1
|
Moaddel R, Candia J, Ubaida-Mohien C, Tanaka T, Moore AZ, Zhu M, Fantoni G, Church S, D'Agostino J, Fan J, Shehadeh N, De S, Lehrmann E, Kaileh M, Simonsick E, Sen R, Egan JM, Ferrucci L. Healthy Aging Metabolomic and Proteomic Signatures Across Multiple Physiological Compartments. Aging Cell 2025:e70014. [PMID: 39952253 DOI: 10.1111/acel.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/18/2025] [Accepted: 01/27/2025] [Indexed: 02/17/2025] Open
Abstract
The study of biomarkers in biofluids and tissues expanded our understanding of the biological processes that drive physiological and functional manifestations of aging. However, most of these studies were limited to examining one biological compartment, an approach that fails to recognize that aging pervasively affects the whole body. The simultaneous modeling of hundreds of metabolites and proteins across multiple compartments may provide a more detailed picture of healthy aging and point to differences between chronological and biological aging. Herein, we report proteomic analyses of plasma and urine collected in healthy men and women, age 22-92 years. Using these data, we developed a series of metabolomic and proteomic predictors of chronological age for plasma, urine, and skeletal muscle. We then defined a biological aging score, which measures the departure between an individual's predicted age and the expected predicted age for that individual based on the full cohort. We show that these predictors are significantly and independently related to clinical phenotypes important for aging, such as inflammation, iron deficiency anemia, muscle mass, and renal and hepatic functions. Despite a different set of selected biomarkers in each compartment, the different scores reflect a similar degree of deviation from healthy aging in single individuals, thus allowing identification of subjects with significant accelerated or decelerated biological aging.
Collapse
Affiliation(s)
- R Moaddel
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - J Candia
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - C Ubaida-Mohien
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - T Tanaka
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - A Z Moore
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - M Zhu
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - G Fantoni
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - S Church
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - J D'Agostino
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - J Fan
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - N Shehadeh
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - S De
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - E Lehrmann
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - M Kaileh
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - E Simonsick
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - R Sen
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - J M Egan
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - L Ferrucci
- Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Zhang N, Li J, Xie X, Hu Y, Chen H, Zhang Y, Liu Y, Zhu X, Xu H, Wang Z, Baima K, Zhang X, Qin Z, Yu Z, Xiao X, Zhao X. Changes in drinking levels and metabolic dysfunction-associated steatotic liver disease: a longitudinal study from the China multi-ethnic cohort study. BMC Public Health 2025; 25:556. [PMID: 39934719 DOI: 10.1186/s12889-025-21752-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Little is known about the associations of changes in drinking levels with the newly defined metabolic dysfunction-associated steatotic liver disease (MASLD). We therefore sought to estimate the associations between changes in drinking levels and MASLD in less developed regions of China. METHODS This longitudinal study included 8727 participants from the China Multi-Ethnic Cohort (CMEC) in less developed regions, all participating in baseline and a follow-up survey. MASLD was defined as hepatic steatosis, along with the presence of at least one of five cardiometabolic risks, in addition to limiting excessive alcohol consumption. We applied the parametric g-formula to evaluate the association between changes in drinking levels and MASLD. We further estimated the association between changes in drinking levels and fibrosis scores (AST-to-platelet ratio and fibrosis-4 index) in patients with MASLD. RESULTS Compared with sustained non-drinking, sustained modest drinking was associated with a higher risk of MASLD (Mean Ratio (MR): 1.127 [95% CI: 1.040-1.242]). Compared to sustained non-drinking, the MR for those transitioning from non-drinking to modest drinking was 1.065 [95% CI: 0.983-1.169], while the MR for those changing from modest drinking to non-drinking was 1.059 [95% CI: 0.965, 1.173]. Non-invasive fibrosis scores tended to increase with modest drinking compared to sustained non-drinking. CONCLUSION In the less developed regions of China, sustained moderate drinking was associated with the risk of MASLD compared with sustained non-drinking. Increased drinking showed a trend towards a higher risk of MASLD. This study can inform drinking policies related to MASLD and liver fibrosis in less developed regions.
Collapse
Affiliation(s)
- Ning Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jingzhong Li
- Tibet Center for Disease Control and Prevention, Lhasa, China
| | - Xiaofen Xie
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yifan Hu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Hongxiang Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yuan Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yujie Liu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xingren Zhu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Hao Xu
- State Key Laboratory of Oral Diseases, Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences, Sichuan University, Chengdu, China
| | - Zhenghong Wang
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
| | - Kangzhuo Baima
- High Altitude Health Science Research Center of Tibet University, Lhasa, Tibet, China
| | - Xuehui Zhang
- School of Public Health, Kunming Medical University, Kunming, China
| | - Zixiu Qin
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Zhimiao Yu
- Chengdu Center for Disease Control and Prevention, Chengdu, China
| | - Xiong Xiao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
| | - Xing Zhao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Wang X, Chen R, Liu J, Wang E, Luo H. Liver injury related to vascular endothelial growth factor tyrosine kinase inhibitors: a pharmacovigilance analysis of the USA FDA adverse event reporting system (FAERS) database. Expert Opin Drug Saf 2025:1-9. [PMID: 39881499 DOI: 10.1080/14740338.2025.2460449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/24/2024] [Accepted: 01/02/2025] [Indexed: 01/31/2025]
Abstract
BACKGROUND While vascular endothelial growth factor tyrosine kinase inhibitors (VEGFR-TKIs) are known to cause adverse events like cardiotoxicity and haematotoxicity, their impact on liver injury remains understudied. This study evaluates the association between VEGFR-TKIs and liver injury using data from the FDA Adverse Event Reporting System (FAERS) database from 2006 to 2024. RESEARCH DESIGN AND METHODS Nine VEGFR-TKIs (Axitinib, Vandetanib, Cabozantinib, Lenvatinib, Pazopanib, Ponatinib, Regorafenib, Sunitinib, Sorafenib) were analyzed. Disproportionality and Bayesian analyses identified cases of VEGFR-TKI-induced liver injury, assessing onset time, mortality, and hospitalization rates. RESULTS 8,619 cases of liver injury were identified. Pazopanib had the highest association with liver injury (reporting odds ratio 3.9). The median onset of liver injury was 21 days. Mortality was 28.5%, with Sorafenib linked to the highest mortality (48.6%). Lenvatinib had the highest hospitalization rate (56%). CONCLUSION VEGFR-TKIs are associated with liver injury. Close monitoring is required to mitigate the risks of hospitalization and early mortality during treatment.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Rujie Chen
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jialin Liu
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - E Wang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Luo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Danpanichkul P, Duangsonk K, Tham EKJ, Tothanarungroj P, Auttapracha T, Prasitsumrit V, Sim B, Tung D, Barba R, Wong RJ, Leggio L, Yang JD, Chen VL, Noureddin M, Díaz LA, Arab JP, Wijarnpreecha K, Liangpunsakul S. Increased mortality from alcohol use disorder, alcohol-associated liver disease, and liver cancer from alcohol among older adults in the United States: 2000 to 2021. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2025; 49:368-378. [PMID: 39701596 PMCID: PMC11828968 DOI: 10.1111/acer.15516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 12/04/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND To investigate the trends in alcohol-associated liver disease (ALD), liver cancer from alcohol, and alcohol use disorder (AUD) burden among older adults in the United States (US). METHODS We gathered the ALD, liver cancer from alcohol, and AUD prevalence, mortality, and age-standardized rates (ASRs) from the Global Burden of Disease (GBD) Study 2021 between 2010 and 2021. We estimated the annual percent change (APC) with confidence intervals (CIs) for the burden of ALD, liver cancer from alcohol, and AUD in older adults (>70 years) in the United States. The findings were contrasted with global estimates and categorized by sex and state. RESULTS In 2021, there were approximately 512,340 cases of AUD, 56,990 cases of ALD, and 4490 cases of primary liver cancer from alcohol among older adults in the United States. In contrast to declining ASRs of prevalence and mortality in the global burden, these parameters were increased in older adults in the United States. From 2000 to 2021, prevalence from AUD (APC: 0.54%, 95% CI 0.43% to 0.65%), ALD (APC + 0.54%, 95% CI 0.22% to 0.86%), and primary liver cancer from alcohol (APC 2.93%, 95% CI 2.76% to 3.11%) increased. Forty states in the United States exhibited a rise in the prevalence rates of ALD in older adults. CONCLUSION Our findings highlighted the increased prevalence and mortality of AUD, ALD, and primary liver cancer from alcohol among older adults in the United Sates, contrasting with the decline in global trends. Public health strategies on ALD, AUD, and primary liver cancer from alcohol, which targets older adults, are urgently needed.
Collapse
Affiliation(s)
- Pojsakorn Danpanichkul
- Department of Internal MedicineTexas Tech University Health Sciences CenterLubbockTexasUSA
| | - Kwanjit Duangsonk
- Department of Microbiology, Faculty of MedicineChiang Mai UniversityChiang MaiThailand
| | - Ethan Kai Jun Tham
- Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | | | | | | | - Benedix Sim
- Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Division of Gastroenterology and Hepatology, Department of MedicineNational University Health SystemSingaporeSingapore
| | - Daniel Tung
- Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Division of Gastroenterology and Hepatology, Department of MedicineNational University Health SystemSingaporeSingapore
| | - Romelia Barba
- Department of Internal MedicineTexas Tech University Health Sciences CenterLubbockTexasUSA
| | - Robert J. Wong
- Gastroenterology SectionVeterans Affairs Palo Alto Healthcare SystemPalo AltoCaliforniaUSA
- Division of Gastroenterology and HepatologyStanford University School of MedicinePalo AltoCaliforniaUSA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program (NIDA IRP) and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research (NIAAA DICBR)NIHBaltimore and BethesdaMarylandUSA
| | - Ju Dong Yang
- Karsh Division of Gastroenterology and Hepatology, Comprehensive Transplant Center, Samuel Oschin Comprehensive Cancer InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Vincent L. Chen
- Division of Gastroenterology and Hepatology, Department of Internal MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Mazen Noureddin
- Houston Research Institute and Houston Methodist HospitalHoustonTexasUSA
| | - Luis Antonio Díaz
- Departamento de Gastroenterología, Escuela de MedicinaPontificia Universidad Católica de ChileSantiagoChile
- Observatorio Multicéntrico de Enfermedades Gastrointestinales (OMEGA)SantiagoChile
- Division of Gastroenterology, MASLD Research CenterUniversity of California at San DiegoLa JollaCaliforniaUSA
| | - Juan Pablo Arab
- Departamento de Gastroenterología, Escuela de MedicinaPontificia Universidad Católica de ChileSantiagoChile
- Observatorio Multicéntrico de Enfermedades Gastrointestinales (OMEGA)SantiagoChile
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal MedicineVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Karn Wijarnpreecha
- Division of Gastroenterology and Hepatology, Department of MedicineUniversity of Arizona College of MedicinePhoenixArizonaUSA
- Department of Internal MedicineBanner University Medical CenterPhoenixArizonaUSA
- BIO5 InstituteUniversity of Arizona College of Medicine‐PhoenixPhoenixArizonaUSA
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of MedicineIndiana University School of MedicineIndianapolisIndianaUSA
- Department of Biochemistry and Molecular BiologyIndiana University School of MedicineIndianapolisIndianaUSA
- Roudebush Veterans' Administration Medical CenterIndianapolisIndianaUSA
| |
Collapse
|
5
|
Ma R, Zhou Y, Huang W, Kong X. Icariin maintaining TMEM119-positive microglial population improves hippocampus-associated memory in senescent mice in relation to R-3-hydroxybutyric acid metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119287. [PMID: 39736348 DOI: 10.1016/j.jep.2024.119287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/01/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Epimedium Tourn. ex L. is a traditional Chinese medicine used for thousands of years in China to treat forgetfulness. Icariin is a principal component of the genus Epimedium. AIM OF THE STUDY The metabolic mechanism of icariin treating forgetfulness is explored. MATERIALS AND METHODS A D-galactose-induced senescent mouse model was employed. The cognitive performance of mice was assessed in the fear conditioning test. Hippocampal pathology was assessed in the immunohistochemistry assay. Plasma metabolome was analyzed using GC-MS method, and the differential metabolites were further identified by UPLC-MS/MS or GC-MS method. The liver function, including ALT and AST, was assessed by enzyme reaction. Icariin was administered intraperitoneally at 50 and 100 mg/kg. Mice were administered five consecutive days per week for 8 weeks. RESULTS Icariin treatment improved hippocampus-related fear memory but not amygdala-related memory, whereas Pexidartinib (PLX3397), a microglial scavenger, did not. Icariin treatment maintained the TMEM119-positive microglial population and decreased the accumulation of the senescent biomarker p16 in the dorsal hippocampus in senescent mouse brains, whereas PLX3397 did not. Notably, p16 in the CA2 subregion significantly decreased in icariin-treated mice than the other hippocampal subregions. The senescent mice exhibited the circulating metabolic characteristics of mild ketoacidosis, active tricarboxylic acid (TCA) cycle, lactic acidosis, hyperglycemia, active detoxification, active cis-oleic acid metabolism, and inhibitory GABA shut. R-3-Hydroxybutyric acid primarily produced in the liver was selectively and robustly decreased by icariin treatment, which was not observed with PLX3397 treatment. The TCA cycle was rescued in senescent mice by icariin treatment. Icariin also protected liver function (plasma ALT) in D-gal-induced senescent mice. CONCLUSIONS Icariin may protect mouse hippocampal cognition from D-gal-induced senescence by protecting microglial homeostasis, and facilitating the utilization of R-3-hydroxybutyric acid is one of the underpins.
Collapse
Affiliation(s)
- Rong Ma
- Central Laboratory, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yuge Zhou
- Central Laboratory, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Weifan Huang
- Central Laboratory, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xiaoni Kong
- Central Laboratory, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
6
|
Xu K, Hernández B, Arpawong TE, Camuzeaux S, Chekmeneva E, Crimmins EM, Elliott P, Fiorito G, Jiménez B, Kenny RA, McCrory C, McLoughlin S, Pinto R, Sands C, Vineis P, Lau CHE, Robinson O. Assessing Metabolic Ageing via DNA Methylation Surrogate Markers: A Multicohort Study in Britain, Ireland and the USA. Aging Cell 2025:e14484. [PMID: 39829316 DOI: 10.1111/acel.14484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/22/2025] Open
Abstract
Metabolomics and epigenomics have been used to develop 'ageing clocks' that assess biological age and identify 'accelerated ageing'. While metabolites are subject to short-term variation, DNA methylation (DNAm) may capture longer-term metabolic changes. We aimed to develop a hybrid DNAm-metabolic clock using DNAm as metabolite surrogates ('DNAm-metabolites') for age prediction. Within the UK Airwave cohort (n = 820), we developed DNAm metabolites by regressing 594 metabolites on DNAm and selected 177 DNAm metabolites and 193 metabolites to construct 'DNAm-metabolic' and 'metabolic' clocks. We evaluated clocks in their age prediction and association with noncommunicable disease risk factors. We additionally validated the DNAm-metabolic clock for the prediction of age and health outcomes in The Irish Longitudinal Study of Ageing (TILDA, n = 488) and the Health and Retirement Study (HRS, n = 4018). Around 70% of DNAm metabolites showed significant metabolite correlations (Pearson's r: > 0.30, p < 10-4) in the Airwave test set and overall stronger age associations than metabolites. The DNAm-metabolic clock was enriched for metabolic traits and was associated (p < 0.05) with male sex, heavy drinking, anxiety, depression and trauma. In TILDA and HRS, the DNAm-metabolic clock predicted age (r = 0.73 and 0.69), disability and gait speed (p < 0.05). In HRS, it additionally predicted time to death, diabetes, cardiovascular disease, frailty and grip strength. DNAm metabolite surrogates may facilitate metabolic studies using only DNAm data. Clocks built from DNAm metabolites provided a novel approach to assess metabolic ageing, potentially enabling early detection of metabolic-related diseases for personalised medicine.
Collapse
Affiliation(s)
- Kexin Xu
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- MRC WIMM Centre of Computational Biology, Radcliffe Department of Medicine, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Belinda Hernández
- The Irish Longitudinal Study on Ageing (TILDA), Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Thalida Em Arpawong
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| | - Stephane Camuzeaux
- National Phenome Centre and Imperial Clinical Phenotyping Centre, Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, IRDB Building, Imperial College London, London, UK
| | - Elena Chekmeneva
- National Phenome Centre and Imperial Clinical Phenotyping Centre, Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, IRDB Building, Imperial College London, London, UK
| | - Eileen M Crimmins
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| | - Paul Elliott
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- NIHR Health Protection Research Unit in Chemical and Radiation Threats and Hazards, London, UK
- UK Dementia Research Institute at Imperial College London, London, UK
| | - Giovani Fiorito
- The Irish Longitudinal Study on Ageing (TILDA), Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Clinical Bioinformatics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Beatriz Jiménez
- National Phenome Centre and Imperial Clinical Phenotyping Centre, Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, IRDB Building, Imperial College London, London, UK
| | - Rose Anne Kenny
- The Irish Longitudinal Study on Ageing (TILDA), Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Cathal McCrory
- The Irish Longitudinal Study on Ageing (TILDA), Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Sinead McLoughlin
- The Irish Longitudinal Study on Ageing (TILDA), Department of Medical Gerontology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Rui Pinto
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- National Phenome Centre and Imperial Clinical Phenotyping Centre, Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, IRDB Building, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College London, London, UK
| | - Caroline Sands
- National Phenome Centre and Imperial Clinical Phenotyping Centre, Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, IRDB Building, Imperial College London, London, UK
| | - Paolo Vineis
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Chung-Ho E Lau
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Oliver Robinson
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, UK
| |
Collapse
|
7
|
Oje MM, Kolawole OJ, Ijarotimi O, Adekanle O, Jegede OS, Ndububa DA. Liver histology pattern of young patients with inactive chronic hepatitis b virus infection from a hospital in South West Nigeria. BMC Gastroenterol 2024; 24:438. [PMID: 39604871 PMCID: PMC11603992 DOI: 10.1186/s12876-024-03501-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Chronic hepatitis B (CHB) infection is the leading cause of chronic liver disease in sub-Saharan Africa. A significant proportion of patients with CHB are inactive carriers, for whom guidelines neither recommend biopsy nor treatment. In sub-Saharan Africa, patients under 30 years old with CHB sometimes develop liver cancer, raising the possibility that significant liver disease may occur early in life in these patients. METHODS A hospital-based cross-sectional study was conducted on patients with inactive CHB. A convenient sampling method was used to recruit patients. All patients underwent a percutaneous liver biopsy to evaluate significant necroinflammation and fibrosis using the Meta-analysis of histological data in viral hepatitis (METAVIR) system, defined as at least METAVIR A2, F2 disease. Tests of association between the histological outcomes, sociodemographic factors, and laboratory findings were performed. The data obtained were entered into the Statistical Package for the Social Sciences (SPSS) version 21 and analysed using descriptive and inferential statistics. A p-value of < 0.05 was considered statistically significant. RESULTS A total of 88 patients-60 males (68.2%) and 28 females (31.8%)-completed the study. The study participants were aged 18 to 29 years, with a mean age of 25.4 ± 3.4 years. Thirty-nine (44.3%) had significant necroinflammation and/or fibrosis on histology, 19 (21.6%) of whom had necroinflammation only, and 13 (14.8%) had both necroinflammation and fibrosis. Males had significant necroinflammation and fibrosis more than the females. A family history of death from liver disease was associated with significant liver fibrosis (p < 0.05). CONCLUSION A portion of young patients with inactive CHB have significant liver disease, particularly those with a family history of liver-related death. Liver biopsy may therefore be beneficial in these categories of patients to detect this.
Collapse
Affiliation(s)
- Modupeola Maria Oje
- Department of Medicine, LAUTECH Teaching Hospital, Ogbomoso, Oyo State, Nigeria.
| | - Olawumi Janet Kolawole
- Department of General Medicine, Frimley Health NHS foundation Trust, Wexham Park Hospital, Slough, UK
| | - Oluwasegun Ijarotimi
- Department of Medicine, Faculty of Clinical Sciences, Obafemi Awolowo University and Obafemi Awolowo Teaching Hospital, Ile-Ife, Osun State, Nigeria
| | - Olusegun Adekanle
- Department of Medicine, Faculty of Clinical Sciences, Obafemi Awolowo University and Obafemi Awolowo Teaching Hospital, Ile-Ife, Osun State, Nigeria
| | - Oluwatosin Samson Jegede
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, USA
| | - Dennis Amajuoyi Ndububa
- Department of Medicine, Faculty of Clinical Sciences, Obafemi Awolowo University and Obafemi Awolowo Teaching Hospital, Ile-Ife, Osun State, Nigeria
| |
Collapse
|
8
|
Chen J, Li L, Wang S. Warfarin-induced gastrointestinal bleeding with acute liver failure: A case report. Medicine (Baltimore) 2024; 103:e40658. [PMID: 39809192 PMCID: PMC11596591 DOI: 10.1097/md.0000000000040658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/06/2024] [Indexed: 01/16/2025] Open
Abstract
RATIONALE Warfarin is the most commonly used drug in patients with mechanical valve replacement. Acute liver damage after warfarin is rare but potentially harmful. We present a case of warfarin-induced gastrointestinal bleeding with liver injury, pharmacy monitoring, and its therapy. PATIENT CONCERNS A 64-year-old woman with warfarin 4.5 mg medical history 10 years after mechanical mitral valve replacement. Who presented with gastrointestinal bleeding and extensive ecchymosis, due to rising international normalized ratio (INR), and then progressed to acute liver injury. DIAGNOSES Warfarin poisoning. INTERVENTIONS Discontinuing warfarin, and artificial liver support system with anti-inflammatory liver therapy, which used reduced glutathione, polyene phosphatidylcholine, and ademetionine 1,4-butanedisulfonate for injection, ursodeoxycholic acid for orally. OUTCOMES The liver enzymes and hyperbilirubinemia were improved, she was placed on warfarin again, and the INR increased to 2.03. There was no significant increase in liver enzymes and hyperbilirubinemia, she was discharged on day 24. LESSONS Close monitoring and immediate dose adjustment of warfarin and to avoid drug-drug interaction. Timely stopped warfarin, adjusted INR and anti-inflammatory liver therapy may reduce the occurrence of warfarin-induced liver failure.
Collapse
Affiliation(s)
- Jiahao Chen
- Department of Pharmacy, The People’s Hospital of Hezhou, Hezhou, China
| | - Le Li
- Department of Pharmacy, The People’s Hospital of Hezhou, Hezhou, China
| | - Shiyu Wang
- Department of Pharmacy, The People’s Hospital of Hezhou, Hezhou, China
| |
Collapse
|
9
|
Almalki WH, Almujri SS. Aging, ROS, and cellular senescence: a trilogy in the progression of liver fibrosis. Biogerontology 2024; 26:10. [PMID: 39546058 DOI: 10.1007/s10522-024-10153-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024]
Abstract
Ageing is an inevitable and multifaceted biological process that impacts a wide range of cellular and molecular mechanisms, leading to the development of various diseases, such as liver fibrosis. Liver fibrosis progresses to cirrhosis, which is an advanced form due to high amounts of extracellular matrix and restoration of normal liver structure with failure to repair damaged tissue and cells, marking the end of liver function and total liver failure, ultimately death. The most important factors are reactive oxygen species (ROS) and cellular senescence. Oxidative stress is defined as an impairment by ROS, which are by-products of the mitochondrial electron transport chain and other key molecular pathways that induce cell damage and can activate cellular senescence pathways. Cellular senescence is characterized by pro-inflammatory cytokines, growth factors, and proteases secreted by senescent cells, collectively known as the senescence-associated secretory phenotype (SASP). The presence of senescent cells, which disrupt tissue architecture and function and increase senescent cell production in liver tissues, contributes to fibrogenesis. Hepatic stellate cells (HSCs) are activated in response to chronic liver injury, oxidative stress, and senescence signals that drive excessive production and deposition of extracellular matrix. This review article aims to provide a comprehensive overview of the pathogenic role of ROS and cellular senescence in the aging liver and their contribution to fibrosis.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, 61421, Abha, Aseer, Saudi Arabia.
| |
Collapse
|
10
|
Selvarani R, Nguyen HM, Pazhanivel N, Raman M, Lee S, Wolf RF, Deepa SS, Richardson A. The role of inflammation induced by necroptosis in the development of fibrosis and liver cancer in novel knockin mouse models fed a western diet. GeroScience 2024:10.1007/s11357-024-01418-3. [PMID: 39514172 DOI: 10.1007/s11357-024-01418-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
Non-resolving, chronic inflammation (inflammaging) is believed to play an important role in aging and age-related diseases. The goal of this study was to determine if inflammation induced by necroptosis arising from the liver plays a role in chronic liver disease (CLD) and liver cancer in mice fed a western diet (WD). Necroptosis was induced in liver using two knockin (KI) mouse models that overexpress genes involved in necroptosis (Ripk3 or Mlkl) specifically in liver (i.e., hRipk3-KI and hMlkl-KI mice). These mice and control mice (not overexpressing Ripk3 or Mlkl) were fed a WD (high in fat, sucrose, and cholesterol) starting at 2 months of age for 3, 6, and 12 months. Feeding the WD induced necroptosis in the control mice, which was further elevated in the hRipk3-KI and hMlkl-KI mice and was associated with a significant increase in inflammation in the livers of the hRipk3-KI and hMlkl-KI mice compared to control mice fed the WD. Overexpressing Ripk3 or Mlkl significantly increased steatosis and fibrosis compared to control mice fed the WD. Mice fed the WD for 12 months developed liver tumors (hepatocellular adenomas): 28% of the control mice developing tumors compared to 62% of the hRipk3-KI and hMlkl-KI mice. The hRipk3-KI and hMlkl-KI mice showed significantly more and larger tumor nodules. Our study provides the first direct evidence that inflammation induced by necroptosis arising from hepatocytes can lead to the progression of hepatic steatosis to fibrosis in obese mice that eventually results in an increased incidence in hepatocellular adenomas.
Collapse
Affiliation(s)
- Ramasamy Selvarani
- Biochemistry & Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Natesan Pazhanivel
- Department of Veterinary Pathology, TANUVAS, Chennai City, Tamilnadu, India
| | | | - Sunho Lee
- Biochemistry & Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Roman F Wolf
- Oklahoma Veteran Affairs Medical Center, Oklahoma City, OK, USA
| | - Sathyaseelan S Deepa
- Biochemistry & Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience & Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Arlan Richardson
- Biochemistry & Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Stephenson Cancer Center, Oklahoma City, OK, USA.
- Oklahoma Center for Geroscience & Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma Veteran Affairs Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
11
|
Han QH, Huang SM, Wu SS, Luo SS, Lou ZY, Li H, Yang YM, Zhang Q, Shao JM, Zhu LJ. Mapping the evolution of liver aging research: A bibliometric analysis. World J Gastroenterol 2024; 30:4461-4480. [PMID: 39534417 PMCID: PMC11551677 DOI: 10.3748/wjg.v30.i41.4461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/16/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND With the increasing of the global aging population, healthy aging and prevention of age-related diseases have become increasingly important. The liver, a vital organ involved in metabolism, detoxification, digestion, and immunity, holds a pivotal role in the aging process of organisms. Although extensive research on liver aging has been carried out, no bibliometric analysis has been conducted to evaluate the scientific progress in this area. AIM To analyze basic knowledge, development trends, and current research frontiers in the field via bibliometric methods. METHODS We conducted bibliometric analyses via a range of analytical tools including Python, the bibliometrix package in R, CiteSpace, and VOSviewer. We retrieved publication data on liver aging research from the Web of Science Core Collection Database. A scientific knowledge map was constructed to display the contributions from different authors, journals, countries, institutions, as well as patterns of co-occurrence keywords and co-cited references. Additionally, gene regulation pathways associated with liver aging were analyzed via the STRING database. RESULTS We identified 4288 articles on liver aging, authored by 24034 contributors from 4092 institutions across 85 countries. Notably, the years 1991 and 2020 presented significant bursts in publication output. The United States led in terms of publications (n = 1008, 25.1%), citations (n = 55205), and international collaborations (multiple country publications = 214). Keywords such as "lipid metabolism", "fatty liver disease", "inflammation", "liver fibrosis" and "target" were prominent, highlighting the current research hotspots. Notably, the top 64 genes, each of which appeared in at least 8 articles, were involved in pathways essential for cell survival and aging, including the phosphatidylinositol 3-kinase/protein kinase B, Forkhead box O and p53 signaling pathways. CONCLUSION This study highlights key areas of liver aging and offers a comprehensive overview of research trends, as well as insights into potential value for collaborative pursuits and clinical implementations.
Collapse
Affiliation(s)
- Qun-Hua Han
- Department of Geriatrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
- Department of Pathology & Pathophysiology, Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang Province, China
| | - Shun-Mei Huang
- Department of Geriatrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Sha-Sha Wu
- Department of Geriatrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
- Department of Rehabilitation Medicine, First People’s Hospital of Wenling, Wenling 317500, Zhejiang Province, China
| | - Sui-Sui Luo
- Department of Geriatrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Zhi-Yuan Lou
- Department of Pathology & Pathophysiology, Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang Province, China
| | - Hui Li
- Laboratory of Animal Research Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Yun-Mei Yang
- Department of Geriatrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Qin Zhang
- Department of Geriatrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Ji-Min Shao
- Department of Pathology & Pathophysiology, Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang Province, China
| | - Li-Jun Zhu
- Department of Geriatrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
12
|
Bahar AN, Keskin-Aktan A, Akarca-Dizakar SÖ, Sonugür G, Akbulut KG. AGK2, a SIRT2 inhibitor, ameliorates D-galactose-induced liver fibrosis by inhibiting fibrogenic factors. J Biochem Mol Toxicol 2024; 38:e70000. [PMID: 39400930 DOI: 10.1002/jbt.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/05/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024]
Abstract
In our study, we aimed to investigate the effect of SIRT2 inhibition on function, fibrosis and inflammation in liver fibrosis induced by D-Galactose (D-Gal) administration. A total of 32 3-month-old Sprague Dawley rats were used in the study. Rats were divided into 4 groups as Control, d-Gal, Solvent+d-Gal, d-Gal+AGK2+Solvent. d-Gal (150 mg/kg/day), AGK-2 (10 µM/bw) as a specific SIRT2 inhibitor, 4%DMSO + PBS as a solvent was applied to the experimental groups and physiological saline was applied to the control group for 10 weeks. All applications were performed subcutaneously. Histological fibrotic changes were studied in the liver tissues by Masson's trichrome staining, hematoxylin and eosin staining and immunohistochemistry and the levels of selected factors were determined by quantitative reverse transcription-polymerase chain reaction, western blot analysis, and immunohistochemical analysis. Biochemical parameters and Paraoxonase levels were determined in the plasma. d-Galactose administration increased AST, AST-ALT Ratio, APRI, SIRT2 protein expression, IL1β, TGF β, β-catenin, Type I collagen, Type III collagen and α-SMA, collagen fiber density and histopathological score. ALT and lipid panels were not changed and paraxonase plasma level was shown to decrease. These effects were largely blocked by the SIRT2 inhibitor AGK2. These findings suggest that SIRT2 inhibition attenuates d-Gal-induced liver injury and that this protection may be due to its antifibrotic and anti-inflammatory activities.
Collapse
Affiliation(s)
- Aslı Nur Bahar
- Department of Physiology, Faculty of Medicine, Marmara University, Istanbul, Turkey
| | - Arzu Keskin-Aktan
- Department of Physiology, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | | | - Gizem Sonugür
- Cancer Research Institute, Faculty of Medicine, Ankara University, Ankara, Turkey
| | | |
Collapse
|
13
|
Gasparro R, Gambino G, Duca G, Majo DD, Di Liberto V, Tinnirello V, Urone G, Ricciardi N, Frinchi M, Rabienezhad Ganji N, Vergilio G, Zummo FP, Rappa F, Fontana S, Conigliaro A, Sardo P, Ferraro G, Alessandro R, Raimondo S. Protective effects of lemon nanovesicles: evidence of the Nrf2/HO-1 pathway contribution from in vitro hepatocytes and in vivo high-fat diet-fed rats. Biomed Pharmacother 2024; 180:117532. [PMID: 39383731 DOI: 10.1016/j.biopha.2024.117532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024] Open
Abstract
The cross-talk between plant-derived nanovesicles (PDNVs) and mammalian cells has been explored by several investigations, underlining the capability of these natural nanovesicles to regulate several molecular pathways. Additionally, PDNVs possess biological proprieties that make them applicable against pathological conditions, such as hepatic diseases. In this study we explored the antioxidant properties of lemon-derived nanovesicles, isolated at laboratory (LNVs) and industrial scale (iLNVs) in human healthy hepatocytes (THLE-2) and in metabolic syndrome induced by a high-fat diet (HFD) in the rat. Our findings demonstrate that in THLE-2 cells, LNVs and iLNVs decrease ROS production and upregulate the expression of antioxidant mediators, Nrf2 and HO-1. Furthermore, the in vivo assessment reveals that the oral administration of iLNVs improves glucose tolerance and lipid dysmetabolism, ameliorates biometric parameters and systemic redox homeostasis, and upregulates Nrf2/HO-1 signaling in HFD rat liver. Consequently, we believe LNVs/iLNVs might be a promising approach for managing hepatic and dysmetabolic disorders.
Collapse
Affiliation(s)
- Roberta Gasparro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), University of Palermo, Section of Biology and Genetics, Palermo 90133, Italy
| | - Giuditta Gambino
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), University of Palermo, Section of Human Physiology, Palermo 90134, Italy
| | - Giulia Duca
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), University of Palermo, Section of Biology and Genetics, Palermo 90133, Italy
| | - Danila Di Majo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), University of Palermo, Section of Human Physiology, Palermo 90134, Italy
| | - Valentina Di Liberto
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), University of Palermo, Section of Human Physiology, Palermo 90134, Italy
| | - Vincenza Tinnirello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), University of Palermo, Section of Biology and Genetics, Palermo 90133, Italy
| | - Giulia Urone
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), University of Palermo, Section of Human Physiology, Palermo 90134, Italy
| | - Nicolò Ricciardi
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), University of Palermo, Section of Human Physiology, Palermo 90134, Italy
| | - Monica Frinchi
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), University of Palermo, Section of Human Physiology, Palermo 90134, Italy
| | - Nima Rabienezhad Ganji
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), University of Palermo, Section of Biology and Genetics, Palermo 90133, Italy
| | - Giuseppe Vergilio
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Human Anatomy and Histology, University of Palermo, Palermo 90127, Italy
| | - Francesco Paolo Zummo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Human Anatomy and Histology, University of Palermo, Palermo 90127, Italy
| | - Francesca Rappa
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Institute of Human Anatomy and Histology, University of Palermo, Palermo 90127, Italy; The Institute of Translational Pharmacology, National Research Council of Italy (CNR), 90146 Palermo, Italy
| | - Simona Fontana
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), University of Palermo, Section of Biology and Genetics, Palermo 90133, Italy
| | - Alice Conigliaro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), University of Palermo, Section of Biology and Genetics, Palermo 90133, Italy; ATeN (Advanced Technologies Network) Center, Viale Delle Scienze, University of Palermo, 90128, Palermo, Italy; Navhetec s.r.l., Spinoff of the University of Palermo, Palermo, Italy
| | - Pierangelo Sardo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), University of Palermo, Section of Human Physiology, Palermo 90134, Italy
| | - Giuseppe Ferraro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), University of Palermo, Section of Human Physiology, Palermo 90134, Italy
| | - Riccardo Alessandro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), University of Palermo, Section of Biology and Genetics, Palermo 90133, Italy; Navhetec s.r.l., Spinoff of the University of Palermo, Palermo, Italy; Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), Palermo 90146, Italy
| | - Stefania Raimondo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D), University of Palermo, Section of Biology and Genetics, Palermo 90133, Italy; Navhetec s.r.l., Spinoff of the University of Palermo, Palermo, Italy.
| |
Collapse
|
14
|
Baba B, Ceylani T, Gurbanov R, Acikgoz E, Keskin S, Allahverdi H, Samgane G, Tombuloglu H, Teker HT. Promoting longevity in aged liver through NLRP3 inflammasome inhibition using tauroursodeoxycholic acid (TUDCA) and SCD probiotics. Arch Gerontol Geriatr 2024; 125:105517. [PMID: 38851091 DOI: 10.1016/j.archger.2024.105517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
This investigation explores the combined influence of SCD Probiotics and tauroursodeoxycholic acid (TUDCA) on liver health in elderly male Sprague-Dawley rats. Through the administration of intravenous TUDCA (300 mg/kg) and oral SCD Probiotics (3 mL at 1 × 10^8 CFU) daily for one week, this study evaluates the biomolecular composition, histopathological alterations, and inflammasome activity in the liver. Analytical methods encompassed ATR-FTIR spectroscopy integrated with machine learning for the assessment of biomolecular structures, RT-qPCR for quantifying inflammasome markers (NLRP3, ASC, Caspase-1, IL18, IL1β), and histological examinations to assess liver pathology. The findings reveal that TUDCA prominently enhanced lipid metabolism by reducing cholesterol esters, while SCD Probiotics modulated both lipid and protein profiles, notably affecting fatty acid chain lengths and protein configurations. Histological analysis showed significant reductions in cellular degeneration, lymphatic infiltration, and hepatic fibrosis. Furthermore, the study noted a decrease in the immunoreactivity for NLRP3 and ASC, suggesting suppressed inflammasome activity. While SCD Probiotics reduced the expression of certain inflammasome-related genes, they also paradoxically increased AST and LDH levels. Conversely, an exclusive elevation in albumin levels was observed in the group treated with SCD Probiotics, implying a protective role against liver damage. These results underscore the therapeutic potential of TUDCA and SCD Probiotics for managing age-associated liver disorders, illustrating their individual and synergistic effects on liver health and pathology. This study provides insights into the complex interactions of these agents, advocating for customized therapeutic approaches to combat liver fibrosis, enhance liver functionality, and decrease inflammation in aging populations.
Collapse
Affiliation(s)
- Burcu Baba
- Department of Medical Biochemistry, Yüksek İhtisas University, Ankara, Turkey
| | - Taha Ceylani
- Department of Molecular Biology and Genetics, Muş Alparslan University Muş, Turkey; Department of Food Quality Control and Analysis, Muş Alparslan University Muş, Turkey.
| | - Rafig Gurbanov
- Department of Bioengineering, Bilecik Şeyh Edebali University Bilecik, Turkey; Central Research Laboratory, Bilecik Şeyh Edebali University Bilecik, Turkey
| | - Eda Acikgoz
- Department of Neuroscience, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey.
| | - Seda Keskin
- Department of Histology and Embryology, Faculty of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Hüseyin Allahverdi
- Department of Molecular Biology and Genetics, Muş Alparslan University Muş, Turkey
| | - Gizem Samgane
- Department of Bioengineering, Bilecik Şeyh Edebali University Bilecik, Turkey
| | - Huseyin Tombuloglu
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Hikmet Taner Teker
- Department of Medical Biology and Genetics, Ankara Medipol University Ankara, Turkey.
| |
Collapse
|
15
|
Ioannidou P, Dóró Z, Schalla J, Wätjen W, Diel P, Isenmann E. Analysis of combinatory effects of free weight resistance training and a high-protein diet on body composition and strength capacity in postmenopausal women - A 12-week randomized controlled trial. J Nutr Health Aging 2024; 28:100349. [PMID: 39232439 DOI: 10.1016/j.jnha.2024.100349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Menopause has a significant impact on the endocrine system of middle-aged women, resulting in a loss of skeletal muscle mass (SMM), changes in fat mass (FM) and a reduction in strength capacity. Resistance training (RT) and a high-protein diet (HPD) are effective methods for maintaining or increasing SMM. This study aims to determine the effects of HPD and RT on body composition, muscle thickness and strength capacity in postmenopausal women. METHODS In total 55 healthy postmenopausal women (age: 58.2 ± 5.6 years, weight 69.1 ± 9.6 kg, height 166.5 ± 6.5 cm) successfully participated in the study. The women were randomly assigned to either group: training + protein (2.5 g/kg fat-free mass (FFM)) (n = 15; TP); only training (n = 12; T); only protein (2.5 g/kg FFM) (n = 14; CP) or control (n = 14; C). TP and T performed RT for 12 weeks with three training sessions and five exercises each. CP and C were prohibited from training during the period. The main parameters analysed for body composition were FFM, SMM, FM, muscle thickness of the M. rectus femoris, M. biceps femoris, M. triceps brachii and M. biceps brachii muscles. Strength was tested using a dynamometer for grip strength and 1-RM in the squat (BBS) and deadlift (DL). RESULTS The SMM significantly increased by RT (TP: (Δ+1.4 ± 0.9 kg; p < 0.05; d = 0.4; T: Δ+1.2 ± 1.3kg; p < 0.05; d = 0.3) and FM could be reduced only in T: (Δ-2.4 ± 2.9 kg; p < 0.05; d = 0.3). In muscle thickness a significant increase in the M. biceps brachii in both training groups (TP: (Δ+0.4 ± 0.3 cm; p < 0.05; d = 1.6; T: (Δ+0.3 ± 0.3 cm; p < 0.05; d = 0.9) and in M. biceps femoris only in TP (Δ+0.3 ± 0.4 cm; p < 0.05; d = 0.9) were observed. HPD without training does not affect body composition, A significant increase in grip strength (TP: Δ+4.7 ± 2.4 kg; (p < 0.05; d = 1.5; T: (Δ+3.6 ± 3.0 kg; p < 0.05; d = 0.8), in BBS (TP: (Δ+30.0 ± 14.2 kg; p < 0.05; d = 1.5; T: (Δ+34.0 ± 12.0 kg; p < 0.05; d = 2.4) and in DL (TP: (Δ+20.8 ± 10.3 kg; p < 0.05; d = 1.6; T: (Δ+22.1 ± 7.6 kg; p < 0.05; d = 2.0) was observed in both training groups. The CP also recorded a significant increase in the BBS (Δ+7.5 ± 5.4 kg; p < 0.05; d = 0.4) and in DL (Δ+5.5 ± 7.7 kg; p < 0.05; d = 0.5). No significant differences were detected for TP and T for any of the parameters. CONCLUSION The results indicate that RT enhances body composition and strength capacity in postmenopausal women and is a preventive strategy against muscle atrophy. Besides HPD without training has a trivial significant effect on BBS and DL. HPD with RT has no clear additive effect on body composition and strength capacity. Further studies are needed to confirm these observations.
Collapse
Affiliation(s)
- Paulina Ioannidou
- Institute for Cardiovascular Research and Sports Medicine, Department of Molecular and Cellular Sports Medicine, German Sports University Cologne, Cologne, Germany.
| | - Zsuzsanna Dóró
- Biofunctionality of Secondary Plant Compounds, Institute of Agricultural and Nutritional Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Jan Schalla
- Department of Fitness and Health, IST University of Applied Sciences, Dusseldorf, Germany
| | - Wim Wätjen
- Biofunctionality of Secondary Plant Compounds, Institute of Agricultural and Nutritional Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Patrick Diel
- Institute for Cardiovascular Research and Sports Medicine, Department of Molecular and Cellular Sports Medicine, German Sports University Cologne, Cologne, Germany
| | - Eduard Isenmann
- Institute for Cardiovascular Research and Sports Medicine, Department of Molecular and Cellular Sports Medicine, German Sports University Cologne, Cologne, Germany; Department of Fitness and Health, IST University of Applied Sciences, Dusseldorf, Germany
| |
Collapse
|
16
|
Srour L, Ali M, Karam K, Fiani E. Nebivolol-Induced Hepatoxicity: A Case Report. Eur J Case Rep Intern Med 2024; 11:004866. [PMID: 39525432 PMCID: PMC11542944 DOI: 10.12890/2024_004866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 09/16/2024] [Indexed: 11/16/2024] Open
Abstract
Nebivolol is a third-generation beta-blocker known for its high selectivity for beta-1 adrenergic receptors and its unique ability to induce vasodilation via nitric oxide (NO) release. Nebivolol, despite its favourable safety profile, can lead to significant liver injury. We describe the case of a 73-year-old hypertensive patient who developed significant liver enzyme elevations following the addition of nebivolol to her treatment regimen. Comprehensive workup ruled out other causes, leading to a diagnosis of drug-induced hepatotoxicity. Discontinuation of nebivolol resulted in normalization of liver enzymes. This case underscores the importance of monitoring liver function during beta-blocker therapy, particularly with nebivolol. LEARNING POINTS Nebivolol, despite its favourable safety profile, can lead to significant liver injury.Clinicians should remain vigilant and consider routine liver function monitoring in patients prescribed nebivolol, particularly if they present with nonspecific symptoms or abnormal liver enzyme tests.Early recognition and prompt discontinuation of the offending agent are crucial in preventing severe outcomes.
Collapse
Affiliation(s)
- Lynn Srour
- Department of Internal Medicine, University of Balamand, Beirut, Lebanon
| | - Majed Ali
- Department of Internal Medicine, University of Balamand, Beirut, Lebanon
| | - Karam Karam
- Department of Gastroenterology, University of Balamand, Beirut, Lebanon
| | - Elias Fiani
- Department of Gastroenterology, University of Balamand, Beirut, Lebanon
| |
Collapse
|
17
|
Penrice DD, Jalan-Sakrikar N, Jurk D, Passos JF, Simonetto DA. Telomere dysfunction in chronic liver disease: The link from aging. Hepatology 2024; 80:951-964. [PMID: 37102475 PMCID: PMC10848919 DOI: 10.1097/hep.0000000000000426] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/20/2023] [Indexed: 04/28/2023]
Affiliation(s)
- Daniel D. Penrice
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Nidhi Jalan-Sakrikar
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Diana Jurk
- Department of Physiology and Biomedical Engineering, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
| | - João F. Passos
- Department of Physiology and Biomedical Engineering, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
| | - Douglas A. Simonetto
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
18
|
Jothimani D, Rela M, Kamath PS. Management of Portal Hypertension in the Older Patient. Curr Gastroenterol Rep 2024; 26:231-240. [PMID: 38780678 DOI: 10.1007/s11894-024-00930-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE OF THIS REVIEW Aging is a process of physiological slowing, reduced regenerative capacity and inability to maintain cellular homeostasis. World Health Organisation declared the commencement of population aging globally, largely attributed to improvement in the healthcare system with early diagnosis and effective clinical management. Liver ages similar to other organs, with reduction in size and blood flow. In this review we aim to evaluate the effect of aging in liver disease. RECENT FINDINGS Aging causes dysregulation of major carbohydrate, fat and protein metabolism in the liver. Age is a major risk factor for liver fibrosis accelerated by sinusoidal endothelial dysfunction and immunological disharmony. Age plays a major role in patients with liver cirrhosis and influence outcomes in patients with portal hypertension. Transient elastography may be an useful tool in the assessment of portal hypertension. Hepatic structural distortion, increased vascular resistance, state of chronic inflammation, associated comorbidities, lack of physiological reserve in the older population may aggravate portal hypertension in patients with liver cirrhosis and may result in pronounced variceal bleed. Cut-offs for other non-invasive markers of fibrosis may differ in the elderly population. Non-selective beta blockers initiated at lower dose followed by escalation are the first line of therapy in elderly patients with cirrhosis and portal hypertension, unless contraindicated. Acute variceal bleed in the elderly cirrhotic patients can be life threatening and may cause rapid exsanguination due to poor reserve and associated comorbidities. Vasoactive drugs may be associated with more adverse reactions. Early endoscopy may be warranted in the elderly patients with acute variceal bleed. Role of TIPS in the elderly cirrhotics discussed. Management of portal hypertension in the older population may pose significant challenges to the treating clinician.
Collapse
Affiliation(s)
- Dinesh Jothimani
- Institute of Liver disease and Transplantation, Dr Rela Institute and Medical Centre, Chennai, India.
| | - Mohamed Rela
- Institute of Liver disease and Transplantation, Dr Rela Institute and Medical Centre, Chennai, India
| | - Patrick S Kamath
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55906, USA
| |
Collapse
|
19
|
Lee Y, Lee W. Shift work and non-alcoholic fatty liver disease in young, healthy workers. Sci Rep 2024; 14:19367. [PMID: 39169172 PMCID: PMC11339435 DOI: 10.1038/s41598-024-70538-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a relatively common disease, and preventing its occurrence is important for both individual health and reducing social costs. Shift work is reported to have several negative effects on health. An association has been observed between NAFLD and both sleep time and quality; however, this association remains unclear in night shift workers. We aimed to evaluate the relationship between shift work and the incidence of NAFLD. Overall, 45,149 Korean workers without NAFLD were included at baseline. NAFLD was defined as the presence of a fatty liver observed on ultrasonography without excessive alcohol use. incidence rate ratios for incident NAFLD were estimated using negative binomial regression according to age groups (20s, 30s, 40s, and 50s). In the 20s age group, shift work showed a significant incidence rate ratio (IRR) for NAFLD in all models. After adjusting for all variables, the IRR (95% confidence interval) was 1.24 (1.08-1.43) in the 20s age group. In their 20s, a significant association between shift work and incident NAFLD was consistently observed among women and workers with poor sleep quality. In this large-scale cohort study, shift work was significantly associated with the development of NAFLD among young workers in their 20s.
Collapse
Affiliation(s)
- Yesung Lee
- Department of Occupational and Environmental Medicine, Medical Support Division, Pyeongchang County Public Health Clinic, Pyeongchang, Gangwon-do, South Korea
| | - Woncheol Lee
- Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, School of Medicine, Sungkyunkwan University, 29 Saemunan-ro, Jongno-gu, Seoul, 03181, South Korea.
| |
Collapse
|
20
|
Al-Smadi K, Qureshi A, Buitrago M, Ashouri B, Kayali Z. Survival and Disease Progression in Older Adult Patients With Cirrhosis: A Retrospective Study. Int J Hepatol 2024; 2024:5852680. [PMID: 39149542 PMCID: PMC11326880 DOI: 10.1155/2024/5852680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/09/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024] Open
Abstract
Background: Cirrhosis incidence in older adult patients has been increasing with limited data on their survival. This study is aimed at investigating the survival and disease progression in older adult patients with cirrhosis compared to younger patients. Methods: This is a retrospective single-center study. Patients aged above 50 with a confirmed diagnosis of cirrhosis based on biopsy, FibroSure test, splenomegaly, and low platelets < 120 × 109/L) or imaging findings including FibroScan were included. Patients with active substance abuse, transjugular intrahepatic portosystemic shunt (TIPS), prior spontaneous bacterial peritonitis (SBP), variceal hemorrhage, model for end-stage liver disease-Na (MELD - Na) ≥ 20, had liver transplantation, malignancy except for squamous cell carcinoma, and other comorbidities such as congestive heart failure (CHF), chronic obstructive pulmonary disease (COPD), and end-stage kidney disease with glomerular filtration rate (GFR) < 30 were excluded. Patients' records from the liver clinic were reviewed and demographics, laboratory, and compensation and decompensation status were collated. Patients were separated into two groups based on age 50-64 years and age ≥ 65. The primary endpoint was death, and the secondary endpoint was disease progression measured by the baseline to 12-month increase in MELD-Na score. The Kaplan-Meier analysis was conducted to compare the survival between the two groups. Cox regression analysis was performed to identify independent risk factors for poor survival. Results: A total of 191 patients diagnosed with cirrhosis met the inclusion and exclusion criteria. There were 80 patients aged 50-64 years and 111 patients aged ≥ 65 years. Significantly shorter survival times were seen among patients aged ≥ 65 years compared to those aged 50-64 years (73.3 ± 4.8 vs. 151.5 ± 22.7; p < .001). Age of diagnosis ≥ 65 years (p < 0.001), male gender (p = .013), body mass index (BMI) < 30 (p = 0.005), and decompensation (p = 0.008) were found to be independent risk factors for poor survival. MELD-Na scores increased significantly in 12 months of follow-up from baseline, but only in patients with decompensated cirrhosis (p = 0.013). Conclusions: Cirrhotic patients aged ≥ 65 years have significantly poor survival compared to younger patients. A prospective study is needed to further investigate the effect of age and obesity on survival and disease progression in older adult patients with cirrhosis.
Collapse
Affiliation(s)
- Khaled Al-Smadi
- Department of Gastroenterology and Hepatology University of California-Riverside School of Medicine, Riverside, USA
| | - Ammar Qureshi
- Department of Gastroenterology and Hepatology University of California-Riverside School of Medicine, Riverside, USA
| | - Michelle Buitrago
- Department of Biology State University of New York - Stony Brook, Stony Brook, USA
| | - Besher Ashouri
- Department of Gastroenterology and Hepatology University of California-Riverside School of Medicine, Riverside, USA
| | - Zeid Kayali
- Department of Gastroenterology and Hepatology University of California-Riverside School of Medicine, Riverside, USA
| |
Collapse
|
21
|
Yu S, Li J, He T, Zheng H, Wang S, Sun Y, Wang L, Jing J, Wang R. Age-related differences in drug-induced liver injury: a retrospective single-center study from a large liver disease specialty hospital in China, 2002-2022. Hepatol Int 2024; 18:1202-1213. [PMID: 38898191 PMCID: PMC11297843 DOI: 10.1007/s12072-024-10679-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/06/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND AND AIMS Drug-induced liver injury (DILI) is a prevalent adverse reaction in clinical settings. However, there is limited research on age-related differences in DILI. We performed a large-scale retrospective study to delineate the characteristics of DILI across different age groups. METHODS We collected data on a total of 17,946 patients with confirmed DILI hospitalized at the Fifth Medical Center of the People's Liberation Army (PLA) General Hospital in Beijing, China, from January 1, 2002, to December 31, 2022. The patients were stratified based on age into the following groups: children (< 18 years), young adults (18-44 years), middle-aged individuals (45-64 years), and elderly individuals (≥ 65 years). We gathered demographic information, medical histories, laboratory results, disease severity assessments, and mortality statistics for all patients. RESULTS Overall, the distribution of DILI cases across different age groups was as follows: 6.57% were children, 24.82% were young adults, 49.06% were middle-aged individuals, and 19.54% were elderly individuals. The percentage of females increased with age, rising from 36.47% in the pediatric group to 60.51% in the elderly group. Notably, central nervous system agents (15.44%) and anti-infectious agents (21.80%) were more commonly associated with DILI in children, while cardiovascular agents (10.58%) and herbal dietary supplements or traditional medicines (H/TMs) (26.29%) were more prevalent among elderly people with DILI. Among all age groups, hepatocellular-type DILI was more common in the pediatric group (p < 0.001), whereas cholestatic-type DILI and chronic DILI were more prevalent in the elderly group (p < 0.001). Acute liver failure (ALF) and fatal outcomes were more prevalent in the pediatric and elderly groups, particularly in the pediatric group (2.04%, p = 0.041; 0.85%, p = 0.007, respectively). CONCLUSIONS Children and elderly individuals face a higher risk of adverse outcomes following DILI.
Collapse
Affiliation(s)
- Simiao Yu
- Department of Hepatology and Traditional Chinese Medicine, The Fifth Medical Center, PLA General Hospital, 100 West Fourth Ring Middle Road, Fengtai District, Beijing, 100039, China.
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Jiahui Li
- Department of Hepatology and Traditional Chinese Medicine, The Fifth Medical Center, PLA General Hospital, 100 West Fourth Ring Middle Road, Fengtai District, Beijing, 100039, China
| | - Tingting He
- Department of Hepatology and Traditional Chinese Medicine, The Fifth Medical Center, PLA General Hospital, 100 West Fourth Ring Middle Road, Fengtai District, Beijing, 100039, China
| | - Haocheng Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Sici Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yongqiang Sun
- Department of Hepatology and Traditional Chinese Medicine, The Fifth Medical Center, PLA General Hospital, 100 West Fourth Ring Middle Road, Fengtai District, Beijing, 100039, China
| | - Liping Wang
- Department of Hepatology and Traditional Chinese Medicine, The Fifth Medical Center, PLA General Hospital, 100 West Fourth Ring Middle Road, Fengtai District, Beijing, 100039, China
| | - Jing Jing
- Department of Hepatology and Traditional Chinese Medicine, The Fifth Medical Center, PLA General Hospital, 100 West Fourth Ring Middle Road, Fengtai District, Beijing, 100039, China.
| | - Ruilin Wang
- Department of Hepatology and Traditional Chinese Medicine, The Fifth Medical Center, PLA General Hospital, 100 West Fourth Ring Middle Road, Fengtai District, Beijing, 100039, China.
| |
Collapse
|
22
|
Arteel GE. Hepatic Extracellular Matrix and Its Role in the Regulation of Liver Phenotype. Semin Liver Dis 2024; 44:343-355. [PMID: 39191427 DOI: 10.1055/a-2404-7973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The hepatic extracellular matrix (ECM) is most accurately depicted as a dynamic compartment that comprises a diverse range of players that work bidirectionally with hepatic cells to regulate overall homeostasis. Although the classic meaning of the ECM referred to only proteins directly involved in generating the ECM structure, such as collagens, proteoglycans, and glycoproteins, the definition of the ECM is now broader and includes all components associated with this compartment. The ECM is critical in mediating phenotype at the cellular, organ, and even organismal levels. The purpose of this review is to summarize the prevailing mechanisms by which ECM mediates hepatic phenotype and discuss the potential or established role of this compartment in the response to hepatic injury in the context of steatotic liver disease.
Collapse
Affiliation(s)
- Gavin E Arteel
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
23
|
Darwish M, Obianom ON, Youakim JM, Darling I, Lukacova V, Bradley H. Effect of Hepatic Impairment on Trofinetide Exposures Using an In Silico Physiologically Based Pharmacokinetic Model. Adv Ther 2024; 41:3328-3341. [PMID: 38963587 PMCID: PMC11263405 DOI: 10.1007/s12325-024-02926-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/11/2024] [Indexed: 07/05/2024]
Abstract
INTRODUCTION Trofinetide is the first drug to be approved for the treatment of Rett syndrome. Hepatic impairment is not expected to affect the pharmacokinetic (PK) profile of trofinetide because of predominant renal excretion. This study was conducted to help understand the potential impact of any hepatic impairment on trofinetide PK. METHODS This study used physiologically based PK modeling to estimate trofinetide exposure (maximum drug concentration and area under the concentration-time curve from time zero to infinity) in virtual patients with mild, moderate, and severe hepatic impairment (per Child-Pugh classification) compared with virtual healthy subjects following a 12 g oral trofinetide dose. RESULTS In individual deterministic simulations for matched individuals and stochastic simulations at the population level (100 virtual individuals simulated per population), as anticipated, predicted plasma exposures were similar for healthy subjects and for patients with mild, moderate, and severe hepatic impairment. However, predicted blood concentration exposures slightly increased with increasing severity of hepatic impairment because of change in hematocrit levels. CONCLUSION This study indicates that hepatic impairment is not expected to have a clinically relevant effect on exposure to trofinetide.
Collapse
Affiliation(s)
- Mona Darwish
- Acadia Pharmaceuticals Inc., 12830 El Camino Real, Suite 400, San Diego, CA, 92130, USA.
| | | | - James M Youakim
- Acadia Pharmaceuticals Inc., 12830 El Camino Real, Suite 400, San Diego, CA, 92130, USA
| | | | | | - Heather Bradley
- Acadia Pharmaceuticals Inc., 12830 El Camino Real, Suite 400, San Diego, CA, 92130, USA
| |
Collapse
|
24
|
Li B, Zhang Q, Cheng J, Feng Y, Jiang L, Zhao X, Lv Y, Yang K, Shi J, Wei W, Guo P, Wang J, Cao M, Ding W, Wang J, Su D, Zhou Y, Gao R. A Nanocapsule System Combats Aging by Inhibiting Age-Related Angiogenesis Deficiency and Glucolipid Metabolism Disorders. ACS NANO 2024. [PMID: 39086076 DOI: 10.1021/acsnano.4c02269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Insufficient angiogenic stimulation and dysregulated glycolipid metabolism in senescent vascular endothelial cells (VECs) constitute crucial features of vascular aging. Concomitantly, the generation of excess senescence-associated secretory phenotype (SASP) and active immune-inflammatory responses propagates within injured vessels, tissues, and organs. Until now, targeted therapies that efficiently rectify phenotypic abnormalities in senescent VECs have still been lacking. Here, we constructed a Pd/hCeO2-BMS309403@platelet membrane (PCBP) nanoheterostructured capsule system loaded with fatty acid-binding protein 4 (FABP4) inhibitors and modified with platelet membranes and investigated its therapeutic role in aged mice. PCBP showed significant maintenance in aged organs and demonstrated excellent biocompatibility. Through cyclic tail vein administration, PCBP extended the lifespan and steadily ameliorated abnormal phenotypes in aged mice, including SASP production, immune and inflammatory status, and age-related metabolic disorders. In senescent ECs, PCBP mediated the activation of vascular endothelial growth factor (VEGF) signaling and glycolysis and inhibition of FABP4 by inducing the synthesis of hypoxia-inducible factor-1α, thereby reawakening neovascularization and restoring glycolipid metabolic homeostasis. In conclusion, the PCBP nanocapsule system provides a promising avenue for interventions against aging-induced dysfunction.
Collapse
Affiliation(s)
- Bo Li
- Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160, Pujian Road, Pudong District, Shanghai 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, No. 160, Pujian Road, Pudong District, Shanghai 200127, China
| | - Qiang Zhang
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 600, Yishan Road, Xuhui District, Shanghai 200233, China
| | - Jiahui Cheng
- Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160, Pujian Road, Pudong District, Shanghai 200127, China
| | - Yanfei Feng
- Department of Vascular Surgery, The Second Affiliated Hospital, Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Lixian Jiang
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 600, Yishan Road, Xuhui District, Shanghai 200233, China
| | - Xinxin Zhao
- Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160, Pujian Road, Pudong District, Shanghai 200127, China
| | - Yang Lv
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai 200240, China
| | - Kun Yang
- Department of Cardiac Surgery, The Second Affiliated Hospital, Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Jiaran Shi
- Department of Cardiology, Lihuili Hospital Facilitated to Ningbo University, Ningbo 315048, China
| | - Wei Wei
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241, Huaihaixi Road, Xuhui District, Shanghai 200030, China
| | - Peng Guo
- Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160, Pujian Road, Pudong District, Shanghai 200127, China
| | - Jun Wang
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160, Pujian Road, Pudong District, Shanghai 200127, China
| | - Mengqiu Cao
- Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160, Pujian Road, Pudong District, Shanghai 200127, China
| | - Weina Ding
- Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160, Pujian Road, Pudong District, Shanghai 200127, China
| | - Ji Wang
- Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160, Pujian Road, Pudong District, Shanghai 200127, China
| | - Diansan Su
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, No. 160, Pujian Road, Pudong District, Shanghai 200127, China
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160, Pujian Road, Pudong District, Shanghai 200127, China
| | - Yan Zhou
- Department of Radiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 160, Pujian Road, Pudong District, Shanghai 200127, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, No. 227, Chongqingnan Road, Huangpu District, Shanghai 200025, China
| | - Rifeng Gao
- Department of Cardiac Surgery, The Second Affiliated Hospital, Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| |
Collapse
|
25
|
Vue Z, Murphy A, Le H, Neikirk K, Garza-Lopez E, Marshall AG, Mungai M, Jenkins B, Vang L, Beasley HK, Ezedimma M, Manus S, Whiteside A, Forni MF, Harris C, Crabtree A, Albritton CF, Jamison S, Demirci M, Prasad P, Oliver A, Actkins KV, Shao J, Zaganjor E, Scudese E, Rodriguez B, Koh A, Rabago I, Moore JE, Nguyen D, Aftab M, Kirk B, Li Y, Wandira N, Ahmad T, Saleem M, Kadam A, Katti P, Koh HJ, Evans C, Koo YD, Wang E, Smith Q, Tomar D, Williams CR, Sweetwyne MT, Quintana AM, Phillips MA, Hubert D, Kirabo A, Dash C, Jadiya P, Kinder A, Ajijola OA, Miller-Fleming TW, McReynolds MR, Hinton A. MICOS Complex Loss Governs Age-Associated Murine Mitochondrial Architecture and Metabolism in the Liver, While Sam50 Dictates Diet Changes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599846. [PMID: 38979162 PMCID: PMC11230271 DOI: 10.1101/2024.06.20.599846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The liver, the largest internal organ and a metabolic hub, undergoes significant declines due to aging, affecting mitochondrial function and increasing the risk of systemic liver diseases. How the mitochondrial three-dimensional (3D) structure changes in the liver across aging, and the biological mechanisms regulating such changes confers remain unclear. In this study, we employed Serial Block Face-Scanning Electron Microscopy (SBF-SEM) to achieve high-resolution 3D reconstructions of murine liver mitochondria to observe diverse phenotypes and structural alterations that occur with age, marked by a reduction in size and complexity. We also show concomitant metabolomic and lipidomic changes in aged samples. Aged human samples reflected altered disease risk. To find potential regulators of this change, we examined the Mitochondrial Contact Site and Cristae Organizing System (MICOS) complex, which plays a crucial role in maintaining mitochondrial architecture. We observe that the MICOS complex is lost during aging, but not Sam50. Sam50 is a component of the sorting and assembly machinery (SAM) complex that acts in tandem with the MICOS complex to modulate cristae morphology. In murine models subjected to a high-fat diet, there is a marked depletion of the mitochondrial protein SAM50. This reduction in Sam50 expression may heighten the susceptibility to liver disease, as our human biobank studies corroborate that Sam50 plays a genetically regulated role in the predisposition to multiple liver diseases. We further show that changes in mitochondrial calcium dysregulation and oxidative stress accompany the disruption of the MICOS complex. Together, we establish that a decrease in mitochondrial complexity and dysregulated metabolism occur with murine liver aging. While these changes are partially be regulated by age-related loss of the MICOS complex, the confluence of a murine high-fat diet can also cause loss of Sam50, which contributes to liver diseases. In summary, our study reveals potential regulators that affect age-related changes in mitochondrial structure and metabolism, which can be targeted in future therapeutic techniques.
Collapse
Affiliation(s)
- Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Alexandria Murphy
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801
| | - Han Le
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Edgar Garza-Lopez
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Andrea G. Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Margaret Mungai
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Brenita Jenkins
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801
| | - Larry Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Heather K. Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Mariaassumpta Ezedimma
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Sasha Manus
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Aaron Whiteside
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Maria Fernanda Forni
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| | - Chanel Harris
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN 37208-3501, USA
| | - Amber Crabtree
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Claude F. Albritton
- Department of Biomedical Sciences, School of Graduate Studies, Meharry Medical College, Nashville, TN 37208-3501, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sydney Jamison
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mert Demirci
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Praveena Prasad
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801
| | - Ashton Oliver
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Ky’Era V. Actkins
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Jianqiang Shao
- Central Microscopy Research Facility, University of Iowa, Iowa City, IA, 52242, USA
| | - Elma Zaganjor
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Estevão Scudese
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Benjamin Rodriguez
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Alice Koh
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Izabella Rabago
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Johnathan E. Moore
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Desiree Nguyen
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Muhammad Aftab
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Benjamin Kirk
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Yahang Li
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Nelson Wandira
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Taseer Ahmad
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Punjab,40100, Pakistan
| | - Mohammad Saleem
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ashlesha Kadam
- Department of Internal Medicine, Section of Cardiovascular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157 USA
| | - Prasanna Katti
- National Heart, Lung and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, AP, 517619, India
| | - Ho-Jin Koh
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Chantell Evans
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27708, USA
| | - Young Do Koo
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, Iowa, USA1
| | - Eric Wang
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, 92697, USA
| | - Quinton Smith
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA, 92697, USA
| | - Dhanendra Tomar
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Punjab,40100, Pakistan
| | - Clintoria R. Williams
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435 USA
| | - Mariya T. Sweetwyne
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Anita M. Quintana
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, Texas, USA
| | - Mark A. Phillips
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - David Hubert
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN, 37232, USA
- Vanderbilt Institute for Global Health, Nashville, TN, 37232, USA
| | - Chandravanu Dash
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN, United States
| | - Pooja Jadiya
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest University School of Medicine, Winston-Salem, NC
| | - André Kinder
- Artur Sá Earp Neto University Center – UNIFASE-FMP, Petrópolis Medical School, Brazil
| | - Olujimi A. Ajijola
- UCLA Cardiac Arrhythmia Center, University of California, Los Angeles, CA, USA
| | - Tyne W. Miller-Fleming
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Melanie R. McReynolds
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
26
|
Karaca ZM, Karaca G, Kayhan B, Gül M, Ersan V, Gözükara Bağ H, Yeşilada E. Chronic liver fibrosis induction in aging causes significant ultra-structural deterioration in liver and alteration on immune response gene expressions in liver-spleen axis. Ultrastruct Pathol 2024; 48:261-273. [PMID: 38842161 DOI: 10.1080/01913123.2024.2360447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024]
Abstract
The relationship between damage to the liver and spleen by aging and the immune response status in these two organs, which are anatomically and immunologically interconnected, is unknown. The authors investigated the histopathological, ultrastructural, and immunological effects of aging in young and aged fibrotic mice by using an experimental model. Four groups were planned, with 10 mice in each experimental group. The levels of fibrosis and ultrastructural destruction in the liver were determined by α-SMA staining and TEM analysis. Expression levels of immunity genes (Il2, Il4, Il6, Il10, Il12, Il17, Tnf, Ifng, Tgfb1, Gata3, Rorc, Tbx21, Foxp3, Ccl2, Ccr2, Cxcr3, Pf4, Cxcl10) were carried out by qRT-PCR. While structural disorders were detected in the mitochondria of aged healthy group, cellular destruction in the fibrosis-induced elderly group was at a dramatic level. Fibrosis induction in aged mice caused an elevation in the expression of chemokines (CCl2, CXCL10, CCR2) and cytokine (IL-17a) genes that induce autoinflammatory response in the liver. Unlike the cellular pathology and genes activated in fibrosis in youth and the natural occurrence of fibrosis with aging, induction of fibrosis during aging causes deterioration in the liver and expression of genes responsible for autoimmunity in both the liver and spleen.
Collapse
Affiliation(s)
- Zeynal Mete Karaca
- Department of Medical Biology and Genetics, Faculty of Medicine, İnönü University, Malatya, Türkiye
- Department of Genetıcs, Faculty of Medıcıne, Kırklarel' Unıversıty, Kırklarelı, Türkıye
| | - Gamze Karaca
- Department of Medical Biology and Genetics, Faculty of Medicine, İnönü University, Malatya, Türkiye
| | - Başak Kayhan
- Liver Transplantation Institute, Transplantation Immunology Laboratory, İnönü University, Malatya, Türkiye
- Department of Microbiology, Faculty of Pharmacy, Anadolu University, Eskişehir, Türkiye
| | - Mehmet Gül
- Department of Histology and Embryology, Faculty of Medicine, İnönü University, Malatya, Türkiye
| | - Veysel Ersan
- Liver Transplantation Institute, Department of General Surgery, İnönü University, Malatya, Türkiye
| | - Harika Gözükara Bağ
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, İnönü University, Malatya, Türkiye
| | - Elif Yeşilada
- Department of Medical Biology and Genetics, Faculty of Medicine, İnönü University, Malatya, Türkiye
| |
Collapse
|
27
|
Du K, Wang L, Jun JH, Dutta RK, Maeso-Díaz R, Oh SH, Ko DC, Diehl AM. Aging promotes metabolic dysfunction-associated steatotic liver disease by inducing ferroptotic stress. NATURE AGING 2024; 4:949-968. [PMID: 38918603 DOI: 10.1038/s43587-024-00652-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/17/2024] [Indexed: 06/27/2024]
Abstract
Susceptibility to the biological consequences of aging varies among organs and individuals. We analyzed hepatocyte transcriptomes of healthy young and aged male mice to generate an aging hepatocyte gene signature, used it to deconvolute transcriptomic data from humans and mice with metabolic dysfunction-associated liver disease, validated findings with functional studies in mice and applied the signature to transcriptomic data from other organs to determine whether aging-sensitive degenerative mechanisms are conserved. We discovered that the signature enriches in diseased livers in parallel with degeneration. It is also enriched in failing human hearts, diseased kidneys and pancreatic islets from individuals with diabetes. The signature includes genes that control ferroptosis. Aged mice develop more hepatocyte ferroptosis and liver degeneration than young mice when fed diets that induce metabolic stress. Inhibiting ferroptosis shifts the liver transcriptome of old mice toward that of young mice and reverses aging-exacerbated liver damage, identifying ferroptosis as a tractable, conserved mechanism for aging-related tissue degeneration.
Collapse
Affiliation(s)
- Kuo Du
- Department of Medicine, Duke University, Durham, NC, USA
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Ji Hye Jun
- Department of Medicine, Duke University, Durham, NC, USA
| | - Rajesh K Dutta
- Department of Medicine, Duke University, Durham, NC, USA
| | | | - Seh Hoon Oh
- Department of Medicine, Duke University, Durham, NC, USA
| | - Dennis C Ko
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Anna Mae Diehl
- Department of Medicine, Duke University, Durham, NC, USA.
| |
Collapse
|
28
|
Sanfeliu-Redondo D, Gibert-Ramos A, Gracia-Sancho J. Cell senescence in liver diseases: pathological mechanism and theranostic opportunity. Nat Rev Gastroenterol Hepatol 2024; 21:477-492. [PMID: 38485755 DOI: 10.1038/s41575-024-00913-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 06/30/2024]
Abstract
The liver is not oblivious to the passage of time, as ageing is a major risk factor for the development of acute and chronic liver diseases. Ageing produces alterations in all hepatic cells, affecting their phenotype and function and worsening the prognosis of liver disease. The ageing process also implies the accumulation of a cellular state characterized by a persistent proliferation arrest and a specific secretory phenotype named cellular senescence. Indeed, senescent cells have key roles in many physiological processes; however, their accumulation owing to ageing or pathological conditions contributes to the damage occurring in chronic diseases. The aim of this Review is to provide an updated description of the pathophysiological events in which hepatic senescent cells are involved and their role in liver disease progression. Finally, we discuss novel geroscience therapies that could be applied to prevent or improve liver diseases and age-mediated hepatic deregulations.
Collapse
Affiliation(s)
- David Sanfeliu-Redondo
- Liver Vascular Biology Laboratory, IDIBAPS Biomedical Research Institute - Hospital Clínic de Barcelona & CIBEREHD, Barcelona, Spain
| | - Albert Gibert-Ramos
- Liver Vascular Biology Laboratory, IDIBAPS Biomedical Research Institute - Hospital Clínic de Barcelona & CIBEREHD, Barcelona, Spain
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Laboratory, IDIBAPS Biomedical Research Institute - Hospital Clínic de Barcelona & CIBEREHD, Barcelona, Spain.
- Department of Visceral Surgery and Medicine, Inselspital - University of Bern, Bern, Switzerland.
| |
Collapse
|
29
|
Zhang H, Gu W, Wu G, Yu Y. Aging and Autophagy: Roles in Musculoskeletal System Injury. Aging Dis 2024:AD.2024.0362. [PMID: 38913046 DOI: 10.14336/ad.2024.0362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/03/2024] [Indexed: 06/25/2024] Open
Abstract
Aging is a multifactorial process that ultimately leads to a decline in physiological function and a consequent reduction in the health span, and quality of life in elderly population. In musculoskeletal diseases, aging is often associated with a gradual loss of skeletal muscle mass and strength, resulting in reduced functional capacity and an increased risk of chronic metabolic diseases, leading to impaired function and increased mortality. Autophagy is a highly conserved physiological process by which cells, under the regulation of autophagy-related genes, degrade their own organelles and large molecules by lysosomal degradation. This process is unique to eukaryotic cells and is a strict regulator of homeostasis, the maintenance of energy and substance balance. Autophagy plays an important role in a wide range of physiological and pathological processes such as cell homeostasis, aging, immunity, tumorigenesis and neurodegenerative diseases. On the one hand, under mild stress conditions, autophagy mediates the restoration of homeostasis and proliferation, reduction of the rate of aging and delay of the aging process. On the other hand, under more intense stress conditions, an inadequate suppression of autophagy can lead to cellular aging. Conversely, autophagy activity decreases during aging. Due to the interrelationship between aging and autophagy, limited literature exists on this topic. Therefore, the objective of this review is to summarize the current concepts on aging and autophagy in the musculoskeletal system. The aim is to better understand the mechanisms of age-related changes in bone, joint and muscle, as well as the interaction relationship between autophagy and aging. Its goal is to provide a comprehensive perspective for the improvement of diseases of the musculoskeletal system.
Collapse
Affiliation(s)
- Haifeng Zhang
- Department of Orthopedics Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenhui Gu
- Department of Physiology and Hypoxic Biomedicine, Institute of Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
| | - Genbin Wu
- Department of Orthopedics Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinxian Yu
- Department of Orthopedics Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Tang Q, Xing X, Huang H, Yang J, Li M, Xu X, Gao X, Liang C, Tian W, Liao L. Eliminating senescent cells by white adipose tissue-targeted senotherapy alleviates age-related hepatic steatosis through decreasing lipolysis. GeroScience 2024; 46:3149-3167. [PMID: 38217637 PMCID: PMC11009221 DOI: 10.1007/s11357-024-01068-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/28/2023] [Indexed: 01/15/2024] Open
Abstract
Cellular senescence is an important risk factor in the development of hepatic steatosis. Senolytics present therapeutic effects on age-related hepatic steatosis without eliminating senescent hepatocytes directly. Therefore, it highlights the need to find senolytics' therapeutic targets. Dysfunction of adipose tissue underlies the critical pathogenesis of lipotoxicity in the liver. However, the correlation between adipose tissue and hepatic steatosis during aging and its underlying molecular mechanism remains poorly understood. We explored the correlation between white adipose tissue (WAT) and the liver during aging and evaluated the effect of lipolysis of aged WAT on hepatic steatosis and hepatocyte senescence. We screened out the ideal senolytics for WAT and developed a WAT-targeted delivery system for senotherapy. We assessed senescence and lipolysis of WAT and hepatic lipid accumulation after treatment. The results displayed that aging accelerated cellular senescence and facilitated lipolysis of WAT. Free fatty acids (FFAs) generated by WAT during aging enhanced hepatic steatosis and induced hepatocyte senescence. The combined usage of dasatinib and quercetin was screened out as the ideal senolytics to eliminate senescent cells in WAT. To minimize non-specific distribution and enhance the effectiveness of senolytics, liposomes decorated with WAT affinity peptide P3 were constructed for senotherapy in vivo. In vivo study, WAT-targeted treatment eliminated senescent cells in WAT and reduced lipolysis, resulting in the alleviation of hepatic lipid accumulation and hepatocyte senescence when compared to non-targeted treatment, providing a novel tissue-targeted, effective and safe senotherapy for age-related hepatic steatosis.
Collapse
Affiliation(s)
- Qi Tang
- National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, West China School of Public Health & West China Fourth Hospital, Sichuan University, No.14, 3Rd Section Of Ren Min Nan Rd, Chengdu, 610041, Sichuan, China
| | - Xiaotao Xing
- National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, West China School of Public Health & West China Fourth Hospital, Sichuan University, No.14, 3Rd Section Of Ren Min Nan Rd, Chengdu, 610041, Sichuan, China
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Laboratory Center of Stomatology, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Haisen Huang
- National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, West China School of Public Health & West China Fourth Hospital, Sichuan University, No.14, 3Rd Section Of Ren Min Nan Rd, Chengdu, 610041, Sichuan, China
| | - Jian Yang
- National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, West China School of Public Health & West China Fourth Hospital, Sichuan University, No.14, 3Rd Section Of Ren Min Nan Rd, Chengdu, 610041, Sichuan, China
| | - Maojiao Li
- National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, West China School of Public Health & West China Fourth Hospital, Sichuan University, No.14, 3Rd Section Of Ren Min Nan Rd, Chengdu, 610041, Sichuan, China
| | - Xun Xu
- National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, West China School of Public Health & West China Fourth Hospital, Sichuan University, No.14, 3Rd Section Of Ren Min Nan Rd, Chengdu, 610041, Sichuan, China
| | - Xin Gao
- National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, West China School of Public Health & West China Fourth Hospital, Sichuan University, No.14, 3Rd Section Of Ren Min Nan Rd, Chengdu, 610041, Sichuan, China
| | - Cheng Liang
- National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, West China School of Public Health & West China Fourth Hospital, Sichuan University, No.14, 3Rd Section Of Ren Min Nan Rd, Chengdu, 610041, Sichuan, China
| | - Weidong Tian
- National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, West China School of Public Health & West China Fourth Hospital, Sichuan University, No.14, 3Rd Section Of Ren Min Nan Rd, Chengdu, 610041, Sichuan, China.
| | - Li Liao
- National Engineering Laboratory for Oral Regenerative Medicine & Engineering Research Center of Oral Translational Medicine, Ministry of Education & State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, West China School of Public Health & West China Fourth Hospital, Sichuan University, No.14, 3Rd Section Of Ren Min Nan Rd, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
31
|
Qian C, Wang Q, Qiao Y, Xu Z, Zhang L, Xiao H, Lin Z, Wu M, Xia W, Yang H, Bai J, Geng D. Arachidonic acid in aging: New roles for old players. J Adv Res 2024:S2090-1232(24)00180-2. [PMID: 38710468 DOI: 10.1016/j.jare.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/26/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Arachidonic acid (AA), one of the most ubiquitous polyunsaturated fatty acids (PUFAs), provides fluidity to mammalian cell membranes. It is derived from linoleic acid (LA) and can be transformed into various bioactive metabolites, including prostaglandins (PGs), thromboxanes (TXs), lipoxins (LXs), hydroxy-eicosatetraenoic acids (HETEs), leukotrienes (LTs), and epoxyeicosatrienoic acids (EETs), by different pathways. All these processes are involved in AA metabolism. Currently, in the context of an increasingly visible aging world population, several scholars have revealed the essential role of AA metabolism in osteoporosis, chronic obstructive pulmonary disease, and many other aging diseases. AIM OF REVIEW Although there are some reviews describing the role of AA in some specific diseases, there seems to be no or little information on the role of AA metabolism in aging tissues or organs. This review scrutinizes and highlights the role of AA metabolism in aging and provides a new idea for strategies for treating aging-related diseases. KEY SCIENTIFIC CONCEPTS OF REVIEW As a member of lipid metabolism, AA metabolism regulates the important lipids that interfere with the aging in several ways. We present a comprehensivereviewofthe role ofAA metabolism in aging, with the aim of relieving the extreme suffering of families and the heavy economic burden on society caused by age-related diseases. We also collected and summarized data on anti-aging therapies associated with AA metabolism, with the expectation of identifying a novel and efficient way to protect against aging.
Collapse
Affiliation(s)
- Chen Qian
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Qing Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Yusen Qiao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Ze Xu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui 230031, PR China
| | - Linlin Zhang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui 230031, PR China
| | - Haixiang Xiao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Zhixiang Lin
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Mingzhou Wu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Wenyu Xia
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China.
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei, Anhui 230031, PR China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, PR China.
| |
Collapse
|
32
|
Attia A, Webb J, Connor K, Johnston CJC, Williams M, Gordon-Walker T, Rowe IA, Harrison EM, Stutchfield BM. Effect of recipient age on prioritisation for liver transplantation in the UK: a population-based modelling study. THE LANCET. HEALTHY LONGEVITY 2024; 5:e346-e355. [PMID: 38705152 DOI: 10.1016/s2666-7568(24)00044-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 05/07/2024] Open
Abstract
BACKGROUND Following the introduction of an algorithm aiming to maximise life-years gained from liver transplantation in the UK (the transplant benefit score [TBS]), donor livers were redirected from younger to older patients, mortality rate equalised across the age range and short-term waiting list mortality reduced. Understanding age-related prioritisation has been challenging, especially for younger patients and clinicians allocating non-TBS-directed livers. We aimed to assess age-related prioritisation within the TBS algorithm by modelling liver transplantation prioritisation based on data from a UK transplant unit and comparing these data with other regions. METHODS In this population-based modelling study, serum parameters and age at liver transplantation assessment of patients attending the Scottish Liver Transplant Unit, Edinburgh, UK, between December, 2002, and November, 2023, were combined with representative synthetic data to model TBS survival predictions, which were compared according to age group (25-49 years vs ≥60 years), chronic liver disease severity, and disease cause. Models for end-stage liver disease (UKELD [UK], MELD [Eurotransplant region], and MELD 3.0 [USA]) were used as validated comparators of liver disease severity. FINDINGS Of 2093 patients with chronic liver disease, 1808 (86%) had complete datasets and liver disease parameters consistent with eligibility for the liver transplant waiting list in the UK (UKELD ≥49). Disease severity as assessed by UKELD, MELD, and MELD 3.0 did not differ by age (median UKELD scores of 56 for patients aged ≥60 years vs 56 for patients aged 25-49 years; MELD scores of 16 vs 16; and MELD 3.0 scores of 18 vs 18). TBS increased with advancing age (R=0·45, p<0·0001). TBS predicted that transplantation in patients aged 60 years or older would provide a two-fold greater net benefit at 5 years than in patients aged 25-49 years (median TBS 1317 [IQR 1116-1436] in older patients vs 706 [411-1095] in younger patients; p<0·0001). Older patients were predicted to have shorter survival without transplantation than younger patients (263 days [IQR 144-473] in older patients vs 861 days [448-1164] in younger patients; p<0·0001) but similar survival after transplantation (1599 days [1563-1628] vs 1573 days [1525-1614]; p<0·0001). Older patients could reach a TBS for which a liver offer was likely below minimum criteria for transplantation (UKELD <49), whereas many younger patients were required to have high-urgent disease (UKELD >60). US and Eurotransplant programmes did not prioritise according to age. INTERPRETATION The UK liver allocation algorithm prioritises older patients for transplantation by predicting that advancing age increases the benefit from liver transplantation. Restricted follow-up and biases in waiting list data might limit the accuracy of these benefit predictions. Measures beyond overall waiting list mortality are required to fully capture the benefits of liver transplantation. FUNDING None.
Collapse
Affiliation(s)
- Anthony Attia
- School of Medicine, University of Edinburgh, Edinburgh, UK
| | - Jamie Webb
- Centre for Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Katherine Connor
- Department of Clinical and Surgical Sciences, University of Edinburgh, Edinburgh, UK; Scottish Liver Transplant Unit, Edinburgh Transplant Centre, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Chris J C Johnston
- Department of Clinical and Surgical Sciences, University of Edinburgh, Edinburgh, UK; Scottish Liver Transplant Unit, Edinburgh Transplant Centre, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Michael Williams
- Scottish Liver Transplant Unit, Edinburgh Transplant Centre, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Tim Gordon-Walker
- Scottish Liver Transplant Unit, Edinburgh Transplant Centre, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Ian A Rowe
- Leeds Institute for Medical Research, University of Leeds, Leeds, UK
| | - Ewen M Harrison
- Centre for Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh, UK; Department of Clinical and Surgical Sciences, University of Edinburgh, Edinburgh, UK
| | - Ben M Stutchfield
- Department of Clinical and Surgical Sciences, University of Edinburgh, Edinburgh, UK; Scottish Liver Transplant Unit, Edinburgh Transplant Centre, Royal Infirmary of Edinburgh, Edinburgh, UK.
| |
Collapse
|
33
|
Dashti Z, Yousefi Z, Kiani P, Taghizadeh M, Maleki MH, Borji M, Vakili O, Shafiee SM. Autophagy and the unfolded protein response shape the non-alcoholic fatty liver landscape: decoding the labyrinth. Metabolism 2024; 154:155811. [PMID: 38309690 DOI: 10.1016/j.metabol.2024.155811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/23/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
The incidence of nonalcoholic fatty liver disease (NAFLD) is on the rise, mirroring a global surge in diabetes and metabolic syndrome, as its major leading causes. NAFLD represents a spectrum of liver disorders, ranging from nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH), which can potentially progress to cirrhosis and hepatocellular carcinoma (HCC). Mechanistically, we know the unfolded protein response (UPR) as a protective cellular mechanism, being triggered under circumstances of endoplasmic reticulum (ER) stress. The hepatic UPR is turned on in a broad spectrum of liver diseases, including NAFLD. Recent data also defines molecular mechanisms that may underlie the existing correlation between UPR activation and NAFLD. More interestingly, subsequent studies have demonstrated an additional mechanism, i.e. autophagy, to be involved in hepatic steatosis, and thus NAFLD pathogenesis, principally by regulating the insulin sensitivity, hepatocellular injury, innate immunity, fibrosis, and carcinogenesis. All these findings suggest possible mechanistic roles for autophagy in the progression of NAFLD and its complications. Both UPR and autophagy are dynamic and interconnected fluxes that act as protective responses to minimize the harmful effects of hepatic lipid accumulation, as well as the ER stress during NAFLD. The functions of UPR and autophagy in the liver, together with findings of decreased hepatic autophagy in correlation with conditions that predispose to NAFLD, such as obesity and aging, suggest that autophagy and UPR, alone or combined, may be novel therapeutic targets against the disease. In this review, we discuss the current evidence on the interplay between autophagy and the UPR in connection to the NAFLD pathogenesis.
Collapse
Affiliation(s)
- Zahra Dashti
- Department of Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zeynab Yousefi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Pouria Kiani
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Motahareh Taghizadeh
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hasan Maleki
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Borji
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran; Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Sayed Mohammad Shafiee
- Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
34
|
Cohen EB, Patwardhan M, Raheja R, Alpers DH, Andrade RJ, Avigan MI, Lewis JH, Rockey DC, Chui F, Iacob AM, Linardi CC, Regev A, Shick J, Lucena MI. Drug-Induced Liver Injury in the Elderly: Consensus Statements and Recommendations from the IQ-DILI Initiative. Drug Saf 2024; 47:301-319. [PMID: 38217833 PMCID: PMC10954848 DOI: 10.1007/s40264-023-01390-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2023] [Indexed: 01/15/2024]
Abstract
The elderly demographic is the fastest-growing segment of the world's population and is projected to exceed 1.5 billion people by 2050. With multimorbidity, polypharmacy, susceptibility to drug-drug interactions, and frailty as distinct risk factors, elderly patients are especially vulnerable to developing potentially life-threatening safety events such as serious forms of drug-induced liver injury (DILI). It has been a longstanding shortcoming that elderly individuals are often a vulnerable population underrepresented in clinical trials. As such, an improved understanding of DILI in the elderly is a high-priority, unmet need. This challenge is underscored by recent documents put forward by the U.S. Food and Drug Administration (FDA) and European Medicines Agency (EMA) that encourage data collection in the elderly and recommend improved practices that will facilitate a more inclusive approach. To establish what is already known about DILI in the elderly and pinpoint key gaps of knowledge in this arena, a working definition of "elderly" is required that accounts for both chronologic and biologic ages and varying states of frailty. In addition, it is critical to characterize the biological role of aging on liver function, as well as the different epidemiological factors such as polypharmacy and inappropriate prescribing that are common practices. While data may not show that elderly people are more susceptible to DILI, DILI due to specific drugs might be more common in this population. Improved characterization of DILI in the elderly may enhance diagnostic and prognostic capabilities and improve the way in which liver safety is monitored during clinical trials. This summary of the published literature provides a framework to understand and evaluate the risk of DILI in the elderly. Consensus statements and recommendations can help to optimize medical care and catalyze collaborations between academic clinicians, drug manufacturers, and regulatory scientists to enable the generation of high-quality research data relevant to the elderly population.
Collapse
Affiliation(s)
- Eric B Cohen
- Pharmacovigilance and Patient Safety, AbbVie Inc., North Chicago, IL, USA.
| | - Meenal Patwardhan
- Pharmacovigilance and Patient Safety, AbbVie Inc., North Chicago, IL, USA
| | - Ritu Raheja
- Pharmacovigilance and Patient Safety, AbbVie Inc., North Chicago, IL, USA
| | - David H Alpers
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Raul J Andrade
- Department of Medicine, IBIMA_Plataforma Bionand, University of Malaga, Malaga, Spain
| | - Mark I Avigan
- Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, MD, USA
| | - James H Lewis
- Division of Gastroenterology, Georgetown University, Washington, D.C., USA
| | - Don C Rockey
- Digestive Disease Research Center, Medical University of South Carolina, Charleston, SC, USA
| | - Francis Chui
- Pharmacovigilance, Gilead Sciences Inc., Foster City, CA, USA
| | - Alexandru M Iacob
- Pharmacovigilance and Patient Safety, AbbVie Inc., Ottawa, ON, Canada
| | - Camila C Linardi
- Translational Medicine, Bayer HealthCare Pharmaceuticals LLC, Whippany, NJ, USA
| | - Arie Regev
- Global Patient Safety, Eli Lilly and Company, Indianapolis, IN, USA
| | - Jesse Shick
- Pharmacovigilance, Gilead Sciences Inc., Foster City, CA, USA
| | - M Isabel Lucena
- Department of Pharmacology and Pediatrics, IBIMA_Plataforma Bionand, University of Malaga, Malaga, Spain
| |
Collapse
|
35
|
Tang W, Yao W, Wang W, Ding W, Ni X, He R. Association between admission albumin levels and 30-day readmission after hip fracture surgery in geriatric patients: a propensity score-matched study. BMC Musculoskelet Disord 2024; 25:234. [PMID: 38528491 PMCID: PMC10962201 DOI: 10.1186/s12891-024-07336-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/05/2024] [Indexed: 03/27/2024] Open
Abstract
PURPOSE This study aimed to evaluate the correlation admission albumin levels and 30-day readmission after hip fracture surgery in geriatric patients. METHODS In this retrospective cohort study, 1270 geriatric patients admitted for hip fractures to a level I trauma center were included. Patients were stratified by clinical thresholds and albumin level quartiles. The association between admission albumin levels and 30-day readmission risk was assessed using multivariate logistic regression and propensity score-matched analyses. The predictive accuracy of albumin levels for readmission was evaluated by ROC curves. The dose-response relationship between albumin levels and readmission risk was examined. RESULTS The incidence of 30-day readmission was significantly higher among hypoalbuminemia patients than those with normal albumin levels (OR = 2.090, 95%CI:1.296-3.370, p = 0.003). Furthermore, propensity score-matched analyses demonstrated that patients in the Q2(35.0-37.9 g/L) (OR 0.621, 95%CI 0.370-1.041, p = 0.070), Q3(38.0-40.9 g/L) (OR 0.378, 95%CI 0.199-0.717, p < 0.001) and Q4 (≥ 41 g/L) (OR 0.465, 95%CI 0.211-0.859, p = 0.047) quartiles had a significantly lower risk of 30-day readmission compared to those in the Q1(< 35 g/L) quartile. These associations remained significant after propensity score matching (PSM) and subgroup analyses. Dose-response relationships between albumin levels and 30-day readmission were observed. CONCLUSIONS Lower admission albumin levels were independently associated with higher 30-day readmission rates in elderly hip fracture patients. Our findings indicate that serum albumin may assist perioperative risk assessment, and prompt correction of hypoalbuminemia and malnutrition could reduce short-term readmissions after hip fracture surgery in this high-risk population.
Collapse
Affiliation(s)
- Wanyun Tang
- Department of Orthopedics, Zigong First People's Hospital, Zigong, China
- Department of Orthopedics, Dandong Central Hospital, China Medical University, Dandong, China
| | - Wei Yao
- Department of Orthopedics, Dandong Central Hospital, China Medical University, Dandong, China
| | - Wei Wang
- Department of Orthopedics, Dandong Central Hospital, China Medical University, Dandong, China
| | - Wenbo Ding
- Department of Orthopedics, Dandong Central Hospital, China Medical University, Dandong, China
| | - Xiaomin Ni
- Department of Orthopedics, Zigong Fourth People's Hospital, Zigong, China
| | - RenJian He
- Department of Orthopedics, Zigong First People's Hospital, Zigong, China.
| |
Collapse
|
36
|
Lin Y, Li Y, Liang G, Yang X, Yang J, Hu Q, Sun J, Zhang C, Fang H, Liu A. Single-cell transcriptome analysis of aging mouse liver. FASEB J 2024; 38:e23473. [PMID: 38334462 DOI: 10.1096/fj.202302282r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/30/2023] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
Aging has a great impact on the liver, which causes a loss of physiological integrity and an increase in susceptibility to injury, but many of the underlying molecular and cellular processes remain unclear. Here, we performed a comprehensive single-cell transcriptional profiling of the liver during aging. Our data showed that aging affected the cellular composition of the liver. The increase in inflammatory cells including neutrophils and monocyte-derived macrophages, as well as in inflammatory cytokines, could indicate an inflammatory tissue microenvironment in aged livers. Moreover, aging drove a distinct transcriptional course in each cell type. The commonly significant up-regulated genes were S100a8, S100a9, and RNA-binding motif protein 3 across all cell types. Aging-related pathways such as biosynthesis, metabolism, and oxidative stress were up-regulated in aged livers. Additionally, key ligand-receptor pairs for intercellular communication, primarily linked to macrophage migration inhibitory factor, transforming growth factor-β, and complement signaling, were also elevated. Furthermore, hepatic stellate cells (HSCs) serve as the prominent hub for intrahepatic signaling. HSCs acquired an "activated" phenotype, which may be involved in the increased intrahepatic vascular tone and fibrosis with aging. Liver sinusoidal endothelial cells derived from aged livers were pseudocapillarized and procontractile, and exhibited down-regulation of genes involved in vascular development and homeostasis. Moreover, the aging-related changes in cellular composition and gene expression were reversed by caloric restriction. Collectively, the present study suggests liver aging is linked to a significant liver sinusoidal deregulation and a moderate pro-inflammatory state, providing a potential concept for understanding the mechanism of liver aging.
Collapse
Affiliation(s)
- Yan Lin
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Ying Li
- Wuhan Fourth Hospital, Wuhan, China
| | - Guangyu Liang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xiao Yang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Jiankun Yang
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Qi Hu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Sun
- Department of Biliopancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Cuntai Zhang
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoshu Fang
- Department of Pathophysiology, Anhui Medical University, Hefei, China
| | - Anding Liu
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| |
Collapse
|
37
|
Naiini MR, Shahouzehi B, Azizi S, Shafiei B, Nazari-Robati M. Trehalose-induced SIRT1/AMPK activation regulates SREBP-1c/PPAR-α to alleviate lipid accumulation in aged liver. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1061-1070. [PMID: 37581638 DOI: 10.1007/s00210-023-02644-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/24/2023] [Indexed: 08/16/2023]
Abstract
Aging is associated with a disturbance in the regulation of the metabolic function of the liver, which increases the risk of liver and systemic diseases. Trehalose, a natural disaccharide, has been identified to reduce dyslipidemia, hepatic steatosis, and glucose intolerance. However, the roles of trehalose on lipid metabolism in aged liver are unclear which was investigated in this study. Thirty-two male Wistar rats were randomly allocated into four groups (n = 8). Two groups of aged (24 months) and young (4 months) rats were administered 2% trehalose solution orally for 30 days. Control groups of aged and young rats did not receive any treatment. At the end of the treatment period, blood samples and liver tissues were collected. Then the expression of SIRT1, AMPK, SREBP-1c, and PPAR-α and the level of AMPK phosphorylation (p-AMPK) were quantified by real-time polymerase chain reaction and western blotting. Moreover, biochemical parameters and the histopathology of livers were evaluated. Trehalose supplementation increased the level of SIRT1, p-AMPK, and PPAR-α, whereas the level of SREBP-1c was diminished in the liver of old animals. In addition, treatment with trehalose improved histopathological features of senescent livers. Taken together, our results show that old rats developed lipogenesis in the liver which was alleviated with trehalose. Therefore, trehalose may be an effective intervention to reduce the progression of aging-induced liver diseases.
Collapse
Affiliation(s)
- Mahdis Rahimi Naiini
- Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Beydolah Shahouzehi
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahrzad Azizi
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Bentolhoda Shafiei
- Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahdieh Nazari-Robati
- Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
38
|
Jiang M, Zheng Z, Wang X, Chen Y, Qu J, Ding Q, Zhang W, Liu YS, Yang J, Tang W, Hou Y, He J, Wang L, Huang P, Li LC, He Z, Gao Q, Lu Q, Wei L, Wang YJ, Ju Z, Fan JG, Ruan XZ, Guan Y, Liu GH, Pei G, Li J, Wang Y. A biomarker framework for liver aging: the Aging Biomarker Consortium consensus statement. LIFE MEDICINE 2024; 3:lnae004. [PMID: 39872390 PMCID: PMC11749002 DOI: 10.1093/lifemedi/lnae004] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/29/2024] [Indexed: 01/11/2025]
Abstract
In human aging, liver aging per se not only increases susceptibility to liver diseases but also increases vulnerability of other organs given its central role in regulating metabolism. Total liver function tends to be well maintained in the healthy elderly, so liver aging is generally difficult to identify early. In response to this critical challenge, the Aging Biomarker Consortium of China has formulated an expert consensus on biomarkers of liver aging by synthesizing the latest scientific literature, comprising insights from both scientists and clinicians. This consensus provides a comprehensive assessment of biomarkers associated with liver aging and presents a systematic framework to characterize these into three dimensions: functional, imaging, and humoral. For the functional domain, we highlight biomarkers associated with cholesterol metabolism and liver-related coagulation function. For the imaging domain, we note that hepatic steatosis and liver blood flow can serve as measurable biomarkers for liver aging. Finally, in the humoral domain, we pinpoint hepatokines and enzymatic alterations worthy of attention. The aim of this expert consensus is to establish a foundation for assessing the extent of liver aging and identify early signs of liver aging-related diseases, thereby improving liver health and the healthy life expectancy of the elderly population.
Collapse
Affiliation(s)
| | - Mengmeng Jiang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhuozhao Zheng
- Department of Radiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Xuan Wang
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Yanhao Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - You-Shuo Liu
- Department of Geriatrics, the Second Xiangya Hospital, and the Institute of Aging and Geriatrics, Central South University, Changsha 410011, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Weiqing Tang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China
| | - Yunlong Hou
- Yiling Pharmaceutical Academician Workstation, Shijiazhuang 050035, China
| | - Jinhan He
- Department of Pharmacy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Pengyu Huang
- State Key Laboratory of Advanced Medical Materials and Devices, Engineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education), Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Lin-Chen Li
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
| | - Zhiying He
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200092, China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qian Lu
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
- Key Laboratory of Digital Intelligence Hepatology (Ministry of Education), School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Lai Wei
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Yan-Jiang Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou 510632, China
| | - Jian-Gao Fan
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xiong Zhong Ruan
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Pei
- Collaborative Innovation Center for Brain Science, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China
| | - Yunfang Wang
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
- Key Laboratory of Digital Intelligence Hepatology (Ministry of Education), School of Clinical Medicine, Tsinghua University, Beijing 102218, China
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing 102218, China
| |
Collapse
|
39
|
Amalathasan T, Nagaratnam PA, El Dirani M, Nagaratnam JM, Kholoki S. Should the Left Atrial Appendage Closure (LAAC) Technique Be the Main Form of Stroke Prevention in Patients With Long-Standing Persistent or Permanent Atrial Fibrillation? Cureus 2024; 16:e54256. [PMID: 38496111 PMCID: PMC10944332 DOI: 10.7759/cureus.54256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2024] [Indexed: 03/19/2024] Open
Abstract
Currently, oral anticoagulants are considered the gold standard for stroke prevention in patients with atrial fibrillation. Despite the efficacy of oral anticoagulants in reducing stroke incidence, patients are at risk of developing adverse reactions such as excessive bleeding and bruising, and can also have drug-drug interactions. In the early 2000s, a minimally invasive technique called the left atrial appendage closure emerged as an alternative for stroke prevention in atrial fibrillation patients who could not tolerate oral anticoagulants. Despite the success of the left atrial appendage closure, practitioners still opt for medication therapy and are reluctant to advocate for this procedure. Given the adverse effects of oral anticoagulants, physicians should question if this is the appropriate method of stroke prevention in long-standing persistent or permanent atrial fibrillation patients. This case report investigates an 82-year-old Middle Eastern male in the United States with long-standing persistent atrial fibrillation who underwent a left atrial appendage closure due to recurrent bleeding on oral anticoagulants. In addition, there will be further discussion on the appropriate method of stroke prevention in similar patients.
Collapse
Affiliation(s)
| | | | - Mirna El Dirani
- Internal Medicine, Saint James School of Medicine, Chicago, USA
| | | | - Samer Kholoki
- Internal Medicine, La Grange Memorial Hospital, Chicago, USA
| |
Collapse
|
40
|
Akl MN, El-Qawaqzeh K, Anand T, Hosseinpour H, Colosimo C, Nelson A, Alizai Q, Ditillo M, Magnotti LJ, Joseph B. Trauma Laparotomy for the Cirrhotic Patient: An Outcome-Based Analysis. J Surg Res 2024; 294:128-136. [PMID: 37871495 DOI: 10.1016/j.jss.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/18/2023] [Accepted: 09/04/2023] [Indexed: 10/25/2023]
Abstract
INTRODUCTION There is a lack of large-scale data on outcomes of cirrhotic patients undergoing trauma laparotomy. We aimed to compare outcomes of cirrhotic versus noncirrhotic trauma patients undergoing laparotomy. METHODS We analyzed 2018 American College of Surgeons Trauma Quality Improvement Program. We included blunt trauma patients (≥18 y) who underwent a laparotomy. Patients who were transferred, dead on arrival, or had penetrating injuries were excluded. Patients were matched in a 1:2 ratio (cirrhotic and noncirrhotic). Outcomes included mortality, complications, failure to rescue, transfusion requirements, and hospital and intensive care unit (ICU) lengths of stay. Multivariable backward stepwise regression analysis was performed. RESULTS Four hundred and seventy-one patients (cirrhotic, 157; noncirrhotic, 314) were matched. Mean age was 57 ± 15 y, 78% were male, and median injury severity score was 24. Cirrhotic patients had higher rates of mortality (60% versus 30%, P value <0.001), complications (49% versus 37%; P value = 0.01), failure to rescue (66% versus 36%, P value<0.001), and pRBC (units, median, 11 [7-18] versus 7 [4-11], P value <0.001) transfusion requirements. There were no significant differences in hospital and intensive care unit (ICU) lengths of stay (P value ≥0.05). On multivariate analysis, increasing age (adjusted odds ratio [aOR] 1.02, P value <0.001), Glasgow Coma Scale score ≤8 at presentation (aOR 3.3, P value <0.001), and total splenectomy (aOR 5.7, P value <0.001) were associated with higher odds of mortality. Platelet transfusion was associated with lower odds of mortality (aOR 0.84, P value = 0.044). CONCLUSIONS On a national scale, mortality following trauma laparotomy is twice as high for cirrhotic patients compared to noncirrhotic patients with higher rates of major complications and failure to rescue. Our finding of a protective effect of platelet transfusion may be explained by the platelet dysfunction associated with cirrhosis. Liver cirrhosis among trauma patients warrants heightened surveillance.
Collapse
Affiliation(s)
- Malak Nazem Akl
- Division of Trauma, Critical Care, Burns, and Emergency Surgery, Department of Surgery, College of Medicine, University of Arizona, Tucson, Arizona
| | - Khaled El-Qawaqzeh
- Division of Trauma, Critical Care, Burns, and Emergency Surgery, Department of Surgery, College of Medicine, University of Arizona, Tucson, Arizona
| | - Tanya Anand
- Division of Trauma, Critical Care, Burns, and Emergency Surgery, Department of Surgery, College of Medicine, University of Arizona, Tucson, Arizona
| | - Hamidreza Hosseinpour
- Division of Trauma, Critical Care, Burns, and Emergency Surgery, Department of Surgery, College of Medicine, University of Arizona, Tucson, Arizona
| | - Christina Colosimo
- Division of Trauma, Critical Care, Burns, and Emergency Surgery, Department of Surgery, College of Medicine, University of Arizona, Tucson, Arizona
| | - Adam Nelson
- Division of Trauma, Critical Care, Burns, and Emergency Surgery, Department of Surgery, College of Medicine, University of Arizona, Tucson, Arizona
| | - Qaidar Alizai
- Division of Trauma, Critical Care, Burns, and Emergency Surgery, Department of Surgery, College of Medicine, University of Arizona, Tucson, Arizona
| | - Michael Ditillo
- Division of Trauma, Critical Care, Burns, and Emergency Surgery, Department of Surgery, College of Medicine, University of Arizona, Tucson, Arizona
| | - Louis J Magnotti
- Division of Trauma, Critical Care, Burns, and Emergency Surgery, Department of Surgery, College of Medicine, University of Arizona, Tucson, Arizona
| | - Bellal Joseph
- Division of Trauma, Critical Care, Burns, and Emergency Surgery, Department of Surgery, College of Medicine, University of Arizona, Tucson, Arizona.
| |
Collapse
|
41
|
Bajaj JS, Silvey SG, Rogal S, O’Leary JG, Patton H, Morgan TR, Kanagalingam G, Gentili A, Godschalk M, Patel N. Undiagnosed Cirrhosis and Hepatic Encephalopathy in a National Cohort of Veterans With Dementia. JAMA Netw Open 2024; 7:e2353965. [PMID: 38294815 PMCID: PMC10831576 DOI: 10.1001/jamanetworkopen.2023.53965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/07/2023] [Indexed: 02/01/2024] Open
Abstract
Importance Dementia and hepatic encephalopathy (HE) are challenging to distinguish clinically. Undiagnosed cirrhosis in a patient with dementia can lead to missed opportunities to treat HE. Objective To examine the prevalence and risk factors of undiagnosed cirrhosis and therefore possible HE in veterans with dementia. Design, Setting, and Participants A retrospective cohort study was conducted between 2009 and 2019 using data from the Veterans Health Administration (VHA) and 2 separate validation cohorts from the Richmond Veterans Affairs Medical Center. Data analysis was conducted from May 20 to October 15, 2023. Participants included 177 422 US veterans with a diagnosis of dementia at 2 or more clinic visits, no prior diagnosis of cirrhosis, and with sufficient laboratory test results to calculate the Fibrosis-4 (FIB-4) score. Exposures Demographic and clinical characteristics. Main Outcomes and Measures An FIB-4 score (>2.67 suggestive of advanced fibrosis and >3.25 suggestive of cirrhosis), capped at age 65 years even for those above this cutoff who were included in the analysis. Results Among 177 422 veterans (97.1% men; 80.7% White; mean (SD) age, 78.35 [10.97] years) 5.3% (n = 9373) had an FIB-4 score greater than 3.25 and 10.3% (n = 18 390) had an FIB-4 score greater than 2.67. In multivariable logistic regression models, FIB-4 greater than 3.25 was associated with older age (odds ratio [OR], 1.07; 95% CI, 1.06-1.09), male gender (OR, 1.43; 95% CI, 1.26-1.61), congestive heart failure (OR, 1.48; 95% CI, 1.43-1.54), viral hepatitis (OR, 1.79; 95% CI, 1.66-1.91), Alcohol Use Disorders Identification Test score (OR, 1.56; 95% CI, 1.44-1.68), and chronic kidney disease (OR, 1.11; 95% CI, 1.04-1.17), and inversely associated with White race (OR, 0.79; 95% CI, 0.73-0.85), diabetes (OR, 0.78; 95% CI, 0.73-0.84), hyperlipidemia (OR, 0.84; 95% CI, 0.79-0.89), stroke (OR, 0.85; 95% CI, 0.79-0.91), tobacco use disorder (OR, 0.78; 95% CI, 0.70-0.87), and rural residence (OR, 0.92; 95% CI, 0.87-0.97). Similar findings were associated with the FIB-4 greater than 2.67 threshold. These codes were associated with cirrhosis on local validation. A local validation cohort of patients with dementia showed a similar percentage of high FIB-4 scores (4.4%-11.2%). Conclusions and Relevance The findings of this cohort study suggest that clinicians encountering patients with dementia should be encouraged to screen for cirrhosis using the FIB-4 score to uncover reversible factors associated with cognitive impairment, such as HE, to enhance outcomes.
Collapse
Affiliation(s)
- Jasmohan S. Bajaj
- Department of Medicine, Virginia Commonwealth University, Richmond
- Richmond VA Medical Center, Richmond, Virginia
| | - Scott G. Silvey
- Richmond VA Medical Center, Richmond, Virginia
- Department of Biostatistics, Virginia Commonwealth University, Richmond
| | - Shari Rogal
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh VA Medical Center, Pittsburgh, Pennsylvania
| | | | - Heather Patton
- Department of Medicine, San Diego VA Medical Center, San Diego, California
| | - Timothy R. Morgan
- Medical Service, VA Long Beach Healthcare System, Long Beach, California
| | - Gowthami Kanagalingam
- Department of Medicine, Virginia Commonwealth University, Richmond
- Richmond VA Medical Center, Richmond, Virginia
| | - Angela Gentili
- Richmond VA Medical Center, Richmond, Virginia
- Division of Geriatrics, Virginia Commonwealth University, Richmond
| | - Michael Godschalk
- Richmond VA Medical Center, Richmond, Virginia
- Division of Geriatrics, Virginia Commonwealth University, Richmond
| | - Nilang Patel
- Department of Medicine, Virginia Commonwealth University, Richmond
- Richmond VA Medical Center, Richmond, Virginia
| |
Collapse
|
42
|
Chen Z, Tang W, Feng N, Lv M, Meng F, Wu H, Zhao Y, Xu H, Dai Y, Xue J, Wang J, Xu A, Zhang B, Chu D, Li Y, Wu D, Dong L, Zhang S, Xue R. Inactivated vaccines reduce the risk of liver function abnormality in NAFLD patients with COVID-19: a multi-center retrospective study. EBioMedicine 2024; 99:104912. [PMID: 38096688 PMCID: PMC10758750 DOI: 10.1016/j.ebiom.2023.104912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/03/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Abnormal liver function was frequently observed in nonalcoholic fatty liver disease (NAFLD) patients infected with SARS-CoV-2. Our aim was to explore the effect of SARS-CoV-2 inactivated vaccines on liver function abnormality among NAFLD patients with COVID-19. METHODS The multi-center retrospective cohort included 517 NAFLD patients with COVID-19 from 1 April to 30 June 2022. Participants who received 2 doses of the vaccine (n = 274) were propensity score matched (PSM) with 243 unvaccinated controls. The primary outcome was liver function abnormality and the secondary outcome was viral shedding duration. Logistic and Cox regression models were used to calculate the odds ratio (OR) and hazard ratio (HR) for the outcomes. Sensitivity analysis was conducted to assess robustness. FINDINGS PSM identified 171 pairs of vaccinated and unvaccinated patients. Liver function abnormality was less frequent in the vaccinated group (adjusted OR, 0.556 [95% CI (confidence interval), 0.356-0.869], p = 0.010). Additionally, the vaccinated group demonstrated a lower incidence of abnormal bilirubin levels (total bilirubin: adjusted OR, 0.223 [95% CI, 0.072-0.690], p = 0.009; direct bilirubin: adjusted OR, 0.175 [95% CI, 0.080-0.384], p < 0.001) and shorter viral shedding duration (adjusted HR, 0.798 [95% CI, 0.641-0.994], p = 0.044) than the unvaccinated group. Further subgroup analysis revealed similar results, while the sensitivity analyses indicated consistent findings. INTERPRETATION SARS-CoV-2 vaccination in patients with NAFLD may reduce the risk of liver dysfunction during COVID-19. Furthermore, vaccination demonstrated beneficial effects on viral shedding in the NAFLD population. FUNDING 23XD1422700, Tszb2023-01, Zdzk2020-10, Zdxk2020-01, 2308085J27 and JLY20180124.
Collapse
Affiliation(s)
- Zhixue Chen
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wenqing Tang
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Nana Feng
- Department of Respiratory and Critical Medicine, Shanghai Eighth People's Hospital Affiliated to Jiang Su University, Shanghai, 200030, China
| | - Minzhi Lv
- Clinical Research Unit, Department of Biostatistics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Department of Biostatistics, Clinical Research Unit, Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory for Health Technology Assessment, National Commission of Health, School of Public Health, Center of Evidence-Based Medicine, Fudan University, Shanghai, 200032, China
| | - Fansheng Meng
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Huibin Wu
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yitong Zhao
- School of Medicine, Anhui University of Science and Technology, Anhui, 232000, China
| | - Huajie Xu
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Fudan University, Shanghai, 200032, China
| | - Yuxin Dai
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jindan Xue
- School of Medicine, Anhui University of Science and Technology, Anhui, 232000, China
| | - Jingya Wang
- Department of Biochemistry and Molecular Biology, Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Anjun Xu
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Beilin Zhang
- Department of Gastroenterology and Hepatology, Shanghai Baoshan District Wusong Central Hospital (Zhongshan Hospital Wusong Branch, Fudan University), Shanghai, 200940, China
| | - Dejie Chu
- Department of Respiratory and Critical Medicine, Shanghai Eighth People's Hospital Affiliated to Jiang Su University, Shanghai, 200030, China
| | - Yuqin Li
- Department of Gastroenterology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Dejun Wu
- Department of General Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China; Department of Gastrointestinal Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China.
| | - Ling Dong
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Si Zhang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Ruyi Xue
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Department of Gastroenterology and Hepatology, Shanghai Baoshan District Wusong Central Hospital (Zhongshan Hospital Wusong Branch, Fudan University), Shanghai, 200940, China.
| |
Collapse
|
43
|
Prasad N, Lau ECY, Wojt I, Penm J, Dai Z, Tan ECK. Prevalence of and Risk Factors for Drug-Related Readmissions in Older Adults: A Systematic Review and Meta-Analysis. Drugs Aging 2024; 41:1-11. [PMID: 37864770 PMCID: PMC10770220 DOI: 10.1007/s40266-023-01076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND Older adults are at an increased risk of drug-related problems, especially following discharge from hospital. Drug-related readmissions place a large burden on the patient and the healthcare system. However, previous studies report inconsistent results on the prevalence and associated risk factors for drug-related hospital readmissions in older adults. OBJECTIVES We aimed to assess the prevalence of drug-related readmissions in older adults aged 65 years and older and investigate the drug classes, preventability and risk factors most associated with these readmissions. METHODS A systematic review and meta-analysis were undertaken to answer our objectives. A search of four databases (MEDLINE, Embase, CINAHL and Scopus) was conducted. Three authors independently performed title and abstract screening, full-text screening and data extraction of all included studies. A meta-analysis was conducted to calculate the pooled prevalence of drug-related readmissions across all studies, and a subgroup analysis was performed to explore heterogeneity among studies reporting on adverse drug reaction-related readmissions. RESULTS A total of 1978 studies were identified in the initial search, of which four studies were included in the final synthesis. Three studies focused on readmissions due to adverse drug reactions and one study focused on readmissions due to drug-related problems. A pooled prevalence of 9% (95% confidence interval 2-18) was found for drug-related readmissions across all studies, and a pooled prevalence of 6% (95% confidence interval 4-10) was found for adverse drug reaction-related readmissions. Three studies explored the preventability of readmissions and 15.4-22.2% of cases were deemed preventable. The drug classes most associated with adverse drug reaction readmissions included anticoagulants, antibiotics, psychotropics and chemotherapy agents. Polypharmacy (the use of five or more medications) and several comorbidities such as cancer, liver disease, ischaemic heart disease and peptic ulcer disease were identified as risk factors for drug-related readmissions. CONCLUSIONS Almost one in ten older adults discharged from hospital experienced a drug-related hospital readmission, with one fifth of these deemed preventable. Several comorbidities and the use of polypharmacy and high-risk drugs were identified as prominent risk factors for readmission. Further research is needed to explore possible causes of drug-related readmissions in older adults for a more guided approach to the development of effective medication management interventions.
Collapse
Affiliation(s)
- Narisha Prasad
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, NSW, Australia
| | - Edward C Y Lau
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, NSW, Australia
| | - Ilsa Wojt
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, NSW, Australia
| | - Jonathan Penm
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, NSW, Australia
- Department of Pharmacy, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Zhaoli Dai
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, NSW, Australia
- School of Population Health, Faculty of Medicine and Health, The University of New South Wales, Sydney, NSW, Australia
| | - Edwin C K Tan
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, NSW, Australia.
- Charles Perkins Centre, Pharmaceutical Policy Node, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
44
|
Sengupta S, Anand A, Lopez R, Weleff J, Wang PR, Bellar A, Attaway A, Welch N, Dasarathy S. Emergency services utilization by patients with alcohol-associated hepatitis: An analysis of national trends. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:98-109. [PMID: 38193831 PMCID: PMC10783841 DOI: 10.1111/acer.15223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/10/2023] [Accepted: 11/03/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Hospitalization and mortality in patients with alcohol-associated hepatitis (AH), a severe form of liver disease, continue to increase over time. Given the severity of the illness, most hospitalized patients with AH are admitted from the emergency department (ED). However, there are no data on ED utilization by patients with AH. Thus, the Nationwide Emergency Department Sample (NEDS) dataset was analyzed to determine the ED utilization for AH. METHODS Temporal trends (2016-2019) and outcomes of ED visits for AH were determined. Primary or secondary AH diagnoses were based on coding priority. Numbers of patients evaluated in the ED, severity of disease, complications of liver disease, and discharge disposition were analyzed. Crude and adjusted rates were examined, and temporal trends evaluated using logistic regression with orthogonal polynomial contrasts for each year. RESULTS There were 466,014,370 ED visits during 2016-2019, of which 448,984 (0.096%) were for AH, 85.0% of which required hospitalization. The rate of visits for AH (primary and secondary) between 2016 and 2019 increased from 85 to 106.8/100,000 ED visits. The rate of secondary AH increased more than the rate of primary AH (from 68.6 to 86.5 vs. from 16.4 to 20.3/100,000 ED visits). Patients aged 45-64 years had the highest rate of ED visits for AH, which decreased during the study period, while the rate of ED visits for AH increased in those aged 25-44 years (from 38.5% to 42.9%). The severity of disease (ascites, hepatic encephalopathy, and acute kidney injury) also increased over time. Medicaid and private insurance were the most common payors for patients seeking care in the ED for AH. CONCLUSIONS Temporal trends show an overall increase in ED utilization rates for AH, more patients requiring hospitalization, and an increase in the proportion of younger patients presenting to the ED with AH.
Collapse
Affiliation(s)
- Shreya Sengupta
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH, USA
| | - Akhil Anand
- Department of Psychiatry and Psychology, Cleveland Clinic, Cleveland, OH, USA
- Department of Psychiatry, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Rocio Lopez
- Center for Populations Health Research, Cleveland Clinic, Cleveland, OH, USA
| | - Jeremy Weleff
- Department of Psychiatry and Psychology, Cleveland Clinic, Cleveland, OH, USA
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| | - Philip R Wang
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Annette Bellar
- Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | - Amy Attaway
- Pulmonary Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Nicole Welch
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH, USA
- Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| | - Srinivasan Dasarathy
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH, USA
- Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
45
|
Motta G, Thangaraj SV, Padmanabhan V. Developmental Programming: Impact of Prenatal Exposure to Bisphenol A on Senescence and Circadian Mediators in the Liver of Sheep. TOXICS 2023; 12:15. [PMID: 38250971 PMCID: PMC10818936 DOI: 10.3390/toxics12010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024]
Abstract
Prenatal exposure to endocrine disruptors such as bisphenol A (BPA) plays a critical role in the developmental programming of liver dysfunction that is characteristic of nonalcoholic fatty liver disease (NAFLD). Circadian and aging processes have been implicated in the pathogenesis of NAFLD. We hypothesized that the prenatal BPA-induced fatty-liver phenotype of female sheep is associated with premature hepatic senescence and disruption in circadian clock genes. The expression of circadian rhythm and aging-associated genes, along with other markers of senescence such as telomere length, mitochondrial DNA copy number, and lipofuscin accumulation, were evaluated in the liver tissue of control and prenatal BPA groups. Prenatal BPA exposure significantly elevated the expression of aging-associated genes GLB1 and CISD2 and induced large magnitude differences in the expression of other aging genes-APOE, HGF, KLOTHO, and the clock genes PER2 and CLOCK-in the liver; the other senescence markers remained unaffected. Prenatal BPA-programmed aging-related transcriptional changes in the liver may contribute to pathological changes in liver function, elucidating the involvement of aging genes in the pathogenesis of liver steatosis.
Collapse
Affiliation(s)
| | | | - Vasantha Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, MI 48105, USA; (G.M.); (S.V.T.)
| |
Collapse
|
46
|
Umar TP, Tanasov A, Stevanny B, Agustini D, Dave T, Nabhan A, Madany M, Ibrahim M, Nguyen D, Jain S, Jain N. A Digital Health Perspective on Medication Use and Polypharmacy Management for Improving Healthcare Outcomes in Geriatric Patients. ADVANCES IN MEDICAL DIAGNOSIS, TREATMENT, AND CARE 2023:1-39. [DOI: 10.4018/979-8-3693-0260-6.ch001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
The high prevalence of multiple comorbidities poses unique medication-related challenges for geriatric patients. Polypharmacy is a particular concern since taking several medications simultaneously increases the likelihood of adverse drug events and the risk of drug interactions while decreasing patient adherence. These factors are associated with suboptimal health outcomes and a heightened burden on the healthcare system (insurance claims) and the patient (out-of-pocket expenses). These challenges can significantly affect the quality of life of geriatric patients. This chapter critically examines the impact of medication use and polypharmacy on the quality of life of older patients. In addition, the authors discuss how artificial intelligence-based digital tools and precision medicine can address these issues by streamlining medical decision-making, improving the patient experience, and allowing remote monitoring. Finally, they interpret the findings from the lens of ethical considerations associated with the adoption and implementation of digital applications and gadgets.
Collapse
Affiliation(s)
| | - Andrei Tanasov
- Carol Davila University of Medicine and Pharmacy, Romania
| | | | | | - Tirth Dave
- Bukovinian State Medical University, Ukraine
| | - Ayman Nabhan
- Al Andalus University for Medical Sciences, Syria
| | | | - Muiz Ibrahim
- International Higher School of Medicine, International University of Kyrgyzstan, Kyrgyzstan
| | | | - Shivani Jain
- Genesis Institute of Dental Sciences and Research, India
| | | |
Collapse
|
47
|
Qiu L, Ma Z, Sun J, Wu Z, Wang M, Wang S, Zhao Y, Liang S, Hu M, Li Y. Establishment of a Spontaneous Liver Fibrosis Model in NOD/SCID Mice Induced by Natural Aging. BIOLOGY 2023; 12:1493. [PMID: 38132319 PMCID: PMC10740877 DOI: 10.3390/biology12121493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Liver fibrosis, a critical pathological feature of chronic liver diseases, arises from a multitude of pathogenic factors. Consequently, establishing an appropriate animal model to simulate liver fibrosis holds immense significance for comprehending its underlying pathogenesis. Despite the numerous methodologies available for generating liver fibrosis models, they often deviate substantially from the spontaneous age-related liver fibrosis process. In this study, compared with young (12 weeks) and middle-aged NOD/SCID mice (32 weeks), there were a large number of fibrous septum and collagen in the liver tissue of old NOD/SCID mice (43 weeks, 43 W). Immunohistochemical analysis unequivocally indicated heightened α-SMA content within the liver tissue of the 43 W mice, thereby underscoring aging's role in triggering the epithelial-to-mesenchymal transition. In addition, SA-β-gal staining as well as P21 expression were increased, and SIRT1 and SIRT3 expression were decreased in 43 W mice. A comprehensive evaluation encompassing transmission electron microscopy and fluorescence quantitative analysis elucidated compromised mitochondrial function and reduced antioxidant capacity in hepatocytes of the 43 W mice. Furthermore, the aging process activated the pro-fibrotic TGF-β-SMAD pathway, concurrently inducing hepatocellular inflammation. The results of the present study not only validate the successful construction of a spontaneous liver fibrosis mouse model through natural aging induction but also provide initial insights into the mechanisms underpinning age-induced liver fibrosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Min Hu
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases & Yunnan Stem Cell Translational Research Center, Kunming University, Kunming 650214, China; (L.Q.); (Z.M.); (J.S.); (Z.W.); (M.W.); (S.W.); (Y.Z.); (S.L.)
| | - Yanjiao Li
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases & Yunnan Stem Cell Translational Research Center, Kunming University, Kunming 650214, China; (L.Q.); (Z.M.); (J.S.); (Z.W.); (M.W.); (S.W.); (Y.Z.); (S.L.)
| |
Collapse
|
48
|
Georgieva M, Xenodochidis C, Krasteva N. Old age as a risk factor for liver diseases: Modern therapeutic approaches. Exp Gerontol 2023; 184:112334. [PMID: 37977514 DOI: 10.1016/j.exger.2023.112334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Recent scientific interest has been directed towards age-related diseases, driven by the significant increase in global life expectancy and the growing population of individuals aged 65 and above. The ageing process encompasses various biological, physiological, environmental, psychological, behavioural, and social changes, leading to an augmented susceptibility to chronic illnesses. Cardiovascular, neurological, musculoskeletal, liver and oncological diseases are prevalent in the elderly. Moreover, ageing individuals demonstrate reduced regenerative capacity and decreased tolerance towards therapeutic interventions, including organ transplantation. Liver diseases, such as non-alcoholic fatty liver disease, alcoholic liver disease, hepatitis, fibrosis, and cirrhosis, have emerged as significant public health concerns. Paradoxically, these conditions remain underestimated despite their substantial global impact. Age-related factors are closely associated with the severity and unfavorable prognosis of various liver diseases, warranting further investigation to enhance clinical management and develop novel therapeutic strategies. This comprehensive review focuses specifically on age-related liver diseases, their treatment strategies, and contemporary practices. It provides a detailed account of the global burden, types, molecular mechanisms, and epigenetic alterations underlying these liver pathologies.
Collapse
Affiliation(s)
- Milena Georgieva
- Institute of Molecular Biology "Acad. Roumen Tsanev", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
| | - Charilaos Xenodochidis
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Natalia Krasteva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
| |
Collapse
|
49
|
Fitzgerald H, Bonin JL, Khan S, Eid M, Sadhu S, Rahtes A, Lipscomb M, Biswas N, Decker C, Nabage M, Ramos RB, Duarte GA, Marinello M, Chen A, Aydin HB, Mena HA, Gilliard K, Spite M, DiPersio CM, Adam AP, MacNamara KC, Fredman G. Resolvin D2-G-Protein Coupled Receptor 18 Enhances Bone Marrow Function and Limits Steatosis and Hepatic Collagen Accumulation in Aging. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1953-1968. [PMID: 37717941 PMCID: PMC10699127 DOI: 10.1016/j.ajpath.2023.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/20/2023] [Accepted: 08/08/2023] [Indexed: 09/19/2023]
Abstract
Aging is associated with nonresolving inflammation and tissue dysfunction. Resolvin D2 (RvD2) is a proresolving ligand that acts through the G-protein-coupled receptor called GPR18. Unbiased RNA sequencing revealed increased Gpr18 expression in macrophages from old mice, and in livers from elderly humans, which was associated with increased steatosis and fibrosis in middle-aged (MA) and old mice. MA mice that lacked GPR18 on myeloid cells had exacerbated steatosis and hepatic fibrosis, which was associated with a decline in Mac2+ macrophages. Treatment of MA mice with RvD2 reduced steatosis and decreased hepatic fibrosis, correlating with increased Mac2+ macrophages, increased monocyte-derived macrophages, and elevated numbers of monocytes in the liver, blood, and bone marrow. RvD2 acted directly on the bone marrow to increase monocyte-macrophage progenitors. A transplantation assay further demonstrated that bone marrow from old mice facilitated hepatic collagen accumulation in young mice. Transient RvD2 treatment to mice transplanted with bone marrow from old mice prevented hepatic collagen accumulation. Together, this study demonstrates that RvD2-GPR18 signaling controls steatosis and fibrosis and provides a mechanistic-based therapy for promoting liver repair in aging.
Collapse
Affiliation(s)
- Hannah Fitzgerald
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Jesse L Bonin
- The Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York
| | - Sayeed Khan
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Maya Eid
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Sudeshna Sadhu
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Allison Rahtes
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Masharh Lipscomb
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Nirupam Biswas
- The Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York
| | - Christa Decker
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Melisande Nabage
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Ramon Bossardi Ramos
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Giesse Albeche Duarte
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Michael Marinello
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Anne Chen
- Department of Pathology, Albany Medical College, Albany, New York
| | | | - Hebe Agustina Mena
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kurrim Gilliard
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Matthew Spite
- Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - C Michael DiPersio
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York; Department of Surgery, Albany Medical College, Albany, New York
| | - Alejandro P Adam
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Katherine C MacNamara
- The Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York.
| | - Gabrielle Fredman
- The Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York.
| |
Collapse
|
50
|
Nazarko L. Can medication increase the risk of falls? The importance of medication review. Br J Community Nurs 2023; 28:534-540. [PMID: 37930860 DOI: 10.12968/bjcn.2023.28.11.534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Falls are the second leading cause of unintentional injury deaths worldwide and are a major health issue for older people. One of the factors that can increase the risk of falls is medication. This article examines how medication can affect fall risk and how medication review can reduce the risk of falls.
Collapse
|