1
|
Ortega A, Chernicki B, Ou G, Parmar MS. From Lab Bench to Hope: Emerging Gene Therapies in Clinical Trials for Alzheimer's Disease. Mol Neurobiol 2025; 62:1112-1135. [PMID: 38958888 DOI: 10.1007/s12035-024-04285-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024]
Abstract
Alzheimer's disease is a progressive neurodegenerative disorder that affects memory and cognitive abilities, affecting millions of people around the world. Current treatments focus on the management of symptoms, as no effective therapy has been approved to modify the underlying disease process. Gene therapy is a promising approach that can offer disease-modifying treatment for AD, targeting various aspects of the pathophysiology of the disease. This review presents a comprehensive overview of the current state of gene therapy research for AD, with a specific focus on clinical trials and preclinical studies that have used nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), apolipoprotein E2 (APOE2), and human telomerase reverse transcriptase (hTERT) as therapeutic gene therapy approaches. These gene targets have shown potential to alleviate the neuropathology of AD in animal studies and have demonstrated feasibility and safety in non-human primates. Despite the failure of the NGF gene therapy approach in clinical trials, we have reviewed and highlighted the reported findings and evaluations from the trials. Furthermore, the review included the conclusions of postmortem brain tissue analysis of AD patients who received NGF gene therapy. The goal is to learn from the failed trials and improve the approach in the future. Although gene therapy shows promise, it faces several challenges and limitations, including optimizing gene delivery methods, enhancing safety and efficacy profiles, and determining long-term results. This review contributes to the growing body of literature on innovative treatments for AD and highlights the need for more research and development to advance gene therapy as a viable treatment option for AD.
Collapse
Affiliation(s)
- Angelica Ortega
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, USA
| | - Brendan Chernicki
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, USA
| | - Grace Ou
- College of Arts and Sciences, Cornell University, Ithaca, NY, USA
| | - Mayur S Parmar
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, USA.
- Department of Foundational Sciences, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, USA.
| |
Collapse
|
2
|
Van der Auwera S, Ameling S, Wittfeld K, Bülow R, Nauck M, Völzke H, Völker U, Grabe HJ. Circulating miRNAs modulating systemic low-grade inflammation and affecting neurodegeneration. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111130. [PMID: 39209100 DOI: 10.1016/j.pnpbp.2024.111130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE AND DESIGN Inflammatory processes are an important part of the etiology of many chronic diseases across various medical domains, including neurodegeneration. Understanding their regulation on the molecular level represents a major challenge. Regulatory microRNAs (miRNAs), have been recognized for their role in post-transcriptionally modulating immune-related pathways serving as biomarkers for numerous diseases. SUBJECTS AND METHODS This study aims to investigate the association between 176 plasma-circulating miRNAs and the blood-based immune markers C-reactive protein and fibrinogen within the general population-based SHIP-TREND-0 cohort (N = 801) and assess their impact on neurodegeneration in linear regression and moderation analyses. RESULTS We provide strong evidence for miRNA-mediated regulation, particularly in relation to fibrinogen, identifying 48 significant miRNAs with a pronounced over-representation in chronic inflammatory and neurological diseases. Additional moderation analyses explored the influence of the APOE ε4 genotype and brain white matter neurodegeneration on the association between miRNAs and inflammation. Again, significant associations were observed for fibrinogen with special emphasize on hsa-miR-148a-3p, known to impact on neuroinflammation. CONCLUSIONS Our study suggests the involvement of several plasma-circulating miRNAs in regulating immunological markers while also being linked to neurodegeneration. The strong interplay between miRNAs and inflammation holds promising potential for clinical application in many immune-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Sandra Van der Auwera
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany; German Centre for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, 17475 Greifswald, Germany.
| | - Sabine Ameling
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 17475 Greifswald, Germany
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Robin Bülow
- Institute for Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Matthias Nauck
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 17475 Greifswald, Germany; Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Henry Völzke
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 17475 Greifswald, Germany; Institute for Community Medicine, University Medicine Greifswald, 17475 Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17475 Greifswald, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, 17475 Greifswald, Germany
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, 17475 Greifswald, Germany; German Centre for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, 17475 Greifswald, Germany
| |
Collapse
|
3
|
Qiang RR, Xiang Y, Zhang L, Bai XY, Zhang D, Li YJ, Yang YL, Liu XL. Ferroptosis: A new strategy for targeting Alzheimer's disease. Neurochem Int 2024; 178:105773. [PMID: 38789042 DOI: 10.1016/j.neuint.2024.105773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a complex pathogenesis, which involves the formation of amyloid plaques and neurofibrillary tangles. Many recent studies have revealed a close association between ferroptosis and the pathogenesis of AD. Factors such as ferroptosis-associated iron overload, lipid peroxidation, disturbances in redox homeostasis, and accumulation of reactive oxygen species have been found to contribute to the pathological progression of AD. In this review, we explore the mechanisms underlying ferroptosis, describe the link between ferroptosis and AD, and examine the reported efficacy of ferroptosis inhibitors in treating AD. Finally, we discuss the potential challenges to ferroptosis inhibitors use in the clinic, enabling their faster use in clinical treatment.
Collapse
Affiliation(s)
| | - Yang Xiang
- College of Physical Education, Yan'an University, Shaanxi, 716000, China
| | - Lei Zhang
- School of Medicine, Yan'an University, Yan'an, China
| | - Xin Yue Bai
- School of Medicine, Yan'an University, Yan'an, China
| | - Die Zhang
- School of Medicine, Yan'an University, Yan'an, China
| | - Yang Jing Li
- School of Medicine, Yan'an University, Yan'an, China
| | - Yan Ling Yang
- School of Medicine, Yan'an University, Yan'an, China
| | - Xiao Long Liu
- School of Medicine, Yan'an University, Yan'an, China.
| |
Collapse
|
4
|
Monda A, La Torre ME, Messina A, Di Maio G, Monda V, Moscatelli F, De Stefano M, La Marra M, Padova MD, Dipace A, Limone P, Casillo M, Monda M, Messina G, Polito R. Exploring the ketogenic diet's potential in reducing neuroinflammation and modulating immune responses. Front Immunol 2024; 15:1425816. [PMID: 39188713 PMCID: PMC11345202 DOI: 10.3389/fimmu.2024.1425816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/30/2024] [Indexed: 08/28/2024] Open
Abstract
The ketogenic diet (KD) is marked by a substantial decrease in carbohydrate intake and an elevated consumption of fats and proteins, leading to a metabolic state referred to as "ketosis," where fats become the primary source of energy. Recent research has underscored the potential advantages of the KD in mitigating the risk of various illnesses, including type 2 diabetes, hyperlipidemia, heart disease, and cancer. The macronutrient distribution in the KD typically entails high lipid intake, moderate protein consumption, and low carbohydrate intake. Restricting carbohydrates to below 50 g/day induces a catabolic state, prompting metabolic alterations such as gluconeogenesis and ketogenesis. Ketogenesis diminishes fat and glucose accumulation as energy reserves, stimulating the production of fatty acids. Neurodegenerative diseases, encompassing Alzheimer's disease, Parkinson's disease are hallmarked by persistent neuroinflammation. Evolving evidence indicates that immune activation and neuroinflammation play a significant role in the pathogenesis of these diseases. The protective effects of the KD are linked to the generation of ketone bodies (KB), which play a pivotal role in this dietary protocol. Considering these findings, this narrative review seeks to delve into the potential effects of the KD in neuroinflammation by modulating the immune response. Grasping the immunomodulatory effects of the KD on the central nervous system could offer valuable insights into innovative therapeutic approaches for these incapacitating conditions.
Collapse
Affiliation(s)
- Antonietta Monda
- Department of Human Sciences and Quality of Life Promotion of the Telematic University “San Raffaele”, Rome, Italy
| | - Maria Ester La Torre
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Antonietta Messina
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Girolamo Di Maio
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Vincenzo Monda
- Department of Exercise Sciences and Well-Being, University of Naples “Parthenope”, Naples, Italy
| | - Fiorenzo Moscatelli
- Department of Wellbeing, Nutrition and Sport, Pegaso Telematic University, Naples, Italy
| | - Marida De Stefano
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Marco La Marra
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | | | - Anna Dipace
- Department of Wellbeing, Nutrition and Sport, Pegaso Telematic University, Naples, Italy
| | - Pierpaolo Limone
- Department of Wellbeing, Nutrition and Sport, Pegaso Telematic University, Naples, Italy
| | - Maria Casillo
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Marcellino Monda
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giovanni Messina
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Rita Polito
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|
5
|
Ebright B, Duro MV, Chen K, Louie S, Yassine HN. Effects of APOE4 on omega-3 brain metabolism across the lifespan. Trends Endocrinol Metab 2024; 35:745-757. [PMID: 38609814 PMCID: PMC11321946 DOI: 10.1016/j.tem.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 04/14/2024]
Abstract
Omega-3 (n-3) polyunsaturated fatty acids (PUFAs), such as docosahexaenoic acid (DHA), have important roles in human nutrition and brain health by promoting neuronal functions, maintaining inflammatory homeostasis, and providing structural integrity. As Alzheimer's disease (AD) pathology progresses, DHA metabolism in the brain becomes dysregulated, the timing and extent of which may be influenced by the apolipoprotein E ε4 (APOE4) allele. Here, we discuss how maintaining adequate DHA intake early in life may slow the progression to AD dementia in cognitively normal individuals with APOE4, how recent advances in DHA brain imaging could offer insights leading to more personalized preventive strategies, and how alternative strategies targeting PUFA metabolism pathways may be more effective in mitigating disease progression in patients with existing AD dementia.
Collapse
Affiliation(s)
- Brandon Ebright
- Department of Clinical Pharmacy, Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Marlon V Duro
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kai Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Stan Louie
- Department of Clinical Pharmacy, Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Hussein N Yassine
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
6
|
Ebright B, Yu Z, Dave P, Dikeman D, Hamm-Alvarez S, de Paiva CS, Louie S. Effects of age on lacrimal gland bioactive lipids. Ocul Surf 2024; 33:64-73. [PMID: 38705236 DOI: 10.1016/j.jtos.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
PURPOSE Polyunsaturated fatty acids (PUFA) are a source of bioactive lipids regulating inflammation and its resolution. METHODS Changes in PUFA metabolism were compared between lacrimal glands (LGs) from young and aged C57BL/6 J mice using a targeted lipidomics assay, as was the gene expression of enzymes involved in the metabolism of these lipids. RESULTS Global reduction in PUFAs and their metabolites was observed in aged LGs compared to young controls, averaging between 25 and 66 % across all analytes. ꞷ-6 arachidonic acid (AA) metabolites were all reduced in aged LGs, where the changes in prostaglandin E2 (PGE2) and lipoxin A4 (LXA4) were statistically significant. Several other 5-lipoxygenase (5-LOX) mediated metabolites were significantly reduced in the aged LGs, including D-series resolvins (e.g., RvD4, RvD5, and RvD6). Along with the RvDs, several ꞷ-3 docosahexaenoic acid (DHA) metabolites such as 14-HDHA, neuroprotectin D1 (NPD1), Maresin 2 (MaR2), and MaR 1 metabolite (22-COOH-MaR1) were significantly reduced in aged LGs. Similarly, ꞷ-3 eicosapentaenoic acid (EPA) and its metabolites were significantly reduced in aged LGs, where the most significantly reduced was 18-HEPE. Using metabolite ratios (product:precursor) for specific metabolic conversions as surrogate enzymatic measures, reduced 12-LOX activity was identified in aged LGs. CONCLUSION In this study, global reduction of PUFAs and their metabolites was found in the LGs of aged female C57BL/6 J compared to young controls. A consistent reduction was observed across all detected lipid analytes except for ꞷ-3 docosapentaenoic acid (DPA) and its special pro-resolving mediator (SPM) metabolites in aged mice, suggesting an increased risk for LG inflammation.
Collapse
Affiliation(s)
- Brandon Ebright
- Department of Clinical Pharmacy, Alfred Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States, 90089-9121, USA.
| | - Zhiyuan Yu
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA.
| | - Priyal Dave
- Department of Clinical Pharmacy, Alfred Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States, 90089-9121, USA.
| | - Dante Dikeman
- Department of Clinical Pharmacy, Alfred Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States, 90089-9121, USA.
| | - Sarah Hamm-Alvarez
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA; Department of Pharmaceutical Sciences, Alfred Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA; Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Cintia S de Paiva
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA.
| | - Stan Louie
- Department of Clinical Pharmacy, Alfred Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States, 90089-9121, USA.
| |
Collapse
|
7
|
Escudero B, López-Valencia L, Arias Horcajadas F, Orio L. Divergent Roles of APOAI and APOM in the Identification of Alcohol Use Disorder and Their Association With Inflammation and Cognitive Decline: A Pilot Study. Int J Neuropsychopharmacol 2024; 27:pyae029. [PMID: 38970624 PMCID: PMC11287869 DOI: 10.1093/ijnp/pyae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Alcohol use disorder (AUD) courses with inflammation and cognitive decline. Apolipoproteins have emerged as novel target compounds related to inflammatory processes and cognition. METHODS A cross-sectional study was performed on abstinent AUD patients with at least 1 month of abstinence (n = 33; 72.7% men) and healthy controls (n = 34; 47.1% men). A battery of plasma apolipoproteins (APOAI, APOAII, APOB, APOCII, APOE, APOJ, and APOM), plasma inflammatory markers (LPS, LBP), and their influence on cognition and presence of the disorder were investigated. RESULTS Higher levels of plasma APOAI, APOB, APOE, and APOJ, as well as the proinflammatory LPS, were observed in the AUD group, irrespective of sex, whereas APOM levels were lower vs controls. Hierarchical logistic regression analyses, adjusting for covariates (age, sex, education), associated APOM with the absence of cognitive impairment in AUD and identified APOAI and APOM as strong predictors of the presence or absence of the disorder, respectively. APOAI and APOM did not correlate with alcohol abuse variables or liver status markers, but they showed an opposite profile in their associations with LPS (positive for APOAI; negative for APOM) and cognition (negative for APOAI; positive for APOM) in the entire sample. CONCLUSIONS The HDL constituents APOAI and APOM were differentially regulated in the plasma of AUD patients compared with controls, playing divergent roles in the disorder identification and associations with inflammation and cognitive decline.
Collapse
Affiliation(s)
- Berta Escudero
- Instituto de investigación Sanitaria Hospital Universitario 12 de Octubre (imas12), Madrid, Spain
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Complutense University of Madrid, Pozuelo de Alarcón, Spain
| | - Leticia López-Valencia
- Instituto de investigación Sanitaria Hospital Universitario 12 de Octubre (imas12), Madrid, Spain
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Complutense University of Madrid, Pozuelo de Alarcón, Spain
| | - Francisco Arias Horcajadas
- Instituto de investigación Sanitaria Hospital Universitario 12 de Octubre (imas12), Madrid, Spain
- Riapad: Research Network in Primary Care in Addictions, Spain
| | - Laura Orio
- Instituto de investigación Sanitaria Hospital Universitario 12 de Octubre (imas12), Madrid, Spain
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Complutense University of Madrid, Pozuelo de Alarcón, Spain
- Riapad: Research Network in Primary Care in Addictions, Spain
| |
Collapse
|
8
|
Duro MV, Van Valkenburgh J, Ingles DE, Tran J, Cai Z, Ebright B, Wang S, Kerman BE, Galvan J, Hwang SH, Sta Maria NS, Zanderigo F, Croteau E, Cunnane SC, Rapoport SI, Louie SG, Jacobs RE, Yassine HN, Chen K. Synthesis and Preclinical Evaluation of 22-[ 18F]Fluorodocosahexaenoic Acid as a Positron Emission Tomography Probe for Monitoring Brain Docosahexaenoic Acid Uptake Kinetics. ACS Chem Neurosci 2023; 14:4409-4418. [PMID: 38048230 PMCID: PMC10739598 DOI: 10.1021/acschemneuro.3c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/05/2023] [Accepted: 11/10/2023] [Indexed: 12/06/2023] Open
Abstract
Docosahexaenoic acid [22:6(n-3), DHA], a polyunsaturated fatty acid, has an important role in regulating neuronal functions and in normal brain development. Dysregulated brain DHA uptake and metabolism are found in individuals carrying the APOE4 allele, which increases the genetic risk for Alzheimer's disease (AD), and are implicated in the progression of several neurodegenerative disorders. However, there are limited tools to assess brain DHA kinetics in vivo that can be translated to humans. Here, we report the synthesis of an ω-radiofluorinated PET probe of DHA, 22-[18F]fluorodocosahexaenoic acid (22-[18F]FDHA), for imaging the uptake of DHA into the brain. Using the nonradiolabeled 22-FDHA, we confirmed that fluorination of DHA at the ω-position does not significantly alter the anti-inflammatory effect of DHA in microglial cells. Through dynamic PET-MR studies using mice, we observed the accumulation of 22-[18F]FDHA in the brain over time and estimated DHA's incorporation coefficient (K*) using an image-derived input function. Finally, DHA brain K* was validated using intravenous administration of 15 mg/kg arecoline, a natural product known to increase the DHA K* in rodents. 22-[18F]FDHA is a promising PET probe that can reveal altered lipid metabolism in APOE4 carriers, AD, and other neurologic disorders. This new probe, once translated into humans, would enable noninvasive and longitudinal studies of brain DHA dynamics by guiding both pharmacological and nonpharmacological interventions for neurodegenerative diseases.
Collapse
Affiliation(s)
- Marlon
Vincent V. Duro
- Department
of Radiology, Keck School of Medicine, University
of Southern California, Los Angeles, California 90033, United States
| | - Juno Van Valkenburgh
- Department
of Radiology, Keck School of Medicine, University
of Southern California, Los Angeles, California 90033, United States
| | - Diana E. Ingles
- Department
of Medicine, Keck School of Medicine, University
of Southern California, Los Angeles, California 90033, United States
| | - Jenny Tran
- Department
of Medicine, Keck School of Medicine, University
of Southern California, Los Angeles, California 90033, United States
| | - Zhiheng Cai
- Department
of Medicine, Keck School of Medicine, University
of Southern California, Los Angeles, California 90033, United States
| | - Brandon Ebright
- Alfred
E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Shaowei Wang
- Department
of Medicine, Keck School of Medicine, University
of Southern California, Los Angeles, California 90033, United States
| | - Bilal E. Kerman
- Department
of Medicine, Keck School of Medicine, University
of Southern California, Los Angeles, California 90033, United States
| | - Jasmin Galvan
- Department
of Medicine, Keck School of Medicine, University
of Southern California, Los Angeles, California 90033, United States
| | - Sung Hee Hwang
- Department
of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Naomi S. Sta Maria
- Zilkha
Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
| | - Francesca Zanderigo
- Department
of Psychiatry, Columbia University, New York, New York 10032, United States
- Molecular
Imaging and Neuropathology Area, New York
State Psychiatric Institute, New
York, New York 10032, United States
| | - Etienne Croteau
- Sherbrooke
Center for Molecular Imaging, University
of Sherbrooke, Sherbrooke, QC J1H 4C4, Canada
| | - Stephen C. Cunnane
- Research
Center on Aging, Department of Medicine, University of Sherbrooke, Sherbrooke, QC J1H 4C4, Canada
| | - Stanley I. Rapoport
- National
Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 20892-9304, United States
| | - Stan G. Louie
- Alfred
E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Russell E. Jacobs
- Zilkha
Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
| | - Hussein N. Yassine
- Department
of Medicine, Keck School of Medicine, University
of Southern California, Los Angeles, California 90033, United States
| | - Kai Chen
- Department
of Radiology, Keck School of Medicine, University
of Southern California, Los Angeles, California 90033, United States
| |
Collapse
|
9
|
Sun YY, Wang Z, Huang HC. Roles of ApoE4 on the Pathogenesis in Alzheimer's Disease and the Potential Therapeutic Approaches. Cell Mol Neurobiol 2023; 43:3115-3136. [PMID: 37227619 PMCID: PMC10211310 DOI: 10.1007/s10571-023-01365-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023]
Abstract
The Apolipoprotein E ε4 (ApoE ε4) allele, encoding ApoE4, is the strongest genetic risk factor for late-onset Alzheimer's disease (LOAD). Emerging epidemiological evidence indicated that ApoE4 contributes to AD through influencing β-amyloid (Aβ) deposition and clearance. However, the molecular mechanisms of ApoE4 involved in AD pathogenesis remains unclear. Here, we introduced the structure and functions of ApoE isoforms, and then we reviewed the potential mechanisms of ApoE4 in the AD pathogenesis, including the effect of ApoE4 on Aβ pathology, and tau phosphorylation, oxidative stress; synaptic function, cholesterol transport, and mitochondrial dysfunction; sleep disturbances and cerebrovascular integrity in the AD brains. Furthermore, we discussed the available strategies for AD treatments that target to ApoE4. In general, this review overviews the potential roles of ApoE4 in the AD development and suggests some therapeutic approaches for AD. ApoE4 is genetic risk of AD. ApoE4 is involved in the AD pathogenesis. Aβ deposition, NFT, oxidative stress, abnormal cholesterol, mitochondrial dysfunction and neuroinflammation could be observed in the brains with ApoE4. Targeting the interaction of ApoE4 with the AD pathology is available strategy for AD treatments.
Collapse
Affiliation(s)
- Yu-Ying Sun
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, 100191 China
- Key Laboratory of Natural Products Development and Innovative Drug Research, Beijing Union University, Beijing, 100023 China
| | - Zhun Wang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, 100191 China
- Key Laboratory of Natural Products Development and Innovative Drug Research, Beijing Union University, Beijing, 100023 China
| | - Han-Chang Huang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, 100191 China
- Key Laboratory of Natural Products Development and Innovative Drug Research, Beijing Union University, Beijing, 100023 China
| |
Collapse
|
10
|
Litke R, Vicari J, Huang BT, Shapiro L, Roh KH, Silver A, Talreja P, Palacios N, Yoon Y, Kellner C, Kaniskan H, Vangeti S, Jin J, Ramos-Lopez I, Mobbs C. Novel small molecules inhibit proteotoxicity and inflammation: Mechanistic and therapeutic implications for Alzheimer's Disease, healthspan and lifespan- Aging as a consequence of glycolysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.12.544352. [PMID: 37398396 PMCID: PMC10312632 DOI: 10.1101/2023.06.12.544352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Inflammation drives many age-related, especially neurological, diseases, and likely mediates age-related proteotoxicity. For example, dementia due to Alzheimer's Disease (AD), cerebral vascular disease, many other neurodegenerative conditions is increasingly among the most devastating burdens on the American (and world) health system and threatens to bankrupt the American health system as the population ages unless effective treatments are developed. Dementia due to either AD or cerebral vascular disease, and plausibly many other neurodegenerative and even psychiatric conditions, is driven by increased age-related inflammation, which in turn appears to mediate Abeta and related proteotoxic processes. The functional significance of inflammation during aging is also supported by the fact that Humira, which is simply an antibody to the pro-inflammatory cytokine TNF-a, is the best-selling drug in the world by revenue. These observations led us to develop parallel high-throughput screens to discover small molecules which inhibit age-related Abeta proteotoxicity in a C. elegans model of AD AND LPS-induced microglial TNF-a. In the initial screen of 2560 compounds (Microsource Spectrum library) to delay Abeta proteotoxicity, the most protective compounds were, in order, phenylbutyrate, methicillin, and quetiapine, which belong to drug classes (HDAC inhibitors, beta lactam antibiotics, and tricyclic antipsychotics, respectably) already robustly implicated as promising to protect in neurodegenerative diseases, especially AD. RNAi and chemical screens indicated that the protective effects of HDAC inhibitors to reduce Abeta proteotoxicity are mediated by inhibition of HDAC2, also implicated in human AD, dependent on the HAT Creb binding protein (Cbp), which is also required for the protective effects of both dietary restriction and the daf-2 mutation (inactivation of IGF-1 signaling) during aging. In addition to methicillin, several other beta lactam antibiotics also delayed Abeta proteotoxicity and reduced microglial TNF-a. In addition to quetiapine, several other tricyclic antipsychotic drugs also delayed age-related Abeta proteotoxicity and increased microglial TNF-a, leading to the synthesis of a novel congener, GM310, which delays Abeta as well as Huntingtin proteotoxicity, inhibits LPS-induced mouse and human microglial and monocyte TNF-a, is highly concentrated in brain after oral delivery with no apparent toxicity, increases lifespan, and produces molecular responses highly similar to those produced by dietary restriction, including induction of Cbp inhibition of inhibitors of Cbp, and genes promoting a shift away from glycolysis and toward metabolism of alternate (e.g., lipid) substrates. GM310, as well as FDA-approved tricyclic congeners, prevented functional impairments and associated increase in TNF-a in a mouse model of stroke. Robust reduction of glycolysis by GM310 was functionally corroborated by flux analysis, and the glycolytic inhibitor 2-DG inhibited microglial TNF-a and other markers of inflammation, delayed Abeta proteotoxicity, and increased lifespan. These results support the value of phenotypic screens to discover drugs to treat age-related, especially neurological and even psychiatric diseases, including AD and stroke, and to clarify novel mechanisms driving neurodegeneration (e.g., increased microglial glycolysis drives neuroinflammation and subsequent neurotoxicity) suggesting novel treatments (selective inhibitors of microglial glycolysis).
Collapse
|
11
|
Escudero B, Moya M, López-Valencia L, Arias F, Orio L. Reelin Plasma Levels Identify Cognitive Decline in Alcohol Use Disorder Patients During Early Abstinence: The Influence of APOE4 Expression. Int J Neuropsychopharmacol 2023; 26:545-556. [PMID: 37350760 PMCID: PMC10464928 DOI: 10.1093/ijnp/pyad034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/21/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND Apolipoprotein E (APOE)-4 isoform, reelin, and clusterin share very-low-density liporeceptor and apolipoprotein E receptor 2 receptors and are related to cognition in neuropsychiatric disorders. These proteins are expressed in plasma and brain, but studies involving plasma expression and cognition are scarce. METHODS We studied the peripheral expression (plasma and peripheral blood mononuclear cells) of these proteins in 24 middle-aged patients with alcohol use disorder (AUD) diagnosed at 4 to 12 weeks of abstinence (t = 0) and 34 controls. Cognition was assessed using the Test of Detection of Cognitive Impairment in Alcoholism. In a follow-up study (t = 1), we measured reelin levels and evaluated cognitive improvement at 6 months of abstinence. RESULTS APOE4 isoform was present in 37.5% and 58.8% of patients and controls, respectively, reaching similar plasma levels in ε4 carriers regardless of whether they were patients with AUD or controls. Plasma reelin and clusterin were higher in the AUD group, and reelin levels peaked in patients expressing APOE4 (P < .05, η2 = 0.09), who showed reduced very-low-density liporeceptor and apolipoprotein E receptor 2 expression in peripheral blood mononuclear cells. APOE4 had a negative effect on memory/learning mainly in the AUD group (P < .01, η2 = 0.15). Multivariate logistic regression analyses identified plasma reelin as a good indicator of AUD cognitive impairment at t = 0. At t = 1, patients with AUD showed lower reelin levels vs controls along with some cognitive improvement. CONCLUSIONS Reelin plasma levels are elevated during early abstinence in patients with AUD who express the APOE4 isoform, identifying cognitive deterioration to a great extent, and it may participate as a homeostatic signal for cognitive recovery in the long term.
Collapse
Affiliation(s)
- Berta Escudero
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Complutense University of Madrid, Pozuelo de Alarcón, Spain
- Instituto de Investigación Sanitaria Hospital Universitario 12 de Octubre (imas12), Madrid, Spain
| | - Marta Moya
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Complutense University of Madrid, Pozuelo de Alarcón, Spain
| | - Leticia López-Valencia
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Complutense University of Madrid, Pozuelo de Alarcón, Spain
- Instituto de Investigación Sanitaria Hospital Universitario 12 de Octubre (imas12), Madrid, Spain
| | - Francisco Arias
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Complutense University of Madrid, Pozuelo de Alarcón, Spain
- Instituto de Investigación Sanitaria Hospital Universitario 12 de Octubre (imas12), Madrid, Spain
- RIAPAd: Research Network in Primary Care in Addictions (“Red de investigación en atención primaria en adicciones”), Spain
| | - Laura Orio
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Complutense University of Madrid, Pozuelo de Alarcón, Spain
- Instituto de Investigación Sanitaria Hospital Universitario 12 de Octubre (imas12), Madrid, Spain
- RIAPAd: Research Network in Primary Care in Addictions (“Red de investigación en atención primaria en adicciones”), Spain
| |
Collapse
|
12
|
Abramova O, Zorkina Y, Ushakova V, Gryadunov D, Ikonnikova A, Fedoseeva E, Emelyanova M, Ochneva A, Morozova I, Pavlov K, Syunyakov T, Andryushchenko A, Savilov V, Kurmishev M, Andreuyk D, Shport S, Gurina O, Chekhonin V, Kostyuk G, Morozova A. Alteration of Blood Immune Biomarkers in MCI Patients with Different APOE Genotypes after Cognitive Training: A 1 Year Follow-Up Cohort Study. Int J Mol Sci 2023; 24:13395. [PMID: 37686198 PMCID: PMC10488004 DOI: 10.3390/ijms241713395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Many studies aim to detect the early phase of dementia. One of the major ways to achieve this is to identify corresponding biomarkers, particularly immune blood biomarkers. The objective of this study was to identify such biomarkers in patients with mild cognitive impairment (MCI) in an experiment that included cognitive training. A group of patients with MCI diagnoses over the age of 65 participated in the study (n = 136). Measurements of cognitive functions (using the Mini-Mental State Examination scale and Montreal Cognitive Assessment) and determination of 27 serum biomarkers were performed twice: on the first visit and on the second visit, one year after the cognitive training. APOE genotypes were also determined. Concentrations of EGF (F = 17; p = 0.00007), Eotaxin (F = 7.17; p = 0.008), GRO (F = 13.42; p = 0.0004), IL-8 (F = 8.16; p = 0.005), MCP-1 (F = 13.46; p = 0.0001) and MDC (F = 5.93; p = 0.016) increased after the cognitive training in MCI patients. All these parameters except IL-8 demonstrated a weak correlation with other immune parameters and were poorly represented in the principal component analysis. Differences in concentrations of IP-10, FGF-2, TGFa and VEGF in patients with MCI were associated with APOE genotype. Therefore, the study identified several immune blood biomarkers that could potentially be associated with changes in cognitive function.
Collapse
Affiliation(s)
- Olga Abramova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (O.A.); (Y.Z.); (V.U.); (A.O.); (I.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Yana Zorkina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (O.A.); (Y.Z.); (V.U.); (A.O.); (I.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Valeriya Ushakova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (O.A.); (Y.Z.); (V.U.); (A.O.); (I.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
- Biological Faculty, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Dmitry Gryadunov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anna Ikonnikova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elena Fedoseeva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Marina Emelyanova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Aleksandra Ochneva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (O.A.); (Y.Z.); (V.U.); (A.O.); (I.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Irina Morozova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (O.A.); (Y.Z.); (V.U.); (A.O.); (I.M.)
| | - Konstantin Pavlov
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (O.A.); (Y.Z.); (V.U.); (A.O.); (I.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Timur Syunyakov
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (O.A.); (Y.Z.); (V.U.); (A.O.); (I.M.)
- International Centre for Education and Research in Neuropsychiatry (ICERN), Samara State Medical University, 443016 Samara, Russia
| | - Alisa Andryushchenko
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (O.A.); (Y.Z.); (V.U.); (A.O.); (I.M.)
| | - Victor Savilov
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (O.A.); (Y.Z.); (V.U.); (A.O.); (I.M.)
| | - Marat Kurmishev
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (O.A.); (Y.Z.); (V.U.); (A.O.); (I.M.)
| | - Denis Andreuyk
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (O.A.); (Y.Z.); (V.U.); (A.O.); (I.M.)
- Biological Faculty, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Svetlana Shport
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Olga Gurina
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Vladimir Chekhonin
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Georgy Kostyuk
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (O.A.); (Y.Z.); (V.U.); (A.O.); (I.M.)
- Department of Psychiatry, Federal State Budgetary Educational Institution of Higher Education “Moscow State University of Food Production”, Volokolamskoye Highway 11, 125080 Moscow, Russia
| | - Anna Morozova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (O.A.); (Y.Z.); (V.U.); (A.O.); (I.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| |
Collapse
|
13
|
Zhang W, Xiao D, Mao Q, Xia H. Role of neuroinflammation in neurodegeneration development. Signal Transduct Target Ther 2023; 8:267. [PMID: 37433768 PMCID: PMC10336149 DOI: 10.1038/s41392-023-01486-5] [Citation(s) in RCA: 263] [Impact Index Per Article: 131.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/22/2023] [Accepted: 05/07/2023] [Indexed: 07/13/2023] Open
Abstract
Studies in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and Amyotrophic lateral sclerosis, Huntington's disease, and so on, have suggested that inflammation is not only a result of neurodegeneration but also a crucial player in this process. Protein aggregates which are very common pathological phenomenon in neurodegeneration can induce neuroinflammation which further aggravates protein aggregation and neurodegeneration. Actually, inflammation even happens earlier than protein aggregation. Neuroinflammation induced by genetic variations in CNS cells or by peripheral immune cells may induce protein deposition in some susceptible population. Numerous signaling pathways and a range of CNS cells have been suggested to be involved in the pathogenesis of neurodegeneration, although they are still far from being completely understood. Due to the limited success of traditional treatment methods, blocking or enhancing inflammatory signaling pathways involved in neurodegeneration are considered to be promising strategies for the therapy of neurodegenerative diseases, and many of them have got exciting results in animal models or clinical trials. Some of them, although very few, have been approved by FDA for clinical usage. Here we comprehensively review the factors affecting neuroinflammation and the major inflammatory signaling pathways involved in the pathogenicity of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Amyotrophic lateral sclerosis. We also summarize the current strategies, both in animal models and in the clinic, for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Weifeng Zhang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, P.R. China
| | - Dan Xiao
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Air Force Medical University, No. 169 Changle West Road, Xi'an, 710032, P.R. China
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, No. 169 Changle West Road, Xi'an, 710032, China
| | - Qinwen Mao
- Department of Pathology, University of Utah, Huntsman Cancer Institute, 2000 Circle of Hope Drive, Salt Lake City, UT, 84112, USA
| | - Haibin Xia
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, P.R. China.
| |
Collapse
|
14
|
Infantes-López MI, Nieto-Quero A, Chaves-Peña P, Zambrana-Infantes E, Cifuentes M, Márquez J, Pedraza C, Pérez-Martín M. New insights into hypothalamic neurogenesis disruption after acute and intense stress: implications for microglia and inflammation. Front Neurosci 2023; 17:1190418. [PMID: 37425000 PMCID: PMC10327603 DOI: 10.3389/fnins.2023.1190418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/23/2023] [Indexed: 07/11/2023] Open
Abstract
In recent years, the hypothalamus has emerged as a new neurogenic area, capable of generating new neurons after development. Neurogenesis-dependent neuroplasticity seems to be critical to continuously adapt to internal and environmental changes. Stress is a potent environmental factor that can produce potent and enduring effects on brain structure and function. Acute and chronic stress is known to cause alterations in neurogenesis and microglia in classical adult neurogenic regions such as the hippocampus. The hypothalamus is one of the major brain regions implicated in homeostatic stress and emotional stress systems, but little is known about the effect of stress on the hypothalamus. Here, we studied the impact of acute and intense stress (water immersion and restrain stress, WIRS), which may be considered as an inducer of an animal model of posttraumatic stress disorder, on neurogenesis and neuroinflammation in the hypothalamus of adult male mice, focusing on three nuclei: PVN, VMN and ARC, and also in the periventricular area. Our data revealed that a unique stressor was sufficient to provoke a significant impact on hypothalamic neurogenesis by inducing a reduction in the proliferation and number of immature neurons identified as DCX+ cells. These differences were accompanied by marked microglial activation in the VMN and ARC, together with a concomitant increase in IL-6 levels, indicating that WIRS induced an inflammatory response. To investigate the possible molecular mechanisms responsible for neuroplastic and inflammatory changes, we tried to identify proteomic changes. The data revealed that WIRS induced changes in the hypothalamic proteome, modifying the abundance of three and four proteins after 1 h or 24 h of stress application, respectively. These changes were also accompanied by slight changes in the weight and food intake of the animals. These results are the first to show that even a short-term environmental stimulus such as acute and intense stress can have neuroplastic, inflammatory, functional and metabolic consequences on the adult hypothalamus.
Collapse
Affiliation(s)
- María Inmaculada Infantes-López
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina–IBIMA Plataforma Bionand, Málaga, Spain
| | - Andrea Nieto-Quero
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina–IBIMA Plataforma Bionand, Málaga, Spain
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Málaga, Spain
| | - Patricia Chaves-Peña
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Málaga, Spain
| | - Emma Zambrana-Infantes
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina–IBIMA Plataforma Bionand, Málaga, Spain
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Málaga, Spain
| | - Manuel Cifuentes
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina–IBIMA Plataforma Bionand, Málaga, Spain
| | - Javier Márquez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina–IBIMA Plataforma Bionand, Málaga, Spain
- Departamento de Biología Molecular y Bioquímica, Canceromics Lab, Universidad de Málaga, Málaga, Spain
| | - Carmen Pedraza
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina–IBIMA Plataforma Bionand, Málaga, Spain
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Málaga, Spain
| | - Margarita Pérez-Martín
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina–IBIMA Plataforma Bionand, Málaga, Spain
| |
Collapse
|
15
|
Yassine HN, Self W, Kerman BE, Santoni G, Navalpur Shanmugam N, Abdullah L, Golden LR, Fonteh AN, Harrington MG, Gräff J, Gibson GE, Kalaria R, Luchsinger JA, Feldman HH, Swerdlow RH, Johnson LA, Albensi BC, Zlokovic BV, Tanzi R, Cunnane S, Samieri C, Scarmeas N, Bowman GL. Nutritional metabolism and cerebral bioenergetics in Alzheimer's disease and related dementias. Alzheimers Dement 2023; 19:1041-1066. [PMID: 36479795 PMCID: PMC10576546 DOI: 10.1002/alz.12845] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/12/2022] [Accepted: 10/05/2022] [Indexed: 12/13/2022]
Abstract
Disturbances in the brain's capacity to meet its energy demand increase the risk of synaptic loss, neurodegeneration, and cognitive decline. Nutritional and metabolic interventions that target metabolic pathways combined with diagnostics to identify deficits in cerebral bioenergetics may therefore offer novel therapeutic potential for Alzheimer's disease (AD) prevention and management. Many diet-derived natural bioactive components can govern cellular energy metabolism but their effects on brain aging are not clear. This review examines how nutritional metabolism can regulate brain bioenergetics and mitigate AD risk. We focus on leading mechanisms of cerebral bioenergetic breakdown in the aging brain at the cellular level, as well as the putative causes and consequences of disturbed bioenergetics, particularly at the blood-brain barrier with implications for nutrient brain delivery and nutritional interventions. Novel therapeutic nutrition approaches including diet patterns are provided, integrating studies of the gut microbiome, neuroimaging, and other biomarkers to guide future personalized nutritional interventions.
Collapse
Affiliation(s)
- Hussein N Yassine
- Department of Medicine, Keck School of Medicine, University of Southern, California, Los Angeles, California, USA
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Wade Self
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Bilal E Kerman
- Department of Medicine, Keck School of Medicine, University of Southern, California, Los Angeles, California, USA
| | - Giulia Santoni
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale Lausanne (EPFL), Lausanne, Switzerland
| | - NandaKumar Navalpur Shanmugam
- Department of Neurology, Genetics and Aging Research Unit, McCance Center for Brain Health, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Lesley R Golden
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Alfred N Fonteh
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Huntington Medical Research Institutes, Pasadena, California, USA
| | - Michael G Harrington
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Johannes Gräff
- Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale Lausanne (EPFL), Lausanne, Switzerland
| | - Gary E Gibson
- Brain and Mind Research Institute, Weill Cornell Medicine, Burke Neurological Institute, White Plains, New York, USA
| | - Raj Kalaria
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Jose A Luchsinger
- Department of Medicine and Epidemiology, Columbia University Irving Medical Center, New York City, New York, USA
| | - Howard H Feldman
- Department of Neurosciences, University of California, San Diego, California, USA
| | - Russell H Swerdlow
- Department of Neurology, University of Kansas School of Medicine, Kansas City, Kansas, USA
| | - Lance A Johnson
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Benedict C Albensi
- Nova Southeastern Univ. College of Pharmacy, Davie, Florida, USA
- Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Rudolph Tanzi
- Department of Neurology, Genetics and Aging Research Unit, McCance Center for Brain Health, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Stephen Cunnane
- Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Cécilia Samieri
- Univ. Bordeaux, INSERM, BPH, U1219, F-33000, Bordeaux, France
| | - Nikolaos Scarmeas
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Department of Neurology, Columbia University, New York City, New York, USA
| | - Gene L Bowman
- Department of Neurology, Genetics and Aging Research Unit, McCance Center for Brain Health, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Helfgott Research Institute, National University of Natural Medicine, Portland, Oregon, USA
| |
Collapse
|
16
|
Qiu J, Peng G, Tang Y, Li S, Liu Z, Zheng J, Wang Y, Liu H, Wei L, Su Y, Lin Y, Dai W, Zhang Z, Chen X, Ding L, Guo W, Zhu X, Xu P, Mo M. Lipid profiles in the cerebrospinal fluid of rats with 6-hydroxydopamine-induced lesions as a model of Parkinson's disease. Front Aging Neurosci 2023; 14:1077738. [PMID: 36742201 PMCID: PMC9895836 DOI: 10.3389/fnagi.2022.1077738] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/30/2022] [Indexed: 01/21/2023] Open
Abstract
Background Parkinson's disease (PD) is a progressive neurodegenerative disease with characteristic pathological abnormalities, including the loss of dopaminergic (DA) neurons, a dopamine-depleted striatum, and microglial activation. Lipid accumulation exhibits a close relationship with these pathologies in PD. Methods Here, 6-hydroxydopamine (6-OHDA) was used to construct a rat model of PD, and the lipid profile in cerebrospinal fluid (CSF) obtained from model rats was analyzed using lipidomic approaches. Results Establishment of this PD model was confirmed by apomorphine-induced rotation behaviors, loss of DA neurons, depletion of dopamine in the striatum, and microglial activation after 6-OHDA-induced lesion generation. Unsupervised and supervised methods were employed for lipid analysis. A total of 172 lipid species were identified in CSF and subsequently classified into 18 lipid families. Lipid families, including eicosanoids, triglyceride (TG), cholesterol ester (CE), and free fatty acid (FFA), and 11 lipid species exhibited significantly altered profiles 2 weeks after 6-OHDA administration, and significant changes in eicosanoids, TG, CE, CAR, and three lipid species were noted 5 weeks after 6-OHDA administration. During the period of 6-OHDA-induced lesion formation, the lipid families and species showed concentration fluctuations related to the recovery of behavior and nigrostriatal abnormalities. Correlation analysis showed that the levels of eicosanoids, CE, TG families, and TG (16:0_20:0_18:1) exhibited positive relationships with apomorphine-induced rotation behaviors and negative relationships with tyrosine hydroxylase (TH) expression in the midbrain. Conclusion These results revealed that non-progressive nigrostriatal degeneration induced by 6-OHDA promotes the expression of an impairment-related lipidomic signature in CSF, and the level of eicosanoids, CE, TG families, and TG (16:0_20:0_18:1) in CSF may reveal pathological changes in the midbrain after 6-OHDA insult.
Collapse
Affiliation(s)
- Jiewen Qiu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guoyou Peng
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuting Tang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shiyin Li
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zengfu Liu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiayun Zheng
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yunxin Wang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hanqun Liu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lijian Wei
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yilin Su
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuwan Lin
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei Dai
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhiling Zhang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiang Chen
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liuyan Ding
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenyuan Guo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoqin Zhu
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingshu Mo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Internal Medicine, Huilai People’s Hospital, Jieyang, China
| |
Collapse
|
17
|
Ni WF, Zhou KL, Zhang HJ, Chen YT, Hu XL, Cai WT, Wang XY. Functions and mechanisms of cytosolic phospholipase A 2 in central nervous system trauma. Neural Regen Res 2023; 18:258-266. [PMID: 35900400 PMCID: PMC9396495 DOI: 10.4103/1673-5374.346460] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
18
|
Liu L, Zhang X, Jiang N, Liu Y, Wang Q, Jiang G, Li X, Zhao L, Zhai Q. Plasma Lipoprotein-Associated Phospholipase A2 Affects Cognitive Impairment in Patients with Cerebral Microbleeds. Neuropsychiatr Dis Treat 2023; 19:635-646. [PMID: 36987525 PMCID: PMC10040165 DOI: 10.2147/ndt.s401603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Purpose The plasma lipoprotein-associated phospholipase A2 (Lp-PLA2) is an inflammatory biomarker of cerebral microbleeds (CMBs) and may be related to the occurrence, development, and prognosis of cognitive impairment. The present study aimed to investigate the impact of plasma Lp-PLA2 level on the cognitive impairment in patients with CMBs. Methods In this study, 213 patients with CMBs confirmed by 3.0 T brain magnetic resonance imaging (MRI) were analyzed. Lp-PLA2 levels were determined by magnetic particle chemiluminescence immunoassay technology, and cognitive function was assessed using the Montreal Cognitive Assessment Scale (MoCA). The cognitive functions of patients with CMBs were divided into three groups according to the MoCA scale, including normal cognition (NC), mild cognitive impairment (MCI), and moderate-severe cognitive impairment (MSCI). Clinical, laboratory and radiological data of the three groups were analysed. The relationship between plasma Lp-PLA2 and MoCA score in patients with CMBs was investigated through rank correlation analysis and multivariate regression analysis, and receiver operating characteristic (ROC) curve was used to evaluate the diagnostic value of Lp-PLA2. Results CMBs were detected in 213 (30.2%) of 705 patients who underwent 3.0 T MRI. Multiple comparisons showed that plasma Lp-PLA2 in patients with CMBs with normal cognitive scores was significantly lower than that in the other two groups with cognitive impairment (p < 0.05). In the single factor correlation analysis, high level of plasma Lp-PLA2 was negatively correlated with the decrease of MoCA score in patients with CMBs (r =-0.389, p < 0.01). Multivariate regression analysis showed that high plasma Lp-PLA2 was an independent risk factor for a low MoCA score in patients with CMBs (odds ratio [OR]=1.014; 95% confidence interval [CI], 1.002-1.026; p=0.025). Conclusion A high level of plasma Lp-PLA2 is positively correlated with the generation of cognitive impairment in patients with CMBs and negatively correlated with the degree of impairment. Plasma Lp-PLA2 is an important indicator of cognitive impairment in patients with CMBs and may provide a therapeutic target for preventing CMB-induced cognitive impairment.
Collapse
Affiliation(s)
- Lu Liu
- Department of Neurology, Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, Jiangsu, People’s Republic of China
| | - Xiaojiu Zhang
- Department of Neurology, Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, Jiangsu, People’s Republic of China
- Department of Neurology, Hongze People’s Hospital, Huai’an, Jiangsu, People’s Republic of China
| | - Nan Jiang
- Department of Neurology, Lianshui PEople’s Hospital Affiliated to Kangda College of Nanjing Medical University, Huai’an, Jiangsu, People’s Republic of China
| | - Yufeng Liu
- Department of Neurology, Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, Jiangsu, People’s Republic of China
| | - Qing Wang
- Department of Neurology, Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, Jiangsu, People’s Republic of China
| | - Guanghui Jiang
- Department of Neurology, Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, Jiangsu, People’s Republic of China
| | - Xuejing Li
- Rehabilitation Centre, Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, Jiangsu, People’s Republic of China
| | - Liandong Zhao
- Department of Neurology, Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, Jiangsu, People’s Republic of China
- Correspondence: Liandong Zhao; Qijin Zhai, Email ;
| | - Qijin Zhai
- Department of Neurology, Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, Jiangsu, People’s Republic of China
| |
Collapse
|
19
|
Asante I, Louie S, Yassine HN. Uncovering mechanisms of brain inflammation in Alzheimer's disease with APOE4: Application of single cell-type lipidomics. Ann N Y Acad Sci 2022; 1518:84-105. [PMID: 36200578 PMCID: PMC10092192 DOI: 10.1111/nyas.14907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A chronic state of unresolved inflammation in Alzheimer's disease (AD) is intrinsically involved with the remodeling of brain lipids. This review highlights the effect of carrying the apolipoprotein E ε4 allele (APOE4) on various brain cell types in promoting an unresolved inflammatory state. Among its pleotropic effects on brain lipids, we focus on APOE4's activation of Ca2+ -dependent phospholipase A2 (cPLA2) and its effects on arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid signaling cascades in the brain. During the process of neurodegeneration, various brain cell types, such as astrocytes, microglia, and neurons, together with the neurovascular unit, develop distinct inflammatory phenotypes that impact their functions and have characteristic lipidomic fingerprints. We propose that lipidomic phenotyping of single cell-types harvested from brains differing by age, sex, disease severity stage, and dietary and genetic backgrounds can be employed to probe mechanisms of neurodegeneration. A better understanding of the brain cellular inflammatory/lipidomic response promises to guide the development of nutritional and drug interventions for AD dementia.
Collapse
Affiliation(s)
- Isaac Asante
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Stan Louie
- School of Pharmacy, University of Southern California, Los Angeles, California, USA
| | - Hussein N Yassine
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
20
|
Van Valkenburgh J, Duro MVV, Burnham E, Chen Q, Wang S, Tran J, Kerman BE, Hwang SH, Liu X, Sta Maria NS, Zanderigo F, Croteau E, Rapoport SI, Cunnane SC, Jacobs RE, Yassine HN, Chen K. Radiosynthesis of 20-[ 18F]fluoroarachidonic acid for PET-MR imaging: Biological evaluation in ApoE4-TR mice. Prostaglandins Leukot Essent Fatty Acids 2022; 186:102510. [PMID: 36341886 PMCID: PMC9888757 DOI: 10.1016/j.plefa.2022.102510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 02/02/2023]
Abstract
Dysreglulated brain arachidonic acid (AA) metabolism is involved in chronic inflammation and is influenced by apolipoprotein E4 (APOE4) genotype, the strongest genetic risk factor of late-onset Alzheimer's disease (AD). Visualization of AA uptake and distribution in the brain can offer insight into neuroinflammation and AD pathogenesis. Here we present a novel synthesis and radiosynthesis of 20-[18F]fluoroarachidonic acid ([18F]-FAA) for PET imaging using a convergent route and a one-pot, single-purification radiolabeling procedure, and demonstrate its brain uptake in human ApoE4 targeted replacement (ApoE4-TR) mice. By examining p38 phosphorylation in astrocytes, we found that fluorination of AA at the ω-position did not significantly alter its biochemical role in cells. The brain incorporation coefficient (K*) of [18F]-FAA was estimated via multiple methods by using an image-derived input function from the right ventricle of the heart as a proxy of the arterial input function and brain tracer concentrations assessed by dynamic PET-MR imaging. This new synthetic approach should facilitate the practical [18F]-FAA production and allow its translation into clinical use, making investigations of dysregulation of lipid metabolism more feasible in the study of neurodegenerative diseases.
Collapse
Affiliation(s)
- Juno Van Valkenburgh
- Department of Radiology, Keck School of Medicine University of Southern California, Los Angeles, CA 90033, United States of America
| | - Marlon Vincent V Duro
- Department of Radiology, Keck School of Medicine University of Southern California, Los Angeles, CA 90033, United States of America
| | - Erica Burnham
- Department of Medicine, Keck School of Medicine University of Southern California, Los Angeles 90033, CA, United States of America
| | - Quan Chen
- Department of Radiology, Keck School of Medicine University of Southern California, Los Angeles, CA 90033, United States of America
| | - Shaowei Wang
- Department of Medicine, Keck School of Medicine University of Southern California, Los Angeles 90033, CA, United States of America
| | - Jenny Tran
- Department of Medicine, Keck School of Medicine University of Southern California, Los Angeles 90033, CA, United States of America
| | - Bilal E Kerman
- Department of Medicine, Keck School of Medicine University of Southern California, Los Angeles 90033, CA, United States of America
| | - Sung Hee Hwang
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, United States of America
| | - Xiaodan Liu
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States of America
| | - Naomi S Sta Maria
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States of America
| | - Francesca Zanderigo
- Department of Psychiatry, Columbia University, New York, NY 10032, United States of America; Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, NY 10032, United States of America
| | - Etienne Croteau
- Research Center on Aging, Department of Medicine, University of Sherbrooke, Sherbrooke, QC J1H 4C4, Canada
| | - Stanley I Rapoport
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, United States of America
| | - Stephen C Cunnane
- Research Center on Aging, Department of Medicine, University of Sherbrooke, Sherbrooke, QC J1H 4C4, Canada
| | - Russell E Jacobs
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States of America
| | - Hussein N Yassine
- Department of Medicine, Keck School of Medicine University of Southern California, Los Angeles 90033, CA, United States of America.
| | - Kai Chen
- Department of Radiology, Keck School of Medicine University of Southern California, Los Angeles, CA 90033, United States of America.
| |
Collapse
|
21
|
Lipidomics in Understanding Pathophysiology and Pharmacologic Effects in Inflammatory Diseases: Considerations for Drug Development. Metabolites 2022; 12:metabo12040333. [PMID: 35448520 PMCID: PMC9030008 DOI: 10.3390/metabo12040333] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 01/26/2023] Open
Abstract
The lipidome has a broad range of biological and signaling functions, including serving as a structural scaffold for membranes and initiating and resolving inflammation. To investigate the biological activity of phospholipids and their bioactive metabolites, precise analytical techniques are necessary to identify specific lipids and quantify their levels. Simultaneous quantification of a set of lipids can be achieved using high sensitivity mass spectrometry (MS) techniques, whose technological advancements have significantly improved over the last decade. This has unlocked the power of metabolomics/lipidomics allowing the dynamic characterization of metabolic systems. Lipidomics is a subset of metabolomics for multianalyte identification and quantification of endogenous lipids and their metabolites. Lipidomics-based technology has the potential to drive novel biomarker discovery and therapeutic development programs; however, appropriate standards have not been established for the field. Standardization would improve lipidomic analyses and accelerate the development of innovative therapies. This review aims to summarize considerations for lipidomic study designs including instrumentation, sample stabilization, data validation, and data analysis. In addition, this review highlights how lipidomics can be applied to biomarker discovery and drug mechanism dissection in various inflammatory diseases including cardiovascular disease, neurodegeneration, lung disease, and autoimmune disease.
Collapse
|