin, Turin, Italy ,grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Jeffrey A. Moscow
- grid.48336.3a0000 0004 1936 8075Investigational Drug Branch, National Cancer Institute, Bethesda, MD USA
| | - Livio Trusolino
- grid.7605.40000 0001 2336 6580Department of Oncology, University of Turin, Turin, Italy ,grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Annette T. Byrne
- grid.4912.e0000 0004 0488 7120Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jos Jonkers
- grid.430814.aNetherlands Cancer Institute, Amsterdam, the Netherlands
| | - Carol J. Bult
- grid.249880.f0000 0004 0374 0039The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME USA
| | - Enzo Medico
- grid.7605.40000 0001 2336 6580Department of Oncology, University of Turin, Turin, Italy ,grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Jeffrey H. Chuang
- grid.249880.f0000 0004 0374 0039The Jackson Laboratory for Genomic Medicine, Farmington, CT USA
| | | | | |
Collapse
|
24
|
Yong KSM, Her Z, Tan SY, Tan WWS, Liu M, Lai F, Heng SM, Fan Y, Chang KTE, Wang CI, Chan JKY, Chen J, Chen Q. Humanized Mouse as a Tool to Predict Immunotoxicity of Human Biologics. Front Immunol 2020; 11:553362. [PMID: 33193321 PMCID: PMC7604536 DOI: 10.3389/fimmu.2020.553362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 09/28/2020] [Indexed: 11/24/2022] Open
Abstract
Advancements in science enable researchers to constantly innovate and create novel biologics. However, the use of non-human animal models during the development of biologics impedes identification of precise in vivo interactions between the human immune system and treatments. Due to lack of this understanding, adverse effects are frequently observed in healthy volunteers and patients exposed to potential biologics during clinical trials. In this study, we evaluated and compared the effects of known immunotoxic biologics, Proleukin®/IL-2 and OKT3 in humanized mice (reconstituted with human fetal cells) to published clinical outcomes. We demonstrated that humanized mice were able to recapitulate in vivo pathological changes and human-specific immune responses, such as elevated cytokine levels and modulated lymphocytes and myeloid subsets. Given the high similarities of immunological side effects observed between humanized mice and clinical studies, this model could be used to assess immunotoxicity of biologics at a pre-clinical stage, without placing research participants and/or patients at risk.
Collapse
Affiliation(s)
- Kylie Su Mei Yong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Zhisheng Her
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Sue Yee Tan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Wilson Wei Sheng Tan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Min Liu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Fritz Lai
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Shi Min Heng
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Yong Fan
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kenneth Tou En Chang
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore.,Department of Pathology, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Cheng-I Wang
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Jerry Kok Yen Chan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore.,Experimental Fetal Medicine Group, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jianzhu Chen
- Interdisciplinary Research Group in Infectious Diseases, Singapore-Massachusetts Institute of Technology Alliance for Research and Technology, Singapore, Singapore.,The Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
25
|
Her Z, Tan JHL, Lim YS, Tan SY, Chan XY, Tan WWS, Liu M, Yong KSM, Lai F, Ceccarello E, Zheng Z, Fan Y, Chang KTE, Sun L, Chang SC, Chin CL, Lee GH, Dan YY, Chan YS, Lim SG, Chan JKY, Chandy KG, Chen Q. CD4 + T Cells Mediate the Development of Liver Fibrosis in High Fat Diet-Induced NAFLD in Humanized Mice. Front Immunol 2020; 11:580968. [PMID: 33013934 PMCID: PMC7516019 DOI: 10.3389/fimmu.2020.580968] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/20/2020] [Indexed: 12/24/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has been on a global rise. While animal models have rendered valuable insights to the pathogenesis of NAFLD, discrepancy with patient data still exists. Since non-alcoholic steatohepatitis (NASH) involves chronic inflammation, and CD4+ T cell infiltration of the liver is characteristic of NASH patients, we established and characterized a humanized mouse model to identify human-specific immune response(s) associated with NAFLD progression. Immunodeficient mice engrafted with human immune cells (HIL mice) were fed with high fat and high calorie (HFHC) or chow diet for 20 weeks. Liver histology and immune profile of HIL mice were analyzed and compared with patient data. HIL mice on HFHC diet developed steatosis, inflammation and fibrosis of the liver. Human CD4+ central and effector memory T cells increased within the liver and in the peripheral blood of our HIL mice, accompanied by marked up-regulation of pro-inflammatory cytokines (IL-17A and IFNγ). In vivo depletion of human CD4+ T cells in HIL mice reduced liver inflammation and fibrosis, but not steatosis. Our results highlight CD4+ memory T cell subsets as important drivers of NAFLD progression from steatosis to fibrosis and provides a humanized mouse model for pre-clinical evaluation of potential therapeutics.
Collapse
Affiliation(s)
- Zhisheng Her
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Joel Heng Loong Tan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Yee-Siang Lim
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Sue Yee Tan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Xue Ying Chan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Wilson Wei Sheng Tan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Min Liu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Kylie Su Mei Yong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Fritz Lai
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Erica Ceccarello
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore.,Programme in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Zhiqiang Zheng
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Yong Fan
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kenneth Tou En Chang
- Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Lei Sun
- Cardiovascular and Metabolic Disorders, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Shih Chieh Chang
- Laboratory of Molecular Physiology, Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Chih-Liang Chin
- Translational Biomarkers, Merck Research Laboratories, MSD, Singapore, Singapore
| | - Guan Huei Lee
- Division of Gastroenterology and Hepatology, National University Hospital, National University Health System, Singapore, Singapore
| | - Yock Young Dan
- Division of Gastroenterology and Hepatology, National University Hospital, National University Health System, Singapore, Singapore
| | - Yun-Shen Chan
- Genome Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Seng Gee Lim
- Division of Gastroenterology and Hepatology, National University Hospital, National University Health System, Singapore, Singapore
| | - Jerry Kok Yen Chan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore.,Experimental Fetal Medicine Group, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - K George Chandy
- Laboratory of Molecular Physiology, Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore.,Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
26
|
Engineering a Humanised Niche to Support Human Haematopoiesis in Mice: Novel Opportunities in Modelling Cancer. Cancers (Basel) 2020; 12:cancers12082205. [PMID: 32781703 PMCID: PMC7466161 DOI: 10.3390/cancers12082205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 12/18/2022] Open
Abstract
Despite the bone marrow microenvironment being widely recognised as a key player in cancer research, the current animal models that represent a human haematopoietic system lack the contribution of the humanised marrow microenvironment. Here we describe a murine model that relies on the combination of an orthotopic humanised tissue-engineered bone construct (ohTEBC) with patient-specific bone marrow (BM) cells to create a humanised bone marrow (hBM) niche capable of supporting the engraftment of human haematopoietic cells. Results showed that this model supports the engraftment of human CD34+ cells from a healthy BM with human haematopoietic cells migrating into the mouse BM, human BM compartment, spleen and peripheral blood. We compared these results with the engraftment capacity of human CD34+ cells obtained from patients with multiple myeloma (MM). We demonstrated that CD34+ cells derived from a diseased BM had a reduced engraftment potential compared to healthy patients and that a higher cell dose is required to achieve engraftment of human haematopoietic cells in peripheral blood. Finally, we observed that hematopoietic cells obtained from the mobilised peripheral blood of patients yields a higher number of CD34+, overcoming this problem. In conclusion, this humanised mouse model has potential as a unique and patient-specific pre-clinical platform for the study of tumour–microenvironment interactions, including human bone and haematopoietic cells, and could, in the future, serve as a drug testing platform.
Collapse
|
27
|
Whittaker AL, Hickman DL. The Impact of Social and Behavioral Factors on Reproducibility in Terrestrial Vertebrate Models. ILAR J 2020; 60:252-269. [PMID: 32720675 DOI: 10.1093/ilar/ilaa005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 01/30/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
The use of animal models remains critical in preclinical and translational research. The reliability of the animal models and aspects of their validity is likely key to effective translation of findings to medicine. However, despite considerable uniformity in animal models brought about by control of genetics, there remain a number of social as well as innate and acquired behavioral characteristics of laboratory animals that may impact on research outcomes. These include the effects of strain and genetics, age and development, sex, personality and affective states, and social factors largely brought about by housing and husbandry. In addition, aspects of the testing environment may also influence research findings. A number of considerations resulting from the animals' innate and acquired behavioral characteristics as well as their social structures are described. Suggestions for minimizing the impact of these factors on research are provided.
Collapse
Affiliation(s)
- Alexandra L Whittaker
- School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy Campus, South Australia, Australia
| | - Debra L Hickman
- Laboratory Animal Resource Center, Indiana University, Indianapolis, Indiana
| |
Collapse
|
28
|
Saito Y, Shultz LD, Ishikawa F. Understanding Normal and Malignant Human Hematopoiesis Using Next-Generation Humanized Mice. Trends Immunol 2020; 41:706-720. [PMID: 32631635 DOI: 10.1016/j.it.2020.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 12/11/2022]
Abstract
Rodent models for human diseases contribute significantly to understanding human physiology and pathophysiology. However, given the accelerating pace of drug development, there is a crucial need for in vivo preclinical models of human biology and pathology. The humanized mouse is one tool to bridge the gap between traditional animal models and the clinic. The development of immunodeficient mouse strains with high-level engraftment of normal and diseased human immune/hematopoietic cells has made in vivo functional characterization possible. As a patient-derived xenograft (PDX) model, humanized mice functionally correlate putative mechanisms with in vivo behavior and help to reveal pathogenic mechanisms. Combined with single-cell genomics, humanized mice can facilitate functional precision medicine such as risk stratification and individually optimized therapeutic approaches.
Collapse
Affiliation(s)
- Yoriko Saito
- RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, 230-0045, Japan
| | | | - Fumihiko Ishikawa
- RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, 230-0045, Japan.
| |
Collapse
|
29
|
Do ASMS, Amano T, Edwards LA, Zhang L, De Peralta-Venturina M, Yu JS. CD133 mRNA-Loaded Dendritic Cell Vaccination Abrogates Glioma Stem Cell Propagation in Humanized Glioblastoma Mouse Model. MOLECULAR THERAPY-ONCOLYTICS 2020; 18:295-303. [PMID: 32728617 PMCID: PMC7378271 DOI: 10.1016/j.omto.2020.06.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/19/2020] [Indexed: 01/24/2023]
Abstract
Cancer stem cells are initiating cells of cancer and propagate its growth through self-renewal and differentiation of its daughter cells. CD133 is a cell surface antigen that is present on glioma stem cells and has been used to prospectively isolate glioma stem cells. We hypothesized that a major histocompatibility complex (MHC)-independent and long-lasting immune response against CD133 could be generated by transfecting CD133 mRNA into dendritic cells and vaccinating animals with experimental gliomas. To test this hypothesis, we developed a novel humanized mouse model using CD34-positive hematopoietic stem cells. We confirmed the robust simultaneous activation of CD8- and CD4-positive T cells by dendritic cell vaccination with modified CD133 mRNA leading to a potent and long-lived immune response, with subsequent abrogation of CD133-positive glioma stem cell propagation and tumor growth. This study for the first time demonstrates in both a humanized mouse model and in a syngeneic mouse model of glioblastoma that targeting a glioma stem cell-associated antigen is an effective strategy to target and kill glioma stem cells. This novel and simple humanized mouse model for immunotherapy is a significant advance in our ability to test human-specific immunotherapies for glioblastoma.
Collapse
Affiliation(s)
| | - Takayuki Amano
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Lincoln A Edwards
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Lei Zhang
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - John S Yu
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
30
|
Paul DS, Bergmeier W. Novel Mouse Model for Studying Hemostatic Function of Human Platelets. Arterioscler Thromb Vasc Biol 2020; 40:1891-1904. [PMID: 32493172 DOI: 10.1161/atvbaha.120.314304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Platelets are critical to the formation of a hemostatic plug and the pathogenesis of atherothrombosis. Preclinical animal models, especially the mouse, provide an important platform to assess the efficacy and safety of antiplatelet drugs. However, these studies are limited by inherent differences between human and mouse platelets and the species-selectivity of many drugs. To circumvent these limitations, we developed a new protocol for the adoptive transfer of human platelets into thrombocytopenic nonobese diabetic/severe combined immune deficiency mice, that is, a model where all endogenous platelets are replaced by human platelets in mice accepting xenogeneic tissues. Approach and Results: To demonstrate the power of this new model, we visualized and quantified hemostatic plug formation and stability by intravital spinning disk confocal microscopy following laser ablation injury to the saphenous vein. Integrin αIIbβ3-dependent hemostatic platelet plug formation was achieved within ≈30 seconds after laser ablation injury in humanized platelet mice. Pretreatment of mice with standard dual antiplatelet therapy (Aspirin+Ticagrelor) or PAR1 inhibitor, L-003959712 (an analog of vorapaxar), mildly prolonged the bleeding time and significantly reduced platelet adhesion to the site of injury. Consistent with findings from clinical trials, inhibition of PAR1 in combination with dual antiplatelet therapy markedly prolonged bleeding time in humanized platelet mice. CONCLUSIONS We propose that this novel mouse model will provide a robust platform to test and predict the safety and efficacy of experimental antiplatelet drugs and to characterize the hemostatic function of synthetic, stored and patient platelets.
Collapse
Affiliation(s)
- David S Paul
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill (D.S.P., W.B.).,UNC Blood Research Center, University of North Carolina, Chapel Hill (D.S.P., W.B.)
| | - Wolfgang Bergmeier
- From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill (D.S.P., W.B.).,UNC Blood Research Center, University of North Carolina, Chapel Hill (D.S.P., W.B.)
| |
Collapse
|
31
|
Abstract
Laboratory animal models are beneficial when they recapitulate all or just some of the clinical and immunological manifestations of the disease. Various animals such as cats, rats, dogs, hamsters, guinea pigs, rabbits, horses, minks, pigs, and primates have been described lupus-like phenotype. However, a mouse has remained the preferable animal for scientific investigations as a result of their reduced lifespan, easy reproduction, markedly low costs, public acceptance, ease of genetic management, and the probability to stay under standardized conditions. It is highly challenging to establish a mouse model with all features of lupus because of the difficulty and the heterogeneity of the clinical features in systemic lupus erythematous (SLE). Additionally, due to the multiple differences between the mouse and human immune system, the direct translation usually fails. Each mouse model has specific characteristics and shares many subsets of aspects with the disease observed in humans, which gives researchers a tool to select their particular needs. Over 50 years, many mice models have been developed and used to dissect the pathogenesis of lupus, also to test novel drugs and therapies. In general, mice models that contribute considerably in SLE understanding can be divided into four groups: Spontaneous models, induced models, genetically modified models, along with humanizing mouse models that are the link between the mouse and human immune system. In this updated review, we will present what has been learned from different lupus mice models and how these models have contributed to a better understanding of lupus pathogenesis and treatment.
Collapse
Affiliation(s)
- Alya Halkom
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
32
|
Swayden M, Soubeyran P, Iovanna J. Upcoming Revolutionary Paths in Preclinical Modeling of Pancreatic Adenocarcinoma. Front Oncol 2020; 9:1443. [PMID: 32038993 PMCID: PMC6987422 DOI: 10.3389/fonc.2019.01443] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022] Open
Abstract
To date, PDAC remains the cancer having the worst prognosis with mortality rates constantly on the rise. Efficient cures are still absent, despite all attempts to understand the aggressive physiopathology underlying this disease. A major stumbling block is the outdated preclinical modeling strategies applied in assessing effectiveness of novel anticancer therapeutics. Current in vitro preclinical models have a low fidelity to mimic the exact architectural and functional complexity of PDAC tumor found in human set, due to the lack of major components such as immune system and tumor microenvironment with its associated chemical and mechanical signals. The existing PDAC preclinical platforms are still far from being reliable and trustworthy to guarantee the success of a drug in clinical trials. Therefore, there is an urgent demand to innovate novel in vitro preclinical models that mirrors with precision tumor-microenvironment interface, pressure of immune system, and molecular and morphological aspects of the PDAC normally experienced within the living organ. This review outlines the traditional preclinical models of PDAC namely 2D cell lines, genetically engineered mice, and xenografts, and describing the present famous approach of 3D organoids. We offer a detailed narration of the pros and cons of each model system. Finally, we suggest the incorporation of two off-center newly born techniques named 3D bio-printing and organs-on-chip and discuss the potentials of swine models and in silico tools, as powerful new tools able to transform PDAC preclinical modeling to a whole new level and open new gates in personalized medicine.
Collapse
Affiliation(s)
- Mirna Swayden
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Philippe Soubeyran
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| |
Collapse
|
33
|
Carpenter R, Oh HJ, Ham IH, Kim D, Hur H, Lee J. Scaffold-Assisted Ectopic Transplantation of Internal Organs and Patient-Derived Tumors. ACS Biomater Sci Eng 2019; 5:6667-6678. [PMID: 33423485 DOI: 10.1021/acsbiomaterials.9b00978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Xenotransplantation of human tissues into immunodeficient mice has emerged as an invaluable preclinical model to study human biology and disease progression and predict clinical response. The most common anatomical site for tissue transplantation is the subcutaneous pocket due to simple surgical procedures and accessibility for gross monitoring and advanced imaging modalities. However, subcutaneously implanted tissues initially experience a sharp change in oxygen and nutrient supply and increased mechanical deformation. During this acute phase of tissue integration to the host vasculature, substantial cell death and tissue fibrosis occur limiting engraftment efficiency. Previously, we demonstrated that the implantation of inverted colloidal crystal hydrogel scaffolds triggers proangiogenic and immunomodulatory functions without characteristic foreign body encapsulation. In this study, we examine the use of this unique host response to improve the ectopic transplantation of tissues to the subcutaneous site. Scaffold-assisted tissues preserved morphological features and blood vessel density compared to native tissues, whereas scaffold-free tissues collapsed and were less vascularized. Notably, the supporting biomaterial scaffold modulated the foreign body response to reduce the localization of Ly6G+ cells within the transplanted tissues. Cotransplantation of patient-derived gastric cancer with a scaffold resulted in a comparable level of engraftment to conventional methods; however, detailed immunohistological characterization revealed significantly better retention of proliferative cells (Ki67+) and human immune cells (CD45+) by the end of the study. We envision that leveraging the immunomodulatory properties of biomaterial interfaces can be an attractive strategy to improve the functional engraftment of xenotransplants and accelerate individualized diagnostics and the development of novel therapeutic strategies.
Collapse
Affiliation(s)
| | - Hye Jeong Oh
- Department of Surgery, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon-si 16499, Gyeonggi-do, Republic of Korea
| | - In-Hye Ham
- Department of Surgery, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon-si 16499, Gyeonggi-do, Republic of Korea
| | - Daeyoung Kim
- Department of Mathematics & Statistics, University of Massachusetts, Amherst, Lederle Graduate Research Tower, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Hoon Hur
- Department of Surgery, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon-si 16499, Gyeonggi-do, Republic of Korea
| | | |
Collapse
|
34
|
Prognosis, Prevention and Research Prospects of Progression to Severe Hepatitis B (Liver Failure). ACUTE EXACERBATION OF CHRONIC HEPATITIS B 2019. [PMCID: PMC7498886 DOI: 10.1007/978-94-024-1603-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This chapter describes the factors involved in the disease prognosis, parameters of outcome evaluations, principles and techniques for progression prevention. In last section, the future perspectives in both basic and clinical investigations towards unmet medical needs in AECHB and HBV ACLF are discussed.Factors affecting the prognosis of patients with severe hepatitis B include those related to the virus (including viral load, HBeAg expression, and gene mutation), patient age, co-morbidity, TBil, INR, serum Cr, and the host genetic background. Indicators associated with patient prognosis include TBil, total cholesterol, albumin and prealbumin, hepatic encephalopathy, kidney damage, alpha-fetoprotein and vitamin D binding protein, blood sodium level, virus HBeAg expression and genotype, and blood glucose. In addition to TBil, INR, hepatic encephalopathy, Cr level and AFP as indicators for prognosis of severe hepatitis, some other parameters such as clinical signs, symptoms, serum levels of total cholesterol and albumin and natrium, and coagulation factors are all valuable in assessment. The roles of cell apoptosis, liver regeneration and immunological parameters in assessing patient prognosis are under study. Prognostic evaluating systems include MELD score, MELD-Na score, iMELD score, KCI and CTP score. Prevention of severe hepatitis B should be started in asymptomatic patients. Close observation, sufficient rest, adequate nutrition, meticulous nursing and psychological care, preventing and removing exacerbating factors, treating concomitant diseases, reasonable antiviral and comprehensive therapies are helpful to prevent CHB patients from developing to severe hepatitis. For patients who already have severe hepatitis B, the prevention and management of complications is important for lowering mortality rate. New research directions in acute-on-chronic liver failure include: (1) Additional well controlled studies using present or new liver systems are warranted. Other approaches include the use of granulocyte colony stimulating factor to treat infections as well as the potential of use of stem cells to restore immune integrity and enhance liver regeneration. (2) Using new cell lines and animal models to understand the molecular biology of HBV, the immune response and to develop novel therapies. (3) Development of new anti-HBV strategies, e.g. silencing or remove cccDNA, enhancing immunologic clearance of HBV infection, inhibiting virus entry or HBc expression and using CRISP to disrupt cccDNA.
Collapse
|
35
|
Villano JS, Vleck SE, Felt SA, Myers DD, Lester PA. Safety Considerations When Working with Humanized Animals. ILAR J 2018; 59:150-160. [PMID: 30541024 DOI: 10.1093/ilar/ily012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 08/31/2018] [Indexed: 01/05/2023] Open
Abstract
Research using laboratory animals has been revolutionized by the creation of humanized animal models, which are immunodeficient animals engrafted with human cells, tissues, or organs. These animal models provide the research community a unique and promising opportunity to mimic a wide variety of disease conditions in humans, from infectious disease to cancer. A vast majority of these models are humanized mice like those injected with human CD34+ hematopoietic stem cells and patient-derived xenografts. With this technology comes the need for the animal research enterprise to understand the inherent and potential risks, such as exposure to bloodborne pathogens, associated with the model development and research applications. Here, we review existing humanized animal models and provide recommendations for their safe use based on regulatory framework and literature. A risk assessment program-from handling the human material to its administration to animals and animal housing-is a necessary initial step in mitigating risks associated with the use of humanized animals in research. Ultimately, establishing institutional policies and guidelines to ensure personnel safety is a legal and ethical responsibility of the research institution as part of the occupational health and safety program and overall animal care and use program.
Collapse
Affiliation(s)
- Jason S Villano
- Unit for Laboratory Animal Medicine, University of Michigan Medical School in Ann Arbor, Michigan
| | - Susan E Vleck
- Department of Environmental Health and Safety at Stanford University in Stanford, California
| | - Stephen A Felt
- Department of Comparative Medicine, Stanford University, Stanford, California
| | - Daniel D Myers
- Unit for Laboratory Animal Medicine, University of Michigan Medical School in Ann Arbor, Michigan.,Department of Surgery, University of Michigan Medical School, University of Michigan, Ann Arbor, Michigan
| | - Patrick A Lester
- Unit for Laboratory Animal Medicine, University of Michigan Medical School in Ann Arbor, Michigan
| |
Collapse
|
36
|
Tyagi RK, Tandel N, Deshpande R, Engelman RW, Patel SD, Tyagi P. Humanized Mice Are Instrumental to the Study of Plasmodium falciparum Infection. Front Immunol 2018; 9:2550. [PMID: 30631319 PMCID: PMC6315153 DOI: 10.3389/fimmu.2018.02550] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/17/2018] [Indexed: 02/05/2023] Open
Abstract
Research using humanized mice has advanced our knowledge and understanding of human haematopoiesis, non-adaptive and adaptive immunity, autoimmunity, infectious disease, cancer biology, and regenerative medicine. Challenges posed by the human-malaria parasite Plasmodium falciparum include its complex life cycle, the evolution of drug resistance against anti-malarials, poor diagnosis, and a lack of effective vaccines. Advancements in genetically engineered and immunodeficient mouse strains, have allowed for studies of the asexual blood stage, exoerythrocytic stage and the transition from liver-to-blood stage infection, in a single vertebrate host. This review discusses the process of "humanization" of various immunodeficient/transgenic strains and their contribution to translational biomedical research. Our work reviews the strategies employed to overcome the remaining-limitations of the developed human-mouse chimera(s).
Collapse
Affiliation(s)
- Rajeev K. Tyagi
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Biomedical parasitology Unit, Institute Pasteur, Paris, France
- Department of Global Health, College of Public Health, University of South Florida, Tampa, FL, United States
| | - Nikunj Tandel
- Institute of Science, Nirma University, Ahmedabad, India
| | | | - Robert W. Engelman
- Department of Pediatrics, Pathology and Cell Biology, University of South Florida, Tampa, FL, United States
| | | | - Priyanka Tyagi
- Department of Basic and Applied Sciences, School of Engineering, GD Goenka University, Gurgaon, India
| |
Collapse
|
37
|
Boettcher AN, Loving CL, Cunnick JE, Tuggle CK. Development of Severe Combined Immunodeficient (SCID) Pig Models for Translational Cancer Modeling: Future Insights on How Humanized SCID Pigs Can Improve Preclinical Cancer Research. Front Oncol 2018; 8:559. [PMID: 30560086 PMCID: PMC6284365 DOI: 10.3389/fonc.2018.00559] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/09/2018] [Indexed: 12/13/2022] Open
Abstract
Within the last decade there have been several severe combined immunodeficient (SCID) pig models discovered or genetically engineered. The animals have mutations in ARTEMIS, IL2RG, or RAG1/2 genes, or combinations thereof, providing SCID pigs with NK cells, but deficient in T and B cells, or deficient in NK, T, and B cells for research studies. Biocontainment facilities and positive pressure isolators are developed to limit pathogen exposure and prolong the life of SCID pigs. Raising SCID pigs in such facilities allows for completion of long-term studies such as xenotransplantation of human cells. Ectopically injected human cancer cell lines develop into tumors in SCID pigs, thus providing a human-sized in vivo model for evaluating imaging methods to improve cancer detection and therapeutic research and development. Immunocompromised pigs have the potential to be immunologically humanized by xenotransplantation with human hematopoietic stem cells, peripheral blood leukocytes, or fetal tissue. These cells can be introduced through various routes including injection into fetal liver or the intraperitoneal (IP) space, or into piglets by intravenous, IP, and intraosseous administration. The development and maintenance of transplanted human immune cells would be initially (at least) dependent on immune signaling from swine cells. Compared to mice, swine share higher homology in immune related genes with humans. We hypothesize that the SCID pig may be able to support improved engraftment and differentiation of a wide range of human immune cells as compared to equivalent mouse models. Humanization of SCID pigs would thus provide a valuable model system for researchers to study interactions between human tumor and human immune cells. Additionally, as the SCID pig model is further developed, it may be possible to develop patient-derived xenograft models for individualized therapy and drug testing. We thus theorize that the individualized therapeutic approach would be significantly improved with a humanized SCID pig due to similarities in size, metabolism, and physiology. In all, porcine SCID models have significant potential as an excellent preclinical animal model for therapeutic testing.
Collapse
Affiliation(s)
| | - Crystal L. Loving
- Food Safety and Enteric Pathogens Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Joan E. Cunnick
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | | |
Collapse
|
38
|
Xue W, Li W, Shang Y, Zhang Y, Lan X, Wang G, Li Z, Zhang X, Song Y, Wu B, Dong M, Wang X, Zhang M. One method to establish Epstein-Barr virus-associated NK/T cell lymphoma mouse models. J Cell Mol Med 2018; 23:1509-1516. [PMID: 30484952 PMCID: PMC6349153 DOI: 10.1111/jcmm.14057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/22/2018] [Accepted: 11/05/2018] [Indexed: 01/18/2023] Open
Abstract
Novel nude mice model of human NK/T cell lymphoma were established by subcutaneously injecting two NK/T cell lymphoma cell lines into the right axillary region of mice and successful passages were completed by injecting cell suspension which was obtained through a 70‐μm cell strainer. These mice models and corresponding cell clones have been successfully developed for more than 8 generations. The survival rates of both resuscitation and transplantation in NKYS and YT models were 90% and 70% correspondingly. Pathologically, the tumour cells in all passages of the lymphoma‐bearing mice and cell lines obtained from tumours were parallel to initial cell lines. Immunologically, the tumour cells expressed the characteristics of the primary and essential NK/T lymphomas. The novel mice models maintained the essential features of human NK/T cell lymphoma, and they would be ideal tools in vivo for further research of human NK/T cell lymphoma.
Collapse
Affiliation(s)
- Weili Xue
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Jonint International Research Laboratory of Lymphoma, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weiming Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Jonint International Research Laboratory of Lymphoma, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Yufeng Shang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Jonint International Research Laboratory of Lymphoma, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanjie Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Jonint International Research Laboratory of Lymphoma, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xuan Lan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Jonint International Research Laboratory of Lymphoma, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guannan Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhaoming Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Jonint International Research Laboratory of Lymphoma, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, China
| | - Xudong Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Jonint International Research Laboratory of Lymphoma, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, China
| | - Yue Song
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Jonint International Research Laboratory of Lymphoma, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Baopeng Wu
- The Boiler & Pressure Vessel Safety Inspection Institute of Henan Province, Zhengzhou, China
| | - Meng Dong
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Jonint International Research Laboratory of Lymphoma, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinhua Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Jonint International Research Laboratory of Lymphoma, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Jonint International Research Laboratory of Lymphoma, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Lymphoma Diagnosis and Treatment Center of Henan Province, Zhengzhou, China
| |
Collapse
|
39
|
Boettcher AN, Cunnick JE, Powell EJ, Egner TK, Charley SE, Loving CL, Tuggle CK. Porcine signal regulatory protein alpha binds to human CD47 to inhibit phagocytosis: Implications for human hematopoietic stem cell transplantation into severe combined immunodeficient pigs. Xenotransplantation 2018; 26:e12466. [PMID: 30311702 DOI: 10.1111/xen.12466] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 08/10/2018] [Accepted: 09/18/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Severe combined immunodeficient (SCID) pigs are an emerging animal model being developed for biomedical and regenerative medicine research. SCID pigs can successfully engraft human-induced pluripotent stem cells and cancer cell lines. The development of a humanized SCID pig through xenotransplantation of human hematopoietic stem cells (HSCs) would be a further demonstration of the value of such a large animal SCID model. Xenotransplantation success with HSCs into non-obese diabetic (NOD)-derived SCID mice is dependent on the ability of NOD mouse signal regulatory protein alpha (SIRPA) to bind human CD47, inducing higher phagocytic tolerance than other mouse strains. Therefore, we investigated whether porcine SIRPA binds human CD47 in the context of developing a humanized SCID pig. METHODS Peripheral blood mononuclear cells (PBMCs) were collected from SCID and non-SCID pigs. Flow cytometry was used to assess whether porcine monocytes could bind to human CD47. Porcine monocytes were isolated from PBMCs and were subjected to phagocytosis assays with pig, human, and mouse red blood cell (RBC) targets. Blocking phagocytosis assays were performed by incubating human RBCs with anti-human CD47 blocking antibody B6H12, non-blocking antibody 2D3, and nonspecific IgG1 antibody and exposing to human or porcine monocytes. RESULTS We found that porcine SIRPA binds to human CD47 in vitro by flow cytometric assays. Additionally, phagocytosis assays were performed, and we found that porcine monocytes phagocytose human and porcine RBCs at significantly lower levels than mouse RBCs. When human RBCs were preincubated with CD47 antibodies B6H12 or 2D3, phagocytosis was induced only after B6H12 incubation, indicating the lower phagocytic activity of porcine monocytes with human cells requires interaction between porcine SIRPA and human CD47. CONCLUSIONS We have shown the first evidence that porcine monocytes can bind to human CD47 and are phagocytically tolerant to human cells, suggesting that porcine SCID models have the potential to support engraftment of human HSCs.
Collapse
Affiliation(s)
| | - Joan E Cunnick
- Department of Animal Science, Iowa State University, Ames, Iowa
| | - Ellis J Powell
- Department of Animal Science, Iowa State University, Ames, Iowa.,National Animal Disease Center, Ruminant Diseases and Immunology Unit, US Department of Agriculture, Agricultural Research Service, Ames, Iowa
| | | | - Sara E Charley
- Department of Animal Science, Iowa State University, Ames, Iowa
| | - Crystal L Loving
- National Animal Disease Center, Food Safety and Enteric Pathogens Unit, US Department of Agriculture, Agricultural Research Service, Ames, Iowa
| | | |
Collapse
|
40
|
Zadrozny LM, Brinster LR, Rosenzweig BA, Howard KE. Outbreak of Opportunistic Ascending Pyelonephritis with Numerous Yeast after Experimental Humanization Surgery in NOD.Cg- Prkdcscid Il2rgtm1Wjl/SzJ and NOD.Cg- Rag1tm1Mom Il2rgtm1Wjl/SzJ Immunodeficient Mice. Comp Med 2018; 68:353-359. [PMID: 30208988 DOI: 10.30802/aalas-cm-17-000104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Unexpected mortality occurred in a group of 12 NOD.Cg-NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) and 12 NOD.Cg-Rag1tm1Mom Il2rgtm1Wjl/SzJ (NRG) immunodeficient mice. At 10 d after routine bone marrow-liver-thymus humanization surgery, 9 mice were found dead without observation of initiating clinical signs; 1 d later (day 11), 3 additional mice showed signs of morbidity, including severe hunching, lateral recumbency, slow movement, shallow respiration, and decreased response to external stimulus. All remaining mice rapidly decompensated and were found dead or were euthanized within 4 d after the first death. Histopathology revealed severe ascending pyelonephritis with numerous yeast. Cultures in some mice were positive for Enterococcus faecalis or Staphylococcus xylosus, 2 bacteria considered commensals in rodents. In addition, Candida albicans was cultured from some animals. Further investigation revealed that a restraining device used for tail vein injections was the likely fomite harboring Candida organisms. These findings indicate that ascending pyelonephritis, with Candida as the etiologic agent, can cause significant mortality in NSG and NRG immunodeficient mice.
Collapse
Affiliation(s)
- Leah M Zadrozny
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Lauren R Brinster
- Division of Veterinary Resources, Office of Research Services, National Institutes of Health, Bethesda, Maryland, USA
| | - Barry A Rosenzweig
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Kristina E Howard
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA.
| |
Collapse
|
41
|
Zafar S, Sorsa S, Siurala M, Hemminki O, Havunen R, Cervera-Carrascon V, Santos JM, Wang H, Lieber A, De Gruijl T, Kanerva A, Hemminki A. CD40L coding oncolytic adenovirus allows long-term survival of humanized mice receiving dendritic cell therapy. Oncoimmunology 2018; 7:e1490856. [PMID: 30386680 PMCID: PMC6207416 DOI: 10.1080/2162402x.2018.1490856] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are crucial players in promoting immune responses. Logically, adoptive DC therapy is a promising approach in cancer immunotherapy. One of the major obstacles in cancer immunotherapy in general is the immunosuppressive tumor microenvironment, which hampers the maturation and activation of DCs. Therefore, human clinical outcomes with DC therapy alone have been disappointing. In this study, we use fully serotype 3 oncolytic adenovirus Ad3-hTERT-CMV-hCD40L, expressing human CD40L, to modulate the tumor microenvironment with subsequently improved function of DCs. We evaluated the synergistic effects of Ad3-hTERT-CMV-hCD40L and DCs in the presence of human peripheral blood mononuclear cells ex vivo and in vivo. Tumors treated with Ad3-hTERT-CMV-hCD40L and DCs featured greater antitumor effect compared with unarmed virus or either treatment alone. 100% of humanized mice survived to the end of the experiment, while mice in all other groups died by day 88. Moreover, adenovirally-delivered CD40L induced activation of DCs, leading to induction of Th1 immune responses. These results support clinical trials with Ad3-hTERT-CMV-hCD40L in patients receiving DC therapy.
Collapse
Affiliation(s)
- Sadia Zafar
- Cancer Gene Therapy Group, University of Helsinki, Helsinki, Finland
| | - Suvi Sorsa
- Cancer Gene Therapy Group, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Mikko Siurala
- Cancer Gene Therapy Group, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Otto Hemminki
- Cancer Gene Therapy Group, University of Helsinki, Helsinki, Finland
- Division of Urology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Riikka Havunen
- Cancer Gene Therapy Group, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Victor Cervera-Carrascon
- Cancer Gene Therapy Group, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - João Manuel Santos
- Cancer Gene Therapy Group, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Hongjie Wang
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Andre Lieber
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Tanja De Gruijl
- Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Anna Kanerva
- Cancer Gene Therapy Group, University of Helsinki, Helsinki, Finland
- Department of Obstetrics and Gynecology, Helsinki University Central Hospital, Helsinki, Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
- Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| |
Collapse
|
42
|
Natarajan A, Mayer AT, Reeves RE, Nagamine CM, Gambhir SS. Development of Novel ImmunoPET Tracers to Image Human PD-1 Checkpoint Expression on Tumor-Infiltrating Lymphocytes in a Humanized Mouse Model. Mol Imaging Biol 2018; 19:903-914. [PMID: 28247187 DOI: 10.1007/s11307-017-1060-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE It is well known that cancers exploit immune checkpoints (programmed death 1 receptor (PD-1) and its ligand (PD-L1)) to evade anti-tumor immune responses. Although immune checkpoint (IC) blockade is a promising approach, not all patients respond. Hence, imaging of tumor-infiltrating lymphocytes (TILs) is of high specific interest, as they are known to express PD-1 during activation and subsequent exhaustion in the tumor microenvironment and are thought to be potentially predictive of therapeutic responses to IC blockade. PROCEDURES We developed immune-tracers for positron emission tomography (PET) to image hPD-1 status of human peripheral blood mononuclear cells (hPBMCs) adoptively transferred to NOD-scid IL-2Rγnull (NSG) mice (hNSG) bearing A375 human skin melanoma tumors. The anti-PD-1 human antibody (IgG; keytruda) was labeled with either Zr-89 or Cu-64 radiometals to image PD-1-expressing human TILs in vivo. RESULTS [89Zr] Keytruda (groups = 2; NSG-ctl (control) and hNSG-nblk (non-blocking), n = 3-5, 3.2 ± 0.4 MBq/15-16 μg/200 μl) and [64Cu] Keytruda (groups = 3; NSG-ctl, NSG-blk (blocking), and hNSG-nblk; n = 4, 7.4 ± 0.4 MBq /20-25 μg/200 μl) were administered in mice. PET-CT scans were performed over 1-144 h ([89Zr] Keytruda) and 1-48 h ([64Cu] Keytruda) on mice. hNSG mice exhibited a high tracer uptake in the spleen, lymphoid organs and tumors. At 24 h, human TILs homing into melanoma of hNSG-nblk mice exhibited high signal (mean %ID/g ± SD) of 3.8 ± 0.4 ([89Zr] Keytruda), and 6.4 ± 0.7 ([64Cu] Keytruda), which was 1.5- and 3-fold higher uptake compared to NSG-ctl mice (p = 0.01), respectively. Biodistribution measurements of hNSG-nblk mice performed at 144 h ([89Zr] Keytruda) and 48 h ([64Cu] Keytruda) p.i. revealed tumor to muscle ratios as high as 45- and 12-fold, respectively. CONCLUSIONS Our immunoPET study clearly demonstrates specific imaging of human PD-1-expressing TILs within the tumor and lymphoid tissues. This suggests these anti-human-PD-1 tracers could be clinically translatable to monitor cancer treatment response to IC blockade therapy.
Collapse
Affiliation(s)
- Arutselvan Natarajan
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Aaron T Mayer
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Robert E Reeves
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Claude M Nagamine
- Department of Comparative Medicine, Stanford University, Stanford, CA, USA
| | - Sanjiv Sam Gambhir
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University, James H. Clark Center, 318 Campus Drive, E153, Stanford, CA, 94305, USA.
| |
Collapse
|
43
|
Vogt MB, Lahon A, Arya RP, Kneubehl AR, Spencer Clinton JL, Paust S, Rico-Hesse R. Mosquito saliva alone has profound effects on the human immune system. PLoS Negl Trop Dis 2018; 12:e0006439. [PMID: 29771921 PMCID: PMC5957326 DOI: 10.1371/journal.pntd.0006439] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 04/10/2018] [Indexed: 12/22/2022] Open
Abstract
Mosquito saliva is a very complex concoction of >100 proteins, many of which have unknown functions. The effects of mosquito saliva proteins injected into our skin during blood feeding have been studied mainly in mouse models of injection or biting, with many of these systems producing results that may not be relevant to human disease. Here, we describe the numerous effects that mosquito bites have on human immune cells in mice engrafted with human hematopoietic stem cells. We used flow cytometry and multiplex cytokine bead array assays, with detailed statistical analyses, to detect small but significant variations in immune cell functions after 4 mosquitoes fed on humanized mice footpads. After preliminary analyses, at different early times after biting, we focused on assessing innate immune and subsequent cellular responses at 6 hours, 24 hours and 7 days after mosquito bites. We detected both Th1 and Th2 human immune responses, and delayed effects on cytokine levels in the blood, and immune cell compositions in the skin and bone marrow, up to 7 days post-bites. These are the first measurements of this kind, with human immune responses in whole animals, bitten by living mosquitoes, versus previous studies using incomplete mouse models and salivary gland extracts or needle injected saliva. The results have major implications for the study of hematophagous insect saliva, its effects on the human immune system, with or without pathogen transmission, and the possibility of determining which of these proteins to target for vaccination, in attempts to block transmission of numerous tropical diseases.
Collapse
Affiliation(s)
- Megan B. Vogt
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas, United States of America
| | - Anismrita Lahon
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ravi P. Arya
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Alexander R. Kneubehl
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jennifer L. Spencer Clinton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Silke Paust
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Rebecca Rico-Hesse
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
44
|
Mendoza EJ, Warner B, Safronetz D, Ranadheera C. Crimean-Congo haemorrhagic fever virus: Past, present and future insights for animal modelling and medical countermeasures. Zoonoses Public Health 2018; 65:465-480. [PMID: 29676526 PMCID: PMC7165601 DOI: 10.1111/zph.12469] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Indexed: 01/24/2023]
Abstract
Crimean–Congo haemorrhagic fever (CCHF) is a widespread tick‐borne viral zoonosis with a case‐fatality rate ranging from 9% to 50% in humans. Although a licensed vaccine to prevent infection by the CCHF virus (CCHFV) exists, its ability to induce neutralizing antibodies is limited and its efficacy against CCHFV remains undetermined. In addition, controlling CCHF infections by eradication of the tick reservoir has been ineffective, both economically and logistically, and the treatment options for CCHF remain limited. In this review, we first critically discuss the existing animal models to evaluate therapeutics for CCHF. We then review the therapeutic options for CCHF that have been investigated in human cases, followed by investigational drugs that have been evaluated in pre‐clinical studies. We highlight the importance of understanding human prognostic factors in developing an animal model for CCHF that recapitulates hallmarks of human disease and its implication for selecting therapeutic candidates.
Collapse
Affiliation(s)
- E J Mendoza
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - B Warner
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada.,Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - D Safronetz
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada.,Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - C Ranadheera
- Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| |
Collapse
|
45
|
Bat-mouse bone marrow chimera: a novel animal model for dissecting the uniqueness of the bat immune system. Sci Rep 2018; 8:4726. [PMID: 29549333 PMCID: PMC5856848 DOI: 10.1038/s41598-018-22899-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 02/27/2018] [Indexed: 12/16/2022] Open
Abstract
Bats are an important animal model with long lifespans, low incidences of tumorigenesis and an ability to asymptomatically harbour pathogens. Currently, in vivo studies of bats are hampered due to their low reproduction rates. To overcome this, we transplanted bat cells from bone marrow (BM) and spleen into an immunodeficient mouse strain NOD-scid IL-2R−/− (NSG), and have successfully established stable, long-term reconstitution of bat immune cells in mice (bat-mice). Immune functionality of our bat-mouse model was demonstrated through generation of antigen-specific antibody response by bat cells following immunization. Post-engraftment of total bat BM cells and splenocytes, bat immune cells survived, expanded and repopulated the mouse without any observable clinical abnormalities. Utilizing bat’s remarkable immunological functions, this novel model has a potential to be transformed into a powerful platform for basic and translational research.
Collapse
|
46
|
Younis SY, Barnier-Quer C, Heuking S, Sommandas V, Brunner L, Vd Werff N, Dubois P, Friede M, Kocken C, Collin N, Remarque E. Down selecting adjuvanted vaccine formulations: a comparative method for harmonized evaluation. BMC Immunol 2018; 19:6. [PMID: 29386070 PMCID: PMC5793412 DOI: 10.1186/s12865-018-0245-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 01/24/2018] [Indexed: 11/16/2022] Open
Abstract
Background The need for rapid and accurate comparison of panels of adjuvanted vaccine formulations and subsequent rational down selection, presents several challenges for modern vaccine development. Here we describe a method which may enable vaccine and adjuvant developers to compare antigen/adjuvant combinations in a harmonized fashion. Three reference antigens: Plasmodium falciparum apical membrane antigen 1 (AMA1), hepatitis B virus surface antigen (HBsAg), and Mycobacterium tuberculosis antigen 85A (Ag85A), were selected as model antigens and were each formulated with three adjuvants: aluminium oxyhydroxide, squalene-in-water emulsion, and a liposome formulation mixed with the purified saponin fraction QS21. Results The nine antigen/adjuvant formulations were assessed for stability and immunogenicity in mice in order to provide benchmarks against which other formulations could be compared, in order to assist subsequent down selection of adjuvanted vaccines. Furthermore, mouse cellular immune responses were analyzed by measuring IFN-γ and IL-5 production in splenocytes by ELISPOT, and humoral responses were determined by antigen-specific ELISA, where levels of total IgG, IgG1, IgG2b and IgG2c in serum samples were determined. Conclusions The reference antigens and adjuvants described in this study, which span a spectrum of immune responses, are of potential use as tools to act as points of reference in vaccine development studies. The harmonized methodology described herein may be used as a tool for adjuvant/antigen comparison studies.
Collapse
Affiliation(s)
- Sumera Y Younis
- Biomedical Primate Research Centre, Department of Parasitology, Rijswijk, The Netherlands
| | | | - Simon Heuking
- Vaccine Formulation Laboratory, University of Lausanne, Epalinges, Switzerland
| | - Vinod Sommandas
- Biomedical Primate Research Centre, Department of Parasitology, Rijswijk, The Netherlands
| | - Livia Brunner
- Vaccine Formulation Laboratory, University of Lausanne, Epalinges, Switzerland
| | - Nicole Vd Werff
- Biomedical Primate Research Centre, Department of Parasitology, Rijswijk, The Netherlands
| | - Patrice Dubois
- Vaccine Formulation Laboratory, University of Lausanne, Epalinges, Switzerland
| | | | - Clemens Kocken
- Biomedical Primate Research Centre, Department of Parasitology, Rijswijk, The Netherlands
| | - Nicolas Collin
- Vaccine Formulation Laboratory, University of Lausanne, Epalinges, Switzerland
| | - Ed Remarque
- Biomedical Primate Research Centre, Department of Parasitology, Rijswijk, The Netherlands.
| |
Collapse
|
47
|
Núñez D, Comas L, Lanuza PM, Sánchez-Martinez D, Pérez-Hernández M, Catalán E, Domingo MP, Velázquez-Campoy A, Pardo J, Gálvez EM. A Functional Analysis on the Interspecies Interaction between Mouse LFA-1 and Human Intercellular Adhesion Molecule-1 at the Cell Level. Front Immunol 2017; 8:1817. [PMID: 29312326 PMCID: PMC5742583 DOI: 10.3389/fimmu.2017.01817] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 12/04/2017] [Indexed: 01/31/2023] Open
Abstract
The interaction between intercellular adhesion molecules (ICAM) and the integrin leukocyte function-associated antigen-1 (LFA-1) is crucial for the regulation of several physiological and pathophysiological processes like cell-mediated elimination of tumor or virus infected cells, cancer metastasis, or inflammatory and autoimmune processes. Using purified proteins it was reported a species restriction for the interaction of ICAM-1 and LFA-1, being mouse ICAM-1 able to interact with human LFA-1 but not human ICAM-1 with mouse LFA-1. However, in vivo results employing tumor cells transfected with human ICAM-1 suggest that functionally mouse LFA-1 can recognize human ICAM-1. In order to clarify the interspecies cross-reactivity of the ICAM-1/LFA-1 interaction, we have performed functional studies analyzing the ability of human soluble ICAM-1 and human/mouse LFA-1 derived peptides to inhibit cell aggregation and adhesion as well as cell-mediated cytotoxicity in both mouse and human systems. In parallel, the affinity of the interaction between mouse LFA-1-derived peptides and human ICAM-1 was determined by calorimetry assays. According to the results obtained, it seems that human ICAM-1 is able to interact with mouse LFA-1 on intact cells, which should be taking into account when using humanized mice and xenograft models for the study of immune-related processes.
Collapse
Affiliation(s)
- David Núñez
- Immune Effector Cells Group, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Department of Biochemistry and Molecular and Cell Biology, Fac. Ciencias, University of Zaragoza, Zaragoza, Spain.,Instituto de Carboquímica ICB-CSIC, Zaragoza, Spain
| | - Laura Comas
- Immune Effector Cells Group, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Department of Biochemistry and Molecular and Cell Biology, Fac. Ciencias, University of Zaragoza, Zaragoza, Spain.,Instituto de Carboquímica ICB-CSIC, Zaragoza, Spain
| | - Pilar M Lanuza
- Immune Effector Cells Group, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Department of Biochemistry and Molecular and Cell Biology, Fac. Ciencias, University of Zaragoza, Zaragoza, Spain
| | - Diego Sánchez-Martinez
- Immune Effector Cells Group, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Department of Biochemistry and Molecular and Cell Biology, Fac. Ciencias, University of Zaragoza, Zaragoza, Spain
| | - Marta Pérez-Hernández
- Immune Effector Cells Group, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Department of Biochemistry and Molecular and Cell Biology, Fac. Ciencias, University of Zaragoza, Zaragoza, Spain
| | - Elena Catalán
- Department of Biochemistry and Molecular and Cell Biology, Fac. Ciencias, University of Zaragoza, Zaragoza, Spain
| | | | - Adrián Velázquez-Campoy
- Department of Biochemistry and Molecular and Cell Biology, Fac. Ciencias, University of Zaragoza, Zaragoza, Spain.,Institute of Biocomputation and Physics of Complex Systems (BIFI), Unidad Asociada IQFR-CSIC-BIFI, Universidad de Zaragoza, Zaragoza, Spain.,Aragón I + D Foundation (ARAID), Government of Aragon, Zaragoza, Spain
| | - Julián Pardo
- Immune Effector Cells Group, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Aragón I + D Foundation (ARAID), Government of Aragon, Zaragoza, Spain.,Nanoscience Institute of Aragon (INA), University of Zaragoza, Zaragoza, Spain.,Department of Microbiology, Preventive Medicine and Public Health, University of Zaragoza, Zaragoza, Spain
| | - Eva M Gálvez
- Immune Effector Cells Group, Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Instituto de Carboquímica ICB-CSIC, Zaragoza, Spain
| |
Collapse
|
48
|
Lee HS, Song S, Shin DY, Kim GS, Lee JH, Cho CW, Lee KW, Park H, Ahn C, Yang J, Yang HM, Park JB, Kim SJ. Enhanced effect of human mesenchymal stem cells expressing human TNF-αR-Fc and HO-1 gene on porcine islet xenotransplantation in humanized mice. Xenotransplantation 2017; 25. [DOI: 10.1111/xen.12342] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/25/2017] [Accepted: 08/14/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Han-Sin Lee
- Transplantation Research Center; Samsung Biomedical Research Institute; Seoul Korea
- Samsung Medical Center; Stem Cell & Regenerative Medicine Institute; Seoul Korea
| | - Sanghyun Song
- Department of Surgery; Dankook University College of Medicine; Dankook University Hospital; Cheonam Korea
| | - Du Yeon Shin
- Transplantation Research Center; Samsung Biomedical Research Institute; Seoul Korea
- Samsung Medical Center; Stem Cell & Regenerative Medicine Institute; Seoul Korea
- Department of Health Sciences & Technology; Samsung Advanced Institute for Health Sciences & Technology; Graduate School; Sungkyunkwan University; Seoul Korea
| | - Geun-Soo Kim
- Transplantation Research Center; Samsung Biomedical Research Institute; Seoul Korea
- Samsung Medical Center; Stem Cell & Regenerative Medicine Institute; Seoul Korea
| | - Jong-Hyun Lee
- Transplantation Research Center; Samsung Biomedical Research Institute; Seoul Korea
- Samsung Medical Center; Stem Cell & Regenerative Medicine Institute; Seoul Korea
| | - Chan Woo Cho
- Department of Surgery; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul Korea
| | - Kyo Won Lee
- Department of Surgery; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul Korea
| | - Hyojun Park
- Transplantation Research Center; Samsung Biomedical Research Institute; Seoul Korea
- Samsung Medical Center; Stem Cell & Regenerative Medicine Institute; Seoul Korea
- Department of Surgery; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul Korea
| | - Curie Ahn
- Transplantation Center; Seoul National University Hospital; Seoul Korea
| | - Jaeseok Yang
- Transplantation Center; Seoul National University Hospital; Seoul Korea
| | - Heung-Mo Yang
- Transplantation Research Center; Samsung Biomedical Research Institute; Seoul Korea
- Samsung Medical Center; Stem Cell & Regenerative Medicine Institute; Seoul Korea
- Department of Medicine; Sungkyunkwan University School of Medicine; Kyunggi Korea
| | - Jae Berm Park
- Transplantation Research Center; Samsung Biomedical Research Institute; Seoul Korea
- Samsung Medical Center; Stem Cell & Regenerative Medicine Institute; Seoul Korea
- Department of Surgery; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul Korea
| | - Sung-Joo Kim
- Transplantation Research Center; Samsung Biomedical Research Institute; Seoul Korea
- Samsung Medical Center; Stem Cell & Regenerative Medicine Institute; Seoul Korea
- Department of Health Sciences & Technology; Samsung Advanced Institute for Health Sciences & Technology; Graduate School; Sungkyunkwan University; Seoul Korea
- Department of Surgery; Samsung Medical Center; Sungkyunkwan University School of Medicine; Seoul Korea
| |
Collapse
|
49
|
Walker JA, Vuyyuru R, Manser T, Alugupalli KR. Humoral Immunity in Mice Transplanted with Hematopoietic Stem Cells Derived from Human Umbilical Cord Blood Recapitulates That of Human Infants. Stem Cells Dev 2017; 26:1715-1723. [PMID: 29099340 DOI: 10.1089/scd.2017.0156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Immunodeficient mice transplanted with human hematopoietic stem cells (HSCs) have been referred to as "Human Immune System" (HIS) mice and are a translational platform for studying human immune responses in vivo. Human HSC sources used in generating HIS mice include fetal liver (FL), umbilical cord blood (CB), and adult bone marrow (BM). Since HSCs from FL, CB, and BM are produced at various stages of human development, we tested whether mice transplanted with these three HSCs differ in their immune responses. We found that compared with CB HSCs or FL HSCs, adult BM HSCs reconstitute the immune system poorly. The resulting HIS mice do not mount an antibody response to Borrelia hermsii infection and as a consequence suffer persistently high levels of bacteremia. While both CB and FL HSCs yield comparable levels of immune reconstitution of HIS mice resulting in robust anti-B. hermsii immune responses, FL HSC-transplanted mice exhibited a discernable difference in their human B cell maturity as identified by an increased frequency of CD10+ immature B cells and relatively smaller lymphoid follicles compared with CB HSC-transplanted mice. Although CB HSC-transplanted mice generated robust antibody responses to B. hermsii and specific protein antigens of B. hermsii, they failed to respond to Salmonella typhi Vi polysaccharide, a classical T cell-independent antigen. This situation resembles that seen in human infants and young children. Therefore, CB HSC-transplanted mice may serve as a translation platform to explore approaches to overcome the impaired antipolysaccharide responses characteristic of human infants.
Collapse
Affiliation(s)
- Justin A Walker
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University , Philadelphia, Pennsylvania
| | - Raja Vuyyuru
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University , Philadelphia, Pennsylvania
| | - Tim Manser
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University , Philadelphia, Pennsylvania
| | - Kishore R Alugupalli
- Department of Microbiology and Immunology, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University , Philadelphia, Pennsylvania
| |
Collapse
|
50
|
Dowall SD, Carroll MW, Hewson R. Development of vaccines against Crimean-Congo haemorrhagic fever virus. Vaccine 2017; 35:6015-6023. [PMID: 28687403 PMCID: PMC5637709 DOI: 10.1016/j.vaccine.2017.05.031] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/24/2017] [Accepted: 05/10/2017] [Indexed: 11/19/2022]
Abstract
Crimean-Congo haemorrhagic fever virus (CCHFV) is a deadly human pathogen of the utmost seriousness being highly lethal causing devastating disease symptoms that result in intense and prolonged suffering to those infected. During the past 40years, this virus has repeatedly caused sporadic outbreaks responsible for relatively low numbers of human casualties, but with an alarming fatality rate of up to 80% in clinically infected patients. CCHFV is transmitted to humans by Hyalomma ticks and contact with the blood of viremic livestock, additionally cases of human-to-human transmission are not uncommon in nosocomial settings. The incidence of CCHF closely matches the geographical range of permissive ticks, which are widespread throughout Africa, Asia, the Middle East and Europe. As such, CCHFV is the most widespread tick-borne virus on earth. It is a concern that recent data shows the geographic distribution of Hyalomma ticks is expanding. Migratory birds are also disseminating Hyalomma ticks into more northerly parts of Europe thus potentially exposing naïve human populations to CCHFV. The virus has been imported into the UK on two occasions in the last five years with the first fatal case being confirmed in 2012. A licensed vaccine to CCHF is not available. In this review, we discuss the background and complications surrounding this limitation and examine the current status and recent advances in the development of vaccines against CCHFV.
Collapse
Affiliation(s)
- Stuart D Dowall
- Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, UK
| | - Miles W Carroll
- Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, UK
| | - Roger Hewson
- Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, UK.
| |
Collapse
|