1
|
Hye T, Hossain MR, Saha D, Foyez T, Ahsan F. Emerging biologics for the treatment of pulmonary arterial hypertension. J Drug Target 2023; 31:1-15. [PMID: 37026714 PMCID: PMC10228297 DOI: 10.1080/1061186x.2023.2199351] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 04/08/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a rare pulmonary vascular disorder, wherein mean systemic arterial pressure (mPAP) becomes abnormally high because of aberrant changes in various proliferative and inflammatory signalling pathways of pulmonary arterial cells. Currently used anti-PAH drugs chiefly target the vasodilatory and vasoconstrictive pathways. However, an imbalance between bone morphogenetic protein receptor type II (BMPRII) and transforming growth factor beta (TGF-β) pathways is also implicated in PAH predisposition and pathogenesis. Compared to currently used PAH drugs, various biologics have shown promise as PAH therapeutics that elicit their therapeutic actions akin to endogenous proteins. Biologics that have thus far been explored as PAH therapeutics include monoclonal antibodies, recombinant proteins, engineered cells, and nucleic acids. Because of their similarity with naturally occurring proteins and high binding affinity, biologics are more potent and effective and produce fewer side effects when compared with small molecule drugs. However, biologics also suffer from the limitations of producing immunogenic adverse effects. This review describes various emerging and promising biologics targeting the proliferative/apoptotic and vasodilatory pathways involved in PAH pathogenesis. Here, we have discussed sotatercept, a TGF-β ligand trap, which is reported to reverse vascular remodelling and reduce PVR with an improved 6-minute walk distance (6-MWDT). We also elaborated on other biologics including BMP9 ligand and anti-gremlin1 antibody, anti-OPG antibody, and getagozumab monoclonal antibody and cell-based therapies. Overall, recent literature suggests that biologics hold excellent promise as a safe and effective alternative to currently used PAH therapeutics.
Collapse
Affiliation(s)
- Tanvirul Hye
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, Michigan
| | - Md Riajul Hossain
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas
| | - Dipongkor Saha
- Department of Pharmaceutical and Biomedical Sciences, California Northstate College of Pharmacy, Elk Grove, California
| | - Tahmina Foyez
- Department of Hematology Blood Research Center School of Medicine, The University of North Carolina at Chapel Hill, North Carolina
| | - Fakhrul Ahsan
- Department of Pharmaceutical and Biomedical Sciences, California Northstate College of Pharmacy, Elk Grove, California
- MedLuidics LLC, Elk Grove, California, USA
| |
Collapse
|
2
|
Amtaghri S, Eddouks M. Study of the Antihypertensive and Vasorelaxant Activities of Haloxylon scoparium in Rats. Cardiovasc Hematol Agents Med Chem 2023; 21:139-153. [PMID: 36017835 DOI: 10.2174/1871525720666220823163542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/05/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
AIMS The work aimed to study the antihypertensive ability of Haloxylon scoparium. BACKGROUND Haloxylon scoparium Pomel is used to treat various diseases, including hypertension. OBJECTIVE This study aimed to evaluate the antihypertensive effect of Haloxylon scoparium (H. scoparium) in hypertensive rats, and to evaluate its probable vasorelaxant activity. MATERIALS AND METHODS The aqueous extract of Haloxylon scoparium (AEHS) was prepared and used to investigate its antihypertensive ability in L-NAME(Nω-L-arginine methyl ester)-induced hypertensive rats, and its vasorelaxant activity was studied on the isolated thoracic aorta of rats. The acute and subchronic effects of (AEHS) on blood pressure parameters were evaluated after oral administration of AEHS (60 and 100 mg/kg body weight) for 6 h for the acute experiment and for 7 days for the subchronic test. RESULTS The results indicated that AEHS decreased blood pressure parameters (systolic, mean, and diastolic blood pressure) after repeated oral administration in hypertensive rats without affecting normal rats. In addition, AEHS (375-1250 μg/mL) revealed a vasorelaxant effect in thoracic aortic rings precontracted with norepinephrine (NE) (10 μM) or KCl (80 mM). This effect was partially decreased in the presence of nifedipine by inhibition of the vascular calcium channel pathway in isolated rat thoracic aorta. CONCLUSION The study demonstrates the beneficial effect of Haloxylon scoparium as an antihypertensive agent. Moreover, this plant exerts vasorelaxant activity via the blockade of Ca2+ channels.
Collapse
Affiliation(s)
- Smail Amtaghri
- Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, BP 509, Boutalamine, Errachidia, 52000, Morocco
| | - Mohamed Eddouks
- Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, BP 509, Boutalamine, Errachidia, 52000, Morocco
| |
Collapse
|
3
|
Yen TA, Huang HC, Wu ET, Chou HW, Chou HC, Chen CY, Huang SC, Chen YS, Lu F, Wu MH, Tsao PN, Wang CC. Microrna-486-5P Regulates Human Pulmonary Artery Smooth Muscle Cell Migration via Endothelin-1. Int J Mol Sci 2022; 23:ijms231810400. [PMID: 36142307 PMCID: PMC9499400 DOI: 10.3390/ijms231810400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/30/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a fatal or life-threatening disorder characterized by elevated pulmonary arterial pressure and pulmonary vascular resistance. Abnormal vascular remodeling, including the proliferation and phenotypic modulation of pulmonary artery smooth muscle cells (PASMCs), represents the most critical pathological change during PAH development. Previous studies showed that miR-486 could reduce apoptosis in different cells; however, the role of miR-486 in PAH development or HPASMC proliferation and migration remains unclear. After 6 h of hypoxia treatment, miR-486-5p was significantly upregulated in HPASMCs. We found that miR-486-5p could upregulate the expression and secretion of ET-1. Furthermore, transfection with a miR-486-5p mimic could induce HPASMC proliferation and migration. We also found that miRNA-486-5p could downregulate the expression of SMAD2 and the phosphorylation of SMAD3. According to previous studies, the loss of SMAD3 may play an important role in miRNA-486-5p-induced HPASMC proliferation. Although the role of miRNA-486-5p in PAH in in vivo models still requires further investigation and confirmation, our findings show the potential roles and effects of miR-486-5p during PAH development.
Collapse
Affiliation(s)
- Ting-An Yen
- Department of Pediatrics, National Taiwan University Children Hospital, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Hsin-Chung Huang
- Department of Pediatrics, National Taiwan University Children Hospital, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - En-Ting Wu
- Department of Pediatrics, National Taiwan University Children Hospital, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Heng-Wen Chou
- Department of Surgery, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Hung-Chieh Chou
- Department of Pediatrics, National Taiwan University Children Hospital, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Chien-Yi Chen
- Department of Pediatrics, National Taiwan University Children Hospital, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Shu-Chien Huang
- Department of Surgery, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Yih-Sharng Chen
- Department of Surgery, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Frank Lu
- Department of Pediatrics, National Taiwan University Children Hospital, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Mei-Hwan Wu
- Department of Pediatrics, National Taiwan University Children Hospital, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Po-Nien Tsao
- Department of Pediatrics, National Taiwan University Children Hospital, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Ching-Chia Wang
- Department of Pediatrics, National Taiwan University Children Hospital, National Taiwan University College of Medicine, Taipei 100, Taiwan
- Correspondence:
| |
Collapse
|
4
|
Amthaghri S, Amssayef A, Slaoui M, Eddouks M. Antihypertensive and Vasorelaxant Effects of Hibiscus rosa-sinensis through Angiotensin-Converting Enzyme-2 (ACE-2), and Ca2+ channels Pathways. Cardiovasc Hematol Disord Drug Targets 2022; 22:CHDDT-EPUB-122011. [PMID: 35352670 DOI: 10.2174/1871529x22666220329190331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/22/2021] [Accepted: 02/10/2022] [Indexed: 11/22/2022]
Abstract
AIMS The aim of the study was to assess the antihypertensive activity of Hibiscus rosa-sinensis. BACKGROUND Hibiscus rosa-sinensis is used traditionally to treat hypertension. OBJECTIVE The goal of the study was to investigate the effect of the aqueous extract of Hibiscus rosa-sinensis flowers (AEHRS) on resting blood pressure in rats. MATERIAL AND METHODS In the present study, AEHRS was prepared and its antihypertensive activity was evaluated using in vivo and in vitro studies. In the in vivo study, hypertensive and normotensive rats were treated by AEHRS (100 mg/kg) orally for 6 hours in the acute treatment and for 7 days in the subchronic treatment. Systolic, diastolic, and mean arterial blood pressure values and heart rate were then recorded using a tail cuff and a computer-assisted monitoring device. To assess the vasorelaxant activity of AEHRS, isolated thoracic aortic rings were suspended in a tissue bath and changes in tension were recorded using a data acquisition system. Potential pathways involved in the vasorelaxant activity were evaluated using several standard pharmacological agents. RESULTS The results indicated that repeated oral administration of AEHRS during 7 days lowered systolic, diastolic, and mean arterial blood pressure in hypertensive rats without affecting normotensive rats. Furthermore, the data revealed that AEHRS exerts vasorelaxant properties via an endothelium-independent pathway. More interestingly, the study demonstrates that the vasorelaxant capacity of AEHRS seems to be exerted through the stimulation of angiotensin-converting enzyme-2 (ACE-2) and the inhibition of Ca2+ channels pathway. CONCLUSION The present study revealed that aqueous extract of Hibiscus rosa-sinensis has a significant antihypertensive activity and that its vasorelaxant effect may be mediated through stimulation of ACE-2, and inhibition of the Ca2+ channels.
Collapse
Affiliation(s)
- Smail Amthaghri
- Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, Errachidia, Morocco. BP 509 Errachidia, Morocco
| | - Ayoub Amssayef
- Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, Errachidia, Morocco. BP 509 Errachidia, Morocco
| | - Miloudia Slaoui
- Team EMDD, Center of CERNE2D, Ecole Supérieure de Technologie, Boulevard Mohamed VI Salé, Université Mohammed V, Rabat, Morocco
| | - Mohamed Eddouks
- Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, Errachidia, Morocco. BP 509 Errachidia, Morocco
| |
Collapse
|
5
|
Kaymak E, Akin AT, Tufan E, Başaran KE, Taheri S, Özdamar S, Yakan B. The effect of chloroquine on the TRPC1, TRPC6, and CaSR in the pulmonary artery smooth muscle cells in hypoxia-induced experimental pulmonary artery hypertension. J Biochem Mol Toxicol 2020; 35:e22636. [PMID: 32956540 DOI: 10.1002/jbt.22636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/30/2020] [Accepted: 09/09/2020] [Indexed: 01/10/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by a constant high pulmonary artery pressure and the remodeling of the vessel. Chloroquine (CLQ) has been observed to inhibit calcium influx. The aim of this study is to investigate the effect of CLQ on transient receptor cationic proteins (TRPC1 and TRPC6) and extracellular calcium-sensitive receptor (CaSR) in a hypoxic PAH model. In this study, 8- to 12-week-old 32 male Wistar albino rats, weighing 200 to 300 g, were used. The rats were studied in four groups, including normoxy control, n = 8; normoxy CLQ (50 mg/kg/28 d), n = 8; hypoxia (HX; 10% oxygen/28 d) control, n = 8; and HX (10% oxygen/28 d) + CLQ (50 mg/kg), N = 8. Pulmonary arterial medial wall thickness, pulmonary arteriole wall, TRPC1, TRPC6, and CaSR expressions were evaluated by immunohistochemistry, polymerase chain reaction, and enzyme-linked immunosorbent assay methods. At the end of the experiment, a statistically significant increase in the medial wall thickness was observed in the hypoxic group as compared with the control group. However, in the HX + CLQ group, there was a statistically significant decrease in the vessel medial wall as compared with the HX group. In the TRPC1-, TRPC6-, and CaSR-immunopositive cell numbers, messenger RNA expressions and biochemical results showed an increase in the HX group, whereas they were decreased in the HX + CLQ group. The inhibitory effect of CLQ on calcium receptors in arterioles was observed in PAH.
Collapse
Affiliation(s)
- Emin Kaymak
- Department of Histology and Embryology, Yozgat Bozok University, Yozgat, Turkey
| | | | - Esra Tufan
- Department of Physiology, Erciyes University, Kayseri, Turkey
| | | | - Serpil Taheri
- Department of Medical Biology, Erciyes University, Kayseri, Turkey
| | - Saim Özdamar
- Department of Histology and Embryology, Pamukkale University, Denizli, Turkey
| | - Birkan Yakan
- Department of Histology and Embryology, Erciyes University, Kayseri, Turkey
| |
Collapse
|
6
|
Bisserier M, Janostiak R, Lezoualc’h F, Hadri L. Targeting epigenetic mechanisms as an emerging therapeutic strategy in pulmonary hypertension disease. VASCULAR BIOLOGY (BRISTOL, ENGLAND) 2020; 2:R17-R34. [PMID: 32161845 PMCID: PMC7065685 DOI: 10.1530/vb-19-0030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a multifactorial cardiopulmonary disease characterized by an elevation of pulmonary artery pressure (PAP) and pulmonary vascular resistance (PVR), which can lead to right ventricular (RV) failure, multi-organ dysfunction, and ultimately to premature death. Despite the advances in molecular biology, the mechanisms underlying pulmonary hypertension (PH) remain unclear. Nowadays, there is no curative treatment for treating PH. Therefore, it is crucial to identify novel, specific therapeutic targets and to offer more effective treatments against the progression of PH. Increasing amounts of evidence suggest that epigenetic modification may play a critical role in the pathogenesis of PAH. In the presented paper, we provide an overview of the epigenetic mechanisms specifically, DNA methylation, histone acetylation, histone methylation, and ncRNAs. As the recent identification of new pharmacological drugs targeting these epigenetic mechanisms has opened new therapeutic avenues, we also discuss the importance of epigenetic-based therapies in the context of PH.
Collapse
Affiliation(s)
- Malik Bisserier
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Radoslav Janostiak
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Frank Lezoualc’h
- Inserm, UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, University of Toulouse, Toulouse Cedex 4, France
| | - Lahouaria Hadri
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
7
|
Yoon KL. New Therapeutic Target for Pulmonary Arterial Hypertension. Korean Circ J 2018; 48:1145-1147. [PMID: 30403018 PMCID: PMC6221863 DOI: 10.4070/kcj.2018.0250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 08/07/2018] [Indexed: 01/02/2023] Open
Affiliation(s)
- Kyung Lim Yoon
- Department of Pediatrics, Kyung Hee University Hospital at Gangdong, Seoul, Korea.
| |
Collapse
|
8
|
Hu CJ, Zhang H, Laux A, Pullamsetti SS, Stenmark KR. Mechanisms contributing to persistently activated cell phenotypes in pulmonary hypertension. J Physiol 2018; 597:1103-1119. [PMID: 29920674 PMCID: PMC6375873 DOI: 10.1113/jp275857] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/16/2018] [Indexed: 12/24/2022] Open
Abstract
Chronic pulmonary hypertension (PH) is characterized by the accumulation of persistently activated cell types in the pulmonary vessel exhibiting aberrant expression of genes involved in apoptosis resistance, proliferation, inflammation and extracellular matrix (ECM) remodelling. Current therapies for PH, focusing on vasodilatation, do not normalize these activated phenotypes. Furthermore, current approaches to define additional therapeutic targets have focused on determining the initiating signals and their downstream effectors that are important in PH onset and development. Although these approaches have produced a large number of compelling PH treatment targets, many promising human drugs have failed in PH clinical trials. Herein, we propose that one contributing factor to these failures is that processes important in PH development may not be good treatment targets in the established phase of chronic PH. We hypothesize that this is due to alterations of chromatin structure in PH cells, resulting in functional differences between the same factor or pathway in normal or early PH cells versus cells in chronic PH. We propose that the high expression of genes involved in the persistently activated phenotype of PH vascular cells is perpetuated by an open chromatin structure and multiple transcription factors (TFs) via the recruitment of high levels of epigenetic regulators including the histone acetylases P300/CBP, histone acetylation readers including BRDs, the Mediator complex and the positive transcription elongation factor (Abstract figure). Thus, determining how gene expression is controlled by examining chromatin structure, TFs and epigenetic regulators associated with aberrantly expressed genes in pulmonary vascular cells in chronic PH, may uncover new PH therapeutic targets.
![]()
Collapse
Affiliation(s)
- Cheng-Jun Hu
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Hui Zhang
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Aya Laux
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Soni S Pullamsetti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany.,Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), member of the DZL, Justus-Liebig University, Giessen, Germany
| | - Kurt R Stenmark
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
9
|
Suzuki H, Mizumoto T, Seto Y, Sato H, Onoue S. Respirable powder formulation of a shortened vasoactive intestinal peptide analog for treatment of airway inflammatory diseases. J Pept Sci 2018; 24. [PMID: 29441631 DOI: 10.1002/psc.3069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/09/2018] [Accepted: 01/17/2018] [Indexed: 12/19/2022]
Abstract
The aim of present study was to develop a respirable powder (RP) of a shortened vasoactive intestinal peptide (VIP) analog for inhalation. VIP and C-terminally truncated VIP analogs were synthesized with a solid-phase method. A structure-activity relationship (SAR) study was carried out in terms with binding and relaxant activities of the peptides. Prepared RP formulation of a shortened VIP analog was physicochemically characterized by morphological, in vitro aerodynamic, and pharmacological assessments. The SAR study demonstrated that the N-terminal 23 amino acid residues were required for biological activity of VIP. Upon chemical modification of VIP(1-23), [R15, 20, 21 , L17 ]-VIP(1-23) was newly developed, which had higher binding activity in rat lung and smooth muscle relaxant effect in mouse stomach than VIP(1-23). The [R15, 20, 21 , L17 ]-VIP(1-23)-based RP, [R15, 20, 21 , L17 ]-VIP(1-23)/RP, exhibited fine in vitro inhalation performance. Airway inflammation evoked by sensitization of antigen in rats was attenuated by pre-treatment with the [R15, 20, 21 , L17 ]-VIP(1-23)/RP at a dose of 50 μg-[R15, 20, 21 , L17 ]-VIP(1-23)/rat as evidenced by a 70% reduction of recruited inflammatory cells in bronchoalveolar lavage fluid. On the basis of these results, [R15, 20, 21 , L17 ]-VIP(1-23)/RP might be a promising agent for treatment of airway inflammatory diseases.
Collapse
Affiliation(s)
- Hiroki Suzuki
- Department of Pharmacokinetics and Pharmacodynamics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Takahiro Mizumoto
- Sales Department, ILS Inc., 1-2-1 Kubogaoka, Moriya, Ibaraki, 302-0104, Japan
| | - Yoshiki Seto
- Department of Pharmacokinetics and Pharmacodynamics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Hideyuki Sato
- Department of Pharmacokinetics and Pharmacodynamics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Satomi Onoue
- Department of Pharmacokinetics and Pharmacodynamics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| |
Collapse
|
10
|
Jiang Y, Zhou Y, Peng G, Tian H, Pan D, Liu L, Yang X, Li C, Li W, Chen L, Ran P, Dai A. Two-pore channels mediated receptor-operated Ca 2+ entry in pulmonary artery smooth muscle cells in response to hypoxia. Int J Biochem Cell Biol 2018; 97:28-35. [PMID: 29355755 DOI: 10.1016/j.biocel.2018.01.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 01/26/2023]
Abstract
The aim of this study was to investigate the influence of two-pore channels mediated receptor-operated Ca2+ entry on pulmonary arterial smooth muscle cell (PASMC) under hypoxia conditions. PASMCs were separated using the direct adherent culture method. The cultured cells were observed under optic microscope and the phenotypes of cells were identified by immunohistochemistry. The expression of NAADP was examined by ELISA. CaN, TPC1, TPC2 and NFATc3 protein levels were examined using Western blotting. Real-time PCR was utilized to detect the level of TPC1 and TPC2 mRNA. Fluorescent probe technique was used to explore the [Ca2+]i in PASMCs. Proliferation and migration of PASMCs were examined by MTT assay and Transwell, respectively. The results showed that cells displayed a typical "peak-valley" growth pattern and positive for α-actin staining. Expression of NAADP, CaN, NFATc3, TPC1 and TPC2 under PASMCs exposed to hypoxia after 24 h and 48 h were higher than control, however, cells treated with Ned-19 were significantly decreased compared with control. Levels of CaN and NFATc3 protein collected from RPASMCs transfected with TPCs siRNA were observably decreased than scrambled siRNA. Under hypoxia condition for 12 h, 24 h and 48 h, TPC1 and TPC2 mRNA levels were higher in PASMCs compared as control. The [Ca2+]i evoked by hypoxia significantly increased than normoxia group. Nevertheless, the [Ca2+]i of the groups treated with Ned-19 and transfected with TPCs siRNA were markedly lower compared with control. In conclusion, the TPCs influence on function of pulmonary artery smooth muscle cells by mediated Ca2+ Signals under hypoxia condition.
Collapse
Affiliation(s)
- Yongliang Jiang
- Respiratory Medicine, Hunan Provincial People's Hospital, Changsha 410219, PR China
| | - Yumin Zhou
- State Key Lab of Respiratory Diseases, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, PR China
| | - Gongyong Peng
- State Key Lab of Respiratory Diseases, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, PR China
| | - Heshen Tian
- Respiratory Medicine, Hunan Provincial People's Hospital, Changsha 410219, PR China
| | - Dan Pan
- Respiratory Medicine, Hunan Provincial People's Hospital, Changsha 410219, PR China
| | - Lei Liu
- Respiratory Medicine, Hunan Provincial People's Hospital, Changsha 410219, PR China
| | - Xing Yang
- Respiratory Medicine, Hunan Provincial People's Hospital, Changsha 410219, PR China
| | - Chao Li
- Respiratory Medicine, Hunan Provincial People's Hospital, Changsha 410219, PR China
| | - Wen Li
- Respiratory Medicine, Hunan Provincial People's Hospital, Changsha 410219, PR China
| | - Ling Chen
- Respiratory Medicine, Hunan Provincial People's Hospital, Changsha 410219, PR China
| | - Pixin Ran
- State Key Lab of Respiratory Diseases, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, PR China.
| | - Aiguo Dai
- Respiratory Medicine, Hunan Provincial People's Hospital, Changsha 410219, PR China; Institute of Respiratory Medicine, Changsha Medical College, Changsha 410219, PR China.
| |
Collapse
|
11
|
Zhou C, Crockett ES, Batten L, McMurtry IF, Stevens T. Pulmonary vascular dysfunction secondary to pulmonary arterial hypertension: insights gained through retrograde perfusion. Am J Physiol Lung Cell Mol Physiol 2018; 314:L835-L845. [PMID: 29345199 DOI: 10.1152/ajplung.00201.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Here, we tested the hypothesis that severe pulmonary arterial hypertension impairs retrograde perfusion. To test this hypothesis, pulmonary arterial hypertension was induced in Fischer rats using a single injection of Sugen 5416 followed by 3 wk of exposure to 10% hypoxia and then 2 wk of normoxia. This Sugen 5416 and hypoxia regimen caused severe pulmonary arterial hypertension, with a Fulton index of 0.73 ± 0.07, reductions in both the pulmonary arterial acceleration time and pulmonary arterial acceleration to pulmonary arterial ejection times ratio, and extensive medial hypertrophy and occlusive neointimal lesions. Whereas the normotensive circulation accommodated large increases in forward and retrograde flow, the hypertensive circulation did not. During forward flow, pulmonary artery and double occlusion pressures rose sharply at low perfusion rates, resulting in hydrostatic edema. Pulmonary arterial hypertensive lungs possessed an absolute intolerance to retrograde perfusion, and they rapidly developed edema. Retrograde perfusion was not rescued by maximal vasodilation. Retrograde perfusion was preserved in lungs from animals treated with Sugen 5416 and hypoxia for 1 and 3 wk, in lungs from animals with a milder form of hypoxic hypertension, and in normotensive lungs subjected to high outflow pressures. Thus impaired retrograde perfusion coincides with development of severe pulmonary arterial hypertension, with advanced structural defects in the microcirculation.
Collapse
Affiliation(s)
- Chun Zhou
- Department of Physiology and Cell Biology, University of South Alabama , Mobile, Alabama.,Center for Lung Biology, University of South Alabama , Mobile, Alabama
| | - Edward S Crockett
- Department Pharmacology, University of South Alabama , Mobile, Alabama.,Center for Lung Biology, University of South Alabama , Mobile, Alabama
| | - Lynn Batten
- Department of Pediatrics, University of South Alabama , Mobile, Alabama
| | - Ivan F McMurtry
- Department Pharmacology, University of South Alabama , Mobile, Alabama.,Department of Internal Medicine, University of South Alabama , Mobile, Alabama.,Center for Lung Biology, University of South Alabama , Mobile, Alabama
| | - Troy Stevens
- Department of Physiology and Cell Biology, University of South Alabama , Mobile, Alabama.,Department of Internal Medicine, University of South Alabama , Mobile, Alabama.,Center for Lung Biology, University of South Alabama , Mobile, Alabama
| |
Collapse
|
12
|
BMP type II receptor as a therapeutic target in pulmonary arterial hypertension. Cell Mol Life Sci 2017; 74:2979-2995. [PMID: 28447104 PMCID: PMC5501910 DOI: 10.1007/s00018-017-2510-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/09/2017] [Accepted: 03/17/2017] [Indexed: 12/30/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a chronic disease characterized by a progressive elevation in mean pulmonary arterial pressure. This occurs due to abnormal remodeling of small peripheral lung vasculature resulting in progressive occlusion of the artery lumen that eventually causes right heart failure and death. The most common cause of PAH is inactivating mutations in the gene encoding a bone morphogenetic protein type II receptor (BMPRII). Current therapeutic options for PAH are limited and focused mainly on reversal of pulmonary vasoconstriction and proliferation of vascular cells. Although these treatments can relieve disease symptoms, PAH remains a progressive lethal disease. Emerging data suggest that restoration of BMPRII signaling in PAH is a promising alternative that could prevent and reverse pulmonary vascular remodeling. Here we will focus on recent advances in rescuing BMPRII expression, function or signaling to prevent and reverse pulmonary vascular remodeling in PAH and its feasibility for clinical translation. Furthermore, we summarize the role of described miRNAs that directly target the BMPR2 gene in blood vessels. We discuss the therapeutic potential and the limitations of promising new approaches to restore BMPRII signaling in PAH patients. Different mutations in BMPR2 and environmental/genetic factors make PAH a heterogeneous disease and it is thus likely that the best approach will be patient-tailored therapies.
Collapse
|
13
|
Abstract
The circulation of the lung is unique both in volume and function. For example, it is the only organ with two circulations: the pulmonary circulation, the main function of which is gas exchange, and the bronchial circulation, a systemic vascular supply that provides oxygenated blood to the walls of the conducting airways, pulmonary arteries and veins. The pulmonary circulation accommodates the entire cardiac output, maintaining high blood flow at low intravascular arterial pressure. As compared with the systemic circulation, pulmonary arteries have thinner walls with much less vascular smooth muscle and a relative lack of basal tone. Factors controlling pulmonary blood flow include vascular structure, gravity, mechanical effects of breathing, and the influence of neural and humoral factors. Pulmonary vascular tone is also altered by hypoxia, which causes pulmonary vasoconstriction. If the hypoxic stimulus persists for a prolonged period, contraction is accompanied by remodeling of the vasculature, resulting in pulmonary hypertension. In addition, genetic and environmental factors can also confer susceptibility to development of pulmonary hypertension. Under normal conditions, the endothelium forms a tight barrier, actively regulating interstitial fluid homeostasis. Infection and inflammation compromise normal barrier homeostasis, resulting in increased permeability and edema formation. This article focuses on reviewing the basics of the lung circulation (pulmonary and bronchial), normal development and transition at birth and vasoregulation. Mechanisms contributing to pathological conditions in the pulmonary circulation, in particular when barrier function is disrupted and during development of pulmonary hypertension, will also be discussed.
Collapse
Affiliation(s)
- Karthik Suresh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Larissa A. Shimoda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Li W, Guo A, Wang L, Kong Q, Wang R, Han L, Zhao C. Expression of peptide fragments from proADM and involvement of mitogen-activated protein kinase signaling pathways in pulmonary remodeling induced by high pulmonary blood flow. Congenit Anom (Kyoto) 2016; 56:28-34. [PMID: 25990643 DOI: 10.1111/cga.12114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 05/09/2015] [Indexed: 01/02/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by progressive pulmonary arterial remodeling and right ventricular failure. Despite recent advances in pathophysiological mechanism exploration and new therapeutic approaches, PAH remains a challenging condition. In this study, we investigated the roles of the peptide fragments from proadrenomedullin (proADM) such as adrenomedullin (ADM), adrenotensin (ADT), and proadrenomedullin N-terminal 20 peptide (PAMP) during pulmonary remodeling caused by high pulmonary blood flow, and probed the possible involvement of mitogen-activated protein kinase (MAPK) signal transduction pathways. Sixteen rat models of PAH were artificially established by surgically connecting the left common carotid artery to the external jugular vein. We subcutaneously injected an extracellular signal-regulated protein kinase (ERK1/2) inhibitor, PD98059, in eight rats, treated another eight rats with an equal volume of saline. Eight rats without connections served as the control group. We observed that mRNA expression levels of ADM, stress-activated protein kinase (SAPK), and ERK1/2 were significantly elevated in the shunted rats; furthermore, ERK1/2 levels were significantly inhibited by PD98059. Protein levels of ADM, PAMP, p-SAPK, and p-ERK1/2 were significantly higher ADT was lower, and p-p38 remained unchanged in the rat models compared with the controls. However, the protein expression of both ADM and p-ERK1/2 was significantly inhibited by PD98059. Our results suggest that levels of ADM, ADT, and PAMP respond to pulmonary remodeling, and that activation of the SAPK and ERK1/2 signaling pathways is involved in pulmonary hypertension and artery remodeling caused by high pulmonary blood flow.
Collapse
Affiliation(s)
- Wei Li
- Biomedical Engineering Institute, School of Control Science and Engineering, Shandong University, Jinan, China
| | - Aili Guo
- Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Lijuan Wang
- Beijing Children's Hospital Affiliated to Capital Medical University, Beijing, China
| | - Qingyu Kong
- Biomedical Engineering Institute, School of Control Science and Engineering, Shandong University, Jinan, China
| | - Rong Wang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
| | - Li Han
- Department of Ophthalmology, Yidu Central Hospital of Weifang, Qingzhou, China
| | - Cuifen Zhao
- Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
15
|
Bertero T, Cottrill KA, Lu Y, Haeger CM, Dieffenbach P, Annis S, Hale A, Bhat B, Kaimal V, Zhang YY, Graham BB, Kumar R, Saggar R, Saggar R, Wallace WD, Ross DJ, Black SM, Fratz S, Fineman JR, Vargas SO, Haley KJ, Waxman AB, Chau BN, Fredenburgh LE, Chan SY. Matrix Remodeling Promotes Pulmonary Hypertension through Feedback Mechanoactivation of the YAP/TAZ-miR-130/301 Circuit. Cell Rep 2015; 13:1016-32. [PMID: 26565914 PMCID: PMC4644508 DOI: 10.1016/j.celrep.2015.09.049] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 08/07/2015] [Accepted: 09/17/2015] [Indexed: 12/21/2022] Open
Abstract
Pulmonary hypertension (PH) is a deadly vascular disease with enigmatic molecular origins. We found that vascular extracellular matrix (ECM) remodeling and stiffening are early and pervasive processes that promote PH. In multiple pulmonary vascular cell types, such ECM stiffening induced the microRNA-130/301 family via activation of the co-transcription factors YAP and TAZ. MicroRNA-130/301 controlled a PPAR?-APOE-LRP8 axis, promoting collagen deposition and LOX-dependent remodeling and further upregulating YAP/TAZ via a mechanoactive feedback loop. In turn, ECM remodeling controlled pulmonary vascular cell crosstalk via such mechanotransduction, modulation of secreted vasoactive effectors, and regulation of associated microRNA pathways. In vivo, pharmacologic inhibition of microRNA-130/301, APOE, or LOX activity ameliorated ECM remodeling and PH. Thus, ECM remodeling, as controlled by the YAP/TAZ-miR-130/301 feedback circuit, is an early PH trigger and offers combinatorial therapeutic targets for this devastating disease.
Collapse
Affiliation(s)
- Thomas Bertero
- Divisions of Cardiovascular and Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Katherine A Cottrill
- Divisions of Cardiovascular and Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yu Lu
- Divisions of Cardiovascular and Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Christina M Haeger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Paul Dieffenbach
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sofia Annis
- Divisions of Cardiovascular and Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew Hale
- Divisions of Cardiovascular and Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | - Ying-Yi Zhang
- Divisions of Cardiovascular and Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Brian B Graham
- Program in Translational Lung Research, University of Colorado, Denver, Aurora, CO 80045, USA
| | - Rahul Kumar
- Program in Translational Lung Research, University of Colorado, Denver, Aurora, CO 80045, USA
| | - Rajan Saggar
- Departments of Medicine and Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Rajeev Saggar
- Department of Medicine, University of Arizona, Phoenix, AZ 85006, USA
| | - W Dean Wallace
- Departments of Medicine and Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - David J Ross
- Departments of Medicine and Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Stephen M Black
- Department of Medicine, University of Arizona, Tuscon, AZ 85724, USA
| | - Sohrab Fratz
- Department of Pediatric Cardiology and Congenital Heart Disease, DeutschesHerzzentrum München, Klinik an der Technischen Universität München, 80636 Munich, Germany
| | - Jeffrey R Fineman
- Department of Pediatrics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94131, USA
| | - Sara O Vargas
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Kathleen J Haley
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Aaron B Waxman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Laura E Fredenburgh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Stephen Y Chan
- Divisions of Cardiovascular and Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
16
|
Urotensin II contributes to collagen synthesis and up-regulates Egr-1 expression in cultured pulmonary arterial smooth muscle cells through the ERK1/2 pathway. Biochem Biophys Res Commun 2015; 467:1076-82. [DOI: 10.1016/j.bbrc.2015.09.148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 09/27/2015] [Indexed: 12/18/2022]
|
17
|
Green DE, Murphy TC, Kang BY, Searles CD, Hart CM. PPARγ Ligands Attenuate Hypoxia-Induced Proliferation in Human Pulmonary Artery Smooth Muscle Cells through Modulation of MicroRNA-21. PLoS One 2015. [PMID: 26208095 PMCID: PMC4514882 DOI: 10.1371/journal.pone.0133391] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pulmonary hypertension (PH) is a progressive and often fatal disorder whose pathogenesis involves pulmonary artery smooth muscle cell (PASMC) proliferation. Although modern PH therapies have significantly improved survival, continued progress rests on the discovery of novel therapies and molecular targets. MicroRNA (miR)-21 has emerged as an important non-coding RNA that contributes to PH pathogenesis by enhancing vascular cell proliferation, however little is known about available therapies that modulate its expression. We previously demonstrated that peroxisome proliferator-activated receptor gamma (PPARγ) agonists attenuated hypoxia-induced HPASMC proliferation, vascular remodeling and PH through pleiotropic actions on multiple targets, including transforming growth factor (TGF)-β1 and phosphatase and tensin homolog deleted on chromosome 10 (PTEN). PTEN is a validated target of miR-21. We therefore hypothesized that antiproliferative effects conferred by PPARγ activation are mediated through inhibition of hypoxia-induced miR-21 expression. Human PASMC monolayers were exposed to hypoxia then treated with the PPARγ agonist, rosiglitazone (RSG,10 μM), or in parallel, C57Bl/6J mice were exposed to hypoxia then treated with RSG. RSG attenuated hypoxic increases in miR-21 expression in vitro and in vivo and abrogated reductions in PTEN and PASMC proliferation. Antiproliferative effects of RSG were lost following siRNA-mediated PTEN depletion. Furthermore, miR-21 mimic decreased PTEN and stimulated PASMC proliferation, whereas miR-21 inhibition increased PTEN and attenuated hypoxia-induced HPASMC proliferation. Collectively, these results demonstrate that PPARγ ligands regulate proliferative responses to hypoxia by preventing hypoxic increases in miR-21 and reductions in PTEN. These findings further clarify molecular mechanisms that support targeting PPARγ to attenuate pathogenic derangements in PH.
Collapse
Affiliation(s)
- David E Green
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Atlanta Veterans Affairs Medical Center / Emory University, Atlanta, GA, United States of America
| | - Tamara C Murphy
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Atlanta Veterans Affairs Medical Center / Emory University, Atlanta, GA, United States of America
| | - Bum-Yong Kang
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Atlanta Veterans Affairs Medical Center / Emory University, Atlanta, GA, United States of America
| | - Charles D Searles
- Department of Medicine, Division of Cardiology, Atlanta Veterans Affairs Medical Center / Emory University, Atlanta, GA, United States of America
| | - C Michael Hart
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Atlanta Veterans Affairs Medical Center / Emory University, Atlanta, GA, United States of America
| |
Collapse
|
18
|
Hartman W, Helan M, Smelter D, Sathish V, Thompson M, Pabelick CM, Johnson B, Prakash YS. Role of Hypoxia-Induced Brain Derived Neurotrophic Factor in Human Pulmonary Artery Smooth Muscle. PLoS One 2015; 10:e0129489. [PMID: 26192455 PMCID: PMC4507987 DOI: 10.1371/journal.pone.0129489] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 05/08/2015] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Hypoxia effects on pulmonary artery structure and function are key to diseases such as pulmonary hypertension. Recent studies suggest that growth factors called neurotrophins, particularly brain-derived neurotrophic factor (BDNF), can influence lung structure and function, and their role in the pulmonary artery warrants further investigation. In this study, we examined the effect of hypoxia on BDNF in humans, and the influence of hypoxia-enhanced BDNF expression and signaling in human pulmonary artery smooth muscle cells (PASMCs). METHODS AND RESULTS 48h of 1% hypoxia enhanced BDNF and TrkB expression, as well as release of BDNF. In arteries of patients with pulmonary hypertension, BDNF expression and release was higher at baseline. In isolated PASMCs, hypoxia-induced BDNF increased intracellular Ca2+ responses to serotonin: an effect altered by HIF1α inhibition or by neutralization of extracellular BDNF via chimeric TrkB-Fc. Enhanced BDNF/TrkB signaling increased PASMC survival and proliferation, and decreased apoptosis following hypoxia. CONCLUSIONS Enhanced expression and signaling of the BDNF-TrkB system in PASMCs is a potential mechanism by which hypoxia can promote changes in pulmonary artery structure and function. Accordingly, the BDNF-TrkB system could be a key player in the pathogenesis of hypoxia-induced pulmonary vascular diseases, and thus a potential target for therapy.
Collapse
Affiliation(s)
- William Hartman
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, 55905, United States of America
| | - Martin Helan
- International Clinical Research Center, Department of Cardiovascular Diseases, St. Anne's University Hospital, Brno, Czech Republic
- Department of Anesthesiology and Intensive Care, St. Anne's University Hospital, Masaryk University, Brno, Czech Republic
| | - Dan Smelter
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, 55905, United States of America
| | - Venkatachalem Sathish
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, 55905, United States of America
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, 55905, United States of America
| | - Michael Thompson
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, 55905, United States of America
| | - Christina M. Pabelick
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, 55905, United States of America
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, 55905, United States of America
| | - Bruce Johnson
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, 55905, United States of America
- Department of Internal Medicine, Division of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, 55905, United States of America
| | - Y. S. Prakash
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, 55905, United States of America
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, 55905, United States of America
| |
Collapse
|
19
|
Clapp LH, Gurung R. The mechanistic basis of prostacyclin and its stable analogues in pulmonary arterial hypertension: Role of membrane versus nuclear receptors. Prostaglandins Other Lipid Mediat 2015; 120:56-71. [PMID: 25917921 DOI: 10.1016/j.prostaglandins.2015.04.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/13/2015] [Indexed: 12/22/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease of distal pulmonary arteries in which patients suffer from elevated pulmonary arterial pressure, extensive vascular remodelling and right ventricular failure. To date prostacyclin (PGI2) therapy remains the most efficacious treatment for PAH and is the only approved monotherapy to have a positive impact on long-term survival. A key thing to note is that improvement exceeds that predicted from vasodilator testing strongly suggesting that additional mechanisms contribute to the therapeutic benefit of prostacyclins in PAH. Given these agents have potent antiproliferative, anti-inflammatory and endothelial regenerating properties suggests therapeutic benefit might result from a slowing, stabilization or even some reversal of vascular remodelling in vivo. This review discusses evidence that the pharmacology of each prostacyclin (IP) receptor agonist so far developed is distinct, with non-IP receptor targets clearly contributing to the therapeutic and side effect profile of PGI2 (EP3), iloprost (EP1), treprostinil (EP2, DP1) along with a family of nuclear receptors known as peroxisome proliferator-activated receptors (PPARs), to which PGI2 and some analogues directly bind. These targets are functionally expressed to varying degrees in arteries, veins, platelets, fibroblasts and inflammatory cells and are likely to be involved in the biological actions of prostacylins. Recently, a highly selective IP agonist, selexipag has been developed for PAH. This agent should prove useful in distinguishing IP from other prostanoid receptors or PPAR binding effects in human tissue. It remains to be determined whether selectivity for the IP receptor gives rise to a superior or inferior clinical benefit in PAH.
Collapse
Affiliation(s)
- Lucie H Clapp
- Department of Medicine, UCL, Rayne Building, London WC1E 6JF, UK.
| | - Rijan Gurung
- Department of Medicine, UCL, Rayne Building, London WC1E 6JF, UK
| |
Collapse
|
20
|
Fan Z, Liu B, Zhang S, Liu H, Li Y, Wang D, Liu Y, Li J, Wang N, Liu Y, Zhang B. YM155, a selective survivin inhibitor, reverses chronic hypoxic pulmonary hypertension in rats via upregulating voltage-gated potassium channels. Clin Exp Hypertens 2015; 37:381-7. [PMID: 25856227 DOI: 10.3109/10641963.2014.987390] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To test the hypothesis that chronic hypoxic pulmonary hypertension (CH-PH) is associated with increased survivin and decreased voltage-gated potassium (KV) channels expression in pulmonary arteries, rats were randomized as: normoxia (N); normoxia + YM155, survivin suppressor (NY); hypoxia (H); hypoxia + YM155 (HY). HY group had significantly reduced pulmonary arterial pressure, right ventricular weight and right ventricular hypertrophy compared with H group. Survivin mRNA and protein were detected in pulmonary arteries of rats with CH-PH, but not rats without CH-PH. YM155 downregulated survivin protein and mRNA. KV channel expression and activity were upregulated after YM155 treatment. Survivin may play a role in the pathogenesis of CH-PH.
Collapse
Affiliation(s)
- Zaiwen Fan
- Department of Respiratory Medicine, General Hospital of PLA Air Force , Beijing , China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Nozik-Grayck E, Woods C, Taylor JM, Benninger RKP, Johnson RD, Villegas LR, Stenmark KR, Harrison DG, Majka SM, Irwin D, Farrow KN. Selective depletion of vascular EC-SOD augments chronic hypoxic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2014; 307:L868-76. [PMID: 25326578 PMCID: PMC4254965 DOI: 10.1152/ajplung.00096.2014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 10/08/2014] [Indexed: 02/04/2023] Open
Abstract
Excess superoxide has been implicated in pulmonary hypertension (PH). We previously found lung overexpression of the antioxidant extracellular superoxide dismutase (EC-SOD) attenuates PH and pulmonary artery (PA) remodeling. Although comprising a small fraction of total SOD activity in most tissues, EC-SOD is abundant in arteries. We hypothesize that the selective loss of vascular EC-SOD promotes hypoxia-induced PH through redox-sensitive signaling pathways. EC-SOD(loxp/loxp) × Tg(cre/SMMHC) mice (SMC EC-SOD KO) received tamoxifen to conditionally deplete smooth muscle cell (SMC)-derived EC-SOD. Mice were exposed to hypobaric hypoxia for 35 days, and PH was assessed by right ventricular systolic pressure measurements and right ventricle hypertrophy. Vascular remodeling was evaluated by morphometric analysis and two-photon microscopy for collagen. We examined cGMP content and soluble guanylate cyclase expression and activity in lung, lung phosphodiesterase 5 (PDE5) expression and activity, and expression of endothelial nitric oxide synthase and GTP cyclohydrolase-1 (GTPCH-1), the rate-limiting enzyme in tetrahydrobiopterin synthesis. Knockout of SMC EC-SOD selectively decreased PA EC-SOD without altering total lung EC-SOD. PH and vascular remodeling induced by chronic hypoxia was augmented in SMC EC-SOD KO. Depletion of SMC EC-SOD did not impact content or activity of lung soluble guanylate cyclase or PDE5, yet it blunted the hypoxia-induced increase in cGMP. Although total eNOS was not altered, active eNOS and GTPCH-1 decreased with hypoxia only in SMC EC-SOD KO. We conclude that the localized loss of PA EC-SOD augments chronic hypoxic PH. In addition to oxidative inactivation of NO, deletion of EC-SOD seems to reduce eNOS activity, further compromising pulmonary vascular function.
Collapse
Affiliation(s)
- Eva Nozik-Grayck
- Department of Pediatrics, University of Colorado, Aurora, Colorado; Department of Cardiovascular Pulmonary Research, University of Colorado, Aurora, Colorado;
| | - Crystal Woods
- Department of Pediatrics, University of Colorado, Aurora, Colorado
| | - Joann M Taylor
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois; and
| | - Richard K P Benninger
- Department of Pediatrics, University of Colorado, Aurora, Colorado; Department of Bioengineering, University of Colorado, Aurora, Colorado
| | | | - Leah R Villegas
- Department of Pediatrics, University of Colorado, Aurora, Colorado; Department of Cardiovascular Pulmonary Research, University of Colorado, Aurora, Colorado
| | - Kurt R Stenmark
- Department of Pediatrics, University of Colorado, Aurora, Colorado; Department of Cardiovascular Pulmonary Research, University of Colorado, Aurora, Colorado
| | - David G Harrison
- Department of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Susan M Majka
- Department of Medicine, Vanderbilt University, Nashville, Tennessee
| | - David Irwin
- Department of Cardiovascular Pulmonary Research, University of Colorado, Aurora, Colorado
| | - Kathryn N Farrow
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois; and
| |
Collapse
|
22
|
Hiram R, Rizcallah E, Sirois C, Sirois M, Morin C, Fortin S, Rousseau E. Resolvin D1 reverses reactivity and Ca2+ sensitivity induced by ET-1, TNF-α, and IL-6 in the human pulmonary artery. Am J Physiol Heart Circ Physiol 2014; 307:H1547-58. [PMID: 25281570 DOI: 10.1152/ajpheart.00452.2014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Pulmonary hypertension (PH) is a rare and progressive disease characterized by an inflammatory status and vessel wall remodeling, resulting in increased pulmonary artery resistance. During the last decade, treatments have been proposed; most of them target the endothelial pathways that stimulate smooth muscle cell relaxation. However, PH remains associated with significant morbidity. We hypothesized that inflammation plays a crucial role in the severity of the abnormal vasoconstriction in PH. The goal of this study was to assess the effects of resolvin D1 (RvD1), a potent anti-inflammatory agent, on the pharmacological reactivity of human pulmonary arteries (HPAs) via an in vitro model of induced hyperreactivity. The effects of RvD1 and monoacylglyceride compounds were measured on contractile activity and Ca(2+) sensitivity developed by HPAs that had been pretreated (or not) under proinflammatory conditions with either 10 ng/ml TNF-α or 10 ng/ml IL-6 or under hyperreactive conditions with 5 nM endothelin-1. The results demonstrated that, compared with controls, 24-h pretreatment with TNF-α, IL-6, or endothelin-1 increased reactivity and Ca(2+) sensitivity of HPAs as revealed by agonist challenges with 80 mM KCl, 1 μM serotonin (5-hydroxytryptamine), 30 nM U-46619, and 1 μM phorbol 12,13-dibutyrate. However, 300 nM RvD1 as well as 1 μM monoacylglyceride-docosapentaenoic acid monoglyceride strongly reversed the overresponsiveness induced by both proinflammatory and hyperreactive treatments. In pretreated pulmonary artery smooth muscle cells, Western blot analyses revealed that RvD1 treatment decreased the phosphorylation level of CPI-17 and expression of transmembrane protein member 16A while increasing the detection of G protein-coupled receptor 32. The present data demonstrate that RvD1, a trihydroxylated docosahexaenoic acid derivative, decreases induced overreactivity in HPAs via a reduction in CPI-17 phosphorylation and transmembrane protein member 16A expression.
Collapse
Affiliation(s)
- Roddy Hiram
- Department of Physiology and Biophysics, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Edmond Rizcallah
- Department of Pathology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Chantal Sirois
- Service of Thoracic Surgery Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada; and
| | - Marco Sirois
- Service of Thoracic Surgery Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada; and
| | - Caroline Morin
- Department of Physiology and Biophysics, Université de Sherbrooke, Sherbrooke, Quebec, Canada; SCF Pharma, Ste-Luce, Quebec, Canada
| | | | - Eric Rousseau
- Department of Pathology, Université de Sherbrooke, Sherbrooke, Quebec, Canada;
| |
Collapse
|
23
|
Li W, Kong QY, Zhao CF, Zhao F, Li FH, Xia W, Wang R, Hu YM, Hua M. Adrenomedullin and adrenotensin regulate collagen synthesis and proliferation in pulmonary arterial smooth muscle cells. Braz J Med Biol Res 2013; 46:1047-1055. [PMID: 24345914 PMCID: PMC3935277 DOI: 10.1590/1414-431x20132882] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/29/2013] [Indexed: 11/22/2022] Open
Abstract
To understand the pathophysiological mechanisms of pulmonary arterial smooth muscle cell (PASMC) proliferation and extracellular-matrix accumulation in the development of pulmonary hypertension and remodeling, this study determined the effects of different doses of adrenomedullin (ADM) and adrenotensin (ADT) on PASMC proliferation and collagen synthesis. The objective was to investigate whether extracellular signal-regulated kinase (ERK1/2) signaling was involved in ADM- and ADT-stimulated proliferation of PASMCs in 4-week-old male Wistar rats (body weight: 100-150 g, n=10). The proliferation of PASMCs was examined by 5-bromo-2-deoxyuridine incorporation. A cell growth curve was generated by the Cell Counting Kit-8 method. Expression of collagen I, collagen III, and phosphorylated ERK1/2 (p-ERK1/2) was evaluated by immunofluorescence. The effects of different concentrations of ADM and ADT on collagen I, collagen III, and p-ERK1/2 protein expression were determined by immunoblotting. We also investigated the effect of PD98059 inhibition on the expression of p-ERK1/2 protein by immunoblotting. ADM dose-dependently decreased cell proliferation, whereas ADT dose-dependently increased it; and ADM and ADT inhibited each other with respect to their effects on the proliferation of PASMCs. Consistent with these results, the expression of collagen I, collagen III, and p-ERK1/2 in rat PASMCs decreased after exposure to ADM but was upregulated after exposure to ADT. PD98059 significantly inhibited the downregulation by ADM and the upregulation by ADT of p-ERK1/2 expression. We conclude that ADM inhibited, and ADT stimulated, ERK1/2 signaling in rat PASMCs to regulate cell proliferation and collagen expression.
Collapse
Affiliation(s)
- W Li
- Shandong University, Biomedical Engineering Institute, School of Control Science and Engineering, JinanShandong, China
| | - Q Y Kong
- Shandong University, Qilu Hospital, Department of Pediatrics, JinanShandong, China
| | - C F Zhao
- Shandong University, Qilu Hospital, Department of Pediatrics, JinanShandong, China
| | - F Zhao
- Weill Medical College of Cornell University, Department of Medicine, New YorkNY, USA
| | - F H Li
- Shandong University, Qilu Hospital, Department of Pediatrics, JinanShandong, China
| | - W Xia
- Shandong University, Qilu Hospital, Department of Pediatrics, JinanShandong, China
| | - R Wang
- Shandong University, Qilu Hospital, Key Laboratory of Cardiovascular Remodeling and Function Research, JinanShandong, China
| | - Y M Hu
- Shandong University, Biomedical Engineering Institute, School of Control Science and Engineering, JinanShandong, China
| | - M Hua
- Shandong Institute of Scientific and Technical Information, JinanShandong, China
| |
Collapse
|
24
|
Liu S, Rockey DC. Cicletanine stimulates eNOS phosphorylation and NO production via Akt and MAP kinase/Erk signaling in sinusoidal endothelial cells. Am J Physiol Gastrointest Liver Physiol 2013; 305:G163-71. [PMID: 23639812 PMCID: PMC3725686 DOI: 10.1152/ajpgi.00003.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The function of the endothelial isoform of nitric oxide synthase (eNOS) and production of nitric oxide (NO) is altered in a number of disease states. Pharmacological approaches to enhancing NO synthesis and thus perhaps endothelial function could have substantial benefits in patients. We analyzed the effect of cicletanine, a synthetic pyridine with potent vasodilatory characteristics, on eNOS function and NO production in normal (liver) and injured rat sinusoidal endothelial cells, and we studied the effect of cicletanine-induced NO on stellate cell contraction and portal pressure in an in vivo model of liver injury. Sinusoidal endothelial cells were isolated from normal and injured rat livers. After exposure to cicletanine, eNOS phosphorylation, NO synthesis, and the signaling pathway regulating eNOS activation were measured. Cicletanine led to an increase in eNOS (Ser¹¹⁷⁷) phosphorylation, cytochrome c reductase activity, L-arginine conversion to L-citrulline, as well as NO production. The mechanism of the effect of cicletanine appeared to be via the protein kinase B (Akt) and MAP kinase/Erk signaling pathways. Additionally, cicletanine improved NO synthesis in injured sinusoidal endothelial cells. NO production induced by cicletanine in sinusoidal endothelial cells increased protein kinase G (PKG) activity as well as relaxation of stellate cells. Finally, administration of cicletanine to mice with portal hypertension induced by bile duct ligation led to reduction of portal pressure. The data indicate that cicletanine might improve eNOS activity in injured sinusoidal endothelial cells and likely activates hepatic stellate cell NO/PKG signaling. It raises the possibility that cicletanine could improve intrahepatic vascular function in portal hypertensive patients.
Collapse
Affiliation(s)
- Songling Liu
- Department of Internal Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Don C. Rockey
- Department of Internal Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
25
|
Pisarcik S, Maylor J, Lu W, Yun X, Undem C, Sylvester JT, Semenza GL, Shimoda LA. Activation of hypoxia-inducible factor-1 in pulmonary arterial smooth muscle cells by endothelin-1. Am J Physiol Lung Cell Mol Physiol 2013; 304:L549-61. [PMID: 23418090 PMCID: PMC3625988 DOI: 10.1152/ajplung.00081.2012] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 02/06/2013] [Indexed: 01/13/2023] Open
Abstract
Numerous cellular responses to hypoxia are mediated by the transcription factor hypoxia-inducible factor-1 (HIF-1). HIF-1 plays a central role in the pathogenesis of hypoxic pulmonary hypertension. Under certain conditions, HIF-1 may utilize feedforward mechanisms to amplify its activity. Since hypoxia increases endothelin-1 (ET-1) levels in the lung, we hypothesized that during moderate, prolonged hypoxia ET-1 might contribute to HIF-1 signaling in pulmonary arterial smooth muscle cells (PASMCs). Primary cultures of rat PASMCs were treated with ET-1 or exposed to moderate, prolonged hypoxia (4% O(2) for 60 h). Levels of the oxygen-sensitive HIF-1α subunit and expression of HIF target genes were increased in both hypoxic cells and cells treated with ET-1. Both hypoxia and ET-1 also increased HIF-1α mRNA expression and decreased mRNA and protein expression of prolyl hydroxylase 2 (PHD2), which is the protein responsible for targeting HIF-1α for O(2)-dependent degradation. The induction of HIF-1α by moderate, prolonged hypoxia was blocked by BQ-123, an antagonist of ET-1 receptor subtype A. The effects of ET-1 were mediated by increased intracellular calcium, generation of reactive oxygen species, and ERK1/2 activation. Neither ET-1 nor moderate hypoxia induced the expression of HIF-1α or HIF target genes in aortic smooth muscle cells. These results suggest that ET-1 induces a PASMC-specific increase in HIF-1α levels by upregulation of HIF-1α synthesis and downregulation of PHD2-mediated degradation, thereby amplifying the induction of HIF-1α in PASMCs during moderate, prolonged hypoxia.
Collapse
Affiliation(s)
- Sarah Pisarcik
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Vascular remodeling in pulmonary hypertension. J Mol Med (Berl) 2013; 91:297-309. [PMID: 23334338 DOI: 10.1007/s00109-013-0998-0] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 01/04/2013] [Accepted: 01/08/2013] [Indexed: 02/07/2023]
Abstract
Pulmonary hypertension is a complex, progressive condition arising from a variety of genetic and pathogenic causes. Patients present with a spectrum of histologic and pathophysiological features, likely reflecting the diversity in underlying pathogenesis. It is widely recognized that structural alterations in the vascular wall contribute to all forms of pulmonary hypertension. Features characteristic of the remodeled vasculature in patients with pulmonary hypertension include increased stiffening of the elastic proximal pulmonary arteries, thickening of the intimal and/or medial layer of muscular arteries, development of vaso-occlusive lesions, and the appearance of cells expressing smooth muscle-specific markers in normally non-muscular small diameter vessels, resulting from proliferation and migration of pulmonary arterial smooth muscle cells and cellular transdifferentiation. The development of several animal models of pulmonary hypertension has provided the means to explore the mechanistic underpinnings of pulmonary vascular remodeling, although none of the experimental models currently used entirely replicates the pulmonary arterial hypertension observed in patients. Herein, we provide an overview of the histological abnormalities observed in humans with pulmonary hypertension and in preclinical models and discuss insights gained regarding several key signaling pathways contributing to the remodeling process. In particular, we will focus on the roles of ion homeostasis, endothelin-1, serotonin, bone morphogenetic proteins, Rho kinase, and hypoxia-inducible factor 1 in pulmonary arterial smooth muscle and endothelial cells, highlighting areas of cross-talk between these pathways and potentials for therapeutic targeting.
Collapse
|
27
|
Undem C, Rios EJ, Maylor J, Shimoda LA. Endothelin-1 augments Na⁺/H⁺ exchange activity in murine pulmonary arterial smooth muscle cells via Rho kinase. PLoS One 2012; 7:e46303. [PMID: 23029469 PMCID: PMC3460862 DOI: 10.1371/journal.pone.0046303] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/29/2012] [Indexed: 12/20/2022] Open
Abstract
Excessive production of endothelin-1 (ET-1), a potent vasoconstrictor, occurs with several forms of pulmonary hypertension. In addition to modulating vasomotor tone, ET-1 can potentiate pulmonary arterial smooth muscle cell (PASMC) growth and migration, both of which contribute to the vascular remodeling that occurs during the development of pulmonary hypertension. It is well established that changes in cell proliferation and migration in PASMCs are associated with alkalinization of intracellular pH (pHi), typically due to activation of Na+/H+ exchange (NHE). In the systemic vasculature, ET-1 increases pHi, Na+/H+ exchange activity and stimulates cell growth via a mechanism dependent on protein kinase C (PKC). These results, coupled with data describing elevated levels of ET-1 in hypertensive animals/humans, suggest that ET-1 may play an important role in modulating pHi and smooth muscle growth in the lung; however, the effect of ET-1 on basal pHi and NHE activity has yet to be examined in PASMCs. Thus, we used fluorescent microscopy in transiently (3–5 days) cultured rat PASMCs and the pH-sensitive dye, BCECF-AM, to measure changes in basal pHi and NHE activity induced by increasing concentrations of ET-1 (10−10 to 10−8 M). We found that application of exogenous ET-1 increased pHi and NHE activity in PASMCs and that the ET-1-induced augmentation of NHE was prevented in PASMCs pretreated with an inhibitor of Rho kinase, but not inhibitors of PKC. Moreover, direct activation of PKC had no effect on pHi or NHE activity in PASMCs. Our results indicate that ET-1 can modulate pH homeostasis in PASMCs via a signaling pathway that includes Rho kinase and that, in contrast to systemic vascular smooth muscle, activation of PKC does not appear to be an important regulator of PASMC pHi.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Dose-Response Relationship, Drug
- Endothelin-1/pharmacology
- Enzyme Activation/drug effects
- Fluoresceins
- Fluorescent Dyes
- Hydrogen-Ion Concentration
- Male
- Mice
- Mice, Inbred C57BL
- Microscopy, Fluorescence
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Protein Kinase C/metabolism
- Protein Kinase Inhibitors/pharmacology
- Pulmonary Artery/cytology
- Pulmonary Artery/drug effects
- Pulmonary Artery/enzymology
- Signal Transduction/drug effects
- Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors
- Sodium-Potassium-Exchanging ATPase/metabolism
- rho-Associated Kinases/antagonists & inhibitors
- rho-Associated Kinases/metabolism
Collapse
Affiliation(s)
- Clark Undem
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Eon J. Rios
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Julie Maylor
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Larissa A. Shimoda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
28
|
Weissmann N. VEGF Receptor Inhibition As a Model of Pulmonary Hypertension in Mice. Am J Respir Crit Care Med 2011; 184:1103-5. [DOI: 10.1164/rccm.201109-1662ed] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
29
|
Hamidi SA, Lin RZ, Szema AM, Lyubsky S, Jiang YP, Said SI. VIP and endothelin receptor antagonist: an effective combination against experimental pulmonary arterial hypertension. Respir Res 2011; 12:141. [PMID: 22029879 PMCID: PMC3210095 DOI: 10.1186/1465-9921-12-141] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 10/26/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pulmonary Arterial Hypertension (PAH) remains a therapeutic challenge, and the search continues for more effective drugs and drug combinations. We recently reported that deletion of the vasoactive intestinal peptide (VIP) gene caused the spontaneous expression of a PH phenotype that was fully corrected by VIP. The objectives of this investigation were to answer the questions: 1) Can VIP protect against PH in other experimental models? and 2) Does combining VIP with an endothelin (ET) receptor antagonist bosentan enhance its efficacy? METHODS Within 3 weeks of a single injection of monocrotaline (MCT, s.c.) in Sprague Dawley rats, PAH developed, manifested by pulmonary vascular remodeling, lung inflammation, RV hypertrophy, and death within the next 2 weeks. MCT-injected animals were either untreated, treated with bosentan (p.o.) alone, with VIP (i.p.) alone, or with both together. We selected this particular combination upon finding that VIP down-regulates endothelin receptor expression which is further suppressed by bosentan. Therapeutic outcomes were compared as to hemodynamics, pulmonary vascular pathology, and survival. RESULTS Treatment with VIP, every other day for 3 weeks, begun on the same day as MCT, almost totally prevented PAH pathology, and eliminated mortality for 45 days. Begun 3 weeks after MCT, however, VIP only partially reversed PAH pathology, though more effectively than bosentan. Combined therapy with both drugs fully reversed the pathology, while preventing mortality for at least 45 days. CONCLUSIONS 1) VIP completely prevented and significantly reversed MCT-induced PAH; 2) VIP was more effective than bosentan, probably because it targets a wider range of pro-remodeling pathways; and 3) combination therapy with VIP plus bosentan was more effective than either drug alone, probably because both drugs synergistically suppressed ET-ET receptor pathway.
Collapse
Affiliation(s)
- Sayyed A Hamidi
- Department of Medicine, State University of New York at Stony Brook, NY, USA
| | | | | | | | | | | |
Collapse
|
30
|
Ogawa A, Firth AL, Smith KA, Maliakal MV, Yuan JXJ. PDGF enhances store-operated Ca2+ entry by upregulating STIM1/Orai1 via activation of Akt/mTOR in human pulmonary arterial smooth muscle cells. Am J Physiol Cell Physiol 2011; 302:C405-11. [PMID: 22031597 DOI: 10.1152/ajpcell.00337.2011] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Platelet-derived growth factor (PDGF) and its receptor are known to be substantially elevated in lung tissues and pulmonary arterial smooth muscle cells (PASMC) isolated from patients and animals with pulmonary arterial hypertension. PDGF has been shown to phosphorylate and activate Akt and mammalian target of rapamycin (mTOR) in PASMC. In this study, we investigated the role of PDGF-mediated activation of Akt signaling in the regulation of cytosolic Ca(2+) concentration and cell proliferation. PDGF activated the Akt/mTOR pathway and, subsequently, enhanced store-operated Ca(2+) entry (SOCE) and cell proliferation in human PASMC. Inhibition of Akt attenuated the increase in cytosolic Ca(2+) concentration due to both SOCE and PASMC proliferation. This effect correlated with a significant downregulation of stromal interacting molecule (STIM) and Orai, proposed molecular correlates for SOCE in many cell types. The data from this study present a novel pathway for the regulation of Ca(2+) signaling and PASMC proliferation involving activation of Akt in response to upregulated expression of PDGF. Targeting this pathway may lead to the development of a novel therapeutic option for the treatment of pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Aiko Ogawa
- Department of Clinical Science, National Hospital Organization Okayama Medical Center, Japan
| | | | | | | | | |
Collapse
|
31
|
Hara Y, Sassi Y, Guibert C, Gambaryan N, Dorfmüller P, Eddahibi S, Lompré AM, Humbert M, Hulot JS. Inhibition of MRP4 prevents and reverses pulmonary hypertension in mice. J Clin Invest 2011; 121:2888-97. [PMID: 21670499 DOI: 10.1172/jci45023] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 04/27/2011] [Indexed: 01/21/2023] Open
Abstract
Multidrug resistance-associated protein 4 (MRP4, also known as Abcc4) regulates intracellular levels of cAMP and cGMP in arterial SMCs. Here, we report our studies of the role of MRP4 in the development and progression of pulmonary arterial hypertension (PAH), a severe vascular disease characterized by chronically elevated pulmonary artery pressure and accompanied by remodeling of the small pulmonary arteries as a prelude to right heart failure and premature death. MRP4 expression was increased in pulmonary arteries from patients with idiopathic PAH as well as in WT mice exposed to hypoxic conditions. Consistent with a pathogenic role for MRP4 in PAH, WT mice exposed to hypoxia for 3 weeks showed reversal of hypoxic pulmonary hypertension (PH) following oral administration of the MRP4 inhibitor MK571, and Mrp4-/- mice were protected from hypoxic PH. Inhibition of MRP4 in vitro was accompanied by increased intracellular cAMP and cGMP levels and PKA and PKG activities, implicating cyclic nucleotide-related signaling pathways in the mechanism underlying the protective effects of MRP4 inhibition. Our data suggest that MRP4 could represent a potential target for therapeutic intervention in PAH.
Collapse
|
32
|
Cell-specific dual role of caveolin-1 in pulmonary hypertension. Pulm Med 2011; 2011:573432. [PMID: 21660237 PMCID: PMC3109422 DOI: 10.1155/2011/573432] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Accepted: 03/10/2011] [Indexed: 12/15/2022] Open
Abstract
A wide variety of cardiopulmonary and systemic diseases are known to lead to pulmonary hypertension (PH). A number of signaling pathways have been implicated in PH; however, the precise mechanism/s leading to PH is not yet clearly understood. Caveolin-1, a membrane scaffolding protein found in a number of cells including endothelial and smooth muscle cells, has been implicated in PH. Loss of endothelial caveolin-1 is reported in clinical and experimental forms of PH. Caveolin-1, also known as a tumor-suppressor factor, interacts with a number of transducing molecules that reside in or are recruited to caveolae, and it inhibits cell proliferative pathways. Not surprisingly, the rescue of endothelial caveolin-1 has been found not only to inhibit the activation of proliferative pathways but also to attenuate PH. Recently, it has emerged that during the progression of PH, enhanced expression of caveolin-1 occurs in smooth muscle cells, where it facilitates cell proliferation, thus contributing to worsening of the disease. This paper summarizes the cell-specific dual role of caveolin-1 in PH.
Collapse
|
33
|
Majka S, Burnham E, Stenmark KR. Cell-based therapies in pulmonary hypertension: who, what, and when? Am J Physiol Lung Cell Mol Physiol 2011; 301:L9-L11. [PMID: 21515661 DOI: 10.1152/ajplung.00118.2011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
34
|
Prostacyclins in pulmonary arterial hypertension: the need for earlier therapy. Adv Ther 2011; 28:251-69. [PMID: 21455725 DOI: 10.1007/s12325-011-0005-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Indexed: 10/18/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a rare but serious condition, which if untreated, is associated with a 2-3-year median survival time. A number of treatment options are available for PAH, leading to improvements in exercise capacity, symptoms, and hemodynamics. However, the disease remains incurable and most patients will ultimately progress to right heart failure and death. Three classes of drugs are currently available to improve PAH outcomes, although this review will focus solely on a class of potent vasodilators known as prostacyclins. Currently, four prostacyclin analogs are licensed for the treatment of PAH: epoprostenol, treprostinil, and iloprost in the USA and some European countries, and beraprost in Japan and Korea. Prostacyclins have become the treatment of choice in patients with severe PAH, but there is also evidence to suggest that their earlier use may also benefit patients with mild-to-moderate disease. This review discusses the advantages of prostacyclins in terms of their usefulness in patients whose condition has deteriorated following monotherapy with other agents, and their integral role in combination therapy. The latter appears to offer the potential for pulmonary vasculature remodeling and could be regarded as an emerging paradigm to treat and prevent the progression of PAH.
Collapse
|
35
|
Lasker GF, Maley JH, Pankey EA, Kadowitz PJ. Targeting soluble guanylate cyclase for the treatment of pulmonary hypertension. Expert Rev Respir Med 2011; 5:153-61. [PMID: 21510726 PMCID: PMC3108035 DOI: 10.1586/ers.11.9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pulmonary arterial hypertension is a disease characterized by a sustained increase in pulmonary arterial pressure leading to right heart failure. Current treatments focus on endothelial dysfunction and an aberrant regulatory pathway for vascular tone. Unfortunately, a large proportion of patients are unresponsive to conventional vasodilator therapy. Investigations are ongoing into the effects of experimental therapies targeting the signal transduction pathway that mediates vasodilation. Here, we briefly discuss the pathophysiology of pulmonary hypertension and endothelial dysfunction, along with current treatments. We then present a focused review of recent animal studies and human trials examining the use of activators and stimulators of soluble guanylate cyclase for the treatment of pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension.
Collapse
Affiliation(s)
- George F Lasker
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, SL83, New Orleans, LA 70112-72699, USA
| | - Jason H Maley
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, SL83, New Orleans, LA 70112-72699, USA
| | - Edward A Pankey
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, SL83, New Orleans, LA 70112-72699, USA
| | - Philip J Kadowitz
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, SL83, New Orleans, LA 70112-72699, USA
| |
Collapse
|
36
|
Lee SN, Kim MG, Kim MH, Kim HJ, Jo HJ, Leem KH. Effects of Yukmigeehwang-hwan Extracts on the Elastase Activity and DPPH and NO Scavenging Activities Original Articles. J Pharmacopuncture 2011. [DOI: 10.3831/kpi.2011.14.1.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
37
|
Mathew R. Gene therapy for pulmonary arterial hypertension: is a cure in sight? Expert Opin Biol Ther 2011; 11:129-31. [DOI: 10.1517/14712598.2011.542367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|