1
|
Alturki MS. Exploring Marine-Derived Compounds: In Silico Discovery of Selective Ketohexokinase (KHK) Inhibitors for Metabolic Disease Therapy. Mar Drugs 2024; 22:455. [PMID: 39452863 PMCID: PMC11509851 DOI: 10.3390/md22100455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
The increasing prevalence of metabolic diseases, including nonalcoholic fatty liver disease (NAFLD), obesity, and type 2 diabetes, poses significant global health challenges. Ketohexokinase (KHK), an enzyme crucial in fructose metabolism, is a potential therapeutic target due to its role in these conditions. This study focused on the discovery of selective KHK inhibitors using in silico methods. We employed structure-based drug design (SBDD) and ligand-based drug design (LBDD) approaches, beginning with molecular docking to identify promising compounds, followed by induced-fit docking (IFD), molecular mechanics generalized Born and surface area continuum solvation (MM-GBSA), and molecular dynamics (MD) simulations to validate binding affinities. Additionally, shape-based screening was conducted to assess structural similarities. The findings highlight several potential inhibitors with favorable ADMET profiles, offering promising candidates for further development in the treatment of fructose-related metabolic disorders.
Collapse
Affiliation(s)
- Mansour S Alturki
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
2
|
Nicastro E, D'Antiga L. Nutritional Interventions, Probiotics, Synbiotics and Fecal Microbiota Transplantation in Steatotic Liver Disease : Pediatric Fatty Liver and Probiotics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1449:113-133. [PMID: 39060734 DOI: 10.1007/978-3-031-58572-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a major health problem worldwide, and the strongest determinant of liver disease in children. The possible influence of high-fat/low-fiber dietary patterns with microbiota (e.g., increased Firmicutes/Bacteroidetes ratio), and ultimately with MASLD occurrence and progression has been elucidated by several association studies. The possible mechanisms through which microbes exert their detrimental effects on MASLD include gut vascular barrier damage, a shift towards non-tolerogenic immunologic environment, and the detrimental metabolic changes, including a relative reduction of propionate and butyrate in favor of acetate, endogenous ethanol production, and impairment of the unconjugated bile acid-driven FXR-mediated gut-liver axis. The impact of nutritional and probiotic interventions in children with MASLD is described.
Collapse
Affiliation(s)
- Emanuele Nicastro
- Pediatric Hepatology, Gastroenterology, and Transplantation Unit, Hospital Papa Giovanni XXIII, Bergamo, Italy.
| | - Lorenzo D'Antiga
- Pediatric Hepatology, Gastroenterology, and Transplantation Unit, Hospital Papa Giovanni XXIII, Bergamo, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
3
|
Al-Awadi A, Grove J, Taylor M, Valdes A, Vijay A, Bawden S, Gowland P, Aithal G. Effects of an isoenergetic low Glycaemic Index (GI) diet on liver fat accumulation and gut microbiota composition in patients with non-alcoholic fatty liver disease (NAFLD): a study protocol of an efficacy mechanism evaluation. BMJ Open 2021; 11:e045802. [PMID: 34620653 PMCID: PMC8499287 DOI: 10.1136/bmjopen-2020-045802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION A Low Glycaemic Index (LGI) diet is a proposed lifestyle intervention in non-alcoholic fatty liver diseases (NAFLD) which is designed to reduce circulating blood glucose levels, hepatic glucose influx, insulin resistance and de novo lipogenesis. A significant reduction in liver fat content through following a 1-week LGI diet has been reported in healthy volunteers. Changes in dietary fat and carbohydrates have also been shown to alter gut microbiota composition and lead to hepatic steatosis through the gut-liver axis. There are no available trials examining the effects of an LGI diet on liver fat accumulation in patients with NAFLD; nor has the impact of consuming an LGI diet on gut microbiota composition been studied in this population. The aim of this trial is to investigate the effects of LGI diet consumption on liver fat content and its effects on gut microbiota composition in participants with NAFLD compared with a High Glycaemic Index (HGI) control diet. METHODS AND ANALYSIS A 2×2 cross-over randomised mechanistic dietary trial will allocate 16 participants with NAFLD to a 2-week either HGI or LGI diet followed by a 4-week wash-out period and then the LGI or HGI diet, alternative to that followed in the first 2 weeks. Baseline and postintervention (four visits) outcome measures will be collected to assess liver fat content (using MRI/S and controlled attenuation parameter-FibroScan), gut microbiota composition (using 16S RNA analysis) and blood biomarkers including glycaemic, insulinaemic, liver, lipid and haematological profiles, gut hormones levels and short-chain fatty acids. ETHICS AND DISSEMINATION Study protocol has been approved by the ethics committees of The University of Nottingham and East Midlands Nottingham-2 Research Ethics Committee (REC reference 19/EM/0291). Data from this trial will be used as part of a Philosophy Doctorate thesis. Publications will be in peer-reviewed journals. TRIAL REGISTRATION NUMBER NCT04415632.
Collapse
Affiliation(s)
- Amina Al-Awadi
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
- National Institute of Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Al-Sabah Hospital, Ministry of Health, Civil Service Commission, Kuwait City, Kuwait
| | - Jane Grove
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
- National Institute of Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Moira Taylor
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Ana Valdes
- National Institute of Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- School of Medicine, University of Nottingham, Nottingham, UK
| | - Amrita Vijay
- School of Medicine, University of Nottingham, Nottingham, UK
| | - Stephen Bawden
- National Institute of Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Penny Gowland
- National Institute of Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Guruprasad Aithal
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
- National Institute of Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| |
Collapse
|
4
|
Zhu C, Guan Q, Song C, Zhong L, Ding X, Zeng H, Nie P, Song L. Regulatory effects of Lactobacillus fermented black barley on intestinal microbiota of NAFLD rats. Food Res Int 2021; 147:110467. [PMID: 34399465 DOI: 10.1016/j.foodres.2021.110467] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 02/07/2023]
Abstract
Gut microbiota dysbiosis and oxidative stress may play important roles in the progression of nonalcoholic fatty liver disease (NAFLD). Fermented foods contain probiotics and other bioactive components that may improve gastrointestinal health and provide other health benefits. Here, we investigated the effect of Lactobacillus-fermented black barley on NAFLD rats. Adult Sprague Dawley rats were randomized into four groups: normal chow diet (NC), high-fat diet (HF), HF + fermented black barley treatment (HB) and HF + Lactobacillus treatment (HL). The rats in the HB and HL groups were continuously administered fermented black barley or Lactobacillus, respectively, for 12 weeks (1 mL/100 g·BW, containing 1 × 108 CFU/mL Lactobacillus). Compared with the HF treatment, HB treatment effectively inhibited the increase in body weight, liver and abdominal fat indexes and hepatic lipids (p < 0.01), increased hepatic SOD activity (p < 0.05), decreased thiobarbituric acid reactive substances (TBARSs) (p < 0.01) and improved liver function. Moreover, Lactobacillus-fermented black barley exhibited regulatory effect on high-fat diet-induced intestinal microbiota dysbiosis by increasing the relative microbiota abundance and diversity, increasing the relative abundance of Bacteroidetes, decreasing the Firmicutes/Bacteroidetes ratio, increasing the abundances of some intestinal probiotics (such as Akkermansia and Lactococcus), and influencing some of the fecal metabolites related to hormones and lipid metabolism. The supplementation of fermented cereal food might be a new effective and safe preventive dietary strategy against NAFLD.
Collapse
Affiliation(s)
- Chuang Zhu
- Department of Food Science and Engineer, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qi Guan
- Department of Food Science and Engineer, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chenwei Song
- Department of Food Science and Engineer, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lingyue Zhong
- Department of Food Science and Engineer, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinwen Ding
- Department of Food Science and Engineer, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui Zeng
- Department of Food Science and Engineer, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pan Nie
- Department of Food Science and Engineer, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lihua Song
- Department of Food Science and Engineer, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
5
|
Gutierrez JA, Liu W, Perez S, Xing G, Sonnenberg G, Kou K, Blatnik M, Allen R, Weng Y, Vera NB, Chidsey K, Bergman A, Somayaji V, Crowley C, Clasquin MF, Nigam A, Fulham MA, Erion DM, Ross TT, Esler WP, Magee TV, Pfefferkorn JA, Bence KK, Birnbaum MJ, Tesz GJ. Pharmacologic inhibition of ketohexokinase prevents fructose-induced metabolic dysfunction. Mol Metab 2021; 48:101196. [PMID: 33667726 PMCID: PMC8050029 DOI: 10.1016/j.molmet.2021.101196] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Objective Recent studies suggest that excess dietary fructose contributes to metabolic dysfunction by promoting insulin resistance, de novo lipogenesis (DNL), and hepatic steatosis, thereby increasing the risk of obesity, type 2 diabetes (T2D), non-alcoholic steatohepatitis (NASH), and related comorbidities. Whether this metabolic dysfunction is driven by the excess dietary calories contained in fructose or whether fructose catabolism itself is uniquely pathogenic remains controversial. We sought to test whether a small molecule inhibitor of the primary fructose metabolizing enzyme ketohexokinase (KHK) can ameliorate the metabolic effects of fructose. Methods The KHK inhibitor PF-06835919 was used to block fructose metabolism in primary hepatocytes and Sprague Dawley rats fed either a high-fructose diet (30% fructose kcal/g) or a diet reflecting the average macronutrient dietary content of an American diet (AD) (7.5% fructose kcal/g). The effects of fructose consumption and KHK inhibition on hepatic steatosis, insulin resistance, and hyperlipidemia were evaluated, along with the activation of DNL and the enzymes that regulate lipid synthesis. A metabolomic analysis was performed to confirm KHK inhibition and understand metabolite changes in response to fructose metabolism in vitro and in vivo. Additionally, the effects of administering a single ascending dose of PF-06835919 on fructose metabolism markers in healthy human study participants were assessed in a randomized placebo-controlled phase 1 study. Results Inhibition of KHK in rats prevented hyperinsulinemia and hypertriglyceridemia from fructose feeding. Supraphysiologic levels of dietary fructose were not necessary to cause metabolic dysfunction as rats fed the American diet developed hyperinsulinemia, hypertriglyceridemia, and hepatic steatosis, which were all reversed by KHK inhibition. Reversal of the metabolic effects of fructose coincided with reductions in DNL and inactivation of the lipogenic transcription factor carbohydrate response element-binding protein (ChREBP). We report that administering single oral doses of PF-06835919 was safe and well tolerated in healthy study participants and dose-dependently increased plasma fructose indicative of KHK inhibition. Conclusions Fructose consumption in rats promoted features of metabolic dysfunction seen in metabolic diseases such as T2D and NASH, including insulin resistance, hypertriglyceridemia, and hepatic steatosis, which were reversed by KHK inhibition. PF-06835919 is a potent inhibitor of fructose metabolism in rats and humans. Rats fed fructose at levels consistent with the typical American diet develop hyperinsulinemia, hyperlipidemia and steatosis. KHK inhibition reverses fructose-induced metabolic dysfunction by blocking ChREBP activation. Due to the global dietary prevalence of fructose, KHK inhibition is a potential pharmacotherapy for metabolic diseases.
Collapse
Affiliation(s)
- Jemy A Gutierrez
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Wei Liu
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Sylvie Perez
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Gang Xing
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Gabriele Sonnenberg
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Kou Kou
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Matt Blatnik
- Early Clinical Development, Pfizer Worldwide Research, Development, and Medical, Groton, CT 06340 USA
| | - Richard Allen
- Quantitative Systems Pharmacology, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Yan Weng
- Clinical Pharmacology, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Nicholas B Vera
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Kristin Chidsey
- Early Clinical Development, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Arthur Bergman
- Clinical Pharmacology, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Veena Somayaji
- Early Clinical Development, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Collin Crowley
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Michelle F Clasquin
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Anu Nigam
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Melissa A Fulham
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Derek M Erion
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Trenton T Ross
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - William P Esler
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Thomas V Magee
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Jeffrey A Pfefferkorn
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Kendra K Bence
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Morris J Birnbaum
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA
| | - Gregory J Tesz
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development, and Medical, Cambridge, MA 02139 USA.
| |
Collapse
|
6
|
Abstract
ABSTRACT Nonalcoholic fatty liver disease (NAFLD), a multisystem, prevalent liver disease, can be managed with lifestyle interventions, including diet, given the lack of well-established pharmacologic therapies. This review explores the different dietary approaches that have been found effective in the management of NAFLD, offering a unique resource to healthcare professionals.
Collapse
|
7
|
Jain A. Pediatric Fatty Liver Disease. MISSOURI MEDICINE 2019; 116:123-128. [PMID: 31040498 PMCID: PMC6461321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Ajay Jain
- Ajay Jain, MD, is in the Department of Pediatrics, Saint Louis University, St. Louis, Missouri
| |
Collapse
|
8
|
Wang X, Wang J. High-content hydrogen water-induced downregulation of miR-136 alleviates non-alcoholic fatty liver disease by regulating Nrf2 via targeting MEG3. Biol Chem 2018; 399:397-406. [PMID: 29261513 DOI: 10.1515/hsz-2017-0303] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 12/08/2017] [Indexed: 01/11/2023]
Abstract
This study was aimed to investigate the potential regulatory mechanism of high-content hydrogen water (HHW) in non-alcoholic fatty liver disease (NAFLD). A high-fat diet (HFD)-induced NAFLD mice model and cellular model were prepared. The serum levels of alanine transaminase (ALT), aspartate transaminase (AST), total cholesterol (TCH) and triglycerides (TG) were measured. The expression levels of representative five microRNA (miRNAs) (miR-103, miR-488, miR-136, miR-505 and miR-148a) in liver tissues were determined by quantitative real-time PCR (qRT-PCR). The target of miR-136 was validated by RNA immunoprecipitation (RIP) and pull-down assay. MiR-136, MEG3 and nuclear factor erythroid 2-related factor 2 (Nrf2) expression levels following cell treatment were detected in hepatocytes using qRT-PCR and Western blotting. Moreover, cell viability and TG content were conducted. MiR-136 was downregulated, MEG3 as well as Nrf2 was upregulated and serum lipid level was reduced in NAFLD mice model after HHW treatment, which exerted the same effect in cellular model. RIP and RNA pull-down assay confirmed that MEG2 was a downstream target of miR-136. What's more, HHW ameliorated lipid accumulation by regulating miR-136/MEG3/Nrf2 axis in vitro and in vivo. Hence, HHW alleviated NAFLD by downregulation of miR-136 through mediating Nrf2 via targeting MEG3.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450052, Henan, China
| | - Jiao Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450052, Henan, China
| |
Collapse
|
9
|
Cox LA, Olivier M, Spradling-Reeves K, Karere GM, Comuzzie AG, VandeBerg JL. Nonhuman Primates and Translational Research-Cardiovascular Disease. ILAR J 2018; 58:235-250. [PMID: 28985395 DOI: 10.1093/ilar/ilx025] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in the United States. Human epidemiological studies provide challenges for understanding mechanisms that regulate initiation and progression of CVD due to variation in lifestyle, diet, and other environmental factors. Studies describing metabolic and physiologic aspects of CVD, and those investigating genetic and epigenetic mechanisms influencing CVD initiation and progression, have been conducted in multiple Old World nonhuman primate (NHP) species. Major advantages of NHPs as models for understanding CVD are their genetic, metabolic, and physiologic similarities with humans, and the ability to control diet, environment, and breeding. These NHP species are also genetically and phenotypically heterogeneous, providing opportunities to study gene by environment interactions that are not feasible in inbred animal models. Each Old World NHP species included in this review brings unique strengths as models to better understand human CVD. All develop CVD without genetic manipulation providing multiple models to discover genetic variants that influence CVD risk. In addition, as each of these NHP species age, their age-related comorbidities such as dyslipidemia and diabetes are accelerated proportionally 3 to 4 times faster than in humans.In this review, we discuss current CVD-related research in NHPs focusing on selected aspects of CVD for which nonprimate model organism studies have left gaps in our understanding of human disease. We include studies on current knowledge of genetics, epigenetics, calorie restriction, maternal calorie restriction and offspring health, maternal obesity and offspring health, nonalcoholic steatohepatitis and steatosis, Chagas disease, microbiome, stem cells, and prevention of CVD.
Collapse
Affiliation(s)
- Laura A Cox
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas.,Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas
| | - Michael Olivier
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas.,Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas
| | | | - Genesio M Karere
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas
| | - Anthony G Comuzzie
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas
| | - John L VandeBerg
- South Texas Diabetes and Obesity Center, School of Medicine, University of Texas Rio Grande Valley, Edinburg/Harlingen/Brownsville, Texas
| |
Collapse
|
10
|
Intestinal fructose malabsorption is associated with increased lactulose fermentation in the intestinal lumen. JORNAL DE PEDIATRIA (VERSÃO EM PORTUGUÊS) 2018. [DOI: 10.1016/j.jpedp.2017.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
11
|
Ozaki RKF, Speridião PDGL, Soares ACF, Morais MBD. Intestinal fructose malabsorption is associated with increased lactulose fermentation in the intestinal lumen. J Pediatr (Rio J) 2018; 94:609-615. [PMID: 29111202 DOI: 10.1016/j.jped.2017.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 07/13/2017] [Accepted: 08/02/2017] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE To study fructose malabsorption in children and adolescents with abdominal pain associated with functional gastrointestinal disorders. As an additional objective, the association between intestinal fructose malabsorption and food intake, including the estimated fructose consumption, weight, height, and lactulose fermentability were also studied. METHODS The study included 31 patients with abdominal pain (11 with functional dyspepsia, 10 with irritable bowel syndrome, and 10 with functional abdominal pain). The hydrogen breath test was used to investigate fructose malabsorption and lactulose fermentation in the intestinal lumen. Food consumption was assessed by food registry. Weight and height were measured. RESULTS Fructose malabsorption was characterized in 21 (67.7%) patients (nine with irritable bowel syndrome, seven with functional abdominal pain, and five with functional dyspepsia). Intolerance after fructose administration was observed in six (28.6%) of the 21 patients with fructose malabsorption. Fructose malabsorption was associated with higher (p<0.05) hydrogen production after lactulose ingestion, higher (p<0.05) energy and carbohydrate consumption, and higher (p<0.05) body mass index z-score value for age. Median estimates of daily fructose intake by patients with and without fructose malabsorption were, respectively, 16.1 and 10.5g/day (p=0.087). CONCLUSION Fructose malabsorption is associated with increased lactulose fermentability in the intestinal lumen. Body mass index was higher in patients with fructose malabsorption.
Collapse
Affiliation(s)
- Roberto Koity Fujihara Ozaki
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina (EPM), Programa de Pós-graduação em Nutrição, São Paulo, SP, Brazil
| | | | - Ana Cristina Fontenele Soares
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina (EPM), Disciplina de Gastroenterologia Pediátrica, São Paulo, SP, Brazil
| | - Mauro Batista de Morais
- Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina (EPM), Disciplina de Gastroenterologia Pediátrica, São Paulo, SP, Brazil.
| |
Collapse
|
12
|
Astbury S, Song A, Zhou M, Nielsen B, Hoedl A, Willing BP, Symonds ME, Bell RC. High Fructose Intake During Pregnancy in Rats Influences the Maternal Microbiome and Gut Development in the Offspring. Front Genet 2018; 9:203. [PMID: 29971089 PMCID: PMC6018152 DOI: 10.3389/fgene.2018.00203] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/22/2018] [Indexed: 01/13/2023] Open
Abstract
Studies in pregnant women indicate the maternal microbiome changes during pregnancy so as to benefit the mother and fetus. In contrast, disruption of the maternal microbiota around birth can compromise normal bacterial colonisation of the infant's gastrointestinal tract. This may then inhibit development of the gut so as to increase susceptibility to inflammation and reduce barrier function. The impact of modulating fructose intake on the maternal microbiome through pregnancy is unknown, therefore we examined the effect of fructose supplementation on the maternal microbiome together with the immediate and next generation effects in the offspring. Wistar rat dams were divided into control and fructose fed groups that received 10% fructose in their drinking water from 8 weeks of age and throughout pregnancy (10-13 weeks). Maternal fecal and blood samples were collected pre-mating (9 weeks) and during early (gestational day 4-7) and late pregnancy (gestational day 19-21). We show supplementation of the maternal diet with fructose appears to significantly modulate the maternal microbiome, with a significant reduction in Lactobacillus and Bacteroides. In offspring maintained on this diet up to pregnancy and term there was a reduction in gene expression of markers of gut barrier function that could adversely affect its function. An exacerbated insulin response to pregnancy, reduced birth weight, but increased fat mass was also observed in these offspring. In conclusion dietary supplementation with fructose modulates the maternal microbiome in ways that could adversely affect fetal growth and later gut development.
Collapse
Affiliation(s)
- Stuart Astbury
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.,Early Life Research Unit, Division of Child Health, Obstetrics and Gynaecology, School of Medicine, The University of Nottingham, Nottingham, United Kingdom.,Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,NIHR Nottingham Biomedical Research Centre, University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Aleida Song
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Mi Zhou
- Division of Animal Science, Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Brent Nielsen
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Abha Hoedl
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Benjamin P Willing
- Division of Animal Science, Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Michael E Symonds
- Early Life Research Unit, Division of Child Health, Obstetrics and Gynaecology, School of Medicine, The University of Nottingham, Nottingham, United Kingdom.,Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,NIHR Nottingham Biomedical Research Centre, University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Rhonda C Bell
- Division of Human Nutrition, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
13
|
Scotti E, Boué S, Sasso GL, Zanetti F, Belcastro V, Poussin C, Sierro N, Battey J, Gimalac A, Ivanov NV, Hoeng J. Exploring the microbiome in health and disease. TOXICOLOGY RESEARCH AND APPLICATION 2017. [DOI: 10.1177/2397847317741884] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The analysis of human microbiome is an exciting and rapidly expanding field of research. In the past decade, the biological relevance of the microbiome for human health has become evident. Microbiome comprises a complex collection of microorganisms, with their genes and metabolites, colonizing different body niches. It is now well known that the microbiome interacts with its host, assisting in the bioconversion of nutrients and detoxification, supporting immunity, protecting against pathogenic microbes, and maintaining health. Remarkable new findings showed that our microbiome not only primarily affects the health and function of the gastrointestinal tract but also has a strong influence on general body health through its close interaction with the nervous system and the lung. Therefore, a perfect and sensitive balanced interaction of microbes with the host is required for a healthy body. In fact, growing evidence suggests that the dynamics and function of the indigenous microbiota can be influenced by many factors, including genetics, diet, age, and toxicological agents like cigarette smoke, environmental contaminants, and drugs. The disruption of this balance, that is called dysbiosis, is associated with a plethora of diseases, including metabolic diseases, inflammatory bowel disease, chronic obstructive pulmonary disease, periodontitis, skin diseases, and neurological disorders. The importance of the host microbiome for the human health has also led to the emergence of novel therapeutic approaches focused on the intentional manipulation of the microbiota, either by restoring missing functions or eliminating harmful roles. In the present review, we outline recent studies devoted to elucidate not only the role of microbiome in health conditions and the possible link with various types of diseases but also the influence of various toxicological factors on the microbial composition and function.
Collapse
Affiliation(s)
- Elena Scotti
- PMI R&D, Philip Morris Products S.A., Neuchatel, Switzerland (Part of Philip Morris International group of companies)
| | - Stéphanie Boué
- PMI R&D, Philip Morris Products S.A., Neuchatel, Switzerland (Part of Philip Morris International group of companies)
| | - Giuseppe Lo Sasso
- PMI R&D, Philip Morris Products S.A., Neuchatel, Switzerland (Part of Philip Morris International group of companies)
| | - Filippo Zanetti
- PMI R&D, Philip Morris Products S.A., Neuchatel, Switzerland (Part of Philip Morris International group of companies)
| | - Vincenzo Belcastro
- PMI R&D, Philip Morris Products S.A., Neuchatel, Switzerland (Part of Philip Morris International group of companies)
| | - Carine Poussin
- PMI R&D, Philip Morris Products S.A., Neuchatel, Switzerland (Part of Philip Morris International group of companies)
| | - Nicolas Sierro
- PMI R&D, Philip Morris Products S.A., Neuchatel, Switzerland (Part of Philip Morris International group of companies)
| | - James Battey
- PMI R&D, Philip Morris Products S.A., Neuchatel, Switzerland (Part of Philip Morris International group of companies)
| | - Anne Gimalac
- PMI R&D, Philip Morris Products S.A., Neuchatel, Switzerland (Part of Philip Morris International group of companies)
| | - Nikolai V Ivanov
- PMI R&D, Philip Morris Products S.A., Neuchatel, Switzerland (Part of Philip Morris International group of companies)
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Neuchatel, Switzerland (Part of Philip Morris International group of companies)
| |
Collapse
|
14
|
|
15
|
Qualitative and Quantitative Evaluation of Dietary Intake in Patients with Non-Alcoholic Steatohepatitis. Nutrients 2017; 9:nu9101074. [PMID: 28956816 PMCID: PMC5691691 DOI: 10.3390/nu9101074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/23/2017] [Accepted: 09/26/2017] [Indexed: 02/07/2023] Open
Abstract
There are very few reports about the intake of nutrients for the development or progression of non-alcoholic steatohepatitis (NASH). The aim of this study was to identify the dietary habits and the nutrient intake in patients with NASH, in comparison to chronic hepatitis C (HCV)-related patients. We prospectively evaluated the intake of macronutrients and micronutrients in 124 NAFLD and 162 HCV patients, compared to 2326 subjects as a control group. We noticed major differences in macro- and micronutrients intakes in NASH and HCV patients compared to controls. Proteins, carbohydrate (glucose, fructose, sucrose, maltose and amide), saturated fatty acid (SFA), monounsaturated fatty acid (MUFA), folic acid, vitamin A and C (p < 0.0001), and thiamine (p < 0.0003) ingestion was found to be higher in patients with NASH, while total lipids, polyunsaturated fatty acid (PUFA), riboflavin and vitamin B6 daily intake were lower compared to controls (p < 0.0001). Similarly, NASH patients had significantly reduced carbohydrate intake (p < 0.0001) and an increased intake of calcium (p < 0.0001) compared to HCV positive patients. Finally, we showed in NASH males an increase in the intake of SFA, PUFA, soluble carbohydrates (p < 0.0001) and a decrease in the amount of fiber (p < 0.0001) compared to control males. In NASH female population, we showed an increase of daily total calories, SFA, MUFA, soluble carbohydrates, starch and vitamin D ingested (p < 0.0001) with a reduction of fibers and calcium (p < 0.0001) compared to control females. This study showed how NASH patients’ diets, in both male and females, is affected by a profound alteration in macro- and micronutrients intake.
Collapse
|
16
|
The Effect of Probiotic and/or Prebiotic on Liver Function Tests in Patients with Nonalcoholic Fatty Liver Disease: A Double Blind Randomized Clinical Trial. IRANIAN RED CRESCENT MEDICAL JOURNAL 2017. [DOI: 10.5812/ircmj.46017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Zhang H, Shen WJ, Li Y, Bittner A, Bittner S, Tabassum J, Cortez YF, Kraemer FB, Azhar S. Microarray analysis of gene expression in liver, adipose tissue and skeletal muscle in response to chronic dietary administration of NDGA to high-fructose fed dyslipidemic rats. Nutr Metab (Lond) 2016; 13:63. [PMID: 27708683 PMCID: PMC5041401 DOI: 10.1186/s12986-016-0121-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 09/14/2016] [Indexed: 02/06/2023] Open
Abstract
Nordihydroguaiaretic acid (NDGA), the main metabolite of Creosote Bush, has been shown to have profound effects on the core components of metabolic syndrome, including lowering of blood glucose, free fatty acids and triglyceride levels, attenuating elevated blood pressure in several rodent models of dyslipidemia, and improving body weight, insulin resistance, diabetes and hypertension. In the present study, a high-fructose diet fed rat model of hypertriglyceridemia, dyslipidemia, insulin resistance and hepatic steatosis was employed to investigate the global transcriptional changes in the lipid metabolizing pathways in three insulin sensitive tissues: liver, skeletal muscle and adipose tissue in response to chronic dietary administration of NDGA. Sprague-Dawley male rats (SD) were fed a chow (control) diet, high-fructose diet (HFrD) or HFrD supplemented with NDGA (2.5 g/kg diet) for eight weeks. Dietary administration of NDGA decreased plasma levels of TG, glucose, and insulin, and attenuated hepatic TG accumulation. DNA microarray expression profiling indicated that dietary administration of NDGA upregulated the expression of certain genes involved in fatty acid oxidation and their transcription regulator, PPARα, decreased the expression of a number of lipogenic genes and relevant transcription factors, and differentially impacted the genes of fatty acid transporters, acetyl CoA synthetases, elongases, fatty acid desaturases and lipid clearance proteins in liver, skeletal muscle and adipose tissues. These findings suggest that NDGA ameliorates hypertriglyceridemia and steatosis primarily by inhibiting lipogenesis and enhancing fatty acid catabolism in three major insulin responsive tissues by altering the expression of key enzyme genes and transcription factors involved in de novo lipogenesis and fatty acid oxidation.
Collapse
Affiliation(s)
- Haiyan Zhang
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA USA ; Division of Endocrinology, Stanford University, Stanford, CA USA ; Present Address: Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 USA
| | - Wen-Jun Shen
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA USA ; Division of Endocrinology, Stanford University, Stanford, CA USA
| | - Yihang Li
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA USA ; Division of Endocrinology, Stanford University, Stanford, CA USA ; Present Address: Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, MO USA
| | - Alex Bittner
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA USA
| | - Stefanie Bittner
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA USA
| | - Juveria Tabassum
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA USA
| | - Yuan F Cortez
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA USA
| | - Fredric B Kraemer
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA USA ; Division of Endocrinology, Stanford University, Stanford, CA USA
| | - Salman Azhar
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA USA ; Division of Endocrinology, Stanford University, Stanford, CA USA
| |
Collapse
|
18
|
Abstract
The liver has a central role in the regulation of systemic glucose and lipid fluxes during feeding and fasting and also relies on these substrates for its own energy needs. These parallel requirements are met by coordinated control of carbohydrate and lipid fluxes into and out of the Krebs cycle, which is highly tuned to nutrient availability and heavily regulated by insulin and glucagon. During progression of type 2 diabetes, hepatic carbohydrate and lipid biosynthesis fluxes become elevated, thus contributing to hyperglycaemia and hypertriacylglycerolaemia. Over this interval there are also significant fluctuations in hepatic energy state. To date, it is not known to what extent abnormal glucose and lipid fluxes are causally linked to altered energy states. Recent evidence that the glucose-lowering effects of metformin appear to be mediated by attenuation of hepatic energy generation places an additional spotlight on the interdependence of hepatic biosynthetic and oxidative fluxes. The transition from fasting to feeding results in a significant re-direction of hepatic glucose and lipid fluxes and may also incur a temporary hepatic energy deficit. At present, it is not known to what extent these variables are additionally modified by type 2 diabetes and/or non-alcoholic fatty liver disease. Thus, there is a compelling need to measure fluxes through oxidative, gluconeogenic and lipogenic pathways and determine their relationship with hepatic energy state in both fasting and fed conditions. New magnetic resonance-based technologies allow these variables to be non-invasively studied in animal models and humans. This review summarises a presentation given at the symposium entitled 'The liver in focus' at the 2015 annual meeting of the EASD. It is accompanied by two other reviews on topics from this symposium (by Kenneth Cusi, DOI: 10.1007/s00125-016-3952-1 , and by Hannele Yki-Järvinen, DOI: 10.1007/s00125-016-3944-1 ) and a commentary by the Session Chair, Michael Roden (DOI: 10.1007/s00125-016-3911-x ).
Collapse
Affiliation(s)
- John G Jones
- Metabolic Control Group, Center for Neurosciences and Cell Biology of Coimbra, UC Biotech, Biocant Park, 3060-197, Cantanhede, Portugal.
- APDP-Diabetes Portugal-Education and Research Center (APDP-ERC), Lisbon, Portugal.
| |
Collapse
|
19
|
Jin R, Banton S, Tran VT, Konomi JV, Li S, Jones DP, Vos MB. Amino Acid Metabolism is Altered in Adolescents with Nonalcoholic Fatty Liver Disease-An Untargeted, High Resolution Metabolomics Study. J Pediatr 2016; 172:14-19.e5. [PMID: 26858195 PMCID: PMC5321134 DOI: 10.1016/j.jpeds.2016.01.026] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/19/2015] [Accepted: 01/08/2016] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To conduct an untargeted, high resolution exploration of metabolic pathways that was altered in association with hepatic steatosis in adolescents. STUDY DESIGN This prospective, case-control study included 39 Hispanic-American, obese adolescents aged 11-17 years evaluated for hepatic steatosis using magnetic resonance spectroscopy. Of these 39 individuals, 30 had hepatic steatosis ≥5% and 9 were matched controls with hepatic steatosis <5%. Fasting plasma samples were analyzed in triplicate using ultra-high resolution metabolomics on a Thermo Fisher Q Exactive mass spectrometry system, coupled with C18 reverse phase liquid chromatography. Differences in plasma metabolites between adolescents with and without nonalcoholic fatty liver disease (NAFLD) were determined by independent t tests and visualized using Manhattan plots. Untargeted pathway analyses using Mummichog were performed among the significant metabolites to identify pathways that were most dysregulated in NAFLD. RESULTS The metabolomics analysis yielded 9583 metabolites, and 7711 with 80% presence across all samples remained for statistical testing. Of these, 478 metabolites were associated with the presence of NAFLD compared with the matched controls. Pathway analysis revealed that along with lipid metabolism, several major amino acid pathways were dysregulated in NAFLD, with tyrosine metabolism being the most affected. CONCLUSIONS Metabolic pathways of several amino acids are significantly disturbed in adolescents with elevated hepatic steatosis. This is a novel finding and suggests that these pathways may be integral in the mechanisms of NAFLD.
Collapse
Affiliation(s)
- Ran Jin
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, School of Medicine, Emory University, Atlanta, GA
| | - Sophia Banton
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA
| | - ViLinh T. Tran
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA
| | - Juna V. Konomi
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, School of Medicine, Emory University, Atlanta, GA
| | - Shuzhao Li
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA
| | - Dean P. Jones
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, Atlanta, GA
| | - Miriam B. Vos
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, School of Medicine, Emory University, Atlanta, GA
| |
Collapse
|
20
|
Xiao J, Lv D, Zhao Y, Chen X, Song M, Liu J, Bei Y, Wang F, Yang W, Yang C. miR-149 controls non-alcoholic fatty liver by targeting FGF-21. J Cell Mol Med 2016; 20:1603-8. [PMID: 27061435 PMCID: PMC4956949 DOI: 10.1111/jcmm.12848] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 02/24/2016] [Indexed: 12/14/2022] Open
Abstract
Non‐alcoholic fatty liver disease (NAFLD), a lipid metabolism disorder characterized by the accumulation of intrahepatic fat, has emerged as a global public health problem. However, its underlying molecular mechanism remains unclear. We previously have found that miR‐149 was elevated in NAFLD induced by high‐fat diet mice model, whereas decreased by a 16‐week running programme. Here, we reported that miR‐149 was increased in HepG2 cells treated with long‐chain fatty acid (FFA). In addition, miR‐149 was able to promote lipogenesis in HepG2 cells in the absence of FFA treatment. Moreover, inhibition of miR‐149 was capable of inhibiting lipogenesis in HepG2 cells in the presence of FFA treatment. Meanwhile, fibroblast growth factor‐21 (FGF‐21) was identified as a target gene of miR‐149, which was demonstrated by the fact that miR‐149 could negatively regulate the protein expression level of FGF‐21, and FGF‐21 was also responsible for the effect of miR‐149 inhibitor in decreasing lipogenesis in HepG2 cells in the presence of FFA treatment. These data implicate that miR‐149 might be a novel therapeutic target for NAFLD.
Collapse
Affiliation(s)
- Junjie Xiao
- Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai, China.,Innovative Drug Research Center of Shanghai University, Shanghai, China
| | - Dongchao Lv
- Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai, China.,Innovative Drug Research Center of Shanghai University, Shanghai, China
| | - Yingying Zhao
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoyu Chen
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Meiyi Song
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jingqi Liu
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yihua Bei
- Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai, China.,Innovative Drug Research Center of Shanghai University, Shanghai, China
| | - Fei Wang
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenzhuo Yang
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Changqing Yang
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Lipid deposition in liver cells: The influence of short form augmenter of liver regeneration. Clin Res Hepatol Gastroenterol 2016; 40:186-94. [PMID: 26476698 DOI: 10.1016/j.clinre.2015.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/11/2015] [Accepted: 07/15/2015] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND OBJECTIVE The short form augmenter of liver regeneration (sfALR) is a novel human hepatotrophic growth factor. The aim of this study was to investigate the potential role of sfALR in NAFLD. METHODS The free fatty acids (FFA) induced lipid accumulation in mouse liver parenchymal cells was examined by Oil Red O staining and triglyceride level determination. The cell cycle was determined by flow cytometry and the proliferation was assessed by CCK8. The expression levels of gfer, miR-122, srebp-1c, fas, dgat2, acc1 and Lrp1B were assessed by quantitative real-time PCR. Furthermore, the MAPK pathway was detected by western blot. RESULTS The results showed that sfALR could alleviate the lipid accumulation in mice both in vivo and in vitro. sfALR relieved the proliferation inhibition and G2 arrest of mouse liver parenchymal cells induced by FFAs. Free fatty acids affected gfer expression in a time-and dose-dependent way. And sfALR suppressed JNK activation, increased miR-122 level and reduced fatty acid synthesis-related gene expression. CONCLUSION These findings suggested that sfALR could alleviate the severity of fatty liver in mice.
Collapse
|
22
|
Lambert JE, Parnell JA, Eksteen B, Raman M, Bomhof MR, Rioux KP, Madsen KL, Reimer RA. Gut microbiota manipulation with prebiotics in patients with non-alcoholic fatty liver disease: a randomized controlled trial protocol. BMC Gastroenterol 2015; 15:169. [PMID: 26635079 PMCID: PMC4669628 DOI: 10.1186/s12876-015-0400-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 11/25/2015] [Indexed: 02/08/2023] Open
Abstract
Background Evidence for the role of the gut microbiome in the pathogenesis of non-alcoholic fatty liver disease (NAFLD) is emerging. Strategies to manipulate the gut microbiota towards a healthier community structure are actively being investigated. Based on their ability to favorably modulate the gut microbiota, prebiotics may provide an inexpensive yet effective dietary treatment for NAFLD. Additionally, prebiotics have established benefits for glucose control and potentially weight control, both advantageous in managing fatty liver disease. Our objective is to evaluate the effects of prebiotic supplementation, adjunct to those achieved with diet-induced weight loss, on heptic injury and liver fat, the gut microbiota, inflammation, glucose tolerance, and satiety in patients with NAFLD. Methods/design In a double blind, placebo controlled, parallel group study, adults (BMI ≥25) with confirmed NAFLD will be randomized to either a 16 g/d prebiotic supplemented group or isocaloric placebo group for 24 weeks (n = 30/group). All participants will receive individualized dietary counseling sessions with a registered dietitian to achieve 10 % weight loss. Primary outcome measures include change in hepatic injury (fibrosis and inflammation) and liver fat. Secondary outcomes include change in body composition, appetite and dietary adherence, glycemic and insulinemic responses and inflammatory cytokines. Mechanisms related to prebiotic-induced changes in gut microbiota (shot-gun sequencing) and their metabolic by-products (volatile organic compounds) and de novo lipogenesis (using deuterium incorporation) will also be investigated. Discussion There are currently no medications or surgical procedures approved for the treatment of NAFLD and weight loss via lifestyle modification remains the cornerstone of current care recommendations. Given that prebiotics target multiple metabolic impairments associated with NAFLD, investigating their ability to modulate the gut microbiota and hepatic health in patients with NAFLD is warranted. Trial registration ClinicalTrials.gov (NCT02568605) Registered 30 September 2015
Collapse
Affiliation(s)
- Jennifer E Lambert
- Faculty of Kinesiology, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada.
| | - Jill A Parnell
- Health and Physical Education, Mount Royal University, 4825 Mount Royal Gate SW, Calgary, AB, T3E 6K6, Canada.
| | - Bertus Eksteen
- Snyder Institute for Chronic Diseases, Health Research and Innovation Center, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada. .,Division of Gastroenterology and Hepatology, Department of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| | - Maitreyi Raman
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| | - Marc R Bomhof
- Faculty of Kinesiology, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada.
| | - Kevin P Rioux
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada. .,Department of Microbiology and Infectious Diseases, University of Calgary, 1863 Health Sciences Centre, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| | - Karen L Madsen
- Division of Gastroenterology, Centre of Excellence for Gastrointestinal Inflammation and Immunity Research, 7-142 Katz Group-Rexall Centre, University of Alberta, Edmonton, AB, T6G 2C2, Canada.
| | - Raylene A Reimer
- Faculty of Kinesiology, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada. .,Department of Biochemistry & Molecular Biology, Cumming School of Medicine, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
23
|
Marie I, Leroi AM, Gourcerol G, Levesque H, Ménard JF, Ducrotte P. Fructose Malabsorption in Systemic Sclerosis. Medicine (Baltimore) 2015; 94:e1601. [PMID: 26426642 PMCID: PMC4616824 DOI: 10.1097/md.0000000000001601] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/24/2015] [Accepted: 08/25/2015] [Indexed: 12/11/2022] Open
Abstract
The deleterious effect of fructose, which is increasingly incorporated in many beverages, dairy products, and processed foods, has been described; fructose malabsorption has thus been reported in up to 2.4% of healthy subjects, leading to digestive clinical symptoms (eg, pain, distension, diarrhea). Because digestive involvement is frequent in patients with systemic sclerosis (SSc), we hypothesized that fructose malabsorption could be responsible for intestinal manifestations in these patients. The aims of this prospective study were to: determine the prevalence of fructose malabsorption, in SSc; predict which SSc patients are at risk of developing fructose malabsorption; and assess the outcome of digestive symptoms in SSc patients after initiation of standardized low-fructose diet. Eighty consecutive patients with SSc underwent fructose breath test. All SSc patients also completed a questionnaire on digestive symptoms, and a global symptom score (GSS) was calculated. The prevalence of fructose malabsorption was as high as 40% in SSc patients. We also observed a marked correlation between the presence of fructose malabsorption and: higher values of GSS score of digestive symptoms (P = 0.000004); and absence of delayed gastric emptying (P = 0.007). Furthermore, in SSc patients with fructose malabsorption, the median value of GSS score of digestive symptoms was lower after initiation of standardized low-fructose diet (4 before vs. 1 after; P = 0.0009). Our study underscores that fructose malabsorption often occurs in SSc patients. Our findings are thus relevant for clinical practice, highlighting that fructose breath test is a helpful, noninvasive method by: demonstrating fructose intolerance in patients with SSc; and identifying the group of SSc patients with fructose intolerance who may benefit from low-fructose diet. Interestingly, because the present series also shows that low-fructose diet resulted in a marked decrease of gastrointestinal clinical manifestations in SSc patients with fructose malabsorption, our findings underscore that fructose malabsorption may play a significant role in the onset of gastrointestinal symptoms in these patients. Finally, we suggest that fructose malabsorption may be due to reduced fructose absorption by enterocytes, impaired enteric microbiome, and decreased intestinal permeability.
Collapse
Affiliation(s)
- Isabelle Marie
- From the Department of Internal Medicine, CHU Rouen, and INSERM U 905 (IM, HL); Department of Digestive Physiology, CHU Rouen, and INSERM UMR 1073, University of Rouen IFRMP, Institute for Biochemical Research (A-ML, GG); Department of Biostatistics, CHU Rouen (J-FM); and Department of Gastroenterology, CHU Rouen, and INSERM UMR 1073, University of Rouen IFRMP, Institute for Biochemical Research, Rouen, France (PD)
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW The purpose was to summarize recent advances in the understanding of nonalcoholic fatty liver disease (NAFLD) pathophysiology and the role of fructose in NAFLD. RECENT FINDINGS Epidemiological studies continue to point to a strong association between high fructose intake and NAFLD and its severity. New studies of NAFLD reveal the importance of upregulated de novo lipogenesis as a key feature in its pathophysiology along with increased visceral adiposity and alteration of gut microbiome. Studies of fructose in NAFLD show how this nutrient may uniquely exacerbate the phenotype of NAFLD. The timing of exposure to fructose may be important with early (in utero) exposure being particularly harmful. SUMMARY Fructose is a potentially modifiable environmental exposure that appears to exacerbate NAFLD through multiple mechanisms. Although larger, longer clinical studies are still needed, it appears that limitation of fructose sources in the diet is beneficial in NAFLD.
Collapse
Affiliation(s)
- Ran Jin
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, School of Medicine, Emory University, Atlanta, Georgia, USA
| | | |
Collapse
|
25
|
Abstract
Nonalcoholic fatty liver disease is a common cause of liver related morbidity and mortality. It is closely linked to underlying insulin resistance. It has recently been shown that bile acids modulate insulin signaling and can improve insulin resistance in cell based and animal studies. These effects are mediated in part by activation of farnesoid x receptors by bile acids. In human studies, FXR agonists improve insulin resistance and have recently been shown to improve NAFLD. The basis for the use of FXR agonists for the treatment of NAFLD and early human experience with such agents is reviewed in this paper.
Collapse
Affiliation(s)
- Arun J Sanyal
- Virgnia Commonwealth University School of Medicine, Richmond, Va., USA
| |
Collapse
|
26
|
Lu J, Fang B, Ren M, Huang G, Zhang S, Wang Y, Deng X, Guan S. Nonalcoholic fatty liver disease induced by 13-week oral administration of 1,3-dichloro-2-propanol in C57BL/6J mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 39:1115-1121. [PMID: 25910858 DOI: 10.1016/j.etap.2015.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 03/29/2015] [Accepted: 04/04/2015] [Indexed: 06/04/2023]
Abstract
1,3-Dichloro-2-propanol (1,3-DCP) is a food born chloropropanol contaminant that has been detected during the production process of a wide range of foods. In this study, we investigated the effect of 1,3-DCP on lipid metabolism of mice after 13-week subchronic exposure. The data showed that 1,3-DCP (0.05-0.5mg/kg/day) could induce nonalcoholic fatty liver disease (NAFLD) in C57BL/6J mice and the NOAEL was 0.01mg/kg/day. In addition, we studied the signaling pathway to see how 1,3-DCP worked. The data showed that NAFLD induced by 1,3-DCP was due to the dysregulation of AMPK signaling pathway. As far as we are aware, this is the first study to use 13-week subchronic toxicology to investigate the effect of 1,3-DCP on the development of NAFLD in mice. Our study provided evidence for diet contaminants in the development of NAFLD and furthered the safety evaluation of 1,3-DCP through subchronic exposure.
Collapse
Affiliation(s)
- Jing Lu
- Department of Food Quality and Safety, Jilin University, Changchun, Jilin 130062, People's Republic of China; Key Laboratory of Zoonosis Research Ministry of Education, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Baochen Fang
- Department of Food Quality and Safety, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Mengrou Ren
- Department of Food Quality and Safety, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Guoren Huang
- Department of Food Quality and Safety, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Shuang Zhang
- Department of Food Quality and Safety, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Yi Wang
- Department of Food Quality and Safety, Jilin University, Changchun, Jilin 130062, People's Republic of China
| | - Xuming Deng
- Key Laboratory of Zoonosis Research Ministry of Education, Jilin University, Changchun, Jilin 130062, People's Republic of China.
| | - Shuang Guan
- Department of Food Quality and Safety, Jilin University, Changchun, Jilin 130062, People's Republic of China; Key Laboratory of Zoonosis Research Ministry of Education, Jilin University, Changchun, Jilin 130062, People's Republic of China.
| |
Collapse
|
27
|
Assessment of cardiometabolic risk in children in population studies: underpinning developmental origins of health and disease mother-offspring cohort studies. J Nutr Sci 2015; 4:e12. [PMID: 26090093 PMCID: PMC4463019 DOI: 10.1017/jns.2014.69] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 09/30/2014] [Accepted: 11/11/2014] [Indexed: 12/25/2022] Open
Abstract
Pregnancy and birth cohorts have been utilised extensively to investigate the
developmental origins of health and disease, particularly in relation to understanding the
aetiology of obesity and related cardiometabolic disorders. Birth and pregnancy cohorts
have been utilised extensively to investigate this area of research. The aim of the
present review was twofold: first to outline the necessity of measuring cardiometabolic
risk in children; and second to outline how it can be assessed. The major outcomes thought
to have an important developmental component are CVD, insulin resistance and related
metabolic outcomes. Conditions such as the metabolic syndrome, type 2 diabetes and CHD all
tend to have peak prevalence in middle-aged and older individuals but assessments of
cardiometabolic risk in childhood and adolescence are important to define early causal
factors and characterise preventive measures. Typically, researchers investigating
prospective cohort studies have relied on the thesis that cardiovascular risk factors,
such as dyslipidaemia, hypertension and obesity, track from childhood into adult life. The
present review summarises some of the evidence that these factors, when measured in
childhood, may be of value in assessing the risk of adult cardiometabolic disease, and as
such proceeds to describe some of the methods for assessing cardiometabolic risk in
children.
Collapse
|
28
|
Montemurno E, Cosola C, Dalfino G, Daidone G, De Angelis M, Gobbetti M, Gesualdo L. What Would You Like to Eat, Mr CKD Microbiota? A Mediterranean Diet, please! Kidney Blood Press Res 2014; 39:114-23. [DOI: 10.1159/000355785] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2014] [Indexed: 01/04/2023] Open
|
29
|
Musso G. Ezetimibe in the balance: can cholesterol-lowering drugs alone be an effective therapy for NAFLD? Diabetologia 2014; 57:850-5. [PMID: 24554006 DOI: 10.1007/s00125-014-3192-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 01/27/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Giovanni Musso
- Gradenigo Hospital, Turin, Corso Regina Margherita 8, 10132, Turin, Italy,
| |
Collapse
|
30
|
Verduci E, Banderali G, Barberi S, Radaelli G, Lops A, Betti F, Riva E, Giovannini M. Epigenetic effects of human breast milk. Nutrients 2014; 6:1711-24. [PMID: 24763114 PMCID: PMC4011062 DOI: 10.3390/nu6041711] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/02/2014] [Accepted: 04/17/2014] [Indexed: 12/11/2022] Open
Abstract
A current aim of nutrigenetics is to personalize nutritional practices according to genetic variations that influence the way of digestion and metabolism of nutrients introduced with the diet. Nutritional epigenetics concerns knowledge about the effects of nutrients on gene expression. Nutrition in early life or in critical periods of development, may have a role in modulating gene expression, and, therefore, have later effects on health. Human breast milk is well-known for its ability in preventing several acute and chronic diseases. Indeed, breastfed children may have lower risk of neonatal necrotizing enterocolitis, infectious diseases, and also of non-communicable diseases, such as obesity and related-disorders. Beneficial effects of human breast milk on health may be associated in part with its peculiar components, possible also via epigenetic processes. This paper discusses about presumed epigenetic effects of human breast milk and components. While evidence suggests that a direct relationship may exist of some components of human breast milk with epigenetic changes, the mechanisms involved are still unclear. Studies have to be conducted to clarify the actual role of human breast milk on genetic expression, in particular when linked to the risk of non-communicable diseases, to potentially benefit the infant's health and his later life.
Collapse
Affiliation(s)
- Elvira Verduci
- Department of Pediatrics, San Paolo Hospital, University of Milan, Via A Di Rudinì 8, I-20142 Milan, Italy.
| | - Giuseppe Banderali
- Department of Pediatrics, San Paolo Hospital, University of Milan, Via A Di Rudinì 8, I-20142 Milan, Italy.
| | - Salvatore Barberi
- Department of Pediatrics, San Paolo Hospital, University of Milan, Via A Di Rudinì 8, I-20142 Milan, Italy.
| | - Giovanni Radaelli
- Department of Pediatrics, San Paolo Hospital, University of Milan, Via A Di Rudinì 8, I-20142 Milan, Italy.
| | - Alessandra Lops
- Department of Pediatrics, San Paolo Hospital, University of Milan, Via A Di Rudinì 8, I-20142 Milan, Italy.
| | - Federica Betti
- Department of Pediatrics, San Paolo Hospital, University of Milan, Via A Di Rudinì 8, I-20142 Milan, Italy.
| | - Enrica Riva
- Department of Pediatrics, San Paolo Hospital, University of Milan, Via A Di Rudinì 8, I-20142 Milan, Italy.
| | - Marcello Giovannini
- Department of Pediatrics, San Paolo Hospital, University of Milan, Via A Di Rudinì 8, I-20142 Milan, Italy.
| |
Collapse
|