1
|
Shaikh MG, Lucas-Herald AK, Dastamani A, Salomon Estebanez M, Senniappan S, Abid N, Ahmad S, Alexander S, Avatapalle B, Awan N, Blair H, Boyle R, Chesover A, Cochrane B, Craigie R, Cunjamalay A, Dearman S, De Coppi P, Erlandson-Parry K, Flanagan SE, Gilbert C, Gilligan N, Hall C, Houghton J, Kapoor R, McDevitt H, Mohamed Z, Morgan K, Nicholson J, Nikiforovski A, O'Shea E, Shah P, Wilson K, Worth C, Worthington S, Banerjee I. Standardised practices in the networked management of congenital hyperinsulinism: a UK national collaborative consensus. Front Endocrinol (Lausanne) 2023; 14:1231043. [PMID: 38027197 PMCID: PMC10646160 DOI: 10.3389/fendo.2023.1231043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/04/2023] [Indexed: 12/01/2023] Open
Abstract
Congenital hyperinsulinism (CHI) is a condition characterised by severe and recurrent hypoglycaemia in infants and young children caused by inappropriate insulin over-secretion. CHI is of heterogeneous aetiology with a significant genetic component and is often unresponsive to standard medical therapy options. The treatment of CHI can be multifaceted and complex, requiring multidisciplinary input. It is important to manage hypoglycaemia in CHI promptly as the risk of long-term neurodisability arising from neuroglycopaenia is high. The UK CHI consensus on the practice and management of CHI was developed to optimise and harmonise clinical management of patients in centres specialising in CHI as well as in non-specialist centres engaged in collaborative, networked models of care. Using current best practice and a consensus approach, it provides guidance and practical advice in the domains of diagnosis, clinical assessment and treatment to mitigate hypoglycaemia risk and improve long term outcomes for health and well-being.
Collapse
Affiliation(s)
- M. Guftar Shaikh
- Department of Paediatric Endocrinology, Royal Hospital for Children, Glasgow, United Kingdom
| | - Angela K. Lucas-Herald
- Department of Paediatric Endocrinology, Royal Hospital for Children, Glasgow, United Kingdom
| | - Antonia Dastamani
- Department of Paediatric Endocrinology and Diabetes, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Maria Salomon Estebanez
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Senthil Senniappan
- Department of Paediatric Endocrinology, Alder Hey Children’s Hospital, Liverpool, United Kingdom
| | - Noina Abid
- Department of Paediatric Endocrinology, Royal Belfast Hospital for Sick Children, Belfast, United Kingdom
| | - Sumera Ahmad
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Sophie Alexander
- Department of Paediatric Endocrinology and Diabetes, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Bindu Avatapalle
- Department of Paediatric Endocrinology and Diabetes, University Hospital of Wales, Cardiff, United Kingdom
| | - Neelam Awan
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Hester Blair
- Department of Dietetics, The Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Roisin Boyle
- Department of Paediatric Endocrinology, Royal Hospital for Children, Glasgow, United Kingdom
| | - Alexander Chesover
- Department of Paediatric Endocrinology and Diabetes, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Barbara Cochrane
- Department of Paediatric Endocrinology, Royal Hospital for Children, Glasgow, United Kingdom
| | - Ross Craigie
- Department of Paediatric Surgery, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Annaruby Cunjamalay
- Department of Paediatric Endocrinology and Diabetes, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Sarah Dearman
- The Children’s Hyperinsulinism Charity, Accrington, United Kingdom
| | - Paolo De Coppi
- SNAPS, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
- NIHR BRC UCL Institute of Child Health, London, United Kingdom
| | - Karen Erlandson-Parry
- Department of Paediatric Endocrinology, Alder Hey Children’s Hospital, Liverpool, United Kingdom
| | - Sarah E. Flanagan
- Department of Clinical and Biomedical Science, University of Exeter, Exeter, United Kingdom
| | - Clare Gilbert
- Department of Paediatric Endocrinology and Diabetes, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Niamh Gilligan
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Caroline Hall
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Jayne Houghton
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
| | - Ritika Kapoor
- Department of Paediatric Endocrinology, Faculty of Medicine and Life Sciences, King’s College London, King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Helen McDevitt
- Department of Paediatric Endocrinology, Royal Hospital for Children, Glasgow, United Kingdom
| | - Zainab Mohamed
- Department of Paediatric Endocrinology, Birmingham Children's Hospital, Birmingham, United Kingdom
| | - Kate Morgan
- Department of Paediatric Endocrinology and Diabetes, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Jacqueline Nicholson
- Paediatric Psychosocial Service, Royal Manchester Children’s Hospital, Manchester, United Kingdom
| | - Ana Nikiforovski
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Elaine O'Shea
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Pratik Shah
- Department of Paediatric Endocrinology, Barts Health NHS Trust, Royal London Children’s Hospital, London, United Kingdom
| | - Kirsty Wilson
- Department of Paediatric Endocrinology, Royal Hospital for Children, Glasgow, United Kingdom
| | - Chris Worth
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Sarah Worthington
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | - Indraneel Banerjee
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, United Kingdom
| |
Collapse
|
2
|
Clemente M, Cobo P, Antolín M, Campos A, Yeste D, Tomasini R, Caimari M, Masas M, García-Arumí E, Fernández-Cancio M, Baz-Redón N, Camats-Tarruella N. Genetics and Natural History of Non-pancreatectomized Patients With Congenital Hyperinsulinism Due to Variants in ABCC8. J Clin Endocrinol Metab 2023; 108:e1316-e1328. [PMID: 37216904 DOI: 10.1210/clinem/dgad280] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023]
Abstract
CONTEXT Patients with congenital hyperinsulinism due to ABCC8 variants generally present severe hypoglycemia and those who do not respond to medical treatment typically undergo pancreatectomy. Few data exist on the natural history of non-pancreatectomized patients. OBJECTIVE This work aims to describe the genetic characteristics and natural history in a cohort of non-pancreatectomized patients with congenital hyperinsulinism due to variants in the ABCC8 gene. METHODS Ambispective study of patients with congenital hyperinsulinism with pathogenic or likely pathogenic variants in ABCC8 treated in the last 48 years and who were not pancreatectomized. Continuous glucose monitoring (CGM) has been periodically performed in all patients since 2003. An oral glucose tolerance test was performed if hyperglycemia was detected in the CGM. RESULTS Eighteen non-pancreatectomized patients with ABCC8 variants were included. Seven (38.9%) patients were heterozygous, 8 (44.4%) compound heterozygous, 2 (11.1%) homozygous, and 1 patient carried 2 variants with incomplete familial segregation studies. Seventeen patients were followed up and 12 (70.6%) of them evolved to spontaneous resolution (median age 6.0 ± 4 years; range, 1-14). Five of these 12 patients (41.7%) subsequently progressed to diabetes with insufficient insulin secretion. Evolution to diabetes was more frequent in patients with biallelic variants in the ABCC8 gene. CONCLUSION The high remission rate observed in our cohort makes conservative medical treatment a reliable strategy for the management of patients with congenital hyperinsulinism due to ABCC8 variants. In addition, a periodic follow-up of glucose metabolism after remission is recommended, as a significant proportion of patients evolved to impaired glucose tolerance or diabetes (biphasic phenotype).
Collapse
Affiliation(s)
- María Clemente
- Paediatric Endocrinology Section, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Growth and Development Research Group, Vall d'Hebron Research Institute (VHIR), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Paediatrics, Obstetrics and Gynaecology and Preventive Medicine Department, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 08035 Barcelona, Spain
| | - Patricia Cobo
- Paediatric Endocrinology Section, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - María Antolín
- Department of Clinical and Molecular Genetics and Rare Diseases, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Medicine Genetics Group, VHIR, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Ariadna Campos
- Paediatric Endocrinology Section, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Growth and Development Research Group, Vall d'Hebron Research Institute (VHIR), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Paediatrics, Obstetrics and Gynaecology and Preventive Medicine Department, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Diego Yeste
- Paediatric Endocrinology Section, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Growth and Development Research Group, Vall d'Hebron Research Institute (VHIR), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Paediatrics, Obstetrics and Gynaecology and Preventive Medicine Department, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 08035 Barcelona, Spain
| | - Rosangela Tomasini
- Paediatric Endocrinology Unit, Hospital Universitari Mútua Terrassa, 08021 Terrassa, Spain
| | - María Caimari
- Paediatric Endocrinology, Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain
| | - Miriam Masas
- Department of Clinical and Molecular Genetics and Rare Diseases, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Medicine Genetics Group, VHIR, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Elena García-Arumí
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 08035 Barcelona, Spain
- Department of Clinical and Molecular Genetics and Rare Diseases, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Medicine Genetics Group, VHIR, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Research Group on Neuromuscular and Mitochondrial Disorders, VHIR, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Mónica Fernández-Cancio
- Growth and Development Research Group, Vall d'Hebron Research Institute (VHIR), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 08035 Barcelona, Spain
| | - Noelia Baz-Redón
- Growth and Development Research Group, Vall d'Hebron Research Institute (VHIR), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 08035 Barcelona, Spain
| | - Núria Camats-Tarruella
- Growth and Development Research Group, Vall d'Hebron Research Institute (VHIR), Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 08035 Barcelona, Spain
| |
Collapse
|
3
|
Zenker M, Mohnike K, Palm K. Syndromic forms of congenital hyperinsulinism. Front Endocrinol (Lausanne) 2023; 14:1013874. [PMID: 37065762 PMCID: PMC10098214 DOI: 10.3389/fendo.2023.1013874] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 03/07/2023] [Indexed: 04/18/2023] Open
Abstract
Congenital hyperinsulinism (CHI), also called hyperinsulinemic hypoglycemia (HH), is a very heterogeneous condition and represents the most common cause of severe and persistent hypoglycemia in infancy and childhood. The majority of cases in which a genetic cause can be identified have monogenic defects affecting pancreatic β-cells and their glucose-sensing system that regulates insulin secretion. However, CHI/HH has also been observed in a variety of syndromic disorders. The major categories of syndromes that have been found to be associated with CHI include overgrowth syndromes (e.g. Beckwith-Wiedemann and Sotos syndromes), chromosomal and monogenic developmental syndromes with postnatal growth failure (e.g. Turner, Kabuki, and Costello syndromes), congenital disorders of glycosylation, and syndromic channelopathies (e.g. Timothy syndrome). This article reviews syndromic conditions that have been asserted by the literature to be associated with CHI. We assess the evidence of the association, as well as the prevalence of CHI, its possible pathophysiology and its natural course in the respective conditions. In many of the CHI-associated syndromic conditions, the mechanism of dysregulation of glucose-sensing and insulin secretion is not completely understood and not directly related to known CHI genes. Moreover, in most of those syndromes the association seems to be inconsistent and the metabolic disturbance is transient. However, since neonatal hypoglycemia is an early sign of possible compromise in the newborn, which requires immediate diagnostic efforts and intervention, this symptom may be the first to bring a patient to medical attention. As a consequence, HH in a newborn or infant with associated congenital anomalies or additional medical issues remains a differential diagnostic challenge and may require a broad genetic workup.
Collapse
Affiliation(s)
- Martin Zenker
- Institute of Human Genetics, University Hospital, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- *Correspondence: Martin Zenker,
| | - Klaus Mohnike
- Department of Pediatrics, University Hospital, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Katja Palm
- Department of Pediatrics, University Hospital, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
4
|
Stefanovski D, Vajravelu ME, Givler S, De León DD. Exendin-(9-39) Effects on Glucose and Insulin in Children With Congenital Hyperinsulinism During Fasting and During a Meal and a Protein Challenge. Diabetes Care 2022; 45:1381-1390. [PMID: 35416981 PMCID: PMC9210867 DOI: 10.2337/dc21-2009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 03/16/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The aim of this study was to assess whether exendin-(9-39) will increase fasting and postprandial plasma glucose and decrease the incidence of hypoglycemia in children with hyperinsulinism (HI). RESEARCH DESIGN AND METHODS This was an open-label, four-period crossover study. In periods 1 and 2, the effect of three different dosing regimens of exendin-(9-39) (group 1, 0.28 mg/kg; group 2, 0.44 mg/kg; group 3, 0.6 mg/kg) versus vehicle on fasting glucose was assessed in 16 children with HI. In periods 3 and 4, a subset of eight subjects received either vehicle or exendin-(9-39) (0.6 mg/kg) during a mixed-meal tolerance test (MMTT) and an oral protein tolerance test (OPTT). RESULTS Treatment group 2 showed 20% (P = 0.037) increase in the area under the curve (AUC) of fasting glucose. A significant increase in AUC of glucose was also observed during the MMTT and OPTT; treatment with exendin-(9-39) resulted in 28% (P ≤ 0.001) and 30% (P = 0.01) increase in AUC of glucose, respectively. Fasting AUC of insulin decreased by 57% (P = 0.009) in group 3. In contrast, AUC of insulin was unchanged during the MMTT and almost twofold higher (P = 0.004) during the OPTT with exendin-(9-39) treatment. In comparison with vehicle, infusion of exendin-(9-39) resulted in significant reduction in likelihood of hypoglycemia in group 2, by 76% (P = 0.009), and in group 3, by 84% (P = 0.014). Administration of exendin-(9-39) during the OPTT resulted in 82% (P = 0.007) reduction in the likelihood of hypoglycemia. CONCLUSIONS These results support a therapeutic potential of exendin-(9-39) to prevent fasting and protein-induced hypoglycemia in children with HI.
Collapse
Affiliation(s)
- Darko Stefanovski
- School of Veterinarian Medicine, University of Pennsylvania, Philadelphia, PA
| | - Mary E Vajravelu
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Stephanie Givler
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Diva D De León
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
5
|
Reyes Diaz JV, Jin Y, Garber K, Cossen KM, Li Y, Jin P, Li H, Ham JYN. A homozygous exonic variant leading to exon skipping in ABCC8 as the cause of severe congenital hyperinsulinism. Am J Med Genet A 2022; 188:2429-2433. [PMID: 35621279 DOI: 10.1002/ajmg.a.62843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/19/2022] [Accepted: 04/15/2022] [Indexed: 12/13/2022]
Abstract
Congenital hyperinsulinism (CHI) is genetically heterogeneous, caused by pathogenic variants in multiple known genes regulating insulin secretion from the pancreatic β-cells. The ABCC8 gene encodes the sulfonylurea receptor 1 (SUR1), a key player in insulin secretion, and pathogenic variants in ABCC8 are the most common cause of CHI. With increased application of genetic testing in clinical practice, variants of unknown clinical significance (VUS) are commonly reported. Additional functional investigation for variant pathogenicity is fundamental in establishing definitive molecular diagnosis and in guiding clinical management. However, due to the lack of ubiquitous tissue expression of these genes, obtaining functional studies on affected tissue has been challenging. We present a case of severe congenital hyperinsulinism which required a near-total pancreatectomy. CHI gene sequencing identified a homozygous silent variant in ABCC8 located on the last nucleotide of exon 38, c.4608G>A (p.Ala1536Ala). The total RNA was isolated from pancreas resected at the time of pancreatectomy. RNA sequencing and expression analysis demonstrated exon 38 skipping and decreased RNA expression, which supports the pathogenicity of this variant. This case highlights the feasibility of functional studies of VUS on resected pancreatic tissue. The result expands the mutation spectrum in ABCC8 and allows precise genetic counseling to affected families.
Collapse
Affiliation(s)
- Jacqueline V Reyes Diaz
- Division of Endocrinology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA.,Children's Healthcare of Atlanta, Atlanta, Georgia, USA.,Division of Endocrinology, Department of Pediatrics, Driscoll Children's Hospital, Corpus Christi, Texas, USA
| | - Yulin Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kathryn Garber
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kristina M Cossen
- Division of Endocrinology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA.,Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Yujing Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Hong Li
- Children's Healthcare of Atlanta, Atlanta, Georgia, USA.,Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jee-Young Nina Ham
- Division of Endocrinology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA.,Children's Healthcare of Atlanta, Atlanta, Georgia, USA.,Division of Endocrinology, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
6
|
Lin CH, Lin YC, Yang SB, Chen PC. Carbamazepine promotes surface expression of mutant Kir6.2-A28V ATP-sensitive potassium channels by modulating Golgi retention and autophagy. J Biol Chem 2022; 298:101904. [PMID: 35398096 PMCID: PMC9065613 DOI: 10.1016/j.jbc.2022.101904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 11/21/2022] Open
Abstract
Pancreatic β-cells express ATP-sensitive potassium (KATP) channels, consisting of octamer complexes containing four sulfonylurea receptor 1 (SUR1) and four Kir6.2 subunits. Loss of KATP channel function causes persistent hyperinsulinemic hypoglycemia of infancy (PHHI), a rare but debilitating condition if not treated. We previously showed that the sodium-channel blocker carbamazepine (Carb) corrects KATP channel surface expression defects induced by PHHI-causing mutations in SUR1. In this study, we show that Carb treatment can also ameliorate the trafficking deficits associated with a recently discovered PHHI-causing mutation in Kir6.2 (Kir6.2-A28V). In human embryonic kidney 293 or INS-1 cells expressing this mutant KATP channel (SUR1 and Kir6.2-A28V), biotinylation and immunostaining assays revealed that Carb can increase surface expression of the mutant KATP channels. We further examined the subcellular distributions of mutant KATP channels before and after Carb treatment; without Carb treatment, we found that mutant KATP channels were aberrantly accumulated in the Golgi apparatus. However, after Carb treatment, coimmunoprecipitation of mutant KATP channels and Golgi marker GM130 was diminished, and KATP staining was also reduced in lysosomes. Intriguingly, Carb treatment also simultaneously increased autophagic flux and p62 accumulation, suggesting that autophagy-dependent degradation of the mutant channel was not only stimulated but also interrupted. In summary, our data suggest that surface expression of Kir6.2-A28V KATP channels is rescued by Carb treatment via promotion of mutant KATP channel exit from the Golgi apparatus and reduction of autophagy-mediated protein degradation.
Collapse
|
7
|
Salguero MV, Chan K, Greeley SAW, Dyamenahalli U, Waggoner D, del Gaudio D, Rajiyah T, Lemelman M. Novel KDM6A Kabuki Syndrome Mutation with Hyperinsulinemic Hypoglycemia and Pulmonary Hypertension requiring ECMO. J Endocr Soc 2022; 6:bvac015. [PMID: 35237736 PMCID: PMC8884118 DOI: 10.1210/jendso/bvac015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Indexed: 11/30/2022] Open
Abstract
Kabuki syndrome (KS) is a multisystem disorder estimated to occur in 1:32 000 newborns. Pathogenic mutations cause the majority but not all cases of KS in either KMT2D or KDM6A. KS can be suspected by phenotypic features, including infantile hypotonia, developmental delay, dysmorphic features, congenital heart defects, and others. Still, many of these features are not readily apparent in a newborn. Although neonatal hypoglycemia has been reported in 8% to 10% of patients with KS, the incidence and severity of hyperinsulinemic hypoglycemia (HH) is not well-studied. We present a full-term female infant with HH who was responsive to low-dose diazoxide. At 3 months of age, she was admitted for septic shock, worsening respiratory status, and severe pulmonary hypertension, requiring extracorporeal membrane oxygenation support. Her neonatal history was notable for hypotonia, dysphagia with aspiration requiring gastrostomy tube placement, and a cardiac defect—hypoplastic aortic arch requiring aortic arch repair. She has characteristic facial features, including prominent eyelashes, long palpebral fissures, and a short nasal columella. Next-generation sequencing for HH revealed a de novo likely pathogenic missense variant in KDM6A gene: c.3479G > T, p.Gly1160Val that was absent from population databases. Genetic testing for causes of HH should include testing of the KS genes KMT2D and KDM6A. Early detection of the underlying genetic defect will help guide management as all reported HH cases associated with KS have been responsive to diazoxide. Affected infants with underlying cardiac conditions may be at higher risk of serious respiratory complications such as pulmonary hypertension.
Collapse
Affiliation(s)
- Maria V Salguero
- Department of Pediatrics, Section of Adult and Pediatric Endocrinology, University of Chicago
| | - Karen Chan
- Department of Pediatrics, University of Chicago
| | - Siri Atma W Greeley
- Department of Pediatrics, Section of Adult and Pediatric Endocrinology, University of Chicago
| | - Umesh Dyamenahalli
- Department of Pediatrics, Section of Pediatric Cardiology, University of Chicago
| | | | | | - Tara Rajiyah
- Department of Pediatrics, Section of Adult and Pediatric Endocrinology, University of Chicago
| | - Michelle Lemelman
- Department of Pediatrics, Section of Adult and Pediatric Endocrinology, University of Chicago
| |
Collapse
|
8
|
Roeper M, Hoermann H, Salimi Dafsari R, Koestner F, Mayatepek E, Kummer S, Reinauer C, Meissner T. Anxiety, depression, and quality of life in parents of children with congenital hyperinsulinism. Eur J Pediatr 2022; 181:2779-2788. [PMID: 35507217 PMCID: PMC9192457 DOI: 10.1007/s00431-022-04486-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/11/2022] [Accepted: 04/22/2022] [Indexed: 11/03/2022]
Abstract
This study aimed to assess mental health, family burden, and quality of life (PQoL) in parents of children with persistent congenital hyperinsulinism (CHI). Forty-eight individual CHI parents (75% female) completed self-reported questionnaires and screening tools for anxiety (GAD-7), depression (PHQ-8), PQoL (ULQIE), and family burden (FaBeL). Additional data on sociodemographics, social support, and child- and disease-related data were recorded. 29.8% of parents showed major depressive symptoms and 38.3% had a probable general anxiety disorder, including 20.8% who had both. The family burden was moderate and assessment of PQoL yielded average scores. Neurological impairment in an affected child (p = .002 and p < .001, respectively) and lower working hours (p = .001 and p = .012, respectively) were the strongest predictors of worse GAD-7 and PHQ-8 scores. Furthermore, lower working hours (p = .012) and comorbidities in the affected child (p = .007) were significantly associated with lower PQoL. Mothers had worse GAD-7 scores (p = .006) and lower PQoL (p = .035) than fathers. Indication of sleep disturbance was associated with worse PHQ-8 scores (p = .003), higher family burden (p = .039), and reduced PQoL (p = .003). A higher number of caretakers besides parents was associated with decreased family burden (p = .019), improved PQoL (p < .001), and lower scores for anxiety (p = .016) and depressive (p = .021) symptoms. Conclusion: Symptoms of depression and anxiety are alarmingly prevalent in parents of children with CHI. Psychological screening of parents should be initiated to ensure early identification of psychological strains and psychosocial support should be offered as needed. A good support network and regular work activities can improve parental mental health and well-being. What is Known: • Psychosocial strains and reduced quality of life are common in parents of chronically ill children. What is New: • In this first study evaluating mental health, family burden, and quality of life in parents of children with congenital hyperinsulinism (CHI), symptoms of depression and anxiety were alarmingly prevalent. • Parents of children with CHI should receive regular psychological screening and psychosocial support should be offered as needed. A good support network and regular work activities can improve parental mental health and well-being.
Collapse
Affiliation(s)
- Marcia Roeper
- grid.411327.20000 0001 2176 9917Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Children’s Hospital Düsseldorf, Heinrich-Heine-University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Henrike Hoermann
- grid.411327.20000 0001 2176 9917Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Children’s Hospital Düsseldorf, Heinrich-Heine-University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Roschan Salimi Dafsari
- grid.411327.20000 0001 2176 9917Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Children’s Hospital Düsseldorf, Heinrich-Heine-University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Felix Koestner
- grid.411327.20000 0001 2176 9917Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Children’s Hospital Düsseldorf, Heinrich-Heine-University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Ertan Mayatepek
- grid.411327.20000 0001 2176 9917Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Children’s Hospital Düsseldorf, Heinrich-Heine-University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Sebastian Kummer
- grid.411327.20000 0001 2176 9917Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Children’s Hospital Düsseldorf, Heinrich-Heine-University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Christina Reinauer
- grid.411327.20000 0001 2176 9917Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Children’s Hospital Düsseldorf, Heinrich-Heine-University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Thomas Meissner
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Children's Hospital Düsseldorf, Heinrich-Heine-University, Moorenstr. 5, 40225, Düsseldorf, Germany.
| |
Collapse
|
9
|
Herrera Azabache K, Muñoz Bermúdez Z, Ferrández Mengual D, Nso-Roca AP. Hiperinsulinismo congénito en tres pacientes de la misma familia. Ampliando el genotipo de esta enfermedad. An Pediatr (Barc) 2021. [DOI: 10.1016/j.anpedi.2020.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
10
|
Herrera Azabache K, Muñoz Bermúdez Z, Ferrández Mengual D, Nso-Roca AP. Congenital hyperinsulinism in three patients from the same family. Expanding the genotype of this disease. An Pediatr (Barc) 2021; 95:123-124. [PMID: 34373074 DOI: 10.1016/j.anpede.2020.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/10/2020] [Indexed: 10/21/2022] Open
Affiliation(s)
| | | | | | - Ana Pilar Nso-Roca
- Endocrinología Infantil. Hospital Universitario San Juan de Alicante, Alicante, Spain.
| |
Collapse
|
11
|
Sims K. Congenital Hyperinsulinism. Neoreviews 2021; 22:e230-e240. [PMID: 33795398 DOI: 10.1542/neo.22-4-e230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Hyperinsulinemic hypoglycemia (HH) is fairly common in neonates, particularly those born to diabetic mothers and those who are either large or small for gestational age. Immediate management of the disease focuses on achieving normoglycemia through frequent high-calorie feedings and/or intravenous glucose administration. Glucagon may be used for unstable infants in whom intravenous access cannot be obtained and enteral feedings cannot be administered. HH that persists despite these interventions should raise concern for congenital hyperinsulinism (CHI), prompting clinicians to perform a thorough evaluation. CHI consists of a group of genetic disorders in which inappropriate insulin secretion results in persistent hypoglycemia. Defects can occur in the various genes that regulate the pathway for insulin secretion in the pancreatic β-cells. Pharmacologic therapies are used for long-term management of the disease coupled with either curative or therapeutic surgical intervention. Because of the developing brain's high demand for glucose, these infants are at increased risk for hypoglycemic brain injury. This review will describe the pathogenesis of CHI, outlining the more common genetic mutations and associated syndromes. We will also discuss the clinical presentation, diagnosis, and management of CHI while providing insight into the overall prognosis.
Collapse
|
12
|
Mouron-Hryciuk J, Stoppa-Vaucher S, Busiah K, Bouthors T, Antoniou MC, Jacot E, Brusgaard K, Christesen HT, Hussain K, Dwyer A, Roth-Kleiner M, Hauschild M. Congenital hyperinsulinism: 2 case reports with different rare variants in ABCC8. Ann Pediatr Endocrinol Metab 2021; 26:60-65. [PMID: 32871644 PMCID: PMC8026340 DOI: 10.6065/apem.2040042.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/19/2020] [Indexed: 11/20/2022] Open
Abstract
Congenital hyperinsulinism (CHI) is a rare glucose metabolism disorder characterized by unregulated secretion of insulin that leads to hyperinsulinemic hypoglycemia (HH). Most cases are caused by mutations in the KATP-channel genes ABCC8 and KCNJ11. We report 2 patients that experienced severe HH from the first day of life. Patient 1 developed midgut volvulus after initiating diazoxide and required intestinal resection. He was subsequently managed with a high-dose octreotide and glucose-enriched diet. Consistent with diffuse type CHI by 18F-dihydroxyphenylalanine positron emission tomography-computed tomography, genetic testing revealed a homozygous ABCC8 variant, c.1801G>A, p.(Val601Ile). The rare variant was previously reported to be diazoxide-responsive, and the patient responded well to diazoxide monotherapy, with clinical remission at 2 years of age. Patient 2 responded to diazoxide with spontaneous clinical remission at 15 months of age. However, an oral glucose tolerance test at 7 years of age revealed hyperinsulinism. Genetic testing revealed that the proband and several seemingly healthy family members harbored a novel, heterozygous ABCC8 variant, c.1780T>C, p.(Ser594Pro). Genetic findings identified previously unrecognized HH in the proband's mother. The proband's uncle had been diagnosed with monogenic ABCC8-diabetes and was successfully transitioned from insulin to glibenclamide therapy. We report findings of intestinal malrotation and volvulus occurring 2 days after initiation of diazoxide treatment. We also report a novel, heterozygous ABCC8 variant in a family that exhibited cases of CHI in infancy and HH and monogenic diabetes in adult members. The cases demonstrate the importance and clinical utility of genetic analyses for informing and guiding treatment and care.
Collapse
Affiliation(s)
- Julie Mouron-Hryciuk
- Pediatric Endocrinology and Diabetology Unit, Ser vice of Pediatrics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Sophie Stoppa-Vaucher
- Pediatric Endocrinology and Diabetology Unit, Ser vice of Pediatrics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland,Department of Pediatrics, Hôpitaux Neuchâtelois, Neuchâtel, Switzerland
| | - Kanetee Busiah
- Pediatric Endocrinology and Diabetology Unit, Ser vice of Pediatrics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Thérèse Bouthors
- Pediatric Endocrinology and Diabetology Unit, Ser vice of Pediatrics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Maria Christina Antoniou
- Pediatric Endocrinology and Diabetology Unit, Ser vice of Pediatrics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | - Klaus Brusgaard
- Departement of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | | | - Khalid Hussain
- D e velopmental Endocr inology Research Group, Clinical and Molecular Genetics Unit, Institute of Child Health, University College London, London, UK
| | - Andrew Dwyer
- Boston College, William F. Connell School of Nursing, Chestnut Hill, MA, USA
| | - Matthias Roth-Kleiner
- Service of Neonatology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Michael Hauschild
- Pediatric Endocrinology and Diabetology Unit, Ser vice of Pediatrics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland,Address for correspondence: Michael Hauschild Pediatric Endocrinology and Diabetology Unit, Service of Pediatrics, Lausanne University Hospital and University of Lausanne, Chemin de Montétan 16 1004 Lausanne, Switzerland
| |
Collapse
|
13
|
Banas JL, Viswalingam B, Rajadurai VS, Yap F, Chandran S. Asymptomatic Hyperinsulinemic Hypoglycemia and Grade 4 Intraventricular Hemorrhage in a Late Preterm Infant. J Investig Med High Impact Case Rep 2021; 9:23247096211051918. [PMID: 34654342 PMCID: PMC8524697 DOI: 10.1177/23247096211051918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/07/2021] [Accepted: 09/21/2021] [Indexed: 11/15/2022] Open
Abstract
Hyperinsulinemic hypoglycemia (HH) has the potential to cause acute neurologic dysfunction and neurodevelopmental impairment. Parieto-occipital neuronal injuries have been reported in hypoglycemic infants, but intraparenchymal hemorrhage is rare. On day 5 of life, a late preterm infant was transferred to our care with recurrent asymptomatic hypoglycemia. Prior to arrival, plasma glucose levels were at a median of 1.25 mmol/L (22.5 mg/dL) in the first 6 hours of life, and he required a glucose infusion rate (GIR) of 22.6 mg/kg/min. Hyperinsulinism was confirmed in the presence of detectable insulin, low ketones, and fatty acid when hypoglycemic. A left grade 4 intraventricular hemorrhage (IVH) was noted in the cranial ultrasound scan during the workup for sepsis on the day of admission. However, magnetic resonance imaging of the brain on day 7 of life revealed extensive bilateral IVH. On day 9, he was initiated on diazoxide, and HH resolved within 48 to 72 hours, allowing increment of feeds while weaning GIR. Ventricular drain for post-hemorrhagic ventriculomegaly was advised but not performed. At 3 months, post-hemorrhagic ventriculomegaly was stable, and there were early signs of neurodevelopmental delay. After discontinuing diazoxide at 4 months of age, he passed an 8-hour fasting study confirming the resolution of HH. Severe hypoglycemia has been associated with cerebral hyperperfusion in preterm infants and potentially could cause IVH. Close monitoring and prompt intervention in preterm infants to prevent severe hypoglycemia are paramount. In addition to long-term neurodevelopmental follow-up, infants with recurrent hypoglycemia may benefit from neuroimaging and thereby early intervention if required.
Collapse
Affiliation(s)
| | | | - Victor Samuel Rajadurai
- KK Women’s and Children’s
Hospital, Singapore
- National University of Singapore,
Singapore
- Nanyang Technological University,
Singapore
- Duke-NUS Medical School, National
University of Singapore, Singapore
| | - Fabian Yap
- KK Women’s and Children’s
Hospital, Singapore
- Nanyang Technological University,
Singapore
- Duke-NUS Medical School, National
University of Singapore, Singapore
| | - Suresh Chandran
- KK Women’s and Children’s
Hospital, Singapore
- National University of Singapore,
Singapore
- Nanyang Technological University,
Singapore
- Duke-NUS Medical School, National
University of Singapore, Singapore
| |
Collapse
|
14
|
Liu Q, Garg P, Hasdemir B, Wang L, Tuscano E, Sever E, Keane E, Hernandez AGL, Yuan TZ, Kwan E, Lai J, Szot G, Paruthiyil S, Axelrod F, K. Sato A. Functional GLP-1R antibodies identified from a synthetic GPCR-focused library demonstrate potent blood glucose control. MAbs 2021; 13:1893425. [PMID: 33706686 PMCID: PMC7971233 DOI: 10.1080/19420862.2021.1893425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 02/04/2021] [Accepted: 02/17/2021] [Indexed: 11/15/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are a group of seven-transmembrane receptor proteins that have proven to be successful drug targets. Antibodies are becoming an increasingly promising modality to target these receptors due to their unique properties, such as exquisite specificity, long half-life, and fewer side effects, and their improved pharmacokinetic and pharmacodynamic profiles compared to peptides and small molecules, which results from their more favorable biodistribution. To date, there are only two US Food and Drug Administration-approved GPCR antibody drugs, namely erenumab and mogamulizumab, and this highlights the challenges encountered in identifying functional antibodies against GPCRs. Utilizing Twist's precision DNA writing technologies, we have created a GPCR-focused phage display library with 1 × 1010 diversity. Specifically, we mined endogenous GPCR binding ligand and peptide sequences and incorporated these binding motifs into the heavy chain complementarity-determining region 3 in a synthetic antibody library. Glucagon-like peptide-1 receptor (GLP-1 R) is a class B GPCR that acts as the receptor for the incretin GLP-1, which is released to regulate insulin levels in response to food intake. GLP-1 R agonists have been widely used to increase insulin secretion to lower blood glucose levels for the treatment of type 1 and type 2 diabetes, whereas GLP-1 R antagonists have applications in the treatment of severe hypoglycemia associated with bariatric surgery and hyperinsulinomic hypoglycemia. Here we present the discovery and creation of both antagonistic and agonistic GLP-1 R antibodies by panning this GPCR-focused phage display library on a GLP-1 R-overexpressing Chinese hamster ovary cell line and demonstrate their in vitro and in vivo functional activity.
Collapse
Affiliation(s)
- Qiang Liu
- Twist Biopharma, South San Francisco, CA, USA
| | - Pankaj Garg
- Twist Biopharma, South San Francisco, CA, USA
- Alamar Biosciences, Fremont, CA, USA
| | - Burcu Hasdemir
- Twist Biopharma, South San Francisco, CA, USA
- Catalyst Biosciences, South San Francisco, CA, USA
| | - Linya Wang
- Twist Biopharma, South San Francisco, CA, USA
| | | | - Emily Sever
- Twist Biopharma, South San Francisco, CA, USA
| | - Erica Keane
- Twist Biopharma, South San Francisco, CA, USA
| | | | - Tom Z. Yuan
- Twist Biopharma, South San Francisco, CA, USA
| | - Eric Kwan
- Twist Biopharma, South San Francisco, CA, USA
| | - Joyce Lai
- Twist Biopharma, South San Francisco, CA, USA
| | - Greg Szot
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | | | | | | |
Collapse
|
15
|
Melikyan MA, Gubaeva DN, Kareva MA. [Continuous subcutaneous infusion of somatostatin analogues in the treatment of congenital hyperinsulinism]. ACTA ACUST UNITED AC 2020; 66:81-87. [PMID: 33351342 DOI: 10.14341/probl12421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 11/06/2022]
Abstract
BACKGROUND Congenital hyperinsulinism (CHI) is a severe disease with a high risk of development of neurological complications due to persistent hypoglycemia. The use of an analog of somatostatin (octreotide) in patients with the resistance to the first-line drug allows to avoid surgical intervention. However, the octreotide is currently used in the form of frequent fractional injections due to the short duration of it’s effect. We present in this article our own experience of using octreotide in continuous subcutaneous infusion in pediatric patients in order to improve the quality of life. AIM To evaluate the efficiency and safety of the regime of continuous subcutaneous infusion of octreotide with the use of micro-dispensers (pumps) in children with diazoxide-resistant course of CHI. MATERIALS AND METHODS An observational single-centre dynamic research was carried out on the basis of the Federal State Budgetary Institution «Endocrinology Research Centre» of the Ministry of Health of the Russian Federation. The study included pediatric patients with CHI and proven diazoxide-resistant course who were initially treated with octreotide in the form of intermittent subcutaneous injections. The researches compared the indicants of efficiency and safety of therapy on treatment of intermittent injections and after transfer to continuous subcutaneous infusion of the drug. The duration of each method of administration was at least 2 weeks. RESULTS 16 patients took part in the research. The median for the total duration of octreotide usage in the examined patients was 3 months. According to the results of the work, the use of micro-dispensers for continuous subcutaneous administration of octreotide allowed to reduce the number of patients with episodes of hypoglycemia for more than 4 times (13/16 vs. 3/16); p=0,001). Also, there was a significant decrease in the number of patients with hyperglycemic episodes (4/16 vs. 0/16); p=0.000) and reduced dose of intravenous glucose (6.8 vs 5.2 mg/kg/min; p=0.042) as a result of continuous therapy, which indicates the advantages of smooth continuous administration comparing to single injections. We have not detected any significant side effects of the treatment. Elevated liver enzyme levels, dyspeptic symptoms and gallstone formation in some patients did not require cancellation of therapy. There were no hormonal disorders in the form of hypothyroidism and somatotropic hormone deficiency against the background of continuous octreotide infusion. CONCLUSIONS Thus, the use of octreotide in patients with diazoxide-resistant course of СHI in continuous subcutaneous infusion using pumps has a number of advantages over the standard method of intermittent subcutaneous injection. This method of administration allows to achieve better glycemic control and reduce the risks from infusion therapy with highly concentrated glucose solutions, which undoubtedly improves the quality of life of patients.
Collapse
|
16
|
Hoermann H, El-Rifai O, Schebek M, Lodefalk M, Brusgaard K, Bachmann N, Bergmann C, Roeper M, Welters A, Salimi Dafsari R, Blankenstein O, Mayatepek E, Christesen H, Meissner T, Kummer S. Comparative meta-analysis of Kabuki syndrome with and without hyperinsulinaemic hypoglycaemia. Clin Endocrinol (Oxf) 2020; 93:346-354. [PMID: 32533869 DOI: 10.1111/cen.14267] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/09/2020] [Accepted: 06/04/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND OBJECTIVE Kabuki syndrome (KS), caused by pathogenic variants in KMT2D or KDM6A, is associated with hyperinsulinaemic hypoglycaemia (HH) in 0.3%-4% of patients. We characterized the clinical, biochemical and molecular data of children with KS and HH compared to children with KS without HH in a multicentre meta-analysis. METHODS Data of seven new and 17 already published children with KS and HH were compared to 373 recently published KS patients without HH regarding molecular and clinical characteristics. RESULTS Seven new patients were identified with seven different pathogenic variants in KDM6A (n = 4) or KMT2D (n = 3). All presented with HH on the first day of life and were responsive to diazoxide. KS was diagnosed between 9 months and 14 years of age. In the meta-analysis, 24 KS patients with HH had a significantly higher frequency of variants in KDM6A compared to 373 KS patients without HH (50% vs 11.5%, P < .001), and KDM6A-KS was more likely to be associated with HH than KMT2D-KS (21.8% vs. 3.5%, P < .001). Sex distribution and other phenotypic features did not differ between KS with and without HH. CONCLUSION The higher incidence of HH in KDM6A-KS compared to KMT2D-KS indicates that KDM6A loss of function variants predispose more specifically to beta cell dysfunction compared to KMT2D variants. As difficulties to assign syndromic characteristics to KS in early infancy often lead to delayed diagnosis, genetic testing for KS should be considered in children with HH, especially in the presence of other extrapancreatic/syndromic features.
Collapse
Affiliation(s)
- Henrike Hoermann
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Omar El-Rifai
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Martin Schebek
- Department of Pediatric Diabetes, Children's Hospital Kassel, Kassel, Germany
| | - Maria Lodefalk
- Department of Pediatrics, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Klaus Brusgaard
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | | | | | - Marcia Roeper
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Alena Welters
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Roschan Salimi Dafsari
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Oliver Blankenstein
- Centre for Chronic Sick Children and Institute for Experimental Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Henrik Christesen
- Hans Christian Andersen Children's Hospital, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
- Odense Pancreas Centre OPAC, Odense University Hospital, Odense, Denmark
| | - Thomas Meissner
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Sebastian Kummer
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital Düsseldorf, Medical Faculty, Düsseldorf, Germany
| |
Collapse
|
17
|
Tung JYL, Lai SHY, Au SLK, Yeung KS, Kan ASY, Loong F, DeLeón DD, Kalish JM, Ganguly A, Chung BHY, Chan KYK. Coexistence of paternally-inherited ABCC8 mutation and mosaic paternal uniparental disomy 11p hyperinsulinism. INTERNATIONAL JOURNAL OF PEDIATRIC ENDOCRINOLOGY 2020; 2020:13. [PMID: 32670376 PMCID: PMC7350603 DOI: 10.1186/s13633-020-00083-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/16/2020] [Indexed: 02/03/2023]
Abstract
Background Beckwith–Wiedemann syndrome (BWS) is an overgrowth syndrome with variable clinical phenotype and complex molecular aetiology. It is mainly caused by dysregulation of the chromosome 11p15 imprinted region, which results in overgrowth in multiple tissues, often in a mosaic manner. Case presentation A large-for-gestational-age infant without any other somatic features of BWS presented with medically refractory hyperinsulinism (HI) requiring 80% pancreatectomy. Next generation sequencing with congenital HI sequencing panel identified a pathogenic ABCC8:c.1792C > T (p.Arg598Ter) variant of paternal origin, suggestive of focal HI. However, pancreatic histology revealed atypical findings of coalescing nests and trabeculae of adenomatosis scattered with islets with isolated enlarged, hyperchromatic nuclei scattered throughout the pancreas. Methylation analysis, SNP-based chromosomal microarray and short tandem repeat markers analysis revealed mosaic segmental paternal uniparental disomy (UPD) 11p15.5-p15.1 in the pancreatic tissue, but not the peripheral blood, suggestive of BWS/BW-spectrum HI. Conclusions This case highlights the importance of integrating the clinical presentation and subsequent clinical course, together with radiological, genetic and histological findings in the definitive diagnosis of this rare yet clinically important entity. In addition, this is the first report that demonstrated the level of paternal inherited c.1792 T pathogenic variant in the pancreatic tissue being directly correlated to the mosaic level of pUPD.
Collapse
Affiliation(s)
| | - Sophie Hon Yu Lai
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong
| | - Sandy Leung Kuen Au
- Prenatal Diagnostic Laboratory, Department of Obstetrics and Gynaecology, Tsan Yuk Hospital, Room 314, 3/F, 30 Hospital Road, Sai Ying Pun, Hong Kong
| | - Kit San Yeung
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong
| | - Anita Sik Yau Kan
- Prenatal Diagnostic Laboratory, Department of Obstetrics and Gynaecology, Tsan Yuk Hospital, Room 314, 3/F, 30 Hospital Road, Sai Ying Pun, Hong Kong
| | - Florence Loong
- Department of Pathology, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong
| | - Diva D DeLeón
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA USA
| | - Jennifer M Kalish
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA USA.,Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA USA.,Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA USA
| | - Arupa Ganguly
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA USA
| | - Brian Hon Yin Chung
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, 102 Pokfulam Road, Pokfulam, Hong Kong
| | - Kelvin Yuen Kwong Chan
- Prenatal Diagnostic Laboratory, Department of Obstetrics and Gynaecology, Tsan Yuk Hospital, Room 314, 3/F, 30 Hospital Road, Sai Ying Pun, Hong Kong
| |
Collapse
|
18
|
Joyce CM, Houghton JA, O’Halloran DJ, O’Shea PM, O’Connell SM. Inheritance of a paternal ABCC8 variant and maternal loss of heterozygosity at 11p15 retrospectively unmasks the etiology in a case of Congenital hyperinsulinism. Clin Case Rep 2020; 8:1217-1222. [PMID: 32695361 PMCID: PMC7364106 DOI: 10.1002/ccr3.2885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/08/2020] [Accepted: 04/02/2020] [Indexed: 11/29/2022] Open
Abstract
Advances in genomics and 18F-DOPA PET-CT imaging have transformed the management of infants with Congenital Hyperinsulinism. Preoperative diagnosis of focal hyperinsulinism permits limited pancreatectomy with improved clinical outcomes while knowledge of the molecular etiology informs genetic counseling and provides a more accurate recurrence risk to families.
Collapse
Affiliation(s)
- Caroline M. Joyce
- Department of Clinical BiochemistryCork University HospitalCorkIreland
| | - Jayne A. Houghton
- Exeter Genomics LaboratoryRoyal Devon and Exeter NHS Foundation TrustExeterUK
| | | | - Paula M. O’Shea
- Department of Clinical BiochemistryUniversity College HospitalGalwayIreland
| | - Susan M. O’Connell
- Department of Paediatrics and Child HealthCork University HospitalCorkIreland
| |
Collapse
|
19
|
Martin GM, Sung MW, Shyng SL. Pharmacological chaperones of ATP-sensitive potassium channels: Mechanistic insight from cryoEM structures. Mol Cell Endocrinol 2020; 502:110667. [PMID: 31821855 PMCID: PMC6994177 DOI: 10.1016/j.mce.2019.110667] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/22/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023]
Abstract
ATP-sensitive potassium (KATP) channels are uniquely evolved protein complexes that couple cell energy levels to cell excitability. They govern a wide range of physiological processes including hormone secretion, neuronal transmission, vascular dilation, and cardiac and neuronal preconditioning against ischemic injuries. In pancreatic β-cells, KATP channels composed of Kir6.2 and SUR1, encoded by KCNJ11 and ABCC8, respectively, play a key role in coupling blood glucose concentration to insulin secretion. Mutations in ABCC8 or KCNJ11 that diminish channel function result in congenital hyperinsulinism. Many of these mutations principally hamper channel biogenesis and hence trafficking to the cell surface. Several small molecules have been shown to correct channel biogenesis and trafficking defects. Here, we review studies aimed at understanding how mutations impair channel biogenesis and trafficking and how pharmacological ligands overcome channel trafficking defects, particularly highlighting recent cryo-EM structural studies which have shed light on the mechanisms of channel assembly and pharmacological chaperones.
Collapse
Affiliation(s)
- Gregory M Martin
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Min Woo Sung
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Show-Ling Shyng
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
20
|
Helping nephrologists find answers: hyperinsulinism and tubular dysfunction: Answers. Pediatr Nephrol 2020; 35:257-260. [PMID: 31529156 DOI: 10.1007/s00467-019-04348-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 07/30/2019] [Accepted: 08/26/2019] [Indexed: 10/26/2022]
|
21
|
Roeper M, Salimi Dafsari R, Hoermann H, Mayatepek E, Kummer S, Meissner T. Risk Factors for Adverse Neurodevelopment in Transient or Persistent Congenital Hyperinsulinism. Front Endocrinol (Lausanne) 2020; 11:580642. [PMID: 33424766 PMCID: PMC7793856 DOI: 10.3389/fendo.2020.580642] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/29/2020] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Aim was to identify hypotheses why adverse neurodevelopment still occurs in children with transient or persistent hyperinsulinism despite improvements in long-term treatment options during the last decades. MATERIAL AND METHODS A retrospective review of 87 children with transient (n=37) or persistent congenital hyperinsulinism (CHI) (n=50) was conducted at the University Children's Hospital Duesseldorf, Germany. Possible risk factors for neurodevelopmental sequelae due to hypoglycemia were analyzed with a focus on the first days after onset of disease. RESULTS Median age at follow-up was 7 years (IQR 8). Adverse neurodevelopmental outcome was seen in 34.5% (n=30) of all CHI patients. Fifteen had mildly abnormal neurodevelopment and 15 had a severe hypoglycemic brain injury. In univariate analysis, mildly abnormal neurodevelopment was associated with the diagnosis of persistent CHI (odds ratio (OR) 8.3; p=0.004) and higher birth weight (mean difference 1049 g; p<0.001). Severe hypoglycemic brain injury was associated with the diagnosis of persistent CHI (OR 5.1; p=0.013), being born abroad (OR 18.3; p<0.001) or in a lower-level maternity hospital (OR 4.8; p=0.039), and of note history of hypoglycemic seizures (OR 13.0; p=<0.001), and a delay between first symptoms of hypoglycemia and first blood glucose measurement/initiation of treatment (OR 10.7; p<0.001). Children with severe hypoglycemic brain injury had lower recorded blood glucose (mean difference -8.34 mg/dl; p=0.022) and higher birth weight than children with normal development (mean difference 829 g; p=0.012). In multivariate binary logistic regression models, lowest blood glucose <20 mg/dl (OR 134.3; p=0.004), a delay between initial symptoms and first blood glucose measurement/initiation of treatment (OR 71.7; p=0.017) and hypoglycemic seizures (OR 12.9; p=0.008) were positively correlated with severe brain injury. Analysis showed that the odds for brain injury decreased by 15% (OR 0.85; p=0.035) if the blood glucose increased by one unit. CONCLUSION While some risk factors for adverse outcome in CHI are not influenceable, others like lowest recorded blood glucose values <20 mg/dl, hypoglycemic seizures, and insufficiently-or even untreated hypoglycemia can be avoided. Future guidelines for management of neonatal hypoglycemia should address this by ensuring early identification and immediate treatment with appropriate escalation steps.
Collapse
|
22
|
Tas E, Garibaldi L, Muzumdar R. Glucose Homeostasis in Newborns: An Endocrinology Perspective. Neoreviews 2020; 21:e14-e29. [PMID: 31894079 DOI: 10.1542/neo.21-1-e14] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Physiologic adaptations in the postnatal period, along with gradual establishment of enteral feeding, help maintain plasma glucose concentrations in the neonatal period. The definition of normal plasma glucose in the neonatal period has been a subject of debate because of a lack of evidence linking a set plasma or blood glucose concentration to clinical symptoms or predictors of short- and long-term outcomes. However, there is consensus that maintaining plasma glucose in the normal range for age is important to prevent immediate and long-term neurodevelopmental consequences of hypoglycemia or hyperglycemia. The specific management strategy for abnormal glucose levels in neonates depends on the underlying etiology, and interventions could include nutritional changes, medications, hormone therapy, or even surgery. Here, we will review the physiological processes that help maintain plasma glucose in newborns and discuss the approach to a newborn with disordered glucose homeostasis, with an emphasis on the endocrine basis of abnormal glucose homeostasis.
Collapse
Affiliation(s)
- Emir Tas
- Division of Endocrinology and Diabetes, Department of Pediatrics, Arkansas Children's Hospital, Little Rock, AR
| | - Luigi Garibaldi
- Division of Endocrinology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Radhika Muzumdar
- Division of Endocrinology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA
| |
Collapse
|
23
|
Sikimic J, Hoffmeister T, Gresch A, Kaiser J, Barthlen W, Wolke C, Wieland I, Lendeckel U, Krippeit-Drews P, Düfer M, Drews G. Possible New Strategies for the Treatment of Congenital Hyperinsulinism. Front Endocrinol (Lausanne) 2020; 11:545638. [PMID: 33193079 PMCID: PMC7653201 DOI: 10.3389/fendo.2020.545638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 10/02/2020] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE Congenital hyperinsulinism (CHI) is a rare disease characterized by persistent hypoglycemia as a result of inappropriate insulin secretion, which can lead to irreversible neurological defects in infants. Poor efficacy and strong adverse effects of the current medications impede successful treatment. The aim of the study was to investigate new approaches to silence β-cells and thus attenuate insulin secretion. RESEARCH DESIGN AND METHODS In the scope of our research, we tested substances more selective and more potent than the gold standard diazoxide that also interact with neuroendocrine ATP-sensitive K+ (KATP) channels. Additionally, KATP channel-independent targets as Ca2+-activated K+ channels of intermediate conductance (KCa3.1) and L-type Ca2+ channels were investigated. Experiments were performed using human islet cell clusters isolated from tissue of CHI patients (histologically classified as pathological) and islet cell clusters obtained from C57BL/6N (WT) or SUR1 knockout (SUR1-/-) mice. The cytosolic Ca2+ concentration ([Ca2+]c) was used as a parameter for the pathway regulated by electrical activity and was determined by fura-2 fluorescence. The mitochondrial membrane potential (ΔΨ) was determined by rhodamine 123 fluorescence and single channel currents were measured by the patch-clamp technique. RESULTS The selective KATP channel opener NN414 (5 µM) diminished [Ca2+]c in isolated human CHI islet cell clusters and WT mouse islet cell clusters stimulated with 10 mM glucose. In islet cell clusters lacking functional KATP channels (SUR1-/-) the drug was without effect. VU0071063 (30 µM), another KATP channel opener considered to be selective, lowered [Ca2+]c in human CHI islet cell clusters. The compound was also effective in islet cell clusters from SUR1-/- mice, showing that [Ca2+]c is influenced by additional effects besides KATP channels. Contrasting to NN414, the drug depolarized ΔΨ in murine islet cell clusters pointing to severe interference with mitochondrial metabolism. An opener of KCa3.1 channels, DCEBIO (100 µM), significantly decreased [Ca2+]c in SUR1-/- and human CHI islet cell clusters. To target L-type Ca2+ channels we tested two already approved drugs, dextromethorphan (DXM) and simvastatin. DXM (100 µM) efficiently diminished [Ca2+]c in stimulated human CHI islet cell clusters as well as in stimulated SUR1-/- islet cell clusters. Similar effects on [Ca2+]c were observed in experiments with simvastatin (7.2 µM). CONCLUSIONS NN414 seems to provide a good alternative to the currently used KATP channel opener diazoxide. Targeting KCa3.1 channels by channel openers or L-type Ca2+ channels by DXM or simvastatin might be valuable approaches for treatment of CHI caused by mutations of KATP channels not sensitive to KATP channel openers.
Collapse
Affiliation(s)
- Jelena Sikimic
- Department of Pharmacology, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Theresa Hoffmeister
- Department of Pharmacology, Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Anne Gresch
- Department of Pharmacology, Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Julia Kaiser
- Department of Pharmacology, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Winfried Barthlen
- Department of Pediatric Surgery, University Medicine Greifswald, Greifswald, Germany
| | - Carmen Wolke
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Ilse Wieland
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Uwe Lendeckel
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Peter Krippeit-Drews
- Department of Pharmacology, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
- *Correspondence: Peter Krippeit-Drews,
| | - Martina Düfer
- Department of Pharmacology, Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Gisela Drews
- Department of Pharmacology, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| |
Collapse
|
24
|
Martin GM, Sung MW, Yang Z, Innes LM, Kandasamy B, David LL, Yoshioka C, Shyng SL. Mechanism of pharmacochaperoning in a mammalian K ATP channel revealed by cryo-EM. eLife 2019; 8:46417. [PMID: 31343405 PMCID: PMC6699824 DOI: 10.7554/elife.46417] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/22/2019] [Indexed: 01/03/2023] Open
Abstract
ATP-sensitive potassium (KATP) channels composed of a pore-forming Kir6.2 potassium channel and a regulatory ABC transporter sulfonylurea receptor 1 (SUR1) regulate insulin secretion in pancreatic β-cells to maintain glucose homeostasis. Mutations that impair channel folding or assembly prevent cell surface expression and cause congenital hyperinsulinism. Structurally diverse KATP inhibitors are known to act as pharmacochaperones to correct mutant channel expression, but the mechanism is unknown. Here, we compare cryoEM structures of a mammalian KATP channel bound to pharmacochaperones glibenclamide, repaglinide, and carbamazepine. We found all three drugs bind within a common pocket in SUR1. Further, we found the N-terminus of Kir6.2 inserted within the central cavity of the SUR1 ABC core, adjacent the drug binding pocket. The findings reveal a common mechanism by which diverse compounds stabilize the Kir6.2 N-terminus within SUR1’s ABC core, allowing it to act as a firm ‘handle’ for the assembly of metastable mutant SUR1-Kir6.2 complexes.
Collapse
Affiliation(s)
- Gregory M Martin
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, United States
| | - Min Woo Sung
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, United States
| | - Zhongying Yang
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, United States
| | - Laura M Innes
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, United States
| | - Balamurugan Kandasamy
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, United States
| | - Larry L David
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, United States
| | - Craig Yoshioka
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, United States
| | - Show-Ling Shyng
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, United States
| |
Collapse
|
25
|
The Effect of Continuous Intravenous Glucagon on Glucose Requirements in Infants with Congenital Hyperinsulinism. JIMD Rep 2018; 45:45-50. [PMID: 30311139 DOI: 10.1007/8904_2018_140] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/17/2018] [Accepted: 08/28/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND/AIMS Continuous intravenous glucagon is frequently used in the management of severe congenital hyperinsulinism (HI), but its efficacy in these patients has not been systematically evaluated. The aim of this study was to describe the use of continuous intravenous glucagon and to evaluate its effect on the glucose infusion rate (GIR) requirement in infants with HI. METHODS Retrospective chart review of children with HI who received continuous intravenous glucagon for prevention of hypoglycemia at the Children's Hospital of Philadelphia between 2003 and 2013. RESULTS Forty (22 male) infants were included, and median (IQR) age at glucagon treatment was 29 (23, 54) days. Median glucagon dose was 205 (178, 235) mcg/kg/day and duration of treatment was 5 (3, 9) days. GIR reduced from 18.5 (12.9, 22.8) to 11 (6.6, 17.5) mg/kg/min 24 h after starting glucagon (p < 0.001), and hypoglycemia frequency reduced from 1.9 (1.3, 2.9) to 0.7 (0.3, 1.2) episodes per day. Vomiting (n = 11, 13%), rash (n = 2, 2%), and respiratory distress (n = 15, 19%) were seen during glucagon treatment. CONCLUSION An intravenous glucagon infusion reduces the required GIR to maintain euglycemia, decreasing the risks associated with the administration of high fluid volume or fluids with high-glucose concentrations.
Collapse
|
26
|
Struzik M, Gawlik M. The role of the nursing team in the care of patients with Kabuki syndrome. MEDICAL SCIENCE PULSE 2018. [DOI: 10.5604/01.3001.0012.5180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Kabuki syndrome is a rare genetic condition characterised by pathological changes within all the systems of the body, but with variable gene expression. All the patients described in the literature so far have specific facial features resembling the masks of actors from the Japanese Kabuki Theatre and mild to moderate mental impairment. Diagnosis is made based by genetic testing for mutations of the KMT2D and KDM6A genes. Therapy is mainly based on symptomatic alleviation of the effects of mutation, rehabilitation and improvement of the quality of patients’ life. Then prognosis of patients with Kabuki syndrome is closely related to the severity of symptoms, which is very variable. Aim of the study: The purpose of the study is to present the nursing problems based on the case report and to present complications caused by the disease entity. Material and methods: The criterion for including the patient in the study was the legal guardian’s (parent’s) consent for the child to participate in the study. Qualitative research was conducted using analysis of medical records, interview with the child and the child’s legal guardian, direct and indirect observation of the child for psycho-social changes related to the disease and interpretation of the data in the context of the theoretical knowledge and our own observations. Case report: The report is based on the case of a 16-year-old girl, diagnosed (at the age of fourteen) with rare genetic disorder – Kabuki syndrome. The patient experiences some characteristic symptoms – big, red lips, lowset and sticky-out ears, drooping eyelids and short fingers and toes. One of the first symptoms suggesting Kabuki syndrome were: spitting up during breastfeeding, problems with swallowing, motor clumsiness and epilepsy. The role of the nursing team during hospitalization was to take care because of habitual dislocation of patella, and to provide psychological suport. At present time the girl uses a wheelchair or she moves on her knees Results: The manifestations of chronic disease contribute to the feeling of excessive stress, regardless of the patient’s age. An adequate diet enriched with proteins contributes to the prevention of bedsores among individuals with Kabuki syndrome, immobilised to various degrees. Regular consultations with specialists, such as cardiologist, neurologist, gastroenterologist, orthopaedist, ophthalmologist, psychologist, orthodontist, speech therapist, immunologist, endocrinologist and dietician reduce the risk of complications associated with the disease in the patient with Kabuki syndrome. Early implementation of rehabilitation, focused to increase muscle tension, contributes to maintaining autonomy and self-care in patients with Kabuki syndrome.
Collapse
|
27
|
Craigie RJ, Salomon-Estebanez M, Yau D, Han B, Mal W, Newbould M, Cheesman E, Bitetti S, Mohamed Z, Sajjan R, Padidela R, Skae M, Flanagan S, Ellard S, Cosgrove KE, Banerjee I, Dunne MJ. Clinical Diversity in Focal Congenital Hyperinsulinism in Infancy Correlates With Histological Heterogeneity of Islet Cell Lesions. Front Endocrinol (Lausanne) 2018; 9:619. [PMID: 30386300 PMCID: PMC6199412 DOI: 10.3389/fendo.2018.00619] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/27/2018] [Indexed: 01/11/2023] Open
Abstract
Background: Congenital Hyperinsulinism (CHI) is an important cause of severe and persistent hypoglycaemia in infancy and childhood. The focal form (CHI-F) of CHI can be potentially cured by pancreatic lesionectomy. While diagnostic characteristics of CHI-F pancreatic histopathology are well-recognized, correlation with clinical phenotype has not been established. Aims: We aimed to correlate the diversity in clinical profiles of patients with islet cell organization in CHI-F pancreatic tissue. Methods: Clinical datasets were obtained from 25 patients with CHI-F due to ABCC8/KCNJ11 mutations. 18F-DOPA PET-CT was used to localize focal lesions prior to surgery. Immunohistochemistry was used to support protein expression studies. Results: In 28% (n = 7) of patient tissues focal lesions were amorphous and projected into adjoining normal pancreatic tissue without clear delineation from normal tissue. In these cases, severe hypoglycaemia was detected within, on average, 2.8 ± 0.8 (range 1-7) days following birth. By contrast, in 72% (n = 18) of tissues focal lesions were encapsulated within a defined matrix capsule. In this group, the onset of severe hypoglycaemia was generally delayed; on average 46.6 ± 14.3 (range 1-180) days following birth. For patients with encapsulated lesions and later-onset hypoglycaemia, we found that surgical procedures were curative and less complex. Conclusion: CHI-F is associated with heterogeneity in the organization of focal lesions, which correlates well with clinical presentation and surgical outcomes.
Collapse
Affiliation(s)
- Ross J. Craigie
- Paediatric Surgery, Royal Manchester Children's Hospital, University Manchester NHS Foundation Trust (MFT), Manchester, United Kingdom
| | - Maria Salomon-Estebanez
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
- Paediatric Endocrinology, Royal Manchester Children's Hospital, University Manchester NHS Foundation Trust (MFT), Manchester, United Kingdom
| | - Daphne Yau
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
- Paediatric Endocrinology, Royal Manchester Children's Hospital, University Manchester NHS Foundation Trust (MFT), Manchester, United Kingdom
| | - Bing Han
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
| | - Walaa Mal
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
| | - Melanie Newbould
- Paediatric Histopathology, Royal Manchester Children's Hospital, University Manchester NHS Foundation Trust (MFT), Manchester, United Kingdom
| | - Edmund Cheesman
- Paediatric Histopathology, Royal Manchester Children's Hospital, University Manchester NHS Foundation Trust (MFT), Manchester, United Kingdom
| | - Stefania Bitetti
- Paediatric Histopathology, Royal Manchester Children's Hospital, University Manchester NHS Foundation Trust (MFT), Manchester, United Kingdom
| | - Zainab Mohamed
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
- Paediatric Endocrinology, Royal Manchester Children's Hospital, University Manchester NHS Foundation Trust (MFT), Manchester, United Kingdom
| | - Rakesh Sajjan
- Nuclear Medicine, Royal Manchester Children's Hospital, University Manchester NHS Foundation Trust (MFT), Manchester, United Kingdom
| | - Raja Padidela
- Paediatric Endocrinology, Royal Manchester Children's Hospital, University Manchester NHS Foundation Trust (MFT), Manchester, United Kingdom
| | - Mars Skae
- Paediatric Endocrinology, Royal Manchester Children's Hospital, University Manchester NHS Foundation Trust (MFT), Manchester, United Kingdom
| | - Sarah Flanagan
- Molecular Genetics, Royal Devon & Exeter NHS Foundation Trust, University of Exeter Medical School, Royal Devon & Exeter Hospital, Exeter, United Kingdom
| | - Sian Ellard
- Molecular Genetics, Royal Devon & Exeter NHS Foundation Trust, University of Exeter Medical School, Royal Devon & Exeter Hospital, Exeter, United Kingdom
| | - Karen E. Cosgrove
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
| | - Indraneel Banerjee
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
- Paediatric Endocrinology, Royal Manchester Children's Hospital, University Manchester NHS Foundation Trust (MFT), Manchester, United Kingdom
| | - Mark J. Dunne
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
- *Correspondence: Mark J. Dunne
| |
Collapse
|