1
|
Lu XY, Li MQ, Li YT, Yao JY, Zhang LX, Zeng ZH, Yu-Liu, Chen ZR, Li CQ, Zhou XF, Li F. Oral edaravone ameliorates behavioral deficits and pathologies in a valproic acid-induced rat model of autism spectrum disorder. Neuropharmacology 2024; 258:110089. [PMID: 39033904 DOI: 10.1016/j.neuropharm.2024.110089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
Autism spectrum disorder (ASD) is neurodevelopmental disorder with a high incidence rate, characterized by social deficits and repetitive behaviors. There is currently no effective management available to treat the core symptoms of ASD; however, oxidative stress has been implicated in its pathogenesis. Edaravone (EDA), a free-radical scavenger, is used to treat amyotrophic lateral sclerosis (ALS) and acute ischemic stroke (AIS). Here, we hypothesized that an oral formula of EDA may have therapeutic efficacy in the treatment of core ASD symptoms. A rat model of autism was established by prenatal exposure to valproic acid (VPA), and the offsprings were orally treated with EDA at low (3 mg/kg), medium (10 mg/kg), and high (30 mg/kg) doses once daily for 28 days starting from postnatal day 25 (PND25). Oral EDA administration alleviated the core symptoms in VPA rats in a dose-dependent manner, including repetitive stereotypical behaviors and impaired social interaction. Furthermore, oral administration of EDA significantly reduced oxidative stress in a dose-dependent manner, as evidenced by a reduction in oxidative stress markers and an increase in antioxidants in the blood and brain. In addition, oral EDA significantly attenuated downstream pathologies, including synaptic and mitochondrial damage in the brain. Proteomic analysis further revealed that EDA corrected the imbalance in brain oxidative reduction and mitochondrial proteins induced by prenatal VPA administration. Overall, these findings demonstrate that oral EDA has therapeutic potential for ASD by targeting the oxidative stress pathway of disease pathogenesis and paves the way towards clinical studies.
Collapse
Affiliation(s)
- Xiao-Yu Lu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Meng-Qing Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | | | - Jia-Yu Yao
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Lin-Xuan Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Ze-Hao Zeng
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Yu-Liu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Zhao-Rong Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Chang-Qi Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Xin-Fu Zhou
- Suzhou Auzone Biotechnology, Suzhou, China; Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia.
| | - Fang Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China.
| |
Collapse
|
2
|
Vallese A, Cordone V, Ferrara F, Guiotto A, Gemmo L, Cervellati F, Hayek J, Pecorelli A, Valacchi G. NLRP3 inflammasome-mitochondrion loop in autism spectrum disorder. Free Radic Biol Med 2024; 225:581-594. [PMID: 39433111 DOI: 10.1016/j.freeradbiomed.2024.10.297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social communication and the presence of restricted interests and repetitive behavior. To date, no single cause has been demonstrated but both genetic and environmental factors are believed to be involved in abnormal brain development. In recent years, immunological and mitochondrial dysfunctions acquired particular interest in the study of the molecular mechanisms underlying the pathophysiology of ASD. For this reason, our study focused on evaluating the mitochondrial component and activation of the NLRP3 inflammasome, a critical player of the innate immune system. The assembly of NLRP3 with ASC mediates activation of Caspase-1, which in turn, by proteolytic cleavage, activates Gasdermin D and the proinflammatory cytokines IL-1β/IL-18 with their subsequent secretion. Using primary fibroblasts of autistic and control patients we studied basal and stimulated conditions. Specifically, LPS and ATP were used to activate the NLRP3 inflammasome and MCC950 for its inhibition. In addition, FCCP was used as a mitochondrial stressor and MitoTEMPO as a scavenger of mitochondrial ROS. Our results showed a hyperactivation of NLRP3 inflammasome in ASDs, as evidenced by the co-localization of the two main components, NLRP3 and ASC, by the higher levels of ASC specks, oligomers and dimers and by the increased amounts of active Caspase-1 and IL-1β. In addition, increased mitochondrial superoxide anion and reduced mitochondrial membrane potential were detected in ASD cells. These data are in accordance with the abnormal mitochondrial morphology evidenced by transmission electron microscopy analysis. Interestingly, NLRP3 inflammasome inhibition with MCC950 improved mitochondrial parameters, while the use of MitoTEMPO, in addition to decrease mitochondrial ROS production, was able to prevent NLRP3 inflammasome activation suggesting for the first time an abnormal bidirectional crosstalk between mitochondria and NLRP3 inflammasome in ASD.
Collapse
Affiliation(s)
- Andrea Vallese
- Dept. of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy; Animal Science Dept., Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
| | - Valeria Cordone
- Dept. of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Francesca Ferrara
- Dept. of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Anna Guiotto
- Dept. of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy; Animal Science Dept., Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
| | - Laura Gemmo
- Dept. of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Franco Cervellati
- Dept. of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | | | - Alessandra Pecorelli
- Dept. of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy; Dept. of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA.
| | - Giuseppe Valacchi
- Dept. of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy; Animal Science Dept., Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA; Dept. of Food and Nutrition, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
3
|
Alam El Din DM, Shin J, Lysinger A, Roos MJ, Johnson EC, Shafer TJ, Hartung T, Smirnova L. Organoid intelligence for developmental neurotoxicity testing. Front Cell Neurosci 2024; 18:1480845. [PMID: 39440004 PMCID: PMC11493634 DOI: 10.3389/fncel.2024.1480845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/20/2024] [Indexed: 10/25/2024] Open
Abstract
The increasing prevalence of neurodevelopmental disorders has highlighted the need for improved testing methods to determine developmental neurotoxicity (DNT) hazard for thousands of chemicals. This paper proposes the integration of organoid intelligence (OI); leveraging brain organoids to study neuroplasticity in vitro, into the DNT testing paradigm. OI brings a new approach to measure the impacts of xenobiotics on plasticity mechanisms - a critical biological process that is not adequately covered in current DNT in vitro assays. Finally, the integration of artificial intelligence (AI) techniques will further facilitate the analysis of complex brain organoid data to study these plasticity mechanisms.
Collapse
Affiliation(s)
- Dowlette-Mary Alam El Din
- Center for Alternatives to Animal Testing, Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Jeongwon Shin
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Alexandra Lysinger
- Center for Alternatives to Animal Testing, Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Matthew J. Roos
- Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, United States
| | - Erik C. Johnson
- Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, United States
| | - Timothy J. Shafer
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Thomas Hartung
- Center for Alternatives to Animal Testing, Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
- Center for Alternatives to Animal Testing Europe, University of Konstanz, Konstanz, Germany
- Doerenkamp-Zbinden Chair for Evidence-based Toxicology, Baltimore, MD, United States
| | - Lena Smirnova
- Center for Alternatives to Animal Testing, Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
4
|
Yim G, Roberts A, Lyall K, Ascherio A, Weisskopf MG. Multigenerational association between smoking and autism spectrum disorder: findings from a nationwide prospective cohort study. Am J Epidemiol 2024; 193:1115-1126. [PMID: 38583942 PMCID: PMC11299032 DOI: 10.1093/aje/kwae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 02/05/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024] Open
Abstract
Animal studies have shown that exposure to cigarette smoke during pregnancy can induce neurobehavioral anomalies in multiple subsequent generations. However, little work has examined such effects in humans. We examined the risk of grandchild autism spectrum disorder (ASD) in association with grandmother's smoking during pregnancy, using data from 53 562 mothers and grandmothers and 120 267 grandchildren in Nurses' Health Study II. In 1999, Nurses' Health Study II participants with children reported on their mothers' smoking. Grandchildren's ASD diagnoses were reported by the mothers in 2005 and 2009. Among grandmothers, 13 383 (25.0%) smoked during pregnancy, and 509 (0.4%) grandchildren were diagnosed with ASD. The adjusted odds ratio for ASD for grandmother smoking during pregnancy was 1.52 (95% CI, 1.06-2.20). Results were similar with direct grandmother reporting in 2001 of her smoking during pregnancy from the Nurses' Mothers Cohort Study subgroup (n = 22 167 grandmothers, n = 49 917 grandchildren) and were stronger among grandmothers who smoked ≥15 cigarettes per day during pregnancy (adjusted odds ratio = 1.93 [95% CI, 1.10-3.40]; n = 1895 grandmothers, n = 4212 grandchildren). Results were similar when we adjusted for mother's smoking during pregnancy. There was no association with grandfather's smoking as reported by the grandmother. Our results suggest a potential persistent impact of gestational exposure to environmental insults across 3 generations.
Collapse
Affiliation(s)
- Gyeyoon Yim
- Environmental and Occupational Medicine and Epidemiology Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States
| | - Andrea Roberts
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States
| | - Kristen Lyall
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, PA 19104, United States
| | - Alberto Ascherio
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Marc G Weisskopf
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States
| |
Collapse
|
5
|
Burke S. Hypoxia, NSAIDs, and autism: A biocultural analysis of stressors in gametogenesis. Am J Hum Biol 2024; 36:e24042. [PMID: 38282542 DOI: 10.1002/ajhb.24042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/30/2024] Open
Abstract
Cultural and generational trends have increasingly favored "anti-inflammatory" action, innovating a new class of analgesic, non-steroidal anti-inflammatory drugs (NSAIDs) in the 20th century. The modern human body has been molded over evolutionary time and while acknowledging inflammation can be pathologically entwined, it also serves an important role in healthy folliculogenesis and ovulation, shaping cues that drive needed vascular change. This review argues that because of anti-inflammatory action, the cultural invention of NSAIDs represents a particular stressor on female reproductive-age bodies, interacting with natural, underlying variation and placing limits on healthy growth and development in the follicles, creating potential autism risk through hypoxia and mutagenic or epigenetic effects. Since testes are analogs to ovaries, the biological grounding extends naturally to spermatogenesis. This review suggests the introduction of over-the-counter NSAIDs in the 1980s failed to recognize the unique functioning of reproductive-age bodies, challenging the cyclical inflammation needed for healthy gamete development. NSAIDs are framed as one (notable) stressor in an anti-inflammatory era focused on taming the risks of inflammation in modern human life.
Collapse
Affiliation(s)
- Stacie Burke
- Department of Anthropology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
6
|
Baia-da-Silva DC, Mendes PFS, Silva DCBD, Chemelo VS, Bittencourt LO, Padilha PM, Oriá RB, Aschner M, Lima RR. What does scientometry tell us about mercury toxicology and its biological impairments? Heliyon 2024; 10:e27526. [PMID: 38586377 PMCID: PMC10998116 DOI: 10.1016/j.heliyon.2024.e27526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 04/09/2024] Open
Abstract
Mercury is a toxic pollutant that poses risks to both human and environmental health, making it a pressing public health concern. This study aimed to summarize the knowledge on mercury toxicology and the biological impairments caused by exposure to mercury in experimental studies and/or diagnosis in humans. The research was conducted on the main collection of Web of Science, employing as a methodological tool a bibliometric analysis. The selected articles were analyzed, and extracted data such as publication year, journal, author, title, number of citations, corresponding author's country, keywords, and the knowledge mapping was performed about the type of study, chemical form of mercury, exposure period, origin of exposure, tissue/fluid of exposure measurement, mercury concentration, evaluation period (age), mercury effect, model experiments, dose, exposure pathway, and time of exposure. The selected articles were published between 1965 and 2021, with Clarkson TW being the most cited author who has also published the most articles. A total of 38% of the publications were from the USA. These studies assessed the prenatal and postnatal effects of mercury, emphasizing the impact of methylmercury on neurodevelopment, including motor and cognitive evaluations, the association between mercury and autism, and an evaluation of its protective effects against mercury toxicity. In observational studies, the blood, umbilical cord, and hair were the most frequently used for measuring mercury levels. Our data analysis reveals that mercury neurotoxicology has been extensively explored, but the association among the outcomes evaluated in experimental studies has yet to be strengthened. Providing metric evidence on what is unexplored allows for new studies that may help governmental and non-governmental organizations develop guidelines and policies.
Collapse
Affiliation(s)
- Daiane Claydes Baia-da-Silva
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Paulo Fernando Santos Mendes
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Diane Cleydes Baia da Silva
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Victória Santos Chemelo
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Pedro Magalhães Padilha
- School of Veterinary Medicine and Animal Science, Institute of Biosciences, São Paulo State University, Botucatu, SP, Brazil
| | - Reinaldo Barreto Oriá
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology, School of Medicine, Institute of Biomedicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| |
Collapse
|
7
|
Amnuaylojaroen T, Parasin N, Saokaew S. Exploring the association between early-life air pollution exposure and autism spectrum disorders in children: A systematic review and meta-analysis. Reprod Toxicol 2024; 125:108582. [PMID: 38556115 DOI: 10.1016/j.reprotox.2024.108582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/08/2024] [Accepted: 03/22/2024] [Indexed: 04/02/2024]
Abstract
The objective of this meta-analysis is to investigate the association between air pollution and the vulnerability of children to autism spectrum disorders (ASD). A thorough examination and analysis of data obtained from a compilation of 14 studies was undertaken, with a particular emphasis on investigating the effects of nitrogen dioxide (NO2), oxide of nitrogen (NOx), ozone (O3), and particulate matter (PM10 and PM2.5) on individuals diagnosed with ASD. The findings demonstrate a moderate association between exposure to nitrogen dioxide (NO2) and ASD, as indicated by a combined odds ratio (OR) of 1.13 and a 95% confidence interval (CI) spanning from 0.77 to 1.549. O3 shows a combined odds ratio (OR) of 0.82, along with a 95% confidence interval (CI) ranging from 0.49 to 1.14. NOx shows a moderate level of heterogeneity (I² = 75.9%, p = 0.002), suggesting that the impact of NOx on the risk of ASD. There is a statistically significant relationship between exposure to O3 and ASD, although the strength of this relationship is diminished. The findings demonstrated a noteworthy correlation between exposure to PM10 and PM2.5 and the occurrence of ASD. The study found a significant correlation, in relation to PM2.5, with a combined odds ratio (OR) of 1.22 and a 95% confidence interval (CI) ranging from 1.11 to 1.34. The findings have significant implications for the formulation of programs aimed at reducing exposure to harmful chemicals, especially among vulnerable groups such as children.
Collapse
Affiliation(s)
- Teerachai Amnuaylojaroen
- School of Energy and Environment, University of Phayao, Phayao 56000, Thailand; Atmospheric Pollution and Climate Change Research Units, School of Energy and Environment, University of Phayao, Phayao 56000, Thailand.
| | - Nichapa Parasin
- School of Allied Health Science, University of Phayao, Phayao 56000, Thailand
| | - Surasak Saokaew
- Division of Social and Administrative Pharmacy, Department of Pharmaceutical Care, School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand; Unit of Excellence on Clinical Outcomes Research and Integration (UNICORN), School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand; Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
| |
Collapse
|
8
|
Colonnese F, Di Luzio F, Rosato A, Panella M. Bimodal Feature Analysis with Deep Learning for Autism Spectrum Disorder Detection. Int J Neural Syst 2024; 34:2450005. [PMID: 38063381 DOI: 10.1142/s0129065724500059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Autism Spectrum Disorder (ASD) is a complex and heterogeneous neurodevelopmental disorder which affects a significant proportion of the population, with estimates suggesting that about 1 in 100 children worldwide are affected by ASD. This study introduces a new Deep Neural Network for identifying ASD in children through gait analysis, using features extracted from frames composing video recordings of their walking patterns. The innovative method presented herein is based on imagery and combines gait analysis and deep learning, offering a noninvasive and objective assessment of neurodevelopmental disorders while delivering high accuracy in ASD detection. Our model proposes a bimodal approach based on the concatenation of two distinct Convolutional Neural Networks processing two feature sets extracted from the same videos. The features obtained from the convolutions of both networks are subsequently flattened and merged into a single vector, serving as input for the fully connected layers in the binary classification process. This approach demonstrates the potential for effective ASD detection in children through the combination of gait analysis and deep learning techniques.
Collapse
Affiliation(s)
- Federica Colonnese
- Department of Information Engineering, Electronics and Telecommunications, University of Rome "La Sapienza" Via Eudossiana 18, 00184 Rome, Italy
| | - Francesco Di Luzio
- Department of Information Engineering, Electronics and Telecommunications, University of Rome "La Sapienza" Via Eudossiana 18, 00184 Rome, Italy
| | - Antonello Rosato
- Department of Information Engineering, Electronics and Telecommunications, University of Rome "La Sapienza" Via Eudossiana 18, 00184 Rome, Italy
| | - Massimo Panella
- Department of Information Engineering, Electronics and Telecommunications, University of Rome "La Sapienza" Via Eudossiana 18, 00184 Rome, Italy
| |
Collapse
|
9
|
Wang Z. Caenorhabditis elegans as an In Vivo Model Organism to Elucidate Teratogenic Effects. Methods Mol Biol 2024; 2753:283-306. [PMID: 38285345 DOI: 10.1007/978-1-0716-3625-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Exogenous teratogens contribute to approximately 10% of the human abnormality with exposure occurrence during the prenatal and fetal period. However, the assessment methods and underlying mechanism remain unclear. The nematode Caenorhabditis elegans has been recognized as one of the ideal model animals for toxicologic research as convenient culture, low cost, and complete phenotypes and genomic profiling. This chapter describes the protocols about the estimations on the teratogenic effects using nematodes as model organisms, including the growth, development, behavior, reproduction, energy balance, and transgenes.
Collapse
Affiliation(s)
- Zhenglu Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
10
|
Marinello WP, Gillera SEA, Huang L, Rollman J, Reif DM, Patisaul HB. Uncovering the common factors of chemical exposure and behavior: Evaluating behavioral effects across a testing battery using factor analysis. Neurotoxicology 2023; 99:264-273. [PMID: 37914043 PMCID: PMC11154886 DOI: 10.1016/j.neuro.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/09/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Abstract
Although specific environmental chemical exposures, including flame retardants, are known risk factors for neurodevelopmental disorders (NDDs), direct experimental evidence linking specific chemicals to NDDs is limited. Studies focusing on the mechanisms by which the social processing systems are vulnerable to chemical exposure are underrepresented in the literature, even though social impairments are defining characteristics of many NDDs. We have repeatedly demonstrated that exposure to Firemaster 550 (FM 550), a prevalent flame retardant mixture used in foam-based furniture and infant products, can adversely impact a variety of behavioral endpoints. Our recent work in prairie voles (Microtus ochrogaster), a prosocial animal model, demonstrated that perinatal exposure to FM 550 sex specifically impacts socioemotional behavior. Here, we utilized a factor analysis approach on a battery of behavioral data from our prior study to extract underlying factors that potentially explain patterns within the FM 550 behavior data. This approach identified which aspects of the behavioral battery are most robust and informative, an outcome critical for future study designs. Pearson's correlation identified behavioral endpoints associated with distance and stranger interactions that were highly correlated across 5 behavioral tests. Using these behavioral endpoints, exploratory factor analysis (EFA) and confirmatory factor analysis (CFA) extracted 2 factors that could explain the data: Activity (distance traveled endpoints) and Sociability (time spent with a novel conspecific). Exposure to FM 550 significantly decreased Activity and decreased Sociability. This factor analysis approach to behavioral data offers the advantages of modeling numerous measured variables and simplifying the data set by presenting the data in terms of common, overarching factors in terms of behavioral function.
Collapse
Affiliation(s)
- William P Marinello
- Department of Biological Sciences, NC State University, Raleigh, NC 27695, USA
| | - Sagi Enicole A Gillera
- Department of Biological Sciences, NC State University, Raleigh, NC 27695, USA; ICF International Inc, Durham, NC 27713, USA
| | - Lynn Huang
- Department of Statistics, NC State University, Raleigh, NC 27695, USA
| | - John Rollman
- Department of Statistics, NC State University, Raleigh, NC 27695, USA
| | - David M Reif
- Bioinformatics Research Center, NC State University, Raleigh, NC 27695, USA
| | - Heather B Patisaul
- Department of Biological Sciences, NC State University, Raleigh, NC 27695, USA; Center for Human Health and the Environment, NC State University, Raleigh, NC 27695, USA.
| |
Collapse
|
11
|
Botsas G, Koidou E, Chatzinikolaou K, Grouios G. Environmental Influences on Individuals with Autistic Spectrum Disorders with Special Emphasis on Seasonality: An Overview. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1851. [PMID: 38136053 PMCID: PMC10742301 DOI: 10.3390/children10121851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023]
Abstract
This paper offers an in-depth exploration of the intricate relationship between environmental factors and autism spectrum disorder (ASD), with a special emphasis on seasonality. It reviews existing research, providing a comprehensive summary of findings and highlighting the multifaceted dimensions of several environmental factors influencing the etiology of ASD. The discussion encompasses various elements, including birth months, maternal health, dietary choices, and vitamin D deficiency, delving into the intricate interplay of seasonality with environmental influences such as viral infections and solar radiation. The present study raises essential questions regarding the timing of environmental influences and the factors contributing to the rising prevalence of ASD. Ultimately, it underscores the need for future epidemiological research to incorporate more extensive investigations of environmental risk factors and employ advanced statistical analyses. This comprehensive overview contributes to a deeper understanding of how environmental factors, particularly seasonality, may be linked to the occurrence of ASD and its increasing prevalence, recognizing the multifaceted and diverse nature of these interactions.
Collapse
Affiliation(s)
- George Botsas
- Department of Early Childhood and Care, School of Social Sciences, International Hellenic University, 57400 Thessaloniki, Greece
- Department of Education, School of Education and Social Sciences, Frederick University, 3080 Limassol, Cyprus
| | - Eirini Koidou
- Department of Human Performance, School of Physical Education and Sports Sciences, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece; (E.K.); (K.C.); (G.G.)
| | - Konstantinos Chatzinikolaou
- Department of Human Performance, School of Physical Education and Sports Sciences, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece; (E.K.); (K.C.); (G.G.)
| | - George Grouios
- Department of Human Performance, School of Physical Education and Sports Sciences, Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece; (E.K.); (K.C.); (G.G.)
| |
Collapse
|
12
|
Midya V, Alcala CS, Rechtman E, Gregory JK, Kannan K, Hertz-Picciotto I, Teitelbaum SL, Gennings C, Rosa MJ, Valvi D. Machine Learning Assisted Discovery of Interactions between Pesticides, Phthalates, Phenols, and Trace Elements in Child Neurodevelopment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18139-18150. [PMID: 37595051 PMCID: PMC10666542 DOI: 10.1021/acs.est.3c00848] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023]
Abstract
A growing body of literature suggests that developmental exposure to individual or mixtures of environmental chemicals (ECs) is associated with autism spectrum disorder (ASD). However, investigating the effect of interactions among these ECs can be challenging. We introduced a combination of the classical exposure-mixture Weighted Quantile Sum (WQS) regression and a machine-learning method termed Signed iterative Random Forest (SiRF) to discover synergistic interactions between ECs that are (1) associated with higher odds of ASD diagnosis, (2) mimic toxicological interactions, and (3) are present only in a subset of the sample whose chemical concentrations are higher than certain thresholds. In a case-control Childhood Autism Risks from Genetics and Environment (CHARGE) study, we evaluated multiordered synergistic interactions among 62 ECs measured in the urine samples of 479 children in association with increased odds for ASD diagnosis (yes vs no). WQS-SiRF identified two synergistic two-ordered interactions between (1) trace-element cadmium (Cd) and the organophosphate pesticide metabolite diethyl-phosphate (DEP); and (2) 2,4,6-trichlorophenol (TCP-246) and DEP. Both interactions were suggestively associated with increased odds of ASD diagnosis in the subset of children with urinary concentrations of Cd, DEP, and TCP-246 above the 75th percentile. This study demonstrates a novel method that combines the inferential power of WQS and the predictive accuracy of machine-learning algorithms to discover potentially biologically relevant chemical-chemical interactions associated with ASD.
Collapse
Affiliation(s)
- Vishal Midya
- Department
of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Cecilia Sara Alcala
- Department
of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Elza Rechtman
- Department
of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Jill K. Gregory
- Instructional
Technology Group,Icahn School of Medicine
at Mount Sinai, New York, New York 10029, United States
| | - Kurunthachalam Kannan
- Department
of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, New York 10016, United States
| | - Irva Hertz-Picciotto
- Department
of Public Health Sciences, School of Medicine, University of California at Davis, Davis, California 95616, United States
- UC
Davis MIND (Medical Investigations of Neurodevelopmental Disorders)
Institute, University of California at Davis, Sacramento, California 95817, United States
| | - Susan L. Teitelbaum
- Department
of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Chris Gennings
- Department
of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Maria J. Rosa
- Department
of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Damaskini Valvi
- Department
of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
13
|
Ferrante M, Rapisarda P, Grasso A, Favara C, Oliveri Conti G. Glyphosate and environmental toxicity with "One Health" approach, a review. ENVIRONMENTAL RESEARCH 2023; 235:116678. [PMID: 37459948 DOI: 10.1016/j.envres.2023.116678] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/26/2023]
Abstract
The herbicide Glyphosate (GLY), or N-(phosphonomethyl) glycine was synthesized in 1950 and applied to control weeds in agricultural production. For a long time, it was believed that it was an inert compound, but many studies have instead demonstrated over the years the dangers of GLY to the ecosystem and human health. Among the best-known effects, it is known that GLY interferes with the metabolic pathways of plants and the main groups of microorganisms, negatively influencing their growth. GLY interferes with the metabolic pathways of plants and major groups of microorganisms negatively affecting their growth. The extensive GLY application on fields results in a "slow death" of plants through the minor resistance to root pathogens and in increasing pollution of freshwaters and soils. Unfortunately, however, unlike the old beliefs, GLY can reach non-target destinations, in this regard, ecological studies and environmental epidemiology are of significant interest. In this review, we focus on the effects of acute and chronic exposure to GLY on the health of plants, animals, and humans from a One Health perspective. GLY has been linked to neurological and endocrine issues in both humans and animals, and behavioral modification on specific bioindicators, but the knowledge about the ratio cause-and-effect still needs to be better understood and elucidated. Environmental GLY residues analysis and policy acts will both require new criteria to protect environmental and human health.
Collapse
Affiliation(s)
- Margherita Ferrante
- Environmental and Food Hygiene Laboratory (LIAA), Department of Medical, Surgical and Advanced Technology "G.F. Ingrassia", University of Catania, Catania, Italy; International Society of Doctors for Environments - ISDE, Catania Section, Italy
| | - Paola Rapisarda
- Environmental and Food Hygiene Laboratory (LIAA), Department of Medical, Surgical and Advanced Technology "G.F. Ingrassia", University of Catania, Catania, Italy; International Society of Doctors for Environments - ISDE, Catania Section, Italy
| | - Alfina Grasso
- Environmental and Food Hygiene Laboratory (LIAA), Department of Medical, Surgical and Advanced Technology "G.F. Ingrassia", University of Catania, Catania, Italy; International Society of Doctors for Environments - ISDE, Catania Section, Italy
| | - Claudia Favara
- Environmental and Food Hygiene Laboratory (LIAA), Department of Medical, Surgical and Advanced Technology "G.F. Ingrassia", University of Catania, Catania, Italy; International Society of Doctors for Environments - ISDE, Catania Section, Italy; Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, Italy
| | - Gea Oliveri Conti
- Environmental and Food Hygiene Laboratory (LIAA), Department of Medical, Surgical and Advanced Technology "G.F. Ingrassia", University of Catania, Catania, Italy; International Society of Doctors for Environments - ISDE, Catania Section, Italy.
| |
Collapse
|
14
|
López-Merino E, Cuartero MI, Esteban JA, Briz V. Perinatal exposure to pesticides alters synaptic plasticity signaling and induces behavioral deficits associated with neurodevelopmental disorders. Cell Biol Toxicol 2023; 39:2089-2111. [PMID: 35137321 PMCID: PMC10547633 DOI: 10.1007/s10565-022-09697-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/26/2022] [Indexed: 12/17/2022]
Abstract
Increasing evidence from animal and epidemiological studies indicates that perinatal exposure to pesticides cause developmental neurotoxicity and may increase the risk for psychiatric disorders such as autism and intellectual disability. However, the underlying pathogenic mechanisms remain largely elusive. This work was aimed at testing the hypothesis that developmental exposure to different classes of pesticides hijacks intracellular neuronal signaling contributing to synaptic and behavioral alterations associated with neurodevelopmental disorders (NDD). Low concentrations of organochlorine (dieldrin, endosulfan, and chlordane) and organophosphate (chlorpyrifos and its oxon metabolite) pesticides were chronically dosed ex vivo (organotypic rat hippocampal slices) or in vivo (perinatal exposure in rats), and then biochemical, electrophysiological, behavioral, and proteomic studies were performed. All the pesticides tested caused prolonged activation of MAPK/ERK pathway in a concentration-dependent manner. Additionally, some of them impaired metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD). In the case of the pesticide chlordane, the effect was attributed to chronic modulation of MAPK/ERK signaling. These synaptic alterations were reproduced following developmental in vivo exposure to chlordane and chlorpyrifos-oxon, and were also associated with prototypical behavioral phenotypes of NDD, including impaired motor development, increased anxiety, and social and memory deficits. Lastly, proteomic analysis revealed that these pesticides differentially regulate the expression of proteins in the hippocampus with pivotal roles in brain development and synaptic signaling, some of which are associated with NDD. Based on these results, we propose a novel mechanism of synaptic dysfunction, involving chronic overactivation of MAPK and impaired mGluR-LTD, shared by different pesticides which may have important implications for NDD.
Collapse
Affiliation(s)
| | - María I Cuartero
- Neurovascular Pathophysiology Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - José A Esteban
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.
| | - Víctor Briz
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.
| |
Collapse
|
15
|
Ling W, Ren Z, Wang W, Lu D, Zhou Q, Liu Q, Jiang G. Chronic Ambient Ozone Exposure Aggravates Autism-Like Symptoms in a Susceptible Mouse Model. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14248-14259. [PMID: 37676697 DOI: 10.1021/acs.est.3c00607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Although there is evidence that exposure to ground-level ozone (O3) may cause an increased risk of neurological disorders (e.g., autistic spectrum disorder), low-dose chronic ozone exposure and its adverse effects on the nervous system have not been fully understood. Here, we evaluated the potential neurotoxic effects of long-term exposure to environmentally relevant O3 concentration (200 μg/m3 via a whole-body inhalation system, 12 h/day for 5 days/week) using a susceptible mouse model of autism induced by valproic acid. Various indicators of oxidative stress, mitochondria, and synapse in the brain tissues were then measured to determine the overall damage of O3 to the mouse brain. The results showed an aggravated risk of autism in mice offspring, which was embodied in decreased antioxidant contents, disturbed energy generation in mitochondria, as well as reduced expressions of protein kinase Mζ (PKMζ) and synaptic proteins [e.g., Synapsin 1 (SYN 1), postsynaptic density protein-95 (PSD-95)]. Overall, our study indicates that prenatal exposure to environmentally relevant O3 may exacerbate the symptoms of autism, shedding light on possible molecular mechanisms and providing valuable insights into the pathogenesis of autism, especially concerning low-dose levels of those pollutants.
Collapse
Affiliation(s)
- Weibo Ling
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihua Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Weichao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Dawei Lu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Taishan Institute for Ecology and Environment (TIEE), Jinan 250100, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
16
|
Stein TP, Schluter MD, Steer RA, Ming X. Bisphenol-A and phthalate metabolism in children with neurodevelopmental disorders. PLoS One 2023; 18:e0289841. [PMID: 37703261 PMCID: PMC10499243 DOI: 10.1371/journal.pone.0289841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/24/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND The etiology of autism spectrum (ASD) and Attention Deficit/Hyperactivity (ADHD) disorders are multifactorial. Epidemiological studies have shown associations with environmental pollutants, such as plasticizers. This study focused on two of these compounds, the Bisphenol-A (BPA) and Diethylhexyl Phthalate (DEHP). The major pathway for BPA and DEHP excretion is via glucuronidation. Glucuronidation makes insoluble substances more water-soluble allowing for their subsequent elimination in urine. HYPOTHESIS Detoxification of these two plasticizers is compromised in children with ASD and ADHD. Consequently, their tissues are more exposed to these two plasticizers. METHODS We measured the efficiency of glucuronidation in three groups of children, ASD (n = 66), ADHD (n = 46) and healthy controls (CTR, n = 37). The children were recruited from the clinics of Rutgers-NJ Medical School. A urine specimen was collected from each child. Multiple mass spectrometric analyses including the complete metabolome were determined and used to derive values for the efficiency of glucuronidation for 12 varied glucuronidation pathways including those for BPA and MEHP. RESULTS (1) Both fold differences and metabolome analyses showed that the three groups of children were metabolically different from each other. (2) Of the 12 pathways examined, only the BPA and DEHP pathways discriminated between the three groups. (3) Glucuronidation efficiencies for BPA were reduced by 11% for ASD (p = 0.020) and 17% for ADHD (p<0.001) compared to controls. DEHP showed similar, but not significant trends. CONCLUSION ASD and ADHD are clinically and metabolically different but share a reduction in the efficiency of detoxification for both BPA and DEHP with the reductions for BPA being statistically significant.
Collapse
Affiliation(s)
- T. Peter Stein
- Department of Surgery, Rowan University-School of Osteopathic Medicine, Stratford, NJ, United States of America
| | - Margaret D. Schluter
- Department of Surgery, Rowan University-School of Osteopathic Medicine, Stratford, NJ, United States of America
| | - Robert A. Steer
- Department of Psychiatry, Rowan University-School of Osteopathic Medicine, Stratford, NJ, United States of America
| | - Xue Ming
- Departments of Neurosciences and Neurology, Rutgers University–New Jersey Medical School, Newark, NJ, United States of America
| |
Collapse
|
17
|
Konstantinova DA, Dimitorov LG, Angelova AN, Pancheva RZ. Components of Oral Health Related to Motor Impairment in Children With Neuropsychiatric Disorders. Cureus 2023; 15:e46093. [PMID: 37900541 PMCID: PMC10611904 DOI: 10.7759/cureus.46093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Oral health significantly influences functions such as chewing, swallowing, and overall well-being. Children with neuropsychiatric disorders (NPD) often experience compromised oral functions, escalating their risk of malnutrition. Materials and methods Our study, conducted in Varna, Bulgaria, from April to October 2017, aimed to evaluate some components of the oral health of 49 children with NPD and its relation to their motor impairments. In the studied cohort, participants were categorized based on their Gross Motor Function Classification System (GMFCS) scores into two groups: minor limitations (ML), encompassing GMFCS levels 1-3, and gross limitations (GL), which included GMFCS levels 4-5. Comprehensive oral examinations were conducted by a trained dentist. Data analysis utilized the JAMOVI v.2.2.2.0 software with a 0.05 significance threshold. Results Preliminary findings indicate that children with more pronounced motor limitations have poorer oral health compared to their mildly impaired counterparts. A mere 14.3% (n=7) of the children with NPD had recorded dental visits. The data show that 18.2% (n=6) of ML children had at least an annual dental consultation, while only a single child (6.2%) from the GL group had a dental visit, leaving a staggering 93.8% (n=15) without any. Statistical analyses indicate a significant relationship between motor activity (MA) and toothbrushing frequency (r=0.529, p=0.0001), suggesting that children with better MA have improved chances of maintaining oral hygiene. A significant correlation was observed between dental visits and toothbrushing frequency (r=0.371, p=0.0007). Conclusion Given their challenges, children with NPD require increased attention to dental care, emphasizing regular checkups and preventive oral health measures. This study prompts a reevaluation of these care standards.
Collapse
Affiliation(s)
- Desislava A Konstantinova
- Department of Dental Material Science and Prosthetic Dental Medicine, Medical University "Prof. Dr. Paraskev Stoyanov", Varna, BGR
| | - Lyubomir G Dimitorov
- Department of Neurosurgery, Medical University "Prof. Dr. Paraskev Stoyanov", Varna, BGR
| | - Ana N Angelova
- Department of Dentistry, Medical University "Prof. Dr. Paraskev Stoyanov", Varna, BGR
| | - Rouzha Z Pancheva
- Department of Hygiene and Epidemiology, Medical University "Prof. Dr. Paraskev Stoyanov", Varna, BGR
| |
Collapse
|
18
|
Baker BH, Zhang S, Simon JM, McLarnan SM, Chung WK, Pearson BL. Environmental carcinogens disproportionally mutate genes implicated in neurodevelopmental disorders. Front Neurosci 2023; 17:1106573. [PMID: 37599994 PMCID: PMC10435087 DOI: 10.3389/fnins.2023.1106573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction De novo mutations contribute to a large proportion of sporadic psychiatric and developmental disorders, yet the potential role of environmental carcinogens as drivers of causal de novo mutations in neurodevelopmental disorders is poorly studied. Methods To explore environmental mutation vulnerability of disease-associated gene sets, we analyzed publicly available whole genome sequencing datasets of mutations in human induced pluripotent stem cell clonal lines exposed to 12 classes of environmental carcinogens, and human lung cancers from individuals living in highly polluted regions. We compared observed rates of exposure-induced mutations in disease-related gene sets with the expected rates of mutations based on control genes randomly sampled from the genome using exact binomial tests. To explore the role of sequence characteristics in mutation vulnerability, we modeled the effects of sequence length, gene expression, and percent GC content on mutation rates of entire genes and gene coding sequences using multivariate Quasi-Poisson regressions. Results We demonstrate that several mutagens, including radiation and polycyclic aromatic hydrocarbons, disproportionately mutate genes related to neurodevelopmental disorders including autism spectrum disorders, schizophrenia, and attention deficit hyperactivity disorder. Other disease genes including amyotrophic lateral sclerosis, Alzheimer's disease, congenital heart disease, orofacial clefts, and coronary artery disease were generally not mutated more than expected. Longer sequence length was more strongly associated with elevated mutations in entire genes compared with mutations in coding sequences. Increased expression was associated with decreased coding sequence mutation rate, but not with the mutability of entire genes. Increased GC content was associated with increased coding sequence mutation rates but decreased mutation rates in entire genes. Discussion Our findings support the possibility that neurodevelopmental disorder genetic etiology is partially driven by a contribution of environment-induced germ line and somatic mutations.
Collapse
Affiliation(s)
- Brennan H. Baker
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Shaoyi Zhang
- Master of Public Health Program, Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Jeremy M. Simon
- Department of Genetics and Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Sarah M. McLarnan
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Wendy K. Chung
- Department of Pediatrics and Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Brandon L. Pearson
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| |
Collapse
|
19
|
Samrani LMM, Dumont F, Hallmark N, Bars R, Tinwell H, Pallardy M, Piersma AH. Retinoic acid signaling pathway perturbation impacts mesodermal-tissue development in the zebrafish embryo: Biomarker candidate identification using transcriptomics. Reprod Toxicol 2023; 119:108404. [PMID: 37207909 DOI: 10.1016/j.reprotox.2023.108404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 05/14/2023] [Indexed: 05/21/2023]
Abstract
The zebrafish embryo (ZE) model provides a developmental model well conserved throughout vertebrate embryogenesis, with relevance for early human embryo development. It was employed to search for gene expression biomarkers of compound-induced disruption of mesodermal development. We were particularly interested in the expression of genes related to the retinoic acid signaling pathway (RA-SP), as a major morphogenetic regulating mechanism. We exposed ZE to teratogenic concentrations of valproic acid (VPA) and all-trans retinoic acid (ATRA), using folic acid (FA) as a non-teratogenic control compound shortly after fertilization for 4 h, and performed gene expression analysis by RNA sequencing. We identified 248 genes specifically regulated by both teratogens but not by FA. Further analysis of this gene set revealed 54 GO-terms related to the development of mesodermal tissues, distributed along the paraxial, intermediate, and lateral plate sections of the mesoderm. Gene expression regulation was specific to tissues and was observed for somites, striated muscle, bone, kidney, circulatory system, and blood. Stitch analysis revealed 47 regulated genes related to the RA-SP, which were differentially expressed in the various mesodermal tissues. These genes provide potential molecular biomarkers of mesodermal tissue and organ (mal)formation in the early vertebrate embryo.
Collapse
Affiliation(s)
- Laura M M Samrani
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Université Paris-Saclay, Inflammation, Microbiome and Immunosurveillance, INSERM, Faculté Pharmacie, 91104 Orsay, France; Institute for Risk Assessment Sciences (IRAS), Utrecht University, the Netherlands.
| | | | | | | | | | - Marc Pallardy
- Université Paris-Saclay, Inflammation, Microbiome and Immunosurveillance, INSERM, Faculté Pharmacie, 91104 Orsay, France
| | - Aldert H Piersma
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, the Netherlands
| |
Collapse
|
20
|
Gao CJ, Yang F, Wu B, Liang Y, Qin YY, Guo Y. A pilot study of several environmental endocrine disrupting chemicals in children with autism spectrum disorder in south China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:964. [PMID: 37462787 DOI: 10.1007/s10661-023-11570-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/28/2023] [Indexed: 07/21/2023]
Abstract
Autism spectrum disorders (ASD) is a group of heterogeneous neurodevelopmental disorders. Evidence has implied that environmental pollutants are important factors related to ASD. In this study, several environmental endocrine-disrupting chemicals, including parabens, benzophenone-type ultraviolet filters, hydroxyl polycyclic aromatic hydrocarbons, triclosan and tetrabromobisphenol A were analyzed in blood plasma in ASD children (n = 34) and the control children (n = 28). The results showed that parabens were the most concentrated chemicals (2.18 ng/mL, median value), followed by hydroxyl polycyclic aromatic hydrocarbons (0.73 ng/mL), benzophenone-type ultraviolet filters (0.14 ng/mL), triclosan (0.13 ng/mL) and tetrabromobisphenol A (0.03 ng/mL). ASD children accumulated significantly lower 2-hydroxy-4-methoxybenzophenone, 2,4-dihydroxybenzophenone, 4-hydroxybenzophenone and triclosan but higher 2-hydroxyphenanthrene and tetrabromobisphenol A than the control children (0.02/0.09 ng/mL of 2-hydroxy-4-methoxybenzophenone, p < 0.05; 0.04/0.07 ng/mL of 2,4-dihydroxybenzophenone, p < 0.05; 0.03/0.04 ng/mL of 4-hydroxybenzophenone, p < 0.05; 0.13/1.22 ng/mL of triclosan, p < 0.01; 0.03 ng/mL/not detected of 2-hydroxyphenanthrene, p < 0.05; 0.03/0.004 ng/mL of tetrabromobisphenol A, p < 0.05). Gender differences in certain environmental endocrine-disrupting chemicals were evident, and the differences were more inclined toward boys. Positive associations between 2-hydroxy-4-methoxybenzophenone and triclosan, and tetrabromobisphenol A and 2-hydroxyphenanthrene were found in ASD boys. Binary logistic regression analysis showed that the adjusted odds ratio value of 2-hydroxyphenanthrene in ASD boys was 11.0 (1.45-84.0, p < 0.05). This is the first pilot study on multiple environmental endocrine-disrupting chemicals in children with ASD in China.
Collapse
Affiliation(s)
- Chong-Jing Gao
- College of Biological and Environmental Science, Zhejiang Wanli University, Ningbo, 315100, China.
- School of Environment, Jinan University, Guangzhou, 510632, China.
| | - Feng Yang
- Speech Therapy Department, Shenzhen Children's Hospital, Shenzhen, 518055, China
| | - Binbin Wu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yan Liang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yan-Yan Qin
- School of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen, 518055, China.
| | - Ying Guo
- School of Environment, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
21
|
Qureshi MS, Qureshi MB, Asghar J, Alam F, Aljarbouh A. Prediction and Analysis of Autism Spectrum Disorder Using Machine Learning Techniques. JOURNAL OF HEALTHCARE ENGINEERING 2023; 2023:4853800. [PMID: 37469788 PMCID: PMC10352530 DOI: 10.1155/2023/4853800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/05/2022] [Accepted: 04/05/2022] [Indexed: 07/21/2023]
Abstract
Autism spectrum disorder is a severe, life-prolonged neurodevelopmental disease typified by disabilities that are chronic or limited in the development of socio-communication skills, thinking abilities, activities, and behavior. In children aged two to three years, the symptoms of autism are more evident and easier to recognize. The major part of the existing literature on autism spectrum disorder is covered by a prediction system based on traditional machine learning algorithms such as support vector machine, random forest, multiple layer perceptron, naive Bayes, convolution neural network, and deep neural network. The proposed models are validated by using performance measurement parameters such as accuracy, precision, and recall. In this research, autism spectrum disorder prediction has been investigated and compared using common parameters such as application type, simulation method, comparison methodology, and input data. The key purpose of this study is to give a centralized framework to use for researchers working on autism spectrum disorder prediction. The best results were obtained by using the random forest algorithm as it performs better than other traditional machine learning algorithms. The achieved accuracy is 89.23%. The workflow representations of the investigated frameworks assist readers in comprehending the fundamental workings and architectures of these frameworks.
Collapse
Affiliation(s)
- Muhammad Shuaib Qureshi
- Department of Computer Science, School of Arts and Sciences, University of Central Asia, Naryn, Kyrgyzstan
| | | | - Junaid Asghar
- Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University Dera Ismail Khan, KPK, Pakistan
| | - Fatima Alam
- Department of Computer Science, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Islamabad 44000, Pakistan
| | - Ayman Aljarbouh
- Department of Computer Science, School of Arts and Sciences, University of Central Asia, Naryn, Kyrgyzstan
| |
Collapse
|
22
|
Vörös D, Kiss O, Ollmann T, Mintál K, Péczely L, Zagoracz O, Kertes E, Kállai V, László BR, Berta B, Toth A, Lénárd L, László K. Intraamygdaloid Oxytocin Increases Time Spent on Social Interaction in Valproate-Induced Autism Animal Model. Biomedicines 2023; 11:1802. [PMID: 37509444 PMCID: PMC10376246 DOI: 10.3390/biomedicines11071802] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 07/30/2023] Open
Abstract
Autism spectrum disorder (ASD) is a pervasive neurodevelopmental disorder that affects about 1.5% of children worldwide. One of the core symptoms is impaired social interaction. Since proper treatment has not been found yet, an investigation of the exact pathophysiology of autism is essential. The valproate (VPA)-induced rat model can be an appropriate way to study autism. Oxytocin (OT) may amend some symptoms of ASD since it plays a key role in developing social relationships. In the present study, we investigated the effect of the intraamygdaloid OT on sham and intrauterine VPA-treated rats' social interaction using Crawley's social interaction test. Bilateral guide cannulae were implanted above the central nucleus of the amygdala (CeA), and intraamygdaloid microinjections were carried out before the test. Our results show that male Wistar rats prenatally exposed to VPA spent significantly less time on social interaction. Bilateral OT microinjection increased the time spent in the social zone; it also reached the level of sham-control animals. OT receptor antagonist blocked this effect of the OT but in itself did not significantly influence the behavior of the rats. Based on our results, we can establish that intraamygdaloid OT has significantly increased time spent on social interaction in the VPA-induced autism model, and its effect is receptor-specific.
Collapse
Affiliation(s)
- Dávid Vörös
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, 7602 Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Orsolya Kiss
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, 7602 Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Tamás Ollmann
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, 7602 Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
- Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
- Learning in Biological and Artificial Systems Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Kitti Mintál
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, 7602 Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
- Cellular Bioimpedance Research Group, Szentágothai Research Center, University of Pécs, 7602 Pécs, Hungary
| | - László Péczely
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, 7602 Pécs, Hungary
- Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
- Learning in Biological and Artificial Systems Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Olga Zagoracz
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, 7602 Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
- Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
- Learning in Biological and Artificial Systems Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Erika Kertes
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, 7602 Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
- Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
- Learning in Biological and Artificial Systems Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Veronika Kállai
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, 7602 Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
- Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
- Learning in Biological and Artificial Systems Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Bettina Réka László
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, 7602 Pécs, Hungary
- Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
| | - Beáta Berta
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, 7602 Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
- Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
- Learning in Biological and Artificial Systems Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Attila Toth
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, 7602 Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
- Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
- Cellular Bioimpedance Research Group, Szentágothai Research Center, University of Pécs, 7602 Pécs, Hungary
| | - László Lénárd
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, 7602 Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
- Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
- Molecular Endocrinology and Neurophysiology Research Group, Szentágothai Center, University of Pécs, 7602 Pécs, Hungary
| | - Kristóf László
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, 7602 Pécs, Hungary
- Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
- Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
| |
Collapse
|
23
|
Hernandez A, Delgado-González E, Varman Durairaj R, Reyes-Haro D, Martínez-Torres A, Espinosa F. Striatal Synaptic Changes and Behavior in Adult mouse Upon Prenatal Exposure to Valproic Acid. Brain Res 2023:148461. [PMID: 37308047 DOI: 10.1016/j.brainres.2023.148461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023]
Abstract
Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders characterized by persistent deficits in social communication and social interaction. Altered synaptogenesis and aberrant connectivity responsible for social behavior and communication have been reported in autism pathogenesis. Autism has a strong genetic and heritable component; however, environmental factors including toxins, pesticides, infection and in utero exposure to drugs such as VPA have also been implicated in ASD. Administration of VPA during pregnancy has been used as a rodent model to study pathophysiological mechanisms involved in ASD, and in this study, we used the mouse model of prenatal exposure to VPA to assess the effects on striatal and dorsal hippocampus function in adult mice. Alterations in repetitive behaviors and shift habits were observed in mice prenatally exposed to VPA. In particular, such mice presented a better performance in learned motor skills and cognitive deficits in Y-maze learning frequently associated with striatal and hippocampal function. These behavioral changes were associated with a decreased level of proteins involved in the formation and maintenance of excitatory synapses, such as Nlgn-1 and PSD-95. In conclusion, motor skill abilities, repetitive behaviors, and impaired flexibility to shift habits are associated with reduced striatal excitatory synaptic function in the adult mouse prenatally exposed to VPA.
Collapse
Affiliation(s)
- Adan Hernandez
- Departamento de Neurobiología Celular y Molecular, Laboratorio de Neurobiología Molecular y Celular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, 76230 Santiago de Querétaro, Querétaro, México.
| | - Evangelina Delgado-González
- Departamento de Neurobiología Celular y Molecular, Laboratorio de Neurobiología Molecular y Celular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, 76230 Santiago de Querétaro, Querétaro, México
| | - Ragu Varman Durairaj
- Departamento de Neurobiología Celular y Molecular, Laboratorio de Neurobiología Molecular y Celular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, 76230 Santiago de Querétaro, Querétaro, México; Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Daniel Reyes-Haro
- Departamento de Neurobiología Celular y Molecular, Laboratorio de Neurobiología Molecular y Celular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, 76230 Santiago de Querétaro, Querétaro, México
| | - Ataúlfo Martínez-Torres
- Departamento de Neurobiología Celular y Molecular, Laboratorio de Neurobiología Molecular y Celular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, 76230 Santiago de Querétaro, Querétaro, México
| | - Felipe Espinosa
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
24
|
Dorsey SG, Mocci E, Lane MV, Krueger BK. Rapid effects of valproic acid on the fetal brain transcriptome: Implications for brain development and autism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.01.538959. [PMID: 37205520 PMCID: PMC10187231 DOI: 10.1101/2023.05.01.538959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
There is an increased incidence of autism among the children of women who take the anti-epileptic, mood stabilizing drug, valproic acid (VPA) during pregnancy; moreover, exposure to VPA in utero causes autistic-like symptoms in rodents and non-human primates. Analysis of RNAseq data obtained from fetal mouse brains 3 hr after VPA administration revealed that VPA significantly [p(FDR) ≤ 0.025] increased or decreased the expression of approximately 7,300 genes. No significant sex differences in VPA-induced gene expression were observed. Expression of genes associated with neurodevelopmental disorders such as autism as well as neurogenesis, axon growth and synaptogenesis, GABAergic, glutaminergic and dopaminergic synaptic transmission, perineuronal nets, and circadian rhythms was dysregulated by VPA. Moreover, expression of 400 autism risk genes was significantly altered by VPA as was expression of 247 genes that have been reported to play fundamental roles in the development of the nervous system, but are not linked to autism by GWAS. The goal of this study was to identify mouse genes that are: (a) significantly up- or down-regulated by VPA in the fetal brain and (b) known to be associated with autism and/or to play a role in embryonic neurodevelopmental processes, perturbation of which has the potential to alter brain connectivity in the postnatal and adult brain. The set of genes meeting these criteria provides potential targets for future hypothesis-driven approaches to elucidating the proximal underlying causes of defective brain connectivity in neurodevelopmental disorders such as autism.
Collapse
|
25
|
Bryliński Ł, Kostelecka K, Woliński F, Duda P, Góra J, Granat M, Flieger J, Teresiński G, Buszewicz G, Sitarz R, Baj J. Aluminium in the Human Brain: Routes of Penetration, Toxicity, and Resulting Complications. Int J Mol Sci 2023; 24:7228. [PMID: 37108392 PMCID: PMC10139039 DOI: 10.3390/ijms24087228] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Aluminium (Al) is the most ubiquitous metal in the Earth's crust. Even though its toxicity is well-documented, the role of Al in the pathogenesis of several neurological diseases remains debatable. To establish the basic framework for future studies, we review literature reports on Al toxicokinetics and its role in Alzheimer's disease (AD), autism spectrum disorder (ASD), alcohol use disorder (AUD), multiple sclerosis (MS), Parkinson's disease (PD), and dialysis encephalopathy (DE) from 1976 to 2022. Despite poor absorption via mucosa, the biggest amount of Al comes with food, drinking water, and inhalation. Vaccines introduce negligible amounts of Al, while the data on skin absorption (which might be linked with carcinogenesis) is limited and requires further investigation. In the above-mentioned diseases, the literature shows excessive Al accumulation in the central nervous system (AD, AUD, MS, PD, DE) and epidemiological links between greater Al exposition and their increased prevalence (AD, PD, DE). Moreover, the literature suggests that Al has the potential as a marker of disease (AD, PD) and beneficial results of Al chelator use (such as cognitive improvement in AD, AUD, MS, and DE cases).
Collapse
Affiliation(s)
- Łukasz Bryliński
- Student Scientific Group, Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Katarzyna Kostelecka
- Student Scientific Group, Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Filip Woliński
- Student Scientific Group, Department of Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland
| | - Piotr Duda
- Student Scientific Group, Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Joanna Góra
- Student Scientific Group, Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Michał Granat
- Student Scientific Group, Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| | - Grzegorz Teresiński
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Grzegorz Buszewicz
- Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Ryszard Sitarz
- I Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, 20-059 Lublin, Poland
| | - Jacek Baj
- Department of Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland
| |
Collapse
|
26
|
Telling Disabled and Autistic Sexuality Stories: Reflecting upon the Current Research Landscape and Possible Future Developments. SEXES 2023. [DOI: 10.3390/sexes4010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
Developments in the study of sexuality in the lives of disabled people have been relatively slow, as the spectre of a medicalised model continues to dominate most debates and invalidate any form of sexual identity. The social model of disability has enabled the amplification of voices that have been previously silenced; however, progress has stalled. Within autism studies, however, the rise of neurodiversity studies coupled with intersectionality, has presented an opportunity to explore sexualities in terms of difference rather than deficiency, therefore bypassing deficit models which have dominated any study of non-heterosexual lives. Such deficit models have focussed upon discovering what it is about autism that leads autistic people to think they are non-heterosexual, often resulting in a lack of support for young LGBT+ people as sexuality is dismissed as a result of autism. Reflecting upon findings from my own ongoing work alongside emerging social research, this article explores important developments and potential future directions. This will highlight the progress made and the barriers remaining. Using a sociological approach and a framework inspired by Plummer, which focusses upon the importance of sexual stories, the article will show that much needs to be done. The diversity of goals and multiplicity of stories means that disabled and autistic sexuality stories have not been accepted into the public consciousness.
Collapse
|
27
|
Huang M, Qi Q, Xu T. Targeting Shank3 deficiency and paresthesia in autism spectrum disorder: A brief review. Front Mol Neurosci 2023; 16:1128974. [PMID: 36846568 PMCID: PMC9948097 DOI: 10.3389/fnmol.2023.1128974] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
Autism spectrum disorder (ASD) includes a group of multifactorial neurodevelopmental disorders characterized by impaired social communication, social interaction, and repetitive behaviors. Several studies have shown an association between cases of ASD and mutations in the genes of SH3 and multiple ankyrin repeat domain protein 3 (SHANK3). These genes encode many cell adhesion molecules, scaffold proteins, and proteins involved in synaptic transcription, protein synthesis, and degradation. They have a profound impact on all aspects of synaptic transmission and plasticity, including synapse formation and degeneration, suggesting that the pathogenesis of ASD may be partially attributable to synaptic dysfunction. In this review, we summarize the mechanism of synapses related to Shank3 in ASD. We also discuss the molecular, cellular, and functional studies of experimental models of ASD and current autism treatment methods targeting related proteins.
Collapse
Affiliation(s)
- Min Huang
- Department of Anesthesiology, Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China,Department of Anesthesiology, Suzhou Hospital of Anhui Medical University, Suzhou, China
| | - Qi Qi
- Department of Anesthesiology, Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China,Department of Anesthesiology, Suzhou Hospital of Anhui Medical University, Suzhou, China
| | - Tao Xu
- Department of Anesthesiology, Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China,Department of Anesthesiology, Suzhou Hospital of Anhui Medical University, Suzhou, China,*Correspondence: Tao Xu,
| |
Collapse
|
28
|
Guo M, Xie P, Liu S, Luan G, Li T. Epilepsy and Autism Spectrum Disorder (ASD): The Underlying Mechanisms and Therapy Targets Related to Adenosine. Curr Neuropharmacol 2023; 21:54-66. [PMID: 35794774 PMCID: PMC10193761 DOI: 10.2174/1570159x20666220706100136] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/23/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
Epilepsy and autism spectrum disorder (ASD) are highly mutually comorbid, suggesting potential overlaps in genetic etiology, pathophysiology, and neurodevelopmental abnormalities. Adenosine, an endogenous anticonvulsant and neuroprotective neuromodulator of the brain, has been proved to affect the process of epilepsy and ASD. On the one hand, adenosine plays a crucial role in preventing the progression and development of epilepsy through adenosine receptordependent and -independent ways. On the other hand, adenosine signaling can not only regulate core symptoms but also improve comorbid disorders in ASD. Given the important role of adenosine in epilepsy and ASD, therapeutic strategies related to adenosine, including the ketogenic diet, neuromodulation therapy, and adenosine augmentation therapy, have been suggested for the arrangement of epilepsy and ASD. There are several proposals in this review. Firstly, it is necessary to further discuss the relationship between both diseases based on the comorbid symptoms and mechanisms of epilepsy and ASD. Secondly, it is important to explore the role of adenosine involved in epilepsy and ASD. Lastly, potential therapeutic value and clinical approaches of adenosine-related therapies in treating epilepsy and ASD need to be emphasized.
Collapse
Affiliation(s)
- Mengyi Guo
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Pandeng Xie
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Siqi Liu
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Guoming Luan
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| | - Tianfu Li
- Department of Brain Institute, Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing Key Laboratory of Epilepsy Research, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
- Department of Neurology, Center of Epilepsy, Beijing Institute for Brain Disorders, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, China
| |
Collapse
|
29
|
Chlasta K, Sochaczewski P, Wójcik GM, Krejtz I. Neural simulation pipeline: Enabling container-based simulations on-premise and in public clouds. Front Neuroinform 2023; 17:1122470. [PMID: 37025550 PMCID: PMC10070792 DOI: 10.3389/fninf.2023.1122470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/06/2023] [Indexed: 04/08/2023] Open
Abstract
In this study, we explore the simulation setup in computational neuroscience. We use GENESIS, a general purpose simulation engine for sub-cellular components and biochemical reactions, realistic neuron models, large neural networks, and system-level models. GENESIS supports developing and running computer simulations but leaves a gap for setting up today's larger and more complex models. The field of realistic models of brain networks has overgrown the simplicity of earliest models. The challenges include managing the complexity of software dependencies and various models, setting up model parameter values, storing the input parameters alongside the results, and providing execution statistics. Moreover, in the high performance computing (HPC) context, public cloud resources are becoming an alternative to the expensive on-premises clusters. We present Neural Simulation Pipeline (NSP), which facilitates the large-scale computer simulations and their deployment to multiple computing infrastructures using the infrastructure as the code (IaC) containerization approach. The authors demonstrate the effectiveness of NSP in a pattern recognition task programmed with GENESIS, through a custom-built visual system, called RetNet(8 × 5,1) that uses biologically plausible Hodgkin-Huxley spiking neurons. We evaluate the pipeline by performing 54 simulations executed on-premise, at the Hasso Plattner Institute's (HPI) Future Service-Oriented Computing (SOC) Lab, and through the Amazon Web Services (AWS), the biggest public cloud service provider in the world. We report on the non-containerized and containerized execution with Docker, as well as present the cost per simulation in AWS. The results show that our neural simulation pipeline can reduce entry barriers to neural simulations, making them more practical and cost-effective.
Collapse
Affiliation(s)
- Karol Chlasta
- Department of Computer Science, Polish-Japanese Academy of Information Technology, Warsaw, Poland
- Department of Management in Networked and Digital Societies, Kozminski University, Warsaw, Poland
- *Correspondence: Karol Chlasta
| | - Paweł Sochaczewski
- Department of Management in Networked and Digital Societies, Kozminski University, Warsaw, Poland
| | - Grzegorz M. Wójcik
- Department of Neuroinformatics and Biomedical Engineering, Institute of Computer Science, Maria Curie-Sklodowska University in Lublin, Lublin, Poland
| | - Izabela Krejtz
- Eye Tracking Research Center, SWPS University, Warsaw, Poland
| |
Collapse
|
30
|
Lee K, Mills Z, Cheung P, Cheyne JE, Montgomery JM. The Role of Zinc and NMDA Receptors in Autism Spectrum Disorders. Pharmaceuticals (Basel) 2022; 16:ph16010001. [PMID: 36678498 PMCID: PMC9866730 DOI: 10.3390/ph16010001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
NMDA-type glutamate receptors are critical for synaptic plasticity in the central nervous system. Their unique properties and age-dependent arrangement of subunit types underpin their role as a coincidence detector of pre- and postsynaptic activity during brain development and maturation. NMDAR function is highly modulated by zinc, which is co-released with glutamate and concentrates in postsynaptic spines. Both NMDARs and zinc have been strongly linked to autism spectrum disorders (ASDs), suggesting that NMDARs are an important player in the beneficial effects observed with zinc in both animal models and children with ASDs. Significant evidence is emerging that these beneficial effects occur via zinc-dependent regulation of SHANK proteins, which form the backbone of the postsynaptic density. For example, dietary zinc supplementation enhances SHANK2 or SHANK3 synaptic recruitment and rescues NMDAR deficits and hypofunction in Shank3ex13-16-/- and Tbr1+/- ASD mice. Across multiple studies, synaptic changes occur in parallel with a reversal of ASD-associated behaviours, highlighting the zinc-dependent regulation of NMDARs and glutamatergic synapses as therapeutic targets for severe forms of ASDs, either pre- or postnatally. The data from rodent models set a strong foundation for future translational studies in human cells and people affected by ASDs.
Collapse
|
31
|
Keil-Stietz K, Lein PJ. Gene×environment interactions in autism spectrum disorders. Curr Top Dev Biol 2022; 152:221-284. [PMID: 36707213 PMCID: PMC10496028 DOI: 10.1016/bs.ctdb.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
There is credible evidence that environmental factors influence individual risk and/or severity of autism spectrum disorders (hereafter referred to as autism). While it is likely that environmental chemicals contribute to the etiology of autism via multiple mechanisms, identifying specific environmental factors that confer risk for autism and understanding how they contribute to the etiology of autism has been challenging, in part because the influence of environmental chemicals likely varies depending on the genetic substrate of the exposed individual. Current research efforts are focused on elucidating the mechanisms by which environmental chemicals interact with autism genetic susceptibilities to adversely impact neurodevelopment. The goal is to not only generate insights regarding the pathophysiology of autism, but also inform the development of screening platforms to identify specific environmental factors and gene×environment (G×E) interactions that modify autism risk. Data from such studies are needed to support development of intervention strategies for mitigating the burden of this neurodevelopmental condition on individuals, their families and society. In this review, we discuss environmental chemicals identified as putative autism risk factors and proposed mechanisms by which G×E interactions influence autism risk and/or severity using polychlorinated biphenyls (PCBs) as an example.
Collapse
Affiliation(s)
- Kimberly Keil-Stietz
- Department of Comparative Biosciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, United States
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA, United States.
| |
Collapse
|
32
|
Madani NA, Carpenter DO. Effects of glyphosate and glyphosate-based herbicides like Roundup™ on the mammalian nervous system: A review. ENVIRONMENTAL RESEARCH 2022; 214:113933. [PMID: 35868581 DOI: 10.1016/j.envres.2022.113933] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Glyphosate is the active ingredient in glyphosate-based herbicides (GBHs), such as Roundup™, the most widely used herbicides in the world. Glyphosate targets an essential enzyme in plants that is not found in animals. However, both glyphosate and GBHs are rated as Group 2A, probable human carcinogens, and also have documented effects on reproduction, acting as endocrine disruptive chemicals. We have reviewed reports of the effects of glyphosate and GBHs on mammalian nervous system function. As with several other herbicides, GBHs exposure has been associated with an increased risk of Parkinson's Disease and death of neurons in the substantia nigra. There is also some evidence implicating Roundup™ in elevated risk of autism. Other studies have shown the effects of GBHs on synaptic transmission in animal and cellular studies. The major mechanism of action appears to be oxidative stress, accompanied by mitochondrial dysfunction. In addition, some gut bacteria utilize the enzyme used by plants, and glyphosate and GBHs use has been shown to alter the gut microbiome. There is a large and growing body of evidence that the gut microbiome alters susceptibility to great number of human diseases, including nervous system function. The weight of the evidence indicates that in addition to cancer and reproductive effects, glyphosate and GBHs have significant adverse effects on the brain and behavior and increase the risk of at least some serious neurological diseases.
Collapse
Affiliation(s)
- Najm Alsadat Madani
- Department of Environmental Health Science, School of Public Health, 1 University Place, University at Albany, Rensselaer, NY 12144, USA; Institute for Health and the Environment, 5 University Place, University at Albany, Rensselaer, NY 12144, USA
| | - David O Carpenter
- Department of Environmental Health Science, School of Public Health, 1 University Place, University at Albany, Rensselaer, NY 12144, USA; Institute for Health and the Environment, 5 University Place, University at Albany, Rensselaer, NY 12144, USA.
| |
Collapse
|
33
|
de Camargo RW, de Novais Júnior LR, da Silva LM, Meneguzzo V, Daros GC, da Silva MG, de Bitencourt RM. Implications of the endocannabinoid system and the therapeutic action of cannabinoids in autism spectrum disorder: A literature review. Pharmacol Biochem Behav 2022; 221:173492. [PMID: 36379443 DOI: 10.1016/j.pbb.2022.173492] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 11/15/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder, onset in early childhood and associated with cognitive, social, behavioral, and sensory impairments. The pathophysiology is still unclear, and it is believed that genetic and environmental factors are fully capable of influencing ASD, especially cell signaling and microglial functions. Furthermore, the endocannabinoid system (ECS) participates in the modulation of various brain processes and is also involved in the pathophysiological mechanisms of this condition. Due to the health and quality of life impacts of autism for the patient and his/her family and the lack of effective medications, the literature has elucidated the possibility that Cannabis phytocannabinoids act favorably on ASD symptoms, probably through the modulation of neurotransmitters, in addition to endogenous ligands derived from arachidonic acid, metabolizing enzymes and even transporters of the membrane. These findings support the notion that there are links between key features of ASD and ECS due to the favorable actions of cannabidiol (CBD) and other cannabinoids on symptoms related to behavioral and cognitive disorders, as well as deficits in communication and social interaction, hyperactivity, anxiety and sleep disorders. Thus, phytocannabinoids emerge as therapeutic alternatives for ASD.
Collapse
Affiliation(s)
- Rick Wilhiam de Camargo
- Behavioral Neuroscience Laboratory, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil.
| | | | - Larissa Mendes da Silva
- Behavioral Neuroscience Laboratory, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Vicente Meneguzzo
- Behavioral Neuroscience Laboratory, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Guilherme Cabreira Daros
- Behavioral Neuroscience Laboratory, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Marina Goulart da Silva
- Behavioral Neuroscience Laboratory, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | | |
Collapse
|
34
|
The Role of Intraamygdaloid Oxytocin and D2 Dopamine Receptors in Reinforcement in the Valproate-Induced Autism Rat Model. Biomedicines 2022; 10:biomedicines10092309. [PMID: 36140411 PMCID: PMC9496370 DOI: 10.3390/biomedicines10092309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 11/28/2022] Open
Abstract
Background: autism spectrum disorder (ASD) is a neurodevelopmental disorder affecting around 1 out of 68 children and its incidence shows an increasing tendency. There is currently no effective treatment for ASD. In autism research, the valproate (VPA)-induced autism rodent model is widely accepted. Our previous results showed that intraamygdaloid oxytocin (OT) has anxiolytic effects on rats showing autistic signs under the VPA-induced autism model. Methods: rats were stereotaxically implanted with guide cannulae bilaterally and received intraamygdaloid microinjections. In the present study, we investigated the possible role of intraamygdaloid OT and D2 dopamine (DA) receptors on reinforcement using VPA-treated rats in a conditioned place preference test. OT and/or an OT receptor antagonist or a D2 DA antagonist were microinjected into the central nucleus of the amygdala (CeA). Results: valproate-treated rats receiving 10 ng OT spent significantly longer time in the treatment quadrant during the test session of the conditioned place preference test. Prior treatment with an OT receptor antagonist or with a D2 DA receptor antagonist blocked the positive reinforcing effects of OT. The OT receptor antagonist or D2 DA antagonist in themselves did not influence the time rats spent in the treatment quadrant. Conclusions: Our results show that OT has positive reinforcing effects under the VPA-induced autism rodent model and these effects are OT receptor-specific. Our data also suggest that the DAergic system plays a role in the positive reinforcing effects of OT because the D2 DA receptor antagonist can block these actions.
Collapse
|
35
|
Ma L, Platnick S, Platnick H. Cannabidiol in Treatment of Autism Spectrum Disorder: A Case Study. Cureus 2022; 14:e28442. [PMID: 36176817 PMCID: PMC9509693 DOI: 10.7759/cureus.28442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2022] [Indexed: 11/26/2022] Open
Abstract
This case study aims to demonstrate the use of cannabidiol (CBD) with low-dose tetrahydrocannabinol (THC) in managing symptoms associated with autism spectrum disorder (ASD) to increase the overall quality of life for these individuals and their families. ASD is a neurodevelopmental disorder affecting cognitive development, behavior, social communication, and motor skills. Despite the increasing awareness of ASD, there is still a lack of safe and effective treatment options. The study includes a nine-year-old male patient who was diagnosed with nonverbal ASD. He exhibited emotional outbursts, inappropriate behaviors, and social deficits including challenges in communicating his needs with others. Since the patient was unable to attain independence at school and at home, his condition was a significant burden to his caregivers. The patient was treated with full-spectrum high CBD and low THC oil formulation, with each milliliter containing 20 mg of CBD and <1 mg of THC. CBD oil starting dose was 0.1ml twice daily, increased every three to four days to 0.5ml twice daily. Overall, the patient experienced a reduction in negative behaviors, including violent outbursts, self-injurious behaviors, and sleep disruptions. There was an improvement in social interactions, concentration, and emotional stability. A combination of high CBD and low-dose THC oil was demonstrated to be an effective treatment option for managing symptoms associated with autism, leading to a better quality of life for both the patient and the caregivers.
Collapse
|
36
|
Eng ME, Imperio GE, Bloise E, Matthews SG. ATP-binding cassette (ABC) drug transporters in the developing blood-brain barrier: role in fetal brain protection. Cell Mol Life Sci 2022; 79:415. [PMID: 35821142 PMCID: PMC11071850 DOI: 10.1007/s00018-022-04432-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/27/2022] [Accepted: 06/15/2022] [Indexed: 12/19/2022]
Abstract
The blood-brain barrier (BBB) provides essential neuroprotection from environmental toxins and xenobiotics, through high expression of drug efflux transporters in endothelial cells of the cerebral capillaries. However, xenobiotic exposure, stress, and inflammatory stimuli have the potential to disrupt BBB permeability in fetal and post-natal life. Understanding the role and ability of the BBB in protecting the developing brain, particularly with respect to drug/toxin transport, is key to promoting long-term brain health. Drug transporters, particularly P-gp and BCRP are expressed in early gestation at the developing BBB and have a crucial role in developmental homeostasis and fetal brain protection. We have highlighted several factors that modulate drug transporters at the developing BBB, including synthetic glucocorticoid (sGC), cytokines, maternal infection, and growth factors. Some factors have the potential to increase expression and function of drug transporters and increase brain protection (e.g., sGC, transforming growth factor [TGF]-β). However, others inhibit drug transporters expression and function at the BBB, increasing brain exposure to xenobiotics (e.g., tumor necrosis factor [TNF], interleukin [IL]-6), negatively impacting brain development. This has implications for pregnant women and neonates, who represent a vulnerable population and may be exposed to drugs and environmental toxins, many of which are P-gp and BCRP substrates. Thus, alterations in regulated transport across the developing BBB may induce long-term changes in brain health and compromise pregnancy outcome. Furthermore, a large portion of neonatal adverse drug reactions are attributed to agents that target or access the nervous system, such as stimulants (e.g., caffeine), anesthetics (e.g., midazolam), analgesics (e.g., morphine) and antiretrovirals (e.g., Zidovudine); thus, understanding brain protection is key for the development of strategies to protect the fetal and neonatal brain.
Collapse
Affiliation(s)
- Margaret E Eng
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Medical Sciences Bldg. Rm. 3207. 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | | | - Enrrico Bloise
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Medical Sciences Bldg. Rm. 3207. 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Canada
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Stephen G Matthews
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Medical Sciences Bldg. Rm. 3207. 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Canada.
- Department of Obstetrics and Gynecology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.
| |
Collapse
|
37
|
Individual and Combined Effects of Paternal Deprivation and Developmental Exposure to Firemaster 550 on Socio-Emotional Behavior in Prairie Voles. TOXICS 2022; 10:toxics10050268. [PMID: 35622681 PMCID: PMC9147230 DOI: 10.3390/toxics10050268] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/05/2022]
Abstract
The prevalence of neurodevelopmental disorders (NDDs) is rapidly rising, suggesting a confluence of environmental factors that are likely contributing, including developmental exposure to environmental contaminants. Unfortunately, chemical exposures and social stressors frequently occur simultaneously in many communities, yet very few studies have sought to establish the combined effects on neurodevelopment or behavior. Social deficits are common to many NDDs, and we and others have shown that exposure to the chemical flame retardant mixture, Firemaster 550 (FM 550), or paternal deprivation impairs social behavior and neural function. Here, we used a spontaneously prosocial animal model, the prairie vole (Microtus ochrogaster), to explore the effects of perinatal chemical (FM 550) exposure alone or in combination with an early life stressor (paternal absence) on prosocial behavior. Dams were exposed to vehicle (sesame oil) or 1000 µg FM 550 orally via food treats from conception through weaning and the paternal absence groups were generated by removing the sires the day after birth. Adult offspring of both sexes were then subjected to open-field, sociability, and a partner preference test. Paternal deprivation (PD)-related effects included increased anxiety, decreased sociability, and impaired pair-bonding in both sexes. FM 550 effects include heightened anxiety and partner preference in females but reduced partner preference in males. The combination of FM 550 exposure and PD did not exacerbate any behaviors in either sex except for distance traveled by females in the partner preference test and, to a lesser extent, time spent with, and the number of visits to the non-social stimulus by males in the sociability test. FM 550 ameliorated the impacts of parental deprivation on partner preference behaviors in both sexes. This study is significant because it provides evidence that chemical and social stressors can have unique behavioral effects that differ by sex but may not produce worse outcomes in combination.
Collapse
|
38
|
Santos JX, Rasga C, Marques AR, Martiniano H, Asif M, Vilela J, Oliveira G, Sousa L, Nunes A, Vicente AM. A Role for Gene-Environment Interactions in Autism Spectrum Disorder Is Supported by Variants in Genes Regulating the Effects of Exposure to Xenobiotics. Front Neurosci 2022; 16:862315. [PMID: 35663546 PMCID: PMC9161282 DOI: 10.3389/fnins.2022.862315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/19/2022] [Indexed: 11/25/2022] Open
Abstract
Heritability estimates support the contribution of genetics and the environment to the etiology of Autism Spectrum Disorder (ASD), but a role for gene-environment interactions is insufficiently explored. Genes involved in detoxification pathways and physiological permeability barriers (e.g., blood-brain barrier, placenta and respiratory airways), which regulate the effects of exposure to xenobiotics during early stages of neurodevelopment when the immature brain is extremely vulnerable, may be particularly relevant in this context. Our objective was to identify genes involved in the regulation of xenobiotic detoxification or the function of physiological barriers (the XenoReg genes) presenting predicted damaging variants in subjects with ASD, and to understand their interaction patterns with ubiquitous xenobiotics previously implicated in this disorder. We defined a panel of 519 XenoReg genes through literature review and database queries. Large ASD datasets were inspected for in silico predicted damaging Single Nucleotide Variants (SNVs) (N = 2,674 subjects) or Copy Number Variants (CNVs) (N = 3,570 subjects) in XenoReg genes. We queried the Comparative Toxicogenomics Database (CTD) to identify interaction pairs between XenoReg genes and xenobiotics. The interrogation of ASD datasets for variants in the XenoReg gene panel identified 77 genes with high evidence for a role in ASD, according to pre-specified prioritization criteria. These include 47 genes encoding detoxification enzymes and 30 genes encoding proteins involved in physiological barrier function, among which 15 are previous reported candidates for ASD. The CTD query revealed 397 gene-environment interaction pairs between these XenoReg genes and 80% (48/60) of the analyzed xenobiotics. The top interacting genes and xenobiotics were, respectively, CYP1A2, ABCB1, ABCG2, GSTM1, and CYP2D6 and benzo-(a)-pyrene, valproic acid, bisphenol A, particulate matter, methylmercury, and perfluorinated compounds. Individuals carrying predicted damaging variants in high evidence XenoReg genes are likely to have less efficient detoxification systems or impaired physiological barriers. They can therefore be particularly susceptible to early life exposure to ubiquitous xenobiotics, which elicit neuropathological mechanisms in the immature brain, such as epigenetic changes, oxidative stress, neuroinflammation, hypoxic damage, and endocrine disruption. As exposure to environmental factors may be mitigated for individuals with risk variants, this work provides new perspectives to personalized prevention and health management policies for ASD.
Collapse
Affiliation(s)
- João Xavier Santos
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Célia Rasga
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Ana Rita Marques
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Hugo Martiniano
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Muhammad Asif
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Joana Vilela
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Guiomar Oliveira
- Unidade de Neurodesenvolvimento e Autismo, Serviço do Centro de Desenvolvimento da Criança, Centro de Investigação e Formação Clínica, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculty of Medicine, University Clinic of Pediatrics and Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Lisete Sousa
- Departamento de Estatística e Investigação Operacional e Centro de Estatística e Aplicações, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Nunes
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Astrid M. Vicente
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
- *Correspondence: Astrid M. Vicente,
| |
Collapse
|
39
|
Bemanalizadeh M, Khoshhali M, Goli P, Abdollahpour I, Kelishadi R. Parental Occupational Exposure and Neurodevelopmental Disorders in Offspring: a Systematic Review and Meta-analysis. Curr Environ Health Rep 2022; 9:406-422. [PMID: 35522387 DOI: 10.1007/s40572-022-00356-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Parental occupational exposures might be associated with neurodevelopmental disorders (NDDs) in offspring. We aimed to conduct a systematic review and meta-analysis to summarize and synthesize the current literature and to estimate the pooled magnitude of the underlying association(s) between parental occupational exposures and subsequent risk of NDDs. RECENT FINDINGS In the meta-analysis of 20 included studies, significant associations were found between parental occupational exposure to pesticides or solvents and the risk of attention deficit hyperactivity disorder in offspring. Prenatal occupational exposure to pesticides was significantly associated with motor development or cognition disorders in children. Furthermore, some evidence showed that metals might have a role in the development of autism spectrum disorders. Further studies need to identify the level of parental occupational exposures that can be significantly associated with NDDs. Moreover, utilizing standardized outcome and exposure scales is recommended to incorporate paternal, maternal, and parental as well as both prenatal and postnatal exposure in future studies.
Collapse
Affiliation(s)
- Maryam Bemanalizadeh
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehri Khoshhali
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvin Goli
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ibrahim Abdollahpour
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Roya Kelishadi
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
40
|
He X, Tu Y, Song Y, Yang G, You M. The relationship between pesticide exposure during critical neurodevelopment and autism spectrum disorder: A narrative review. ENVIRONMENTAL RESEARCH 2022; 203:111902. [PMID: 34416252 DOI: 10.1016/j.envres.2021.111902] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Agricultural pesticides have been one of the most extensively used compounds throughout the world. The main sources of contamination for humans are dietary intake and occupational exposure. The impairments caused by agricultural pesticide exposure have been a significant global public health problem. Recent studies have shown that low-level agricultural pesticide exposure during the critical period of neurodevelopment (pregnancy and lactation) is closely related to autism spectrum disorder (ASD). Inhibition of acetylcholinesterase, gut microbiota, neural dendrite morphology, synaptic function, and glial cells are targets for the effects of pesticides during nervous system development. In the present review, we summarize the associations between several highly used and frequently studied pesticides (e.g., glyphosate, chlorpyrifos, pyrethroids, and avermectins) and ASD. We also discusse future epidemiological and toxicological research directions on the relationship between pesticides and ASD.
Collapse
Affiliation(s)
- Xiu He
- School of Public Heath, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 550025, PR China
| | - Ying Tu
- School of Public Heath, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 550025, PR China
| | - Yawen Song
- School of Public Heath, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 550025, PR China
| | - Guanghong Yang
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, 550004, PR China.
| | - Mingdan You
- School of Public Heath, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 550025, PR China.
| |
Collapse
|
41
|
Tzanoulinou S, Musardo S, Contestabile A, Bariselli S, Casarotto G, Magrinelli E, Jiang YH, Jabaudon D, Bellone C. Inhibition of Trpv4 rescues circuit and social deficits unmasked by acute inflammatory response in a Shank3 mouse model of Autism. Mol Psychiatry 2022; 27:2080-2094. [PMID: 35022531 PMCID: PMC9126815 DOI: 10.1038/s41380-021-01427-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 12/08/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022]
Abstract
Mutations in the SHANK3 gene have been recognized as a genetic risk factor for Autism Spectrum Disorder (ASD), a neurodevelopmental disease characterized by social deficits and repetitive behaviors. While heterozygous SHANK3 mutations are usually the types of mutations associated with idiopathic autism in patients, heterozygous deletion of Shank3 gene in mice does not commonly induce ASD-related behavioral deficit. Here, we used in-vivo and ex-vivo approaches to demonstrate that region-specific neonatal downregulation of Shank3 in the Nucleus Accumbens promotes D1R-medium spiny neurons (D1R-MSNs) hyperexcitability and upregulates Transient Receptor Potential Vanilloid 4 (Trpv4) to impair social behavior. Interestingly, genetically vulnerable Shank3+/- mice, when challenged with Lipopolysaccharide to induce an acute inflammatory response, showed similar circuit and behavioral alterations that were rescued by acute Trpv4 inhibition. Altogether our data demonstrate shared molecular and circuit mechanisms between ASD-relevant genetic alterations and environmental insults, which ultimately lead to sociability dysfunctions.
Collapse
Affiliation(s)
- Stamatina Tzanoulinou
- grid.8591.50000 0001 2322 4988Department of Fundamental Neuroscience, CMU, University of Geneva, Geneva, Switzerland ,grid.9851.50000 0001 2165 4204Present Address: Department of Biomedical Sciences (DSB), FBM, University of Lausanne, Lausanne, Switzerland
| | - Stefano Musardo
- grid.8591.50000 0001 2322 4988Department of Fundamental Neuroscience, CMU, University of Geneva, Geneva, Switzerland
| | - Alessandro Contestabile
- grid.8591.50000 0001 2322 4988Department of Fundamental Neuroscience, CMU, University of Geneva, Geneva, Switzerland
| | - Sebastiano Bariselli
- grid.8591.50000 0001 2322 4988Department of Fundamental Neuroscience, CMU, University of Geneva, Geneva, Switzerland
| | - Giulia Casarotto
- grid.8591.50000 0001 2322 4988Department of Fundamental Neuroscience, CMU, University of Geneva, Geneva, Switzerland
| | - Elia Magrinelli
- grid.8591.50000 0001 2322 4988Department of Fundamental Neuroscience, CMU, University of Geneva, Geneva, Switzerland
| | - Yong-hui Jiang
- grid.47100.320000000419368710Department of Genetics, Yale University School of Medicine, New Haven, CT 06520 USA
| | - Denis Jabaudon
- grid.8591.50000 0001 2322 4988Department of Fundamental Neuroscience, CMU, University of Geneva, Geneva, Switzerland
| | - Camilla Bellone
- Department of Fundamental Neuroscience, CMU, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
42
|
Abd Wahil MS, Ja’afar MH, Md Isa Z. Assessment of Urinary Lead (Pb) and Essential Trace Elements in Autism Spectrum Disorder: a Case-Control Study Among Preschool Children in Malaysia. Biol Trace Elem Res 2022; 200:97-121. [PMID: 33661472 PMCID: PMC7930527 DOI: 10.1007/s12011-021-02654-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 02/22/2021] [Indexed: 12/27/2022]
Abstract
Lead (Pb) is a heavy metal which is abundant in the environment and known to cause neurotoxicity in children even at minute concentration. However, the trace elements calcium (Ca), magnesium (Mg), zinc (Zn) and iron (Fe) are essential to children due to its protective effect on neurodevelopment. The primary objective of this study was to assess the role of Pb and trace elements in the development of autism spectrum disorder (ASD) among preschool children. A total of 81 ASD children and 74 typically developed (TD) children aged between 3 and 6 years participated in the study. Self-administered online questionnaires were completed by the parents. A first-morning urine sample was collected in a sterile polyethene urine container and assayed for Pb, Ca, Mg, Zn and Fe using an inductively coupled plasma mass spectrometry (ICP-MS). Comparisons between groups revealed that the urinary Pb, Mg, Zn and Fe levels in ASD children were significantly lower than TD children. The odds of ASD reduced significantly by 5.0% and 23.0% with an increment of every 1.0 μg/dL urinary Zn and Fe, respectively. Post interaction analysis showed that the odds of ASD reduced significantly by 11.0% and 0.1% with an increment of every 1.0 μg/dL urinary Zn and Pb, respectively. A significantly lower urinary Pb level in ASD children than TD children may be due to their poor detoxifying mechanism. Also, the significantly lower urinary Zn and Fe levels in ASD children may augment the neurotoxic effect of Pb.
Collapse
Affiliation(s)
- Mohd Shahrol Abd Wahil
- Department of Community Health, Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Mohd Hasni Ja’afar
- Department of Community Health, Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Zaleha Md Isa
- Department of Community Health, Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
43
|
Raz R, Oulhote Y. Invited Perspective: Air Pollution and Autism Spectrum Disorder: Are We There Yet? ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:11303. [PMID: 35040692 PMCID: PMC8765362 DOI: 10.1289/ehp10617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Affiliation(s)
- Raanan Raz
- Braun School of Public Health and Community Medicine, Hebrew University of Jerusalem–Hadassah, Jerusalem, Israel
| | - Youssef Oulhote
- Department of Biostatistics and Epidemiology, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
44
|
AlOtaibi A, Ben Shaber S, AlBatli A, AlGhamdi T, Murshid E. A systematic review of population-based gingival health studies among children and adolescents with autism spectrum disorder. Saudi Dent J 2021; 33:370-374. [PMID: 34803276 PMCID: PMC8589577 DOI: 10.1016/j.sdentj.2021.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 02/16/2021] [Accepted: 02/25/2021] [Indexed: 11/16/2022] Open
Abstract
The prevalence of autism spectrum disorder (ASD) is close to 1% in the United States of America and other countries. Special attention should be given to oral health in individuals with ASD as they are often affected by oral diseases. However, gingival health in children with ASD and adolescents is controversial in terms of the severity of disease and number of people affected. Aim To conduct a systematic review and meta-analysis to assess the gingival health status of children and adolescents with ASD. Methods The search was conducted using eight databases for articles that met the inclusion and exclusion criteria. This search produced 742 relevant papers, but only five with sufficient data on gingival and plaque indices were eligible for inclusion in this systematic review and meta-analysis. Results The homogeneity of the sample was tested using the Cohen Q test, which identified significant heterogeneity (P < 0.0001), indicating the use of the random effect’s standard mean difference. Significantly higher gingival index and plaque index values were found in children and adolescents with ASD than in children without ASD. Conclusion Individuals with ASD need help and better access to oral healthcare. Further investigation is needed with regard to gingival health in individuals with ASD and caries risk assessment to understand how this disorder affects oral health. A standardized index for gingival health will help in the inclusion of more studies to assess gingival health in children and adolescents with ASD.
Collapse
Affiliation(s)
- Ahmed AlOtaibi
- Dental Intern, College of Dentistry, King Saud University, P.O. Box 60169, Riyadh 11545, Saudi Arabia
| | - Saad Ben Shaber
- Dental Intern, College of Dentistry, King Saud University, P.O. Box 60169, Riyadh 11545, Saudi Arabia
| | - Abdulaziz AlBatli
- Dental Intern, College of Dentistry, King Saud University, P.O. Box 60169, Riyadh 11545, Saudi Arabia
| | - Talal AlGhamdi
- Demonstrator, Department of Pediatric Dentistry and Orthodontics, College of Dentistry, King Saud University, P.O. Box 60169, Riyadh 11545, Saudi Arabia
| | - Ebtissam Murshid
- Department of Pediatric Dentistry and Orthodontics, College of Dentistry, King Saud University, P.O. Box 60169, Riyadh 11545, Saudi Arabia
| |
Collapse
|
45
|
Association of assisted reproductive technology with autism spectrum disorder in the offspring: an updated systematic review and meta-analysis. Eur J Pediatr 2021; 180:2741-2755. [PMID: 34279715 DOI: 10.1007/s00431-021-04187-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 12/18/2022]
Abstract
This study aims to provide an up-to-date meta-analysis of data from studies investigating the risk of bearing a child with autism spectrum disorder (ASD) after being conceived by assisted reproductive technology (ART). The study was conducted according to the PRISMA Statement. PubMed and Scopus databases were searched up to August 2, 2020. Observational studies using a type of conception of assisted reproductive technology and examined as outcome offspring with ASD were included. A random effect model was applied due to the heterogeneity of the studies. Statistical analysis was performed with Stata 13 software. The Newcastle-Ottawa scale was used to assess the methodological quality of the included studies. The search strategy identified 587 potentially relevant studies. A total of 15 studies provided adequate data for statistical comparisons and, therefore, were included in the meta-analysis. Analysis of the subset of studies that examined all offspring and controlled for confounder factors revealed that the use of ART is associated with a higher risk of ASD (RR = 1.11, 95% CI = 1.03-1.19, p < 0.009), while in the case of studies that focused on singletons, a statistically significant association between ART and ASD was not observed (RR = 0.96, 95% CI = 0.82-1.13, p = 0.654).Conclusion: The present meta-analysis confirmed the existing positive correlation between ART and ASD in offspring, suggesting that ART is correlated with a higher risk for bearing a child with ASD. In contrast, this relationship is not confirmed in singletons. High quality prospective studies with a larger number of participants are still required. What is Known: • Studies that investigated the association between ART and ASD in offspring have shown conflicting results. • A previous meta-analysis showed that offspring conceived by ART are 1.35 times more likely to develop ASD than offspring spontaneously conceived. What is New: • This investigation separately considered studies with and without adjustment for confounders. • The findings from the two analyses were similar.
Collapse
|
46
|
Rahbar MH, Ibrahim SH, Azam SI, Hessabi M, Karim F, Kim S, Zhang J, Gulzar Ali N, Loveland KA. Concentrations of Lead, Mercury, Arsenic, Cadmium, Manganese, and Aluminum in the Blood of Pakistani Children with and without Autism Spectrum Disorder and Their Associated Factors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:8625. [PMID: 34444373 PMCID: PMC8392432 DOI: 10.3390/ijerph18168625] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/02/2021] [Accepted: 08/12/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder with early onset in utero or childhood. Environmental exposure to six metals (Pb, Hg, As, Cd, Mn, Al) is believed to be associated with ASD directly or interactively with genes. Objective: To assess the association of ASD among Pakistani children with the six metals and genotype frequencies of three GST genes (GSTP1, GSTM1, GSTT1). METHODS We enrolled 30 ASD cases, age 2-12 years old, and 30 age- and sex-matched typically developing (TD) controls in Karachi, Pakistan. We assessed associations of ASD status with various factors using Conditional Logistic Regression models. We also used General Linear Models to assess possible interaction of blood Mn and Pb concentrations with the three GST genes in relation to ASD status. RESULTS The unadjusted difference between ASD and TD groups in terms of geometric mean blood Pb concentrations was marginally significant (p = 0.05), but for Al concentrations, the adjusted difference was marginally significant (p = 0.06). CONCLUSIONS This is the first study reporting six blood metal concentrations of Pakistani children with ASD. Estimates provided for possible interactions of GST genes with Mn and Pb in relation to ASD status are valuable for designing future similar studies.
Collapse
Affiliation(s)
- Mohammad H. Rahbar
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Division of Clinical and Translational Sciences, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Biostatistics/Epidemiology/Research Design (BERD) Core, Center for Clinical and Translational Sciences (CCTS), The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.H.); (S.K.); (J.Z.)
| | - Shahnaz H. Ibrahim
- Department of Pediatrics and Child Health, Aga Khan University, Karachi 74800, Pakistan; (S.H.I.); (N.G.A.)
- Child Development and Rehabilitation Centre, Aga Khan University, Karachi 74800, Pakistan
| | - Syed Iqbal Azam
- Department of Community Health Sciences, Aga Khan University, Karachi 74800, Pakistan; (S.I.A.); (F.K.)
| | - Manouchehr Hessabi
- Biostatistics/Epidemiology/Research Design (BERD) Core, Center for Clinical and Translational Sciences (CCTS), The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.H.); (S.K.); (J.Z.)
| | - Fatima Karim
- Department of Community Health Sciences, Aga Khan University, Karachi 74800, Pakistan; (S.I.A.); (F.K.)
| | - Sori Kim
- Biostatistics/Epidemiology/Research Design (BERD) Core, Center for Clinical and Translational Sciences (CCTS), The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.H.); (S.K.); (J.Z.)
- Department of Biostatistics & Data Science, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jing Zhang
- Biostatistics/Epidemiology/Research Design (BERD) Core, Center for Clinical and Translational Sciences (CCTS), The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (M.H.); (S.K.); (J.Z.)
- Department of Biostatistics & Data Science, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Nasreen Gulzar Ali
- Department of Pediatrics and Child Health, Aga Khan University, Karachi 74800, Pakistan; (S.H.I.); (N.G.A.)
| | - Katherine A. Loveland
- Louis A Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA;
| |
Collapse
|
47
|
Modafferi S, Zhong X, Kleensang A, Murata Y, Fagiani F, Pamies D, Hogberg HT, Calabrese V, Lachman H, Hartung T, Smirnova L. Gene-Environment Interactions in Developmental Neurotoxicity: a Case Study of Synergy between Chlorpyrifos and CHD8 Knockout in Human BrainSpheres. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:77001. [PMID: 34259569 PMCID: PMC8278985 DOI: 10.1289/ehp8580] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/31/2021] [Accepted: 06/04/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a major public health concern caused by complex genetic and environmental components. Mechanisms of gene-environment (G × E ) interactions and reliable biomarkers associated with ASD are mostly unknown or controversial. Induced pluripotent stem cells (iPSCs) from patients or with clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9)-introduced mutations in candidate ASD genes provide an opportunity to study (G × E ) interactions. OBJECTIVES In this study, we aimed to identify a potential synergy between mutation in the high-risk autism gene encoding chromodomain helicase DNA binding protein 8 (CHD8) and environmental exposure to an organophosphate pesticide (chlorpyrifos; CPF) in an iPSC-derived human three-dimensional (3D) brain model. METHODS This study employed human iPSC-derived 3D brain organoids (BrainSpheres) carrying a heterozygote CRISPR/Cas9-introduced inactivating mutation in CHD8 and exposed to CPF or its oxon-metabolite (CPO). Neural differentiation, viability, oxidative stress, and neurite outgrowth were assessed, and levels of main neurotransmitters and selected metabolites were validated against human data on ASD metabolic derangements. RESULTS Expression of CHD8 protein was significantly lower in CHD8 heterozygous knockout (C H D 8 + / - ) BrainSpheres compared with C H D 8 + / + ones. Exposure to CPF/CPO treatment further reduced CHD8 protein levels, showing the potential (G × E ) interaction synergy. A novel approach for validation of the model was chosen: from the literature, we identified a panel of metabolic biomarkers in patients and assessed them by targeted metabolomics in vitro. A synergistic effect was observed on the cholinergic system, S-adenosylmethionine, S-adenosylhomocysteine, lactic acid, tryptophan, kynurenic acid, and α -hydroxyglutaric acid levels. Neurite outgrowth was perturbed by CPF/CPO exposure. Heterozygous knockout of CHD8 in BrainSpheres led to an imbalance of excitatory/inhibitory neurotransmitters and lower levels of dopamine. DISCUSSION This study pioneered (G × E ) interaction in iPSC-derived organoids. The experimental strategy enables biomonitoring and environmental risk assessment for ASD. Our findings reflected some metabolic perturbations and disruption of neurotransmitter systems involved in ASD. The increased susceptibility of CHD 8 + / - BrainSpheres to chemical insult establishes a possibly broader role of (G × E ) interaction in ASD. https://doi.org/10.1289/EHP8580.
Collapse
Affiliation(s)
- Sergio Modafferi
- Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Xiali Zhong
- Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Andre Kleensang
- Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yohei Murata
- Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Research Center, Nihon Nohyaku Co. Ltd., Osaka, Japan
| | - Francesca Fagiani
- Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Pavia, Italy
- Istituto Universitario di Studi Superiori (Scuola Universitaria Superiore IUSS) Pavia, Pavia, Italy
| | - David Pamies
- Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Biomedical Science, University of Lausanne, Lausanne, Switzerland
| | - Helena T. Hogberg
- Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Herbert Lachman
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Thomas Hartung
- Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- University of Konstanz, Konstanz, Germany
| | - Lena Smirnova
- Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
48
|
Jaini R, Wolf MR, Yu Q, King AT, Frazier TW, Eng C. Maternal genetics influences fetal neurodevelopment and postnatal autism spectrum disorder-like phenotype by modulating in-utero immunosuppression. Transl Psychiatry 2021; 11:348. [PMID: 34091589 PMCID: PMC8179926 DOI: 10.1038/s41398-021-01472-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/06/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022] Open
Abstract
Genetic studies in ASD have mostly focused on the proband, with no clear understanding of parental genetic contributions to fetal neurodevelopment. Among parental etiological factors, perinatal maternal inflammation secondary to autoimmunity, infections, and toxins is associated with ASD. However, the inherent impact of maternal genetics on in-utero inflammation and fetal neurodevelopment in the absence of strong external inflammatory exposures is not known. We used the PtenWT/m3m4 mouse model for ASD to demonstrate the impact of maternal genetics on the penetrance of ASD-like phenotypes in the offspring. PtenWT/m3m4 (Momm3m4) or PtenWT/WT (MomWT) females, their offspring, and placental interface were analyzed for inflammatory markers, gene expression, and cellular phenotypes at E17.5. Postnatal behavior was tested by comparing pups from Momm3m4 vs. MomWT. Mothers of the PtenWT/m3m4 genotype (Momm3m4) showed inadequate induction of IL-10 mediated immunosuppression during pregnancy. Low IL-10 in the mother was directly correlated with decreased complement expression in the fetal liver. Fetuses from Momm3m4 had increased breakdown of the blood-brain-barrier, neuronal loss, and lack of glial cell maturation during in-utero stages. This impact of maternal genotype translated to a postnatal increase in the risk of newborn mortality, visible macrocephaly and ASD-like repetitive and social behaviors. Depending on maternal genotype, non-predisposed (wildtype) offspring showed ASD-like phenotypes, and phenotypic penetrance was decreased in predisposed pups from MomWT. Our study introduces the concept that maternal genetics alone, without any added external inflammatory insults, can modulate fetal neurodevelopment and ASD-related phenotypes in the offspring via alteration of IL-10 mediated materno-fetal immunosuppression.
Collapse
Affiliation(s)
- Ritika Jaini
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Matthew R Wolf
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Qi Yu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Alexander T King
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Thomas W Frazier
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Psychology, John Carroll University, University Heights, Cleveland, OH, 44118, USA
- Autism Speaks, Cleveland, OH, 44131, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
49
|
Yong Z, Dou Y, Gao Y, Xu X, Xiao Y, Zhu H, Li S, Yuan B. Prenatal, perinatal, and postnatal factors associated with autism spectrum disorder cases in Xuzhou, China. Transl Pediatr 2021; 10:635-646. [PMID: 33880333 PMCID: PMC8041613 DOI: 10.21037/tp-21-54] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The aim of the present study was to explore the prenatal, perinatal, and postnatal risk factors in children with autism spectrum disorder (ASD) from Xuzhou, China by comparing them with healthy children. METHODS Children with ASD who received rehabilitation training at special education schools and rehabilitation institutions in Xuzhou were selected as the ASD group, and healthy children during the same period were selected as the healthy non-ASD group. A questionnaire based on the possible causes and susceptibility factors of ASD in children was issued and given to all children in this study. RESULTS The findings of the present study revealed a higher prevalence of prenatal, perinatal, and postnatal factors in children with ASD compared with healthy children. There were significantly more males than females in the ASD group, and the proportion of boys to girls was 5.81:1 (P<0.05). Logistic regression analysis suggested that the risk factors of male children developing ASD were feeding difficulties, poor living environment during pregnancy, maternal exposure to cigarette smoking during pregnancy, and perinatal hypoxia. Factors associated with ASD risk among were identified, such as living environment during pregnancy, delivery method, feeding difficulties, and epilepsy (P<0.05). Feeding difficulties and living in the countryside during pregnancy might be risk factors for ASD in girls according to the logistic regression analysis. CONCLUSIONS This survey confirmed the high prevalence of prenatal, perinatal, and postnatal factors in children with ASD. Some of these factors may be effective entry points for the prevention and treatment of ASD.
Collapse
Affiliation(s)
- Zenghua Yong
- Children's Neurological Rehabilitation Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yunlong Dou
- Children's Neurological Rehabilitation Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yuchen Gao
- Children's Neurological Rehabilitation Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xuena Xu
- Children's Neurological Rehabilitation Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yanli Xiao
- Children's Neurological Rehabilitation Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hongjuan Zhu
- Children's Neurological Rehabilitation Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shengli Li
- Department of Medical Records, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Baoqiang Yuan
- Children's Neurological Rehabilitation Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
50
|
Abstract
Background Despite the global increase in the prevalence of autism spectrum disorders (ASD), relevant research studies are lacking in Brunei Darussalam. Various studies have shown a significant association between a lowered 2D:4D ratio (ratio of second digit/index finger to the fourth digit/ring finger) and ASD, making it one of the potential phenotypic biomarkers for early detection of autism, which is important for early intervention and management. Objective The objective of this study is to explore the association between 2D:4D ratio and ASD in Brunei Darussalam, as a potential tool to complement early ASD diagnosis. Methods We conducted a case–control study comprising 28 ASD and 62 typically developing (TD) children in the case and control group, respectively (age range: 3–11 years old; median age: 6 years old). Median 2D:4D ratios were measured, compared and analysed between the two groups. Logistic regression models were used to explore potential associations between the median 2D:4D ratio and ASD in respective gender, for both left and right hands, independently. Results Our study shows that the median 2D:4D ratio of left hand in ASD males is significantly lower than those in TD males, after adjusting for ethnicity and age [Odds Ratio (OR) = 0.57 (95% Confidence Interval (CI): 0.31–0.96); p = 0.044]. For females, there is no association of ASD with the median left hand 2D:4D ratio [OR = 3.09 (95% CI: 0.98–19.86); p = 0.144] or the median right hand 2D:4D ratio [OR = 1.23 (95% CI: 0.42–3.88); p = 0.702]. Our study also shows a significant positive correlation and/or a reduced asymmetry between the average 2D:4D ratio of left hands and right hands in ASD males (Pearson’s correlation (r) = 0.48; 95% CI: 0.076–0.75, p = 0.023). Conclusions There is significant association between a lowered median 2D:4D ratio of the left hand (in males only) and ASD diagnosis. Once validated in a larger sample size, a lowered median 2D:4D ratio on the left hand may be a potential tool to complement ASD diagnosis for males in our study population. There is no association between the median 2D:4D ratio (left or right hands) and ASD in females, which could be due to the small female sample size and/or the possibility of different aetiology for ASD in females. Reduced asymmetry between the average 2D:4D ratio of left and right hands observed in ASD males only (not in ASD females) also suggests the importance of considering gender-specific biomarkers for ASD diagnosis. Supplementary Information The online version contains supplementary material available at 10.1007/s10803-021-04899-9.
Collapse
|