1
|
Sullo FG, Garinet S, Blons H, Taieb J, Laurent-Puig P, Gallois C. Molecular features and clinical actionability of gene fusions in colorectal cancer. Crit Rev Oncol Hematol 2025; 208:104656. [PMID: 39922396 DOI: 10.1016/j.critrevonc.2025.104656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer death and accounts for 10 % of cancer diagnoses worldwide. Despite the advancements achieved over the latest decades, CRC treatments are still based on conventional chemotherapy whose efficacy is limited by acquired resistance and unfavorable toxicity profile, making the search for novel actionable targets a priority. In this context, gene fusions are emerging as promising -albeit very rare - new markers because of their recurrence across different tumor types and their potential actionability. The aim of this review is to investigate the role of gene fusions in CRC by focusing on pathogenesis, screening strategies as well as their clinical implications.
Collapse
Affiliation(s)
- Francesco Giulio Sullo
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Institut du Cancer Paris CARPEM, Paris, France; Institut du Cancer Paris CARPEM, AP-HP.Centre, Department of Gastroenterology and Digestive Oncology, Hôpital Européen Georges Pompidou, Paris, France
| | - Simon Garinet
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Institut du Cancer Paris CARPEM, Paris, France; APHP.Centre, Department of Biology, Hôpital Européen Georges Pompidou, Paris, France
| | - Hélène Blons
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Institut du Cancer Paris CARPEM, Paris, France; APHP.Centre, Department of Biology, Hôpital Européen Georges Pompidou, Paris, France
| | - Julien Taieb
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Institut du Cancer Paris CARPEM, Paris, France; Institut du Cancer Paris CARPEM, AP-HP.Centre, Department of Gastroenterology and Digestive Oncology, Hôpital Européen Georges Pompidou, Paris, France
| | - Pierre Laurent-Puig
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Institut du Cancer Paris CARPEM, Paris, France; APHP.Centre, Department of Biology, Hôpital Européen Georges Pompidou, Paris, France
| | - Claire Gallois
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Institut du Cancer Paris CARPEM, Paris, France; Institut du Cancer Paris CARPEM, AP-HP.Centre, Department of Gastroenterology and Digestive Oncology, Hôpital Européen Georges Pompidou, Paris, France.
| |
Collapse
|
2
|
Jafari P, Forrest M, Segal J, Wang P, Tjota MY. Pan-Cancer Molecular Biomarkers: Practical Considerations for the Surgical Pathologist. Mod Pathol 2025; 38:100752. [PMID: 40058460 DOI: 10.1016/j.modpat.2025.100752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025]
Abstract
Traditional anatomic pathologic classification of cancer is based on tissue of origin and morphologic and immunohistochemical characterization of the malignant cells. With the technological improvements of massively parallel or next-generation sequencing, oncogenic drivers that are shared across different tumor types are increasingly being identified and used as pan-cancer biomarkers. This approach is reflected in the growing list of Food and Drug Administration-approved tumor-agnostic therapies, including pembrolizumab in the setting of microsatellite instability and high tumor mutational burden, larotrectinib and entrectinib for solid tumors with NTRK fusions, and combined dabrafenib-trametinib for BRAF V600E-mutated neoplasms. Several other biomarkers are currently under investigation, including fibroblast growth factor receptor (FGFR), RET, and ROS1 fusions; ERBB2 amplification; and mutations in the AKT1/2/3, NF1, RAS pathway and (mitogen-activated protein kinase (MAPK) pathway. As molecular assays are increasingly incorporated into routine tumor workup, the emergence of additional pan-cancer biomarkers is likely to be a matter more of "when" than "if." In this review, we first explore some of the conceptual and technical considerations at the intersection of surgical and molecular pathology, followed by a brief overview of both established and emerging molecular pan-cancer biomarkers and their diagnostic and clinical applications.
Collapse
Affiliation(s)
- Pari Jafari
- Department of Pathology, The University of Chicago, Chicago, Illinois
| | - Megan Forrest
- Department of Pathology, The University of Chicago, Chicago, Illinois
| | - Jeremy Segal
- Department of Pathology, The University of Chicago, Chicago, Illinois
| | - Peng Wang
- Department of Pathology, The University of Chicago, Chicago, Illinois
| | | |
Collapse
|
3
|
Lasota J, Kaczorowski M, Chłopek M, Miłek-Krupa J, Szczepaniak M, Ylaya K, Chodyna M, Iżycka-Świeszewska E, Scherping A, Czapiewski P, Dziuba I, Kato Y, Hałoń A, Kowalik A, Miettinen M. An immunohistochemical and molecular genetic study of 60 colorectal carcinoma brain metastases in pursuit of predictive biomarkers for cancer therapy. Hum Pathol 2025; 155:105717. [PMID: 39824298 DOI: 10.1016/j.humpath.2025.105717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
Colorectal carcinoma brain metastases (n = 60) were studied using next-generation sequencing and immunohistochemistry. RAS and BRAF mutations were detected in 58.2% and 7.3% of cases, respectively. Patients with RAS- and BRAF-mutant tumors could potentially benefit from the treatment with inhibitors. TP53 mutations were detected in 69.1% of metastases. Moreover, altered p53 expression was seen in 91.2% of cases. APC mutations were present in 41.8% of tumors. Diffuse nuclear accumulation of β-catenin was seen in 10.2% of metastases, although only 1 CTNNB1 mutant was identified. Nevertheless, targeting p53 and Wnt/β-catenin pathways may have potential therapeutic implications. Casein kinase 1α1 expression indicating susceptibility to protein kinase inhibitors, was seen in 95% metastases including 10 with strong immunoreactivity. The immune checkpoint marker CD276, a promising target for immunotherapy, was present on tumor cells in 50.8% of metastases and on stromal cells in almost all cases. PRAME, another immunotherapy target, was expressed in 21.7% of tumors. HER2 membrane immunostaining detected in 13.3% of cases implicated potential treatment with HER2 inhibitors. Expression of SLFN11, a predictor of response to DNA-damaging chemotherapies, and a biomarker of sensitivity to PARP inhibitors was seen in 8.3% of tumors. In 6.7% of metastases loss or partial loss of MTAP expression suggested sensitivity to PRMT5 inhibitors. CD44v5 expressed in 35% of cases indicated potential therapeutic utility of anti-CD44v5 monoclonal antibody treatment. Identification of predictive biomarkers through genomic profiling and proteomic analyses is a crucial step toward individually tailored therapeutic regimens for patients with colorectal carcinoma brain metastases.
Collapse
Affiliation(s)
- Jerzy Lasota
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA.
| | - Maciej Kaczorowski
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA; Department of Clinical and Experimental Pathology, Wrocław Medical University, Wrocław, Poland
| | - Małgorzata Chłopek
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA; Department of Molecular Diagnostics, Holycross Cancer Center, Kielce, Poland
| | - Justyna Miłek-Krupa
- Department of Molecular Diagnostics, Holycross Cancer Center, Kielce, Poland
| | | | - Kris Ylaya
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Miłosz Chodyna
- Department of Pathology and Neuropathology, Medical University of Gdansk, Gdansk, Poland
| | - Ewa Iżycka-Świeszewska
- Department of Pathology and Neuropathology, Medical University of Gdansk, Gdansk, Poland
| | - Anna Scherping
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Piotr Czapiewski
- Department of Pathology, Staedtisches Klinikum Dessau, Brandenburg Medical School Theodor Fontane, Dessau, Germany; Department of Pathology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Ireneusz Dziuba
- Department of Pathology, Faculty of Medicine, Academy of Silesia, Katowice, Poland
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Agnieszka Hałoń
- Department of Clinical and Experimental Pathology, Wrocław Medical University, Wrocław, Poland
| | - Artur Kowalik
- Department of Molecular Diagnostics, Holycross Cancer Center, Kielce, Poland; Division of Medical Biology, Institute of Biology Jan Kochanowski University, Kielce, Poland
| | - Markku Miettinen
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
4
|
Kaczorowski M, Ylaya K, Chłopek M, Lasota J, Miettinen M. Expression of POU2F3 Transcription Factor and POU2AF2, POU2F3 Coactivator, in Tuft Cell-like Carcinoma and Other Tumors. Am J Surg Pathol 2025; 49:62-72. [PMID: 39319626 DOI: 10.1097/pas.0000000000002313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Epithelial chemosensory cells in hollow organs, also known as tuft cells, were implicated in tumorigenesis, including a tuft cell-like small cell lung carcinoma. Expression of the POU2F3 transcription factor is a marker of tuft cell lineage. However, tuft cell development, differentiation, and proliferation are controlled by the expression of the complex formed by POU2F3 and POU2AF2 or POU2AF3 transcriptional coactivators. A cohort of epithelial (n=6064) and mesenchymal/neuroectodermal (n=2730) tumors was screened for POU2F3 expression by immunohistochemistry. Variable immunoreactivity ranging from diffuse to scattered positive cells was found in ∼12.4% of epithelial and 4.6% of mesenchymal/neuroectodermal tumors. Cases with predominantly diffuse or patchy POU2F3 positivity representing various types of malignant tumors (n=43) were selected for further study, including POU2AF2 immunohistochemistry. Thirteen of 15 tumors with neuroendocrine differentiation originating from the lung, colon, head and neck, skin, and bladder revealed diffuse POU2F3 positivity. Most of those tumors (n=9) co-expressed POU2AF2, usually extensively. Seven squamous and basal cell carcinomas from the oral cavity, skin, lung, and thymus with diffuse POU2F3 immunostaining except one, lacked POU2AF2 expression. Other variably POU2F3-positive carcinomas (n=13) from the colon, pancreas, liver, kidney, testis, endometrium, ovary, and breast lacked POU2AF2 immunoreactivity. All POU2F3-positive mesenchymal and neuroectodermal tumors (n=8), including synovial sarcoma, solitary fibrous tumor, glioblastoma, Wilms tumor, and melanoma were POU2AF2-negative. POU2F3 expression is a highly sensitive but nonspecific indicator of tuft cell differentiation. Co-expression of POU2F3 and POU2AF2 appears to be a more specific marker, although it may not pinpoint tumors driven by the POU2F3-POU2AF3 complex.
Collapse
Affiliation(s)
- Maciej Kaczorowski
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, Wrocław, Poland
| | - Kris Ylaya
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD
| | | | - Jerzy Lasota
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD
| | - Markku Miettinen
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD
| |
Collapse
|
5
|
Zeng S, Jiang K, Ge J, Tang M, Wen Y, Ma X, Liu H, Xiong X. NTRK fusion promotes tumor migration and invasion through epithelial-mesenchymal transition and closely interacts with ECM1 and NOVA1. BMC Cancer 2024; 24:1502. [PMID: 39639242 PMCID: PMC11619257 DOI: 10.1186/s12885-024-13271-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND The NTRK fusion gene is a rare cancer driver and a typical representative "diamond mutation". Its unique role in tumor progression is highly important for the clinical diagnosis and treatment of patients with tumors. We searched for NTRK fusion-positive patients in our hospital. As of August 2022, a total of 8 patients were affected. We discovered that NTRK fusion was associated with enhanced tumor invasion and migration ability. Previous reports also support this finding, but its underlying mechanism has not been elucidated. METHODS We undertook a comprehensive exploration of the correlations between NTRK fusions and tumor invasion as well as migration by analysing clinical data, performing bioinformatics analysis via public databases, and conducting in vitro cell experiments. RESULTS We ascertained that within the thyroid cancer (THCA) dataset and the pancancer dataset, ECM1 and NOVA1 were coexpressed with NTRKs. Additionally, they demonstrated a significant association with the activity of the epithelial‒mesenchymal transition (EMT) pathway. Furthermore, these genes are overexpressed in various cancers and are associated with advanced clinical stage and increased aggressiveness. Our in vitro study revealed that larolutinib potentially inhibited the invasion and metastasis ability of NTRK-fused cells. Interestingly, contrary to previous findings, the repression of ECM1 increased the migration and invasion ability of NTRK-fused tumor cells. CONCLUSIONS NTRK fusion tumors present heightened migratory and invasive potential in clinical settings. Further experiments confirmed the significant inhibitory effects of TRK inhibitors on the migration and invasion abilities of these cells. There is a complex relationship between ECM1, NOVA1 and NTRK fusion; however, further research is needed to determine whether NTRK fusion promotes tumor metastasis through these two genes.
Collapse
MESH Headings
- Humans
- Epithelial-Mesenchymal Transition/genetics
- Cell Movement/genetics
- Neoplasm Invasiveness/genetics
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Receptor, trkA/genetics
- Receptor, trkA/metabolism
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Extracellular Matrix Proteins/genetics
- Extracellular Matrix Proteins/metabolism
- Female
- Cell Line, Tumor
- Male
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/pathology
- Thyroid Neoplasms/metabolism
- Middle Aged
- Receptor, trkC/genetics
- Receptor, trkC/metabolism
- Gene Expression Regulation, Neoplastic
- Receptor, trkB/genetics
- Receptor, trkB/metabolism
- Neuro-Oncological Ventral Antigen
Collapse
Affiliation(s)
- Siqing Zeng
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- Hunan Key Laboratory of TCM GanXiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
- Project Funded By The Leading National Joint Discipline Of Chinese And Western Medicines To The Chinese Medicine Department, Xiangya Hospital, CSU, Changsha, China
| | - Ke Jiang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- Hunan Key Laboratory of TCM GanXiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
- Project Funded By The Leading National Joint Discipline Of Chinese And Western Medicines To The Chinese Medicine Department, Xiangya Hospital, CSU, Changsha, China
| | - Jie Ge
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- Project Funded By The Leading National Joint Discipline Of Chinese And Western Medicines To The Chinese Medicine Department, Xiangya Hospital, CSU, Changsha, China
| | - Mimi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Yuqi Wen
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- Hunan Key Laboratory of TCM GanXiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
- Project Funded By The Leading National Joint Discipline Of Chinese And Western Medicines To The Chinese Medicine Department, Xiangya Hospital, CSU, Changsha, China
| | - Xiaoting Ma
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- Hunan Key Laboratory of TCM GanXiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
- Project Funded By The Leading National Joint Discipline Of Chinese And Western Medicines To The Chinese Medicine Department, Xiangya Hospital, CSU, Changsha, China
| | - Heli Liu
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.
- Project Funded By The Leading National Joint Discipline Of Chinese And Western Medicines To The Chinese Medicine Department, Xiangya Hospital, CSU, Changsha, China.
| | - Xingui Xiong
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.
- NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.
- Hunan Key Laboratory of TCM GanXiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
- Project Funded By The Leading National Joint Discipline Of Chinese And Western Medicines To The Chinese Medicine Department, Xiangya Hospital, CSU, Changsha, China.
| |
Collapse
|
6
|
Duta-Ion SG, Juganaru IR, Hotinceanu IA, Dan A, Burtavel LM, Coman MC, Focsa IO, Zaruha AG, Codreanu PC, Bohiltea LC, Radoi VE. Redefining Therapeutic Approaches in Colorectal Cancer: Targeting Molecular Pathways and Overcoming Resistance. Int J Mol Sci 2024; 25:12507. [PMID: 39684219 DOI: 10.3390/ijms252312507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Colorectal cancer (CRC) arises through a combination of genetic and epigenetic alterations that affect key pathways involved in tumor growth and progression. This review examines the major molecular pathways driving CRC, including Chromosomal Instability (CIN), Microsatellite Instability (MSI), and the CpG Island Methylator Phenotype (CIMP). Key mutations in genes such as APC, KRAS, NRAS, BRAF, and TP53 activate signaling pathways like Wnt, EGFR, and PI3K/AKT, contributing to tumorigenesis and influencing responses to targeted therapies. Resistance mechanisms, including mutations that bypass drug action, remain challenging in CRC treatment. This review highlights the role of molecular profiling in guiding the use of targeted therapies such as tyrosine kinase inhibitors and immune checkpoint inhibitors. Novel combination treatments are also discussed as strategies to improve outcomes and overcome resistance. Understanding these molecular mechanisms is critical to advancing personalized treatment approaches in CRC and improving patient prognosis.
Collapse
Affiliation(s)
- Simona Gabriela Duta-Ion
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Ioana Ruxandra Juganaru
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Iulian Andrei Hotinceanu
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Andra Dan
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Livia Malina Burtavel
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Madalin Codrut Coman
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Ina Ofelia Focsa
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Andra Giorgiana Zaruha
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Patricia Christina Codreanu
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Laurentiu Camil Bohiltea
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- "Alessandrescu-Rusescu" National Institute for Maternal and Child Health, 20382 Bucharest, Romania
| | - Viorica Elena Radoi
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- "Alessandrescu-Rusescu" National Institute for Maternal and Child Health, 20382 Bucharest, Romania
| |
Collapse
|
7
|
Chen A, Li S, Gui J, Zhou H, Zhu L, Mi Y. Mechanisms of tropomyosin 3 in the development of malignant tumors. Heliyon 2024; 10:e35723. [PMID: 39170461 PMCID: PMC11336884 DOI: 10.1016/j.heliyon.2024.e35723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Tropomyosin (TPM) is an important regulatory protein that binds to actin in fine myofilaments, playing a crucial role in the regulation of muscle contraction. TPM3, as one of four tropomyosin genes, is notably prevalent in eukaryotic cells. Traditionally, abnormal gene expression of TPM3 has been exclusively associated with myopathy. However, recent years have witnessed a surge in studies highlighting the close correlation between abnormal expression of TPM3 and the onset, progression, metastasis, and prognosis of various malignant tumors. In light of this, investigating the mechanisms underlying the pathogenetic role of TPM3 holds significant promise for early diagnosis and more effective treatment strategies. This article aims to provide an insightful review of the structural characteristics of TPM3 and its intricate role in the occurrence and development of malignant tumors.
Collapse
Affiliation(s)
- Anjie Chen
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
- Wuxi School of Medicine, Jiangnan University, 1800 Lihudadao, Wuxi, 214122, Jiangsu Province, China
| | - Sixin Li
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
- Wuxi School of Medicine, Jiangnan University, 1800 Lihudadao, Wuxi, 214122, Jiangsu Province, China
| | - Jiandong Gui
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
- Wuxi School of Medicine, Jiangnan University, 1800 Lihudadao, Wuxi, 214122, Jiangsu Province, China
| | - Hangsheng Zhou
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
- Wuxi School of Medicine, Jiangnan University, 1800 Lihudadao, Wuxi, 214122, Jiangsu Province, China
| | - Lijie Zhu
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
| | - Yuanyuan Mi
- Department of Urology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi, 214122, Jiangsu Province, China
| |
Collapse
|
8
|
Lasota J, Thompson LDR, Chłopek M, Kowalik A, Miettinen M. Unusual PEComa With PRCC :: TFE3 Fusion Mimicking Sinonasal Tract Melanoma. Appl Immunohistochem Mol Morphol 2024; 32:322-325. [PMID: 38975712 DOI: 10.1097/pai.0000000000001211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND We report a nasal cavity unusual perivascular epithelioid cell tumor (PEComa) mimicking mucosal melanoma. METHODS Immunohistochemistry was performed using BenchMark Ultra and panel of antibodies. The Ion Torrent platform and Ion AmpliSeq cancer hotspot panel were utilized for DNA genotyping. Target-specific RNA libraries for the detection of fusion transcripts were constructed using Archer Universal RNA Reagent Kit v2 and Archer FusionPlex Solid Tumor panel and sequenced on the MiSeqDx instrument. RESULTS The tumor, diagnosed in 46-year-old female, was composed of spindle cells, and lacked pigmentation. Immunohistochemically, it showed a patchy HMB-45 positivity. Other melanocytic markers (S100 protein, Melan-A, SOX10) were negative. The tumor cells were weakly positive for KIT (CD117) while negative for smooth muscle actin, pancytokeratin cocktail (AE1/AE3), and synaptophysin. Diagnosis of primary sinonasal tract mucosal melanoma was favored. Additional molecular studies detected PRCC :: TFE3 fusion as the sole genetic change, and suggested the diagnosis of unusual PEComa. Previously, TFE3 fusions were reported in a subset of PEComas but not in melanomas, while PRCC involvement has only been documented once in an ocular PEComa. Immunohistochemistry revealed strong nuclear TFE3 expression concordant with the molecular findings. CONCLUSIONS This report emphasis the importance of molecular testing in the differential diagnosis between PEComa and melanoma, especially when the tumor arises in a site typical of melanoma but showing an unusual morphology and immunophenotype. The detection of TFE3 fusion transcripts suggested the diagnosis of SNT PEComa, although it cannot be excluded that this and similar tumors represent a distinct diagnostic category.
Collapse
Affiliation(s)
- Jerzy Lasota
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD
| | | | - Małgorzata Chłopek
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD
- Department of Molecular Diagnostics, Holycross Cancer Center
| | - Artur Kowalik
- Department of Molecular Diagnostics, Holycross Cancer Center
- Division of Medical Biology, Institute of Biology Jan Kochanowski University, Kielce, Poland
| | - Markku Miettinen
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD
| |
Collapse
|
9
|
Zhang W, Schmitz AA, Kallionpää RE, Perälä M, Pitkänen N, Tukiainen M, Alanne E, Jöhrens K, Schulze-Rath R, Farahmand B, Zong J. Neurotrophic tyrosine receptor kinase gene fusions in adult and pediatric patients with solid tumors: a clinicogenomic biobank and record linkage study of expression frequency and patient characteristics from Finland. Acta Oncol 2024; 63:542-551. [PMID: 38967220 PMCID: PMC11332464 DOI: 10.2340/1651-226x.2024.26452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/14/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Neurotrophic tyrosine receptor kinase (NTRK) gene fusions are oncogenic drivers. Using the Auria Biobank in Finland, we aimed to identify and characterize patients with these gene fusions, and describe their clinical and tumor characteristics, treatments received, and outcomes. MATERIAL AND METHODS We evaluated pediatrics with any solid tumor type and adults with colorectal cancer (CRC), non-small cell lung cancer (NSCLC), sarcoma, or salivary gland cancer. We determined tropomyosin receptor kinase (TRK) protein expression by pan-TRK immunohistochemistry (IHC) staining of tumor samples from the Auria Biobank, scored by a certified pathologist. NTRK gene fusion was confirmed by next generation sequencing (NGS). All 2,059 patients were followed-up starting 1 year before their cancer diagnosis. RESULTS Frequency of NTRK gene fusion tumors was 3.1% (4/127) in pediatrics, 0.7% (8/1,151) for CRC, 0.3% (1/288) for NSCLC, 0.9% (1/114) for salivary gland cancer, and 0% (0/379) for sarcoma. Among pediatrics there was one case each of fibrosarcoma (TPM3::NTRK1), Ewing's sarcoma (LPPR1::NTRK2), primitive neuroectodermal tumor (DAB2IP::NTRK2), and papillary thyroid carcinoma (RAD51B::NTRK3). Among CRC patients, six harbored tumors with NTRK1 fusions (three fused with TPM3), one harbored a NTRK3::GABRG1 fusion, and the other a NTRK2::FXN/LPPR1 fusion. Microsatellite instability was higher in CRC patients with NTRK gene fusion tumors versus wild-type tumors (50.0% vs. 4.4%). Other detected fusions were SGCZ::NTRK3 (NSCLC) and ETV6::NTRK3 (salivary gland cancer). Four patients (three CRC, one NSCLC) received chemotherapy; one patient (with CRC) received radiotherapy. CONCLUSION NTRK gene fusions are rare in adult CRC, NSCLC, salivary tumors, sarcoma, and pediatric solid tumors.
Collapse
Affiliation(s)
| | | | - Roosa E Kallionpää
- Auria Biobank, University of Turku and Turku University Hospital, Turku, Finland
| | - Merja Perälä
- Auria Biobank, University of Turku and Turku University Hospital, Turku, Finland
| | - Niina Pitkänen
- Auria Biobank, University of Turku and Turku University Hospital, Turku, Finland
| | - Mikko Tukiainen
- Auria Biobank, University of Turku and Turku University Hospital, Turku, Finland
| | - Erika Alanne
- Department of Oncology and Radiotherapy, Turku University Hospital, Turku, Finland; Western Finland Cancer Centre, Turku, Finland
| | - Korinna Jöhrens
- Dresden University Hospital, Technical University Dresden, Dresden, Germany
| | | | | | | |
Collapse
|
10
|
Sun M, Chen J, Xue Y, Deng Y, Van Mater D, Hiemcke-Jiwa LS, Wu P, Fang Y. Poor outcome in congenital mesoblastic nephroma with TPM3::NTRK1 fusion: a case report from multi-disciplinary treatment to molecular tumor board. Transl Pediatr 2024; 13:976-986. [PMID: 38984028 PMCID: PMC11228910 DOI: 10.21037/tp-24-126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/24/2024] [Indexed: 07/11/2024] Open
Abstract
Background Congenital mesoblastic nephroma (CMN) is a rare renal tumor with good prognosis in children; however, cellular CMN is a special subtype with poor prognosis. The ETV6 fusion gene has been found in some cellular CMNs, whereas CMNs with TPM3::NTRK1 fusion gene have not been reported. This study aims to share the progression and treatment of a case of CMNs with TPM3::NTRK1 fusion gene, in order to provide experience for the diagnosis and treatment of such specific diseases. Case Description We report a case of CMN with TPM3::NTRK1 fusion gene and a 3-year course of disease that originated during the fetal period. The child experienced rapid tumor progression 22 months after birth, followed by tumor recurrence 3 months after complete resection of CMN. Although traditional chemotherapy could not prevent the tumor progression. The tropomyosin receptor kinase (TRK) inhibitor larotrectinib resulted in significant inhibitory effects on metastatic lesions in the lungs, liver, and peritoneum. However, the patient ultimately died as the tumor became resistant to larotrectinib. Conclusions CMN, is a rare pediatric renal tumor that warrant prompt surgical management. A watchful waiting approach may allow for aggressive growth of metastatic disease, as seen in this case of cellular CMN with TPM3::NTRK1 fusion gene, TRK inhibitors can play significant roles in the treatment of CMN with TPM3::NTRK1 fusion gene, but we still need to pay attention to the phenomenon of drug resistance to larotrectinib caused by site mutations of TRKA.
Collapse
Affiliation(s)
- Mengjiao Sun
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ji Chen
- Department of General Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yao Xue
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yongji Deng
- Department of Urology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - David Van Mater
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Laura S Hiemcke-Jiwa
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peng Wu
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yongjun Fang
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Zheng E, Włodarczyk M, Węgiel A, Osielczak A, Możdżan M, Biskup L, Grochowska A, Wołyniak M, Gajewski D, Porc M, Maryńczak K, Dziki Ł. Navigating through novelties concerning mCRC treatment-the role of immunotherapy, chemotherapy, and targeted therapy in mCRC. Front Surg 2024; 11:1398289. [PMID: 38948479 PMCID: PMC11211389 DOI: 10.3389/fsurg.2024.1398289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/29/2024] [Indexed: 07/02/2024] Open
Abstract
Over the course of nearly six decades since the inception of initial trials involving 5-FU in the treatment of mCRC (metastatic colorectal cancer), our progressive comprehension of the pathophysiology, genetics, and surgical techniques related to mCRC has paved the way for the introduction of novel therapeutic modalities. These advancements not only have augmented the overall survival but have also positively impacted the quality of life (QoL) for affected individuals. Despite the remarkable progress made in the last two decades in the development of chemotherapy, immunotherapy, and target therapies, mCRC remains an incurable disease, with a 5-year survival rate of 14%. In this comprehensive review, our primary goal is to present an overview of mCRC treatment methods following the latest guidelines provided by the National Comprehensive Cancer Network (NCCN), the American Society of Clinical Oncology (ASCO), and the American Society of Colon and Rectal Surgeons (ASCRS). Emphasis has been placed on outlining treatment approaches encompassing chemotherapy, immunotherapy, targeted therapy, and surgery's role in managing mCRC. Furthermore, our review delves into prospective avenues for developing new therapies, offering a glimpse into the future of alternative pathways that hold potential for advancing the field.
Collapse
Affiliation(s)
- Edward Zheng
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Marcin Włodarczyk
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Andrzej Węgiel
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Aleksandra Osielczak
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Maria Możdżan
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Laura Biskup
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Agata Grochowska
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Maria Wołyniak
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Dominik Gajewski
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Mateusz Porc
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Kasper Maryńczak
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Łukasz Dziki
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
12
|
Karakas C, Giampoli EJ, Love T, Hicks DG, Velez MJ. Validation and interpretation of Pan-TRK immunohistochemistry: a practical approach and challenges with interpretation. Diagn Pathol 2024; 19:10. [PMID: 38200576 PMCID: PMC10777531 DOI: 10.1186/s13000-023-01426-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024] Open
Abstract
OBJECTIVES Actionable, solid tumor activating neurotrophic receptor tyrosine kinase (NTRK) fusions are best detected via nucleic acid-based assays, while Pan-TRK immunohistochemistry (IHC) serves as a reasonable screening modality. We describe a practical and cost-effective approach to validate pan-TRK and discuss challenges that may be encountered. METHODS Pan-TRK Clone EPR17341 was validated in accordance with the 2014 consensus statements set forth by the College of American Pathologists. Confirmation of IHC results were guided by the European Society of Medical Oncology recommendations for standard methods to detect NTRK fusions. RESULTS Within 36 samples, ETV6-NTRK3 (n = 8) and TPM4-NTRK3 (n = 1) fusions were confirmed. ETV6-NTRK3 fusion positive cases revealed cytoplasmic and nuclear staining. A TPM4-NTRK3 fusion positive high grade malignant peripheral nerve sheath tumor revealed diffuse cytoplasmic staining. A high grade ovarian serous carcinoma revealed focal punctate staining and revealed a non-actionable NTRK1 truncation at intron 2. Diffuse cytoplasmic staining was observed in a case of fusion-negative polymorphous adenocarcinoma. Wild-type expression of TRK in pulmonary meningothelial-like nodules was discovered following a false-positive IHC interpretation. CONCLUSION Pan-TRK IHC shows some utility as a diagnostic and surrogate marker for NTRK screening however, physiologic or non-specific expression may lead to false-positive results.
Collapse
Affiliation(s)
- Cansu Karakas
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Ellen J Giampoli
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Tanzy Love
- Department of Biostatistics and Computation Biology, University of Rochester, Rochester, NY, USA
| | - David G Hicks
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Moises J Velez
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
13
|
Baranov E, Nowak JA. Pathologic Evaluation of Therapeutic Biomarkers in Colorectal Adenocarcinoma. Surg Pathol Clin 2023; 16:635-650. [PMID: 37863556 DOI: 10.1016/j.path.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Molecular testing is an essential component of the pathologic evaluation of colorectal carcinoma providing diagnostic, prognostic, and predictive therapeutic information. Mismatch repair status evaluation is required for all tumors. Advanced and metastatic tumors also require determination of tumor mutational burden, KRAS, NRAS, and BRAF mutation status, ERBB2 amplification status, and NTRK and RET gene rearrangement status to guide therapy. Multiple assays, including immunohistochemistry, microsatellite instability testing, MLH1 promoter methylation, and next-generation sequencing, are typically needed. Pathologists must be aware of these requirements to optimally triage tissue. Advances in colorectal cancer molecular diagnostics will continue to drive refinements in colorectal cancer personalized therapy.
Collapse
Affiliation(s)
- Esther Baranov
- Department of Pathology, Brigham & Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Jonathan A Nowak
- Department of Pathology, Brigham & Women's Hospital, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Wu S, Liu Y, Shi X, Zhou W, Zeng X. Elaboration of NTRK-rearranged colorectal cancer: Integration of immunoreactivity pattern, cytogenetic identity, and rearrangement variant. Dig Liver Dis 2023; 55:1757-1764. [PMID: 37142453 DOI: 10.1016/j.dld.2023.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/06/2023]
Abstract
Fused information from protein status, DNA breakage, and transcripts are still limited because of the low rate of activated-NTRK in colorectal cancer (CRC). In total, 104 archived CRC tissue samples with dMMR were analyzed using immunohistochemistry (IHC), polymerase chain reaction (PCR), and pyrosequencing to mine the NTRK-enriched CRC group, and then subjected to NTRK fusion detection using pan-tyrosine kinase IHC, fluorescence in situ hybridization (FISH), and DNA-/RNA-based next generation sequencing (NGS) assays. Of the 15 NTRK-enriched CRCs, eight NTRK fusions (53.3%, 8/15), including two TPM3(e7)-NTRK1(e10), one TPM3(e5)-NTRK1(e11), one LMNA(e10)-NTRK1(e10), two EML4(e2)-NTRK3(e14), and two ETV6(e5)-NTRK3(e15) fusions, were identified. There was no immunoreactivity for ETV6-NTRK3 fusion. In addition to cytoplasmic staining found in six specimens, membrane positive (TPM3-NTRK1 fusion) and nuclear positive (LMNA-NTRK1 fusion) were also observed in two of them. Atypical FISH-positive types were observed in four cases. Unlike IHC, NTRK-rearranged tumors appeared homogeneous on FISH. ETV6-NTRK3 may be missed in pan-TRK IHC screening for CRC. Regarding break-apart FISH, NTRK detection is difficult because of the diversity of signal patterns. Further research is warranted to identify the characteristics of NTRK-fusion CRCs.
Collapse
Affiliation(s)
- Shafei Wu
- Department of Pathology, Peking Union Medical College Hospital, Molecular Pathology Research Center, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing 100730,China
| | - Yuanyuan Liu
- Department of Pathology, Peking Union Medical College Hospital, Molecular Pathology Research Center, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing 100730,China
| | - Xiaohua Shi
- Department of Pathology, Peking Union Medical College Hospital, Molecular Pathology Research Center, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing 100730,China
| | - Weixun Zhou
- Department of Pathology, Peking Union Medical College Hospital, Molecular Pathology Research Center, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing 100730,China
| | - Xuan Zeng
- Department of Pathology, Peking Union Medical College Hospital, Molecular Pathology Research Center, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing 100730,China.
| |
Collapse
|
15
|
Okano S, Yamashiro Y, Onagi H, Sasa K, Hayashi T, Takahashi M, Sugimoto K, Sakamoto K, Yao T, Saito T. Tyrosine kinase alterations in colorectal cancer with emphasis on the distinct clinicopathological characteristics. Histopathology 2023; 83:733-742. [PMID: 37503542 DOI: 10.1111/his.15015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/31/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023]
Abstract
AIMS Tyrosine kinase (TK) alterations, such as anaplastic lymphoma kinase (ALK) fusion, neurotrophic tyrosine receptor kinase (NTRK) fusion, c-ros oncogene 1 (ROS1) fusion and mesenchymal-epithelial transition factor (MET) exon 14 skipping, have been reported in colorectal cancers (CRC). We have previously reported CRCs with NTRK fusion among our cohort. However, their clinicopathological features have not been fully elucidated. METHODS AND RESULTS Tissue microarray (TMA)-based immunohistochemistry (IHC) was performed on 951 CRC lesions from 944 patients. IHC was evaluated as positive or negative for ALK and ROS1 and 0 to 3+ for c-MET. For ALK and ROS1 IHC-positive cases, RNA-based imbalanced gene expression assays, Archer FusionPlex assays and reverse transcription-polymerase chain reaction (RT-PCR) followed by Sanger sequencing were performed. For c-MET IHC 3+ cases, RT-PCR followed by Sanger sequencing were performed. ALK IHC was positive in three cases (0.2%) and all showed imbalanced ALK gene expression. The following ALK fusions were confirmed: EML4 (exon 21)::ALK (exon 20), EML4 (exon 6)::ALK (exon 19) and HMBOX1 (exon 6)::ALK (exon 20). Two showed microsatellite instability-high/mismatch repair (MMR)-deficient, and all were located in the right colon. ROS1 IHC was positive in one case; however, imbalanced expression and ROS1 fusion was negative. Forty-two cases (4.4%) showed c-MET IHC3+. MET exon 14 skipping was confirmed in nine cases. All cases were microsatellite stable/MMR-proficient, and eight were located in the left colon and rectum. CONCLUSIONS CRCs with these TK alterations had distinct clinicopathological features. Together with our previous study, 15 cases (1.6%) harboured targetable TK alterations (three NTRK fusion, three ALK fusion, nine MET exon 14 skipping).
Collapse
Affiliation(s)
- Soh Okano
- Department of Human Pathology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yuya Yamashiro
- Department of Human Pathology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Hiroko Onagi
- Department of Human Pathology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Keita Sasa
- Department of Human Pathology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Department of Medicine for Orthopedics and Motor Organ, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Takuo Hayashi
- Department of Human Pathology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Makoto Takahashi
- Department of Coloproctological Surgery, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Kiichi Sugimoto
- Department of Coloproctological Surgery, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Kazuhiro Sakamoto
- Department of Coloproctological Surgery, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Takashi Yao
- Department of Human Pathology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Tsuyoshi Saito
- Department of Human Pathology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
16
|
Nguyen MA, Colebatch AJ, Van Beek D, Tierney G, Gupta R, Cooper WA. NTRK fusions in solid tumours: what every pathologist needs to know. Pathology 2023:S0031-3025(23)00128-9. [PMID: 37330338 DOI: 10.1016/j.pathol.2023.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 06/19/2023]
Abstract
Fusions involving the Neurotrophic tropomyosin receptor kinase (NTRK) gene family (NTRK1, NTRK2 and NTRK3) are targetable oncogenic alterations that are found in a diverse range of tumours. There is an increasing demand to identify tumours which harbour these fusions to enable treatment with selective tyrosine kinase inhibitors such as larotrectinib and entrectinib. NTRK fusions occur in a wide range of tumours including rare tumours such as infantile fibrosarcoma and secretory carcinomas of the salivary gland and breast, as well as at low frequencies in more common tumours including melanoma, colorectal, thyroid and lung carcinomas. Identifying NTRK fusions is a challenging task given the different genetic mechanisms underlying NTRK fusions, their varying frequency across different tumour types, complicated by other factors such as tissue availability, optimal detection methods, accessibility and costs of testing methods. Pathologists play a key role in navigating through these complexities by determining optimal approaches to NTRK testing which has important therapeutic and prognostic implications. This review provides an overview of tumours harbouring NTRK fusions, the importance of identifying these fusions, available testing methods including advantages and limitations, and generalised and tumour-specific approaches to testing.
Collapse
Affiliation(s)
- Minh Anh Nguyen
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Andrew J Colebatch
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Diana Van Beek
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Geraldine Tierney
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Ruta Gupta
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Wendy A Cooper
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; School of Medicine, Western Sydney University, Sydney, NSW, Australia.
| |
Collapse
|
17
|
Voutsadakis IA. KRAS mutated colorectal cancers with or without PIK3CA mutations: Clinical and molecular profiles inform current and future therapeutics. Crit Rev Oncol Hematol 2023; 186:103987. [PMID: 37059275 DOI: 10.1016/j.critrevonc.2023.103987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/13/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND Colorectal cancer is one of the most prevalent malignancies and its molecular pathogenesis has been intensely investigated for several decades. As a result, great progress has been made and targeted therapies have been introduced in the clinic. This paper examines colorectal cancers based on two of the most common molecular alterations, KRAS and PIK3CA mutations as a basis for therapeutic targeting. METHODS Two publicly available genomic series with clinical data were evaluated for prevalence and characteristics of cases with and without KRAS and PIK3CA mutations and the literature was reviewed for relevant information on the therapeutic implication of these alterations as well as other coincident alterations to derive therapeutic individualized options of targeted treatments. RESULTS Colorectal cancers without KRAS and PIK3CA mutations represent the most prevalent group (48% to 58% of patients) and present therapeutic targeted opportunities with BRAF inhibitors and immune checkpoint inhibitors in the subsets with BRAF mutations (15% to 22%) and Microsatellite Instability (MSI, 14% to 16%), respectively. The second most prevalent sub-set, with KRAS mutations and PIK3CA wild type, representing 20% to 25% of patients, has currently few targeted options, besides specific KRAS G12C inhibitors for the small percentage of cases (9%-10%) that bear this mutation. Cancers with KRAS wild type and PIK3CA mutations are observed in 12% to 14% of colorectal cancer patients, harbor the highest percentage of cases with BRAF mutations and Microsatellite Instability (MSI), and are candidates for the respective targeted therapies. New targeted therapies in development, such as ATR inhibitors could be effective in cases with ATM mutations and ARID1A mutations that are also most prevalent in this sub-group (14% to 22% and 30%, respectively). KRAS and PIK3CA double mutant cancers have also few targeted options currently and could benefit from combination therapies with PI3K inhibitors and new KRAS inhibitors in development. CONCLUSION The backbone of common KRAS and PIK3CA mutations is a rational frame for development of therapeutic algorithms in colorectal cancer and can help guide new drug therapies development. In addition, the prevalence of different molecular groups presented here may help with planning of combination clinical trials by providing estimations of sub-sets with more than one alteration.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Algoma District Cancer Program, Sault Area Hospital, Sault Ste. Marie, Ontario, Canada, and Section of Internal Medicine, Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, Ontario, Canada.
| |
Collapse
|
18
|
Diffuse pulmonary meningotheliomatosis with pan-TRK expression by immunohistochemistry: a novel finding and potential pitfall. Diagn Pathol 2023; 18:22. [PMID: 36782261 PMCID: PMC9926707 DOI: 10.1186/s13000-023-01292-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 01/13/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Pulmonary meningothelial-like nodules (PMNs) are benign proliferations of unclear clinical significance. They are mainly asymptomatic lesions that are usually discovered during the pathologic evaluation of resected pulmonary specimens or following post-mortem examination. Diffuse pulmonary meningotheliomatosis (DPM), which presents as bilateral multiple PMNs throughout the lungs, has been described less frequently. DPMs are benign lesions associated with both neoplastic and non-neoplastic pulmonary conditions. CASE PRESENTATION We report the case of a 59-year-old female patient who presented with a history of cough. Computerized tomography (CT) imaging revealed multiple subcentimeter bilateral pulmonary nodules. transbronchial biopsies were obtained which revealed foci of nodular interstitial proliferations composed of epithelioid to spindled cells in a vague whorled pattern. Immunohistochemical stains were diffusely positive for EMA and progesterone receptor. Furthermore, pan-TRK exhibited strong and diffuse membranous expression in the lesional cells. INSM1 was negative for expression. RNA-based next-generation sequencing for the detection of NTRK fusions was performed and was negative for gene rearrangements involving NTRK1, NTRK2, and NTRK3. CONCLUSION Here, we report a rare case of DPM and report pan-TRK expression in PMNs which has not been described. We provide a brief review of the literature and provide insight into the potential physiologic nature of PMNs. Lastly, we emphasize the recognition of pan-TRK immunoexpression in PMNs to avoid potential diagnostic errors.
Collapse
|
19
|
Wang L, Saeedi BJ, Mahdi Z, Krasinskas A, Robinson B. Analysis of KRAS Mutations in Gastrointestinal Tract Adenocarcinomas Reveals Site-Specific Mutational Signatures. Mod Pathol 2023; 36:100014. [PMID: 36853786 DOI: 10.1016/j.modpat.2022.100014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 01/11/2023]
Abstract
Adenocarcinomas of the luminal gastrointestinal tract and pancreatobiliary system often show histologic and immunohistochemical overlap, making delineation of the primary site in a metastatic setting difficult. Previous studies have shown that site-specific missense mutations in the oncogene KRAS could be used in conjunction with immunohistochemistry to differentiate metastatic pancreatic adenocarcinoma from primary lung adenocarcinoma. In this study, we assessed the patterning of KRAS mutations across sites in the gastrointestinal and pancreatobiliary system. By integrating sequencing data from 44 separate studies, we assessed 2523 KRAS mutations in 7382 distinct cases of adenocarcinoma, including those from the esophagus, stomach, ampulla, biliary system, pancreas, and colon. We found that gastrointestinal adenocarcinomas demonstrate a marked regional variation in the frequency of KRAS mutations, with the most frequent KRAS mutation observed in pancreatic adenocarcinoma (up to 94.9%), whereas the frequency is much lower in adenocarcinomas from the esophagus and stomach (5.4% and 8.7%, respectively). Intriguingly, the pattern of missense mutations showed site specificity as well, with c.35G>T (p.G12V) and c.34G>C (p.G12R) mutations enriched in pancreatic primaries and codon 13 and non-codon 12/13 alterations enriched in gastric primaries (specificity of 98.9% and 93.2%, respectively, with a negative predictive value of 93.6% and 92.93% against pancreatic adenocarcinoma). Furthermore, we found that esophageal and gastric adenocarcinomas show an enrichment in transitional mutations, whereas other sites showed an equal distribution. Importantly, the examination of a validation cohort from our own institution revealed similar trends. These findings indicate that, in addition to providing therapeutic and diagnostic information, KRAS mutational analysis may also prove useful in delineating the site of origin in gastrointestinal adenocarcinomas that share morphologic and immunohistochemical overlap. Moreover, transitional mutations are more frequent in esophageal and gastric adenocarcinomas, reiterating the role of chronic inflammation in the pathogenesis of foregut adenocarcinomas.
Collapse
Affiliation(s)
- Linyuan Wang
- Department of Pathology and Laboratory Medicine University, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bejan J Saeedi
- Department of Medicine, University School of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Zaid Mahdi
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Alyssa Krasinskas
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Brian Robinson
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia.
| |
Collapse
|
20
|
Akhoundova D, Hussung S, Sivakumar S, Töpfer A, Rechsteiner M, Kahraman A, Arnold F, Angst F, Britschgi C, Zoche M, Moch H, Weber A, Sokol E, Fritsch RM. ROS1 genomic rearrangements are rare actionable drivers in microsatellite stable colorectal cancer. Int J Cancer 2022; 151:2161-2171. [PMID: 36053834 PMCID: PMC9804412 DOI: 10.1002/ijc.34257] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/05/2022] [Accepted: 07/14/2022] [Indexed: 01/05/2023]
Abstract
c-Ros oncogene 1, receptor tyrosine kinase (ROS1) genomic rearrangements have been reported previously in rare cases of colorectal cancer (CRC), yet little is known about the frequency, molecular characteristics, and therapeutic vulnerabilities of ROS1-driven CRC. We analyzed a clinical dataset of 40 589 patients with CRC for ROS1 genomic rearrangements and their associated genomic characteristics (Foundation Medicine, Inc [FMI]). We moreover report the disease course and treatment response of an index patient with ROS1-rearranged metastatic CRC. ROS1 genomic rearrangements were identified in 34 (0.08%) CRC samples. GOPC-ROS1 was the most common ROS1 fusion identified (11 samples), followed by TTC28-ROS1 (3 samples). Four novel 5' gene partners of ROS1 were identified (MCM9, SRPK1, EPHA6, P4HA1). Contrary to previous reports on fusion-positive CRC, ROS1-rearrangements were found exclusively in microsatellite stable (MSS) CRCs. KRAS mutations were significantly less abundant in ROS1-rearranged vs ROS1 wild type cases. The index patient presented with chemotherapy-refractory metastatic right-sided colon cancer harboring GOPC-ROS1. Molecularly targeted treatment with crizotinib induced a rapid and sustained partial response. After 15 months on crizotinib disseminated tumor progression occurred and KRAS Q61H emerged in tissue and liquid biopsies. ROS1 rearrangements define a small, yet therapeutically actionable molecular subgroup of MSS CRC. In summary, the high prevalence of GOPC-ROS1 and noncanonical ROS1 fusions pose diagnostic challenges. We advocate NGS-based comprehensive molecular profiling of MSS CRCs that are wild type for RAS and BRAF and patient enrollment in precision trials.
Collapse
Affiliation(s)
- Dilara Akhoundova
- Department of Medical Oncology and HematologyUniversity Hospital of ZurichZurichSwitzerland
| | - Saskia Hussung
- Department of Medical Oncology and HematologyUniversity Hospital of ZurichZurichSwitzerland
| | - Smruthy Sivakumar
- Cancer Genomics ResearchFoundation Medicine, IncCambridgeMassachusettsUSA
| | - Antonia Töpfer
- Department of Pathology and Molecular PathologyUniversity Hospital of ZurichZurichSwitzerland
| | - Markus Rechsteiner
- Department of Pathology and Molecular PathologyUniversity Hospital of ZurichZurichSwitzerland
| | - Abdullah Kahraman
- Department of Pathology and Molecular PathologyUniversity Hospital of ZurichZurichSwitzerland
| | - Fabian Arnold
- Department of Pathology and Molecular PathologyUniversity Hospital of ZurichZurichSwitzerland
| | - Florian Angst
- Institute of Diagnostic and Interventional RadiologyUniversity Hospital of ZurichZurichSwitzerland
| | - Christian Britschgi
- Department of Medical Oncology and HematologyUniversity Hospital of ZurichZurichSwitzerland
| | - Martin Zoche
- Department of Pathology and Molecular PathologyUniversity Hospital of ZurichZurichSwitzerland
| | - Holger Moch
- Department of Pathology and Molecular PathologyUniversity Hospital of ZurichZurichSwitzerland
| | - Achim Weber
- Department of Pathology and Molecular PathologyUniversity Hospital of ZurichZurichSwitzerland
| | - Ethan Sokol
- Cancer Genomics ResearchFoundation Medicine, IncCambridgeMassachusettsUSA
| | - Ralph M. Fritsch
- Department of Medical Oncology and HematologyUniversity Hospital of ZurichZurichSwitzerland
| |
Collapse
|
21
|
Lazzari C, Pecciarini L, Doglioni C, Pedica F, Gajate AMS, Bulotta A, Gregorc V, Cangi MG. Case report: EML4::NTRK3 gene fusion in a patient with metastatic lung adenocarcinoma successfully treated with entrectinib. Front Oncol 2022; 12:1038774. [PMID: 36419889 PMCID: PMC9676932 DOI: 10.3389/fonc.2022.1038774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/07/2022] [Indexed: 01/03/2024] Open
Abstract
Rearrangements involving the neurotrophin kinase (NTRK) genes NTRK1, NTRK2 and NTRK3 with different fusion partners have been observed in both adult and pediatric solid tumors. Larotrectinib and entrectinib have been the first tumor-agnostic compounds approved for the treatment of NTRK fusion-positive tumors. Here, we report the first case of a female patient with a diagnosis of stage IV lung adenocarcinoma harboring the EML4::NTRK3 gene fusion, and successfully treated with entrectinib.
Collapse
Affiliation(s)
- Chiara Lazzari
- Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia (FPO)-IRCCS, Turin, Italy
| | - Lorenza Pecciarini
- Department of Pathology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Claudio Doglioni
- Department of Pathology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Pedica
- Department of Pathology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Alessandra Bulotta
- Department of Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Vanesa Gregorc
- Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia (FPO)-IRCCS, Turin, Italy
| | - Maria Giulia Cangi
- Department of Pathology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
22
|
Kaczorowski M, Chłopek M, Kruczak A, Ryś J, Lasota J, Miettinen M. PRAME Expression in Cancer. A Systematic Immunohistochemical Study of >5800 Epithelial and Nonepithelial Tumors. Am J Surg Pathol 2022; 46:1467-1476. [PMID: 35973038 PMCID: PMC9588667 DOI: 10.1097/pas.0000000000001944] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Preferentially expressed antigen in melanoma (PRAME) is considered a useful marker in the differential diagnosis between malignant melanoma and its melanocytic mimics. Recently PRAME expression was documented in nonmelanocytic tumors, but much of the data are based on mRNA studies. This investigation evaluated PRAME expression in the spectrum of normal tissues and >5800 human tumors using immunohistochemistry and EP461 monoclonal antibody. In normal tissues, PRAME was expressed in the testis and proliferative endometrium. In tumors, PRAME was variably expressed in malignancies of different lineages. Among epithelial tumors, >50% of PRAME-positive lesions were found among endometrial carcinomas (82%), uterine serous carcinomas (82%), uterine carcinosarcomas (60%), ovarian clear cell carcinomas (90%), ovarian serous carcinomas (63%), adenoid cystic carcinomas (81%), seminomas (78%), thymic carcinomas (75%), and basal cell carcinomas (62%). In mesenchymal and neuroectodermal malignancies, PRAME was frequently expressed in synovial sarcoma (71%), myxoid liposarcoma (76%), neuroblastoma (61%) and metastatic melanoma (87%). Also, PRAME was consistently expressed in 4 melanomas that lacked all melanoma markers including S100 protein and SOX10 but harbored typical for melanoma BRAF or NRAS driver mutations. However, strong and diffuse PRAME immunoreactivity was seen in many types of nonmelanocytic poorly differentiated carcinomas and sarcomas. Based on this study, PRAME is a relatively unspecific immunohistochemical marker, which limits its use in diagnostic surgical pathology. However, immunohistochemistry is a reliable and unexpensive method useful in detecting PRAME-positive malignancies for potential immunotherapy.
Collapse
Affiliation(s)
- Maciej Kaczorowski
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, USA
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, Wrocław, Poland
| | - Małgorzata Chłopek
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, USA
| | - Anna Kruczak
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Cracow Branch, Poland
| | - Janusz Ryś
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Cracow Branch, Poland
| | - Jerzy Lasota
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, USA
| | - Markku Miettinen
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
23
|
Zhang Z, Pang J, Chen L, Chen J, Li J, Liu H, Wang J, Wu H, Liang Z. Pan-tropomyosin receptor kinase immunohistochemistry is a feasible routine screening strategy for NTRK fusions in mismatch repair-deficient colorectal carcinomas. Hum Pathol 2022; 129:21-31. [PMID: 35977594 DOI: 10.1016/j.humpath.2022.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 12/14/2022]
Abstract
We have previously revealed the high enrichment of NTRK fusion in mismatch repair deficient (dMMR) CRCs. Optimized diagnostic approaches are urgently needed to identify dMMR CRCs that could benefit from TRK inhibitor therapy. A consecutive cohort of 240 surgically resected dMMR CRCs from 2015 to 2021 was collected for pan-TRK immunohistochemistry (IHC) using pan-TRK clone EPR17341 (VENTANA). We analyzed the sensitivity and specificity of pan-TRK IHC with sequential DNA/RNA-based Next Generation Sequencing (NGS) as the reference method and further explored IHC staining patterns and their correlation with fusion variants in dMMR CRCs. Of 240 dMMR CRCs, 15 (6.2%) were stained positive for pan-TRK IHC, and the sensitivity and specificity were both 100%. Five staining patterns were revealed, which correlated with fusion variants. Diffuse and strong positivity in membrane and cytoplasm were detected in all 6 cases with TPM3-NTRK1 fusions (6/15, 40%). Weak granular cytoplasmic staining, including diffuse or focal positivity, was found in 6 NTRK3 fusions (3 ETV6-NTRK3 and 3 EML4-NTRK3) (6/15, 40%). Diffuse and strong nuclear positivity was noticed in 2 LMNA-NTRK1 fusions (2/15, 13.3%). Intense granular cytoplasmic staining was observed in the only case with PLEKHA6-NTRK1 fusion (1/15, 6.7%). Interestingly, pan-TRK positivity was observed in one case with precursor lesions in both precancerous and cancerous regions, whereas MLH1 loss was restricted to the cancerous region. In summary, an optimized multi-step algorithm using pan-TRK IHC as a screening method was proposed to identify CRC patients harboring NTRK fusions.
Collapse
Affiliation(s)
- Zijuan Zhang
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Diseases, Molecular Pathology Research Centre, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Junyi Pang
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Diseases, Molecular Pathology Research Centre, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Longyun Chen
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Diseases, Molecular Pathology Research Centre, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jingci Chen
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Diseases, Molecular Pathology Research Centre, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Junjie Li
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Diseases, Molecular Pathology Research Centre, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Hangqi Liu
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Diseases, Molecular Pathology Research Centre, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jing Wang
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Diseases, Molecular Pathology Research Centre, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Huanwen Wu
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Diseases, Molecular Pathology Research Centre, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Zhiyong Liang
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Diseases, Molecular Pathology Research Centre, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
24
|
Yu IS, Aubin F, Goodwin R, Loree JM, Mather C, Sheffield BS, Snow S, Gill S. Tumor Biomarker Testing for Metastatic Colorectal Cancer: a Canadian Consensus Practice Guideline. Ther Adv Med Oncol 2022; 14:17588359221111705. [PMID: 35898967 PMCID: PMC9310231 DOI: 10.1177/17588359221111705] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
The systemic therapy management of metastatic colorectal cancer (mCRC) has evolved from primarily cytotoxic chemotherapies to now include targeted agents given alone or in combination with chemotherapy, and immune checkpoint inhibitors. A better understanding of the pathogenesis and molecular drivers of colorectal cancer not only aided the development of novel targeted therapies but led to the discovery of tumor mutations which act as predictive biomarkers for therapeutic response. Mutational status of the KRAS gene became the first genomic biomarker to be established as part of standard of care molecular testing, where KRAS mutations within exons 2, 3, and 4 predict a lack of response to anti- epidermal growth factor receptor therapies. Since then, several other biomarkers have become relevant to inform mCRC treatment; however, there are no published Canadian guidelines which reflect the current standards for biomarker testing. This guideline was developed by a pan-Canadian advisory group to provide contemporary, evidence-based recommendations on the minimum acceptable standards for biomarker testing in mCRC, and to describe additional biomarkers for consideration.
Collapse
Affiliation(s)
- Irene S. Yu
- Department of Medical Oncology, BC Cancer
Surrey, Surrey, BC, Canada
| | - Francine Aubin
- Division of Hematology and Oncology, Department
of Medicine, Centre Hospitalier de l’Université de Montréal, Montreal, QC,
Canada
| | - Rachel Goodwin
- Division of Medical Oncology, Department of
Medicine, Ottawa Hospital Cancer Centre, Ottawa, ON, Canada
| | - Jonathan M. Loree
- Department of Medical Oncology, BC Cancer
Agency - Vancouver Centre, Vancouver, BC, Canada
| | - Cheryl Mather
- Department of Laboratory Medicine and
Pathology, University of Alberta, Edmonton, AB, Canada
| | - Brandon S. Sheffield
- Division of Advanced Diagnostics, William Osler
Health System, Brampton, ON, Canada
| | - Stephanie Snow
- Department of Medicine, Queen Elizabeth II
Health Sciences Centre, Halifax, NS, Canada
| | - Sharlene Gill
- Department of Medical Oncology, BC Cancer
Agency – Vancouver Centre, 600 W 10th Ave, Vancouver, BC, V5Z 4E6,
Canada
| |
Collapse
|
25
|
Manea CA, Badiu DC, Ploscaru IC, Zgura A, Bacinschi X, Smarandache CG, Serban D, Popescu CG, Grigorean VT, Botnarciuc V. A review of NTRK fusions in cancer. Ann Med Surg (Lond) 2022; 79:103893. [PMID: 35860155 PMCID: PMC9289232 DOI: 10.1016/j.amsu.2022.103893] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 11/25/2022] Open
|
26
|
Bang H, Lee MS, Sung M, Choi J, An S, Kim SH, Lee SE, Choi YL. NTRK Fusions in 1113 Solid Tumors in a Single Institution. Diagnostics (Basel) 2022; 12:diagnostics12061450. [PMID: 35741260 PMCID: PMC9222038 DOI: 10.3390/diagnostics12061450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022] Open
Abstract
Most NTRK fusions occur at very low frequencies in various common cancers. Recent recommendations on NTRK testing recommend immunohistochemistry (IHC) as the initial test for tumor types with a low frequency of NTRK fusions. This study investigated the accuracy of an IHC assay to detect NTRK fusions and characterize the clinicopathological and molecular features of NTRK-rearranged tumors. This retrospective study was conducted on 1113 solid tumor samples known to harbor no oncogenic driver alterations, including 510 non-small cell lung cancers (NSCLC), 503 colorectal cancers (CRC), and 79 inflammatory myofibroblastic tumors (IMT). Additionally, 21 ALK expression-positive cases were included. TRK expression was evaluated using a pan-Trk IHC assay, and positive cases were validated using NGS. TRK expression was observed in three NSCLCs (0.6%), six CRCs (1.2%), and six IMTs (6%). NTRK fusions were finally detected in two NSCLCs (0.4%), six CRCs (1.2%), and one IMT (1%). In NSCLC and CRC, the majority of NTRK fusions were readily discernible due to diffuse moderate-to-strong cytoplasmic staining on pan-Trk IHC. In IMT, focal weak nuclear staining indicated the presence of NTRK fusion. Therefore, the utility of pan-Trk IHC should be assessed considering that the difference in performance depends on tumor type.
Collapse
Affiliation(s)
- Heejin Bang
- Department of Pathology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05030, Korea;
| | - Mi-Sook Lee
- Laboratory of Theranotics and Molecular Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (M.-S.L.); (M.S.); (J.C.); (S.A.)
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
| | - Minjung Sung
- Laboratory of Theranotics and Molecular Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (M.-S.L.); (M.S.); (J.C.); (S.A.)
| | - Juyoung Choi
- Laboratory of Theranotics and Molecular Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (M.-S.L.); (M.S.); (J.C.); (S.A.)
| | - Sungbin An
- Laboratory of Theranotics and Molecular Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (M.-S.L.); (M.S.); (J.C.); (S.A.)
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
| | - Seok-Hyung Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
| | - Seung Eun Lee
- Department of Pathology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05030, Korea;
- Correspondence: (S.E.L.); (Y.-L.C.); Tel.: +82-2-2030-5644 (S.E.L.); +82-2-3410-2800 (Y.-L.C.); Fax: +82-2-2030-5629 (S.E.L.); +82-2-3410-6396 (Y.-L.C.)
| | - Yoon-La Choi
- Laboratory of Theranotics and Molecular Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (M.-S.L.); (M.S.); (J.C.); (S.A.)
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
- Correspondence: (S.E.L.); (Y.-L.C.); Tel.: +82-2-2030-5644 (S.E.L.); +82-2-3410-2800 (Y.-L.C.); Fax: +82-2-2030-5629 (S.E.L.); +82-2-3410-6396 (Y.-L.C.)
| |
Collapse
|
27
|
Marchetti A, Ferro B, Pasciuto MP, Zampacorta C, Buttitta F, D'Angelo E. NTRK gene fusions in solid tumors: agnostic relevance, prevalence and diagnostic strategies. Pathologica 2022; 114:199-216. [PMID: 35775706 PMCID: PMC9248239 DOI: 10.32074/1591-951x-787] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 01/23/2022] [Indexed: 11/30/2022] Open
Abstract
A number of innovative drugs, developed for precision medicine, have shown impressive activity in neoplastic patients with rare molecular targets, independently from the site and type of tumor. This gave rise to the concept of agnostic treatments in oncology. The detection of such rare targets is a prerequisite for these treatments and is nowadays one of the main challenges in diagnostic molecular pathology. Various algorithms, new diagnostic strategies and pathological workflows have been suggested to help pathologists in the detection of these rare molecular alterations. An emblematic example of biological targets for agnostic treatments is represented by genetic rearrangements affecting members of the Neurotrophic Tyrosine Receptor Kinase (NTRK) gene family. These gene rearrangements have an unusual dual mode of distribution: the first, at high frequency in some very rare neoplasms, and the second with extremely lower frequencies in more common tumors. Even in the context of an agnostic approach, knowledge of site, histotype and prevalence of the tumors carrying these genetic lesions may be helpful to guide the pathologist in the daily effort in search of these molecular alterations. This review examines the prevalence of NTRK gene fusions in different forms of solid tumors, based on the largest studies to date, reports a comprehensive diagnostic algorithm and an innovative pathological workflow for rapid screening.
Collapse
Affiliation(s)
- Antonio Marchetti
- Diagnostic Molecular Oncology Section, Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara, Italy
| | - Benedetta Ferro
- Diagnostic Molecular Oncology Section, Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara, Italy
| | - Maria Paola Pasciuto
- Diagnostic Molecular Oncology Section, Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara, Italy
| | - Claudia Zampacorta
- Diagnostic Molecular Oncology Section, Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara, Italy
| | - Fiamma Buttitta
- Diagnostic Molecular Oncology Section, Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara, Italy
| | - Emanuela D'Angelo
- Diagnostic Molecular Oncology Section, Center for Advanced Studies and Technology (CAST), University of Chieti-Pescara, Italy
| |
Collapse
|
28
|
Ukkola I, Nummela P, Kero M, Tammio H, Tuominen J, Kairisto V, Kallajoki M, Haglund C, Peltomäki P, Kytölä S, Ristimäki A. Gene fusions and oncogenic mutations in MLH1 deficient and BRAFV600E wild-type colorectal cancers. Virchows Arch 2022; 480:807-817. [PMID: 35237889 PMCID: PMC9023403 DOI: 10.1007/s00428-022-03302-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/19/2022] [Accepted: 02/05/2022] [Indexed: 01/09/2023]
Abstract
Gene fusions can act as oncogenic drivers and offer targets for cancer therapy. Since fusions are rare in colorectal cancer (CRC), their universal screening seems impractical. Our aim was to investigate gene fusions in 62 CRC cases with deficient MLH1 (dMLH1) and BRAFV600E wild-type (wt) status from a consecutive real-life series of 2079 CRCs. First, gene fusions were analysed using a novel FusionPlex Lung v2 RNA-based next-generation sequencing (NGS) panel, and these results were compared to a novel Idylla GeneFusion assay and pan-TRK immunohistochemistry (IHC). NGS detected seven (7/62, 11%) NTRK1 fusions (TPM3::NTRK1, PLEKHA6::NTRK1 and LMNA::NTRK1, each in two cases, and IRF2BP2::NTRK1 in one case). In addition, two ALK, four RET and seven BRAF fusions were identified. Idylla detected seven NTRK1 expression imbalances, in line with the NGS results (overall agreement 100%). Furthermore, Idylla detected the two NGS-identified ALK rearrangements as one specific ALK fusion and one ALK expression imbalance, whilst only two of the four RET fusions were discovered. However, Idylla detected several expression imbalances of ALK (n = 7) and RET (n = 1) that were found to be fusion negative with the NGS. Pan-TRK IHC showed clearly detectable, fusion partner-dependent staining patterns in the seven NTRK1 fusion cases. Overall agreement for pan-TRK antibody clone EPR17341 was 98% and for A7H6R 100% when compared to the NGS. Of the 62 CRCs, 43 were MLH1 promoter hypermethylated (MLH1ph) and 39 were RASwt. All fusion cases were both MLH1ph and RASwt. Our results show that kinase fusions (20/30, 67%) and most importantly targetable NTRK1 fusions (7/30, 23%) are frequent in CRCs with dMLH1/BRAFV600Ewt/MLH1ph/RASwt. NGS was the most comprehensive method in finding the fusions, of which a subset can be screened by Idylla or IHC, provided that the result is confirmed by NGS.
Collapse
Affiliation(s)
- Iiris Ukkola
- Department of Pathology, HUSLAB, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, P.O. Box 400, 00029, HUS, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pirjo Nummela
- Applied Tumor Genomics Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mia Kero
- Department of Pathology, HUSLAB, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, P.O. Box 400, 00029, HUS, Helsinki, Finland
| | - Hanna Tammio
- Department of Genetics, HUSLAB, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Jenni Tuominen
- Department of Genomics, Laboratory of Molecular Haematology and Pathology, Turku University Central Hospital, Turku, Finland
| | - Veli Kairisto
- Department of Genomics, Laboratory of Molecular Haematology and Pathology, Turku University Central Hospital, Turku, Finland
| | - Markku Kallajoki
- Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland
| | - Caj Haglund
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Translational Cancer Medicine Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Päivi Peltomäki
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Soili Kytölä
- Department of Genetics, HUSLAB, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Ari Ristimäki
- Department of Pathology, HUSLAB, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, P.O. Box 400, 00029, HUS, Helsinki, Finland.
- Applied Tumor Genomics Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
29
|
Koopman B, Kuijpers CCHJ, Groen HJM, Timens W, Schuuring E, Willems SM, van Kempen LC. Detection of NTRK Fusions and TRK Expression and Performance of pan-TRK Immunohistochemistry in Routine Diagnostics: Results from a Nationwide Community-Based Cohort. Diagnostics (Basel) 2022; 12:diagnostics12030668. [PMID: 35328221 PMCID: PMC8946871 DOI: 10.3390/diagnostics12030668] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 02/01/2023] Open
Abstract
Gene fusions involving NTRK1, NTRK2, and NTRK3 are rare drivers of cancer that can be targeted with histology-agnostic inhibitors. This study aimed to determine the nationwide landscape of NTRK/TRK testing in the Netherlands and the usage of pan-TRK immunohistochemistry (IHC) as a preselection tool to detect NTRK fusions. All pathology reports in 2017–2020 containing the search term ‘TRK’ were retrieved from the Dutch Pathology Registry (PALGA). Patient characteristics, tumor histology, NTRK/TRK testing methods, and reported results were extracted. NTRK/TRK testing was reported for 7457 tumors. Absolute testing rates increased from 815 (2017) to 3380 (2020). Tumors were tested with DNA/RNA-based molecular assay(s) (48%), IHC (47%), or in combination (5%). A total of 69 fusions involving NTRK1 (n = 22), NTRK2 (n = 6) and NTRK3 (n = 41) were identified in tumors from adult (n = 51) and pediatric (n = 18) patients. In patients tested with both IHC and a molecular assay (n = 327, of which 29 NTRK fusion-positive), pan-TRK IHC had a sensitivity of 77% (95% confidence interval (CI), 56–91) and a specificity of 84% (95% CI, 78–88%). These results showed that pan-TRK IHC has a low sensitivity in current routine practice and warrants the introduction of quality guidelines regarding the implementation and interpretation of pan-TRK IHC.
Collapse
Affiliation(s)
- Bart Koopman
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (B.K.); (W.T.); (E.S.); (S.M.W.)
| | | | - Harry J. M. Groen
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands;
| | - Wim Timens
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (B.K.); (W.T.); (E.S.); (S.M.W.)
| | - Ed Schuuring
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (B.K.); (W.T.); (E.S.); (S.M.W.)
| | - Stefan M. Willems
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (B.K.); (W.T.); (E.S.); (S.M.W.)
| | - Léon C. van Kempen
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (B.K.); (W.T.); (E.S.); (S.M.W.)
- Correspondence: ; Tel.: +31-50-361-5129
| |
Collapse
|
30
|
Rahi H, Olave MC, Fritchie KJ, Greipp PT, Halling KC, Kipp BR, Graham RP. Gene Fusions in Gastrointestinal Tract cancers. Genes Chromosomes Cancer 2022; 61:285-297. [PMID: 35239225 DOI: 10.1002/gcc.23035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 11/10/2022] Open
Abstract
Fusion genes have been identified a wide array of human neoplasms including hematologic and solid tumors, including gastrointestinal tract neoplasia. A fusion gene is the product of parts of two genes which are joined together following a deletion, translocation or chromosomal inversion. Together with single nucleotide variants, insertions, deletions, and amplification, fusion genes represent one of the key genomic mechanisms for tumor development. Detecting fusions in the clinic is accomplished by a variety of techniques including break-apart fluorescence in situ hybridization (FISH), reverse transcription-polymerase chain reaction (RT-PCR), and next-generation sequencing (NGS). Some recurrent gene fusions have been successfully targeted by small molecule or monoclonal antibody therapies (i.e. targeted therapies), while others are used for as biomarkers for diagnostic and prognostic purposes. The purpose of this review article is to discuss the clinical utility of detection of gene fusions in carcinomas and neoplasms arising primarily in the digestive system. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hamed Rahi
- Division of Laboratory of Genetics and Genomics, Mayo Clinic, Rochester, MN, USA
| | - Maria C Olave
- Division of Anatomic Pathology, Mayo Clinic, Rochester, MN, USA
| | - Karen J Fritchie
- Division of Anatomic Pathology, Cleveland Clinic, Cleveland, OH, USA
| | - Patricia T Greipp
- Division of Laboratory of Genetics and Genomics, Mayo Clinic, Rochester, MN, USA
| | - Kevin C Halling
- Division of Laboratory of Genetics and Genomics, Mayo Clinic, Rochester, MN, USA.,Division of Anatomic Pathology, Mayo Clinic, Rochester, MN, USA
| | - Benjamin R Kipp
- Division of Laboratory of Genetics and Genomics, Mayo Clinic, Rochester, MN, USA.,Division of Anatomic Pathology, Mayo Clinic, Rochester, MN, USA
| | - Rondell P Graham
- Division of Laboratory of Genetics and Genomics, Mayo Clinic, Rochester, MN, USA.,Division of Anatomic Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
31
|
Roles of fusion genes in digestive system cancers: dawn for cancer precision therapy. Crit Rev Oncol Hematol 2022; 171:103622. [PMID: 35124200 DOI: 10.1016/j.critrevonc.2022.103622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/21/2022] Open
Abstract
For advanced and advanced tumors of the digestive system, personalized, precise treatment could be a lifesaving medicine. With the development of next-generation sequencing technology, detection of fusion genes in solid tumors has become more extensive. Some fusion gene targeting therapies have been written into the guidelines for digestive tract tumors, such as for neurotrophic receptor tyrosine kinase, fibroblast growth factor receptor 2. There are also many fusion genes being investigated as potential future therapeutic targets. This review focuses on the current detection methods for fusion genes, fusion genes written into the digestive system tumor guidelines, and potential fusion gene therapy targets in different organs to discuss the possibility of clinical treatments for these targets in digestive system tumors.
Collapse
|
32
|
Azcue P, Guerrero Setas D, Encío I, Ibáñez-Beroiz B, Mercado M, Vera R, Gómez-Dorronsoro ML. A Novel Prognostic Biomarker Panel for Early-Stage Colon Carcinoma. Cancers (Basel) 2021; 13:5909. [PMID: 34885019 PMCID: PMC8656725 DOI: 10.3390/cancers13235909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/09/2022] Open
Abstract
Molecular characterization of colorectal cancer has helped us understand better the biology of the disease. However, previous efforts have yet to provide significant clinical value in order to be integrated into clinical practice for patients with early-stage colon cancer (CC). The purpose of this study was to assess PD-L1, GLUT-1, e-cadherin, MUC2, CDX2, and microsatellite instability (dMMR) and to propose a risk-panel with prognostic capabilities. Biomarkers were immunohistochemically assessed through tissue microarrays in a cohort of 144 patients with stage II/III colon cancer. A biomarker panel consisting of PD-L1, GLUT-1, dMMR, and potentially CDX2 was constructed that divided patients into low, medium, and high risk of overall survival or disease-free survival (DFS) in equally sized groups. Compared with low-risk patients, medium-risk patients have almost twice the risk of death (HR = 2.10 (0.99-4.46), p = 0.054), while high-risk patients have almost four times the risk (HR = 3.79 (1.77-8.11), p = 0.001). The multivariate goodness of fit was 0.756 and was correlated with Kaplan-Meier curves (p = 0.002). Consistent results were found for DFS. This study provides a critical basis for the future development of an immunohistochemical assessment capable of discerning early-stage CC patients as a function of their prognosis. This tool may aid with treatment personalization in daily clinical practice and improve survival outcomes.
Collapse
Affiliation(s)
- Pablo Azcue
- Department of Health Science, Public University of Navarra, 31008 Pamplona, Spain; (I.E.); (B.I.-B.)
| | - David Guerrero Setas
- Department of Pathology, University Hospital of Navarra, 31008 Pamplona, Spain; (D.G.S.); (M.M.)
- Campus Arrosadia, Public University of Navarra, 31006 Pamplona, Spain
- Molecular Pathology of Cancer Group–Navarrabiomed, 31008 Pamplona, Spain
- Department of Medical Oncology, University Hospital of Navarra, 31008 Pamplona, Spain;
| | - Ignacio Encío
- Department of Health Science, Public University of Navarra, 31008 Pamplona, Spain; (I.E.); (B.I.-B.)
- Institute for Health Research Navarra (IdISNA), 31008 Pamplona, Spain
| | - Berta Ibáñez-Beroiz
- Department of Health Science, Public University of Navarra, 31008 Pamplona, Spain; (I.E.); (B.I.-B.)
- Institute for Health Research Navarra (IdISNA), 31008 Pamplona, Spain
- Unit of Methodology-Navarrabiomed-University Hospital of Navarra, 31008 Pamplona, Spain
- Research Network on Health Services Research and Chronic Diseases (REDISSEC), 31008 Pamplona, Spain
| | - María Mercado
- Department of Pathology, University Hospital of Navarra, 31008 Pamplona, Spain; (D.G.S.); (M.M.)
| | - Ruth Vera
- Department of Medical Oncology, University Hospital of Navarra, 31008 Pamplona, Spain;
- Institute for Health Research Navarra (IdISNA), 31008 Pamplona, Spain
| | - María Luisa Gómez-Dorronsoro
- Department of Pathology, University Hospital of Navarra, 31008 Pamplona, Spain; (D.G.S.); (M.M.)
- Institute for Health Research Navarra (IdISNA), 31008 Pamplona, Spain
| |
Collapse
|
33
|
Wang J, Li R, Li J, Yi Y, Liu X, Chen J, Zhang H, Lu J, Li C, Wu H, Liang Z. Comprehensive analysis of oncogenic fusions in mismatch repair deficient colorectal carcinomas by sequential DNA and RNA next generation sequencing. J Transl Med 2021; 19:433. [PMID: 34657620 PMCID: PMC8522100 DOI: 10.1186/s12967-021-03108-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 10/06/2021] [Indexed: 11/26/2022] Open
Abstract
Background Colorectal carcinoma (CRC) harboring oncogenic fusions has been reported to be highly enriched in mismatch repair deficient (dMMR) tumors with MLH1 hypermethylation (MLH1me+) and wild-type BRAF and RAS. In this study, dMMR CRCs were screened for oncogene fusions using sequential DNA and RNA next generation sequencing (NGS). Results Comprehensive analysis of fusion variants, genetic profiles and clinicopathological features in fusion-positive dMMR CRCs was performed. Among 193 consecutive dMMR CRCs, 39 cases were identified as MLH1me+BRAF/RAS wild-type. Eighteen fusion-positive cases were detected by DNA NGS, all of which were MLH1me+ and BRAF/RAS wild-type. RNA NGS was sequentially conducted in the remaining 21 MLH1me+BRAF/RAS wild-type cases lacking oncogenic fusions by DNA NGS, and revealed four additional fusions, increasing the proportion of fusion-positive tumors from 46% (18/39) to 56% (22/39) in MLH1me+BRAF/RAS wild-type dMMR cases. All 22 fusions were found to involve RTK-RAS pathway. Most fusions affected targetable receptor tyrosine kinases, including NTRK1(9/22, 41%), NTRK3(5/22, 23%), ALK(3/22, 14%), RET(2/22, 9%) and MET(1/22, 5%), whilst only two fusions affected mitogen-activated protein kinase cascade components BRAF and MAPK1, respectively. RNF43 was identified as the most frequently mutated genes, followed by APC, TGFBR2, ATM, BRCA2 and FBXW7. The vast majority (19/22, 86%) displayed alterations in key WNT pathway components, whereas none harbored additional mutations in RTK-RAS pathway. In addition, fusion-positive tumors were typically diagnosed in elder patients and predominantly right-sided, and showed a significantly higher preponderance of hepatic flexure localization (P < 0.001) and poor differentiation (P = 0.019), compared to fusion-negative MLH1me+ CRCs. Conclusions We proved that sequential DNA and RNA NGS was highly effective for fusion detection in dMMR CRCs, and proposed an optimized practical fusion screening strategy. We further revealed that dMMR CRCs harboring oncogenic fusion was a genetically and clinicopathologically distinctive subgroup, and justified more precise molecular subtyping for personalized therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03108-6.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pathology, Peking Union Medical College Hospital, and Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ruiyu Li
- Department of Pathology, Peking Union Medical College Hospital, and Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Junjie Li
- Department of Pathology, Peking Union Medical College Hospital, and Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yuting Yi
- Geneplus-Beijing Institute, Beijing, China
| | - Xiaoding Liu
- Department of Pathology, Peking Union Medical College Hospital, and Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jingci Chen
- Department of Pathology, Peking Union Medical College Hospital, and Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Hui Zhang
- Department of Pathology, Peking Union Medical College Hospital, and Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Junliang Lu
- Department of Pathology, Peking Union Medical College Hospital, and Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Cami Li
- Department of Pathology, Peking Union Medical College Hospital, and Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Huanwen Wu
- Department of Pathology, Peking Union Medical College Hospital, and Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Zhiyong Liang
- Department of Pathology, Peking Union Medical College Hospital, and Molecular Pathology Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
34
|
Re-evaluating tumors of purported specialized prostatic stromal origin reveals molecular heterogeneity, including non-recurring gene fusions characteristic of uterine and soft tissue sarcoma subtypes. Mod Pathol 2021; 34:1763-1779. [PMID: 33986460 DOI: 10.1038/s41379-021-00818-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/14/2022]
Abstract
Tumors of purported specialized prostatic stromal origin comprise prostatic stromal sarcomas (PSS) and stromal tumors of uncertain malignant potential (STUMP). Prior studies have described their clinicopathologic characteristics, but the molecular features remain incompletely understood. Moreover, these neoplasms are morphologically heterogeneous and the lack of specific adjunctive markers of prostatic stromal lineage make precise definition more difficult, leading some to question whether they represent a specific tumor type. In this study, we used next-generation DNA and RNA sequencing to profile 25 primary prostatic mesenchymal neoplasms of possible specialized prostatic stromal origin, including cases originally diagnosed as PSS (11) and STUMP (14). Morphologically, the series comprised 20 cases with solid architecture (11 PSS and 9 STUMP) and 5 cases with phyllodes-like growth pattern (all STUMP). Combined DNA and RNA sequencing results demonstrated that 19/22 (86%) cases that underwent successful sequencing (either DNA or RNA) harbored pathogenic somatic variants. Except for TP53 alterations (6 cases), ATRX mutations (2 cases), and a few copy number variants (-13q, -14q, -16q and +8/8p), the findings were largely nonrecurrent. Eight gene rearrangements were found, and 4 (NAB2-STAT6, JAZF1-SUZ12, TPM3-NTRK1 and BCOR-MAML3) were useful for reclassification of the cases as specific entities. The present study shows that mesenchymal neoplasms of the prostate are morphologically and molecularly heterogeneous and include neoplasms that harbor genetic aberrations seen in specific mesenchymal tumors arising in other anatomic sites, including soft tissue and the uterus. These data suggest that tumors of purported specialized prostatic stromal origin may perhaps not represent a single diagnostic entity or specific disease group and that alternative diagnoses should be carefully considered.
Collapse
|
35
|
Fassan M, Scarpa A, Remo A, De Maglio G, Troncone G, Marchetti A, Doglioni C, Ingravallo G, Perrone G, Parente P, Luchini C, Mastracci L. Current prognostic and predictive biomarkers for gastrointestinal tumors in clinical practice. Pathologica 2021; 112:248-259. [PMID: 33179625 PMCID: PMC7931577 DOI: 10.32074/1591-951x-158] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
The pathologist emerged in the personalized medicine era as a central actor in the definition of the most adequate diagnostic and therapeutic algorithms. In the last decade, gastrointestinal oncology has seen a significantly increased clinical request for the integration of novel prognostic and predictive biomarkers in histopathological reports. This request couples with the significant contraction of invasive sampling of the disease, thus conferring to the pathologist the role of governor for both proper pathologic characterization and customized processing of the biospecimens. This overview will focus on the most commonly adopted immunohistochemical and molecular biomarkers in the routine clinical characterization of gastrointestinal neoplasms referring to the most recent published recommendations, guidelines and expert opinions.
Collapse
Affiliation(s)
- Matteo Fassan
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, Italy
| | - Aldo Scarpa
- ARC-NET Research Centre, University of Verona, Italy.,Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Andrea Remo
- Pathology Unit, Service Department, ULSS9 "Scaligera", Verona, Italy
| | | | - Giancarlo Troncone
- Department of Public Health, Federico II University Medical School Naples, Italy
| | - Antonio Marchetti
- Center of Predictive Molecular Medicine, Center for Excellence on Aging and Translational Medicine, University of Chieti-Pescara, Italy
| | - Claudio Doglioni
- Vita e Salute University, Milan, Italy.,Pathology Unit, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giuseppe Ingravallo
- Department of Emergency and Organ Transplantation, Section of Pathological Anatomy, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe Perrone
- Department of Pathology, Campus Bio-Medico University, Rome, Italy
| | - Paola Parente
- Pathology Unit, Fondazione IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Luca Mastracci
- Anatomic Pathology, San Martino IRCCS Hospital,, Genova, Italy.,Anatomic Pathology, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, Genova, Italy
| |
Collapse
|
36
|
Kim JH, Hong JH, Choi YL, Lee JA, Seo MK, Lee MS, An SB, Sung MJ, Cho NY, Kim SS, Shin YK, Kim S, Kang GH. NTRK oncogenic fusions are exclusively associated with the serrated neoplasia pathway in the colorectum and begin to occur in sessile serrated lesions. J Pathol 2021; 255:399-411. [PMID: 34402529 DOI: 10.1002/path.5779] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/28/2021] [Accepted: 08/13/2021] [Indexed: 01/16/2023]
Abstract
Neurotrophic tropomyosin receptor kinase (NTRK) gene fusions are emerging tissue-agnostic drug targets in malignancies including colorectal carcinomas (CRCs), but their detailed landscape in the context of various colorectal carcinogenesis pathways remains to be investigated. In this study, pan-tropomyosin receptor kinase (TRK) protein expression was assessed by immunohistochemistry (IHC) in retrospectively collected colorectal epithelial tumor tissues, including 441 CRCs [133 microsatellite instability-high (MSI-high) and 308 microsatellite stable (MSS)] and 595 premalignant colorectal lesions (330 serrated lesions and 265 conventional adenomas). TRK-positive cases were then subjected to next-generation sequencing and/or fluorescence in situ hybridization to confirm NTRK rearrangements. TRK IHC positivity was not observed in any of the MSS CRCs, conventional adenomas, traditional serrated adenomas, or hyperplastic polyps, whereas TRK positivity was observed in 11 of 58 (19%) MLH1-methylated MSI-high CRCs, 4 of 23 (17%) sessile serrated lesions with dysplasia (SSLDs), and 5 of 132 (4%) sessile serrated lesions (SSLs). The 11 TRK-positive MSI-high CRCs commonly harbored CpG island methylator phenotype-high (CIMP-high), MLH1 methylation, BRAF/KRAS wild-type, and NTRK1 or NTRK3 fusion (TPM3-NTRK1, TPR-NTRK1, LMNA-NTRK1, SFPQ-NTRK1, ETV6-NTRK3, or EML4-NTRK3). Both NTRK1 or NTRK3 rearrangement and BRAF/KRAS wild-type were detected in all nine TRK-positive SSL(D)s, seven of which demonstrated MSS and/or CIMP-low. TRK expression was selectively observed in distorted serrated crypts within SSLs and was occasionally localized at the base of serrated crypts. NTRK fusions were detected only in SSLs of patients aged ≥50 years, whereas BRAF mutation was found in younger age-onset SSLs. In conclusion, NTRK-rearranged colorectal tumors develop exclusively through the serrated neoplasia pathway and can be initiated from non-dysplastic SSLs without BRAF/KRAS mutations prior to full occurrence of MSI-high/CIMP-high. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jung Ho Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.,Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeong Hoon Hong
- Central Laboratory, LOGONE Bio-Convergence Research Foundation, Seoul, Republic of Korea
| | - Yoon-La Choi
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea.,Laboratory of Cancer Genomics and Molecular Pathology, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Pathology and Translational Genomics, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ji Ae Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.,Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Mi-Kyoung Seo
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Mi-Sook Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea.,Laboratory of Cancer Genomics and Molecular Pathology, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sung Bin An
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea.,Laboratory of Cancer Genomics and Molecular Pathology, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Min Jung Sung
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea.,Laboratory of Cancer Genomics and Molecular Pathology, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Nam-Yun Cho
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung-Su Kim
- Central Laboratory, LOGONE Bio-Convergence Research Foundation, Seoul, Republic of Korea
| | - Young Kee Shin
- Central Laboratory, LOGONE Bio-Convergence Research Foundation, Seoul, Republic of Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Sangwoo Kim
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.,Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
37
|
Castillo JJ, Beltran BE, Malpica L, Marques-Piubelli ML, Miranda RN. Anaplastic lymphoma kinase-positive large B-cell lymphoma (ALK + LBCL): a systematic review of clinicopathological features and management. Leuk Lymphoma 2021; 62:2845-2853. [PMID: 34151703 DOI: 10.1080/10428194.2021.1941929] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Anaplastic lymphoma kinase-positive (ALK+) large B-cell lymphoma (LBCL) is a rare CD20-negative aggressive lymphoma. Given its rarity, data on ALK + LBCL are scarce and limited to case reports and small case series. Our systematic review included 184 unique cases published in the literature and shows that ALK + LBCL can affect individuals at any age, has a male predominance and is not associated with chronic viral infections. The malignant cells express ALK, VS38c, BLIMP-1, EMA, c-MYC, and BOB-1. The STAT3/STAT5, PI3K/AKT, PLCG2, and ERK pathways are important in the pathophysiology of ALK + LBCL. The prognosis of ALK + LBCL is poor with a 5-year survival rate of 28%. Early disease stage is associated with better outcomes. ALK inhibitors and other targeted agents could be of value in the treatment of ALK + LBCL. Additional research is needed to better understand, diagnose and treat ALK + LBCL.
Collapse
Affiliation(s)
- Jorge J Castillo
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute Harvard Medical School, Boston, MA, USA
| | - Brady E Beltran
- Department of Oncology and Radiotherapy, Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru
| | - Luis Malpica
- Division of Hematology and Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mario L Marques-Piubelli
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roberto N Miranda
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
38
|
Bocciarelli C, Caumont C, Samaison L, Cariou M, Aline-Fardin A, Doucet L, Roudié J, Terris B, Merlio JP, Marcorelles P, Cappellen D, Uguen A. MSI-High RAS-BRAF wild-type colorectal adenocarcinomas with MLH1 loss have a high frequency of targetable oncogenic gene fusions whose diagnoses are feasible using methods easy-to-implement in pathology laboratories. Hum Pathol 2021; 114:99-109. [PMID: 34019865 DOI: 10.1016/j.humpath.2021.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/17/2022]
Abstract
Targetable kinase fusions are extremely rare (<1%) in colorectal cancers (CRCs), making their diagnosis challenging and often underinvestigated. They have been shown particularly frequently among MSI-High, BRAF/KRAS/NRAS wild-type CRCs with MLH1 loss (MLH1loss MSI-High wild-type). We searched for NTRK1, NTRK2, NTRK3, ALK, ROS1, BRAF, RET, and NRG1 kinase fusions in CRCs using methods easy-to-implement in pathology laboratories: immunohistochemistry (IHC), fluorescent in situ hybridization (FISH), and fully automated real-time PCR targeted analyses. RNA-sequencing analyses were used for confirmation. Among 84 selected MLH1 deficient (IHC) CRCs cases, MLH1loss MSI-High wild-type CRCs consisted first in 19 cases after Idylla™ analyses and finally in 18 cases (21%) after RNA-sequencing (detection of one additional KRASG12D mutation). FISH (and when relevant, IHC) analyses concluded in 5 NTRK1, 3 NTRK3, 1 ALK, 2 BRAF, and 2 RET FISH positive tumors. ALK and NTRK1 rearranged tumors were IHC positive, but pan-TRK IHC was negative in the 3 NTRK3 FISH positive tumors. RNA-sequencing analyses confirmed 12 of 13 fusions with only one false positive RET FISH result. Finally, 12/18 (67%) of MLH1loss MSI-High wild-type CRCs contained targetable kinase fusions. Our study demonstrates the feasibility, but also the cost-effectiveness, of a multistep but rapid diagnostic strategy based on nonsequencing methods to identify rare and targetable kinase fusions in patients with advanced CRCs, as well as the high prevalence of these kinase fusions in MLH1loss MSI-High wild-type CRCs. Nevertheless, confirmatory RNA-sequencing analyses are necessary in case of low FISH positive nuclei percentage to rule out FISH false-positive results.
Collapse
Affiliation(s)
- Claire Bocciarelli
- CHU de la Martinique, Service d'anatomie et Cytologie Pathologiques, Fort-de-France, F-97261, France.
| | - Charline Caumont
- CHU Bordeaux, Department of Tumor Biology, Pessac, F-33600, France; Inserm U1053 BaRITOn, Univ Bordeaux, Bordeaux, F-33000, France.
| | | | - Mélanie Cariou
- Registre des Cancers Digestifs du Finistère EA7479 SPURBO, Université de Bretagne Occidentale Brest, F-29200, France.
| | - Aude Aline-Fardin
- CHU de la Martinique, Service d'anatomie et Cytologie Pathologiques, Fort-de-France, F-97261, France.
| | - Laurent Doucet
- CHRU Brest, Service d'anatomie et Cytologie Pathologiques, Brest, F-29200, France.
| | - Jean Roudié
- CHU de la Martinique, Service de Chirurgie Digestive, Fort-de-France, F-97261, France.
| | - Benoît Terris
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Paris Centre, Hôpital Cochin, Service d'anatomie et Cytologie Pathologiques, Paris, F-75014, France.
| | - Jean-Philippe Merlio
- CHU Bordeaux, Department of Tumor Biology, Pessac, F-33600, France; Inserm U1053 BaRITOn, Univ Bordeaux, Bordeaux, F-33000, France.
| | - Pascale Marcorelles
- CHRU Brest, Service d'anatomie et Cytologie Pathologiques, Brest, F-29200, France.
| | - David Cappellen
- CHU Bordeaux, Department of Tumor Biology, Pessac, F-33600, France; Inserm U1053 BaRITOn, Univ Bordeaux, Bordeaux, F-33000, France.
| | - Arnaud Uguen
- CHU de la Martinique, Service d'anatomie et Cytologie Pathologiques, Fort-de-France, F-97261, France; Univ Brest, Inserm, CHU de Brest, LBAI, UMR1227, Brest, 29200, France.
| |
Collapse
|
39
|
Gössling GCL, Chedid MF, Pereira FS, da Silva RK, Andrade LB, Peruzzo N, Saueressig MG, Schwartsmann G, Parikh AR. Outcomes and Prognostic Factors of Patients with Metastatic Colorectal Cancer Who Underwent Pulmonary Metastasectomy with Curative Intent: A Brazilian Experience. Oncologist 2021; 26:e1581-e1588. [PMID: 33896091 DOI: 10.1002/onco.13802] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/15/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND We aimed to identify clinicopathological and molecular features associated with progression-free survival (PFS) and overall survival (OS) after pulmonary metastasectomy for metastatic colorectal cancer in a retrospective cohort in Brazil. MATERIALS AND METHODS We did a retrospective review of thoracic surgeries performed in a single large academic hospital in Brazil from January 1985 to September 2019. Demographics, previously described prognostic factors, and clinicopathological and molecular characteristics were abstracted. Univariate Cox regression was performed for each variable, and, when significant, data were dichotomized to provide clinically meaningful thresholds. RESULTS Records from 698 patients were reviewed. Fifty-eight patients underwent pulmonary metastasectomy with curative intent. Of those, 53.4% had a single metastatic lesion. The median size of the largest lesion was 1.5 cm. Results of RAS, RAF, and mismatch repair testing and of cytokeratin 20 (CK20) and CDX2 testing were available for 13.8% and 58.6% of the sample, respectively. Median PFS was 14 months, median OS was 58 months, and 5-year survival was 49.8%. Unfavorable prognostic factors for OS included disease-free interval (DFI) <24 months, synchronous presentation, size of the largest lesion ≥2 cm, and loss of CK20 expression. Presenting with more than one lesion was prognostic for PFS but not for OS. CONCLUSION In this Brazilian cohort, our findings corroborate existing data supporting DFI, synchronous presentation, and number and size of lesions as prognostic factors. Furthermore, we found that loss of CK20 expression may be associated with more aggressive disease and shorter OS. Additional molecular prognostic factors after pulmonary metastasectomy for colorectal cancer should be further explored. IMPLICATIONS FOR PRACTICE This study consolidates disease-free interval, synchronous presentation, and number and size of lesions as clinically relevant data that may help guide therapy for patients with colorectal cancer and lung metastases who are candidates for curative-intent metastasectomy. Additionally, in this sample, lack of cytokeratin 20 expression in metastases was associated with shorter progression-free survival and overall survival, suggesting that biomarkers also may have a role in guiding therapy in this setting and that additional biomarkers should be further explored.
Collapse
Affiliation(s)
- Gustavo C L Gössling
- Medical Oncology Department, Hospital de Clínicas de Porto Alegre, Brazil.,Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Medical Oncology Department, Hospital Nossa Senhora da Conceição, Porto Alegre, Brazil
| | - Márcio F Chedid
- Liver and Pancreas Transplant and Hepatobiliary Surgery Unit, Hospital de Clínicas de Porto Alegre, Brazil.,Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Fernando S Pereira
- Medical Oncology Department, Hospital de Clínicas de Porto Alegre, Brazil.,Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | | | - Leonardo B Andrade
- Medical Oncology Department, Hospital de Clínicas de Porto Alegre, Brazil
| | - Nícolas Peruzzo
- Medical Oncology Department, Hospital de Clínicas de Porto Alegre, Brazil
| | - Maurício G Saueressig
- Thoracic Surgery Department, Hospital de Clínicas de Porto Alegre, Brazil.,Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Gilberto Schwartsmann
- Medical Oncology Department, Hospital de Clínicas de Porto Alegre, Brazil.,Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Aparna R Parikh
- Department of Medical Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
40
|
Uguen A, Csanyi-Bastien M, Sabourin JC, Penault-Llorca F, Adam J. [How to test for NTRK gene fusions: A practical approach for pathologists]. Ann Pathol 2021; 41:387-398. [PMID: 33846022 DOI: 10.1016/j.annpat.2021.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/06/2021] [Accepted: 03/10/2021] [Indexed: 11/29/2022]
Abstract
The recent availability of targeted anti-TRK therapies represents a new opportunity to treat patients with advanced cancers harboring NTRK gene fusions. In this article, we present an update on the practical modalities of implementing a "NTRK testing" to search for these fusions in view of the performances and availability of the different testing methods and the epidemiological characteristics of the tumors liable to present the NTRK1, NTRK2 or NTRK3 gene fusions.
Collapse
Affiliation(s)
- Arnaud Uguen
- Inserm, CHU de Brest, LBAI, UMR1227, Université Brest, 29200 Brest, France; Service d'anatomie et cytologie pathologiques, CHRU Brest, 29200 Brest, France.
| | | | | | - Frédérique Penault-Llorca
- Inserm U1240, département d'anatomie et de cytologie pathologiques, centre Jean-Perrin, université Clermont-Auvergne, 63011 Clermont-Ferrand, France
| | - Julien Adam
- Service d'anatomie et cytologie pathologiques, Hôpital Saint-Joseph, 75014 Paris, France
| |
Collapse
|
41
|
Sholl LM, Zheng M, Nardi V, Hornick JL. Predictive 'biomarker piggybacking': an examination of reflexive pan-cancer screening with pan-TRK immunohistochemistry. Histopathology 2021; 79:260-264. [PMID: 33682174 DOI: 10.1111/his.14351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 11/27/2022]
Abstract
AIMS Tropomyosin receptor kinase (TRK)-targeted therapies represent an important therapeutic option for patients with advanced solid tumours harbouring neurotrophin receptor kinase (NTRK) gene fusions. However, NTRK fusions are rare in common adult carcinomas, and systematic approaches to screening for these alterations are lacking. Pan-TRK immunohistochemistry (IHC) has been proposed as one method to screen for NTRK fusion-positive tumours. Reflexive testing strategies have been endorsed for several IHC-based biomarkers, and thus offer a convenient and low-cost entry point to incorporate pan-TRK screening. METHODS AND RESULTS In this study, 447 consecutive cases of adult solid tumours undergoing mismatch repair (MMR), human epidermal growth factor receptor 2 (HER2) and/or programmed cell death ligand 1 (PD-L1) testing were prospectively stained with pan-TRK IHC. Four cases (0.9%) were pan-TRK positive, including three (1.3% of 223) colonic adenocarcinomas, two of which were MMR-deficient and one (1.4% of 71) was gastroesophageal carcinoma. None of 108 non-small cell lung carcinomas showed pan-TRK expression. NTRK gene fusion was confirmed by DNA sequencing in one MMR-deficient colonic adenocarcinoma. In one MMR-deficient tumour, an alternative mitogen-activated protein kinase (MAPK) driver was identified. In the oesophageal (squamous cell) carcinoma, RNA sequencing identified relative NTRK2 transcript overexpression in the absence of a fusion. In one MMR-proficient colonic adenocarcinoma, no MAPK drivers were identified; therefore, a falsely negative sequencing result was favored. None of the patients met clinical criteria for TRK-targeted therapy. CONCLUSION The clinical impact of pan-TRK IHC 'piggybacking' on existing reflexive testing strategies in surgical pathology appears negligible. Carcinomas may rarely show high-level pan-TRK expression in the absence of an underlying NTRK fusion event.
Collapse
Affiliation(s)
- Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Mei Zheng
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Valentina Nardi
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Jason L Hornick
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
42
|
Abstract
NTRK fusion-positive tumors are known to be highly sensitive to TRK inhibitors, such as larotrectinib and entrectinib. Therefore, identification of patients who can potentially benefit from these inhibitors is important; however, the frequency of NTRK fusions in Japanese patients with colorectal cancer (CRC) is unknown. We performed pan-TRK staining using TMA-based immunohistochemistry (IHC) on samples from 971 consecutive Japanese CRC cases from a single institution. Positive cases were further analyzed using NanoString and subsequent targeted RNA sequencing. We found three positive cases using TRK-IHC. Furthermore, the Nanostring assay supported the presence of NTRK fusion in these cases. Subsequent targeted RNA-sequencing and RT-PCR revealed two cases with TPM3-NTRK1 and one with TPR-NTRK1. The TNM stages of these cases were stage I, stage IIA, and stage IIIB, and two showed microsatellite instability-high status. Next-generation sequencing analysis using Cancer hotspot panel revealed TP53 and SMAD4 mutations in separate cases. IHC of β-catenin did not show nuclear accumulation. We found three cases (0.31%) of CRC with NTRK1 fusion among 971 consecutive Japanese CRC cases. No potential driver alterations other than NTRK fusion were identified in these three patients.
Collapse
|
43
|
Yonemaru J, Hashimoto T, Takayanagi D, Naka T, Yatabe Y, Kanemitsu Y, Shiraishi K, Sekine S. NTRK fusion-positive colorectal cancer in Japanese population. Pathol Int 2021; 71:355-359. [PMID: 33631044 DOI: 10.1111/pin.13082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/31/2021] [Indexed: 12/17/2022]
Abstract
ALK, ROS1 and NTRK fusions are involved in the tumorigenesis of various organs, including colorectal cancer. This study aims to clarify the prevalence of these fusions in colorectal cancer in the Japanese population. Immunohistochemical analysis of 1012 specimens of colorectal cancer revealed two NTRK-positive cases (0.2%) whereas no ALK- or ROS1-positive cases were identified. Reverse transcription polymerase chain reaction (RT-PCR) detected an LMNA-NTRK1 fusion in a case of adenosquamous carcinoma and a TPM3-NTRK1 fusion in a case of tubular adenocarcinoma. Both NTRK1 fusion-positive cases lacked activating mutations in KRAS and BRAF and were mismatch repair-deficient with loss of MLH1 and PMS2 expression and MLH1 promoter methylation. Our results show that receptor tyrosine kinase fusions are rare but present in colorectal cancers in Japanese patients, with a prevalence similar to that reported in other countries.
Collapse
Affiliation(s)
- Junpei Yonemaru
- Division of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Taiki Hashimoto
- Division of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Daisuke Takayanagi
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Tomoaki Naka
- Division of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Yasushi Yatabe
- Division of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan.,Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Yukihide Kanemitsu
- Department of Colorectal Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Shigeki Sekine
- Division of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan.,Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
44
|
Bebb DG, Banerji S, Blais N, Desmeules P, Gill S, Grin A, Feilotter H, Hansen AR, Hyrcza M, Krzyzanowska M, Melosky B, Noujaim J, Purgina B, Ruether D, Simmons CE, Soulieres D, Torlakovic EE, Tsao MS. Canadian Consensus for Biomarker Testing and Treatment of TRK Fusion Cancer in Adults. Curr Oncol 2021; 28:523-548. [PMID: 33467570 PMCID: PMC7903287 DOI: 10.3390/curroncol28010053] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/31/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
The tyrosine receptor kinase (TRK) inhibitors larotrectinib and entrectinib were recently approved in Canada for the treatment of solid tumours harbouring neurotrophic tyrosine receptor kinase (NTRK) gene fusions. These NTRK gene fusions are oncogenic drivers found in most tumour types at a low frequency (<5%), and at a higher frequency (>80%) in a small number of rare tumours (e.g., secretory carcinoma of the salivary gland and of the breast). They are generally mutually exclusive of other common oncogenic drivers. Larotrectinib and entrectinib have demonstrated impressive overall response rates and tolerability in Phase I/II trials in patients with TRK fusion cancer with no other effective treatment options. Given the low frequency of TRK fusion cancer and the heterogeneous molecular testing landscape in Canada, identifying and optimally managing such patients represents a new challenge. We provide a Canadian consensus on when and how to test for NTRK gene fusions and when to consider treatment with a TRK inhibitor. We focus on five tumour types: thyroid carcinoma, colorectal carcinoma, non-small cell lung carcinoma, soft tissue sarcoma, and salivary gland carcinoma. Based on the probability of the tumour harbouring an NTRK gene fusion, we also suggest a tumour-agnostic consensus for NTRK gene fusion testing and treatment. We recommend considering a TRK inhibitor in all patients with TRK fusion cancer with no other effective treatment options.
Collapse
Affiliation(s)
- D. Gwyn Bebb
- Tom Baker Cancer Centre and University of Calgary, Calgary, AB T2N 4N2, Canada
| | - Shantanu Banerji
- Research Institute in Oncology and Hematology, CancerCare Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada;
| | - Normand Blais
- Centre Hospitalier Universitaire de Montreal, Department of Medicine, University of Montreal, Montreal, QC H2X 3E4, Canada; (N.B.); (D.S.)
| | - Patrice Desmeules
- Service D’Anatomopathologie et de Cytologie, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, QC G1V 0A6, Canada;
| | - Sharlene Gill
- BC Cancer, Vancouver, BC V5Z 4E6, Canada; (S.G.); (B.M.); (C.E.S.)
| | - Andrea Grin
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada; (A.G.); (H.F.)
| | - Harriet Feilotter
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada; (A.G.); (H.F.)
| | - Aaron R. Hansen
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada; (A.R.H.); (M.K.)
| | - Martin Hyrcza
- Department of Pathology and Laboratory Medicine, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4Z6, Canada;
| | - Monika Krzyzanowska
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada; (A.R.H.); (M.K.)
| | - Barbara Melosky
- BC Cancer, Vancouver, BC V5Z 4E6, Canada; (S.G.); (B.M.); (C.E.S.)
| | | | - Bibiana Purgina
- The Ottawa Hospital, Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - Dean Ruether
- Department of Oncology, Tom Baker Cancer Centre, Calgary, AB T2N 4N2, Canada;
| | | | - Denis Soulieres
- Centre Hospitalier Universitaire de Montreal, Department of Medicine, University of Montreal, Montreal, QC H2X 3E4, Canada; (N.B.); (D.S.)
| | - Emina Emilia Torlakovic
- Department of Pathology and Laboratory Medicine, Saskatchewan Health Authority and University of Saskatchewan, Saskatoon, SK S7N 5B5, Canada;
| | - Ming-Sound Tsao
- Department of Pathology, Laboratory Medicine Program, University Health Network, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
45
|
Zhang R, Dong L, Yu J. Concomitant Pathogenic Mutations and Fusions of Driver Oncogenes in Tumors. Front Oncol 2021; 10:544579. [PMID: 33520689 PMCID: PMC7844084 DOI: 10.3389/fonc.2020.544579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 11/27/2020] [Indexed: 01/01/2023] Open
Abstract
Driver oncogene alterations have always been one of leading causes in the process of occurrence and development of tumors. And the effects of driver oncogene alterations on tumorigenesis and progression in different kinds of tumors have been studied heatedly. And the roles that the driver oncogenes alterations play have been elucidated clearly in previous studies. The phenomenon of concomitant driver oncogenes mutations and driver genes fusions has gained much concentration in the past two decades. And a growing number of studies reported this phenomenon, either coexistence or mutually exclusivity. Here we reviewed on the phenomenon of concomitant mutations in three common types of carcinomas—lung cancer, thyroid cancer, and leukemia, which have been studied relatively more detailed and more general compared with others.
Collapse
Affiliation(s)
- Runjiao Zhang
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Li Dong
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Jinpu Yu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Caner, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
46
|
Perna C, Navarro A, Ruz-Caracuel I, Caniego-Casas T, Cristóbal E, Leskelä S, Longo F, Caminoa A, Santón A, Ferreiro R, Pizarro D, Palacios-Berraquero ML, Palacios J. Molecular Heterogeneity of High Grade Colorectal Adenocarcinoma. Cancers (Basel) 2021; 13:cancers13020233. [PMID: 33435234 PMCID: PMC7826680 DOI: 10.3390/cancers13020233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Due to its low frequency, high grade colorectal carcinomas (HG-CRCs) are underrepresented in molecular series. We intended to further characterize the pathological and molecular features of these tumors. In addition, morphologically different areas when present, were analyzed separately to study tumor heterogeneity. We found that most (72.5%) of HG-CRCs showed mismatch repair (MMR) deficiency. MMR status conditioned the frequency and the clonality of the molecular alterations found. Thus, whereas BRAF mutations and gene fusions were observed only in MMR deficient (MMRd) tumors, TP53, KRAS, and gene amplifications predominated in MMR proficient (MMRp) tumors. In MMRp tumors, gene amplification was a mechanism of progression, whereas the accumulation of mutations in genes of different pathways such as NOTCH, MMR or PIK3CA was involved in the clonal diversity of MMRd HG-CRC. In summary, intertumor and intratumor molecular heterogeneity in HG-CRCs is mainly due to MMR status. Abstract High grade colorectal carcinomas (HG-CRCs), which comprise 15% of colorectal carcinomas, are underrepresented in reported molecular studies. Clinicopathological, immunohistochemical, and molecular features of 40 HG-CRCs are described. Moreover, glandular and solid areas of 25 tumors were separately analyzed. The expression of MLH1, PMS2, MSH2, MSH6, p53, E-cadherin, CDX2, CK20, CD8, PDL1, PAN-TRK, c-MET, SMARCB1, ARID1A, SMARCA2, and SMARCA4 was analyzed by immunohistochemistry. Promoter MLH1 methylation was analyzed in tumors with MLH1/PMS2 loss. Next-generation sequencing was used to screen 161 genes for hotspot mutations, copy number variations and gene fusions. In this series, 72.5% of HG-CRCs showed mismatch repair deficiency (MMRd). MMR deficient tumor and MMR proficient (MMRp) tumors showed striking molecular differences. Thus, whereas BRAF mutations were only observed in MMRd tumors, mutations in KRAS and TP53 were more frequent in MMR proficient tumors. Moreover, gene fusions (NTRK1 and MET) were detected only in MMRd tumors, whereas gene amplification (MYC, CCND1 and EGFR) predominated in MMRp/TP53-mutated tumors. Loss of expression of proteins involved in chromatin remodeling, such as ARID1A, was observed only in MMRd HG-CRCs, which also showed more frequently PD-L1 expression and a higher number of tumor infiltrating lymphocytes. The separate analysis of glandular and solid areas indicated that the clonal or subclonal nature of the molecular alterations also depended on MMR status. Mutations in genes such as TP53 and KRAS were always clonal in MMRp-CRCs but occurred as subclonal events in MMRd-CRCs. Gene amplification was implicated in the progression of MMRp tumors, but not in MMRd tumors, in which clonal diversity was due to accumulation of mutations in genes of different pathways such as NOTCH, MMR, or PIK3CA. In summary, intertumor and intratumor molecular heterogeneity in HG-CRCs is mainly due to MMR status.
Collapse
Affiliation(s)
- Cristian Perna
- Department of Pathology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, 28034 Madrid, Spain; (C.P.); (A.N.); (I.R.-C.); (T.C.-C.); (E.C.); (S.L.); (A.C.); (A.S.); (D.P.)
- Departamento de Medicina y Especialidades Médicas, Facultad de Medicina, Universidad de Alcalá, 28029 Madrid, Spain
| | - Antonia Navarro
- Department of Pathology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, 28034 Madrid, Spain; (C.P.); (A.N.); (I.R.-C.); (T.C.-C.); (E.C.); (S.L.); (A.C.); (A.S.); (D.P.)
| | - Ignacio Ruz-Caracuel
- Department of Pathology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, 28034 Madrid, Spain; (C.P.); (A.N.); (I.R.-C.); (T.C.-C.); (E.C.); (S.L.); (A.C.); (A.S.); (D.P.)
| | - Tamara Caniego-Casas
- Department of Pathology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, 28034 Madrid, Spain; (C.P.); (A.N.); (I.R.-C.); (T.C.-C.); (E.C.); (S.L.); (A.C.); (A.S.); (D.P.)
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain; (F.L.); (R.F.)
| | - Eva Cristóbal
- Department of Pathology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, 28034 Madrid, Spain; (C.P.); (A.N.); (I.R.-C.); (T.C.-C.); (E.C.); (S.L.); (A.C.); (A.S.); (D.P.)
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain; (F.L.); (R.F.)
| | - Susanna Leskelä
- Department of Pathology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, 28034 Madrid, Spain; (C.P.); (A.N.); (I.R.-C.); (T.C.-C.); (E.C.); (S.L.); (A.C.); (A.S.); (D.P.)
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain; (F.L.); (R.F.)
| | - Federico Longo
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain; (F.L.); (R.F.)
- Department of Medical Oncology, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Alejandra Caminoa
- Department of Pathology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, 28034 Madrid, Spain; (C.P.); (A.N.); (I.R.-C.); (T.C.-C.); (E.C.); (S.L.); (A.C.); (A.S.); (D.P.)
| | - Almudena Santón
- Department of Pathology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, 28034 Madrid, Spain; (C.P.); (A.N.); (I.R.-C.); (T.C.-C.); (E.C.); (S.L.); (A.C.); (A.S.); (D.P.)
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain; (F.L.); (R.F.)
| | - Reyes Ferreiro
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain; (F.L.); (R.F.)
- Department of Medical Oncology, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - David Pizarro
- Department of Pathology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, 28034 Madrid, Spain; (C.P.); (A.N.); (I.R.-C.); (T.C.-C.); (E.C.); (S.L.); (A.C.); (A.S.); (D.P.)
| | | | - José Palacios
- Department of Pathology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, 28034 Madrid, Spain; (C.P.); (A.N.); (I.R.-C.); (T.C.-C.); (E.C.); (S.L.); (A.C.); (A.S.); (D.P.)
- Departamento de Medicina y Especialidades Médicas, Facultad de Medicina, Universidad de Alcalá, 28029 Madrid, Spain
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain; (F.L.); (R.F.)
- Correspondence: ; Tel.: +34-913-368-337
| |
Collapse
|
47
|
Singh H, Li YY, Spurr LF, Shinagare AB, Abhyankar R, Reilly E, Brais LK, Nag A, Ducar MD, Thorner AR, Shapiro GI, Keller RB, Siletti C, Clark JW, Farago AF, Lin JJ, Demetri GD, Gujrathi R, Kulke MH, MacConaill LE, Ligon AH, Sicinska E, Meyerson ML, Meyerhardt JA, Cherniack AD, Wolpin BM, Ng K, Giannakis M, Hornick JL, Cleary JM. Molecular Characterization and Therapeutic Targeting of Colorectal Cancers Harboring Receptor Tyrosine Kinase Fusions. Clin Cancer Res 2021; 27:1695-1705. [PMID: 33414136 DOI: 10.1158/1078-0432.ccr-20-4073] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/23/2020] [Accepted: 01/04/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Receptor tyrosine kinase fusions in colorectal cancers are rare, but potentially therapeutically relevant. We describe clinical, molecular, and pathologic attributes of RTK fusion-associated colorectal cancer. EXPERIMENTAL DESIGN We identified all cases with RTK fusions in patients with colorectal cancer seen at Dana-Farber Cancer Institute (Boston, MA) who underwent OncoPanel testing between 2013 and 2018. Clinical, histologic, and molecular features were extracted from the patient charts and molecular testing results. RESULTS We identified 12 driver oncogenic fusions in various RTKs. These fusions occurred exclusively in BRAF and RAS wild-type tumors and were enriched in right-sided and mismatch repair-deficient (MMR-D) colorectal cancers. All of the MMR-D colorectal cancers with RTK fusions were found in tumors with acquired MMR-D due to MLH1 promoter hypermethylation and one was associated with a sessile serrated polyp. Molecular profiles of MMR-D colorectal cancer with RTK fusions largely resembled BRAF V600E-mutated MMR-D colorectal cancer, rather than those secondary to Lynch syndrome. We describe two patients with fusion-associated microsatellite stable (MSS) colorectal cancer who derived clinical benefit from therapeutic targeting of their translocation. The first harbored an ALK-CAD fusion and received sequential crizotinib and alectinib therapy for a total of 7.5 months until developing an ALK L1196Q gatekeeper mutation. The second patient, whose tumor contained an ROS1-GOPC fusion, continues to benefit from entrectinib after 9 months of therapy. CONCLUSIONS RTK fusions in colorectal cancer are a rare, but important disease subgroup that occurs in RAS and BRAF wild-type tumors. Despite enrichment in acquired MMR-D tumors, RTK fusions also occur in MSS colorectal cancer and provide an important therapeutic target.
Collapse
Affiliation(s)
- Harshabad Singh
- Division of Gastrointestinal Cancers, Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
| | - Yvonne Y Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Liam F Spurr
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Atul B Shinagare
- Department of Radiology, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Boston, Massachusetts
| | - Ritika Abhyankar
- Division of Gastrointestinal Cancers, Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Emma Reilly
- Division of Gastrointestinal Cancers, Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Lauren K Brais
- Division of Gastrointestinal Cancers, Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Anwesha Nag
- Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Matthew D Ducar
- Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Aaron R Thorner
- Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Geoffrey I Shapiro
- Early Drug Development Center, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Rachel B Keller
- Division of Gastrointestinal Cancers, Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Cheta Siletti
- Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jeffrey W Clark
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Anna F Farago
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Jessica J Lin
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - George D Demetri
- Division of Sarcoma, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Rahul Gujrathi
- Department of Radiology, Dana-Farber Cancer Institute/Brigham and Women's Hospital, Boston, Massachusetts
| | - Matthew H Kulke
- Department of Medical Oncology, Boston University Medical Center, Boston, Massachusetts
| | - Laura E MacConaill
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Azra H Ligon
- Division of Clinical Cytogenetics, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ewa Sicinska
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Matthew L Meyerson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Jeffrey A Meyerhardt
- Division of Gastrointestinal Cancers, Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Andrew D Cherniack
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Brian M Wolpin
- Division of Gastrointestinal Cancers, Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Kimmie Ng
- Division of Gastrointestinal Cancers, Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Marios Giannakis
- Division of Gastrointestinal Cancers, Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.,Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Jason L Hornick
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - James M Cleary
- Division of Gastrointestinal Cancers, Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
48
|
Yamamoto H, Nozaki Y, Sugii A, Taguchi K, Hongo T, Jiromaru R, Sato M, Nakano T, Hashimoto K, Fujiwara M, Oda Y. Pan-tropomyosin receptor kinase immunoreactivity, ETV6-NTRK3 fusion subtypes, and RET rearrangement in salivary secretory carcinoma. Hum Pathol 2020; 109:37-44. [PMID: 33301751 DOI: 10.1016/j.humpath.2020.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 10/22/2022]
Abstract
Salivary secretory carcinoma (SASC) is frequently associated with ETV6-neurotrophic tyrosine receptor kinase (NTRK) 3 fusion and more rarely with RET, MET, or ALK rearrangement. We aimed to elucidate the potential diagnostic utility of pan-tropomyosin receptor kinase (Trk) immunohistochemistry and its relationship with the fusion gene subtype in SASC. We examined 33 cases of SASC for immunoexpression of pan-Trk, ALK and ROS1, and gene rearrangement of the ETV6, NTRK3, and RET genes using fluorescence in situ hybridization (FISH) and reverse transcription-polymerase chain reaction (RT-PCR). Thirty (90.9%) of 33 SASCs harbored ETV6-NTRK3 fusion gene transcripts by RT-PCR and/or both ETV6 and NTRK3 gene rearrangements by FISH, and 3 cases (9.1%) had RET gene rearrangement. Most NTRK3-rearranged SASCs (27/33 cases; 81.8%) had conventional ETV6 exon 5-NTRK3 exon 15 fusion, whereas 2 cases (6.1%) had both the conventional fusion and a novel ETV6 exon 4-NTRK3 exon 15 fusion variant. In the remaining one case (3%), only FISH revealed both ETV6 and NTRK3 rearrangements, suggesting an ETV6-NTRK3 fusion with an as yet undetermined break point. All 30 SASCs with ETV6-NTRK3 fusion and/or NTRK3 rearrangement showed nuclear and cytoplasmic immunoreactivity for pan-Trk. In contrast, 3 SASCs with RET rearrangement showed negative or only weak cytoplasmic staining for pan-Trk. There was no case harboring ALK and ROS1 rearrangements. All 17 non-SASC tumors were negative for pan-Trk. The results suggest that nuclear and cytoplasmic immunoreactivity for pan-TRK may be helpful to identify ETV6-NTRK3-fused SASCs and to distinguish them from RET-rearranged SASCs and morphological mimics.
Collapse
Affiliation(s)
- Hidetaka Yamamoto
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582 Japan.
| | - Yui Nozaki
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582 Japan
| | - Azusa Sugii
- Departments of Pathology, National Kyushu Cancer Center, Fukuoka, 811-1395 Japan
| | - Kenichi Taguchi
- Departments of Pathology, National Kyushu Cancer Center, Fukuoka, 811-1395 Japan
| | - Takahiro Hongo
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582 Japan; Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582 Japan
| | - Rina Jiromaru
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582 Japan; Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582 Japan
| | - Masanobu Sato
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582 Japan
| | - Takafumi Nakano
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582 Japan
| | - Kazuki Hashimoto
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582 Japan
| | - Minako Fujiwara
- Departments of Pathology, National Kyushu Medical Center, Fukuoka, 810-8563 Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582 Japan
| |
Collapse
|
49
|
Lee YC, Chen JY, Huang CJ, Chen HS, Yang AH, Hang JF. Detection of NTRK1/3 Rearrangements in Papillary Thyroid Carcinoma Using Immunohistochemistry, Fluorescent In Situ Hybridization, and Next-Generation Sequencing. Endocr Pathol 2020; 31:348-358. [PMID: 32880785 DOI: 10.1007/s12022-020-09648-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/24/2020] [Indexed: 01/07/2023]
Abstract
NTRK1/3 rearrangements have been reported in 2.3-3.4% of papillary thyroid carcinoma (PTC) and are regarded as potential therapeutic targets. Recently, the application of immunohistochemistry (IHC) to detect NTRK rearrangements has been widely discussed. The current study aimed to characterize the clinicopathological features of PTC with NTRK1/3 fusions, to examine the utility of pan-TRK IHC, and to compare IHC with fluorescent in situ hybridization (FISH) and next-generation sequencing (NGS). In a cohort of 525 consecutive PTC cases, 60 BRAFV600E-negative cases underwent complete analyses of FISH, and 12 (2.3%) cases with NTRK1/3 break-apart were found. A novel ERC1-NTRK3 fusion was identified by NGS in one case. Pathological features of non-infiltrative tumor border, clear cell change, and reduced nuclear elongation and irregularity were significantly more common in NTRK1/3-rearranged PTC when compared with 48 BRAFV600E-negative non-NTRK1/3 PTC cases. In whole tissue sections, pan-TRK IHC was positive in 3/7 (42.9%) cases with an ETV6-NTRK3 rearrangement including 2 cases with low percentage of stained tumor cells, 2/3 (66.7%) with non-ETV6 NTRK3 rearrangements, and 2/2 (100%) with NTRK1 rearrangements. All FISH-negative cases were negative for pan-TRK in tissue microarray sections. As a result, pan-TRK IHC showed a sensitivity of 58.3% and specificity of 100% for NTRK1/3 rearrangements in BRAFV600E-negative PTC. In conclusion, NTRK1/3-rearranged PTC shared some unique morphologic features. Pan-TRK IHC showed high specificity and moderate sensitivity for NTRK1/3-rearranged PTC and should be interpreted with caution due to staining heterogeneity. Based on the above findings, we propose an algorithm integrating morphology, IHC, and molecular testing to detect NTRK1/3 rearrangements in PTC.
Collapse
Affiliation(s)
- Yu-Cheng Lee
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, No. 201, Section 2, Shipai Road, Taipei, 11217, Taiwan
| | - Jui-Yu Chen
- Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- National Yang-Ming University School of Medicine, Taipei, Taiwan
- Institute of Pharmacology, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Chun-Jui Huang
- National Yang-Ming University School of Medicine, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Harn-Shen Chen
- National Yang-Ming University School of Medicine, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - An-Hang Yang
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, No. 201, Section 2, Shipai Road, Taipei, 11217, Taiwan
- National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Jen-Fan Hang
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, No. 201, Section 2, Shipai Road, Taipei, 11217, Taiwan.
- National Yang-Ming University School of Medicine, Taipei, Taiwan.
| |
Collapse
|
50
|
Wang J, Li R, He Y, Yi Y, Wu H, Liang Z. Next-generation sequencing reveals heterogeneous genetic alterations in key signaling pathways of mismatch repair deficient colorectal carcinomas. Mod Pathol 2020; 33:2591-2601. [PMID: 32620917 DOI: 10.1038/s41379-020-0612-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 01/21/2023]
Abstract
Colorectal carcinoma (CRC) with deficient mismatch repair (dMMR) is an etiologically heterogeneous molecular entity. We investigated the genetic profile, focusing on key signaling pathways and molecular diversity of dMMR CRCs. In this study, next-generation sequencing was applied to 156 consecutive dMMR CRCs and 225 randomly selected proficient MMR (pMMR) CRCs diagnosed between July 2015 and December 2019 at Peking Union Medical College Hospital. Genetic alterations and MLH1 promoter hypermethylation (MLH1me+) were analyzed. Among the most frequently mutated genes, RNF43, ARID1A, PIK3CA, ATM, and BRCA2 mutants were enriched in dMMR CRCs, whereas APC and TP53 mutations were enriched in pMMR CRCs. In dMMR group, RNF43, APC, ARID1A, and BRCA2 mutations were largely microsatellite instability events. WNT pathway was commonly altered regardless of MMR status. Compared to pMMR CRCs, dMMR CRCs had remarkably more prevalent PI3K, RTK-RAS, TGFβ, and DNA damage repair pathway alterations and more multiple mutations in WNT and PI3K pathways. Within dMMR tumors, mutual exclusivity occurred between CTNNB1 mutation and APC or RNF43 mutation, while coexistence existed between BRAF and RNF43 mutation, as well as RAS and APC mutation. MLH1me+ dMMR CRCs had significantly more frequent RNF43 mutations but less frequent KRAS, APC, and CTNNB1 mutations comparing to MLH1-unmethylated dMMR CRCs. RNF43/BRAF comutations were detected in MLH1me+ dMMR CRCs, whereas RAS/APC comutations were largely detected in Lynch syndrome-associated cases. RNF43 mutation was independently associated with MLH1me+ rather than BRAF mutations. dMMR CRCs bearing receptor tyrosine kinase fusion demonstrated no additional RTK-RAS mutations, significantly fewer PI3K alterations and more TGFBR2 mutations than other dMMR tumors. Our study revealed that dMMR CRCs had distinctive gene mutation spectra and signaling pathway interaction patterns compared to proficient mismatch repair (pMMR) CRCs, and molecular heterogeneity was evident for these divergent oncogenic pathways. These findings justify the use of individualized therapy targeted to dMMR CRC subgroups.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruiyu Li
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yangzhige He
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuting Yi
- Geneplus-Beijing Institute, Beijing, China
| | - Huanwen Wu
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Zhiyong Liang
- Department of Pathology, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|