1
|
Rabiu L, Zhang P, Afolabi LO, Saliu MA, Dabai SM, Suleiman RB, Gidado KI, Ige MA, Ibrahim A, Zhang G, Wan X. Immunological dynamics in MASH: from landscape analysis to therapeutic intervention. J Gastroenterol 2024; 59:1053-1078. [PMID: 39400718 DOI: 10.1007/s00535-024-02157-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH), previously known as nonalcoholic steatohepatitis (NASH), is a multifaceted liver disease characterized by inflammation and fibrosis that develops from simple steatosis. Immune and inflammatory pathways have a central role in the pathogenesis of MASH, yet, how to target immune pathways to treat MASH remains perplexed. This review emphasizes the intricate role that immune cells play in the etiology and pathophysiology of MASH and highlights their significance as targets for therapeutic approaches. It discusses both current strategies and novel therapies aimed at modulating the immune response in MASH. It also highlights challenges in liver-specific drug delivery, potential off-target effects, and difficulties in targeting diverse immune cell populations within the liver. This review is a comprehensive resource that integrates current knowledge with future perspectives in the evolving field of MASH, with the goal of driving forward progress in medical therapies designed to treat this complex liver disease.
Collapse
Affiliation(s)
- Lawan Rabiu
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
- Federal University Dutse, Jigawa, Nigeria
| | - Pengchao Zhang
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Lukman O Afolabi
- Department of Pediatrics, Indiana University School of Medicine, 1234 Notre Dame Ave, S Bend, IN, 46617, USA
| | - Muhammad A Saliu
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Salisu M Dabai
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Rabiatu B Suleiman
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Khalid I Gidado
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Mark A Ige
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Abdulrahman Ibrahim
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Guizhong Zhang
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China.
| | - Xiaochun Wan
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China.
| |
Collapse
|
2
|
Zuo X, Ding X, Zhang Y, Kang YJ. Reversal of atherosclerosis by restoration of vascular copper homeostasis. Exp Biol Med (Maywood) 2024; 249:10185. [PMID: 38978540 PMCID: PMC11228934 DOI: 10.3389/ebm.2024.10185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/04/2024] [Indexed: 07/10/2024] Open
Abstract
Atherosclerosis has traditionally been considered as a disorder characterized by the accumulation of cholesterol and thrombotic materials within the arterial wall. However, it is now understood to be a complex inflammatory disease involving multiple factors. Central to the pathogenesis of atherosclerosis are the interactions among monocytes, macrophages, and neutrophils, which play pivotal roles in the initiation, progression, and destabilization of atherosclerotic lesions. Recent advances in our understanding of atherosclerosis pathogenesis, coupled with results obtained from experimental interventions, lead us to propose the hypothesis that atherosclerosis may be reversible. This paper outlines the evolution of this hypothesis and presents corroborating evidence that supports the potential for atherosclerosis regression through the restoration of vascular copper homeostasis. We posit that these insights may pave the way for innovative therapeutic approaches aimed at the reversal of atherosclerosis.
Collapse
Affiliation(s)
- Xiao Zuo
- Tasly Stem Cell Biology Laboratory, Tasly Biopharmaceutical Co., Tianjin, China
| | - Xueqin Ding
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yaya Zhang
- Tasly Stem Cell Biology Laboratory, Tasly Biopharmaceutical Co., Tianjin, China
| | - Y James Kang
- Tasly Stem Cell Biology Laboratory, Tasly Biopharmaceutical Co., Tianjin, China
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Fassett MS, Braz JM, Castellanos CA, Salvatierra JJ, Sadeghi M, Yu X, Schroeder AW, Caston J, Munoz-Sandoval P, Roy S, Lazarevsky S, Mar DJ, Zhou CJ, Shin JS, Basbaum AI, Ansel KM. IL-31-dependent neurogenic inflammation restrains cutaneous type 2 immune response in allergic dermatitis. Sci Immunol 2023; 8:eabi6887. [PMID: 37831760 PMCID: PMC10890830 DOI: 10.1126/sciimmunol.abi6887] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/18/2023] [Indexed: 10/15/2023]
Abstract
Despite robust literature associating IL-31 with pruritic inflammatory skin diseases, its influence on cutaneous inflammation and the interplay between inflammatory and neurosensory pathways remain unmapped. Here, we examined the consequences of disrupting Il31 and its receptor Il31ra in a mouse model of house dust mite (HDM)-induced allergic dermatitis. Il31-deficient mice displayed a deficit in HDM dermatitis-associated scratching, consistent with its well-established role as a pruritogen. In contrast, Il31 deficiency increased the number and proportion of cutaneous type 2 cytokine-producing CD4+ T cells and serum IgE in response to HDM. Furthermore, Il4ra+ monocytes and macrophages capable of fueling a feedforward type 2 inflammatory loop were selectively enriched in Il31ra-deficient HDM dermatitis skin. Thus, IL-31 is not strictly a proinflammatory cytokine but rather an immunoregulatory factor that limits the magnitude of type 2 inflammatory responses in skin. Our data support a model wherein IL-31 activation of IL31RA+ pruritoceptors triggers release of calcitonin gene-related protein (CGRP), which can mediate neurogenic inflammation, inhibit CD4+ T cell proliferation, and reduce T cell production of the type 2 cytokine IL-13. Together, these results illustrate a previously unrecognized neuroimmune pathway that constrains type 2 tissue inflammation in the setting of chronic cutaneous allergen exposure and may explain paradoxical dermatitis flares in atopic patients treated with anti-IL31RA therapy.
Collapse
Affiliation(s)
- Marlys S Fassett
- Department of Dermatology, University of California, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
- Sandler Asthma Basic Research Center (SABRe), San Francisco, CA, USA
| | - Joao M Braz
- Department of Anatomy, University of California, San Francisco, CA, USA
| | - Carlos A Castellanos
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
- Sandler Asthma Basic Research Center (SABRe), San Francisco, CA, USA
| | | | - Mahsa Sadeghi
- Department of Anatomy, University of California, San Francisco, CA, USA
| | - Xiaobing Yu
- Department of Anatomy, University of California, San Francisco, CA, USA
- Department of Anesthesiology, University of California, San Francisco, CA, USA
| | | | - Jaela Caston
- Department of Dermatology, University of California, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Priscila Munoz-Sandoval
- Department of Dermatology, University of California, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
- Sandler Asthma Basic Research Center (SABRe), San Francisco, CA, USA
- Howard Hughes Medical Institute, San Francisco, CA 94143, USA
| | - Suparna Roy
- Department of Dermatology, University of California, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
- Sandler Asthma Basic Research Center (SABRe), San Francisco, CA, USA
| | - Steven Lazarevsky
- Department of Dermatology, University of California, San Francisco, CA, USA
| | - Darryl J Mar
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Connie J Zhou
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Jeoung-Sook Shin
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
- Sandler Asthma Basic Research Center (SABRe), San Francisco, CA, USA
| | - Allan I Basbaum
- Department of Anatomy, University of California, San Francisco, CA, USA
| | - K Mark Ansel
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
- Sandler Asthma Basic Research Center (SABRe), San Francisco, CA, USA
| |
Collapse
|
4
|
Zhao F, Bai Y, Xiang X, Pang X. The role of fibromodulin in inflammatory responses and diseases associated with inflammation. Front Immunol 2023; 14:1191787. [PMID: 37483637 PMCID: PMC10360182 DOI: 10.3389/fimmu.2023.1191787] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/23/2023] [Indexed: 07/25/2023] Open
Abstract
Inflammation is an immune response that the host organism eliminates threats from foreign objects or endogenous signals. It plays a key role in the progression, prognosis as well as therapy of diseases. Chronic inflammatory diseases have been regarded as the main cause of death worldwide at present, which greatly affect a vast number of individuals, producing economic and social burdens. Thus, developing drugs targeting inflammation has become necessary and attractive in the world. Currently, accumulating evidence suggests that small leucine-rich proteoglycans (SLRPs) exhibit essential roles in various inflammatory responses by acting as an anti-inflammatory or pro-inflammatory role in different scenarios of diseases. Of particular interest was a well-studied member, termed fibromodulin (FMOD), which has been largely explored in the role of inflammatory responses in inflammatory-related diseases. In this review, particular focus is given to the role of FMOD in inflammatory response including the relationship of FMOD with the complement system and immune cells, as well as the role of FMOD in the diseases associated with inflammation, such as skin wounding healing, osteoarthritis (OA), tendinopathy, atherosclerosis, and heart failure (HF). By conducting this review, we intend to gain insight into the role of FMOD in inflammation, which may open the way for the development of new anti-inflammation drugs in the scenarios of different inflammatory-related diseases.
Collapse
Affiliation(s)
- Feng Zhao
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Bai
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Xuerong Xiang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoxiao Pang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Palideh A, Vaghari-Tabari M, Nosrati Andevari A, Qujeq D, Asemi Z, Alemi F, Rouhani Otaghsara H, Rafieyan S, Yousefi B. MicroRNAs and Periodontal Disease: Helpful Therapeutic Targets? Adv Pharm Bull 2023; 13:423-434. [PMID: 37646047 PMCID: PMC10460817 DOI: 10.34172/apb.2023.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 05/07/2022] [Accepted: 07/01/2022] [Indexed: 09/01/2023] Open
Abstract
Periodontal disease is the most common oral disease. This disease can be considered as an inflammatory disease. The immune response to bacteria accumulated in the gum line plays a key role in the pathogenesis of periodontal disease. In addition to immune cells, periodontal ligament cells and gingival epithelial cells are also involved in the pathogenesis of this disease. miRNAs which are small RNA molecules with around 22 nucleotides have a considerable relationship with the immune system affecting a wide range of immunological events. These small molecules are also in relation with periodontium tissues especially periodontal ligament cells. Extensive studies have been performed in recent years on the role of miRNAs in the pathogenesis of periodontal disease. In this review paper, we have reviewed the results of these studies and discussed the role of miRNAs in the immunopathogenesis of periodontal disease comprehensively. miRNAs play an important role in the pathogenesis of periodontal disease and maybe helpful therapeutic targets for the treatment of periodontal disease.
Collapse
Affiliation(s)
| | - Mostafa Vaghari-Tabari
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Nosrati Andevari
- Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Forough Alemi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sona Rafieyan
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Bahman Yousefi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Ma DW, Ha J, Yoon KS, Kang I, Choi TG, Kim SS. Innate Immune System in the Pathogenesis of Non-Alcoholic Fatty Liver Disease. Nutrients 2023; 15:2068. [PMID: 37432213 DOI: 10.3390/nu15092068] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 07/12/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a prevalent condition characterized by lipid accumulation in hepatocytes with low alcohol consumption. The development of sterile inflammation, which occurs in response to a range of cellular stressors or injuries, has been identified as a major contributor to the pathogenesis of NAFLD. Recent studies of the pathogenesis of NAFLD reported the newly developed roles of damage-associated molecular patterns (DAMPs). These molecules activate pattern recognition receptors (PRRs), which are placed in the infiltrated neutrophils, dendritic cells, monocytes, or Kupffer cells. DAMPs cause the activation of PRRs, which triggers a number of immunological responses, including the generation of cytokines that promote inflammation and the localization of immune cells to the site of the damage. This review provides a comprehensive overview of the impact of DAMPs and PRRs on the development of NAFLD.
Collapse
Affiliation(s)
- Dae Won Ma
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung Sik Yoon
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Tae Gyu Choi
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
7
|
Duan R, Liu Y, Tang D, Xiao S, Lin R, Zhao M. Single-cell RNA-Seq reveals CVI-mAb-induced Lyve1 + M2-like macrophages reduce atherosclerotic plaque area in Apoe -/- mice. Int Immunopharmacol 2023; 116:109794. [PMID: 36736225 DOI: 10.1016/j.intimp.2023.109794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023]
Abstract
BACKGROUND Atherosclerosis is a lipid imbalance-induced autoimmune disease. Macrophages participate in the development and progression of atherosclerosis. Although numerous studies have utilized single-cell RNA sequencing to identify the role of various macrophage phenotypes in atherosclerosis, the macrophage subpopulations that have therapeutic benefits against atherosclerosis are not fully understood. METHODS In this study, a single-cell RNA sequencing analysis was performed on the F4/80+ macrophages of apolipoprotein E-deficient (Apoe-/-) mice on a normal diet (ND), a high-fat diet (HFD), and a high-fat diet (HFD) with collagen VI monoclonal antibodies (CVI-mAb) treatment. A population of M2-like macrophages expressing the hyaluronan receptor Lyve1 was almost exclusively detectable in Apoe-/- mice on an HFD with CVI-mAb treatment, compared with other groups. Differential gene expression and gene ontology enrichment analyses revealed specific gene expression patterns that distinguished this macrophage subset and uncovered its functions. RESULTS Lyve1+ M2 macrophages appear to have specialized functions in lipid metabolism. Lyve1+ M2-like macrophages were sorted via fluorescence- activated cell sorting (FACS) and adoptively transferred to Apoe-/- mice fed an HFD. CONCLUSION Our result showed that Lyve1+ M2 macrophages could reduce the plaque areas in Apoe-/- mice.
Collapse
Affiliation(s)
- Rui Duan
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yan Liu
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Dongmei Tang
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Sujun Xiao
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Run Lin
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ming Zhao
- Department of Pathophysiology, Key Lab for Shock and Microcirculation Research of Guangdong, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
8
|
Mamilos A, Winter L, Schmitt VH, Barsch F, Grevenstein D, Wagner W, Babel M, Keller K, Schmitt C, Gürtler F, Schreml S, Niedermair T, Rupp M, Alt V, Brochhausen C. Macrophages: From Simple Phagocyte to an Integrative Regulatory Cell for Inflammation and Tissue Regeneration-A Review of the Literature. Cells 2023; 12:276. [PMID: 36672212 PMCID: PMC9856654 DOI: 10.3390/cells12020276] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/29/2022] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
The understanding of macrophages and their pathophysiological role has dramatically changed within the last decades. Macrophages represent a very interesting cell type with regard to biomaterial-based tissue engineering and regeneration. In this context, macrophages play a crucial role in the biocompatibility and degradation of implanted biomaterials. Furthermore, a better understanding of the functionality of macrophages opens perspectives for potential guidance and modulation to turn inflammation into regeneration. Such knowledge may help to improve not only the biocompatibility of scaffold materials but also the integration, maturation, and preservation of scaffold-cell constructs or induce regeneration. Nowadays, macrophages are classified into two subpopulations, the classically activated macrophages (M1 macrophages) with pro-inflammatory properties and the alternatively activated macrophages (M2 macrophages) with anti-inflammatory properties. The present narrative review gives an overview of the different functions of macrophages and summarizes the recent state of knowledge regarding different types of macrophages and their functions, with special emphasis on tissue engineering and tissue regeneration.
Collapse
Affiliation(s)
- Andreas Mamilos
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
| | - Lina Winter
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
| | - Volker H. Schmitt
- Department of Cardiology, University Medical Centre, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, 55131 Mainz, Germany
| | - Friedrich Barsch
- Medical Center, Faculty of Medicine, Institute for Exercise and Occupational Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - David Grevenstein
- Clinic and Polyclinic for Orthopedics and Trauma Surgery, University Hospital of Cologne, 50937 Cologne, Germany
| | - Willi Wagner
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Translational Lung Research Centre Heidelberg (TLRC), German Lung Research Centre (DZL), 69120 Heidelberg, Germany
| | - Maximilian Babel
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
| | - Karsten Keller
- Department of Cardiology, University Medical Centre, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Department of Sports Medicine, Medical Clinic VII, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Christine Schmitt
- Department of Internal Medicine, St. Vincenz and Elisabeth Hospital of Mainz (KKM), 55131 Mainz, Germany
| | - Florian Gürtler
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
| | - Stephan Schreml
- Department of Dermatology, University Medical Centre Regensburg, 93053 Regensburg, Germany
| | - Tanja Niedermair
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
| | - Markus Rupp
- Department for Trauma Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Volker Alt
- Department for Trauma Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Christoph Brochhausen
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
- Institute of Pathology, University Medical Centre Mannheim, Ruprecht-Karls-University Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
9
|
Zuo G, Gao Y, Lu G, Bu M, Liu J, Zhang J, Fan X, Chen H, Wang X, She Y. Auriculotherapy Modulates Macrophage Polarization to Reduce Inflammatory Response in a Rat Model of Acne. Mediators Inflamm 2023; 2023:6627393. [PMID: 37159798 PMCID: PMC10163966 DOI: 10.1155/2023/6627393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/28/2023] [Accepted: 04/17/2023] [Indexed: 05/11/2023] Open
Abstract
Background The inflammatory response is an important part of the pathogenesis of acne vulgaris. Auriculotherapy has been shown to have a good therapeutic effect on this disease. The aim of this study was to explore the mechanism underlying the anti-inflammatory effect of auriculotherapy in the treatment of acne vulgaris. Methods Propionibacterium acnes was injected subcutaneously into the ears of rats to establish an animal model of acne. The auriculotherapy intervention in rats consisted of auricular bloodletting therapy (ABT), auricular point sticking (APS), or a combination of both (ABPS). The anti-inflammatory effects of auriculotherapy were evaluated by measuring changes in ear thickness, local body surface microcirculation in the ear, and serum inflammatory factors in rats. The polarization of macrophages was analyzed by flow cytometry, and the expression of TLR2/NF-κB signaling pathway in the target tissues was analyzed using western blot. Results ABT, APS, and ABPS all reduced the erythema of ear acne, decreased microcirculation in localized ear acne, and decreased serum levels of TNF-α and IL-1β in rats. Meanwhile, the three interventions reduced M1-type macrophages and increased M2-type macrophages; only APS could reduce the expression of TLR2/NF-κB signaling pathway. Conclusion ABT, APS, and ABPS can improve the inflammatory symptoms of acne and reduce inflammatory cytokines. APS may exert anti-inflammatory effects by altering macrophage polarization and decreasing TLR2/NF-κB expression.
Collapse
Affiliation(s)
- Guang Zuo
- School of Acupuncture-Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yidan Gao
- School of Acupuncture-Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Guangtong Lu
- School of Acupuncture-Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Ming Bu
- School of Acupuncture-Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Jun Liu
- Department of Rehabilitation, School of Acupuncture-Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
- Hebei International Joint Research Center for Dominant Diseases in Chinese Medicine and Acupuncture, Shijiazhuang 050091, China
| | - Juncha Zhang
- Hebei International Joint Research Center for Dominant Diseases in Chinese Medicine and Acupuncture, Shijiazhuang 050091, China
| | - Xisheng Fan
- Hebei International Joint Research Center for Dominant Diseases in Chinese Medicine and Acupuncture, Shijiazhuang 050091, China
| | - Hao Chen
- School of Acupuncture-Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Xuesong Wang
- School of Acupuncture-Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yanfen She
- Hebei International Joint Research Center for Dominant Diseases in Chinese Medicine and Acupuncture, Shijiazhuang 050091, China
- Department of Experimental Acupuncture, School of Acupuncture-Moxibustion and Tuina, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| |
Collapse
|
10
|
Simão JJ, Cruz MM, Abdala FM, Bolsoni-Lopes A, Armelin-Correa L, Alonso-Vale MIC. Palmitoleic Acid Acts on Adipose-Derived Stromal Cells and Promotes Anti-Hypertrophic and Anti-Inflammatory Effects in Obese Mice. Pharmaceuticals (Basel) 2022; 15:1194. [PMID: 36297306 PMCID: PMC9609051 DOI: 10.3390/ph15101194] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 04/16/2024] Open
Abstract
Adipose tissue (AT) secretes adipokines, modulators of low-grade chronic inflammation in obesity. Molecules that induce the emergence of new and functional adipocytes in AT can alleviate or prevent inflammatory and metabolic disorders. The objective of this study was to investigate the role of palmitoleic acid (n7) in 3T3-L1 and primary pre-adipocyte differentiation and AT inflammation. C57BL/6j mice were submitted to a control or high-fat diet (HFD) for 8 weeks, and treated with n7 for 4 weeks. Mice consuming a HFD presented an increase in body weight, epididymal (Epi) fat mass, and Epi adipocytes size. N7 treatment attenuated the body weight gain and completely prevented the hypertrophy of Epi adipocytes, but not the increment in Epi mass induced by the HFD, suggesting a greater adipocytes hyperplasia in animals treated with n7. It was agreed that n7 increased 3T3-L1 proliferation and differentiation, as well as the expression of genes involved in adipogenesis, such as Cebpa, Pparg, aP2, Perilipin, and Scl2a4. Furthermore, n7 decreased the inflammatory cytokines Mcp1, Tnfa, Il6, Cxcl10, and Nos2 genes in Epi vascular stromal cells, but not in the whole AT. These findings show that n7 exerts anti-hypertrophic effects in adipocytes which influence the surrounding cells by attenuating the overexpression of pro-inflammatory cytokines triggered by a HFD.
Collapse
Affiliation(s)
- Jussara J. Simão
- Post-Graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of Sao Paulo, Diadema 09913-030, SP, Brazil
| | - Maysa M. Cruz
- Post-Graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of Sao Paulo, Diadema 09913-030, SP, Brazil
| | - Fernanda M. Abdala
- Department of Biological Sciences, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of Sao Paulo, Diadema 09913-030, SP, Brazil
| | - Andressa Bolsoni-Lopes
- Department of Nursing, Health Sciences Center, Federal University of Espirito Santo, Vitoria 29075-910, ES, Brazil
| | - Lucia Armelin-Correa
- Post-Graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of Sao Paulo, Diadema 09913-030, SP, Brazil
- Department of Biological Sciences, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of Sao Paulo, Diadema 09913-030, SP, Brazil
| | - Maria Isabel C. Alonso-Vale
- Post-Graduate Program in Chemical Biology, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of Sao Paulo, Diadema 09913-030, SP, Brazil
- Department of Biological Sciences, Institute of Environmental Sciences, Chemical and Pharmaceutical, Federal University of Sao Paulo, Diadema 09913-030, SP, Brazil
| |
Collapse
|
11
|
Sowers ML, Tang H, Singh VK, Khan A, Mishra A, Restrepo BI, Jagannath C, Zhang K. Multi-OMICs analysis reveals metabolic and epigenetic changes associated with macrophage polarization. J Biol Chem 2022; 298:102418. [PMID: 36030823 PMCID: PMC9525912 DOI: 10.1016/j.jbc.2022.102418] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 12/04/2022] Open
Abstract
Macrophages (MФ) are an essential immune cell for defense and repair that travel to different tissues and adapt based on local stimuli. A critical factor that may govern their polarization is the crosstalk between metabolism and epigenetics. However, simultaneous measurements of metabolites, epigenetics, and proteins (phenotype) have been a major technical challenge. To address this, we have developed a novel triomics approach using mass spectrometry to comprehensively analyze metabolites, proteins, and histone modifications in a single sample. To demonstrate this technique, we investigated the metabolic-epigenetic-phenotype axis following polarization of human blood–derived monocytes into either ‘proinflammatory M1-’ or ‘anti-inflammatory M2-’ MФs. We report here a complex relationship between arginine, tryptophan, glucose, and the citric acid cycle metabolism, protein and histone post-translational modifications, and human macrophage polarization that was previously not described. Surprisingly, M1-MФs had globally reduced histone acetylation levels but high levels of acetylated amino acids. This suggests acetyl-CoA was diverted, in part, toward acetylated amino acids. Consistent with this, stable isotope tracing of glucose revealed reduced usage of acetyl-CoA for histone acetylation in M1-MФs. Furthermore, isotope tracing also revealed MФs uncoupled glycolysis from the tricarboxylic acid cycle, as evidenced by poor isotope enrichment of succinate. M2-MФs had high levels of kynurenine and serotonin, which are reported to have immune-suppressive effects. Kynurenine is upstream of de novo NAD+ metabolism that is a necessary cofactor for Sirtuin-type histone deacetylases. Taken together, we demonstrate a complex interplay between metabolism and epigenetics that may ultimately influence cell phenotype.
Collapse
Affiliation(s)
- Mark L Sowers
- Dept. of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX
| | - Hui Tang
- Dept. of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX
| | - Vipul K Singh
- Dept. of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX
| | - Arshad Khan
- Dept. of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX
| | - Abhishek Mishra
- Dept. of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX
| | | | - Chinnaswamy Jagannath
- Dept. of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX.
| | - Kangling Zhang
- Dept. of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX.
| |
Collapse
|
12
|
Yadav S, Dwivedi A, Tripathi A. Biology of macrophage fate decision: Implication in inflammatory disorders. Cell Biol Int 2022; 46:1539-1556. [PMID: 35842768 DOI: 10.1002/cbin.11854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/04/2022] [Accepted: 06/18/2022] [Indexed: 11/11/2022]
Abstract
The activation of immune cells in response to stimuli present in their microenvironment is regulated by their metabolic profile. Unlike the signal transduction events, which overlap to a huge degree in diverse cellular processes, the metabolome of a cell reflects a more precise picture of cell physiology and function. Different factors governing the cellular metabolome include receptor signaling, macro and micronutrients, normoxic and hypoxic conditions, energy needs, and biomass demand. Macrophages have enormous plasticity and can perform diverse functions depending upon their phenotypic state. This review presents recent updates on the cellular metabolome and molecular patterns associated with M1 and M2 macrophages, also termed "classically activated macrophages" and "alternatively activated macrophages," respectively. M1 macrophages are proinflammatory in nature and predominantly Th1-specific immune responses induce their polarization. On the contrary, M2 macrophages are anti-inflammatory in nature and primarily participate in Th2-specific responses. Interestingly, the same macrophage cell can adapt to the M1 or M2 phenotype depending upon the clues from its microenvironment. We elaborate on the various tissue niche-specific factors, which govern macrophage metabolism and heterogeneity. Furthermore, the current review provides an in-depth account of deregulated macrophage metabolism associated with pathological disorders such as cancer, obesity, and atherosclerosis. We further highlight significant differences in various metabolic pathways governing the cellular bioenergetics and their impact on macrophage effector functions and associated disorders.
Collapse
Affiliation(s)
- Sarika Yadav
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Ashish Dwivedi
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Anurag Tripathi
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
13
|
Song L, Zhang J, Ma D, Fan Y, Lai R, Tian W, Zhang Z, Ju J, Xu H. A Bibliometric and Knowledge-Map Analysis of Macrophage Polarization in Atherosclerosis From 2001 to 2021. Front Immunol 2022; 13:910444. [PMID: 35795675 PMCID: PMC9250973 DOI: 10.3389/fimmu.2022.910444] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/20/2022] [Indexed: 12/24/2022] Open
Abstract
In recent years, studies of macrophage polarization in atherosclerosis have become an intense area of research. However, there are few bibliometric analyses regarding this area. In this review, we used CiteSpace 5.8.R3 and VOSviewer 1.6.16 software to perform text mining and knowledge-map analysis. We explored the development process, knowledge structure, research hotspots, and potential trends using a bibliometric and knowledge-map analysis to provide researchers with a macroscopic view of this field. The studies concerning macrophage polarization in atherosclerosis were downloaded from the Web of Science Core Collection. A total of 781 studies were identified and published by 954 institutions from 51 countries/regions. The number of studies of macrophage polarization in atherosclerosis increased over time. Arteriosclerosis Thrombosis and Vascular Biology published the highest number of articles and was the top co-cited journal. De Winther was the most prolific researcher, and Moore had the most co-citations. The author co-occurrence map illustrated that there was active cooperation among researchers. The most productive countries were the United States and China. Amsterdam University, Harvard University, and Maastricht University were the top three productive institutions in the research field. Keyword Co-occurrence, Clusters, and Burst analysis showed that “inflammation,” “monocyte,” “NF kappa B,” “mechanism,” and “foam cell” appeared with the highest frequency in studies. “Oxidative stress,” “coronary heart disease,” and “prevention” were the strongest citation burst keywords from 2019 to 2021.
Collapse
Affiliation(s)
- Luxia Song
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dan Ma
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yixuan Fan
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Runmin Lai
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wende Tian
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zihao Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianqing Ju
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Xu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Hao Xu,
| |
Collapse
|
14
|
Abstract
Coronary atherosclerosis is a chronic inflammatory disease that can lead to varying degrees of blood flow obstruction and a common pathophysiological basis of cardiovascular disease. Inflammatory factors run through the whole process of atherosclerotic lesions. Macrophages, T cells, and neutrophils play important roles in the process of atherosclerotic inflammation. Considering the evolutionary characteristics, atherosclerosis can be divided into different stages as early atherosclerotic plaque, plaque formation stage, and plaque rupture stage. In this paper, the changes in inflammatory cells at different stages of lesions and their related mechanisms are discussed, which can provide new insights from a clinical to bench perspective for atherosclerosis me chanism.
Collapse
|
15
|
Mogilenko DA, Danko K, Larionova EE, Shavva VS, Kudriavtsev IV, Nekrasova EV, Burnusuz AV, Gorbunov NP, Trofimov AV, Zhakhov AV, Ivanov IA, Orlov SV. Differentiation of human macrophages with anaphylatoxin C3a impairs alternative M2 polarization and decreases lipopolysaccharide‐induced cytokine secretion. Immunol Cell Biol 2022; 100:186-204. [DOI: 10.1111/imcb.12534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 01/06/2022] [Accepted: 02/07/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Denis A Mogilenko
- Department of Biochemistry Institute of Experimental Medicine St. Petersburg Russia
- Department of Embryology St. Petersburg State University St. Petersburg Russia
| | - Katerina Danko
- Department of Biochemistry Institute of Experimental Medicine St. Petersburg Russia
- Department of Cytology and Histology St. Petersburg State University St. Petersburg Russia
| | | | - Vladimir S Shavva
- Department of Biochemistry Institute of Experimental Medicine St. Petersburg Russia
| | - Igor V Kudriavtsev
- Department of Cytology and Histology St. Petersburg State University St. Petersburg Russia
- Department of Immunology Institute of Experimental Medicine St. Petersburg Russia
| | | | - Alexandra V Burnusuz
- Department of Biochemistry Institute of Experimental Medicine St. Petersburg Russia
- Department of Cytology and Histology St. Petersburg State University St. Petersburg Russia
- Department of Immunology Institute of Experimental Medicine St. Petersburg Russia
| | - Nikolay P Gorbunov
- The Research Institute of Highly Pure Biopreparations St. Petersburg Russia
| | | | | | | | - Sergey V Orlov
- Department of Biochemistry Institute of Experimental Medicine St. Petersburg Russia
- Department of Embryology St. Petersburg State University St. Petersburg Russia
| |
Collapse
|
16
|
Pathogenic TNF-α drives peripheral nerve inflammation in an Aire-deficient model of autoimmunity. Proc Natl Acad Sci U S A 2022; 119:2114406119. [PMID: 35058362 PMCID: PMC8795502 DOI: 10.1073/pnas.2114406119] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2021] [Indexed: 01/19/2023] Open
Abstract
Immune cells infiltrate the peripheral nervous system (PNS) after injury and with autoimmunity, but their net effect is divergent. After injury, immune cells are reparative, while in inflammatory neuropathies (e.g., Guillain Barré Syndrome and chronic inflammatory demyelinating polyneuropathy), immune cells are proinflammatory and promote autoimmune demyelination. An understanding of immune cell phenotypes that distinguish these conditions may, therefore, reveal new therapeutic targets for switching immune cells from an inflammatory role to a reparative state. In an autoimmune regulator (Aire)-deficient mouse model of inflammatory neuropathy, we used single-cell RNA sequencing of sciatic nerves to discover a transcriptionally heterogeneous cellular landscape, including multiple myeloid, innate lymphoid, and lymphoid cell types. Analysis of cell-cell ligand-receptor interactions uncovered a macrophage-mediated tumor necrosis factor-α (TNF-α) signaling axis that is induced by interferon-γ and required for initiation of autoimmune demyelination. Developmental trajectory visualization suggested that TNF-α signaling is associated with metabolic reprogramming of macrophages and polarization of macrophages from a reparative state in injury to a pathogenic, inflammatory state in autoimmunity. Autocrine TNF-α signaling induced macrophage expression of multiple genes (Clec4e, Marcksl1, Cxcl1, and Cxcl10) important in immune cell activation and recruitment. Genetic and antibody-based blockade of TNF-α/TNF-α signaling ameliorated clinical neuropathy, peripheral nerve infiltration, and demyelination, which provides preclinical evidence that the TNF-α axis may be effectively targeted to resolve inflammatory neuropathies.
Collapse
|
17
|
Single-Cell RNA-Seq Reveals a Crosstalk between Hyaluronan Receptor LYVE-1-Expressing Macrophages and Vascular Smooth Muscle Cells. Cells 2022; 11:cells11030411. [PMID: 35159221 PMCID: PMC8834524 DOI: 10.3390/cells11030411] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/11/2022] Open
Abstract
Background: Atherosclerosis is a chronic inflammatory disease where macrophages participate in the progression of the disease. However, the role of resident-like macrophages (res-like) in the atherosclerotic aorta is not completely understood. Methods: A single-cell RNA sequencing analysis of CD45+ leukocytes in the atherosclerotic aorta of apolipoprotein E–deficient (Apoe−/−) mice on a normal cholesterol diet (NCD) or a high cholesterol diet (HCD), respecting the side-to-specific predisposition to atherosclerosis, was performed. A population of res-like macrophages expressing hyaluronan receptor LYVE-1 was investigated via flow cytometry, co-culture experiments, and immunofluorescence in human atherosclerotic plaques from carotid artery disease patients (CAD). Results: We identified 12 principal leukocyte clusters with distinct atherosclerosis disease-relevant gene expression signatures. LYVE-1+ res-like macrophages, expressing a high level of CC motif chemokine ligand 24 (CCL24, eotaxin-2), expanded under hypercholesteremia in Apoe−/− mice and promoted VSMC phenotypic modulation to osteoblast/chondrocyte-like cells, ex vivo, in a CCL24-dependent manner. Moreover, the abundance of LYVE-1+CCL24+ macrophages and elevated systemic levels of CCL24 were associated with vascular calcification and CAD events. Conclusions: LYVE-1 res-like macrophages, via the secretion of CCL24, promote the transdifferentiation of VSMC to osteogenic-like cells with a possible role in vascular calcification and likely a detrimental role in atherosclerotic plaque destabilization.
Collapse
|
18
|
Singh S, Bansal A, Singh V, Chopra T, Poddar J. Flavonoids, alkaloids and terpenoids: a new hope for the treatment of diabetes mellitus. J Diabetes Metab Disord 2022; 21:941-950. [PMID: 35673446 PMCID: PMC9167359 DOI: 10.1007/s40200-021-00943-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/24/2021] [Indexed: 01/11/2023]
Abstract
Diabetes mellitus is a metabolic syndrome characterized by a hyperglycemic state and multi-organ failure. Millions of people worldwide are suffering from this deadly disease taking a hit on their pocket and mental health in the name of its treatment. Modern medical practices with new technological advancements and discoveries have made revolutionary changes in the treatment. But, unfortunately, Glucose-lowering drugs used have many accompanying effects such as chronic vascular disease, renal malfunction, liver disease and, many skin problems. These complications have made us think about alternative treatments for diabetes with minimum or no side effects. Nowadays, in addition to modern medicine, herbal treatment has been suggested to treat diabetes mellitus. These herbal medicines contain biological macromolecules such as flavonoids, Terpenoids, glycosides, and alkaloids, which show versatile anti-diabetic effects. These phytochemicals are generally considered safe, and naturally occurring compounds have a potential role in preventing or controlling diabetes mellitus. The underlying mechanism of their anti-diabetic effects includes improvement in insulin secretion, decrease in insulin resistance, enhanced liver glycogen synthesis, antioxidant and anti-inflammatory activities. In this review, we have focused on the mechanism of various phytochemicals targeting hyperglycemia and its underlying pathogenesis.
Collapse
Affiliation(s)
- Sukhpal Singh
- Department of Biochemistry and Central Research Cell, M.M. Institute of Medical Sciences and Research, University Research Fellow, Maharishi Markandeswar (Deemed to be University, Mullana, Ambala, 133207 India
| | - Abhishek Bansal
- Department of Biochemistry, Government Medical College, RAJOURI, Rajouri, Jammu and Kashmir 185135 India
| | - Vikramjeet Singh
- Kalpana Chawla Government Medical College, Karnal, Haryana India
| | - Tanya Chopra
- Department Of Biochemistry and Central Research Cell, M.M. Institute of Medical Sciences and Research, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207 India
| | - Jit Poddar
- Department of Microbiology, RG Kar Medical College & Hospital, Kolkata, West Bengal 700003 India
| |
Collapse
|
19
|
Kang H, Bang JY, Mo Y, Shin JW, Bae B, Cho SH, Kim HY, Kang HR. Effect of Acinetobacter lwoffii on the modulation of macrophage activation and asthmatic inflammation. Clin Exp Allergy 2021; 52:518-529. [PMID: 34874580 DOI: 10.1111/cea.14077] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/12/2021] [Accepted: 12/04/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Although lung macrophages are directly exposed to external stimuli, their exact immunologic roles in asthma are still largely unknown. The aim of this study was to investigate the anti-asthmatic effect of Acinetobacter lwoffii in terms of lung macrophage modulation. METHODS Six-week-old female BALB/c mice were sensitized and challenged with ovalbumin (OVA) with or without intranasal administration of A. lwoffii during the sensitization period. Airway hyperresponsiveness and inflammation were evaluated. Using flow cytometry, macrophages were subclassified according to their activation status. In the in vitro study, a murine alveolar macrophage cell line (MH-S) treated with or without A. lwoffii before IL-13 stimulation were analysed by quantitative RT-PCR. RESULTS In a murine asthma model, the number of inflammatory cells, including macrophages and eosinophils, decreased in mice treated with A. lwoffii (A. lwoffii/OVA group) compared with untreated mice (OVA group). The enhanced expression of MHCII in macrophages in the OVA group was decreased by A. lwoffii treatment. M2 macrophage subtypes were significantly altered. A. lwoffii treatment decreased CD11b+ M2a and CD11b+ M2c macrophages, which showed strong positive correlations with Th2 cells, ILC2 and eosinophils. In contrast, CD11b+ M2b macrophages were significantly increased by A. lwoffii treatment and showed strong positive correlations with ILC1 and ILC3. In vitro, A. lwoffii down-regulated the expression of M2 markers related but up-regulated those related to M2b macrophages. CONCLUSIONS AND CLINICAL RELEVANCE Intranasal A. lwoffii exposure suppresses asthma development by suppressing the type 2 response via modulating lung macrophage activation, shifting M2a and M2c macrophages to M2b macrophages.
Collapse
Affiliation(s)
- Hanbit Kang
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Centre, Seoul, Korea.,Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Ji-Young Bang
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Centre, Seoul, Korea.,Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Yosep Mo
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Centre, Seoul, Korea.,Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Woo Shin
- Department of Medical Science, Seoul National University College of Medicine, Seoul, Korea
| | - Boram Bae
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Centre, Seoul, Korea
| | - Sang-Heon Cho
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Centre, Seoul, Korea.,Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Hye Young Kim
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Centre, Seoul, Korea.,Department of Medical Science, Seoul National University College of Medicine, Seoul, Korea
| | - Hye-Ryun Kang
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Centre, Seoul, Korea.,Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
20
|
Alam W, Rocca C, Khan H, Hussain Y, Aschner M, De Bartolo A, Amodio N, Angelone T, Cheang WS. Current Status and Future Perspectives on Therapeutic Potential of Apigenin: Focus on Metabolic-Syndrome-Dependent Organ Dysfunction. Antioxidants (Basel) 2021; 10:antiox10101643. [PMID: 34679777 PMCID: PMC8533599 DOI: 10.3390/antiox10101643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 12/15/2022] Open
Abstract
Metabolic syndrome and its associated disorders such as obesity, insulin resistance, atherosclerosis and type 2 diabetes mellitus are globally prevalent. Different molecules showing therapeutic potential are currently available for the management of metabolic syndrome, although their efficacy has often been compromised by their poor bioavailability and side effects. Studies have been carried out on medicinal plant extracts for the treatment and prevention of metabolic syndrome. In this regard, isolated pure compounds have shown promising efficacy for the management of metabolic syndrome, both in preclinical and clinical settings. Apigenin, a natural bioactive flavonoid widely present in medicinal plants, functional foods, vegetables and fruits, exerts protective effects in models of neurological disorders and cardiovascular diseases and most of these effects are attributed to its antioxidant action. Various preclinical and clinical studies carried out so far show a protective effect of apigenin against metabolic syndrome. Herein, we provide a comprehensive review on both in vitro and in vivo evidence related to the promising antioxidant role of apigenin in cardioprotection, neuroprotection and renoprotection, and to its beneficial action in metabolic-syndrome-dependent organ dysfunction. We also provide evidence on the potential of apigenin in the prevention and/or treatment of metabolic syndrome, analysing the potential and limitation of its therapeutic use.
Collapse
Affiliation(s)
- Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Carmine Rocca
- Laboratory of Cellular and Molecular Cardiovascular Physiology, Department of Biology, Ecology and Earth Sciences (Di.B.E.S.T.), University of Calabria, 87036 Rende, Italy; (C.R.); (A.D.B.)
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
- Correspondence: or (H.K.); (N.A.); (T.A.)
| | - Yaseen Hussain
- College of Pharmaceutical Sciences, Soochow University, Suzhou 221400, China;
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY 10461, USA;
| | - Anna De Bartolo
- Laboratory of Cellular and Molecular Cardiovascular Physiology, Department of Biology, Ecology and Earth Sciences (Di.B.E.S.T.), University of Calabria, 87036 Rende, Italy; (C.R.); (A.D.B.)
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
- Correspondence: or (H.K.); (N.A.); (T.A.)
| | - Tommaso Angelone
- Laboratory of Cellular and Molecular Cardiovascular Physiology, Department of Biology, Ecology and Earth Sciences (Di.B.E.S.T.), University of Calabria, 87036 Rende, Italy; (C.R.); (A.D.B.)
- National Institute of Cardiovascular Research I.N.R.C., 40126 Bologna, Italy
- Correspondence: or (H.K.); (N.A.); (T.A.)
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao 999078, China;
| |
Collapse
|
21
|
Bauer TA, Horvat NK, Marques O, Chocarro S, Mertens C, Colucci S, Schmitt S, Carrella LM, Morsbach S, Koynov K, Fenaroli F, Blümler P, Jung M, Sotillo R, Hentze MW, Muckenthaler MU, Barz M. Core Cross-Linked Polymeric Micelles for Specific Iron Delivery: Inducing Sterile Inflammation in Macrophages. Adv Healthc Mater 2021; 10:e2100385. [PMID: 34137217 PMCID: PMC11468145 DOI: 10.1002/adhm.202100385] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Indexed: 01/01/2023]
Abstract
Iron is an essential co-factor for cellular processes. In the immune system, it can activate macrophages and represents a potential therapeutic for various diseases. To specifically deliver iron to macrophages, iron oxide nanoparticles are embedded in polymeric micelles of reactive polysarcosine-block-poly(S-ethylsulfonyl-l-cysteine). Upon surface functionalization via dihydrolipoic acid, iron oxide cores act as crosslinker themselves and undergo chemoselective disulfide bond formation with the surrounding poly(S-ethylsulfonyl-l-cysteine) block, yielding glutathione-responsive core cross-linked polymeric micelles (CCPMs). When applied to primary murine and human macrophages, these nanoparticles display preferential uptake, sustained intracellular iron release, and induce a strong inflammatory response. This response is also demonstrated in vivo when nanoparticles are intratracheally administered to wild-type C57Bl/6N mice. Most importantly, the controlled release concept to deliver iron oxide in redox-responsive CCPMs induces significantly stronger macrophage activation than any other iron source at identical iron levels (e.g., Feraheme), directing to a new class of immune therapeutics.
Collapse
Affiliation(s)
- Tobias A. Bauer
- Leiden Academic Centre for Drug Research (LACDR)Leiden UniversityEinsteinweg 55Leiden2333CCThe Netherlands
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10‐14Mainz55128Germany
| | - Natalie K. Horvat
- European Molecular Biology Laboratory (EMBL)Collaboration for Joint PhD Degree between EMBL and the Faculty of BiosciencesUniversity of HeidelbergMeyerhofstr.1Heidelberg69117Germany
- Molecular Medicine Partnership Unit (MMPU)Otto‐Meyerhof‐ZentrumIm Neuenheimer Feld 350Heidelberg69120Germany
- Translational Lung Research Center Heidelberg (TLRC)German Center for Lung Research (DZL)University of HeidelbergIm Neuenheimer Feld 350Heidelberg69120Germany
| | - Oriana Marques
- Molecular Medicine Partnership Unit (MMPU)Otto‐Meyerhof‐ZentrumIm Neuenheimer Feld 350Heidelberg69120Germany
- Department of Pediatric Oncology, Hematology, Immunology, and PulmonologyHeidelberg University HospitalIm Neuenheimer Feld 350Heidelberg69120Germany
| | - Sara Chocarro
- Department of Molecular Thoracic OncologyGerman Cancer Research Center (DKFZ)Im Neuenheimer Feld 280Heidelberg69120Germany
| | - Christina Mertens
- Molecular Medicine Partnership Unit (MMPU)Otto‐Meyerhof‐ZentrumIm Neuenheimer Feld 350Heidelberg69120Germany
- Department of Pediatric Oncology, Hematology, Immunology, and PulmonologyHeidelberg University HospitalIm Neuenheimer Feld 350Heidelberg69120Germany
| | - Silvia Colucci
- Molecular Medicine Partnership Unit (MMPU)Otto‐Meyerhof‐ZentrumIm Neuenheimer Feld 350Heidelberg69120Germany
- Department of Pediatric Oncology, Hematology, Immunology, and PulmonologyHeidelberg University HospitalIm Neuenheimer Feld 350Heidelberg69120Germany
| | - Sascha Schmitt
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | - Luca M. Carrella
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10‐14Mainz55128Germany
| | - Svenja Morsbach
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | - Federico Fenaroli
- Department for BiosciencesUniversity of OsloBlindernveien 31Oslo0371Norway
| | - Peter Blümler
- Institute of PhysicsJohannes Gutenberg University MainzStaudingerweg 9Mainz55128Germany
| | - Michaela Jung
- Institute of Biochemistry IFaculty of MedicineGoethe‐University FrankfurtTheodor‐Stern‐Kai 7Frankfurt am Main60590Germany
| | - Rocio Sotillo
- Translational Lung Research Center Heidelberg (TLRC)German Center for Lung Research (DZL)University of HeidelbergIm Neuenheimer Feld 350Heidelberg69120Germany
- Department of Molecular Thoracic OncologyGerman Cancer Research Center (DKFZ)Im Neuenheimer Feld 280Heidelberg69120Germany
| | - Matthias W. Hentze
- European Molecular Biology Laboratory (EMBL)Collaboration for Joint PhD Degree between EMBL and the Faculty of BiosciencesUniversity of HeidelbergMeyerhofstr.1Heidelberg69117Germany
| | - Martina U. Muckenthaler
- Molecular Medicine Partnership Unit (MMPU)Otto‐Meyerhof‐ZentrumIm Neuenheimer Feld 350Heidelberg69120Germany
- Translational Lung Research Center Heidelberg (TLRC)German Center for Lung Research (DZL)University of HeidelbergIm Neuenheimer Feld 350Heidelberg69120Germany
- Department of Pediatric Oncology, Hematology, Immunology, and PulmonologyHeidelberg University HospitalIm Neuenheimer Feld 350Heidelberg69120Germany
| | - Matthias Barz
- Leiden Academic Centre for Drug Research (LACDR)Leiden UniversityEinsteinweg 55Leiden2333CCThe Netherlands
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10‐14Mainz55128Germany
| |
Collapse
|
22
|
Effects of Live and Pasteurized Forms of Akkermansia from the Human Gut on Obesity and Metabolic Dysregulation. Microorganisms 2021; 9:microorganisms9102039. [PMID: 34683361 PMCID: PMC8538271 DOI: 10.3390/microorganisms9102039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/14/2021] [Accepted: 09/18/2021] [Indexed: 01/08/2023] Open
Abstract
Akkermansia muciniphila (A. muciniphila) is a promising probiotic candidate owing to its health-promoting properties. A previous study reported that the pasteurized form of A. muciniphila strains isolated from human stool samples had a beneficial impact on high-fat diet-induced obese mice. On the other hand, the differences in the probiotic effects between live and pasteurized A. muciniphila on the metabolism and immune system of the host are still inconclusive. This study examines the differences between the live and pasteurized forms of A. muciniphila strains on the lipid and glucose metabolism and on regulating the inflammatory immune responses using a HFD-fed obese mouse model. The animals were administered the live and pasteurized forms of two A. muciniphila strains five times per week for the entire study period of 12 weeks. Both forms of the bacterial strains improved the HFD-induced obesity and metabolic dysregulation in the mice by preventing body-weight gains after one week. In addition, they cause a decrease in the weights of the major adipose tissues, adipogenesis/lipogenesis and serum TC levels, improvement in glucose homeostasis and suppression of inflammatory insults. Furthermore, these treatments restored the damaged gut architecture and integrity and improved the hepatic structure and function in HFD-induced animals. On the other hand, for both bacterial strains, the pasteurized form was more potent in improving glucose tolerance than the live form. Moreover, specific A. muciniphila preparations with either live or pasteurized bacteria decreased the number and population (%) of splenic Treg cells (CD4+ Foxp3+) significantly in the HFD-fed animals, further supporting the anti-inflammatory properties of these bacteria.
Collapse
|
23
|
Batty MJ, Chabrier G, Sheridan A, Gage MC. Metabolic Hormones Modulate Macrophage Inflammatory Responses. Cancers (Basel) 2021; 13:cancers13184661. [PMID: 34572888 PMCID: PMC8467249 DOI: 10.3390/cancers13184661] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/31/2021] [Accepted: 09/13/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Macrophages are a type of immune cell which play an important role in the development of cancer. Obesity increases the risk of cancer and obesity also causes disruption to the normal levels of hormones that are produced to coordinate metabolism. Recent research now shows that these metabolic hormones also play important roles in macrophage immune responses and so through macrophages, disrupted metabolic hormone levels may promote cancer. This review article aims to highlight and summarise these recent findings so that the scientific community may better understand how important this new area of research is, and how these findings can be capitalised on for future scientific studies. Abstract Macrophages are phagocytotic leukocytes that play an important role in the innate immune response and have established roles in metabolic diseases and cancer progression. Increased adiposity in obese individuals leads to dysregulation of many hormones including those whose functions are to coordinate metabolism. Recent evidence suggests additional roles of these metabolic hormones in modulating macrophage inflammatory responses. In this review, we highlight key metabolic hormones and summarise their influence on the inflammatory response of macrophages and consider how, in turn, these hormones may influence the development of different cancer types through the modulation of macrophage functions.
Collapse
|
24
|
Lahaye C, Gladine C, Pereira B, Berger J, Chinetti-Gbaguidi G, Lainé F, Mazur A, Ruivard M. Does iron overload in metabolic syndrome affect macrophage profile? A case control study. J Trace Elem Med Biol 2021; 67:126786. [PMID: 34022567 DOI: 10.1016/j.jtemb.2021.126786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 04/28/2021] [Accepted: 05/10/2021] [Indexed: 12/31/2022]
Abstract
AIMS Dysmetabolic iron overload syndrome (DIOS) is common but the clinical relevance of iron overload is not understood. Macrophages are central cells in iron homeostasis and inflammation. We hypothesized that iron overload in DIOS could affect the phenotype of monocytes and impair macrophage gene expression. METHODS This study compared 20 subjects with DIOS to 20 subjects with metabolic syndrome (MetS) without iron overload, and 20 healthy controls. Monocytes were phenotyped by Fluorescence-Activated Cell Sorting (FACS) and differentiated into anti-inflammatory M2 macrophages in the presence of IL-4. The expression of 38 genes related to inflammation, iron metabolism and M2 phenotype was assessed by real-time PCR. RESULTS FACS showed no difference between monocytes across the three groups. The macrophagic response to IL-4-driven differentiation was altered in four of the five genes of M2 phenotype (MRC1, F13A1, ABCA1, TGM2 but not FABP4), in DIOS vs Mets and controls demonstrating an impaired M2 polarization. The expression profile of inflammatory genes was not different in DIOS vs MetS. Several genes of iron metabolism presented a higher expression in DIOS vs MetS: SCL11A2 (a free iron transporter, +76 %, p = 0.04), SOD1 (an antioxidant enzyme, +27 %, p = 0.02), and TFRC (the receptor 1 of transferrin, +59 %, p = 0.003). CONCLUSIONS In DIOS, macrophage polarization toward the M2 alternative phenotype is impaired but not associated with a pro-inflammatory profile. The up regulation of transferrin receptor 1 (TFRC) in DIOS macrophages suggests an adaptive role that may limit iron toxicity in DIOS.
Collapse
Affiliation(s)
- Clément Lahaye
- Université Clermont Auvergne, CHU Clermont-Ferrand, Service de Médecine interne Hôpital Estaing, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, F-63000 Clermont-Ferrand, France.
| | - Cécile Gladine
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, F-63000 Clermont-Ferrand, France.
| | - Bruno Pereira
- Université Clermont Auvergne, CHU Clermont-Ferrand, Unité de biostatistiques, F-63000 Clermont-Ferrand, France.
| | - Juliette Berger
- Université Clermont Auvergne, CHU Clermont-Ferrand, Laboratoire d'Hématologie, Hôpital Estaing, F-63000 Clermont-Ferrand, France.
| | | | - Fabrice Lainé
- INSERM CIC 1414, and Liver Unit, CHU Rennes, 35000 Rennes, France.
| | - Andrzej Mazur
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, F-63000 Clermont-Ferrand, France.
| | - Marc Ruivard
- Université Clermont Auvergne, CHU Clermont-Ferrand, Service de Médecine interne Hôpital Estaing, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
25
|
Cui X, Xing R, Tian Y, Wang M, Sun Y, Xu Y, Yang Y, Zhao Y, Xie L, Xiao Y, Li D, Zheng B, Liu M, Chen H. The G2A Receptor Deficiency Aggravates Atherosclerosis in Rats by Regulating Macrophages and Lipid Metabolism. Front Physiol 2021; 12:659211. [PMID: 34381373 PMCID: PMC8351205 DOI: 10.3389/fphys.2021.659211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/13/2021] [Indexed: 11/16/2022] Open
Abstract
The orphan G protein-coupled receptor G2A has been linked to atherosclerosis development. However, available data from mouse models are controversial. Rat G2A receptor bears more similarities with its human homolog. We proposed that the atherosclerosis model established from Ldlr–/– rat, which has been reported to share more similar phenotypes with the human disease, may help to further understand this lipid receptor. G2A deletion was found markedly aggravated in the lipid disorder in the rat model, which has not been reported in mouse studies. Examination of aortas revealed exacerbated atherosclerotic plaques in G2A deficient rats, together with increased oxidative stress and macrophage accumulation. In addition, consistently promoted migration and apoptosis were noticed in G2A deficient macrophages, even in macrophages from G2A single knockout rats. Further analysis found significantly declined phosphorylation of PI3 kinase (PI3K) and AKT, together with reduced downstream genes Bcl2 and Bcl-xl, suggesting possible involvement of PI3K/AKT pathway in G2A regulation to macrophage apoptosis. These data indicate that G2A modulates atherosclerosis by regulating lipid metabolism and macrophage migration and apoptosis. Our study provides a new understanding of the role of G2A in atherosclerosis, supporting it as a potential therapeutic target.
Collapse
Affiliation(s)
- Xueqin Cui
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, Institute of Biomedical Sciences, East China Normal University, Shanghai, China
| | - Roumei Xing
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, Institute of Biomedical Sciences, East China Normal University, Shanghai, China
| | - Yue Tian
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, Institute of Biomedical Sciences, East China Normal University, Shanghai, China
| | - Man Wang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, Institute of Biomedical Sciences, East China Normal University, Shanghai, China
| | - Yue Sun
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, Institute of Biomedical Sciences, East China Normal University, Shanghai, China
| | - Yongqian Xu
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, Institute of Biomedical Sciences, East China Normal University, Shanghai, China
| | - Yiqing Yang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, Institute of Biomedical Sciences, East China Normal University, Shanghai, China
| | - Yongliang Zhao
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, Institute of Biomedical Sciences, East China Normal University, Shanghai, China
| | - Ling Xie
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, Institute of Biomedical Sciences, East China Normal University, Shanghai, China
| | - Yufang Xiao
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, Institute of Biomedical Sciences, East China Normal University, Shanghai, China
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, Institute of Biomedical Sciences, East China Normal University, Shanghai, China
| | - Biao Zheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, Institute of Biomedical Sciences, East China Normal University, Shanghai, China.,Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, Institute of Biomedical Sciences, East China Normal University, Shanghai, China
| | - Huaqing Chen
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, Institute of Biomedical Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
26
|
Hu Y, Gu J, Wang Y, Lin J, Yu H, Yang F, Wu S, Yin J, Lv H, Ji X, Wang S. Promotion Effect of EGCG on the Raised Expression of IL-23 through the Signaling of STAT3-BATF2-c-JUN/ATF2. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7898-7909. [PMID: 34227806 DOI: 10.1021/acs.jafc.1c02433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tea polyphenol of epigallocatechin-3-gallate (EGCG) has been verified to possess multiple biological activities. Interleukin-23 (IL-23) is a heterodimeric cytokine consisting of two subunits of IL-23p19 and IL-12p40, with the functionality in regulating the production of cytokines under physiological or pathological conditions. By serendipity, the raised expression of IL-23 was observed after treating cells with EGCG, whereas the detailed mechanism remains poorly understood. This study was proposed to investigate the signaling related to EGCG-induced IL-23. The raised expression of IL-23 was confirmed primarily by intraperitoneally injecting with different concentrations of EGCG (0, 20, 50, 80 mg/kg) into BALB/c mice, and the raised expression was confirmed by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. Results from enzyme-linked immunosorbent assay (ELISA) revealed the increase of IL-23 in serum from 116.09 to 153.90 pg/mL after treating with EGCG. The same results were also observed in RAW264.7 and peritoneal macrophages after treating with EGCG (0, 1, 5, 10, 25 μM) with the increased tendency of IL-23 in cultural medium (7.98 to 25.38 pg/mL for RAW264.7; 3.64 to 260.93 pg/mL for peritoneal macrophages). After preliminary exploration of the signaling related to the increased IL-23, the classical signaling pathways and key transcription factors, such as nuclear factor kappa-B (NF-κB), mitogen-activated protein kinase (MAPK) signaling pathways, and interferon regulatory factor 5 (IRF5), were demonstrated with no relevant contribution. A further study revealed the involvement of the key transcription factor of BATF2, which could antagonistically modulate the transcription and translation of IL-23. The signaling of STAT3-BATF2-c-JUN/ATF2-IL-23 has been further verified in RAW264.7 macrophages using the STAT3 inhibitor of AG490 and the activator of Colivelin TFA. The results indicated that EGCG inhibits the phosphorylation of STAT3 to facilitate the decreased level of BATF2, which contributed to the increased level of IL-23 by the enhancing heterodimerization of c-JUN and ATF2.
Collapse
Affiliation(s)
- Yaozhong Hu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jiaxin Gu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yi Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jing Lin
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Huaning Yu
- Guangdong Midea Kitchen Appliances Manufacturing Co., Ltd, Guangdong 528000, China
| | - Feier Yang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Sihao Wu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jia Yin
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Huan Lv
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Xuemeng Ji
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
27
|
Li Q, Feng C, Li L, Xu G, Gu H, Li S, Li D, Liu M, Han S, Zheng B. Lipid Receptor G2A-Mediated Signal Pathway Plays a Critical Role in Inflammatory Response by Promoting Classical Macrophage Activation. THE JOURNAL OF IMMUNOLOGY 2021; 206:2338-2352. [PMID: 33941654 DOI: 10.4049/jimmunol.2000231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/16/2021] [Indexed: 12/16/2022]
Abstract
Macrophage polarization is a dynamic and integral process in tissue inflammation and remodeling. In this study, we describe that lipoprotein-associated phospholipase A2 (Lp-PLA2) plays an important role in controlling inflammatory macrophage (M1) polarization in rodent experimental autoimmune encephalomyelitis (EAE) and in monocytes from multiple sclerosis (MS) patients. Specific inhibition of Lp-PLA2 led to an ameliorated EAE via markedly decreased inflammatory and demyelinating property of M1. The effects of Lp-PLA2 on M1 function were mediated by lysophosphatidylcholine, a bioactive product of oxidized lipids hydrolyzed by Lp-PLA2 through JAK2-independent activation of STAT5 and upregulation of IRF5. This process was directed by the G2A receptor, which was only found in differentiated M1 or monocytes from MS patients. M1 polarization could be inhibited by a G2A neutralizing Ab, which led to an inhibited disease in rat EAE. In addition, G2A-deficient rats showed an ameliorated EAE and an inhibited autoimmune response. This study has revealed a mechanism by which lipid metabolites control macrophage activation and function, modification of which could lead to a new therapeutic approach for MS and other inflammatory disorders.
Collapse
Affiliation(s)
- Qing Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China; and
| | - Chunlei Feng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China; and
| | - Lingyun Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China; and
| | - Guiliang Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China; and
| | - Haijuan Gu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China; and
| | - Shiqiang Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China; and
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China; and
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China; and
| | - Shuhua Han
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX
| | - Biao Zheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China; and .,Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
28
|
Buck E, Lee S, Stone LS, Cerruti M. Protein Adsorption on Surfaces Functionalized with COOH Groups Promotes Anti-inflammatory Macrophage Responses. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7021-7036. [PMID: 33539069 DOI: 10.1021/acsami.0c16509] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Implants can induce a foreign body reaction that leads to chronic inflammation and fibrosis in the surrounding tissue. Macrophages help detect the foreign material, play a role in the inflammatory response, and may promote fibrosis instead of the desired tissue regeneration around implants. Implant surface properties impact macrophage responses by changing the nature of the adsorbed protein layer, but conflicting studies highlight the complexity of this relationship. In this study, the effect of surface chemistry on macrophage behavior was investigated with poly(styrene) surfaces containing common functional groups at similar surface densities. The protein layer was characterized to identify the proteins that adsorbed on the surfaces from the medium and the proteins secreted onto the surfaces by adherent macrophages. Of the surface chemistries studied, carboxylic acid (COOH) groups promoted anti-inflammatory responses from unstimulated macrophages and did not exacerbate inflammation upon stimulation. These surfaces also enhanced the adsorption of proteins involved in integrin signaling and promoted the secretion of proteins related to angiogenesis, integrin signaling, and cytokine signaling, which have been previously associated with improved biomaterial integration. Therefore, this study suggests that surface modification with COOH groups may help improve the integration of implants in the body by enhancing anti-inflammatory macrophage responses through altered protein adsorption.
Collapse
Affiliation(s)
- Emily Buck
- Department of Mining and Materials Engineering, McGill University, Montreal, QC H3A 0C5, Canada
| | - Seunghwan Lee
- Faculty of Dentistry, McGill University, Montreal, QC H3A 1G1, Canada
- Alan Edwards Center for Research on Pain, McGill University, Montreal, QC H3A 0G1, Canada
| | - Laura S Stone
- Faculty of Dentistry, McGill University, Montreal, QC H3A 1G1, Canada
- Alan Edwards Center for Research on Pain, McGill University, Montreal, QC H3A 0G1, Canada
| | - Marta Cerruti
- Department of Mining and Materials Engineering, McGill University, Montreal, QC H3A 0C5, Canada
| |
Collapse
|
29
|
Liu Y, Deng G, Wang X, Luo J, Qian X, Ling W. Cyanidin-3-O-β-glucoside polarizes LPS-induced M1 into M2 Macrophage in J774 cells via PPARγ-mediated NF-κB and STAT6 signaling pathway. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
30
|
Monounsaturated Fatty Acids in Obesity-Related Inflammation. Int J Mol Sci 2020; 22:ijms22010330. [PMID: 33396940 PMCID: PMC7795523 DOI: 10.3390/ijms22010330] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 12/14/2022] Open
Abstract
Obesity is an important aspect of the metabolic syndrome and is often associated with chronic inflammation. In this context, inflammation of organs participating in energy homeostasis (such as liver, adipose tissue, muscle and pancreas) leads to the recruitment and activation of macrophages, which secrete pro-inflammatory cytokines. Interleukin-1β secretion, sustained C-reactive protein plasma levels and activation of the NLRP3 inflammasome characterize this inflammation. The Stearoyl-CoA desaturase-1 (SCD1) enzyme is a central regulator of lipid metabolism and fat storage. This enzyme catalyzes the generation of monounsaturated fatty acids (MUFAs)-major components of triglycerides stored in lipid droplets-from saturated fatty acid (SFA) substrates. In this review, we describe the molecular effects of specific classes of fatty acids (saturated and unsaturated) to better understand the impact of different diets (Western versus Mediterranean) on inflammation in a metabolic context. Given the beneficial effects of a MUFA-rich Mediterranean diet, we also present the most recent data on the role of SCD1 activity in the modulation of SFA-induced chronic inflammation.
Collapse
|
31
|
Mohmmad‐Rezaei M, Arefnezhad R, Ahmadi R, Abdollahpour‐Alitappeh M, Mirzaei Y, Arjmand M, Ferns GA, Bashash D, Bagheri N. An overview of the innate and adaptive immune system in atherosclerosis. IUBMB Life 2020. [DOI: 10.1002/iub.2425] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mina Mohmmad‐Rezaei
- Cellular and Molecular Research Center, Basic Health Sciences Institute Shahrekord University of Medical Sciences Shahrekord Iran
| | - Reza Arefnezhad
- Halal Research Center of IRI, FDA Tehran Iran
- Department of Anatomy, School of Medicine Shiraz University of Medical Sciences Shiraz Iran
| | - Reza Ahmadi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute Shahrekord University of Medical Sciences Shahrekord Iran
| | | | - Yousef Mirzaei
- Department of Biogeosciences, Scientific Research Center Soran University Soran Iraq
| | - Mohammad‐Hassan Arjmand
- Cellular and Molecular Research Center, Basic Health Sciences Institute Shahrekord University of Medical Sciences Shahrekord Iran
- Cancer Research Center Shahrekord University of Medical Sciences Shahrekord Iran
| | - Gordon A. Ferns
- Brighton & Sussex Medical School, Division of Medical Education Sussex United Kingdom
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute Shahrekord University of Medical Sciences Shahrekord Iran
| |
Collapse
|
32
|
Ma X, Liu H, Chen F. Functioning of Long Noncoding RNAs Expressed in Macrophage in the Development of Atherosclerosis. Front Pharmacol 2020; 11:567582. [PMID: 33381026 PMCID: PMC7768882 DOI: 10.3389/fphar.2020.567582] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/22/2020] [Indexed: 12/26/2022] Open
Abstract
Chronic inflammation is part of the pathological process during atherosclerosis (AS). Due to the abundance of monocytes/macrophages within the arterial plaque, monocytes/macrophages have become a critical cellular target in AS studies. In recent decades, a number of long noncoding RNAs (lncRNAs) have been found to exert regulatory roles on the macrophage metabolism and macrophage plasticity, consequently promoting or suppressing atherosclerotic inflammation. In this review, we provide a comprehensive overview of lncRNAs in macrophage biology, highlighting the potential role of lncRNAs in AS based on recent findings, with the aim to identify disease biomarkers and future therapeutic interventions for AS.
Collapse
Affiliation(s)
- Xirui Ma
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huifang Liu
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengling Chen
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
33
|
Belyaeva VS, Stepenko YV, Lyubimov II, Kulikov AL, Tietze AA, Kochkarova IS, Martynova OV, Pokopeyko ON, Krupen’kina LA, Nagikh AS, Pokrovskiy VM, Patrakhanov EA, Belashova AV, Lebedev PR, Gureeva AV. Non-hematopoietic erythropoietin-derived peptides for atheroprotection and treatment of cardiovascular diseases. RESEARCH RESULTS IN PHARMACOLOGY 2020. [DOI: 10.3897/rrpharmacology.6.58891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Relevance: Cardiovascular diseases continue to be the leading cause of premature adult death.Lipid profile and atherogenesis: Dislipidaemia leads to subsequent lipid accumulation and migration of immunocompetent cells into the vessel intima. Macrophages accumulate cholesterol forming foam cells – the morphological substrate of atherosclerosis in its initial stage.Inflammation and atherogenesis: Pro-inflammatory factors provoke oxidative stress, vascular wall damage and foam cells formation.Endothelial and mitochondrial dysfunction in the development of atherosclerosis: Endothelial mitochondria are some of the organelles most sensitive to oxidative stress. Damaged mitochondria produce excess superoxide and H2O2, which are the main factors of intracellular damage, further increasing endothelial dysfunction.Short non-hematopoietic erythropoietin-based peptides as innovative atheroprotectors: Research in recent decades has shown that erythropoietin has a high cytoprotective activity, which is mainly associated with exposure to the mitochondrial link and has been confirmed in various experimental models. There is also a short-chain derivative, the 11-amino acid pyroglutamate helix B surface peptide (PHBSP), which selectively binds to the erythropoietin heterodymic receptor and reproduces its cytoprotective properties. This indicates the promising use of short-chain derivatives of erythropoietin for the treatment and prevention of atherosclerotic vascular injury. In the future, it is planned to study the PHBSP derivatives, the modification of which consists in adding RGD and PGP tripeptides with antiaggregant properties to the original 11-member peptide.
Collapse
|
34
|
The influenza virus NS1A binding protein gene modulates macrophages response to cytokines and phagocytic potential in inflammation. Sci Rep 2020; 10:15302. [PMID: 32943673 PMCID: PMC7498593 DOI: 10.1038/s41598-020-72342-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 08/10/2020] [Indexed: 12/12/2022] Open
Abstract
Macrophages show remarkable phenotypic plasticity in response to environmental signals. Although it is generally less considered, cytoskeletal changes in macrophages influence their phenotype, including phagocytosis and secretion of soluble cytokines. Influenza virus NS1A-binding protein (Ivns1abp) belongs to the Kelch family of proteins that play a central role in actin cytoskeleton dynamics by directly associating with F-actin and by protecting against actin derangement. Due to its role in cytoskeleton preservation, the Ivns1abp gene might be a critical regulator of the macrophage phenotype and function under inflammatory conditions. In this study, we determine that the modulation of the Ivns1abp gene in macrophages could modify resistance to macrophages against inflammation and maintain functional phagocytosis. Our results indicate that inflammatory insults inhibit the Ivns1abp gene, whereby phagocytosis is inhibited and the ability of macrophages to induce proliferation and repair of damaged cells is compromised. Furthermore, our results show that inflammatory insults alter the activity of the transcription factor c-myc, a factor which directly modulates the expression of the Ivns1abp gene. In conclusion, this study demonstrates a central role of lvns1abp in promoting and preserving a reparative macrophage phenotype and resistance to this inflammatory environment.
Collapse
|
35
|
Xiao MZ, Liu JM, Xian CL, Chen KY, Liu ZQ, Cheng YY. Therapeutic potential of ALKB homologs for cardiovascular disease. Biomed Pharmacother 2020; 131:110645. [PMID: 32942149 DOI: 10.1016/j.biopha.2020.110645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/05/2020] [Accepted: 08/16/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading causes of human death. Recently, ALKB homologs, including ALKBH1-8 and FTO, have been found to have a variety of biological functions, such as histone demethylation, RNA demethylation, and DNA demethylation. These functions may regulate the physiological and pathological processes of CVDs, including inflammation, oxidative stress, cell apoptosis, and mitochondrial, endothelial, and fat metabolism dysfunction. In the present review, we summarize the biological functions of ALKB homologs and the relationship between the ALKB homologs and CVDs. Importantly, we discuss the roles of ALKB homologs in the regulation of oxidative stress, inflammation, autophagy, and DNA damage in CVDs, as well as the practical applications of ALKB homologs inhibitors or agonists in treating CVDs. In conclusion, the ALKBH family might be a promising target for CVDs therapy.
Collapse
Affiliation(s)
- Ming-Zhu Xiao
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jia-Ming Liu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Cui-Ling Xian
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Keng-Yu Chen
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; The Second Affiliated Hospital of Guangdong Pharmaceutical University, Yunfu, 527300, China
| | - Zhong-Qiu Liu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Yuan-Yuan Cheng
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
36
|
Feng X, Yu W, Cao L, Meng F, Cong M. A novel chrysin thiazole derivative polarizes macrophages to an M1 phenotype via targeting TLR4. Int Immunopharmacol 2020; 88:106986. [PMID: 33182070 DOI: 10.1016/j.intimp.2020.106986] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022]
Abstract
Tumor-associated macrophages (TAMs) are an important cause of tumorigenesis and tumor development. M2 macrophages can promote tumor growth while M1 macrophages kill tumor cells, therefore, polarizing macrophages to achieve a functional M1 phenotype could effectively play its anti-tumor role. In the current study, we synthesized a novel chrysin derivative which is termed as ChR-TD. And we found ChR-TD might be a ligand of TLR4 that polarized the TAMs towards M1 phenotype and played its anti-tumor role. Further study indicated that ChR-TD reprogrammed the macrophages into an M1 phenotype via TLR4 activation. Moreover, ChR-TD activated TLR4/NF-κB signaling pathway and promoted the NF-κB/p65 translocated into the nuclear, leading to the activation of NF-κB and proinflammatory cytokines release. In addition, type I interferon signaling was also activated by ChR-TD, leading to the expressions of IFN-α and IFN-β and its targeted genes NOS2, MCP-1 and IP-10 were significantly increased in macrophages. Importantly, these effects were disturbed in TLR4-/- macrophages, which are constructed by using CRISPR/Cas9 system. And the molecule docking simulation further indicated that ChR-TD could bind to TLR4 and might be a ligand of TLR4. Hence, these findings suggested that ChR-TD might be a ligand of TLR4 and can be used as a potential lead compound for tumors treatment.
Collapse
Affiliation(s)
- Xiujing Feng
- Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan 250021, China.
| | - Wen Yu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210046, China
| | - Lingsen Cao
- Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Fanda Meng
- Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan 250021, China
| | - Mulin Cong
- Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan 250021, China
| |
Collapse
|
37
|
Allen JN, Dey A, Cai J, Zhang J, Tian Y, Kennett M, Ma Y, Liang TJ, Patterson AD, Hankey-Giblin PA. Metabolic Profiling Reveals Aggravated Non-Alcoholic Steatohepatitis in High-Fat High-Cholesterol Diet-Fed Apolipoprotein E-Deficient Mice Lacking Ron Receptor Signaling. Metabolites 2020; 10:metabo10080326. [PMID: 32796650 PMCID: PMC7464030 DOI: 10.3390/metabo10080326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) represents the progressive sub-disease of non-alcoholic fatty liver disease that causes chronic liver injury initiated and sustained by steatosis and necroinflammation. The Ron receptor is a tyrosine kinase of the Met proto-oncogene family that potentially has a beneficial role in adipose and liver-specific inflammatory responses, as well as glucose and lipid metabolism. Since its discovery two decades ago, the Ron receptor has been extensively investigated for its differential roles on inflammation and cancer. Previously, we showed that Ron expression on tissue-resident macrophages limits inflammatory macrophage activation and promotes a repair phenotype, which can retard the progression of NASH in a diet-induced mouse model. However, the metabolic consequences of Ron activation have not previously been investigated. Here, we explored the effects of Ron receptor activation on major metabolic pathways that underlie the development and progression of NASH. Mice lacking apolipoprotein E (ApoE KO) and double knockout (DKO) mice that lack ApoE and Ron were maintained on a high-fat high-cholesterol diet for 18 weeks. We observed that, in DKO mice, the loss of ligand-dependent Ron signaling aggravated key pathological features in steatohepatitis, including steatosis, inflammation, oxidation stress, and hepatocyte damage. Transcriptional programs positively regulating fatty acid (FA) synthesis and uptake were upregulated in the absence of Ron receptor signaling, whereas lipid disposal pathways were downregulated. Consistent with the deregulation of lipid metabolism pathways, the DKO animals exhibited increased accumulation of FAs in the liver and decreased level of bile acids. Altogether, ligand-dependent Ron receptor activation provides protection from the deregulation of major metabolic pathways that initiate and aggravate non-alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Joselyn N. Allen
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.N.A.); (A.D.); (J.C.); (J.Z.); (Y.T.); (M.K.)
| | - Adwitia Dey
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.N.A.); (A.D.); (J.C.); (J.Z.); (Y.T.); (M.K.)
| | - Jingwei Cai
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.N.A.); (A.D.); (J.C.); (J.Z.); (Y.T.); (M.K.)
| | - Jingtao Zhang
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.N.A.); (A.D.); (J.C.); (J.Z.); (Y.T.); (M.K.)
| | - Yuan Tian
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.N.A.); (A.D.); (J.C.); (J.Z.); (Y.T.); (M.K.)
| | - Mary Kennett
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.N.A.); (A.D.); (J.C.); (J.Z.); (Y.T.); (M.K.)
| | - Yanling Ma
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD 20814, USA; (Y.M.); (T.J.L.)
| | - T. Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD 20814, USA; (Y.M.); (T.J.L.)
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.N.A.); (A.D.); (J.C.); (J.Z.); (Y.T.); (M.K.)
- Correspondence: (A.D.P.); (P.A.H.-G.); Tel.: +1-814-867-4565; (A.D.P.); +1-814-863-0128 (P.A.H.-G.)
| | - Pamela A. Hankey-Giblin
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.N.A.); (A.D.); (J.C.); (J.Z.); (Y.T.); (M.K.)
- Correspondence: (A.D.P.); (P.A.H.-G.); Tel.: +1-814-867-4565; (A.D.P.); +1-814-863-0128 (P.A.H.-G.)
| |
Collapse
|
38
|
Teper Y, Eibl G. Pancreatic Macrophages: Critical Players in Obesity-Promoted Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12071946. [PMID: 32709161 PMCID: PMC7409049 DOI: 10.3390/cancers12071946] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
Obesity is a known risk factor for the development of pancreatic cancer, one of the deadliest types of malignancies. In recent years it has become clear that the pancreatic microenvironment is critically involved and a contributing factor in accelerating pancreatic neoplasia. In this context obesity-associated chronic inflammation plays an important role. Among several immune cells, macrophages have been shown to contribute to obesity-induced tissue inflammation. This review article summarizes the current knowledge about the role of pancreatic macrophages in early pancreatic cancer development. It describes the heterogenous origin and mixture of pancreatic macrophages, their role in pancreatic endocrine and exocrine pathology, and the impact of obesity on islet and stromal macrophages. A model is postulated, by which during obesity monocytes are recruited into the pancreas, where they are polarized into pro-inflammatory macrophages that drive early pancreatic neoplasia. This occurs in the presence of local inflammatory, metabolic, and endocrine signals. A stronger appreciation and more detailed knowledge about the role of macrophages in early pancreatic cancer development will lead to innovative preventive or interceptive strategies.
Collapse
|
39
|
Surgical Injury and Ischemia Prime the Adipose Stromal Vascular Fraction and Increase Angiogenic Capacity in a Mouse Limb Ischemia Model. Stem Cells Int 2020; 2020:7219149. [PMID: 32508933 PMCID: PMC7251464 DOI: 10.1155/2020/7219149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 02/29/2020] [Accepted: 03/26/2020] [Indexed: 01/14/2023] Open
Abstract
The adipose-derived stromal vascular fraction (SVF) is an effective source for autologous cell transplantation. However, the quality and quantity of SVFs vary depending on the patient's age, complications, and other factors. In this study, we developed a method to reproducibly increase the cell number and improve the quality of adipose-derived SVFs by surgical procedures, which we term “wound repair priming.” Subcutaneous fat from the inguinal region of BALB/c mice was surgically processed (primed) by mincing adipose parenchyma (injury) and ligating the subcutaneous fat-feeding artery (ischemia). SVFs were isolated on day 0, 1, 3, 5, or 7 after the priming procedures. Gene expression levels of the primed SVFs were measured via microarray and pathway analyses which were performed for differentially expressed genes. Changes in cellular compositions of primed SVFs were analyzed by flow cytometry. SVFs were transplanted into syngeneic ischemic hindlimbs to measure their angiogenic and regeneration potential. Hindlimb blood flow was measured using a laser Doppler blood perfusion imager, and capillary density was quantified by CD31 staining of ischemic tissues. Stabilization of HIF-1 alpha and VEGF-A synthesis in the SVFs were measured by fluorescent immunostaining and Western blotting, respectively. As a result, the number of SVFs per fat weight was increased significantly on day 7 after priming. Among the differentially expressed genes were innate immunity-related signals on both days 1 and 3 after priming. In primed SVFs, the CD45-positive blood mononuclear cell fraction decreased, and the CD31-CD45-double negative mesenchymal cell fraction increased on day 7. The F4/80-positive macrophage fraction was increased on days 1 and 7 after priming. There was a serial decrease in the mesenchymal-gated CD34-positive adipose progenitor fraction and mesenchymal-gated CD140A-positive/CD9-positive preadipocyte fraction on days 1 and 3. Transplantation of primed SVFs resulted in increased capillary density and augmented blood flow, improving regeneration of the ischemic limbs. HIF-1 alpha was stabilized in the primed cutaneous fat in situ, and VEGF-A synthesis of the primed SVFs was on a peak on 5 days after priming. Wound repair priming thus resulted in SVFs with increased number and augmented angiogenic potential.
Collapse
|
40
|
Baptista LS. Adipose stromal/stem cells in regenerative medicine: Potentials and limitations. World J Stem Cells 2020; 12:1-7. [PMID: 32110271 PMCID: PMC7031762 DOI: 10.4252/wjsc.v12.i1.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 10/11/2019] [Accepted: 11/14/2019] [Indexed: 02/07/2023] Open
Abstract
This article presents the stem and progenitor cells from subcutaneous adipose tissue, briefly comparing them with their bone marrow counterparts, and discussing their potential for use in regenerative medicine. Subcutaneous adipose tissue differs from other mesenchymal stromal/stem cells (MSCs) sources in that it contains a pre-adipocyte population that dwells in the adventitia of robust blood vessels. Pre-adipocytes are present both in the stromal-vascular fraction (SVF; freshly isolated cells) and in the adherent fraction of adipose stromal/stem cells (ASCs; in vitro expanded cells), and have an active role on the chronic inflammation environment established in obesity, likely due their monocytic-macrophage lineage identity. The SVF and ASCs have been explored in cell therapy protocols with relative success, given their paracrine and immunomodulatory effects. Importantly, the widely explored multipotentiality of ASCs has direct application in bone, cartilage and adipose tissue engineering. The aim of this editorial is to reinforce the peculiarities of the stem and progenitor cells from subcutaneous adipose tissue, revealing the spheroids as a recently described biotechnological tool for cell therapy and tissue engineering. Innovative cell culture techniques, in particular 3D scaffold-free cultures such as spheroids, are now available to increase the potential for regeneration and differentiation of mesenchymal lineages. Spheroids are being explored not only as a model for cell differentiation, but also as powerful 3D cell culture tools to maintain the stemness and expand the regenerative and differentiation capacities of mesenchymal cell lineages.
Collapse
Affiliation(s)
- Leandra Santos Baptista
- Multidisciplinary Center for Biological Research (Numpex-Bio), Federal University of Rio de Janeiro (UFRJ) Campus Duque de Caxias, Duque de Caxias, RJ 25245-390, Brazil
- Post-graduate Program in Biotechnology, National Institute of Metrology, Quality and Technology (INMETRO), Duque de Caxias, RJ 25250-020, Brazil
- Post-graduate Program in Translational Biomedicine (Biotrans), Unigranrio, Campus I, Duque de Caxias, Duque de Caxias, RJ 25250-020, Brazil
- Laboratory of Tissue Bioengineering, Directory of Metrology Applied to Life Sciences, National Institute of Metrology, Quality and Technology (INMETRO), Duque de Caxias, RJ 25250-020, Brazil
| |
Collapse
|
41
|
Yao W, Guo A, Han X, Wu S, Chen C, Luo C, Li H, Li S, Hei Z. Aerosol inhalation of a hydrogen-rich solution restored septic renal function. Aging (Albany NY) 2019; 11:12097-12113. [PMID: 31841441 PMCID: PMC6949055 DOI: 10.18632/aging.102542] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 11/19/2019] [Indexed: 12/29/2022]
Abstract
Sepsis-related acute kidney injury (AKI) is known to be caused by inflammation. We explored the renal protective effects of aerosol inhalation of a hydrogen-rich solution (HRS; hydrogen gas dissolved to saturation in saline) in a mouse model of septic AKI. Septic AKI was induced through 18 hours of cecal ligation and puncture. AKI occurred during the early stage of sepsis, as evidenced by increased blood urea nitrogen and serum creatinine levels, pathological changes, renal fibrosis and renal tubular epithelial cell apoptosis, accompanied by macrophage infiltration and M1 macrophage-associated pro-inflammatory cytokine (Il-6 and Tnf-α) generation in renal tissues. Aerosol inhalation of the HRS increased anti-inflammatory cytokine (Il-4 and Il-13) mRNA levels in renal tissues and promoted macrophage polarization to the M2 type, which generated additional anti-inflammatory cytokines (Il-10 and Tgf-β). Ultimately, aerosol inhalation of HRS protected the kidneys and increased survival among septic mice. HRS was confirmed to promote M2 macrophage polarization in lipopolysaccharide-stimulated RAW 264.7 cells. The TGF-β1 receptor inhibitor SB-431542 partly reversed the effects of HRS on renal function, fibrosis, tubular epithelial cell apoptosis and senescence in mice. Thus, HRS aerosol inhalation appears highly useful for renal protection and inflammation reduction in septic AKI.
Collapse
Affiliation(s)
- Weifeng Yao
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Anshun Guo
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.,Department of Anesthesiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Xue Han
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Shan Wu
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Chaojin Chen
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Chenfang Luo
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Haobo Li
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524023, China
| | - Shangrong Li
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Ziqing Hei
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| |
Collapse
|
42
|
Xue D, Tabib T, Morse C, Lafyatis R. Transcriptome landscape of myeloid cells in human skin reveals diversity, rare populations and putative DC progenitors. J Dermatol Sci 2019; 97:41-49. [PMID: 31836271 DOI: 10.1016/j.jdermsci.2019.11.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/08/2019] [Accepted: 11/25/2019] [Indexed: 01/21/2023]
Abstract
BACKGROUND The heterogeneous functions of dermal myeloid cells in antigen presentation, and scavenging pathogens and cell debris places them centrally in cutaneous inflammation. Single cell transcriptomics can provide new understanding of the heterogeneity and function of yet incompletely understood human dermal myeloid cell subsets. OBJECTIVE Investigate the transcriptome landscape of myeloid cells in healthy human skin. METHODS Single cell RNA-sequencing was performed on skin biopsies from ten healthy donors and analyzed to identify myeloid cell populations. RESULTS One LIN- HLA-DR+ cluster with expression of myeloid-specific genes was identified as a cluster of myeloid cells. Upon reanalysis of this cluster, we identified three macrophage subsets, marked by high expression of CCR1, MARCO or TREM2; and six dendritic cell subsets, marked by high expression of CLEC9A, CXorf21, MCOLN2, LAMP3, KIAA0101 and Langerin, representing respectively cDC1, two subsets of cDC2, a novel DC type, a cluster of proliferating DC, and a Langerhans cell subset. GO term analysis indicated specialized functions for the discrete rare populations of myeloid cells: TREM2 Mφ in lipid metabolism and LAMP3 DC as a mature cDC. Proliferating DCs appeared to represent cDC2 progenitors. CONCLUSION The transcriptional landscape of myeloid cell populations in human skin indicates several, novel populations with specialized functions, as well as a rare proliferating DC population that likely accounts for local regeneration or expansion of dermal DCs. We provide robust gene expression markers for each of these populations that should permit better understandings of their roles in various homeostatic and pathologic immune processes in the skin.
Collapse
Affiliation(s)
- Dan Xue
- Division of Rheumatology and Clinical Rheumatology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tracy Tabib
- Division of Rheumatology and Clinical Rheumatology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Christina Morse
- Division of Rheumatology and Clinical Rheumatology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Rheumatology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
43
|
Wang Y, Lee MYK, Mak JCW, Ip MSM. Low-Frequency Intermittent Hypoxia Suppresses Subcutaneous Adipogenesis and Induces Macrophage Polarization in Lean Mice. Diabetes Metab J 2019; 43:659-674. [PMID: 31237128 PMCID: PMC6834831 DOI: 10.4093/dmj.2018.0196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/06/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The relationship between obstructive sleep apnoea (OSA) and metabolic disorders is complex and highly associated. The impairment of adipogenic capacity in pre-adipocytes may promote adipocyte hypertrophy and increase the risk of further metabolic dysfunction. We hypothesize that intermittent hypoxia (IH), as a pathophysiologic feature of OSA, may regulate adipogenesis by promoting macrophage polarization. METHODS Male C57BL/6N mice were exposed to either IH (240 seconds of 10% O₂ followed by 120 seconds of 21% O₂, i.e., 10 cycles/hour) or intermittent normoxia (IN) for 6 weeks. Stromal-vascular fractions derived from subcutaneous (SUB-SVF) and visceral (VIS-SVF) adipose tissues were cultured and differentiated. Conditioned media from cultured RAW 264.7 macrophages after air (Raw) or IH exposure (Raw-IH) were incubated with SUB-SVF during adipogenic differentiation. RESULTS Adipogenic differentiation of SUB-SVF but not VIS-SVF from IH-exposed mice was significantly downregulated in comparison with that derived from IN-exposed mice. IH-exposed mice compared to IN-exposed mice showed induction of hypertrophic adipocytes and increased preferential infiltration of M1 macrophages in subcutaneous adipose tissue (SAT) compared to visceral adipose tissue. Complementary in vitro analysis demonstrated that Raw-IH media significantly enhanced inhibition of adipogenesis of SUB-SVF compared to Raw media, in agreement with corresponding gene expression levels of differentiation-associated markers and adipogenic transcription factors. CONCLUSION Low frequency IH exposure impaired adipogenesis of SAT in lean mice, and macrophage polarization may be a potential mechanism for the impaired adipogenesis.
Collapse
Affiliation(s)
- Yan Wang
- Department of Medicine, The University of Hong Kong Li Ka Shing Faculty of Medicine, Hong Kong
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Mary Yuk Kwan Lee
- Department of Medicine, The University of Hong Kong Li Ka Shing Faculty of Medicine, Hong Kong
- Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong Li Ka Shing Faculty of Medicine, Hong Kong
| | - Judith Choi Wo Mak
- Department of Medicine, The University of Hong Kong Li Ka Shing Faculty of Medicine, Hong Kong
- Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong Li Ka Shing Faculty of Medicine, Hong Kong
- Department of Pharmacology & Pharmacy, The University of Hong Kong Li Ka Shing Faculty of Medicine, Hong Kong
| | - Mary Sau Man Ip
- Department of Medicine, The University of Hong Kong Li Ka Shing Faculty of Medicine, Hong Kong
- Research Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong Li Ka Shing Faculty of Medicine, Hong Kong.
| |
Collapse
|
44
|
Dey R, Bishayi B. Dexamethasone exhibits its anti-inflammatory effects in S. aureus induced microglial inflammation via modulating TLR-2 and glucocorticoid receptor expression. Int Immunopharmacol 2019; 75:105806. [PMID: 31401378 DOI: 10.1016/j.intimp.2019.105806] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 01/31/2023]
Abstract
Microglial inflammation plays crucial role in the pathogenesis of CNS infections including brain abscesses. Staphylococcus aureus (S. aureus) is considered as one of the major causative agents of brain abscesses. Due to the emergence of multidrug resistant bacteria the available treatment options including conventional antibiotics and steroid therapy become ineffective in terms of inflammation regulation which warrants further investigation to resolve this health issue. Microglial TLR-2 plays important roles in the bacterial recognition as well as induction of inflammation whereas glucocorticoid receptor (GR) triggers anti-inflammatory pathways in presence of glucocorticoids (GCs). The main objective of this study was to figure out the interdependency between TLR-2 and GR in presence of exogenous dexamethasone during microglial inflammation as an alternative therapeutic approach. Experiments were done either in TLR-2 neutralized condition or GR blocked condition in presence of dexamethasone. Free radicals production, arginase, superoxide dismutase (SOD), catalase enzyme activities and corticosterone concentration were measured along with Western blot analysis of TLR-2, GR and other inflammatory molecules. The results suggested that dexamethasone pre-treatment in TLR-2 neutralized condition efficiently reduces the inflammatory consequences of S. aureus induced microglial inflammation through up regulating GR expression. During TLR-2 blocking dexamethasone exerted its potent anti-inflammatory activities via suppressing reactive oxygen species (ROS), NO production and up regulating arginase, SOD and catalase activities at the time point of 90 min. Further in-vivo experiments are needed to conclude that dexamethasone could resolve brain inflammation possibly through microglial phenotypic switching from pro-inflammatory M1 to anti-inflammatory M2.
Collapse
Affiliation(s)
- Rajen Dey
- Department of Physiology, Immunology Laboratory, University of Calcutta, University College of Science and Technology, Calcutta, West Bengal, India
| | - Biswadev Bishayi
- Department of Physiology, Immunology Laboratory, University of Calcutta, University College of Science and Technology, Calcutta, West Bengal, India.
| |
Collapse
|
45
|
Ghrelin Signaling in Immunometabolism and Inflamm-Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1090:165-182. [PMID: 30390290 DOI: 10.1007/978-981-13-1286-1_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Intracellular changes in immune cells lead to metabolic dysfunction, which is termed immunometabolism. Chronic inflammation is a hallmark of aging; this phenomenon is described as inflamm-aging. Immunometabolism and inflamm-aging are closely linked to obesity, insulin resistance, type 2 diabetes (T2D), cardiovascular diseases, and cancers, which consequently reduce life span and health span of the elderly. Ghrelin is an orexigenic hormone that regulates appetite and food intake. Ghrelin's functions are mediated through its receptor, growth hormone secretagogue receptor (GHS-R). Ghrelin and GHS-R have important roles in age-associated obesity, insulin resistance, and T2D. In this chapter, we have discussed the roles of ghrelin signaling in diet-induced obesity and normal aging as it relates to energy metabolism and inflammation in key metabolic tissues and organs. The new findings reveal that ghrelin signaling is an important regulatory mechanism for immunometabolism and inflamm-aging. Ghrelin signaling offers an exciting novel therapeutic strategy for treatment of obesity and insulin resistance of the elderly.
Collapse
|
46
|
Treatment of obesity-related inflammation with a novel synthetic pentacyclic oleanane triterpenoids via modulation of macrophage polarization. EBioMedicine 2019; 45:473-486. [PMID: 31285187 PMCID: PMC6642413 DOI: 10.1016/j.ebiom.2019.06.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 01/03/2023] Open
Abstract
Background Obesity leads to the chronic inflammation in the whole body and triggers the macrophage polarization to the pro-inflammatory phenotype. Targeting macrophage polarization provides a promising therapeutic strategy for obesity-related metabolic disorders and inflammation. Here, we show that SO1989, a derivative of natural occurring compound oleanolic acid, restores the balance between M1-polarized and M2-polarized macrophages in high fat diets (HFD)-induced obese mice resulting in the improvement of adipose inflammation and the metabolic dysfunctions. Methods Histological analysis, magnetic cell sorting and FACS, in vitro cell model of adipose inflammation, Western blotting, HFD mice model. Findings SO1989 exhibits similar or even stronger activity in inhibiting inflammation and M1 polarization of macrophages both in vitro and in vivo compared to its analogue CDDO-Me, previously known as a powerful anti-inflammation chemical small molecule. In addition, SO1989 can significantly increase the level of fatty acid oxidation in macrophages which can efficiently facilitate M2 polarization of macrophages. Unlike CDDO-Me, SO1989 shows less adverse effects on obese mice. Interpretation Taken all together, our findings identify SO1989 as a modulator in macrophage polarization and a safer potential leading compound for pro-resolution of inflammation treatment in metabolic disorders. Fund Supported by grants from the National Key Research and Development Plan (2017YFA0506000, 2017YFA0205400) and National Natural Science Foundation of China (81673439) and Natural Science Fund project in Jiangsu Province (BK20161408).
Collapse
|
47
|
Hans CP, Sharma N, Sen S, Zeng S, Dev R, Jiang Y, Mahajan A, Joshi T. Transcriptomics Analysis Reveals New Insights into the Roles of Notch1 Signaling on Macrophage Polarization. Sci Rep 2019; 9:7999. [PMID: 31142802 PMCID: PMC6541629 DOI: 10.1038/s41598-019-44266-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/29/2019] [Indexed: 12/24/2022] Open
Abstract
Naïve macrophages (Mφ) polarize in response to various environmental cues to a spectrum of cells that have distinct biological functions. The extreme ends of the spectrum are classified as M1 and M2 macrophages. Previously, we demonstrated that Notch1 deficiency promotes Tgf-β2 dependent M2-polarization in a mouse model of abdominal aortic aneurysm. The present studies aimed to characterize the unique set of genes regulated by Notch1 signaling in macrophage polarization. Bone marrow derived macrophages isolated from WT or Notch1+/- mice (n = 12) were differentiated to Mφ, M1 or M2-phenotypes by 24 h exposure to vehicle, LPS/IFN-γ or IL4/IL13 respectively and total RNA was subjected to RNA-Sequencing (n = 3). Bioinformatics analyses demonstrated that Notch1 haploinsufficiency downregulated the expression of 262 genes at baseline level, 307 genes with LPS/IFN-γ and 254 genes with IL4/IL13 treatment. Among these, the most unique genes downregulated by Notch1 haploinsufficiency included fibromodulin (Fmod), caspase-4, Has1, Col1a1, Alpl and Igf. Pathway analysis demonstrated that extracellular matrix, macrophage polarization and osteogenesis were the major pathways affected by Notch1 haploinsufficiency. Gain and loss-of-function studies established a strong correlation between Notch1 haploinsufficiency and Fmod in regulating Tgf-β signaling. Collectively, our studies suggest that Notch1 haploinsufficiency increases M2 polarization through these newly identified genes.
Collapse
Affiliation(s)
- Chetan P Hans
- Department of Cardiovascular Medicine, University of Missouri, Columbia, USA.
- Medical Pharmacology and Physiology, University of Missouri, Columbia, USA.
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, USA.
| | - Neekun Sharma
- Department of Cardiovascular Medicine, University of Missouri, Columbia, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, USA
| | - Sidharth Sen
- MU Informatics Institute, University of Missouri, Columbia, USA
| | - Shuai Zeng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, USA
| | - Rishabh Dev
- Department of Cardiovascular Medicine, University of Missouri, Columbia, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, USA
| | - Yuexu Jiang
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, USA
| | - Advitiya Mahajan
- Department of Cardiovascular Medicine, University of Missouri, Columbia, USA
| | - Trupti Joshi
- MU Informatics Institute, University of Missouri, Columbia, USA
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, USA
- Department of Health Management and Informatics, School of Medicine, University of Missouri, Columbia, USA
- Christopher S. Bond Life Science Center, University of Missouri, Columbia, USA
| |
Collapse
|
48
|
Association between Adipose Tissue Interleukin-33 and Immunometabolic Markers in Individuals with Varying Degrees of Glycemia. DISEASE MARKERS 2019; 2019:7901062. [PMID: 31073344 PMCID: PMC6470453 DOI: 10.1155/2019/7901062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/17/2018] [Indexed: 12/24/2022]
Abstract
Introduction Interleukin-33 (IL-33), the ligand for the receptor ST2, is abundant in adipose tissue, including preadipocytes, adipocytes, and endothelial cells. The IL-33/ST2 axis is protective against obesity, insulin resistance, and type 2 diabetes (T2D) in animal models. We determined whether adipose tissue IL-33 was associated with glycated hemoglobin (HbA1c), as well as mediators of inflammation and immune regulation and beiging of adipose tissue, among individuals with varying degrees of glycemia. Materials and Methods A total of 91 adults with normoglycemia, prediabetes, and T2D were included. After measuring their anthropometric and biochemical parameters, subcutaneous adipose tissue samples were isolated and mRNA expression of cytokines, chemokines, chemokine receptors, pattern recognition receptors, and mediators involved in beiging of adipose tissue were measured. Results Adipose tissue IL-33 was inversely associated with HbA1c in individuals with normoglycemia and T2D but not in those with prediabetes and was inversely correlated with fasting plasma glucose in individuals with T2D and with a better glycemic control. IL-33-to-ST2 ratio was inversely correlated with HbA1c in individuals with normoglycemia but not in those with prediabetes or T2D. IL-33 was directly associated with ST2, CD302, fibrinogen-like protein 2 (FGL2), and PR domain containing 16 (PRDM16) but inversely correlated with chemokine (C-C motif) ligand (CCL) 7 and CCL8 in individuals with normoglycemia. Similarly, IL-33 was directly associated with ST2, CD302, FGL2, PRDM16, and, additionally, toll-like receptor (TLR) 3 and IL-12A in individuals with T2D. However, IL-33 was not associated with any of these mediators but was directly and strongly associated with TLR9 in individuals with prediabetes. Conclusions IL-33 and/or IL-33/ST2 dynamics and biological functions may play a role in overall glycemia among humans and may represent a novel target by which glucose-lowering managements confer their beneficial effects.
Collapse
|
49
|
Ishai A, Osborne MT, Tung B, Wang Y, Hammad B, Patrich T, Oberfeld B, Fayad ZA, Giles JT, Lo J, Shin LM, Grinspoon SK, Koenen KC, Pitman RK, Tawakol A. Amygdalar Metabolic Activity Independently Associates With Progression of Visceral Adiposity. J Clin Endocrinol Metab 2019; 104:1029-1038. [PMID: 30383236 PMCID: PMC6375724 DOI: 10.1210/jc.2018-01456] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/26/2018] [Indexed: 12/14/2022]
Abstract
CONTEXT Epidemiologic data link psychological stress to adiposity. The underlying mechanisms remain uncertain. OBJECTIVES To test whether (i) higher activity of the amygdala, a neural center involved in the response to stress, associates with greater visceral adipose tissue (VAT) volumes and (ii) this association is mediated by increased bone marrow activity. SETTING Massachusetts General Hospital, Boston, Massachusetts. PATIENTS Two hundred forty-six patients without active oncologic, cardiovascular, or inflammatory disease who underwent clinical 18F-fluorodeoxyglucose positron emission tomography/computed tomography imaging were studied. VAT imaging was repeated ∼1 year later in 68 subjects. DESIGN Metabolic activity of the amygdala (AmygA), hematopoietic tissue activity, and adiposity volumes were measured with validated methods. MAIN OUTCOME MEASURE The relationship between AmygA and baseline and follow-up VAT. RESULTS AmygA associated with baseline body mass index (standardized β = 0.15; P = 0.01), VAT (0.19; P = 0.002), and VAT/subcutaneous adipose tissue ratio (0.20; P = 0.002), all remaining significant after adjustment for age and sex. AmygA also associated with bone marrow activity (0.15; P = 0.01), which in turn associated with VAT (0.34; P < 0.001). Furthermore, path analysis showed that 48% of the relationship between AmygA and baseline VAT was mediated by increased bone marrow activity (P = 0.007). Moreover, AmygA associated with achieved VAT after 1 year (P = 0.02) after adjusting for age, sex, and baseline VAT. CONCLUSIONS These results suggest a neurobiological pathway involving the amygdala and bone marrow linking psychosocial stress to adiposity in humans. Future studies should test whether targeting this mechanism attenuates adiposity and its complications.
Collapse
Affiliation(s)
| | - Michael T Osborne
- Cardiac MR-PET-CT Program, Boston, Massachusetts
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Brian Tung
- Cardiac MR-PET-CT Program, Boston, Massachusetts
| | - Ying Wang
- Cardiac MR-PET-CT Program, Boston, Massachusetts
| | - Basma Hammad
- Cardiac MR-PET-CT Program, Boston, Massachusetts
| | | | | | - Zahi A Fayad
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jon T Giles
- Department of Rheumatology, Columbia University, New York, New York
| | - Janet Lo
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts
- Program in Nutritional Metabolism, Massachusetts General Hospital, Boston, Massachusetts
| | - Lisa M Shin
- Department of Psychology, Tufts University, Medford, Massachusetts
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Steven K Grinspoon
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts
- Program in Nutritional Metabolism, Massachusetts General Hospital, Boston, Massachusetts
| | - Karestan C Koenen
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, Boston, Massachusetts
| | - Roger K Pitman
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ahmed Tawakol
- Cardiac MR-PET-CT Program, Boston, Massachusetts
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Correspondence and Reprint Requests: Ahmed Tawakol, MD, Cardiology Division, Massachusetts General Hospital, 55 Fruit Street, Yawkey 5-050, Boston, Massachusetts 02114-2750. E-mail:
| |
Collapse
|
50
|
Liu Y, Wang X, Pang J, Zhang H, Luo J, Qian X, Chen Q, Ling W. Attenuation of Atherosclerosis by Protocatechuic Acid via Inhibition of M1 and Promotion of M2 Macrophage Polarization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:807-818. [PMID: 30592218 DOI: 10.1021/acs.jafc.8b05719] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Macrophage polarization has a vital impact on the progression of atherosclerosis (AS). Protocatechuic acid (PCA), a flavonol, displays notable atheroprotective effects, but its mechanisms have not been clearly defined. We investigated whether PCA attenuated AS by regulating macrophage polarization. PCA consumption inhibited HCD-induced plaque formation (17.84 and 8.21% in the HCD and HCD with PCA groups, respectively, p < 0.05) and inflammatory responses in apolipoprotein E deficient (ApoE-/-) mice. Moreover, PCA suppressed classically activated macrophage (M1) polarization, which decreased the secretion of nitric oxide synthase (54.63 and 32.86% in the HCD and HCD with PCA groups, respectively, p < 0.05) and proinflammatory factors. PCA promoted alternatively activated macrophage (M2) activation, which increased the expression of arginine I (6.97 and 26.19% in the HCD and HCD with PCA groups, respectively, p < 0.001) and anti-inflammatory factors. PCA also regulated M1-M2 polarization in J774 cells and mouse-bone-marrow-derived macrophages. Finally, PCA reduced PI3K-Akt-mediated nuclear-factor-κB activation, thereby suppressing M1 polarization, and provoked signal-transducers-and-activators-of-transcription-6 phosphorylation and peroxisome-proliferator-activated-receptor-γ activation, leading to enhanced M2 activation. Our data revealed that PCA alleviated AS by regulating M1-M2 conversion.
Collapse
Affiliation(s)
- Yao Liu
- Department of Nutrition, School of Public Health , Sun Yat-Sen University (North Campus) , Guangzhou 510080 , PR China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health , Guangzhou 510080 , PR China
| | - Xu Wang
- Department of Nutrition, School of Public Health , Sun Yat-Sen University (North Campus) , Guangzhou 510080 , PR China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health , Guangzhou 510080 , PR China
| | - Juan Pang
- Department of Nutrition, School of Public Health , Sun Yat-Sen University (North Campus) , Guangzhou 510080 , PR China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health , Guangzhou 510080 , PR China
| | - Hanyue Zhang
- Department of Nutrition, School of Public Health , Sun Yat-Sen University (North Campus) , Guangzhou 510080 , PR China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health , Guangzhou 510080 , PR China
| | - Jing Luo
- Department of Nutrition, School of Public Health , Sun Yat-Sen University (North Campus) , Guangzhou 510080 , PR China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health , Guangzhou 510080 , PR China
| | - Xiaoyun Qian
- Department of Nutrition, School of Public Health , Sun Yat-Sen University (North Campus) , Guangzhou 510080 , PR China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health , Guangzhou 510080 , PR China
| | - Qian Chen
- Department of Nutrition, School of Public Health , Sun Yat-Sen University (North Campus) , Guangzhou 510080 , PR China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health , Guangzhou 510080 , PR China
| | - Wenhua Ling
- Department of Nutrition, School of Public Health , Sun Yat-Sen University (North Campus) , Guangzhou 510080 , PR China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health , Guangzhou 510080 , PR China
- Guangdong Engineering Technology Center of Nutrition Transformation , Guangzhou 510080 , PR China
| |
Collapse
|