1
|
Salas-Leal AC, Salas-Pacheco SM, Hernández-Cosaín EI, Vélez-Vélez LM, Antuna-Salcido EI, Castellanos-Juárez FX, Méndez-Hernández EM, Llave-León OL, Quiñones-Canales G, Arias-Carrión O, Sandoval-Carrillo AA, Salas-Pacheco JM. Differential expression of PSMC4, SKP1, and HSPA8 in Parkinson's disease: insights from a Mexican mestizo population. Front Mol Neurosci 2023; 16:1298560. [PMID: 38115821 PMCID: PMC10728481 DOI: 10.3389/fnmol.2023.1298560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
Parkinson's disease (PD) is a complex neurodegenerative condition characterized by alpha-synuclein aggregation and dysfunctional protein degradation pathways. This study investigates the differential gene expression of pivotal components (UBE2K, PSMC4, SKP1, and HSPA8) within these pathways in a Mexican-Mestizo PD population compared to healthy controls. We enrolled 87 PD patients and 87 controls, assessing their gene expression levels via RT-qPCR. Our results reveal a significant downregulation of PSMC4, SKP1, and HSPA8 in the PD group (p = 0.033, p = 0.003, and p = 0.002, respectively). Logistic regression analyses establish a strong association between PD and reduced expression of PSMC4, SKP1, and HSPA8 (OR = 0.640, 95% CI = 0.415-0.987; OR = 0.000, 95% CI = 0.000-0.075; OR = 0.550, 95% CI = 0.368-0.823, respectively). Conversely, UBE2K exhibited no significant association or expression difference between the groups. Furthermore, we develop a gene expression model based on HSPA8, PSMC4, and SKP1, demonstrating robust discrimination between healthy controls and PD patients. Notably, the model's diagnostic efficacy is particularly pronounced in early-stage PD. In conclusion, our study provides compelling evidence linking decreased gene expression of PSMC4, SKP1, and HSPA8 to PD in the Mexican-Mestizo population. Additionally, our gene expression model exhibits promise as a diagnostic tool, particularly for early-stage PD diagnosis.
Collapse
Affiliation(s)
- Alma C. Salas-Leal
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, México
| | - Sergio M. Salas-Pacheco
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, México
| | - Erik I. Hernández-Cosaín
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, México
| | - Lilia M. Vélez-Vélez
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, México
| | | | | | - Edna M. Méndez-Hernández
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, México
| | - Osmel La Llave-León
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, México
| | | | - Oscar Arias-Carrión
- Unidad de Trastornos del Movimiento y Sueño, Hospital General Dr. Manuel Gea González, Ciudad de México, México
| | - Ada A. Sandoval-Carrillo
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, México
| | - José M. Salas-Pacheco
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, México
| |
Collapse
|
2
|
Cherian A, K P D, Vijayaraghavan A. Parkinson's disease - genetic cause. Curr Opin Neurol 2023; Publish Ahead of Print:00019052-990000000-00070. [PMID: 37366140 DOI: 10.1097/wco.0000000000001167] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
PURPOSE OF REVIEW Our knowledge of the genetic architecture underlying Parkinson's disease has vastly improved in the past quarter century. About 5-10% of all patients suffer from a monogenic form of Parkinson's disease. RECENT FINDINGS Mutations in autosomal dominant genes (e.g. SNCA, LRRK2, VPS35) or autosomal recessive genes (e.g. PRKN, PINK1, DJ-1) can cause genetic Parkinson's disease. Recessive DNAJC6 mutations can present predominantly as atypical parkinsonism, but also rarely as typical Parkinson's disease. Majority of Parkinson's disease is genetically complex. Mutation in RIC3, a chaperone of neuronal nicotinic acetylcholine receptor subunit α-7 (CHRNA7), provides strong evidence for the role of cholinergic pathway, for the first time, in cause of Parkinson's disease. X-linked parkinsonism manifests at a young age accompanied by many (atypical) features such as intellectual disability, spasticity, seizures, myoclonus, dystonia, and have poor response to levodopa. SUMMARY This review article aims to provide a comprehensive overview on Parkinson's disease genetics. MAPT, which encodes the microtubule associated protein tau, TMEM230, LRP10, NUS1 and ARSA are the five new putative disease-causing genes in Parkinson's disease. The validation of novel genes and its association with Parkinson's disease remains extremely challenging, as genetically affected families are sparse and globally widespread. In the near future, genetic discoveries in Parkinson's disease will influence our ability to predict and prognosticate the disease, help in defining etiological subtypes that are critical in implementation of precision medicine.
Collapse
Affiliation(s)
- Ajith Cherian
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India
| | | | | |
Collapse
|
3
|
The characteristics of FBXO7 and its role in human diseases. Gene X 2023; 851:146972. [DOI: 10.1016/j.gene.2022.146972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
|
4
|
Pasha T, Zatorska A, Sharipov D, Rogelj B, Hortobágyi T, Hirth F. Karyopherin abnormalities in neurodegenerative proteinopathies. Brain 2021; 144:2915-2932. [PMID: 34019093 PMCID: PMC8194669 DOI: 10.1093/brain/awab201] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/08/2021] [Accepted: 05/11/2021] [Indexed: 11/12/2022] Open
Abstract
Neurodegenerative proteinopathies are characterized by progressive cell loss that is preceded by the mislocalization and aberrant accumulation of proteins prone to aggregation. Despite their different physiological functions, disease-related proteins like tau, α-synuclein, TAR DNA binding protein-43, fused in sarcoma and mutant huntingtin, all share low complexity regions that can mediate their liquid-liquid phase transitions. The proteins' phase transitions can range from native monomers to soluble oligomers, liquid droplets and further to irreversible, often-mislocalized aggregates that characterize the stages and severity of neurodegenerative diseases. Recent advances into the underlying pathogenic mechanisms have associated mislocalization and aberrant accumulation of disease-related proteins with defective nucleocytoplasmic transport and its mediators called karyopherins. These studies identify karyopherin abnormalities in amyotrophic lateral sclerosis, frontotemporal dementia, Alzheimer's disease, and synucleinopathies including Parkinson's disease and dementia with Lewy bodies, that range from altered expression levels to the subcellular mislocalization and aggregation of karyopherin α and β proteins. The reported findings reveal that in addition to their classical function in nuclear import and export, karyopherins can also act as chaperones by shielding aggregation-prone proteins against misfolding, accumulation and irreversible phase-transition into insoluble aggregates. Karyopherin abnormalities can, therefore, be both the cause and consequence of protein mislocalization and aggregate formation in degenerative proteinopathies. The resulting vicious feedback cycle of karyopherin pathology and proteinopathy identifies karyopherin abnormalities as a common denominator of onset and progression of neurodegenerative disease. Pharmacological targeting of karyopherins, already in clinical trials as therapeutic intervention targeting cancers such as glioblastoma and viral infections like COVID-19, may therefore represent a promising new avenue for disease-modifying treatments in neurodegenerative proteinopathies.
Collapse
Affiliation(s)
- Terouz Pasha
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, London SE5 9RT, UK
| | - Anna Zatorska
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, London SE5 9RT, UK
| | - Daulet Sharipov
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, London SE5 9RT, UK
| | - Boris Rogelj
- Jozef Stefan Institute, Department of Biotechnology, 1000 Ljubljana, Slovenia
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, 1000 Ljubljana, Slovenia
| | - Tibor Hortobágyi
- ELKH-DE Cerebrovascular and Neurodegenerative Research Group, Department of Neurology, University of Debrecen, 4032 Debrecen, Hungary
- King's College London, Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, London SE5 8AF, UK
| | - Frank Hirth
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, London SE5 9RT, UK
| |
Collapse
|
5
|
Bell R, Vendruscolo M. Modulation of the Interactions Between α-Synuclein and Lipid Membranes by Post-translational Modifications. Front Neurol 2021; 12:661117. [PMID: 34335440 PMCID: PMC8319954 DOI: 10.3389/fneur.2021.661117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease is characterised by the presence in brain tissue of aberrant inclusions known as Lewy bodies and Lewy neurites, which are deposits composed by α-synuclein and a variety of other cellular components, including in particular lipid membranes. The dysregulation of the balance between lipid homeostasis and α-synuclein homeostasis is therefore likely to be closely involved in the onset and progression of Parkinson's disease and related synucleinopathies. As our understanding of this balance is increasing, we describe recent advances in the characterisation of the role of post-translational modifications in modulating the interactions of α-synuclein with lipid membranes. We then discuss the impact of these advances on the development of novel diagnostic and therapeutic tools for synucleinopathies.
Collapse
Affiliation(s)
| | - Michele Vendruscolo
- Centre for Misfolding Disease, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
6
|
Li W, Fu Y, Halliday GM, Sue CM. PARK Genes Link Mitochondrial Dysfunction and Alpha-Synuclein Pathology in Sporadic Parkinson's Disease. Front Cell Dev Biol 2021; 9:612476. [PMID: 34295884 PMCID: PMC8291125 DOI: 10.3389/fcell.2021.612476] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 06/10/2021] [Indexed: 11/28/2022] Open
Abstract
Parkinson’s disease (PD) is an age-related neurodegenerative disorder affecting millions of people worldwide. The disease is characterized by the progressive loss of dopaminergic neurons and spread of Lewy pathology (α-synuclein aggregates) in the brain but the pathogenesis remains elusive. PD presents substantial clinical and genetic variability. Although its complex etiology and pathogenesis has hampered the breakthrough in targeting disease modification, recent genetic tools advanced our approaches. As such, mitochondrial dysfunction has been identified as a major pathogenic hub for both familial and sporadic PD. In this review, we summarize the effect of mutations in 11 PARK genes (SNCA, PRKN, PINK1, DJ-1, LRRK2, ATP13A2, PLA2G6, FBXO7, VPS35, CHCHD2, and VPS13C) on mitochondrial function as well as their relevance in the formation of Lewy pathology. Overall, these genes play key roles in mitochondrial homeostatic control (biogenesis and mitophagy) and functions (e.g., energy production and oxidative stress), which may crosstalk with the autophagy pathway, induce proinflammatory immune responses, and increase oxidative stress that facilitate the aggregation of α-synuclein. Thus, rectifying mitochondrial dysregulation represents a promising therapeutic approach for neuroprotection in PD.
Collapse
Affiliation(s)
- Wen Li
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Kolling Institute of Medical Research, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - YuHong Fu
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,School of Medical Science, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Glenda M Halliday
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,School of Medical Science, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Carolyn M Sue
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Kolling Institute of Medical Research, Faculty of Medicine and Health, University of Sydney, Royal North Shore Hospital, St Leonards, NSW, Australia
| |
Collapse
|
7
|
Kara E, Crimi A, Wiedmer A, Emmenegger M, Manzoni C, Bandres-Ciga S, D'Sa K, Reynolds RH, Botía JA, Losa M, Lysenko V, Carta M, Heinzer D, Avar M, Chincisan A, Blauwendraat C, García-Ruiz S, Pease D, Mottier L, Carrella A, Beck-Schneider D, Magalhães AD, Aemisegger C, Theocharides APA, Fan Z, Marks JD, Hopp SC, Abramov AY, Lewis PA, Ryten M, Hardy J, Hyman BT, Aguzzi A. An integrated genomic approach to dissect the genetic landscape regulating the cell-to-cell transfer of α-synuclein. Cell Rep 2021; 35:109189. [PMID: 34107263 PMCID: PMC8207177 DOI: 10.1016/j.celrep.2021.109189] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/08/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
Neuropathological and experimental evidence suggests that the cell-to-cell transfer of α-synuclein has an important role in the pathogenesis of Parkinson's disease (PD). However, the mechanism underlying this phenomenon is not fully understood. We undertook a small interfering RNA (siRNA), genome-wide screen to identify genes regulating the cell-to-cell transfer of α-synuclein. A genetically encoded reporter, GFP-2A-αSynuclein-RFP, suitable for separating donor and recipient cells, was transiently transfected into HEK cells stably overexpressing α-synuclein. We find that 38 genes regulate the transfer of α-synuclein-RFP, one of which is ITGA8, a candidate gene identified through a recent PD genome-wide association study (GWAS). Weighted gene co-expression network analysis (WGCNA) and weighted protein-protein network interaction analysis (WPPNIA) show that those hits cluster in networks that include known PD genes more frequently than expected by random chance. The findings expand our understanding of the mechanism of α-synuclein spread.
Collapse
Affiliation(s)
- Eleanna Kara
- Institute of Neuropathology, University of Zurich and University Hospital Zurich, Zurich 8091, Switzerland; Department of Neurodegenerative disease, University College London, London WC1N 3BG, UK
| | - Alessandro Crimi
- Institute of Neuropathology, University of Zurich and University Hospital Zurich, Zurich 8091, Switzerland
| | - Anne Wiedmer
- Institute of Neuropathology, University of Zurich and University Hospital Zurich, Zurich 8091, Switzerland
| | - Marc Emmenegger
- Institute of Neuropathology, University of Zurich and University Hospital Zurich, Zurich 8091, Switzerland
| | - Claudia Manzoni
- Department of Pharmacology, University College London School of Pharmacy, London WC1N 1AX, UK; School of Pharmacy, University of Reading, Reading RG6 6AP, UK
| | - Sara Bandres-Ciga
- Laboratory of Neurogenetics, National Institutes of Health, Bethesda, MD 20814, USA
| | - Karishma D'Sa
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Regina H Reynolds
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK; NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| | - Juan A Botía
- Department of Neurodegenerative disease, University College London, London WC1N 3BG, UK; Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia 30100, Spain
| | - Marco Losa
- Institute of Neuropathology, University of Zurich and University Hospital Zurich, Zurich 8091, Switzerland
| | - Veronika Lysenko
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich 8091, Switzerland
| | - Manfredi Carta
- Institute of Neuropathology, University of Zurich and University Hospital Zurich, Zurich 8091, Switzerland
| | - Daniel Heinzer
- Institute of Neuropathology, University of Zurich and University Hospital Zurich, Zurich 8091, Switzerland
| | - Merve Avar
- Institute of Neuropathology, University of Zurich and University Hospital Zurich, Zurich 8091, Switzerland
| | - Andra Chincisan
- Institute of Neuropathology, University of Zurich and University Hospital Zurich, Zurich 8091, Switzerland
| | | | - Sonia García-Ruiz
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK; NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| | - Daniel Pease
- Institute of Neuropathology, University of Zurich and University Hospital Zurich, Zurich 8091, Switzerland
| | - Lorene Mottier
- Institute of Neuropathology, University of Zurich and University Hospital Zurich, Zurich 8091, Switzerland
| | - Alessandra Carrella
- Institute of Neuropathology, University of Zurich and University Hospital Zurich, Zurich 8091, Switzerland
| | - Dezirae Beck-Schneider
- Institute of Neuropathology, University of Zurich and University Hospital Zurich, Zurich 8091, Switzerland
| | - Andreia D Magalhães
- Institute of Neuropathology, University of Zurich and University Hospital Zurich, Zurich 8091, Switzerland
| | - Caroline Aemisegger
- Center for Microscopy and Image Analysis, University of Zurich, Zurich 8057, Switzerland
| | - Alexandre P A Theocharides
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich 8091, Switzerland
| | - Zhanyun Fan
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Jordan D Marks
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA; Mayo Clinic Alix School of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Sarah C Hopp
- Department of Pharmacology, UT Health San Antonio, San Antonio, TX 78229, USA; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Andrey Y Abramov
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Patrick A Lewis
- Department of Neurodegenerative disease, University College London, London WC1N 3BG, UK; School of Pharmacy, University of Reading, Reading RG6 6AP, UK; Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK
| | - Mina Ryten
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK; NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| | - John Hardy
- Department of Neurodegenerative disease, University College London, London WC1N 3BG, UK; UK Dementia Research Institute, University College London, London WC1N 3BG, UK; Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London WC1N 1PJ, UK; Institute for Advanced Study, the Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich and University Hospital Zurich, Zurich 8091, Switzerland.
| |
Collapse
|
8
|
Cherian A, Divya KP. Genetics of Parkinson's disease. Acta Neurol Belg 2020; 120:1297-1305. [PMID: 32813147 DOI: 10.1007/s13760-020-01473-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/11/2020] [Indexed: 12/21/2022]
Abstract
Less than a quarter century after the discovery of SNCA as the first attributable gene in Parkinson's disease (PD), our knowledge of the genetic architecture underlying this disease has improved by leaps and bounds. About 5-10% of all patients suffer from a monogenic form of PD where mutations in autosomal-dominant (AD) genes-SNCA, LRRK2, and VPS35 and autosomal recessive (AR) genes-PINK1, DJ-1, and Parkin cause the disease. Whole-exome sequencing has described AR DNAJC6 mutations not only in predominantly atypical, but also in patients with typical PD. Majority of PD is genetically complex, caused by the combination of common genetic variants in concert with environmental factors. Genome-wide association studies have identified twenty six PD risk loci till date; however, these show only moderate effects on the risk for PD. The validation of novel genes and its association with PD remains extremely challenging as families harboring rare genetic variants are sparse and globally widespread. This review article aims to provide a comprehensive overview on PD genetics.
Collapse
Affiliation(s)
- Ajith Cherian
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India, 695011
| | - K P Divya
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India, 695011.
| |
Collapse
|
9
|
Limanaqi F, Biagioni F, Gambardella S, Familiari P, Frati A, Fornai F. Promiscuous Roles of Autophagy and Proteasome in Neurodegenerative Proteinopathies. Int J Mol Sci 2020; 21:E3028. [PMID: 32344772 PMCID: PMC7215558 DOI: 10.3390/ijms21083028] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022] Open
Abstract
Alterations in autophagy and the ubiquitin proteasome system (UPS) are commonly implicated in protein aggregation and toxicity which manifest in a number of neurological disorders. In fact, both UPS and autophagy alterations are bound to the aggregation, spreading and toxicity of the so-called prionoid proteins, including alpha synuclein (α-syn), amyloid-beta (Aβ), tau, huntingtin, superoxide dismutase-1 (SOD-1), TAR-DNA-binding protein of 43 kDa (TDP-43) and fused in sarcoma (FUS). Recent biochemical and morphological studies add to this scenario, focusing on the coordinated, either synergistic or compensatory, interplay that occurs between autophagy and the UPS. In fact, a number of biochemical pathways such as mammalian target of rapamycin (mTOR), transcription factor EB (TFEB), Bcl2-associated athanogene 1/3 (BAG3/1) and glycogen synthase kinase beta (GSk3β), which are widely explored as potential targets in neurodegenerative proteinopathies, operate at the crossroad between autophagy and UPS. These biochemical steps are key in orchestrating the specificity and magnitude of the two degradation systems for effective protein homeostasis, while intermingling with intracellular secretory/trafficking and inflammatory pathways. The findings discussed in the present manuscript are supposed to add novel viewpoints which may further enrich our insight on the complex interactions occurring between cell-clearing systems, protein misfolding and propagation. Discovering novel mechanisms enabling a cross-talk between the UPS and autophagy is expected to provide novel potential molecular targets in proteinopathies.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
| | - Francesca Biagioni
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (S.G.); (A.F.)
| | - Stefano Gambardella
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (S.G.); (A.F.)
| | - Pietro Familiari
- Department of Human Neurosciences, Division of Neurosurgery, Sapienza University of Rome, 00185 Roma, Italy;
| | - Alessandro Frati
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (S.G.); (A.F.)
| | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (S.G.); (A.F.)
| |
Collapse
|
10
|
Insights into the pathogenesis of multiple system atrophy: focus on glial cytoplasmic inclusions. Transl Neurodegener 2020; 9:7. [PMID: 32095235 PMCID: PMC7025408 DOI: 10.1186/s40035-020-0185-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/31/2020] [Indexed: 12/15/2022] Open
Abstract
Multiple system atrophy (MSA) is a debilitating and fatal neurodegenerative disorder. The disease severity warrants urgent development of disease-modifying therapy, but the disease pathogenesis is still enigmatic. Neurodegeneration in MSA brains is preceded by the emergence of glial cytoplasmic inclusions (GCIs), which are insoluble α-synuclein accumulations within oligodendrocytes (OLGs). Thus, preventive strategies against GCI formation may suppress disease progression. However, although numerous studies have tried to elucidate the molecular pathogenesis of GCI formation, difficulty remains in understanding the pathological interaction between the two pivotal aspects of GCIs; α-synuclein and OLGs. The difficulty originates from several enigmas: 1) what triggers the initial generation and possible propagation of pathogenic α-synuclein species? 2) what contributes to OLG-specific accumulation of α-synuclein, which is abundantly expressed in neurons but not in OLGs? and 3) how are OLGs and other glial cells affected and contribute to neurodegeneration? The primary pathogenesis of GCIs may involve myelin dysfunction and dyshomeostasis of the oligodendroglial cellular environment such as autophagy and iron metabolism. We have previously reported that oligodendrocyte precursor cells are more prone to develop intracellular inclusions in the presence of extracellular fibrillary α-synuclein. This finding implies a possibility that the propagation of GCI pathology in MSA brains is mediated through the internalization of pathological α-synuclein into oligodendrocyte precursor cells. In this review, in order to discuss the pathogenesis of GCIs, we will focus on the composition of neuronal and oligodendroglial inclusions in synucleinopathies. Furthermore, we will introduce some hypotheses on how α-synuclein pathology spreads among OLGs in MSA brains, in the light of our data from the experiments with primary oligodendrocyte lineage cell culture. While various reports have focused on the mysterious source of α-synuclein in GCIs, insights into the mechanism which regulates the uptake of pathological α-synuclein into oligodendroglial cells may yield the development of the disease-modifying therapy for MSA. The interaction between glial cells and α-synuclein is also highlighted with previous studies of post-mortem human brains, cultured cells, and animal models, which provide comprehensive insight into GCIs and the MSA pathomechanisms.
Collapse
|
11
|
Selvaraj S, Piramanayagam S. Impact of gene mutation in the development of Parkinson's disease. Genes Dis 2019; 6:120-128. [PMID: 31193965 PMCID: PMC6545447 DOI: 10.1016/j.gendis.2019.01.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 01/31/2019] [Indexed: 01/09/2023] Open
Abstract
Parkinson's disease (PD) is the second most common age related neurodegenerative disorder worldwide and presents as a progressive movement disorder. Globally seven million to 10 million people have Parkinson's disease. Parkinsonism is typically sporadic in nature. Loss of dopaminergic neurons from substantia nigra pars compacta (SNpc) and the neuronal intracellular Lewy body inclusions are the major cause of PD. Gene mutation and protein aggregation play a pivotal role in the degeneration of dopamine neurons. But the actual cause of dopamine degeneration remains unknown. However, several rare familial forms of PD are associated with genetic loci, and the recognition of causal mutations has provided insight into the disease process. Yet, the molecular pathways and gene transformation that trigger neuronal susceptibility are inadequately comprehended. The discovery of a mutation in new genes has provided a basis for much of the ongoing molecular work in the PD field and testing of targeted therapeutics. Single gene mutation in a dominantly or recessively inherited gene results a great impact in the development of Parkinson's disease. In this review, we summarize the molecular genetics of PD.
Collapse
Affiliation(s)
- Suganya Selvaraj
- Computational Biology Lab, Department of Bioinformatics, Bharathiar University, Coimbatore, 641046, India
| | - Shanmughavel Piramanayagam
- Professor, Computational Biology Lab, Department of Bioinformatics, Bharathiar University, Coimbatore, 641046, India
| |
Collapse
|
12
|
Comprehensive and Systematic Analysis of Gene Expression Patterns Associated with Body Mass Index. Sci Rep 2019; 9:7447. [PMID: 31092860 PMCID: PMC6520409 DOI: 10.1038/s41598-019-43881-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/29/2019] [Indexed: 12/20/2022] Open
Abstract
Both genetic and environmental factors are suggested to influence overweight and obesity risks. Although individual loci and genes have been frequently shown to be associated with body mass index (BMI), the overall interaction of these genes and their role in BMI remains underexplored. Data were collected in 90 healthy, predominately Caucasian participants (51% female) with a mean age of 26.00 ± 9.02 years. Whole blood samples were assayed by Affymetrix GeneChip Human Genome U133 Plus 2.0 Array. We integrated and analyzed the clinical and microarray gene expression data from those individuals to understand various systematic gene expression patterns underlying BMI. Conventional differential expression analysis identified seven genes RBM20, SEPT12, AX748233, SLC30A3, WTIP, CASP10, and OR12D3 associated with BMI. Weight gene co-expression network analysis among 4,647 expressed genes identified two gene modules associated with BMI. These two modules, with different extents of gene connectivity, are enriched for catabolic and muscle system processes respectively, and tend to be regulated by zinc finger transcription factors. A total of 246 hub genes were converted to non-hub genes, and 286 non-hub genes were converted to hub genes between normal and overweight individuals, revealing the network dynamics underlying BMI. A total of 28 three-way gene interactions were identified, suggesting the existence of high-order gene expression patterns underlying BMI. Our study demonstrated a variety of systematic gene expression patterns associated with BMI and thus provided novel understanding regarding the genetic factors for overweight and obesity risks on system levels.
Collapse
|
13
|
Zhou ZD, Lee JCT, Tan EK. Pathophysiological mechanisms linking F-box only protein 7 (FBXO7) and Parkinson's disease (PD). MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 778:72-78. [PMID: 30454685 DOI: 10.1016/j.mrrev.2018.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 12/12/2022]
Abstract
Mutations of F-box only protein 7 (FBXO7) gene are associated with a severe form of autosomal recessive juvenile Parkinson's disease (PD) (PARK15) with clinical features of Parkinsonian-Pyramidal syndrome (PPS). FBXO7 is an adaptor protein in SCFFBXO7 ubiquitin E3 ligase complex that recognizes and mediates degradative or non-degradative ubiquitination of substrates. The FBXO7 protein can regulate cell cycle, proliferation, mitochondrial and proteasome functions via interactions with multiple target proteins. Five PARK15-linked FBXO7 gene mutations and several PD-associated single nucleotide polymorphisms (SNP) have been identified so far. WT FBXO7 proteins possess dual protective and deleterious functions, whereas PARK15-linked FBXO7 mutants are toxic. FBXO7 is a stress response protein and stress challenges can promote translocation of FBXO7 protein from nucleus into mitochondria and even form deleterious protein aggregate in mitochondria. FBXO7 mutants aggravate protein aggregation in mitochondria and inhibit mitophagy. The pathological mechanisms concerning FBXO7-relevant protein aggregation, mitochondria impairment, reactive oxygen species (ROS) generation and mitophagy modulation in PARK15 pathogenesis are highlighted and discussed in the current review.
Collapse
Affiliation(s)
- Zhi Dong Zhou
- Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, 308433, Singapore; Signature Research Program in Neuroscience and Behavioural Disorders, Duke-NUS Medical School, 8 College Road, 169857, Singapore.
| | - Ji Chao Tristan Lee
- Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, 308433, Singapore.
| | - Eng King Tan
- Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, 308433, Singapore; Department of Neurology, Singapore General Hospital, Outram Road, 169608, Singapore; Signature Research Program in Neuroscience and Behavioural Disorders, Duke-NUS Medical School, 8 College Road, 169857, Singapore.
| |
Collapse
|
14
|
Ammal Kaidery N, Thomas B. Current perspective of mitochondrial biology in Parkinson's disease. Neurochem Int 2018; 117:91-113. [PMID: 29550604 DOI: 10.1016/j.neuint.2018.03.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative movement disorder characterized by preferential loss of dopaminergic neurons of the substantia nigra pars compacta and the presence of Lewy bodies containing α-synuclein. Although the cause of PD remains elusive, remarkable advances have been made in understanding the possible causative mechanisms of PD pathogenesis. An explosion of discoveries during the past two decades has led to the identification of several autosomal dominant and recessive genes that cause familial forms of PD. The investigations of these familial PD gene products have shed considerable insights into the molecular pathogenesis of the more common sporadic PD. A growing body of evidence suggests that the etiology of PD is multifactorial and involves a complex interplay between genetic and environmental factors. Substantial evidence from human tissues, genetic and toxin-induced animal and cellular models indicates that mitochondrial dysfunction plays a central role in the pathophysiology of PD. Deficits in mitochondrial functions due to bioenergetics defects, alterations in the mitochondrial DNA, generation of reactive oxygen species, aberrant calcium homeostasis, and anomalies in mitochondrial dynamics and quality control are implicated in the underlying mechanisms of neuronal cell death in PD. In this review, we discuss how familial PD-linked genes and environmental factors interface the pathways regulating mitochondrial functions and thereby potentially converge both familial and sporadic PD at the level of mitochondrial integrity. We also provide an overview of the status of therapeutic strategies targeting mitochondrial dysfunction in PD. Unraveling potential pathways that influence mitochondrial homeostasis in PD may hold the key to therapeutic intervention for this debilitating neurodegenerative movement disorder.
Collapse
Affiliation(s)
| | - Bobby Thomas
- Departments of Pharmacology and Toxicology, Augusta, GA 30912, United States; Neurology Medical College of Georgia, Augusta University, Augusta, GA 30912, United States.
| |
Collapse
|
15
|
Tenreiro S, Franssens V, Winderickx J, Outeiro TF. Yeast models of Parkinson's disease-associated molecular pathologies. Curr Opin Genet Dev 2018; 44:74-83. [PMID: 28232272 DOI: 10.1016/j.gde.2017.01.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/30/2017] [Indexed: 12/15/2022]
Abstract
The aging of the human population is resulting in an increase in the number of people afflicted by neurodegenerative disorders such as Parkinson's disease (PD), creating tremendous socio-economic challenges. This requires the urgent for the development of effective therapies, and of tools for early diagnosis of the disease. However, our understanding of the molecular mechanisms underlying PD pathogenesis is still incomplete, hampering progress in those areas. In recent years, the progression made in genetics has considerably contributed to our knowledge, by identifying several novel PD genes. Furthermore, many cellular and animal models have proven their value to decipher pathways involved in PD development. In this review we highlight the value of the yeast Saccharomyces cerevisiae as a model for PD. This unicellular eukaryote has contributed to our understanding of the cellular mechanisms targeted by most important PD genes and offers an excellent tool for discovering novel players via powerful and informative high throughput screens that accelerate further validation in more complex models.
Collapse
Affiliation(s)
- Sandra Tenreiro
- CEDOC-Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Vanessa Franssens
- Department of Biology, Functional Biology, KU Leuven, 3001 Heverlee, Belgium
| | - Joris Winderickx
- Department of Biology, Functional Biology, KU Leuven, 3001 Heverlee, Belgium
| | - Tiago Fleming Outeiro
- CEDOC-Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal; Department of Neurodegeneration and Restorative Research, University Medical Center Goettingen, Goettingen, Germany.
| |
Collapse
|
16
|
Abstract
Multiple system atrophy (MSA) is an orphan, fatal, adult-onset neurodegenerative disorder of uncertain etiology that is clinically characterized by various combinations of parkinsonism, cerebellar, autonomic, and motor dysfunction. MSA is an α-synucleinopathy with specific glioneuronal degeneration involving striatonigral, olivopontocerebellar, and autonomic nervous systems but also other parts of the central and peripheral nervous systems. The major clinical variants correlate with the morphologic phenotypes of striatonigral degeneration (MSA-P) and olivopontocerebellar atrophy (MSA-C). While our knowledge of the molecular pathogenesis of this devastating disease is still incomplete, updated consensus criteria and combined fluid and imaging biomarkers have increased its diagnostic accuracy. The neuropathologic hallmark of this unique proteinopathy is the deposition of aberrant α-synuclein in both glia (mainly oligodendroglia) and neurons forming glial and neuronal cytoplasmic inclusions that cause cell dysfunction and demise. In addition, there is widespread demyelination, the pathogenesis of which is not fully understood. The pathogenesis of MSA is characterized by propagation of misfolded α-synuclein from neurons to oligodendroglia and cell-to-cell spreading in a "prion-like" manner, oxidative stress, proteasomal and mitochondrial dysfunction, dysregulation of myelin lipids, decreased neurotrophic factors, neuroinflammation, and energy failure. The combination of these mechanisms finally results in a system-specific pattern of neurodegeneration and a multisystem involvement that are specific for MSA. Despite several pharmacological approaches in MSA models, addressing these pathogenic mechanisms, no effective neuroprotective nor disease-modifying therapeutic strategies are currently available. Multidisciplinary research to elucidate the genetic and molecular background of the deleterious cycle of noxious processes, to develop reliable biomarkers and targets for effective treatment of this hitherto incurable disorder is urgently needed.
Collapse
|
17
|
Joseph S, Schulz JB, Stegmüller J. Mechanistic contributions of FBXO7 to Parkinson disease. J Neurochem 2017; 144:118-127. [DOI: 10.1111/jnc.14253] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/20/2017] [Accepted: 11/06/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Sabitha Joseph
- Department of Neurology; RWTH University Hospital; Aachen Germany
| | - Jörg Bernhard Schulz
- Department of Neurology; RWTH University Hospital; Aachen Germany
- Jülich Aachen Research Alliance (JARA) - JARA-Institute Molecular Neuroscience and Neuroimaging; FZ Jülich and RWTH University; Aachen Germany
| | | |
Collapse
|
18
|
Schneider SA, Alcalay RN. Neuropathology of genetic synucleinopathies with parkinsonism: Review of the literature. Mov Disord 2017; 32:1504-1523. [PMID: 29124790 PMCID: PMC5726430 DOI: 10.1002/mds.27193] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/18/2017] [Accepted: 09/13/2017] [Indexed: 12/27/2022] Open
Abstract
Clinical-pathological studies remain the gold-standard for the diagnosis of Parkinson's disease (PD). However, mounting data from genetic PD autopsies challenge the diagnosis of PD based on Lewy body pathology. Most of the confirmed genetic risks for PD show heterogenous neuropathology, even within kindreds, which may or may not include Lewy body pathology. We review the literature of genetic PD autopsies from cases with molecularly confirmed PD or parkinsonism and summarize main findings on SNCA (n = 25), Parkin (n = 20, 17 bi-allelic and 3 heterozygotes), PINK1 (n = 5, 1 bi-allelic and 4 heterozygotes), DJ-1 (n = 1), LRRK2 (n = 55), GBA (n = 10 Gaucher disease patients with parkinsonism), DNAJC13, GCH1, ATP13A2, PLA2G6 (n = 8 patients, 2 with PD), MPAN (n = 2), FBXO7, RAB39B, and ATXN2 (SCA2), as well as on 22q deletion syndrome (n = 3). Findings from autopsies of heterozygous mutation carriers of genes that are traditionally considered recessively inherited are also discussed. Lewy bodies may be present in syndromes clinically distinctive from PD (eg, MPAN-related neurodegeneration) and absent in patients with clinical PD syndrome (eg, LRRK2-PD or Parkin-PD). Therefore, the authors can conclude that the presence of Lewy bodies are not specific to the diagnosis of PD and that PD can be diagnosed even in the absence of Lewy body pathology. Interventions that reduce alpha-synuclein load may be more justified in SNCA-PD or GBA-PD than in other genetic forms of PD. The number of reported genetic PD autopsies remains small, and there are limited genotype-clinical-pathological-phenotype studies. Therefore, larger series of autopsies from genetic PD patients are required. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Susanne A Schneider
- Department of Neurology, Ludwig-Maximilians-University of München, Munich, Germany
| | - Roy N. Alcalay
- Department of Neurology, Columbia University Medical Center, New York, New York
| |
Collapse
|
19
|
Merzetti EM, Dolomount LA, Staveley BE. The FBXO7 homologue nutcracker and binding partner PI31 in Drosophila melanogaster models of Parkinson’s disease. Genome 2017; 60:46-54. [DOI: 10.1139/gen-2016-0087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Parkinsonian-pyramidal syndrome (PPS) is an early onset form of Parkinson’s disease (PD) that shows degeneration of the extrapyramidal region of the brain to result in a severe form of PD. The toxic protein build-up has been implicated in the onset of PPS. Protein removal is mediated by an intracellular proteasome complex: an E3 ubiquitin ligase, the targeting component, is essential for function. FBXO7 encodes the F-box component of the SCF E3 ubiquitin ligase linked to familial forms of PPS. The Drosophila melanogaster homologue nutcracker (ntc) and a binding partner, PI31, have been shown to be active in proteasome function. We show that altered expression of either ntc or PI31 in dopaminergic neurons leads to a decrease in longevity and locomotor ability, phenotypes both associated with models of PD. Furthermore, expression of ntc-RNAi in an established α-synuclein-dependent model of PD rescues the phenotypes of diminished longevity and locomotor control.
Collapse
Affiliation(s)
- Eric M. Merzetti
- Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Avenue, St. John’s, NL A1B 3X9, Canada
- Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Avenue, St. John’s, NL A1B 3X9, Canada
| | - Lindsay A. Dolomount
- Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Avenue, St. John’s, NL A1B 3X9, Canada
- Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Avenue, St. John’s, NL A1B 3X9, Canada
| | - Brian E. Staveley
- Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Avenue, St. John’s, NL A1B 3X9, Canada
- Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Avenue, St. John’s, NL A1B 3X9, Canada
| |
Collapse
|
20
|
Chen CM, Chen IC, Chen YL, Lin TH, Chen WL, Chao CY, Wu YR, Lu YT, Lee CY, Chien HC, Chen TS, Lee-Chen GJ, Lee CM. Medicinal herbs Oenanthe javanica (Blume) DC., Casuarina equisetifolia L. and Sorghum bicolor (L.) Moench protect human cells from MPP + damage via inducing FBXO7 expression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:1422-1433. [PMID: 27765362 DOI: 10.1016/j.phymed.2016.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 07/21/2016] [Accepted: 08/18/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND The F-box protein 7 (FBXO7) mutations have been identified in families with early-onset parkinsonism and pyramidal tract signs, and designated as PARK15. In addition, FBXO7 mutations were found in typical and young onset Parkinson's disease (PD). Evidence has also shown that FBXO7 plays an important role in the development of dopaminergic neurons and increased stability and overexpression of FBXO7 may be beneficial to PD. PURPOSE We screened extracts of medicinal herbs to enhance FBXO7 expression for neuroprotection in MPP+-treated cells. METHODS Promoter reporter assay in HEK-293 cells was used to examine the cis/trans elements controlling FBXO7 expression and to screen extracts of medicinal herbs enhancing FBXO7 expression. MTT assay was performed to assess cell viability of MPP+-treated HEK-293/SH-SY5Y cells. In addition, proteasome activity, mitochondrial membrane potential and FBXO7/TRAF2/GATA2 protein expression were evaluated. RESULTS We demonstrated that -202--57 region of the FBXO7 promoter is likely to contain sequences that are bound by positive trans protein factors to activate FBXO7 expression and GATA2 is the main trans protein factor enhancing FBXO7 expression. Extracts of medicinal herbs Oenanthe javanica (Blume) DC. (Umbelliferae), Casuarina equisetifolia L. (Casuarinaceae), and Sorghum bicolor (L.) Moench (Gramineae) improved cell viability of both MPP+-treated HEK-293 and SH-SY5Y cells, rescued proteasome activity in MPP+-treated HEK-293 cells, and restored mitochondrial membrane potential in MPP+-treated SH-SY5Y cells. These protection effects of herbal extracts are acting through enhancing FBXO7 and decreasing TRAF2 expression, which is probably mediated by GATA2 induction. CONCLUSION Collectively, our study provides new targets, FBXO7 and its regulator GATA2, for the development of potential treatments of PD.
Collapse
Affiliation(s)
- Chiung-Mei Chen
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taipei 10507, Taiwan
| | - I-Cheng Chen
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taipei 10507, Taiwan
| | - Ying-Lin Chen
- Department of Life Science, National Taiwan Normal University, 88 Ting-Chou Road, Section 4, Taipei 11677, Taiwan
| | - Te-Hsien Lin
- Department of Life Science, National Taiwan Normal University, 88 Ting-Chou Road, Section 4, Taipei 11677, Taiwan
| | - Wan-Ling Chen
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taipei 10507, Taiwan
| | - Chih-Ying Chao
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taipei 10507, Taiwan
| | - Yih-Ru Wu
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taipei 10507, Taiwan
| | - Yeah-Ting Lu
- Department of Life Science, National Taiwan Normal University, 88 Ting-Chou Road, Section 4, Taipei 11677, Taiwan
| | - Cheng-Yu Lee
- Center of Excellence for Drug Development, Industrial Technology Research Institute, Hsinchu 31040, Taiwan
| | - Hong-Chi Chien
- Center of Excellence for Drug Development, Industrial Technology Research Institute, Hsinchu 31040, Taiwan
| | - Ting-Shou Chen
- Center of Excellence for Diagnostic Products, Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, 88 Ting-Chou Road, Section 4, Taipei 11677, Taiwan.
| | - Chi-Mei Lee
- Department of Life Science, National Taiwan Normal University, 88 Ting-Chou Road, Section 4, Taipei 11677, Taiwan.
| |
Collapse
|
21
|
Zhou ZD, Sathiyamoorthy S, Angeles DC, Tan EK. Linking F-box protein 7 and parkin to neuronal degeneration in Parkinson's disease (PD). Mol Brain 2016; 9:41. [PMID: 27090516 PMCID: PMC4835861 DOI: 10.1186/s13041-016-0218-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/06/2016] [Indexed: 02/01/2023] Open
Abstract
Mutations of F-box protein 7 (FBXO7) and Parkin, two proteins in ubiquitin-proteasome system (UPS), are both implicated in pathogenesis of dopamine (DA) neuron degeneration in Parkinson's disease (PD). Parkin is a HECT/RING hybrid ligase that physically receives ubiquitin on its catalytic centre and passes ubiquitin onto its substrates, whereas FBXO7 is an adaptor protein in Skp-Cullin-F-box (SCF) SCF(FBXO7) ubiquitin E3 ligase complex to recognize substrates and mediate substrates ubiquitination by SCF(FBXO7) E3 ligase. Here, we discuss the overlapping pathophysiologic mechanisms and clinical features linking Parkin and FBXO7 with autosomal recessive PD. Both proteins play an important role in neuroprotective mitophagy to clear away impaired mitochondria. Parkin can be recruited to impaired mitochondria whereas cellular stress can promote FBXO7 mitochondrial translocation. PD-linked FBXO7 can recruit Parkin into damaged mitochondria and facilitate its aggregation. WT FBXO7, but not PD-linked FBXO7 mutants can rescue DA neuron degeneration in Parkin null Drosophila. A better understanding of the common pathophysiologic mechanisms of these two proteins could unravel specific pathways for targeted therapy in PD.
Collapse
Affiliation(s)
- Zhi Dong Zhou
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore. .,Signature Research Program in Neuroscience and Behavioural Disorders, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore, 169857, Singapore.
| | - Sushmitha Sathiyamoorthy
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Dario C Angeles
- Department of Neurology, Singapore General Hospital, Outram Road, Singapore, 169608, Singapore
| | - Eng King Tan
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore. .,Department of Neurology, Singapore General Hospital, Outram Road, Singapore, 169608, Singapore. .,Signature Research Program in Neuroscience and Behavioural Disorders, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore, 169857, Singapore.
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW The role of protein aggregates, such as Lewy body inclusions, in the molecular pathogenesis of Parkinson's disease has remained controversial and elusive. The protein α-synuclein is a major component of these inclusions but it can exist in many alternate conformations. Here we review advances in our understanding of the roles of Lewy pathology and α-synuclein in Parkinson's disease. RECENT FINDINGS Recent work has demonstrated that certain α-synuclein conformations are directly toxic to neurons and may also propagate Lewy pathology within the nervous system. Investigation into clinicopathological correlates in rare genetic forms of Parkinson's disease has revealed that Lewy pathology is associated with nonmotor features but may not contribute to motor symptoms in Parkinson's disease. SUMMARY These recent findings open up new avenues of investigation into the molecular pathogenesis of Parkinson's disease. Future work will need to identify the most toxic conformations of α-synuclein and define their relationship to Lewy pathology. This work will be necessary to be able to develop novel therapeutic strategies that target specific pathogenic forms of α-synuclein for disease modification in Parkinson's disease.
Collapse
|
23
|
Conedera S, Apaydin H, Li Y, Yoshino H, Ikeda A, Matsushima T, Funayama M, Nishioka K, Hattori N. FBXO7 mutations in Parkinson's disease and multiple system atrophy. Neurobiol Aging 2016; 40:192.e1-192.e5. [DOI: 10.1016/j.neurobiolaging.2016.01.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/07/2016] [Accepted: 01/07/2016] [Indexed: 12/24/2022]
|
24
|
Zhou ZD, Xie SP, Sathiyamoorthy S, Saw WT, Sing TY, Ng SH, Chua HPH, Tang AMY, Shaffra F, Li Z, Wang H, Ho PGH, Lai MKP, Angeles DC, Lim TM, Tan EK. F-box protein 7 mutations promote protein aggregation in mitochondria and inhibit mitophagy. Hum Mol Genet 2015; 24:6314-30. [PMID: 26310625 DOI: 10.1093/hmg/ddv340] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/17/2015] [Indexed: 11/14/2022] Open
Abstract
The mutations of F-box protein 7 (FBXO7) gene (T22M, R378G and R498X) are associated with a severe form of autosomal recessive juvenile-onset Parkinson's disease (PD) (PARK 15). Here we demonstrated that wild-type (WT) FBXO7 is a stress response protein and it can play both cytoprotective and neurotoxic roles. The WT FBXO7 protein is vital to cell mitophagy and can facilitate mitophagy to protect cells, whereas mutant FBXO7 inhibits mitophagy. Upon stress, the endogenous WT FBXO7 gets up-regulated, concentrates into mitochondria and forms FBXO7 aggregates in mitochondria. However, FBXO7 mutations aggravate deleterious FBXO7 aggregation in mitochondria. The FBXO7 aggregation and toxicity can be alleviated by Proline, glutathione (GSH) and coenzyme Q10, whereas deleterious FBXO7 aggregation in mitochondria can be aggravated by prohibitin 1 (PHB1), a mitochondrial protease inhibitor. The overexpression of WT FBXO7 could lead to FBXO7 protein aggregation and dopamine neuron degeneration in transgenic Drosophila heads. The elevated FBXO7 expression and aggregation were identified in human fibroblast cells from PD patients. FBXO7 can also form aggregates in brains of PD and Alzheimer's disease. Our study provides novel pathophysiologic insights and suggests that FBXO7 may be a potential therapeutic target in FBXO7-linked neuron degeneration in PD.
Collapse
Affiliation(s)
- Zhi Dong Zhou
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, Singapore, Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore, Singapore
| | - Shao Ping Xie
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, Singapore
| | | | - Wuan Ting Saw
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, Singapore
| | - Tan Ye Sing
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, Singapore
| | - Shin Hui Ng
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, Singapore
| | - Heidi Pek Hup Chua
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, Singapore
| | - Alyssa Mei Yan Tang
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, Singapore
| | - Fathima Shaffra
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, Singapore
| | - Zeng Li
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, Singapore
| | - Hongyan Wang
- Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore, Singapore
| | - Patrick Ghim Hoe Ho
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, Singapore
| | - Mitchell Kim Peng Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Dario C Angeles
- Department of Neurology, Singapore General Hospital, Outram Road, Singapore, Singapore and
| | - Tit Meng Lim
- Department of Biological Science, National University of Singapore, 14 Science Drive 4, Singapore, Singapore
| | - Eng-King Tan
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, Singapore, Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore, Singapore, Department of Neurology, Singapore General Hospital, Outram Road, Singapore, Singapore and
| |
Collapse
|
25
|
De Rosa P, Marini ES, Gelmetti V, Valente EM. Candidate genes for Parkinson disease: Lessons from pathogenesis. Clin Chim Acta 2015; 449:68-76. [PMID: 26048192 DOI: 10.1016/j.cca.2015.04.042] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 04/23/2015] [Indexed: 01/06/2023]
Abstract
Parkinson disease (PD) is a multifactorial neurodegenerative disease characterized by the progressive loss of specific neuronal populations and accumulation of Lewy bodies in the brain, leading to motor and non-motor symptoms. In a small subset of patients, PD is dominantly or recessively inherited, while a number of susceptibility genetic loci have been identified through genome wide association studies. The discovery of genes mutated in PD and functional studies on their protein products have provided new insights into the molecular events leading to neurodegeneration, suggesting that few interconnected molecular pathways may be deranged in all forms of PD, triggering neuronal loss. Here, we summarize the most relevant findings implicating the main PD-related proteins in biological processes such as mitochondrial dysfunction, misfolded protein damage, alteration of cellular clearance systems, abnormal calcium handling and altered inflammatory response, which represent key targets for neuroprotection.
Collapse
Affiliation(s)
- Priscilla De Rosa
- IRCCS Casa Sollievo della Sofferenza, CSS-Mendel Institute, San Giovanni Rotondo, Italy
| | - Elettra Sara Marini
- IRCCS Casa Sollievo della Sofferenza, CSS-Mendel Institute, San Giovanni Rotondo, Italy; Dept. of Biological and Environmental Sciences, University of Messina, Messina, Italy
| | - Vania Gelmetti
- IRCCS Casa Sollievo della Sofferenza, CSS-Mendel Institute, San Giovanni Rotondo, Italy
| | - Enza Maria Valente
- IRCCS Casa Sollievo della Sofferenza, CSS-Mendel Institute, San Giovanni Rotondo, Italy; Section of Neurosciences, Dept. of Medicine and Surgery, University of Salerno, Salerno, Italy.
| |
Collapse
|
26
|
Lohmann E, Coquel AS, Honoré A, Gurvit H, Hanagasi H, Emre M, Leutenegger AL, Drouet V, Sahbatou M, Guven G, Erginel-Unaltuna N, Deleuze JF, Lesage S, Brice A. A new F-box protein 7 gene mutation causing typical Parkinson's disease. Mov Disord 2015; 30:1130-3. [DOI: 10.1002/mds.26266] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/03/2015] [Accepted: 03/23/2015] [Indexed: 01/31/2023] Open
Affiliation(s)
- Ebba Lohmann
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology; Istanbul Faculty of Medicine, Istanbul University; Istanbul Turkey
- Department of Neurodegenerative Diseases; Hertie Institute for Clinical Brain Research; University of Tübingen, and DZNE, German Center for Neurodegenerative Diseases; Tübingen Germany
| | - Anne-Sophie Coquel
- Sorbonne Université, UPMC Univ Paris 06, UM 1127, ICM, Paris, France; Inserm; U 1127, ICM, Paris, France; Cnrs, UMR 7225, ICM, Paris, France; ICM, Paris; F-75013 Paris France
| | - Aurélie Honoré
- Sorbonne Université, UPMC Univ Paris 06, UM 1127, ICM, Paris, France; Inserm; U 1127, ICM, Paris, France; Cnrs, UMR 7225, ICM, Paris, France; ICM, Paris; F-75013 Paris France
| | - Hakan Gurvit
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology; Istanbul Faculty of Medicine, Istanbul University; Istanbul Turkey
| | - Hasmet Hanagasi
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology; Istanbul Faculty of Medicine, Istanbul University; Istanbul Turkey
| | - Murat Emre
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology; Istanbul Faculty of Medicine, Istanbul University; Istanbul Turkey
| | - Anne L. Leutenegger
- Inserm, U946, Paris, France; Université Paris Diderot; Institut Universitaire d'Hématologie; Paris France
| | - Valérie Drouet
- Sorbonne Université, UPMC Univ Paris 06, UM 1127, ICM, Paris, France; Inserm; U 1127, ICM, Paris, France; Cnrs, UMR 7225, ICM, Paris, France; ICM, Paris; F-75013 Paris France
| | - Mourad Sahbatou
- Fondation Jean Dausset, Centre d'Etude du Polymorphisme Humain (CEPH); Paris France
| | - Gamze Guven
- Institute for Experimental Medicine; Genetics Department, Istanbul University; Istanbul Turkey
| | - Nihan Erginel-Unaltuna
- Institute for Experimental Medicine; Genetics Department, Istanbul University; Istanbul Turkey
| | - Jean-Francois Deleuze
- Commissariat à l'Energie Atomique; Institut de Génomique, Centre National de Génotypage; Evry France
| | - Suzanne Lesage
- Sorbonne Université, UPMC Univ Paris 06, UM 1127, ICM, Paris, France; Inserm; U 1127, ICM, Paris, France; Cnrs, UMR 7225, ICM, Paris, France; ICM, Paris; F-75013 Paris France
| | - Alexis Brice
- Sorbonne Université, UPMC Univ Paris 06, UM 1127, ICM, Paris, France; Inserm; U 1127, ICM, Paris, France; Cnrs, UMR 7225, ICM, Paris, France; ICM, Paris; F-75013 Paris France
- AP-HP, Hôpital de la Salpêtrière; Département de Génétique et Cytogénétique; F-75013 Paris France
| |
Collapse
|
27
|
Oligodendroglia and Myelin in Neurodegenerative Diseases: More Than Just Bystanders? Mol Neurobiol 2015; 53:3046-3062. [PMID: 25966971 PMCID: PMC4902834 DOI: 10.1007/s12035-015-9205-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 04/29/2015] [Indexed: 12/01/2022]
Abstract
Oligodendrocytes, the myelinating cells of the central nervous system, mediate rapid action potential conduction and provide trophic support for axonal as well as neuronal maintenance. Their progenitor cell population is widely distributed in the adult brain and represents a permanent cellular reservoir for oligodendrocyte replacement and myelin plasticity. The recognition of oligodendrocytes, their progeny, and myelin as contributing factors for the pathogenesis and the progression of neurodegenerative disease has recently evolved shaping our understanding of these disorders. In the present review, we aim to highlight studies on oligodendrocytes and their progenitors in neurodegenerative diseases. We dissect oligodendroglial biology and illustrate evolutionary aspects in regard to their importance for neuronal functionality and maintenance of neuronal circuitries. After covering recent studies on oligodendroglia in different neurodegenerative diseases mainly in view of their function as myelinating cells, we focus on the alpha-synucleinopathy multiple system atrophy, a prototypical disorder with a well-defined oligodendroglial pathology.
Collapse
|
28
|
Yalcin-Cakmakli G, Olgiati S, Quadri M, Breedveld GJ, Cortelli P, Bonifati V, Elibol B. A new Turkish family with homozygous FBXO7 truncating mutation and juvenile atypical parkinsonism. Parkinsonism Relat Disord 2014; 20:1248-52. [DOI: 10.1016/j.parkreldis.2014.06.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/02/2014] [Accepted: 06/05/2014] [Indexed: 11/29/2022]
|
29
|
Abstract
In the past 15 years there has been substantial progress in our understanding of the genetics of Parkinson's disease (PD). Highly-penetrant mutations in different genes (SNCA, LRRK2, VPS35, Parkin, PINK1, and DJ-1) are known to cause rare monogenic forms of the disease. Furthermore, different variants with incomplete penetrance in the LRRK2 and the GBA gene are strong risk factors for PD, and are especially prevalent in some populations. Last, common variants of small effect size, modulating the risk for PD, have been identified by genome-wide association studies in more than 20 chromosomal loci. Here, I first outline the evolution of the research strategies to find PD-related genes, and then focus on recent advances in the field of the monogenic forms, including VPS35 mutations in autosomal dominant PD, and DNAJC6 and SYNJ1 mutations in recessive forms of juvenile parkinsonism. Additional genetic determinants of PD likely remain to be identified, as the currently known mutations and variants only explain a minor fraction of the disease burden. There is great expectation that the new DNA sequencing technologies (exome and whole-genome sequencing) will bring us closer to the full resolution of the genetic landscape of PD.
Collapse
Affiliation(s)
- Vincenzo Bonifati
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
30
|
Zhang H, Duan C, Yang H. Defective autophagy in Parkinson's disease: lessons from genetics. Mol Neurobiol 2014; 51:89-104. [PMID: 24990317 DOI: 10.1007/s12035-014-8787-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 06/09/2014] [Indexed: 01/09/2023]
Abstract
Parkinson's disease (PD) is the most prevalent neurodegenerative movement disorder. Genetic studies over the past two decades have greatly advanced our understanding of the etiological basis of PD and elucidated pathways leading to neuronal degeneration. Recent studies have suggested that abnormal autophagy, a well conserved homeostatic process for protein and organelle turnover, may contribute to neurodegeneration in PD. Moreover, many of the proteins related to both autosomal dominant and autosomal recessive PD, such as α-synuclein, PINK1, Parkin, LRRK2, DJ-1, GBA, and ATPA13A2, are also involved in the regulation of autophagy. We propose that reduced autophagy enhances the accumulation of α-synuclein, other pathogenic proteins, and dysfunctional mitochondria in PD, leading to oxidative stress and neuronal death.
Collapse
Affiliation(s)
- H Zhang
- Center of Parkinson's Disease Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Department of Neurobiology Capital Medical University, Beijing, 100069, China
| | | | | |
Collapse
|
31
|
Multiple system atrophy: a prototypical synucleinopathy for disease-modifying therapeutic strategies. Neurobiol Dis 2014; 67:133-9. [PMID: 24727096 DOI: 10.1016/j.nbd.2014.03.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 03/24/2014] [Accepted: 03/31/2014] [Indexed: 02/08/2023] Open
Abstract
Despite active fundamental, translational and clinical research, no therapeutic intervention has yet shown convincing effects on disease progression in Parkinson's disease (PD) patients. Indeed, several disease-modification trials failed or proved to be inconclusive due to lack of consistency between clinical rating scales and putative surrogate markers of disease progression, or confounding symptomatic effects of the tested compound. Multiple system atrophy (MSA) is a rapidly progressing orphan disorder leading to severe motor disability within a few years. Together with PD and dementia with Lewy bodies (DLB), MSA belongs to the synucleinopathies, a group of neurodegenerative disorders characterized by the abnormal accumulation of alpha-synuclein. Crucial milestones have been reached for successfully conducting clinical intervention trials in a large number of patients with MSA. In this personal view, we will review evidence, and discuss why MSA could prove the most relevant clinical model for assessing treatments that target mechanisms operating in all synucleinopathies.
Collapse
|
32
|
Nelson DE, Randle SJ, Laman H. Beyond ubiquitination: the atypical functions of Fbxo7 and other F-box proteins. Open Biol 2013; 3:130131. [PMID: 24107298 PMCID: PMC3814724 DOI: 10.1098/rsob.130131] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
F-box proteins (FBPs) are substrate-recruiting subunits of Skp1-cullin1-FBP (SCF)-type E3 ubiquitin ligases. To date, 69 FBPs have been identified in humans, but ubiquitinated substrates have only been identified for a few, with the majority of FBPs remaining ‘orphans’. In recent years, a growing body of work has identified non-canonical, SCF-independent roles for about 12% of the human FBPs. These atypical FBPs affect processes as diverse as transcription, cell cycle regulation, mitochondrial dynamics and intracellular trafficking. Here, we provide a general review of FBPs, with a particular emphasis on these expanded functions. We review Fbxo7 as an exemplar of this special group as it has well-defined roles in both SCF and non-SCF complexes. We review its function as a cell cycle regulator, via its ability to stabilize p27 protein and Cdk6 complexes, and as a proteasome regulator, owing to its high affinity binding to PI31. We also highlight recent advances in our understanding of Fbxo7 function in Parkinson's disease, where it functions in the regulation of mitophagy with PINK1 and Parkin. We postulate that a few extraordinary FBPs act as platforms that seamlessly segue their canonical and non-canonical functions to integrate different cellular pathways and link their regulation.
Collapse
Affiliation(s)
- David E Nelson
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | | | | |
Collapse
|