1
|
Lu C, Wei J, Gao C, Sun M, Dong D, Mu Z. Molecular signaling pathways in doxorubicin-induced nephrotoxicity and potential therapeutic agents. Int Immunopharmacol 2025; 144:113373. [PMID: 39566381 DOI: 10.1016/j.intimp.2024.113373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 11/22/2024]
Abstract
Doxorubicin (DOX), an anthracycline chemotherapeutic agent, is extensively utilized in the clinical management of both solid and hematological malignancies. Nevertheless, the clinical application of this treatment is significantly limited by adverse reactions and toxicity that may arise during or after administration. Its cytotoxic effects are multifaceted, with cardiotoxicity being the most prevalent side effect. Furthermore, it has the potential to adversely affect other organs, including the brain, kidneys, liver, and so on. Notably, it has been reported that DOX may cause renal failure in patients and there is currently no effective treatment for DOX-induced kidney damage, which has raised a high concern about DOX-induced nephrotoxicity (DIN). Although the precise molecular mechanisms underlying DIN remain incompletely elucidated, prior research has indicated that reactive oxygen species (ROS) are pivotal in this process, triggering a cascade of detrimental pathways including apoptosis, inflammation, dysregulated autophagic flux, and fibrosis. In light of these mechanisms, decades of research have uncovered several DIN-associated signaling pathways and found multiple potential therapeutic agents targeting them. Thus, this review intends to delineate the DIN associated signaling pathways, including AMPK, JAKs/STATs, TRPC6/RhoA/ROCK1, YAP/TEAD, SIRTs, Wnt/β-catenin, TGF-β/Smad, MAPK, Nrf2/ARE, NF-κB, and PI3K/AKT, and to summarize their potential regulatory agents, which provide a reference for the development of novel medicines against DIN.
Collapse
Affiliation(s)
- Changxu Lu
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China; Department of Urology, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jinwen Wei
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Can Gao
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Mingli Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang, Liaoning, China.
| | - Dan Dong
- College of Basic Medical Science, China Medical University, Shenyang, Liaoning, China.
| | - Zhongyi Mu
- Department of Urology, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
2
|
Ashraf MS, Tuli K, Moiz S, Sharma SK, Sharma D, Adnan M. AMP kinase: A promising therapeutic drug target for post-COVID-19 complications. Life Sci 2024; 359:123202. [PMID: 39489398 DOI: 10.1016/j.lfs.2024.123202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, has resulted in severe respiratory issues and persistent complications, particularly affecting glucose metabolism. Patients with or without pre-existing diabetes often experience worsened symptoms, highlighting the need for innovative therapeutic approaches. AMPK, a crucial regulator of cellular energy balance, plays a pivotal role in glucose metabolism, insulin sensitivity, and inflammatory responses. AMPK activation, through allosteric or kinase-dependent mechanisms, impacts cellular processes like glucose uptake, fatty acid oxidation, and autophagy. The tissue-specific distribution of AMPK emphasizes its role in maintaining metabolic homeostasis throughout the body. Intriguingly, SARS-CoV-2 infection inhibits AMPK, contributing to metabolic dysregulation and post-COVID-19 complications. AMPK activators like capsaicinoids, curcumin, phytoestrogens, cilostazol, and momordicosides have demonstrated the potential to regulate AMPK activity. Compounds from various sources improve fatty acid oxidation and insulin sensitivity, with metformin showing opposing effects on AMPK activation compared to the virus, suggesting potential therapeutic options. The diverse effects of AMPK activation extend to its role in countering viral infections, further highlighting its significance in COVID-19. This review explores AMPK activation mechanisms, its role in metabolic disorders, and the potential use of natural compounds to target AMPK for post-COVID-19 complications. Also, it aims to review the possible methods of activating AMPK to prevent post-COVID-19 diabetes and cardiovascular complications. It also explores the use of natural compounds for their therapeutic effects in targeting the AMPK pathways. Targeting AMPK activation emerges as a promising avenue to mitigate the long-term effects of COVID-19, offering hope for improved patient outcomes and a better quality of life.
Collapse
Affiliation(s)
- Mohammad Saquib Ashraf
- Department of Medical Laboratory Science College of Pharmacy, Nursing and Medical Science Riyadh ELM University, Riyadh, P.O. Box 12734, Saudi Arabia.
| | - Kanika Tuli
- Guru Nanak Institute of Pharmacy, Dalewal, Hoshiarpur 144208, Punjab, India
| | - Shadman Moiz
- Department of Biotechnology, Lalit Narayan Mithila University, Darbhanga 846004, Bihar, India
| | - Satish Kumar Sharma
- Department of Pharmacology, Glocal School of Pharmacy, The Glocal University, Saharanpur, India
| | - Deepa Sharma
- UMM Matrix Innovations Private Limited, Delhi 110044, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia; Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India
| |
Collapse
|
3
|
Yanagi T, Kikuchi H, Takeuchi K, Susa K, Mori T, Chiga M, Yamamoto K, Furukawa A, Kanazawa T, Kato Y, Takahashi N, Suzuki T, Mori Y, Carter BC, Mori M, Nakano Y, Fujiki T, Hara Y, Suzuki S, Ando F, Mandai S, Honda S, Torii S, Shimizu S, Tanaka H, Fujii Y, Rai T, Uchida S, Sohara E. ULK1-regulated AMP sensing by AMPK and its application for the treatment of chronic kidney disease. Kidney Int 2024; 106:887-906. [PMID: 39428173 DOI: 10.1016/j.kint.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 10/22/2024]
Abstract
Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a central kinase involved in energy homeostasis. Increased intracellular AMP levels result in AMPK activation through the binding of AMP to the γ-subunit of AMPK. Recently, we reported that AMP-induced AMPK activation is impaired in the kidneys in chronic kidney disease (CKD) despite an increase in the AMP/ATP ratio. However, the mechanisms by which AMP sensing is disrupted in CKD are unclear. Here, we identified mechanisms of energy homeostasis in which Unc-51-like kinase 1 (ULK1)-dependent phosphorylation of AMPKγ1 at Ser260/Thr262 promoting AMP sensitivity of AMPK. AMPK activation by AMP was impaired in Ulk1 knockout mice despite an increased AMP/ATP ratio. ULK1 expression is markedly downregulated in CKD kidneys, leading to AMP sensing failure. Additionally, MK8722, an allosteric AMPK activator, stimulated AMPK in the kidneys of a CKD mouse model (5/6th nephrectomy) via a pathway that is independent of AMP sensing. Thus, our study shows that MK8722 treatment significantly attenuates the deterioration of kidney function in CKD and may be a potential therapeutic option in CKD therapeutics.
Collapse
Affiliation(s)
- Tomoki Yanagi
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hiroaki Kikuchi
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| | - Koh Takeuchi
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, Tokyo, Japan
| | - Koichiro Susa
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takayasu Mori
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Motoko Chiga
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kouhei Yamamoto
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Asuka Furukawa
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takumi Kanazawa
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuki Kato
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Naohiro Takahashi
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takefumi Suzuki
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yutaro Mori
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Benjamin C Carter
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Makiko Mori
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuta Nakano
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tamami Fujiki
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yu Hara
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Soichiro Suzuki
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Fumiaki Ando
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shintaro Mandai
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shinya Honda
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Satoru Torii
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shigeomi Shimizu
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hajime Tanaka
- Department of Urology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yasuhisa Fujii
- Department of Urology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tatemitsu Rai
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan; Department of Nephrology and Hypertension, Dokkyo Medical University, Tochigi, Japan
| | - Shinichi Uchida
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Eisei Sohara
- Department of Nephrology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| |
Collapse
|
4
|
Vogt J, Wolf L, Hoelzle LE, Feger M, Föller M. AMP-dependent kinase stimulates the expression of αKlotho. FEBS Open Bio 2024; 14:1691-1700. [PMID: 39090792 PMCID: PMC11452301 DOI: 10.1002/2211-5463.13872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 06/14/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024] Open
Abstract
Renal αKlotho along with fibroblast growth factor 23 regulates phosphate and vitamin D metabolism. Its cleavage yields soluble Klotho controlling intracellular processes. αKlotho has anti-inflammatory and antioxidant effects and is nephro- and cardioprotective. AMP-dependent kinase (AMPK) is a nephro- and cardioprotective energy sensor. Given that both αKlotho and AMPK have beneficial effects in similar organs, we studied whether AMPK regulates αKlotho gene expression in Madin-Darby canine kidney, normal rat kidney 52E, and human kidney 2 cells. Using quantitative real-time PCR and western blotting, we measured αKlotho expression upon pharmacological manipulation or siRNA-mediated knockdown of AMPKα. AMPK activator 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) enhanced αKlotho expression, an effect reduced in the presence of AMPK inhibitor compound C or siRNA targeting AMPK catalytic α-subunits (α1 and α2). Similarly, AMPK activators metformin and phenformin upregulated αKlotho transcripts. Taken together, our results suggest that AMPK is a powerful inducer of αKlotho and could thereby contribute to the development of future therapeutic interventions.
Collapse
Affiliation(s)
- Julia Vogt
- Department of PhysiologyUniversity of HohenheimStuttgartGermany
| | - Lisa Wolf
- Department of PhysiologyUniversity of HohenheimStuttgartGermany
| | - Ludwig E. Hoelzle
- Institute of Animal Science, University of HohenheimStuttgartGermany
| | - Martina Feger
- Department of PhysiologyUniversity of HohenheimStuttgartGermany
| | - Michael Föller
- Department of PhysiologyUniversity of HohenheimStuttgartGermany
| |
Collapse
|
5
|
Song X, Pickel L, Sung HK, Scholey J, Pei Y. Reprogramming of Energy Metabolism in Human PKD1 Polycystic Kidney Disease: A Systems Biology Analysis. Int J Mol Sci 2024; 25:7173. [PMID: 39000280 PMCID: PMC11240917 DOI: 10.3390/ijms25137173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Multiple alterations of cellular metabolism have been documented in experimental studies of autosomal dominant polycystic kidney disease (ADPKD) and are thought to contribute to its pathogenesis. To elucidate the molecular pathways and transcriptional regulators associated with the metabolic changes of renal cysts in ADPKD, we compared global gene expression data from human PKD1 renal cysts, minimally cystic tissues (MCT) from the same patients, and healthy human kidney cortical tissue samples. We found gene expression profiles of PKD1 renal cysts were consistent with the Warburg effect with gene pathway changes favoring increased cellular glucose uptake and lactate production, instead of pyruvate oxidation. Additionally, mitochondrial energy metabolism was globally depressed, associated with downregulation of gene pathways related to fatty acid oxidation (FAO), branched-chain amino acid (BCAA) degradation, the Krebs cycle, and oxidative phosphorylation (OXPHOS) in renal cysts. Activation of mTORC1 and its two target proto-oncogenes, HIF-1α and MYC, was predicted to drive the expression of multiple genes involved in the observed metabolic reprogramming (e.g., GLUT3, HK1/HK2, ALDOA, ENO2, PKM, LDHA/LDHB, MCT4, PDHA1, PDK1/3, MPC1/2, CPT2, BCAT1, NAMPT); indeed, their predicted expression patterns were confirmed by our data. Conversely, we found AMPK inhibition was predicted in renal cysts. AMPK inhibition was associated with decreased expression of PGC-1α, a transcriptional coactivator for transcription factors PPARα, ERRα, and ERRγ, all of which play a critical role in regulating oxidative metabolism and mitochondrial biogenesis. These data provide a comprehensive map of metabolic pathway reprogramming in ADPKD and highlight nodes of regulation that may serve as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Xuewen Song
- Division of Nephrology, University Health Network, Toronto, ON M5G 2N2, Canada
- Department of Medicine, Division of Nephrology, University of Toronto, Toronto, ON M5S 1A8, Canada; (X.S.); (J.S.)
| | - Lauren Pickel
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 1E8, Canada; (L.P.); (H.-K.S.)
| | - Hoon-Ki Sung
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 1E8, Canada; (L.P.); (H.-K.S.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - James Scholey
- Division of Nephrology, University Health Network, Toronto, ON M5G 2N2, Canada
- Department of Medicine, Division of Nephrology, University of Toronto, Toronto, ON M5S 1A8, Canada; (X.S.); (J.S.)
| | - York Pei
- Division of Nephrology, University Health Network, Toronto, ON M5G 2N2, Canada
- Department of Medicine, Division of Nephrology, University of Toronto, Toronto, ON M5S 1A8, Canada; (X.S.); (J.S.)
| |
Collapse
|
6
|
Katerelos M, Gleich K, Harley G, Loh K, Oakhill JS, Kemp BE, de Souza DP, Narayana VK, Coughlan MT, Laskowski A, Ling NXY, Murray-Segal L, Brink R, Lee M, Power DA, Mount PF. The AMPK activator ATX-304 alters cellular metabolism to protect against cisplatin-induced acute kidney injury. Biomed Pharmacother 2024; 175:116730. [PMID: 38749175 DOI: 10.1016/j.biopha.2024.116730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024] Open
Abstract
Acute kidney injury (AKI) disrupts energy metabolism. Targeting metabolism through AMP-activated protein kinase (AMPK) may alleviate AKI. ATX-304, a pan-AMPK activator, was evaluated in C57Bl/6 mice and tubular epithelial cell (TEC) cultures. Mice received ATX-304 (1 mg/g) or control chow for 7 days before cisplatin-induced AKI (CI-AKI). Primary cultures of tubular epithelial cells (TECs) were pre-treated with ATX-304 (20 µM, 4 h) prior to exposure to cisplatin (20 µM, 23 h). ATX-304 increased acetyl-CoA carboxylase phosphorylation, indicating AMPK activation. It protected against CI-AKI measured by serum creatinine (control 0.05 + 0.03 mM vs ATX-304 0.02 + 0.01 mM, P = 0.03), western blot for neutrophil gelatinase-associated lipocalin (NGAL) (control 3.3 + 1.8-fold vs ATX-304 1.2 + 0.55-fold, P = 0.002), and histological injury (control 3.5 + 0.59 vs ATX-304 2.7 + 0.74, P = 0.03). In TECs, pre-treatment with ATX-304 protected against cisplatin-mediated injury, as measured by lactate dehydrogenase release, MTS cell viability, and cleaved caspase 3 expression. ATX-304 protection against cisplatin was lost in AMPK-null murine embryonic fibroblasts. Metabolomic analysis in TECs revealed that ATX-304 (20 µM, 4 h) altered 66/126 metabolites, including fatty acids, tricarboxylic acid cycle metabolites, and amino acids. Metabolic studies of live cells using the XFe96 Seahorse analyzer revealed that ATX-304 increased the basal TEC oxygen consumption rate by 38%, whereas maximal respiration was unchanged. Thus, ATX-304 protects against cisplatin-mediated kidney injury via AMPK-dependent metabolic reprogramming, revealing a promising therapeutic strategy for AKI.
Collapse
Affiliation(s)
- Marina Katerelos
- Department of Nephrology, Austin Health, Heidelberg, Victoria 3084, Australia; Kidney Laboratory, The Institute for Breathing and Sleep (IBAS), Austin Health, Heidelberg, Victoria 3084, Australia
| | - Kurt Gleich
- Department of Nephrology, Austin Health, Heidelberg, Victoria 3084, Australia; Kidney Laboratory, The Institute for Breathing and Sleep (IBAS), Austin Health, Heidelberg, Victoria 3084, Australia
| | - Geoff Harley
- Department of Nephrology, Austin Health, Heidelberg, Victoria 3084, Australia; Kidney Laboratory, The Institute for Breathing and Sleep (IBAS), Austin Health, Heidelberg, Victoria 3084, Australia
| | - Kim Loh
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Jonathan S Oakhill
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Bruce E Kemp
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - David P de Souza
- Metabolomics Australia, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Vinod K Narayana
- Metabolomics Australia, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Melinda T Coughlan
- Glycation, Nutrition and Metabolism Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University Parkville Campus, Parkville, Victoria 3052, Australia
| | - Adrienne Laskowski
- Glycation, Nutrition and Metabolism Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Naomi X Y Ling
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Lisa Murray-Segal
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | - Robert Brink
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia; St. Vincent's Clinical School, University of New South Wales, St. Vincent's Hospital, Darlinghurst, New South Wales 2010, Australia
| | - Mardiana Lee
- Department of Nephrology, Austin Health, Heidelberg, Victoria 3084, Australia; Kidney Laboratory, The Institute for Breathing and Sleep (IBAS), Austin Health, Heidelberg, Victoria 3084, Australia
| | - David A Power
- Department of Nephrology, Austin Health, Heidelberg, Victoria 3084, Australia; Kidney Laboratory, The Institute for Breathing and Sleep (IBAS), Austin Health, Heidelberg, Victoria 3084, Australia; Department of Medicine (Austin), The University of Melbourne, Heidelberg ,Victoria 3084, Australia
| | - Peter F Mount
- Department of Nephrology, Austin Health, Heidelberg, Victoria 3084, Australia; Kidney Laboratory, The Institute for Breathing and Sleep (IBAS), Austin Health, Heidelberg, Victoria 3084, Australia; Department of Medicine (Austin), The University of Melbourne, Heidelberg ,Victoria 3084, Australia.
| |
Collapse
|
7
|
Chrysopoulou M, Rinschen MM. Metabolic Rewiring and Communication: An Integrative View of Kidney Proximal Tubule Function. Annu Rev Physiol 2024; 86:405-427. [PMID: 38012048 DOI: 10.1146/annurev-physiol-042222-024724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The kidney proximal tubule is a key organ for human metabolism. The kidney responds to stress with altered metabolite transformation and perturbed metabolic pathways, an ultimate cause for kidney disease. Here, we review the proximal tubule's metabolic function through an integrative view of transport, metabolism, and function, and embed it in the context of metabolome-wide data-driven research. Function (filtration, transport, secretion, and reabsorption), metabolite transformation, and metabolite signaling determine kidney metabolic rewiring in disease. Energy metabolism and substrates for key metabolic pathways are orchestrated by metabolite sensors. Given the importance of renal function for the inner milieu, we also review metabolic communication routes with other organs. Exciting research opportunities exist to understand metabolic perturbation of kidney and proximal tubule function, for example, in hypertension-associated kidney disease. We argue that, based on the integrative view outlined here, kidney diseases without genetic cause should be approached scientifically as metabolic diseases.
Collapse
Affiliation(s)
| | - Markus M Rinschen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark;
- III. Department of Medicine and Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| |
Collapse
|
8
|
Jin C, Cao Y, Li Y. Bone Mesenchymal Stem Cells Origin Exosomes are Effective Against Sepsis-Induced Acute Kidney Injury in Rat Model. Int J Nanomedicine 2023; 18:7745-7758. [PMID: 38144514 PMCID: PMC10743757 DOI: 10.2147/ijn.s417627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/13/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction The incidence and mortality rates of sepsis-induced acute kidney injury (SAKI) remain high, posing a substantial healthcare burden. Studies have implicated a connection between the development of SAKI and inflammation response, apoptosis, and autophagy. Moreover, evidence suggests that manipulating autophagy could potentially influence the prognosis of this condition. Notably, exosomes derived from bone mesenchymal stem cells (BMSCs-Exo) have exhibited promise in mitigating cellular damage by modulating pathways associated with inflammation, apoptosis, and autophagy. Thus, this study aims to investigate the influence of BMSCs-Exo on SAKI and the potential mechanisms that drive this impact. Methods The SAKI model was induced in HK-2 cells using lipopolysaccharide (LPS), while rats underwent cecal ligation and puncture (CLP) to simulate the condition. Cell viability was assessed using the CCK-8 kit, and kidney damage was evaluated through HE staining, blood urea nitrogen (BUN), and serum creatinine (SCr) measurements. Inflammatory-related RNAs and proteins were quantified via qPCR and ELISA, respectively. Apoptosis was determined through apoptosis-related protein levels, flow cytometry, and TUNEL staining. Western blot analysis was utilized to measure associated protein expressions. Results In vivo, BMSCs-Exo ameliorated kidney injury in CLP-induced SAKI rats, reducing inflammatory cytokine production and apoptosis levels. Fluorescence microscope observed the absorption of BMSCs-Exo by renal cells following injection via tail vein. In the SAKI rat kidney tissue, there was an upregulation of LC3-II/LC3-I, p62, and phosphorylated AMP-activated protein kinase (p-AMPK) expressions, indicating blocked autophagic flux, while phosphorylated mammalian target of rapamycin (p-mTOR) expression was downregulated. However, BMSCs-Exo enhanced LC3-II/LC3-I and p-AMPK expression, concurrently reducing p62 and p-mTOR levels. In vitro, BMSCs-Exo enhanced cell viability in LPS-treated HK-2 cells, and exerted anti-inflammation and anti-apoptosis effects which were consistent with the results in vivo. Similarly, rapamycin (Rapa) exhibited a protective effect comparable to BMSCs-Exo, albeit partially abrogated by 3-methyladenine (3-MA). Conclusion BMSCs-Exo mitigate inflammation and apoptosis through autophagy in SAKI, offering a promising avenue for SAKI treatment.
Collapse
Affiliation(s)
- Cui Jin
- Department of Critical Care Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072, People’s Republic of China
| | - Yongmei Cao
- Department of Critical Care Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072, People’s Republic of China
| | - Yingchuan Li
- Department of Critical Care Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072, People’s Republic of China
| |
Collapse
|
9
|
Jia PP, Chandrajith R, Junaid M, Li TY, Li YZ, Wei XY, Liu L, Pei DS. Elucidating environmental factors and their combined effects on CKDu in Sri Lanka using zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121967. [PMID: 37290634 DOI: 10.1016/j.envpol.2023.121967] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
Chronic kidney disease with uncertain etiology (CKDu) in Sri Lanka has attracted much attention as a global health issue. However, how environmental factors in local drinking water induce kidney damage in organisms is still elusive. We investigated multiple environmental factors including water hardness and fluoride (HF), heavy metals (HM), microcystin-LR (MC-LR), and their combined exposure (HFMM) to elucidate their toxic effects on CKDu risk in zebrafish. Acute exposure affected renal development and inhibited the fluorescence of Na, K-ATPase alpha1A4:GFP zebrafish kidney. Chronic exposure influenced the body weight of both genders of adult fish and induced kidney damage by histopathological analyses. Furthermore, the exposure significantly disturbed differential expression genes (DEGs), diversity and richness of gut microbiota, and critical metabolites related to renal functions. The transcriptomic analysis revealed that kidney-related DEGs were linked with renal cell carcinoma, proximal tubule bicarbonate reclamation, calcium signaling pathway, and HIF-1 signaling pathway. The significantly disrupted intestinal microbiota was closely related to the environmental factors and H&E score, which demonstrated the mechanisms of kidney risks. Notably, the Spearman correlation analysis indicated that the changed bacteria such as Pseudomonas, Paracoccus, and ZOR0006, etc were significantly connected to the DEGs and metabolites. Therefore, the assessment of multiple environmental factors provided new insights on "bio-markers" as potential therapies of the target signaling pathways, metabolites, and gut bacteria to monitor or protect residents from CKDu.
Collapse
Affiliation(s)
- Pan-Pan Jia
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Rohana Chandrajith
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Department of Geology, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - Muhammad Junaid
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Tian-Yun Li
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Yong-Zhi Li
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Xing-Yi Wei
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Li Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
10
|
Mapuskar KA, Vasquez-Martinez G, Mayoral-Andrade G, Tomanek-Chalkley A, Zepeda-Orozco D, Allen BG. Mitochondrial Oxidative Metabolism: An Emerging Therapeutic Target to Improve CKD Outcomes. Biomedicines 2023; 11:1573. [PMID: 37371668 DOI: 10.3390/biomedicines11061573] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic kidney disease (CKD) predisposes one toward end-stage renal disease (ESRD) and its associated morbidity and mortality. Significant metabolic perturbations in conjunction with alterations in redox status during CKD may induce increased production of reactive oxygen species (ROS), including superoxide (O2●-) and hydrogen peroxide (H2O2). Increased O2●- and H2O2 may contribute to the overall progression of renal injury as well as catalyze the onset of comorbidities. In this review, we discuss the role of mitochondrial oxidative metabolism in the pathology of CKD and the recent developments in treating CKD progression specifically targeted to the mitochondria. Recently published results from a Phase 2b clinical trial by our group as well as recently released data from a ROMAN: Phase 3 trial (NCT03689712) suggest avasopasem manganese (AVA) may protect kidneys from cisplatin-induced CKD. Several antioxidants are under investigation to protect normal tissues from cancer-therapy-associated injury. Although many of these antioxidants demonstrate efficacy in pre-clinical models, clinically relevant novel compounds that reduce the severity of AKI and delay the progression to CKD are needed to reduce the burden of kidney disease. In this review, we focus on the various metabolic pathways in the kidney, discuss the role of mitochondrial metabolism in kidney disease, and the general involvement of mitochondrial oxidative metabolism in CKD progression. Furthermore, we present up-to-date literature on utilizing targets of mitochondrial metabolism to delay the pathology of CKD in pre-clinical and clinical models. Finally, we discuss the current clinical trials that target the mitochondria that could potentially be instrumental in advancing the clinical exploration and prevention of CKD.
Collapse
Affiliation(s)
- Kranti A Mapuskar
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Gabriela Vasquez-Martinez
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Gabriel Mayoral-Andrade
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Ann Tomanek-Chalkley
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Diana Zepeda-Orozco
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University, College of Medicine, Columbus, OH 43210, USA
| | - Bryan G Allen
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| |
Collapse
|
11
|
Xu C, Hong Q, Zhuang K, Ren X, Cui S, Dong Z, Wang Q, Bai X, Chen X. Regulation of pericyte metabolic reprogramming restricts the AKI to CKD transition. Metabolism 2023:155592. [PMID: 37230215 DOI: 10.1016/j.metabol.2023.155592] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND AND AIMS Acute kidney injury (AKI) is associated with high morbidity and mortality and is recognized as a long-term risk factor for progression to chronic kidney disease (CKD). The AKI to CKD transition is characterized by interstitial fibrosis and the proliferation of collagen-secreting myofibroblasts. Pericytes are the major source of myofibroblasts in kidney fibrosis. However, the underlying mechanism of pericyte-myofibroblast transition (PMT) is still unclear. Here we investigated the role of metabolic reprogramming in PMT. METHODS Unilateral ischemia/reperfusion-induced AKI to CKD mouse model and TGF-β-treated pericyte-like cells were used to detect the levels of fatty acid oxidation (FAO) and glycolysis, and the critical signaling pathways during PMT under the treatment of drugs regulating metabolic reprogramming. RESULTS PMT is characterized by a decrease in FAO and an increase in glycolysis. Enhancement of FAO by the peroxisome proliferator-activated receptor gamma coactivator-1α (PGC1α) activator ZLN-005 or suppression of glycolysis by the hexokinase 2 (HK2) inhibitor 2-DG can inhibit PMT, preventing the transition of AKI to CKD. Mechanistically, AMPK modulates various pathways involved in the metabolic switch from glycolysis to FAO. Specifically, the PGC1α-CPT1A pathway activates FAO, while inhibition of the HIF1α-HK2 pathway drives glycolysis inhibition. The modulations of these pathways by AMPK contribute to inhibiting PMT. CONCLUSIONS Metabolic reprogramming controls the fate of pericyte transdifferentiation and targets the abnormal metabolism of pericytes can effectively prevent AKI to CKD transition.
Collapse
Affiliation(s)
- Cheng Xu
- Department of Nephrology, The Second Hospital of Jilin University, Nanguan District, Changchun 130041, Jilin, China; Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Haidian District, Beijing 100853, China
| | - Quan Hong
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Haidian District, Beijing 100853, China
| | - Kaiting Zhuang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Haidian District, Beijing 100853, China
| | - Xuejing Ren
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Haidian District, Beijing 100853, China
| | - Shaoyuan Cui
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Haidian District, Beijing 100853, China
| | - Zheyi Dong
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Haidian District, Beijing 100853, China
| | - Qian Wang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Haidian District, Beijing 100853, China
| | - Xueyuan Bai
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Haidian District, Beijing 100853, China.
| | - Xiangmei Chen
- Department of Nephrology, The Second Hospital of Jilin University, Nanguan District, Changchun 130041, Jilin, China; Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Haidian District, Beijing 100853, China.
| |
Collapse
|
12
|
Huynh C, Ryu J, Lee J, Inoki A, Inoki K. Nutrient-sensing mTORC1 and AMPK pathways in chronic kidney diseases. Nat Rev Nephrol 2023; 19:102-122. [PMID: 36434160 DOI: 10.1038/s41581-022-00648-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2022] [Indexed: 11/27/2022]
Abstract
Nutrients such as glucose, amino acids and lipids are fundamental sources for the maintenance of essential cellular processes and homeostasis in all organisms. The nutrient-sensing kinases mechanistic target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) are expressed in many cell types and have key roles in the control of cell growth, proliferation, differentiation, metabolism and survival, ultimately contributing to the physiological development and functions of various organs, including the kidney. Dysregulation of these kinases leads to many human health problems, including cancer, neurodegenerative diseases, metabolic disorders and kidney diseases. In the kidney, physiological levels of mTOR and AMPK activity are required to support kidney cell growth and differentiation and to maintain kidney cell integrity and normal nephron function, including transport of electrolytes, water and glucose. mTOR forms two functional multi-protein kinase complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). Hyperactivation of mTORC1 leads to podocyte and tubular cell dysfunction and vulnerability to injury, thereby contributing to the development of chronic kidney diseases, including diabetic kidney disease, obesity-related kidney disease and polycystic kidney disease. Emerging evidence suggests that targeting mTOR and/or AMPK could be an effective therapeutic approach to controlling or preventing these diseases.
Collapse
Affiliation(s)
- Christopher Huynh
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jaewhee Ryu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jooho Lee
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Ayaka Inoki
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ken Inoki
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
13
|
Hallows KR, Li H, Saitta B, Sepehr S, Huang P, Pham J, Wang J, Mancino V, Chung EJ, Pinkosky SL, Pastor-Soler NM. Beneficial effects of bempedoic acid treatment in polycystic kidney disease cells and mice. Front Mol Biosci 2022; 9:1001941. [PMID: 36504724 PMCID: PMC9730828 DOI: 10.3389/fmolb.2022.1001941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/26/2022] [Indexed: 11/25/2022] Open
Abstract
ADPKD has few therapeutic options. Tolvaptan slows disease but has side effects limiting its tolerability. Bempedoic acid (BA), an ATP citrate-lyase (ACLY) inhibitor FDA-approved for hypercholesterolemia, catalyzes a key step in fatty acid/sterol synthesis important for cell proliferation. BA is activated by very long-chain acyl-CoA synthetase (FATP2) expressed primarily in kidney and liver. BA also activates AMPK. We hypothesized that BA could be a novel ADPKD therapy by inhibiting cyst growth, proliferation, injury, and metabolic dysregulation via ACLY inhibition and AMPK activation. Pkd1-null kidney cell lines derived from mouse proximal tubule (PT) and collecting duct (IMCD) were grown in 2D or 3D Matrigel cultures and treated ± BA, ± SB-204990 (another ACLY inhibitor) or with Acly shRNA before cyst analysis, immunoblotting or mitochondrial assays using MitoSox and MitoTracker staining. Pkd1 fl/fl ; Pax8-rtTA; Tet-O-Cre C57BL/6J mice were induced with doxycycline injection on postnatal days 10 and 11 (P10-P11) and then treated ± BA (30 mg/kg/d) ± tolvaptan (30-100 mg/kg/d) by gavage from P12-21. Disease severity was determined by % total-kidney-weight-to-bodyweight (%TKW/BW) and BUN levels at euthanasia (P22). Kidney and liver homogenates were immunoblotted for expression of key biomarkers. ACLY expression and activity were upregulated in Pkd1-null PT and IMCD-derived cells vs. controls. Relative to controls, both BA and SB-204990 inhibited cystic growth in Pkd1-null kidney cells, as did Acly knockdown. BA inhibited mitochondrial superoxide production and promoted mitochondrial elongation, suggesting improved mitochondrial function. In ADPKD mice, BA reduced %TKW/BW and BUN to a similar extent as tolvaptan vs. untreated controls. Addition of BA to tolvaptan caused a further reduction in %TKW/BW and BUN vs. tolvaptan alone. BA generally reduced ACLY and stimulated AMPK activity in kidneys and livers vs. controls. BA also inhibited mTOR and ERK signaling and reduced kidney injury markers. In liver, BA treatment, both alone and together with tolvaptan, increased mitochondrial biogenesis while inhibiting apoptosis. We conclude that BA and ACLY inhibition inhibited cyst growth in vitro, and BA decreased ADPKD severity in vivo. Combining BA with tolvaptan further improved various ADPKD disease parameters. Repurposing BA may be a promising new ADPKD therapy, having beneficial effects alone and along with tolvaptan.
Collapse
Affiliation(s)
- Kenneth R. Hallows
- Division of Nephrology and Hypertension and USC/UKRO Kidney Research Center, Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Hui Li
- Division of Nephrology and Hypertension and USC/UKRO Kidney Research Center, Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Biagio Saitta
- Division of Nephrology and Hypertension and USC/UKRO Kidney Research Center, Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Saman Sepehr
- Division of Nephrology and Hypertension and USC/UKRO Kidney Research Center, Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Polly Huang
- Division of Nephrology and Hypertension and USC/UKRO Kidney Research Center, Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Jessica Pham
- Division of Nephrology and Hypertension and USC/UKRO Kidney Research Center, Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Jonathan Wang
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Valeria Mancino
- Division of Nephrology and Hypertension and USC/UKRO Kidney Research Center, Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Eun Ji Chung
- Division of Nephrology and Hypertension and USC/UKRO Kidney Research Center, Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States,Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | | | - Núria M. Pastor-Soler
- Division of Nephrology and Hypertension and USC/UKRO Kidney Research Center, Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States,*Correspondence: Núria M. Pastor-Soler,
| |
Collapse
|
14
|
Zhang L, Cai J, Xiao J, Ye Z. Identification of core genes and pathways between geriatric multimorbidity and renal insufficiency: potential therapeutic agents discovered using bioinformatics analysis. BMC Med Genomics 2022; 15:212. [PMID: 36209090 PMCID: PMC9548100 DOI: 10.1186/s12920-022-01370-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/21/2022] [Indexed: 12/03/2022] Open
Abstract
Background Geriatric people are prone to suffer from multiple chronic diseases, which can directly or indirectly affect renal function. Through bioinformatics analysis, this study aimed to identify key genes and pathways associated with renal insufficiency in patients with geriatric multimorbidity and explore potential drugs against renal insufficiency. Methods The text mining tool Pubmed2Ensembl was used to detect genes associated with the keywords including "Geriatric", "Multimorbidity" and "Renal insufficiency". The GeneCodis program was used to specify Gene Ontology (GO) biological process terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Protein–protein interaction (PPI) networks were constructed using STRING and visualized in Cytoscape. Module analysis was performed using CytoHubba and Molecular Complex Detection (MCODE) plugins. GO and KEGG analysis of gene modules was performed using the Database for Annotation, Visualization and Integrated Discover (DAVID) platform database. Genes clustered in salient modules were selected as core genes. Then, the functions and pathways of core genes were visualized using ClueGO and CluePedia. Finally, the drug-gene interaction database was used to explore drug-gene interactions of the core genes to identify drug candidates for renal insufficiency in patients with geriatric multimorbidity. Results Through text mining, 351 genes associated with "Geriatric", "Multimorbidity" and "Renal insufficiency" were identified. A PPI network consisting of 216 nodes and 1087 edges was constructed and CytoHubba was used to sequence the genes. Five gene modules were obtained by MCODE analysis. The 26 genes clustered in module1 were selected as core candidate genes primarily associated with renal insufficiency in patients with geriatric multimorbidity. The HIF-1, PI3K-Akt, MAPK, Rap1, and FoxO signaling pathways were enriched. We found that 21 of the 26 selected genes could be targeted by 34 existing drugs. Conclusion This study indicated that CST3, SERPINA1, FN1, PF4, IGF1, KNG1, IL6, VEGFA, ALB, TIMP1, TGFB1, HGF, SERPINE1, APOA1, APOB, FGF23, EGF, APOE, VWF, TF, CP, GAS6, APP, IGFBP3, P4HB, and SPP1 were key genes potentially involved with renal insufficiency in patients with geriatric multimorbidity. In addition, 34 drugs were identified as potential agents for the treatment and management of renal insufficiency.
Collapse
Affiliation(s)
- Lingyun Zhang
- Department of Nephrology, Huadong Hospital Affiliated to Fudan University, No. 221 West Yan'an Road, Shanghai, 200040, People's Republic of China
| | - Jiasheng Cai
- Department of Cardiology, Huadong Hospital Affiliated to Fudan University, No. 221 West Yan'an Road, Shanghai, 200040, People's Republic of China
| | - Jing Xiao
- Department of Nephrology, Huadong Hospital Affiliated to Fudan University, No. 221 West Yan'an Road, Shanghai, 200040, People's Republic of China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, No. 221 West Yan'an Road, Shanghai, 200040, People's Republic of China
| | - Zhibin Ye
- Department of Nephrology, Huadong Hospital Affiliated to Fudan University, No. 221 West Yan'an Road, Shanghai, 200040, People's Republic of China. .,Shanghai Key Laboratory of Clinical Geriatric Medicine, No. 221 West Yan'an Road, Shanghai, 200040, People's Republic of China.
| |
Collapse
|
15
|
Zhao L, Liu S, Zhang Y, Fan X, Xue X, Li Q, Zhuang X, Zheng G. Analysis of Expression of Diabetic Nephropathy-Related Protein and Stem Cell Tissue Repair Under Nano Membrane Concentration Technology. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
This study aimed to study protein expression in diabetic nephropathy (DN) rats and stem cell tissue repair based on nanomembrane concentration technology. Based on the polymer porous self-assembled nanomembrane technology, the content of total protein and albumin in the serum of rats
in the control and experimental groups were measured. The obtained images were adopted to analyze the expression of cytoplasmic proteins and membrane proteins, and then the mechanism of stem cell tissue repair function was studied. The results showed that at 56 weeks of age, in contrast to
control group, the total protein content in the serum of the experimental group evidently decreased. At 36 weeks of age, the cytoplasmic protein samples of diabetic rats in the experimental group were subjected to three two-dimensional protein electrophoresis. It was found that there were
about 701 spots in each gel, and the matching rate was about 87.5%. In contrast to control group, 16 cytoplasmic proteins and 23 membrane proteins of the experimental group changed. The results of the differentially expressed protein analysis indicated that the change trends of protein spots.
Based on polymer porous self-assembled nano-film technology, the expression of differential proteins in DN rats was analyzed, which would supplement new research assistance to the mechanism of DN.
Collapse
Affiliation(s)
- Lingxia Zhao
- Endocrine Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Shiwei Liu
- Endocrine Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Yuanlin Zhang
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030619, China
| | - Xuemei Fan
- Endocrine Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Xuehua Xue
- Endocrine Department, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Qingxia Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xiaofei Zhuang
- Department of Thoracic Surgery, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China
| | - Guoping Zheng
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China
| |
Collapse
|
16
|
Hypertension and renal disease programming: focus on the early postnatal period. Clin Sci (Lond) 2022; 136:1303-1339. [PMID: 36073779 DOI: 10.1042/cs20220293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022]
Abstract
The developmental origin of hypertension and renal disease is a concept highly supported by strong evidence coming from both human and animal studies. During development there are periods in which the organs are more vulnerable to stressors. Such periods of susceptibility are also called 'sensitive windows of exposure'. It was shown that as earlier an adverse event occurs; the greater are the consequences for health impairment. However, evidence show that the postnatal period is also quite important for hypertension and renal disease programming, especially in rodents because they complete nephrogenesis postnatally, and it is also important during preterm human birth. Considering that the developing kidney is vulnerable to early-life stressors, renal programming is a key element in the developmental programming of hypertension and renal disease. The purpose of this review is to highlight the great number of studies, most of them performed in animal models, showing the broad range of stressors involved in hypertension and renal disease programming, with a particular focus on the stressors that occur during the early postnatal period. These stressors mainly include undernutrition or specific nutritional deficits, chronic behavioral stress, exposure to environmental chemicals, and pharmacological treatments that affect some important factors involved in renal physiology. We also discuss the common molecular mechanisms that are activated by the mentioned stressors and that promote the appearance of these adult diseases, with a brief description on some reprogramming strategies, which is a relatively new and promising field to treat or to prevent these diseases.
Collapse
|
17
|
Bicalutamide May enhance kidney injury in diabetes by concomitantly damaging energy production from OXPHOS and glycolysis. Chem Biol Interact 2022; 356:109858. [DOI: 10.1016/j.cbi.2022.109858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/30/2022] [Accepted: 02/07/2022] [Indexed: 11/17/2022]
|
18
|
Martin WP, Chuah YHD, Abdelaal M, Pedersen A, Malmodin D, Abrahamsson S, Hutter M, Godson C, Brennan EP, Fändriks L, le Roux CW, Docherty NG. Medications Activating Tubular Fatty Acid Oxidation Enhance the Protective Effects of Roux-en-Y Gastric Bypass Surgery in a Rat Model of Early Diabetic Kidney Disease. Front Endocrinol (Lausanne) 2022; 12:757228. [PMID: 35222262 PMCID: PMC8867227 DOI: 10.3389/fendo.2021.757228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/23/2021] [Indexed: 01/03/2023] Open
Abstract
Background Roux-en-Y gastric bypass surgery (RYGB) improves biochemical and histological parameters of diabetic kidney disease (DKD). Targeted adjunct medical therapy may enhance renoprotection following RYGB. Methods The effects of RYGB and RYGB plus fenofibrate, metformin, ramipril, and rosuvastatin (RYGB-FMRR) on metabolic control and histological and ultrastructural indices of glomerular and proximal tubular injury were compared in the Zucker Diabetic Sprague Dawley (ZDSD) rat model of DKD. Renal cortical transcriptomic (RNA-sequencing) and urinary metabolomic (1H-NMR spectroscopy) responses were profiled and integrated. Transcripts were assigned to kidney cell types through in silico deconvolution in kidney single-nucleus RNA-sequencing and microdissected tubular epithelial cell proteomics datasets. Medication-specific transcriptomic responses following RYGB-FMRR were explored using a network pharmacology approach. Omic correlates of improvements in structural and ultrastructural indices of renal injury were defined using a molecular morphometric approach. Results RYGB-FMRR was superior to RYGB alone with respect to metabolic control, albuminuria, and histological and ultrastructural indices of glomerular injury. RYGB-FMRR reversed DKD-associated changes in mitochondrial morphology in the proximal tubule to a greater extent than RYGB. Attenuation of transcriptomic pathway level activation of pro-fibrotic responses was greater after RYGB-FMRR than RYGB. Fenofibrate was found to be the principal medication effector of gene expression changes following RYGB-FMRR, which led to the transcriptional induction of PPARα-regulated genes that are predominantly expressed in the proximal tubule and which regulate peroxisomal and mitochondrial fatty acid oxidation (FAO). After omics integration, expression of these FAO transcripts positively correlated with urinary levels of PPARα-regulated nicotinamide metabolites and negatively correlated with urinary tricarboxylic acid (TCA) cycle intermediates. Changes in FAO transcripts and nicotinamide and TCA cycle metabolites following RYGB-FMRR correlated strongly with improvements in glomerular and proximal tubular injury. Conclusions Integrative multi-omic analyses point to PPARα-stimulated FAO in the proximal tubule as a dominant effector of treatment response to combined surgical and medical therapy in experimental DKD. Synergism between RYGB and pharmacological stimulation of FAO represents a promising combinatorial approach to the treatment of DKD in the setting of obesity.
Collapse
Affiliation(s)
- William P. Martin
- Diabetes Complications Research Centre, School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Yeong H. D. Chuah
- Diabetes Complications Research Centre, School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Mahmoud Abdelaal
- Diabetes Complications Research Centre, School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Anders Pedersen
- Swedish NMR Centre, University of Gothenburg, Gothenburg, Sweden
| | - Daniel Malmodin
- Swedish NMR Centre, University of Gothenburg, Gothenburg, Sweden
| | - Sanna Abrahamsson
- Bioinformatics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Michaela Hutter
- Diabetes Complications Research Centre, School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Catherine Godson
- Diabetes Complications Research Centre, School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Eoin P. Brennan
- Diabetes Complications Research Centre, School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Lars Fändriks
- Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carel W. le Roux
- Diabetes Complications Research Centre, School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
- Diabetes Research Group, Ulster University, Coleraine, United Kingdom
| | - Neil G. Docherty
- Diabetes Complications Research Centre, School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
19
|
Pastor-Soler NM, Li H, Pham J, Rivera D, Ho PY, Mancino V, Saitta B, Hallows KR. Metformin improves relevant disease parameters in an autosomal dominant polycystic kidney disease mouse model. Am J Physiol Renal Physiol 2022; 322:F27-F41. [PMID: 34806449 DOI: 10.1152/ajprenal.00298.2021] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), caused by mutations in the polycystin 1 (PKD1) or polycystin 2 genes, presents with progressive development of kidney cysts and eventual end-stage kidney disease with limited treatment options. Previous work has shown that metformin reduces cyst growth in rapid ADPKD mouse models via inhibition of cystic fibrosis transmembrane conductance regulator-mediated fluid secretion, mammalian target of rapamycin, and cAMP pathways. The present study importantly tested the effectiveness of metformin as a therapy for ADPKD in a more clinically relevant Pkd1RC/RC mouse model, homozygous for the R3277C knockin point mutation in the Pkd1 gene. This mutation causes ADPKD in humans. Pkd1RC/RC male and female mice, which have a slow progression to end-stage kidney disease, received metformin (300 mg/kg/day in drinking water vs. water alone) from 3 to 9 or 12 mo of age. As previously reported, Pkd1RC/RC females had a more severe disease phenotype as compared with males. Metformin treatment reduced the ratio of total kidney weight-to-body weight relative to age-matched and sex-matched untreated controls at both 9 and 12 mo and reduced the cystic index in females at 9 mo. Metformin also increased glomerular filtration rate, lowered systolic blood pressure, improved anemia, and lowered blood urea nitrogen levels relative to controls in both sexes. Moreover, metformin reduced gene expression of key inflammatory markers and both gene and protein expression of kidney injury marker-1 and cyclin-dependent kinase-1 versus untreated controls. Altogether, these findings suggest several beneficial effects of metformin in this highly relevant slowly progressive ADPKD mouse model, which may help inform new ADPKD therapies in patients.NEW & NOTEWORTHY Metformin treatment improved ADPKD disease severity in a relevant, slowly progressive ADPKD mouse model that recapitulates a PKD-associated PKD1 mutation. Relative to controls, metformin reduced kidney weight/body weight, cystic index and BUN levels, while improving GFR, blood pressure and anemia. Metformin also reduced key inflammatory and injury markers, along with cell proliferation markers. These findings suggest several beneficial effects of metformin in this ADPKD mouse model, which may help inform new ADPKD therapies in patients.
Collapse
MESH Headings
- Animals
- Cell Proliferation/drug effects
- Disease Models, Animal
- Disease Progression
- Female
- Genetic Predisposition to Disease
- Glomerular Filtration Rate/drug effects
- Inflammation Mediators/metabolism
- Kidney/drug effects
- Kidney/metabolism
- Kidney/pathology
- Kidney/physiopathology
- Kidney Failure, Chronic/metabolism
- Kidney Failure, Chronic/pathology
- Kidney Failure, Chronic/physiopathology
- Kidney Failure, Chronic/prevention & control
- Male
- Metformin/pharmacology
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Transgenic
- Mutation
- Polycystic Kidney, Autosomal Dominant/drug therapy
- Polycystic Kidney, Autosomal Dominant/metabolism
- Polycystic Kidney, Autosomal Dominant/pathology
- Polycystic Kidney, Autosomal Dominant/physiopathology
- Renal Agents/pharmacology
- TRPP Cation Channels/genetics
- Time Factors
- Mice
Collapse
Affiliation(s)
- Núria M Pastor-Soler
- Division of Nephrology and Hypertension, Department of Medicine and USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Hui Li
- Division of Nephrology and Hypertension, Department of Medicine and USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jessica Pham
- Division of Nephrology and Hypertension, Department of Medicine and USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Daniel Rivera
- Division of Nephrology and Hypertension, Department of Medicine and USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Pei-Yin Ho
- Division of Nephrology and Hypertension, Department of Medicine and USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Valeria Mancino
- Division of Nephrology and Hypertension, Department of Medicine and USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Biagio Saitta
- Division of Nephrology and Hypertension, Department of Medicine and USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Kenneth R Hallows
- Division of Nephrology and Hypertension, Department of Medicine and USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
20
|
Petrič M, Vidović A, Dolinar K, Miš K, Chibalin AV, Pirkmajer S. Phosphorylation of Na +,K +-ATPase at Tyr10 of the α1-Subunit is Suppressed by AMPK and Enhanced by Ouabain in Cultured Kidney Cells. J Membr Biol 2021; 254:531-548. [PMID: 34748042 PMCID: PMC8595181 DOI: 10.1007/s00232-021-00209-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/27/2021] [Indexed: 01/03/2023]
Abstract
Na+,K+-ATPase (NKA) is essential for maintenance of cellular and whole-body water and ion homeostasis. In the kidney, a major site of ion transport, NKA consumes ~ 50% of ATP, indicating a tight coordination of NKA and energy metabolism. AMP-activated protein kinase (AMPK), a cellular energy sensor, regulates NKA by modulating serine phosphorylation of the α1-subunit, but whether it modulates other important regulatory phosphosites, such as Tyr10, is unknown. Using human kidney (HK-2) cells, we determined that the phosphorylation of Tyr10 was stimulated by the epidermal growth factor (EGF), which was opposed by inhibitors of Src kinases (PP2), tyrosine kinases (genistein), and EGF receptor (EGFR, gefitinib). AMPK activators AICAR and A-769662 suppressed the EGF-stimulated phosphorylation of EGFR (Tyr1173) and NKAα1 at Tyr10. The phosphorylation of Src (Tyr416) was unaltered by AICAR and increased by A-769662. Conversely, ouabain (100 nM), a pharmacological NKA inhibitor and a putative adrenocortical hormone, enhanced the EGF-stimulated Tyr10 phosphorylation without altering the phosphorylation of EGFR (Tyr1173) or Src (Tyr416). Ouabain (100–1000 nM) increased the ADP:ATP ratio, while it suppressed the lactate production and the oxygen consumption rate in a dose-dependent manner. Treatment with ouabain or gene silencing of NKAα1 or NKAα3 subunit did not activate AMPK. In summary, AMPK activators and ouabain had antagonistic effects on the phosphorylation of NKAα1 at Tyr10 in cultured HK-2 cells, which implicates a role for Tyr10 in coordinated regulation of NKA-mediated ion transport and energy metabolism.
Collapse
Affiliation(s)
- Metka Petrič
- Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Anja Vidović
- Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Klemen Dolinar
- Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Katarina Miš
- Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Alexander V Chibalin
- National Research Tomsk State University, Tomsk, Russia. .,Department of Molecular Medicine and Surgery, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden.
| | - Sergej Pirkmajer
- Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
21
|
Mehanna ET, Khalaf SS, Mesbah NM, Abo-Elmatty DM, Hafez MM. Anti-oxidant, anti-apoptotic, and mitochondrial regulatory effects of selenium nanoparticles against vancomycin induced nephrotoxicity in experimental rats. Life Sci 2021; 288:120098. [PMID: 34715137 DOI: 10.1016/j.lfs.2021.120098] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/17/2021] [Accepted: 10/25/2021] [Indexed: 12/31/2022]
Abstract
AIM Nephrotoxicity is the major limiting factor for the clinical use of vancomycin (VCM) for treatment against multi-resistant Gram-positive bacteria. The present research aimed to investigate the ability of selenium nanoparticles (SeNPs) to protect against VCM-induced nephrotoxicity in rats. MAIN METHODS Experimental rats were divided into five groups; the first was the normal control, the second was treated with VCM (200 mg/kg twice/day, i.p.) for 7 days. The third, fourth, and fifth groups were treated orally with SeNPs (0.5, 1, and 2 mg/kg/day); respectively. SeNPs were administered for 12 days before VCM, 1 week simultaneously with VCM, and for another 1 week after its administration. KEY FINDINGS Levels of malondialdehyde (MDA), inducible nitric oxide synthase (iNOS), nitric oxide (NO), tumor necrosis factor-alpha (TNF-α), and kidney injury molecule-1 (KIM-1) were significantly increased in kidney tissue after VCM administration. Expression of adenosine 5'-monophosphate-activated protein kinase (AMPK), Bcl-2 associated X protein (Bax), caspase 3 and caspase 9 in kidney tissue was significantly increased, while the antioxidant enzymes, mitochondrial complexes, the ATP levels and B-cell lymphoma protein 2 (Bcl-2) were decreased in kidney in the VCM-treated rats compared to the normal control group. Treatment with SeNPs significantly decreased levels of MDA, iNOS, NO, TNF-α, and KIM-1 in the kidney tissue. Administration of SeNPs also downregulated the expression of the proapoptotic agents and enhanced the activities of the antioxidant enzymes and the mitochondrial enzyme complexes in the kidney. SIGNIFICANCE SeNPs alleviated VCM-induced nephrotoxicity through their anti-oxidant, anti-inflammatory, anti-apoptotic and mitochondrial protective effects.
Collapse
Affiliation(s)
- Eman T Mehanna
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt.
| | - Samar S Khalaf
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Noha M Mesbah
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Dina M Abo-Elmatty
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Mohamed M Hafez
- Department of Biochemistry, Faculty of Pharmacy, Ahram Canadian University, 6 October City, Egypt
| |
Collapse
|
22
|
Virginia DM, Wahyuningsih MSH, Nugrahaningsih DAA. PRKAA2 variation and the clinical characteristics of patients newly diagnosed with type 2 diabetes mellitus in Yogyakarta, Indonesia. ASIAN BIOMED 2021; 15:161-170. [PMID: 37551330 PMCID: PMC10388783 DOI: 10.2478/abm-2021-0021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background Adenosine monophosphate (AMP)-activated protein kinase (AMPK; EC 2.7.11.31) enzymes play a pivotal role in cell metabolism. They are involved in type 2 diabetes mellitus (T2DM) pathogenesis. Genetic variation of PRKAA2 coding for the AMPK α2 catalytic subunit (AMPKα2) is reported to be associated with susceptibility for T2DM. Objectives To determine the association between PRKAA2 genetic variations (rs2796498, rs9803799, and rs2746342) with clinical characteristics in patients newly diagnosed with T2DM. Methods We performed a cross-sectional study including 166 T2DM patients from 10 primary health care centers in Yogyakarta, Indonesia. We measured fasting plasma glucose, hemoglobin A1c, serum creatinine, glomerular filtration rate, blood pressure, and body mass index as clinical characteristics. PRKAA2 genetic variations were determined by TaqMan SNP genotyping assay. Hardy-Weinberg equilibrium was calculated using χ2 tests. Results There was no difference in clinical characteristics for genotypes rs2796498, rs9803799, or rs2746342 (P > 0.05). No significant association was found between PRKAA2 genetic variations and any clinical feature observed. Further subgroup analysis adjusting for age, sex, and waist circumference did not detect any significant association of PRKAA2 genetic variations with clinical characteristics (P > 0.05). Conclusion PRKAA2 genetic variation is not associated with the clinical characteristics of Indonesian patients with newly diagnosed T2DM.
Collapse
Affiliation(s)
- Dita Maria Virginia
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta55281, Indonesia
- Faculty of Pharmacy, Universitas Sanata Dharma, Yogyakarta552181, Indonesia
| | - Mae Sri Hartati Wahyuningsih
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta55281, Indonesia
| | - Dwi Aris Agung Nugrahaningsih
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta55281, Indonesia
- Center of Genetic Study, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta55281, Indonesia
| |
Collapse
|
23
|
Prospective Pharmacological Potential of Resveratrol in Delaying Kidney Aging. Int J Mol Sci 2021; 22:ijms22158258. [PMID: 34361023 PMCID: PMC8348580 DOI: 10.3390/ijms22158258] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 01/22/2023] Open
Abstract
Aging is an unavoidable part of life. The more aged we become, the more susceptible we become to various complications and damages to the vital organs, including the kidneys. The existing drugs for kidney diseases are mostly of synthetic origins; thus, natural compounds with minimal side-effects have attracted growing interest from the scientific community and pharmaceutical companies. A literature search was carried out to collect published research information on the effects of resveratrol on kidney aging. Recently, resveratrol has emerged as a potential anti-aging agent. This versatile polyphenol exerts its anti-aging effects by intervening in various pathologies and multi-signaling systems, including sirtuin type 1, AMP-activated protein kinase, and nuclear factor-κB. Researchers are trying to figure out the detailed mechanisms and possible resveratrol-mediated interventions in divergent pathways at the molecular level. This review highlights (i) the causative factors implicated in kidney aging and the therapeutic aspects of resveratrol, and (ii) the effectiveness of resveratrol in delaying the aging process of the kidney while minimizing all possible side effects.
Collapse
|
24
|
De Broe ME, Jouret F. Does metformin do more benefit or harm in chronic kidney disease patients? Kidney Int 2021; 98:1098-1101. [PMID: 33126974 DOI: 10.1016/j.kint.2020.04.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Marc E De Broe
- Laboratory Physiopathology, University of Antwerp, Liège, Belgium.
| | - François Jouret
- Research Department of Pathophysiology, Department Nephrology, University Hospital of Liège, Antwerpen, Belgium.
| |
Collapse
|
25
|
Rajjoub Al-Mahdi EA, Barrios V, Zamorano JL. Metformin in the era of new antidiabetics. Future Cardiol 2021; 17:475-485. [PMID: 33754810 DOI: 10.2217/fca-2020-0195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Type II diabetes mellitus is a known cardiovascular risk factor and its prevalence continues to increase. A revolution in the Type II diabetes mellitus treatment has occurred with the arrival of new antidiabetic drugs, which are thought to compromise metformin place. We aim to review the pharmacology, available evidence and clinical aspects of metformin use in the era of new antidiabetics.
Collapse
Affiliation(s)
| | - Vivencio Barrios
- Department of Cardiology, University Hospital Ramon y Cajal, Madrid, Spain.,Faculty of Medicine & Health Sciences, University of Alcalá, Madrid, Spain
| | - Jose L Zamorano
- Department of Cardiology, University Hospital Ramon y Cajal, Madrid, Spain.,Faculty of Medicine & Health Sciences, University of Alcalá, Madrid, Spain
| |
Collapse
|
26
|
Hinden L, Kogot-Levin A, Tam J, Leibowitz G. Pathogenesis of diabesity-induced kidney disease: role of kidney nutrient sensing. FEBS J 2021; 289:901-921. [PMID: 33630415 DOI: 10.1111/febs.15790] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/09/2021] [Accepted: 02/24/2021] [Indexed: 12/11/2022]
Abstract
Diabetes kidney disease (DKD) is a major healthcare problem associated with increased risk for developing end-stage kidney disease and high mortality. It is widely accepted that DKD is primarily a glomerular disease. Recent findings however suggest that kidney proximal tubule cells (KPTCs) may play a central role in the pathophysiology of DKD. In diabetes and obesity, KPTCs are exposed to nutrient overload, including glucose, free-fatty acids and amino acids, which dysregulate nutrient and energy sensing by mechanistic target of rapamycin complex 1 and AMP-activated protein kinase, with subsequent induction of tubular injury, inflammation, and fibrosis. Pharmacological treatments that modulate nutrient sensing and signaling in KPTCs, including cannabinoid-1 receptor antagonists and sodium glucose transporter 2 inhibitors, exert robust kidney protective effects. Shedding light on how nutrients are sensed and metabolized in KPTCs and in other kidney domains, and on their effects on signal transduction pathways that mediate kidney injury, is important for understanding the pathophysiology of DKD and for the development of novel therapeutic approaches in DKD and probably also in other forms of kidney disease.
Collapse
Affiliation(s)
- Liad Hinden
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Aviram Kogot-Levin
- Diabetes Unit and Endocrine Service, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Joseph Tam
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Gil Leibowitz
- Diabetes Unit and Endocrine Service, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
27
|
Rajapaksha H, Pandithavidana DR, Dahanayake JN. Demystifying Chronic Kidney Disease of Unknown Etiology (CKDu): Computational Interaction Analysis of Pesticides and Metabolites with Vital Renal Enzymes. Biomolecules 2021; 11:261. [PMID: 33578980 PMCID: PMC7916818 DOI: 10.3390/biom11020261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/29/2021] [Accepted: 02/05/2021] [Indexed: 12/28/2022] Open
Abstract
Chronic kidney disease of unknown etiology (CKDu) has been recognized as a global non-communicable health issue. There are many proposed risk factors for CKDu and the exact reason is yet to be discovered. Understanding the inhibition or manipulation of vital renal enzymes by pesticides can play a key role in understanding the link between CKDu and pesticides. Even though it is very important to take metabolites into account when investigating the relationship between CKDu and pesticides, there is a lack of insight regarding the effects of pesticide metabolites towards CKDu. In this study, a computational approach was used to study the effects of pesticide metabolites on CKDu. Further, interactions of selected pesticides and their metabolites with renal enzymes were studied using molecular docking and molecular dynamics simulation studies. It was evident that some pesticides and metabolites have affinity to bind at the active site or at regulatory sites of considered renal enzymes. Another important discovery was the potential of some metabolites to have higher binding interactions with considered renal enzymes compared to the parent pesticides. These findings raise the question of whether pesticide metabolites may be a main risk factor towards CKDu.
Collapse
Affiliation(s)
| | | | - Jayangika N. Dahanayake
- Department of Chemistry, Faculty of Science, University of Kelaniya, Dalugama, Kelaniya 11600, Western Province, Sri Lanka; (H.R.); (D.R.P.)
| |
Collapse
|
28
|
Novel Potential Application of Chitosan Oligosaccharide for Attenuation of Renal Cyst Growth in the Treatment of Polycystic Kidney Disease. Molecules 2020; 25:molecules25235589. [PMID: 33261193 PMCID: PMC7730275 DOI: 10.3390/molecules25235589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 12/17/2022] Open
Abstract
Chitosan oligosaccharide (COS), a natural polymer derived from chitosan, exerts several biological activities including anti-inflammation, anti-tumor, anti-metabolic syndrome, and drug delivery enhancer. Since COS is vastly distributed to kidney and eliminated in urine, it may have a potential advantage as the therapeutics of kidney diseases. Polycystic kidney disease (PKD) is a common genetic disorder characterized by multiple fluid-filled cysts, replacing normal renal parenchyma and leading to impaired renal function and end-stage renal disease (ESRD). The effective treatment for PKD still needs to be further elucidated. Interestingly, AMP-activated protein kinase (AMPK) has been proposed as a drug target for PKD. This study aimed to investigate the effect of COS on renal cyst enlargement and its underlying mechanisms. We found that COS at the concentrations of 50 and 100 µg/mL decreased renal cyst growth without cytotoxicity, as measured by MTT assay. Immunoblotting analysis showed that COS at 100 µg/mL activated AMPK, and this effect was abolished by STO-609, a calcium/calmodulin-dependent protein kinase kinase beta (CaMKKβ) inhibitor. Moreover, COS elevated the level of intracellular calcium. These results suggest that COS inhibits cyst progression by activation of AMPK via CaMKKβ. Therefore, COS may hold the potential for pharmaceutical application in PKD.
Collapse
|
29
|
Pillay Y, Nagiah S, Phulukdaree A, Krishnan A, Chuturgoon AA. Patulin suppresses α 1-adrenergic receptor expression in HEK293 cells. Sci Rep 2020; 10:20115. [PMID: 33208818 PMCID: PMC7674415 DOI: 10.1038/s41598-020-77157-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 11/03/2020] [Indexed: 12/16/2022] Open
Abstract
Patulin (PAT) is a common mycotoxin contaminant of apple products linked to impaired metabolic and kidney function. Adenosine monophosphate activated protein kinase (AMPK), abundantly expressed in the kidney, intercedes metabolic changes and renal injury. The alpha-1-adrenergic receptors (α1-AR) facilitate Epinephrine (Epi)-mediated AMPK activation, linking metabolism and kidney function. Preliminary molecular docking experiments examined potential interactions and AMPK-gamma subunit 3 (PRKAG3). The effect of PAT exposure (0.2-2.5 µM; 24 h) on the AMPK pathway and α1-AR was then investigated in HEK293 human kidney cells. AMPK agonist Epi determined direct effects on the α1-AR, metformin was used as an activator for AMPK, while buthionine sulphoximine (BSO) and N-acetyl cysteine (NAC) assessed GSH inhibition and supplementation respectively. ADRA1A and ADRA1D expression was determined by qPCR. α1-AR, ERK1/2/MAPK and PI3K/Akt protein expression was assessed using western blotting. PAT (1 µM) decreased α1-AR protein and mRNA and altered downstream signalling. This was consistent in cells stimulated with Epi and metformin. BSO potentiated the observed effect on α1-AR while NAC ameliorated these effects. Molecular docking studies performed on Human ADRA1A and PRKAG3 indicated direct interactions with PAT. This study is the first to show PAT modulates the AMPK pathway and α1-AR, supporting a mechanism of kidney injury.
Collapse
Affiliation(s)
- Yashodani Pillay
- Discipline of Medical Biochemistry, University of KwaZulu-Natal, Durban, South Africa
| | - Savania Nagiah
- Discipline of Medical Biochemistry, University of KwaZulu-Natal, Durban, South Africa.,Department of Physiology, Nelson Mandela Metropolitan University, Port Elizabeth, South Africa
| | - Alisa Phulukdaree
- Discipline of Medical Biochemistry, University of KwaZulu-Natal, Durban, South Africa.,Department of Physiology, University of Pretoria, Pretoria, South Africa
| | - Anand Krishnan
- Discipline of Medical Biochemistry, University of KwaZulu-Natal, Durban, South Africa.,Department of Chemical Pathology, University of Free State, Bloemfontein, South Africa
| | - Anil A Chuturgoon
- Discipline of Medical Biochemistry, University of KwaZulu-Natal, Durban, South Africa. .,Discipline of Medical Biochemistry and Chemical Pathology, Faculty of Health Sciences, Howard College, University of KwaZulu-Natal, George Campbell Building, Durban, 4041, South Africa.
| |
Collapse
|
30
|
Critical Role for AMPK in Metabolic Disease-Induced Chronic Kidney Disease. Int J Mol Sci 2020; 21:ijms21217994. [PMID: 33121167 PMCID: PMC7663488 DOI: 10.3390/ijms21217994] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) is prevalent in 9.1% of the global population and is a significant public health problem associated with increased morbidity and mortality. CKD is associated with highly prevalent physiological and metabolic disturbances such as hypertension, obesity, insulin resistance, cardiovascular disease, and aging, which are also risk factors for CKD pathogenesis and progression. Podocytes and proximal tubular cells of the kidney strongly express AMP-activated protein kinase (AMPK). AMPK plays essential roles in glucose and lipid metabolism, cell survival, growth, and inflammation. Thus, metabolic disease-induced renal diseases like obesity-related and diabetic chronic kidney disease demonstrate dysregulated AMPK in the kidney. Activating AMPK ameliorates the pathological and phenotypical features of both diseases. As a metabolic sensor, AMPK regulates active tubular transport and helps renal cells to survive low energy states. AMPK also exerts a key role in mitochondrial homeostasis and is known to regulate autophagy in mammalian cells. While the nutrient-sensing role of AMPK is critical in determining the fate of renal cells, the role of AMPK in kidney autophagy and mitochondrial quality control leading to pathology in metabolic disease-related CKD is not very clear and needs further investigation. This review highlights the crucial role of AMPK in renal cell dysfunction associated with metabolic diseases and aims to expand therapeutic strategies by understanding the molecular and cellular processes underlying CKD.
Collapse
|
31
|
Targeting AMP-activated protein kinase (AMPK) for treatment of autosomal dominant polycystic kidney disease. Cell Signal 2020; 73:109704. [DOI: 10.1016/j.cellsig.2020.109704] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023]
|
32
|
De Pascalis A, Cianciolo G, Capelli I, Brunori G, La Manna G. SGLT2 inhibitors, sodium and off-target effects: an overview. J Nephrol 2020; 34:673-680. [PMID: 32870494 DOI: 10.1007/s40620-020-00845-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 08/14/2020] [Indexed: 01/31/2023]
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are a relatively new class of antidiabetic drugs that in addition to emerging as an effective antihyperglycemic treatment have been shown to improve, in several trials, both renal and cardiovascular outcomes. In consideration of the renal site of action and the associated osmotic diuresis, a negative sodium balance has been postulated during SGLT2i administration. Actually, sodium and water depletion may contribute to some positive actions of SGLT2i but evidence is far from being conclusive and the real physiologic effects of SGLT2i on sodium remain largely unknown. Indeed, no study has yet investigated how SGLT2i change sodium balance in the long term and especially the pathways through which the natriuretic effect is expressed. Furthermore, several experimental studies have recently identified different pathways, not directly linked to tubular sodium handling, which could contribute to the renal and cardiovascular benefits associated with SGLT2i. This paper will review the evidence of SGLT2i action on sodium transporters, their off-target effects and their potential role on kidney protection.
Collapse
Affiliation(s)
- Antonio De Pascalis
- Nephrology, Dialysis and Renal Transplantation Unit, Vito Fazzi Hospital, Lecce, Italy.
| | - Giuseppe Cianciolo
- Nephrology, Dialysis and Renal Transplant Unit, Department of Experimental Diagnostic and Specialty Medicine (DIMES), S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Irene Capelli
- Nephrology, Dialysis and Renal Transplant Unit, Department of Experimental Diagnostic and Specialty Medicine (DIMES), S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | | | - Gaetano La Manna
- Nephrology, Dialysis and Renal Transplant Unit, Department of Experimental Diagnostic and Specialty Medicine (DIMES), S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| |
Collapse
|
33
|
Sharma I, Deng F, Kanwar YS. Modulation of Renal Injury by Variable Expression of Myo-Inositol Oxygenase (MIOX) via Perturbation in Metabolic Sensors. Biomedicines 2020; 8:E217. [PMID: 32708636 PMCID: PMC7400661 DOI: 10.3390/biomedicines8070217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 01/13/2023] Open
Abstract
Obesity is associated with perturbations in cellular energy homeostasis and consequential renal injury leading to chronic renal disease (CKD). Myo-inositol oxygenase (MIOX), a tubular enzyme, alters redox balance and subsequent tubular injury in the settings of obesity. Mechanism(s) for such adverse changes remain enigmatic. Conceivably, MIOX accentuates renal injury via reducing expression/activity of metabolic sensors, which perturb mitochondrial dynamics and, if sustained, would ultimately contribute towards CKD. In this brief communication, we utilized MIOX-TG (Transgenic) and MIOXKO mice, and subjected them to high fat diet (HFD) administration. In addition, ob/ob and ob/MIOXKO mice of comparable age were used. Mice fed with HFD had increased MIOX expression and remarkable derangements in tubular injury biomarkers. Decreased expression of p-AMPKα (phospho AMP-activated protein kinase) in the tubules was also observed, and it was accentuated in MIOX-TG mice. Interestingly, ob/ob mice also had decreased p-AMPKα expression, which was restored in ob/MIOXKO mice. Parallel changes were observed in Sirt1/Sirt3 (silent mating type information regulation 2 homolog), and expression of other metabolic sensors, i.e., PGC-1α (Peroxisome proliferator-activated receptor gamma coactivator 1-alpha) and Yin Yang (YY-1). In vitro experiments with tubular cells subjected to palmitate-BSA and MIOX-siRNA had results in conformity with the in vivo observations. These findings link the biology of metabolic sensors to MIOX expression in impaired cellular energy homeostasis with exacerbation/amelioration of renal injury.
Collapse
Affiliation(s)
| | | | - Yashpal S. Kanwar
- Department of Pathology, Northwestern University, Chicago, IL 60611, USA; (I.S.); (F.D.)
| |
Collapse
|
34
|
Xu W, Zhao T, Xiao H. The Implication of Oxidative Stress and AMPK-Nrf2 Antioxidative Signaling in Pneumonia Pathogenesis. Front Endocrinol (Lausanne) 2020; 11:400. [PMID: 32625169 PMCID: PMC7311749 DOI: 10.3389/fendo.2020.00400] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 05/18/2020] [Indexed: 02/05/2023] Open
Abstract
It is widely recognized that chemical, physical, and biological factors can singly or synergistically evoke the excessive production of oxidative stress in pulmonary tissue that followed by pulmonary lesions and pneumonia. In addition, metabolic and endocrine disorder-induced diseases such as diabetes and obesity often expressed higher susceptibility to pulmonary infections, and presented severe symptoms which increasing the mortality rate. Therefore, the connection between the lesion of the lungs and the metabolic/endocrine disorders is an interesting and essential issue to be addressed. Studies have noticed a similar pathological feature in both infectious pneumonia and metabolic disease-intercurrent pulmonary lesions, that is, from the view of molecular pathology, the accumulation of excessive reactive oxygen species (ROS) in pulmonary tissue accompanying with activated pro-inflammatory signals. Meanwhile, Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) and nuclear factor erythroid-2-related factor 2 (Nrf2) signaling plays important role in metabolic/endocrine homeostasis and infection response, and it's closely associated with the anti-oxidative capacity of the body. For this reason, this review will start from the summary upon the implication of ROS accumulation, and to discuss how AMPK-Nrf2 signaling contributes to maintaining the metabolic/endocrine homeostasis and attenuates the susceptibility of pulmonary infections.
Collapse
Affiliation(s)
| | | | - Hengyi Xiao
- Lab for Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
35
|
Cianciolo G, De Pascalis A, Gasperoni L, Tondolo F, Zappulo F, Capelli I, Cappuccilli M, La Manna G. The Off-Target Effects, Electrolyte and Mineral Disorders of SGLT2i. Molecules 2020; 25:molecules25122757. [PMID: 32549243 PMCID: PMC7355461 DOI: 10.3390/molecules25122757] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/21/2022] Open
Abstract
The sodium-glucose cotransporter 2 inhibitors (SGLT2i) are a relatively new class of antidiabetic drugs that, in addition to emerging as an effective hypoglycemic treatment, have been shown to improve, in several trials, both renal and cardiovascular outcomes. In consideration of the renal site of action and the associated osmotic diuresis, a negative sodium balance has been postulated during SGLT2i administration. Although it is presumable that sodium and water depletion may contribute to some positive actions of SGLT2i, evidence is far from being conclusive and the real physiologic effects of SGLT2i on sodium remain largely unknown. Indeed, no study has yet investigated how SGLT2i change sodium balance in the long term and especially the pathways through which the natriuretic effect is expressed. Furthermore, recently, several experimental studies have identified different pathways, not directly linked to tubular sodium handling, which could contribute to the renal and cardiovascular benefits associated with SGLT2i. These compounds may also modulate urinary chloride, potassium, magnesium, phosphate, and calcium excretion. Some changes in electrolyte homeostasis are transient, whereas others may persist, suggesting that the administration of SGLT2i may affect mineral and electrolyte balances in exposed subjects. This paper will review the evidence of SGLT2i action on sodium transporters, their off-target effects and their potential role on kidney protection as well as their influence on electrolytes and mineral homeostasis.
Collapse
Affiliation(s)
- Giuseppe Cianciolo
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, S. Orsola Hospital, University of Bologna, 40100 Bologna, Italy; (G.C.); (L.G.); (F.T.); (F.Z.); (I.C.); (M.C.)
| | | | - Lorenzo Gasperoni
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, S. Orsola Hospital, University of Bologna, 40100 Bologna, Italy; (G.C.); (L.G.); (F.T.); (F.Z.); (I.C.); (M.C.)
| | - Francesco Tondolo
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, S. Orsola Hospital, University of Bologna, 40100 Bologna, Italy; (G.C.); (L.G.); (F.T.); (F.Z.); (I.C.); (M.C.)
| | - Fulvia Zappulo
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, S. Orsola Hospital, University of Bologna, 40100 Bologna, Italy; (G.C.); (L.G.); (F.T.); (F.Z.); (I.C.); (M.C.)
| | - Irene Capelli
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, S. Orsola Hospital, University of Bologna, 40100 Bologna, Italy; (G.C.); (L.G.); (F.T.); (F.Z.); (I.C.); (M.C.)
| | - Maria Cappuccilli
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, S. Orsola Hospital, University of Bologna, 40100 Bologna, Italy; (G.C.); (L.G.); (F.T.); (F.Z.); (I.C.); (M.C.)
| | - Gaetano La Manna
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, S. Orsola Hospital, University of Bologna, 40100 Bologna, Italy; (G.C.); (L.G.); (F.T.); (F.Z.); (I.C.); (M.C.)
- Correspondence: ; Tel.: +39-051-214-3255; Fax: +39-051-340-871
| |
Collapse
|
36
|
Packer M. Interplay of adenosine monophosphate-activated protein kinase/sirtuin-1 activation and sodium influx inhibition mediates the renal benefits of sodium-glucose co-transporter-2 inhibitors in type 2 diabetes: A novel conceptual framework. Diabetes Obes Metab 2020; 22:734-742. [PMID: 31916329 DOI: 10.1111/dom.13961] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/29/2019] [Accepted: 01/04/2020] [Indexed: 12/11/2022]
Abstract
Long-term treatment with sodium-glucose co-transporter-2 (SGLT2) inhibitors slows the deterioration of renal function in patients with diabetes. This benefit cannot be ascribed to an action on blood glucose, ketone utilization, uric acid or systolic blood pressure. SGLT2 inhibitors produce a striking amelioration of glomerular hyperfiltration. Although initially ascribed to an action of these drugs to inhibit proximal tubular glucose reabsorption, SGLT2 inhibitors exert renoprotective effects, even in patients with meaningfully impaired levels of glomerular function that are sufficient to abolish their glycosuric actions. Instead, the reduction in intraglomerular pressures may be related to an action of SGLT2 inhibitors to interfere with the activity of sodium-hydrogen exchanger isoform 3, thereby inhibiting proximal tubular sodium reabsorption and promoting tubuloglomerular feedback. Yet, experimentally, such an effect may not be sufficient to prevent renal injury. It is therefore noteworthy that the diabetic kidney exhibits an important defect in adenosine monophosphate-activated protein kinase (AMPK) and sirtuin-1 (SIRT1) signalling, which may contribute to the development of nephropathy. These transcription factors exert direct effects to mute oxidative stress and inflammation, and they also stimulate autophagy, a lysosomally mediated degradative pathway that maintains cellular homeostasis in the kidney. SGLT2 inhibitors induce both AMPK and SIRT1, and they have been shown to stimulate autophagy, thereby ameliorating cellular stress and glomerular and tubular injury. Enhanced AMPK/SIRT1 signalling may also contribute to the action of SGLT2 inhibitors to interfere with sodium transport mechanisms. The dual effects of SGLT2 inhibitors on AMPK/SIRT1 activation and renal tubular sodium transport may explain the protective effects of these drugs on the kidney in type 2 diabetes.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, Texas
- Imperial College, London, UK
| |
Collapse
|
37
|
Ojeda ML, Nogales F, Serrano A, Murillo ML, Carreras O. Selenoproteins and renal programming in metabolic syndrome-exposed rat offspring. Food Funct 2020; 11:3904-3915. [PMID: 32342074 DOI: 10.1039/d0fo00264j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Maternal metabolic syndrome (MS) during gestation and lactation leads to several cardiometabolic changes related to selenium (Se) status and selenoprotein expression in offspring. However, little is known about kidney programming and antioxidant selenoprotein status in MS pups. To gain more knowledge on this subject, two experimental groups of dam rats were used: Control (Se: 0.1 ppm) and MS (fructose 65% and Se: 0.1 ppm). At the end of lactation, Se deposits in kidneys, selenoprotein expression (GPx1, GPx3, GPx4 and selenoprotein P), oxidative balance and AMP-activated protein kinase (AMPK) and activated transcriptional factor NF-κB expression were measured. Kidney functional parameters, albuminuria, creatinine clearance, aldosteronemia, and water and electrolyte balance, were also evaluated. One week later systolic blood pressure was measured. Lipid peroxidation takes place in the kidneys of MS pups and Se, selenoproteins and NF-κB expression increased, while AMPK activation decreased. MS pups have albuminuria and low creatinine clearance which implies glomerular renal impairment with protein loss. They also present hypernatremia and hyperaldosteronemia, together with a high renal Na+ reabsorption, leading to a hypertensive status, which was detected in these animals one week later. Since these alterations seem to be related, at least in part, to oxidative stress, the increase in Se and selenoproteins found in the kidneys of these pups seems to be beneficial, avoiding a higher lipid oxidation. However, in order to analyze the possible global beneficial role of Se in kidneys during MS exposure, more data are necessary to document the relationships between GPx4 and NF-κB, and SelP and AMPK in kidneys.
Collapse
Affiliation(s)
- María Luisa Ojeda
- Department of Physiology, Faculty of Pharmacy, Seville University, 41012 Seville, Spain.
| | | | | | | | | |
Collapse
|
38
|
A Novel Approach to Deliver Therapeutic Extracellular Vesicles Directly into the Mouse Kidney via Its Arterial Blood Supply. Cells 2020; 9:cells9040937. [PMID: 32290286 PMCID: PMC7226986 DOI: 10.3390/cells9040937] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/05/2020] [Accepted: 04/08/2020] [Indexed: 02/07/2023] Open
Abstract
Diseases of the kidney contribute a significant morbidity and mortality burden on society. Localized delivery of therapeutics directly into the kidney, via its arterial blood supply, has the potential to enhance their therapeutic efficacy while limiting side effects associated with conventional systemic delivery. Targeted delivery in humans is feasible given that we can access the renal arterial blood supply using minimally invasive endovascular techniques and imaging guidance. However, there is currently no described way to reproduce or mimic this approach in a small animal model. Here, we develop in mice a reproducible microsurgical technique for the delivery of therapeutics directly into each kidney, via its arterial blood supply. Using our technique, intra-arterially (IA) injected tattoo dye homogenously stained both kidneys, without staining any other organ. Survival studies showed no resulting mortality or iatrogenic kidney injury. We demonstrate the therapeutic potential of our technique in a mouse model of cisplatin-induced acute kidney injury (AKI). IA injection of mesenchymal stromal cell (MSC)-derived extracellular vesicles (EVs) successfully reversed AKI, with reduced physiological and molecular markers of kidney injury, attenuated inflammation, and restoration of proliferation and regeneration markers. This reproducible delivery technique will allow for further pre-clinical translational studies investigating other therapies for the treatment of renal pathologies.
Collapse
|
39
|
AMPfret: synthetic nanosensor for cellular energy states. Biochem Soc Trans 2020; 48:103-111. [PMID: 32010945 DOI: 10.1042/bst20190347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/14/2019] [Accepted: 01/10/2020] [Indexed: 12/22/2022]
Abstract
Cellular energy is a cornerstone of metabolism and is crucial for human health and disease. Knowledge of the cellular energy states and the underlying regulatory mechanisms is therefore key to understanding cell physiology and to design therapeutic interventions. Cellular energy states are characterised by concentration ratios of adenylates, in particular ATP:ADP and ATP:AMP. We applied synthetic biology approaches to design, engineer and validate a genetically encoded nano-sensor for cellular energy state, AMPfret. It employs the naturally evolved energy sensing of eukaryotic cells provided by the AMP-activated protein kinase (AMPK). Our synthetic nano-sensor relies on fluorescence resonance energy transfer (FRET) to detect changes in ATP:ADP and ATP:AMP ratios both in vitro and in cells in vivo. Construction and iterative optimisation relied on ACEMBL, a parallelised DNA assembly and construct screening technology we developed, facilitated by a method we termed tandem recombineering (TR). Our approach allowed rapid testing of numerous permutations of the AMPfret sensor to identify the most sensitive construct, which we characterised and validated both in the test tube and within cells.
Collapse
|
40
|
Schley G, Grampp S, Goppelt-Struebe M. Inhibition of oxygen-sensing prolyl hydroxylases increases lipid accumulation in human primary tubular epithelial cells without inducing ER stress. Cell Tissue Res 2020; 381:125-140. [PMID: 32189058 PMCID: PMC7306052 DOI: 10.1007/s00441-020-03186-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 02/03/2020] [Indexed: 12/18/2022]
Abstract
The role of the hypoxia-inducible transcription factor (HIF) pathway in renal lipid metabolism is largely unknown. As HIF stabilizing prolyl hydroxylase (PHD) inhibitors are currently investigated in clinical trials for the treatment of renal anemia, we studied the effects of genetic deletion and pharmacological inhibition of PHDs on renal lipid metabolism in transgenic mice and human primary tubular epithelial cells (hPTEC). Tubular cell-specific deletion of HIF prolyl hydroxylase 2 (Phd2) increased the size of Oil Red-stained lipid droplets in mice. In hPTEC, the PHD inhibitors (PHDi) DMOG and ICA augmented lipid accumulation, which was visualized by Oil Red staining and assessed by microscopy and an infrared imaging system. PHDi-induced lipid accumulation required the exogenous availability of fatty acids and was observed in both proximal and distal hPTEC. PHDi treatment was not associated with structural features of cytotoxicity in contrast to treatment with the immunosuppressant cyclosporine A (CsA). PHDi and CsA differentially upregulated the expression of the lipid droplet-associated genes PLIN2, PLIN4 and HILPDA. Both PHDi and CsA activated AMP-activated protein kinase (AMPK) indicating the initiation of a metabolic stress response. However, only CsA triggered endoplasmic reticulum (ER) stress as determined by the increased mRNA expression of multiple ER stress markers but CsA-induced ER stress was not linked to lipid accumulation. Our data raise the possibility that PHD inhibition may protect tubular cells from toxic free fatty acids by trapping them as triacylglycerides in lipid droplets. This mechanism might contribute to the renoprotective effects of PHDi in experimental kidney diseases.
Collapse
Affiliation(s)
- Gunnar Schley
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg and University Hospital Erlangen, Loschgestrasse 8, 91054, Erlangen, Germany.
| | - Steffen Grampp
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg and University Hospital Erlangen, Loschgestrasse 8, 91054, Erlangen, Germany
| | - Margarete Goppelt-Struebe
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg and University Hospital Erlangen, Loschgestrasse 8, 91054, Erlangen, Germany
| |
Collapse
|
41
|
Whether AICAR in Pregnancy or Lactation Prevents Hypertension Programmed by High Saturated Fat Diet: A Pilot Study. Nutrients 2020; 12:nu12020448. [PMID: 32053935 PMCID: PMC7071394 DOI: 10.3390/nu12020448] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 12/29/2022] Open
Abstract
High consumption of saturated fats links to the development of hypertension. AMP-activated protein kinase (AMPK), a nutrient-sensing signal, is involved in the pathogenesis of hypertension. We examined whether early intervention with a direct AMPK activator 5-aminoimidazole-4-carboxamide riboside (AICAR) during pregnancy or lactation can protect adult male offspring against hypertension programmed by high saturated fat consumption via regulation of nutrient sensing signals, nitric oxide (NO) pathway, and oxidative stress. Pregnant Sprague-Dawley rats received regular chow or high saturated fat diet (HFD) throughout pregnancy and lactation. AICAR treatment was introduced by intraperitoneal injection at 50 mg/kg twice a day for 3 weeks throughout the pregnancy period (AICAR/P) or lactation period (AICAR/L). Male offspring (n = 7-8/group) were assigned to five groups: control, HFD, AICAR/P, HFD + AICAR/L, and HFD + AICAR/P. Male offspring were killed at 16 weeks of age. HFD caused hypertension and obesity in male adult offspring, which could be prevented by AICAR therapy used either during pregnancy or lactation. As a result, we demonstrated that HFD downregulated AMPK/SIRT1/PGC-1α pathway in offspring kidneys. In contrast, AICAR therapy in pregnancy and, to a greater extent, in lactation activated AMPK signaling pathway. The beneficial effects of AICAR therapy in pregnancy is related to restoration of NO pathway. While AICAR uses in pregnancy and lactation both diminished oxidative stress induced by HFD. Our results highlighted that pharmacological AMPK activation might be a promising strategy to prevent hypertension programmed by excessive consumption of high-fat food.
Collapse
|
42
|
Jia J, Bissa B, Brecht L, Allers L, Choi SW, Gu Y, Zbinden M, Burge MR, Timmins G, Hallows K, Behrends C, Deretic V. AMPK, a Regulator of Metabolism and Autophagy, Is Activated by Lysosomal Damage via a Novel Galectin-Directed Ubiquitin Signal Transduction System. Mol Cell 2020; 77:951-969.e9. [PMID: 31995728 DOI: 10.1016/j.molcel.2019.12.028] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/27/2019] [Accepted: 12/24/2019] [Indexed: 12/29/2022]
Abstract
AMPK is a central regulator of metabolism and autophagy. Here we show how lysosomal damage activates AMPK. This occurs via a hitherto unrecognized signal transduction system whereby cytoplasmic sentinel lectins detect membrane damage leading to ubiquitination responses. Absence of Galectin 9 (Gal9) or loss of its capacity to recognize lumenal glycans exposed during lysosomal membrane damage abrogate such ubiquitination responses. Proteomic analyses with APEX2-Gal9 have revealed global changes within the Gal9 interactome during lysosomal damage. Gal9 association with lysosomal glycoproteins increases whereas interactions with a newly identified Gal9 partner, deubiquitinase USP9X, diminishes upon lysosomal injury. In response to damage, Gal9 displaces USP9X from complexes with TAK1 and promotes K63 ubiquitination of TAK1 thus activating AMPK on damaged lysosomes. This triggers autophagy and contributes to autophagic control of membrane-damaging microbe Mycobacterium tuberculosis. Thus, galectin and ubiquitin systems converge to activate AMPK and autophagy during endomembrane homeostasis.
Collapse
Affiliation(s)
- Jingyue Jia
- Autophagy, Inflammation and Metabolism AIM Center of Biochemical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Bhawana Bissa
- Autophagy, Inflammation and Metabolism AIM Center of Biochemical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Lukas Brecht
- Munich Cluster of Systems Neurology, Munich, Germany
| | - Lee Allers
- Autophagy, Inflammation and Metabolism AIM Center of Biochemical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Seong Won Choi
- Autophagy, Inflammation and Metabolism AIM Center of Biochemical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Yuexi Gu
- Autophagy, Inflammation and Metabolism AIM Center of Biochemical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Mark Zbinden
- Human Metabolome Technologies America, Boston, MA, USA
| | - Mark R Burge
- Autophagy, Inflammation and Metabolism AIM Center of Biochemical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Graham Timmins
- Autophagy, Inflammation and Metabolism AIM Center of Biochemical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; School pf Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Kenneth Hallows
- Division of Nephrology and Hypertension, Department of Medicine and USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Vojo Deretic
- Autophagy, Inflammation and Metabolism AIM Center of Biochemical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA.
| |
Collapse
|
43
|
Zhang M, Zhang Y, Xiao D, Zhang J, Wang X, Guan F, Zhang M, Chen L. Highly bioavailable berberine formulation ameliorates diabetic nephropathy through the inhibition of glomerular mesangial matrix expansion and the activation of autophagy. Eur J Pharmacol 2020; 873:172955. [PMID: 32001218 DOI: 10.1016/j.ejphar.2020.172955] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/17/2020] [Accepted: 01/24/2020] [Indexed: 12/20/2022]
Abstract
Glomerular mesangial matrix expansion and cell autophagy are the most important factors in the development of kidney damage under diabetic conditions. The activation of AMPK might be an important treatment target for diabetic nephropathy. Berberine has multiple effects on all types of diabetic complications as an activator of AMPK. However, the poor bioavailability of berberine limits its clinical applications. Huang-Gui Solid Dispersion (HGSD), a new formulation of berberine developed in our lab, has 4-fold greater bioavailability than berberine. However, its therapeutic application and mechanism still need to be explored. In the present study, the effect of HGSD on kidney function in type 2 diabetic rats and db/db mice was investigated. The results demonstrated that HGSD improved kidney function in these two animal models, decreased the glomerular volume and increased autophagy. Meanwhile, AMPK phosphorylation levels and autophagy-related protein expression were significantly increased, and extracellular matrix protein deposition-related protein expression was decreased after treatment. The present study indicated that HGSD protected against diabetic kidney dysfunction by inhibiting glomerular mesangial matrix expansion and activating autophagy. The mechanism of HGSD in the treatment of diabetic nephropathy might be connected to the activation of AMPK phosphorylation.
Collapse
Affiliation(s)
- Meishuang Zhang
- Department of Pharmacology, College of Basic Medical Sciences, School of Nursing, Jilin University, Changchun, 130021, China
| | - Yining Zhang
- Research Institution of Paediatrics, Department of Pediatric Endocrinology, The First Clinical Hospital Affiliated to Jilin University, Changchun, 130021, China
| | - Dong Xiao
- Department of Pharmacology, College of Basic Medical Sciences, School of Nursing, Jilin University, Changchun, 130021, China
| | - Jing Zhang
- Department of Pharmacology, College of Basic Medical Sciences, School of Nursing, Jilin University, Changchun, 130021, China
| | - Xinxin Wang
- Senior Officials Inpatient Ward, The First Clinical Hospital Affiliated to Jilin University, Changchun, 130021, China
| | - Fengying Guan
- Department of Pharmacology, College of Basic Medical Sciences, School of Nursing, Jilin University, Changchun, 130021, China
| | - Ming Zhang
- Department of Pharmacology, College of Basic Medical Sciences, School of Nursing, Jilin University, Changchun, 130021, China.
| | - Li Chen
- Department of Pharmacology, College of Basic Medical Sciences, School of Nursing, Jilin University, Changchun, 130021, China.
| |
Collapse
|
44
|
Akhter MS, Uppal P. Toxicity of Metformin and Hypoglycemic Therapies. Adv Chronic Kidney Dis 2020; 27:18-30. [PMID: 32146997 DOI: 10.1053/j.ackd.2019.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/01/2019] [Indexed: 12/15/2022]
Abstract
Metformin along with other antidiabetic medications provide benefit to patients in the treatment of type 2 diabetes mellitus, but caution is advised in certain scenarios to avoid toxicity in kidney disease. Renal dosing, monitoring of kidney function, and evaluating the risk of developing serious side effects are warranted with some agents. The available literature with regard to incidence of adverse events and toxicity of hypoglycemic therapies is reviewed.
Collapse
|
45
|
Pillai SM, Herzog B, Seebeck P, Pellegrini G, Roth E, Verrey F. Differential Impact of Dietary Branched Chain and Aromatic Amino Acids on Chronic Kidney Disease Progression in Rats. Front Physiol 2019; 10:1460. [PMID: 31920685 PMCID: PMC6913537 DOI: 10.3389/fphys.2019.01460] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/12/2019] [Indexed: 12/15/2022] Open
Abstract
The metabolism of dietary proteins generates waste products that are excreted by the kidney, in particular nitrogen-containing urea, uric acid, ammonia, creatinine, and other metabolites such as phosphates, sulfates, and protons. Kidney adaptation includes an increase in renal plasma flow (RPF) and glomerular filtration rate (GFR) and represents a burden for diseased kidneys increasing the progression rate of CKD. The present study aimed at identifying potential differences between amino acid (AA) groups constituting dietary proteins regarding their impact on RPF, GFR, and CKD progression. We utilized the well-established 5/6 nephrectomy (5/6 Nx) CKD model in rats and submitted the animals for 5 weeks to either the control diet (18% casein protein) or to diets containing 8% casein supplemented with 10% of a mix of free amino acids, representing all or only a subset of the amino acids contained in casein. Whereas the RPF and GFR measured in free moving animals remained stable during the course of the diet in rats receiving the control mix, these parameters decreased in animals receiving the branched chain amino acid (BCAA) supplementation and increased in the ones receiving the aromatic amino acids (AAAs). In animals receiving essential amino acids (EAAs) containing both BCAAs and AAAs, there was only a small increase in RPF. The kidneys of the 5/6 Nx rats receiving the BCAA diet showed the strongest increase in smooth muscle actin and collagen mRNA expression as a result of higher level of inflammation and fibrosis. These animals receiving BCAAs also showed an increase in plasma free fatty acids pointing to a problem at the level of energy metabolism. In contrast, the animals under AAA diet showed an activation of AMPK and STAT3. Taken together, our results demonstrate that subsets of EAAs contained in dietary proteins, specifically BCAAs and AAAs, exert contrasting effects on kidney functional parameters and CKD progression.
Collapse
Affiliation(s)
- Samyuktha Muralidharan Pillai
- Institute of Physiology and The Swiss National Centre of Competence in Research (NCCR) Kidney Control of Homeostasis (Kidney.CH), University of Zurich, Zurich, Switzerland
| | - Brigitte Herzog
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Petra Seebeck
- Zurich Integrative Rodent Physiology (ZIRP), University of Zurich, Zurich, Switzerland
| | - Giovanni Pellegrini
- Laboratory for Animal Model Pathology (LAMP), Vetsuisse Faculty, Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | - Eva Roth
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - François Verrey
- Institute of Physiology and The Swiss National Centre of Competence in Research (NCCR) Kidney Control of Homeostasis (Kidney.CH), University of Zurich, Zurich, Switzerland
| |
Collapse
|
46
|
Liu J, Li X, Lu Q, Ren D, Sun X, Rousselle T, Li J, Leng J. AMPK: a balancer of the renin-angiotensin system. Biosci Rep 2019; 39:BSR20181994. [PMID: 31413168 PMCID: PMC6722492 DOI: 10.1042/bsr20181994] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 07/24/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023] Open
Abstract
The renin-angiotensin system (RAS) is undisputedly well-studied as one of the oldest and most critical regulators for arterial blood pressure, fluid volume, as well as renal function. In recent studies, RAS has also been implicated in the development of obesity, diabetes, hyperlipidemia, and other diseases, and also involved in the regulation of several signaling pathways such as proliferation, apoptosis and autophagy, and insulin resistance. AMP-activated protein kinase (AMPK), an essential cellular energy sensor, has also been discovered to be involved in these diseases and cellular pathways. This would imply a connection between the RAS and AMPK. Therefore, this review serves to draw attention to the cross-talk between RAS and AMPK, then summering the most recent literature which highlights AMPK as a point of balance between physiological and pathological functions of the RAS.
Collapse
Affiliation(s)
- Jia Liu
- Department of Geriatrics, The First Hospital of Jilin University, Changchun 130021, China
- Department of Surgery, University of South Florida, Tampa, FL 33612, U.S.A
| | - Xuan Li
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Qingguo Lu
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Di Ren
- Department of Surgery, University of South Florida, Tampa, FL 33612, U.S.A
| | - Xiaodong Sun
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Thomas Rousselle
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Ji Li
- Department of Surgery, University of South Florida, Tampa, FL 33612, U.S.A
| | - Jiyan Leng
- Department of Geriatrics, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
47
|
Rudenko TE, Bobkova IN, Stavrovskaya EV. Modern approaches to conservative therapy of polycystic kidney disease. TERAPEVT ARKH 2019; 91:116-123. [DOI: 10.26442/00403660.2019.06.000299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Indexed: 11/22/2022]
Abstract
Polycystic kidney disease (PKD) is a genetically determined pathological process associated with the formation and growth of cysts originating from the epithelial cells of the tubules and/or collecting tubes. PBP is represented by two main types - autosomal dominant (ADPKD) and autosomal recessive PKD (ARPKD), which are different diseases. The main causes of ADPKD are mutations of the PKD1 and PKD2 genes, which encode the formation of polycystin-1 and polycystin-2 proteins. ARPKD-linked mutation in the gene PKHD1, leads to total absence or defective synthesis of receptor protein primary cilia - fibrocystin. There are relationships between the structural and functional defects in the primary cilia and PBP. Mechanisms of cysts formation and growth include a) mutations of polycystines genes located on the cilia; b) increased activity of renal intracellular cAMP; c) vasopressin V2 receptors activation; d) violation of the tubular epithelium polarity (translocation of Na,K-ATPasa from basolateral to apical membrane); e) increased mTOR activity in epithelial cells lining renal cyst. The most promising directions of ADPKD therapy are blockade of vasopressin V2 receptors activation, inhibition of mTOR signaling pathways and reduction of intracellular cAMP level. The review presents clinical studies that assessed the effectiveness of named drugs in ADPKD.
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW The underlining goal of this review is to offer a concise, detailed look into current knowledge surrounding transient receptor potential canonical channel 6 (TRPC6) in the progression of diabetic kidney disease (DKD). RECENT FINDINGS Mutations and over-activation in TRPC6 channel activity lead to the development of glomeruli injury. Angiotensin II, reactive oxygen species, and other factors in the setting of DKD stimulate drastic increases in calcium influx through the TRPC6 channel, causing podocyte hypertrophy and foot process effacement. Loss of the podocytes further promote deterioration of the glomerular filtration barrier and play a major role in the development of both albuminuria and the renal injury in DKD. Recent genetic manipulation with TRPC6 channels in various rodent models provide additional knowledge about the role of TRPC6 in DKD and are reviewed here. The TRPC6 channel has a pronounced role in the progression of DKD, with deviations in activity yielding detrimental outcomes. The benefits of targeting TRPC6 or its upstream or downstream signaling pathways in DKD are prominent.
Collapse
Affiliation(s)
- Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
- Clement J. Zablocki VA Medical Center, Milwaukee, WI, 53295, USA.
| | - Denisha Spires
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| |
Collapse
|
49
|
Giudici MC, Ahmad F, Holanda DG. Patient with a PRKAG2 mutation who developed Immunoglobulin A nephropathy: a case report. EUROPEAN HEART JOURNAL-CASE REPORTS 2019; 3:5474965. [PMID: 31449595 PMCID: PMC6601182 DOI: 10.1093/ehjcr/ytz038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 03/12/2019] [Indexed: 11/28/2022]
Abstract
Background PRKAG2 syndrome (PS) is a rare, early-onset autosomal dominant inherited disease caused by mutations in PRKAG2, the gene encoding the regulatory γ2 subunit of adenosine monophosphate-activated protein kinase. PRKAG2 syndrome is associated with many cardiac manifestations, including pre-excitation, arrhythmias, left ventricular hypertrophy, and chronotropic incompetence frequently leading to early pacemaker placement. A meta-analysis of genome-wide association data in subjects with chronic kidney disease (CKD) identified a susceptibility locus in an intron of PRKAG2, which has been replicated in other studies. However, CKD has not been reported in patients with PS or mutations in PRKAG2. Case summary We report a case of a woman diagnosed at age 27 with PS when she presented with atrial fibrillation and pre-excitation on electrocardiogram. By age 35, she had developed mild renal insufficiency and a biopsy demonstrated IgA nephropathy (IGAN). Discussion This is the first reported case of IGAN in a patient with PS. We discuss both PS and IGAN and the potential mechanisms by which they could be related.
Collapse
Affiliation(s)
- Michael C Giudici
- Department of Medicine, University of Iowa Hospitals, 200 Hawkins Drive, 4426JCP, Iowa City, IA, USA
| | - Ferhaan Ahmad
- Department of Medicine, University of Iowa Hospitals, 200 Hawkins Drive, 4426JCP, Iowa City, IA, USA
| | - Danniele G Holanda
- Department of Pathology, University of Iowa Hospitals, 200 Hawkins Drive, 4426JCP, Iowa City, IA, USA
| |
Collapse
|
50
|
Singh AP, Singh R, Verma SS, Rai V, Kaschula CH, Maiti P, Gupta SC. Health benefits of resveratrol: Evidence from clinical studies. Med Res Rev 2019; 39:1851-1891. [PMID: 30741437 DOI: 10.1002/med.21565] [Citation(s) in RCA: 310] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/07/2018] [Accepted: 01/19/2019] [Indexed: 12/14/2022]
Abstract
Resveratrol is a polyphenolic nutraceutical that exhibits pleiotropic activities in human subjects. The efficacy, safety, and pharmacokinetics of resveratrol have been documented in over 244 clinical trials, with an additional 27 clinical trials currently ongoing. Resveretrol is reported to potentially improve the therapeutic outcome in patients suffering from diabetes mellitus, obesity, colorectal cancer, breast cancer, multiple myeloma, metabolic syndrome, hypertension, Alzheimer's disease, stroke, cardiovascular diseases, kidney diseases, inflammatory diseases, and rhinopharyngitis. The polyphenol is reported to be safe at doses up to 5 g/d, when used either alone or as a combination therapy. The molecular basis for the pleiotropic activities of resveratrol are based on its ability to modulate multiple cell signaling molecules such as cytokines, caspases, matrix metalloproteinases, Wnt, nuclear factor-κB, Notch, 5'-AMP-activated protein kinase, intercellular adhesion molecule, vascular cell adhesion molecule, sirtuin type 1, peroxisome proliferator-activated receptor-γ coactivator 1α, insulin-like growth factor 1, insulin-like growth factor-binding protein 3, Ras association domain family 1α, pAkt, vascular endothelial growth factor, cyclooxygenase 2, nuclear factor erythroid 2 like 2, and Kelch-like ECH-associated protein 1. Although the clinical utility of resveratrol is well documented, the rapid metabolism and poor bioavailability have limited its therapeutic use. In this regard, the recently produced micronized resveratrol formulation called SRT501, shows promise. This review discusses the currently available clinical data on resveratrol in the prevention, management, and treatment of various diseases and disorders. Based on the current evidence, the potential utility of this molecule in the clinic is discussed.
Collapse
Affiliation(s)
- Akhand Pratap Singh
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Rachna Singh
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sumit Singh Verma
- Laboratory for Translational Cancer Research, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Vipin Rai
- Laboratory for Translational Cancer Research, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Catherine H Kaschula
- Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch, South Africa
| | - Pralay Maiti
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Subash Chandra Gupta
- Laboratory for Translational Cancer Research, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|