1
|
Riggs PK, Anderson AM, Tang B, Rubin LH, Morgello S, Marra CM, Gelman BB, Clifford DB, Franklin D, Heaton RK, Ellis RJ, Fennema-Notestine C, Letendre SL. Elevated Plasma Protein Carbonyl Concentration Is Associated with More Abnormal White Matter in People with HIV. Viruses 2023; 15:2410. [PMID: 38140650 PMCID: PMC10747698 DOI: 10.3390/v15122410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/23/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Structural brain abnormalities, including those in white matter (WM), remain common in people with HIV (PWH). Their pathogenesis is uncertain and may reflect multiple etiologies. Oxidative stress is associated with inflammation, HIV, and its comorbidities. The post-translational carbonylation of proteins results from oxidative stress, and circulating protein carbonyls may reflect this. In this cross-sectional analysis, we evaluated the associations between protein carbonyls and a panel of soluble biomarkers of neuronal injury and inflammation in plasma (N = 45) and cerebrospinal fluid (CSF, n = 32) with structural brain MRI. The volume of abnormal WM was normalized for the total WM volume (nAWM). In this multisite project, all regression models were adjusted for the scanner. The candidate covariates included demographics, HIV disease characteristics, and comorbidities. Participants were PWH on virally suppressive antiretroviral therapy (ART) and were mostly white (64.4%) men (88.9%), with a mean age of 56.8 years. In unadjusted analyses, more nAWM was associated with higher plasma protein carbonyls (p = 0.002) and higher CCL2 (p = 0.045). In the adjusted regression models for nAWM, the association with plasma protein carbonyls remained significant (FDR p = 0.018). Protein carbonyls in plasma may be a valuable biomarker of oxidative stress and its associated adverse health effects, including within the central nervous system. If confirmed, these findings would support the hypothesis that reducing oxidative stress could treat or prevent WM injury in PWH.
Collapse
Affiliation(s)
- Patricia K. Riggs
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Albert M. Anderson
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Bin Tang
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
| | - Leah H. Rubin
- Departments of Neurology, Psychiatry and Behavioral Sciences, and Epidemiology, The Johns Hopkins University, Baltimore, MD 21205, USA
| | - Susan Morgello
- Departments of Neurology, Neuroscience, and Pathology, Mt Sinai School of Medicine, New York, NY 10029, USA
| | - Christina M. Marra
- Department of Neurology, University of Washington, Seattle, WA 98195, USA
| | - Benjamin B. Gelman
- Departments of Pathology, and Neuroscience & Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - David B. Clifford
- Department of Neurology, Washington University in St Louis, St Louis, MO 63110, USA
| | - Donald Franklin
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
| | - Robert K. Heaton
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
| | - Ronald J. Ellis
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
- Department of Neurosciences, University of California San Diego, San Diego, CA 92093, USA
| | - Christine Fennema-Notestine
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
- Department of Radiology, University of California San Diego, San Diego, CA 92093, USA
| | - Scott L. Letendre
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
| |
Collapse
|
2
|
Zhao J, Jing B, Liu J, Chen F, Wu Y, Li H. Probing bundle-wise abnormalities in patients infected with human immunodeficiency virus using fixel-based analysis: new insights into neurocognitive impairments. Chin Med J (Engl) 2023; 136:2178-2186. [PMID: 37605986 PMCID: PMC10508508 DOI: 10.1097/cm9.0000000000002829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Changes in white matter (WM) underlie the neurocognitive damages induced by a human immunodeficiency virus (HIV) infection. This study aimed to examine using a bundle-associated fixel-based analysis (FBA) pipeline for investigating the microstructural and macrostructural alterations in the WM of the brain of HIV patients. METHODS This study collected 93 HIV infected patients and 45 age/education/handedness matched healthy controls (HCs) at the Beijing Youan Hospital between January 1, 2016 and December 30, 2016.All HIV patients underwent neurocognitive evaluation and laboratory testing followed by magnetic resonance imaging (MRI) scanning. In order to detect the bundle-wise WM abnormalities accurately, a specific WM bundle template with 56 tracts of interest was firstly generated by an automated fiber clustering method using a subset of subjects. Fixel-based analysis was used to investigate bundle-wise differences between HIV patients and HCs in three perspectives: fiber density (FD), fiber cross-section (FC), and fiber density and cross-section (FDC). The between-group differences were detected by a two-sample t -test with the false discovery rate (FDR) correction ( P <0.05). Furthermore, the covarying relationship in FD, FC and FDC between any pair of bundles was also accessed by the constructed covariance networks, which was subsequently compared between HIV and HCs via permutation t -tests. The correlations between abnormal WM metrics and the cognitive functions of HIV patients were explored via partial correlation analysis after controlling age and gender. RESULTS Among FD, FC and FDC, FD was the only metric that showed significant bundle-wise alterations in HIV patients compared to HCs. Increased FD values were observed in the bilateral fronto pontine tract, corona radiata frontal, left arcuate fasciculus, left corona radiata parietal, left superior longitudinal fasciculus III, and right superficial frontal parietal (SFP) (all FDR P <0.05). In bundle-wise covariance network, HIV patients displayed decreased FD and increased FC covarying patterns in comparison to HC ( P <0.05) , especially between associated pathways. Finally, the FCs of several tracts exhibited a significant correlation with language and attention-related functions. CONCLUSIONS Our study demonstrated the utility of FBA on detecting the WM alterations related to HIV infection. The bundle-wise FBA method provides a new perspective for investigating HIV-induced microstructural and macrostructural WM-related changes, which may help to understand cognitive dysfunction in HIV patients thoroughly.
Collapse
Affiliation(s)
- Jing Zhao
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100069, China
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Bin Jing
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application,School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
| | - Jiaojiao Liu
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Feng Chen
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Ye Wu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Hongjun Li
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100069, China
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
3
|
Petersen KJ, Lu T, Wisch J, Roman J, Metcalf N, Cooley SA, Babulal GM, Paul R, Sotiras A, Vaida F, Ances BM. Effects of clinical, comorbid, and social determinants of health on brain ageing in people with and without HIV: a retrospective case-control study. Lancet HIV 2023; 10:e244-e253. [PMID: 36764319 PMCID: PMC10065928 DOI: 10.1016/s2352-3018(22)00373-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/22/2022] [Accepted: 12/06/2022] [Indexed: 02/10/2023]
Abstract
BACKGROUND Neuroimaging reveals structural brain changes linked with HIV infection and related neurocognitive disorders; however, group-level comparisons between people with HIV and people without HIV do not account for within-group heterogeneity. The aim of this study was to quantify the effects of comorbidities such as cardiovascular disease and adverse social determinants of health on brain ageing in people with HIV and people without HIV. METHODS In this retrospective case-control study, people with HIV from Washington University in St Louis, MO, USA, and people without HIV identified through community organisations or the Research Participant Registry were clinically characterised and underwent 3-Tesla T1-weighted MRI between Dec 3, 2008, and Oct 4, 2022. Exclusion criteria were established by a combination of self-reports and medical records. DeepBrainNet, a publicly available machine learning algorithm, was applied to estimate brain-predicted age from MRI for people with HIV and people without HIV. The brain-age gap, defined as the difference between brain-predicted age and true chronological age, was modelled as a function of clinical, comorbid, and social factors by use of linear regression. Variables were first examined singly for associations with brain-age gap, then combined into multivariate models with best-subsets variable selection. FINDINGS In people with HIV (mean age 44·8 years [SD 15·5]; 78% [296 of 379] male; 69% [260] Black; 78% [295] undetectable viral load), brain-age gap was associated with Framingham cardiovascular risk score (p=0·0034), detectable viral load (>50 copies per mL; p=0·0023), and hepatitis C co-infection (p=0·0065). After variable selection, the final model for people with HIV retained Framingham score, hepatitis C, and added unemployment (p=0·0015). Educational achievement assayed by reading proficiency was linked with reduced brain-age gap (p=0·016) for people without HIV but not for people with HIV, indicating a potential resilience factor. When people with HIV and people without HIV were modelled jointly, selection resulted in a model containing cardiovascular risk (p=0·0039), hepatitis C (p=0·037), Area Deprivation Index (p=0·033), and unemployment (p=0·00010). Male sex (p=0·078) and alcohol use history (p=0·090) were also included in the model but were not individually significant. INTERPRETATION Our findings indicate that comorbid and social determinants of health are associated with brain ageing in people with HIV, alongside traditional HIV metrics such as viral load and CD4 cell count, suggesting the need for a broadened clinical perspective on healthy ageing with HIV, with additional focus on comorbidities, lifestyle changes, and social factors. FUNDING National Institute of Mental Health, National Institute of Nursing Research, and National Institute of Drug Abuse.
Collapse
Affiliation(s)
- Kalen J. Petersen
- Department of Neurology, Washington University School of Medicine, St. Louis MO, USA
| | - Tina Lu
- Department of Neurology, Washington University School of Medicine, St. Louis MO, USA
| | - Julie Wisch
- Department of Neurology, Washington University School of Medicine, St. Louis MO, USA
| | - June Roman
- Department of Neurology, Washington University School of Medicine, St. Louis MO, USA
| | - Nicholas Metcalf
- Department of Neurology, Washington University School of Medicine, St. Louis MO, USA
| | - Sarah A. Cooley
- Department of Neurology, Washington University School of Medicine, St. Louis MO, USA
| | - Ganesh M. Babulal
- Department of Neurology, Washington University School of Medicine, St. Louis MO, USA
| | - Rob Paul
- Missouri Institute of Mental Health, University of Missouri – St. Louis MO, USA
| | - Aristeidis Sotiras
- Department of Radiology, Washington University School of Medicine, St. Louis MO, USA
| | - Florin Vaida
- Department of Family Medicine, The University of California – San Diego, USA
| | - Beau M. Ances
- Department of Neurology, Washington University School of Medicine, St. Louis MO, USA
| |
Collapse
|
4
|
Murdoch DM, Barfield R, Chan C, Towe SL, Bell RP, Volkheimer A, Choe J, Hall SA, Berger M, Xie J, Meade CS. Neuroimaging and immunological features of neurocognitive function related to substance use in people with HIV. J Neurovirol 2023; 29:78-93. [PMID: 36348233 PMCID: PMC10089970 DOI: 10.1007/s13365-022-01102-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022]
Abstract
This study sought to identify neuroimaging and immunological factors associated with substance use and that contribute to neurocognitive impairment (NCI) in people with HIV (PWH). We performed cross-sectional immunological phenotyping, neuroimaging, and neurocognitive testing on virally suppressed PWH in four substance groups: cocaine only users (COC), marijuana only users (MJ), dual users (Dual), and Non-users. Participants completed substance use assessments, multimodal MRI brain scan, neuropsychological testing, and blood and CSF sampling. We employed a two-stage analysis of 305 possible biomarkers of cognitive function associated with substance use. Feature reduction (Kruskal Wallis p-value < 0.05) identified 53 biomarkers associated with substance use (22 MRI and 31 immunological) for model inclusion along with clinical and demographic variables. We employed eXtreme Gradient Boosting (XGBoost) with these markers to predict cognitive function (global T-score). SHapley Additive exPlanations (SHAP) values were calculated to rank features for impact on model output and NCI. Participants were 110 PWH with sustained HIV viral suppression (33 MJ, 12 COC, 22 Dual, and 43 Non-users). The ten highest ranking biomarkers for predicting global T-score were 4 neuroimaging biomarkers including functional connectivity, gray matter volume, and white matter integrity; 5 soluble biomarkers (plasma glycine, alanine, lyso-phosphatidylcholine (lysoPC) aC17.0, hydroxy-sphingomyelin (SM.OH) C14.1, and phosphatidylcholinediacyl (PC aa) C28.1); and 1 clinical variable (nadir CD4 count). The results of our machine learning model suggest that substance use may indirectly contribute to NCI in PWH through both metabolomic and neuropathological mechanisms.
Collapse
Affiliation(s)
- David M Murdoch
- Department of Medicine, Duke University Medical Center, DUMC Box 2629, Durham, NC, 27710, USA.
| | - Richard Barfield
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
- Center for Human Systems Immunology, School of Medicine, Duke University, Durham, NC, USA
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
- Center for Human Systems Immunology, School of Medicine, Duke University, Durham, NC, USA
| | - Sheri L Towe
- Department of Psychiatry & Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Ryan P Bell
- Department of Psychiatry & Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Alicia Volkheimer
- Department of Medicine, Duke University Medical Center, DUMC Box 2629, Durham, NC, 27710, USA
| | - Joyce Choe
- Department of Medicine, Duke University Medical Center, DUMC Box 2629, Durham, NC, 27710, USA
| | - Shana A Hall
- Department of Psychiatry & Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Miles Berger
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Jichun Xie
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
- Center for Human Systems Immunology, School of Medicine, Duke University, Durham, NC, USA
- Department of Mathematics, Duke University, Durham, NC, USA
| | - Christina S Meade
- Department of Psychiatry & Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
5
|
Liu J, Nguchu BA, Liu D, Qi Y, Aili X, Han S, Gao Y, Wang X, Qiao H, Cai C, Huang X, Li H. Longitudinal white matter alterations in SIVmac239-infected rhesus monkeys with and without regular cART treatment. Front Immunol 2023; 13:1067795. [PMID: 36713432 PMCID: PMC9879061 DOI: 10.3389/fimmu.2022.1067795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023] Open
Abstract
Objective To use SIV-mac239-infected Chinese rhesus monkeys to study white matter changes with and without regular combined antiretroviral therapy (cART) and the relationships between the changes and clinical results. Methods Diffusion tensor imaging (DTI) data were collected at baseline and 10 days, 4 weeks, 12 weeks, 24 weeks, and 36 weeks after viral inoculation. Plasma CD4 T cell counts, CD4/CD8 ratio, plasma viral load, and cerebrospinal fluid (CSF) viral load were collected at baseline and 1 week, 5 weeks, 12 weeks, 24 weeks, and 36 weeks after viral inoculation. Microstructural characteristics were examined within 76 white matter areas defined by the DTI-white matter (WM) atlas for rhesus macaques. Corrections for multiple comparisons were performed using a false discovery rate (p < 0.05, FDR). Correlation analyzes between imaging markers and clinical markers (plasma CD4 T cell counts, CD4/CD8 ratio, plasma viral load, and cerebral spinal fluid viral load) were performed using Pearson correlations. Results White matter changes in SIV-infected macaques were detected in different brain regions as early as 4 weeks after inoculation. As time progressed, cART reversed, ameliorated, or even enhanced the effects. The CD4 T cell count was mainly associated with DTI metrics before cART, while the CD4/CD8 ratio was associated with white matter changes with and without cART. Viral load was positively associated with mean diffusivity in HIV patients without cART, and the opposite results were seen in HIV patients with cART. Conclusion SIV-mac239 infection may be an ideal tool for studying HIV-induced changes in the brain. The first white matter changes appeared in a structure adjacent to the periventricular area as early as 4 weeks after inoculation. As time progressed, cART had different effects on different regions, reversing, attenuating, or even progressing the pathology. Moreover, these changes were closely related to the CD4/CD8 ratio and viral load, even after cART.
Collapse
Affiliation(s)
- Jiaojiao Liu
- Department of Radiology, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | | | - Dan Liu
- Department of Radiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu Qi
- Department of Radiology, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Xire Aili
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China
| | - Shuai Han
- Department of Radiology, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Yuxun Gao
- Department of Radiology, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Xiaoxiao Wang
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei, China
| | - Hongwei Qiao
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Chao Cai
- Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Xiaojie Huang
- Clinical and Research Center for Infectious Diseases, Beijing YouAn Hospital, Capital Medical University, Beijing, China,*Correspondence: Xiaojie Huang, ; Hongjun Li,
| | - Hongjun Li
- Department of Radiology, Beijing YouAn Hospital, Capital Medical University, Beijing, China,Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, China,*Correspondence: Xiaojie Huang, ; Hongjun Li,
| |
Collapse
|
6
|
Yoshihara Y, Kato T, Watanabe D, Fukumoto M, Wada K, Oishi N, Nakakura T, Kuriyama K, Shirasaka T, Murai T. Altered white matter microstructure and neurocognitive function of HIV-infected patients with low nadir CD4. J Neurovirol 2022; 28:355-366. [PMID: 35776340 DOI: 10.1007/s13365-022-01053-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 12/30/2021] [Accepted: 01/11/2022] [Indexed: 10/17/2022]
Abstract
Altered white matter microstructure has been reported repeatedly using diffusion tensor imaging (DTI) in HIV-associated neurocognitive disorders. However, the associations between neurocognitive deficits and impaired white matter remains obscure due to frequent physical and psychiatric comorbidities in the patients. Severe immune suppression, reflected by low nadir CD4 T-cell counts, is reported to be associated with the neurocognitive deficits in the patients. In the present study, we examined white matter integrity using DTI and tract-based spatial statistics (TBSS), and neurocognitive functions using a battery of tests, in 15 HIV-infected patients with low nadir CD4, 16 HIV-infected patients with high nadir CD4, and 33 age- and sex-matched healthy controls. As DTI measures, we analyzed fractional anisotropy (FA) and mean diffusivity (MD). In addition, we investigated the correlation between white matter impairments and neurocognitive deficits. Among the three participant groups, the patients with low nadir CD4 showed significantly lower performance in processing speed and motor skills, and had significantly increased MD in widespread regions of white matter in both hemispheres. In the patients with low nadir CD4, there was a significant negative correlation between motor skills and MD in the right motor tracts, as well as in the corpus callosum. In summary, this study may provide white matter correlates of neurocognitive deficits in HIV-infected patients with past severe immune suppression as legacy effects.
Collapse
Affiliation(s)
- Yujiro Yoshihara
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Tadatsugu Kato
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Dai Watanabe
- AIDS Medical Center, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Masaji Fukumoto
- Department of Radiology, National Hospital Organization Higashi-Ohmi General Medical Center, Shiga, Japan
| | - Keiko Wada
- Department of Radiology, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Naoya Oishi
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takahiro Nakakura
- Department of Psychology, Faculty of Health Sciences, Kyoto Tachibana University, Kyoto, Japan
| | - Keiko Kuriyama
- Department of Radiology, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Takuma Shirasaka
- AIDS Medical Center, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Toshiya Murai
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, 54 Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
7
|
Aili X, Wang W, Zhang A, Jiao Z, Li X, Rao B, Li R, Li H. Rich-Club Analysis of Structural Brain Network Alterations in HIV Positive Patients With Fully Suppressed Plasma Viral Loads. Front Neurol 2022; 13:825177. [PMID: 35812120 PMCID: PMC9263507 DOI: 10.3389/fneur.2022.825177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveEven with successful combination antiretroviral therapy (cART), patients with human immunodeficiency virus positive (HIV+) continue to present structural alterations and neuropsychological impairments. The purpose of this study is to investigate structural brain connectivity alterations and identify the hub regions in HIV+ patients with fully suppressed plasma viral loads.MethodsIn this study, we compared the brain structural connectivity in 48 patients with HIV+ treated with a combination of antiretroviral therapy and 48 healthy controls, using diffusion tensor imaging. Further comparisons were made in 24 patients with asymptomatic neurocognitive impairment (ANI) and 24 individuals with non-HIV-associated neurocognitive disorders forming a subset of HIV+ patients. The graph theory model was used to establish the topological metrics. Rich-club analysis was used to identify hub nodes across groups and abnormal rich-club connections. Correlations of connectivity metrics with cognitive performance and clinical variables were investigated as well.ResultsAt the regional level, HIV+ patients demonstrated lower degree centrality (DC), betweenness centrality (BC), and nodal efficiency (NE) at the occipital lobe and the limbic cortex; and increased BC and nodal cluster coefficient (NCC) in the occipital lobe, the frontal lobe, the insula, and the thalamus. The ANI group demonstrated a significant reduction in the DC, NCC, and NE in widespread brain regions encompassing the occipital lobe, the frontal lobe, the temporal pole, and the limbic system. These results did not survive the Bonferroni correction. HIV+ patients and the ANI group had similar hub nodes that were mainly located in the occipital lobe and subcortical regions. The abnormal connections were mainly located in the occipital lobe in the HIV+ group and in the parietal lobe in the ANI group. The BC in the calcarine fissure was positively correlated with complex motor skills. The disease course was negatively correlated with NE in the middle occipital gyrus.ConclusionThe results suggest that the occipital lobe and the subcortical regions may be important in structural connectivity alterations and cognitive impairment. Rich-club analysis may contribute to our understanding of the neuropathology of HIV-associated neurocognitive disorders.
Collapse
Affiliation(s)
- Xire Aili
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Wei Wang
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Aidong Zhang
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Zengxin Jiao
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xing Li
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Bo Rao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Bo Rao
| | - Ruili Li
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Ruili Li
| | - Hongjun Li
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Hongjun Li
| |
Collapse
|
8
|
Bell RP, Meade CS, Gadde S, Towe SL, Hall SA, Chen NK. Principal component analysis denoising improves sensitivity of MR diffusion to detect white matter injury in neuroHIV. J Neuroimaging 2022; 32:544-553. [PMID: 35023234 PMCID: PMC9090947 DOI: 10.1111/jon.12965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/27/2021] [Accepted: 12/27/2021] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE Diffusion-weighted imaging is able to capture important information about cerebral white matter (WM) structure. However, diffusion data can suffer from MRI and biological noise that degrades the quality of the images and makes finding important features difficult. We investigated how effectively local and nonlocal denoising increased the sensitivity to detect differences in cerebral WM in neuroHIV. METHODS We utilized principal component analysis (PCA) denoising to detect WM differences using fractional anisotropy. Local and nonlocal PCA denoising paradigms were implemented that varied in search area and number of components. We examined different-sized WM tracts that consistently show differences between people living with Human Immunodeficiency Virus (HIV) (PWH) and HIV-negative individuals (corpus callosum, forceps minor, and right uncinate fasciculus), and size-matched tracts not typically associated with HIV-related differences (spinothalamic, right medial lemniscus, and left occipitopontine). We first conducted a full sample comparison of WM differences between groups, and then randomly reduced the sample to the point where we still found differences in WM. RESULTS Nonlocal PCA denoising allowed us to detect differences after a sample reduction of 35% in the forceps minor, 17% in the right uncinate fasciculus, and 6% in the corpus callosum. CONCLUSIONS PCA denoising had a beneficial effect on detecting significant differences in PWH after sample size reduction. The smaller forceps minor tract and right uncinate fasciculus showed greater sensitivity to PCA denoising than the larger corpus callosum. These results show the importance of identifying the most effective PCA denoising strategy when investigating WM in PWH.
Collapse
Affiliation(s)
- Ryan P Bell
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Christina S Meade
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina, USA
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina, USA
| | - Syam Gadde
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina, USA
| | - Sheri L Towe
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Shana A Hall
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Nan-Kuei Chen
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
9
|
Petersen KJ, Strain J, Cooley S, Vaida F, Ances BM. Machine Learning Quantifies Accelerated White-Matter Aging in Persons With HIV. J Infect Dis 2022; 226:49-58. [PMID: 35481983 PMCID: PMC9890925 DOI: 10.1093/infdis/jiac156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Persons with HIV (PWH) undergo white matter changes, which can be quantified using the brain-age gap (BAG), the difference between chronological age and neuroimaging-based brain-predicted age. Accumulation of microstructural damage may be accelerated in PWH, especially with detectable viral load (VL). METHODS In total, 290 PWH (85% with undetectable VL) and 165 HIV-negative controls participated in neuroimaging and cognitive testing. BAG was measured using a Gaussian process regression model trained to predict age from diffusion magnetic resonance imaging in publicly available normative controls. To test for accelerated aging, BAG was modeled as an age × VL interaction. The relationship between BAG and global neuropsychological performance was examined. Other potential predictors of pathological aging were investigated in an exploratory analysis. RESULTS Age and detectable VL had a significant interactive effect: PWH with detectable VL accumulated +1.5 years BAG/decade versus HIV-negative controls (P = .018). PWH with undetectable VL accumulated +0.86 years BAG/decade, although this did not reach statistical significance (P = .052). BAG was associated with poorer global cognition only in PWH with detectable VL (P < .001). Exploratory analysis identified Framingham cardiovascular risk as an additional predictor of pathological aging (P = .027). CONCLUSIONS Aging with detectable HIV and cardiovascular disease may lead to white matter pathology and contribute to cognitive impairment.
Collapse
Affiliation(s)
- Kalen J Petersen
- Correspondence: Kalen J. Petersen, PhD, Washington University in St Louis, 600 South Euclid Avenue, Box 8111, St Louis, MO 63130 ()
| | - Jeremy Strain
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Sarah Cooley
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Florin Vaida
- Department of Family and Preventive Medicine, University of California, San Diego, California, USA
| | - Beau M Ances
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
10
|
Kilgore CB, Strain JF, Nelson B, Cooley SA, Rosenow A, Glans M, Cade WT, Reeds DN, Paul RH, Ances BM. Cardiorespiratory Fitness Is Associated With Better White Matter Integrity in Persons Living With HIV. J Acquir Immune Defic Syndr 2022; 89:558-565. [PMID: 34966145 PMCID: PMC9058177 DOI: 10.1097/qai.0000000000002907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/29/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Despite improved survival rates, neurocognitive impairment persists in persons living with HIV (PLWH). An active lifestyle is linked to improved cognition among PLWH, yet the neural substrates remain unclear. Diffusion tensor imaging and diffusion basis spectrum imaging measure HIV-related changes in brain white matter integrity. We used these measures of structural brain integrity to assess white matter changes, physical fitness, and cognition in a cross-sectional study of PLWH. METHODS Forty-four virologically well-controlled PLWH were recruited (average age of 56 years, a median recent CD4+ count of 682 cells/mm3). Diffusion tensor imaging -derived fractional anisotropy (FA) and diffusion basis spectrum imaging-derived axonal density were calculated. Cardiorespiratory fitness [maximal volume of oxygen consumption (VO2 max)] was measured by performing indirect calorimetry during exercise to volitional exhaustion. Cardiovascular risk was assessed by the Framingham risk score. Neuropsychological performance (NP) testing evaluated learning, memory, psychomotor/processing speed, and executive function. Partial correlations assessed the relationships among cardiorespiratory fitness, neuroimaging, NP, and HIV clinical metrics (CD4+ count and time since diagnosis). RESULTS Higher VO2 max was associated with higher FA and higher axonal density in multiple white matter tracts, including the corticospinal tract and superior longitudinal fasciculus. Better NP in the motor/psychomotor domain was positively associated with FA and axonal density in diverse tracts including those associated with motor and visuospatial processing. However, higher VO2 max was not associated with NP or HIV clinical metrics. CONCLUSIONS An active lifestyle promoting cardiorespiratory fitness may lead to better white matter integrity and decreased susceptibility to cognitive decline in virologically well-controlled PLWH.
Collapse
Affiliation(s)
- Collin B Kilgore
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
| | - Jeremy F Strain
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
| | - Brittany Nelson
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
| | - Sarah A Cooley
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
| | - Alexander Rosenow
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
| | - Michelle Glans
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
| | | | - Dominic N Reeds
- Department of Medicine, Washington University in St. Louis, St. Louis, MO
| | - Robert H Paul
- Department of Psychology, University of Missouri-St. Louis, St. Louis, MO
| | - Beau M Ances
- Department of Neurology, Washington University in St. Louis, St. Louis, MO
- Department of Radiology, Washington University in St. Louis, St. Louis, MO; and
- Hope Center for Neurological Disorders, Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
11
|
Morgello S, Buyukturkoglu K, Murray J, Veenstra M, Berman JW, Byrd D, Inglese M. MR spectroscopy and diffusion imaging in people with human immunodeficiency virus: Relationships to clinical and immunologic findings. J Neuroimaging 2022; 32:158-170. [PMID: 34520593 PMCID: PMC8752497 DOI: 10.1111/jon.12931] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND AND PURPOSE People with human immunodeficiency virus (HIV; PWH) present a complex array of immunologic and medical disorders that impact brain structure and metabolism, complicating the interpretation of neuroimaging. This pilot study of well-characterized multi-morbid PWH examined how medical and immunologic factors predicted brain characteristics on proton MR spectroscopy (1H-MRS) and diffusion-weighted imaging (DWI). METHODS Eighteen individuals on combination antiretroviral therapy (cART), with mean age of 56 years, underwent medical history review, neuroimaging, and on the day of imaging, blood draw for assay of 20 plasma cytokines and flow cytometric characterization of peripheral blood mononuclear cell subsets. Predictors of n-acetyl aspartate, choline, myoinositol, glutamate/glutamine, fractional anisotropy and mean diffusivity were identified through bivariate correlation; those significant at p < .1000 were advanced to multivariate analysis, with models created for each neuroimaging outcome. RESULTS Monocyte subsets and diverse cytokines accounted for 16 of 25 (64%) variables predicting 1H-MRS spectra in frontal gray and white matter and basal ganglia; monocyte subsets did not predict any DWI characteristic. In contrast, age, presence of hypertension, and duration of HIV infection accounted for 13 of 25 (52%) variables predicting diffusion characteristics in the corpus callosum, thalamic radiations, and basal ganglia but only 3 of 25 (12%) predictors of 1H-MRS features. CONCLUSIONS 1H-MRS neurometabolites were most often predicted by immunologic factors sensitive to temporal variation, whereas DWI metrics were more often related to longer-term disease state. In multi-morbid cART-era populations, selection and interpretation of neuroimaging modalities should account for complex temporal and pathogenetic influences of immunologic abnormality, disease state, and aging.
Collapse
Affiliation(s)
- Susan Morgello
- Department of Neurology, The Icahn School of Medicine at Mount Sinai, New York City, New York,Departments of Neuroscience and Pathology, The Icahn School of Medicine at Mount Sinai, New York City, New York
| | | | - Jacinta Murray
- Department of Neurology, The Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Mike Veenstra
- Departments of Pathology, Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| | - Joan W. Berman
- Departments of Pathology, Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| | - Desiree Byrd
- Department of Neurology, The Icahn School of Medicine at Mount Sinai, New York City, New York,Department of Psychology, Queens College and the Graduate Center, City University of New York, Queens, New York
| | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| |
Collapse
|
12
|
Peluso MJ, Hellmuth J, Chow FC. Central Nervous System Effects of COVID-19 in People with HIV Infection. Curr HIV/AIDS Rep 2021; 18:538-548. [PMID: 34843065 PMCID: PMC8628487 DOI: 10.1007/s11904-021-00582-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2021] [Indexed: 10/28/2022]
Abstract
The convergence of the HIV and SARS-CoV-2 pandemics is an emerging field of interest. In this review, we outline the central nervous system (CNS) effects of COVID-19 in the general population and how these effects may manifest in people with HIV (PWH). We discuss the hypothetical mechanisms through which SARS-CoV-2 could impact the CNS during both the acute and recovery phases of infection and the potential selective vulnerability of PWH to these effects as a result of epidemiologic, clinical, and biologic factors. Finally, we define key research questions and considerations for the investigation of CNS sequelae of COVID-19 in PWH.
Collapse
Affiliation(s)
- Michael J Peluso
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, CA, USA
| | - Joanna Hellmuth
- Memory and Aging Center, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Felicia C Chow
- Weill Institute for Neurosciences, Departments of Neurology and Medicine (Infectious Diseases), University of California, San Francisco, CA, USA.
- San Francisco General Hospital, 1001 Potrero Avenue, Building 1, Suite 101, CA, San Francisco, USA.
| |
Collapse
|
13
|
Monnig MA, Gullett JM, Porges EC, Woods AJ, Monti PM, Tashima K, Jahanshad N, Thompson P, Nir T, Cohen RA. Associations of alcohol use, HIV infection, and age with brain white matter microstructure. J Neurovirol 2021; 27:936-950. [PMID: 34750783 PMCID: PMC8901452 DOI: 10.1007/s13365-021-01021-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 08/24/2021] [Accepted: 10/04/2021] [Indexed: 11/29/2022]
Abstract
Heavy drinking and HIV infection are independently associated with damage to the brain's white matter. The purpose of the current study was to investigate whether current alcohol consumption, HIV infection, and associated characteristics were associated with indices of white matter microstructural integrity in people living with HIV (PLWH) and seronegative individuals. PLWH and controls were categorized as non-drinkers, moderate drinkers, or heavy drinkers. White matter fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD) were assessed using diffusion tensor imaging (DTI). Voxelwise analyses using tract-based spatial statistics were followed by confirmatory region-of-interest (ROI) analyses. Data from 108 participants (62 PLWH, 46 controls) were suitable for analysis. Average age (± standard deviation) was 45.2 ± 11.1 years, and the sample was 42% female. The majority of PLWH were on antiretroviral therapy (94%) and were virally suppressed (69%). PLWH and controls did not differ on substance use. Heavier alcohol intake was significantly associated with lower FA and higher RD in widespread areas. Heavy drinking was significantly associated with higher AD in a small region. The main effect of HIV was not significant, but a significant HIV-age interaction was observed. Follow-up ROI analyses confirmed the main effect of drinking group and HIV-age interaction. In conclusion, results are consistent with a dose-dependent association of alcohol use with lower white matter microstructural coherence. Concordance between FA and RD findings suggests dysmyelination as a mechanism. Findings underscore the need to address unhealthy alcohol use in HIV-positive and seronegative individuals, the consequences of which may be exacerbated by aging.
Collapse
Affiliation(s)
| | - Joseph M Gullett
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, 32611, USA
| | - Eric C Porges
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, 32611, USA
| | - Adam J Woods
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, 32611, USA
| | - Peter M Monti
- Brown University, Box G-S121-5, Providence, RI, 02912, USA
| | | | - Neda Jahanshad
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Paul Thompson
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Talia Nir
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Ronald A Cohen
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
14
|
Hall SA, Bell RP, Davis SW, Towe SL, Ikner TP, Meade CS. Human immunodeficiency virus-related decreases in corpus callosal integrity and corresponding increases in functional connectivity. Hum Brain Mapp 2021; 42:4958-4972. [PMID: 34382273 PMCID: PMC8449114 DOI: 10.1002/hbm.25592] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/25/2021] [Accepted: 07/06/2021] [Indexed: 12/15/2022] Open
Abstract
People living with human immunodeficiency virus (PLWH) often have neurocognitive impairment. However, findings on HIV-related differences in brain network function underlying these impairments are inconsistent. One principle frequently absent from these reports is that brain function is largely emergent from brain structure. PLWH commonly have degraded white matter; we hypothesized that functional communities connected by degraded white matter tracts would show abnormal functional connectivity. We measured white matter integrity in 69 PLWH and 67 controls using fractional anisotropy (FA) in 24 intracerebral white matter tracts. Then, among tracts with degraded FA, we identified gray matter regions connected to these tracts and measured their functional connectivity during rest. Finally, we identified cognitive impairment related to these structural and functional connectivity systems. We found HIV-related decreased FA in the corpus callosum body (CCb), which coordinates activity between the left and right hemispheres, and corresponding increases in functional connectivity. Finally, we found that individuals with impaired cognitive functioning have lower CCb FA and higher CCb functional connectivity. This result clarifies the functional relevance of the corpus callosum in HIV and provides a framework in which abnormal brain function can be understood in the context of abnormal brain structure, which may both contribute to cognitive impairment.
Collapse
Affiliation(s)
- Shana A. Hall
- Department of Psychiatry and Behavioral SciencesDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Ryan P. Bell
- Department of Psychiatry and Behavioral SciencesDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Simon W. Davis
- Department of NeurologyDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Sheri L. Towe
- Department of Psychiatry and Behavioral SciencesDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Taylor P. Ikner
- Department of Psychiatry and Behavioral SciencesDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Christina S. Meade
- Department of Psychiatry and Behavioral SciencesDuke University School of MedicineDurhamNorth CarolinaUSA
- Brain Imaging and Analysis CenterDuke University Medical CenterDurhamNorth CarolinaUSA
| |
Collapse
|
15
|
Sui J, Li X, Bell RP, Towe SL, Gadde S, Chen NK, Meade CS. Structural and Functional Brain Abnormalities in Human Immunodeficiency Virus Disease Revealed by Multimodal Magnetic Resonance Imaging Fusion: Association With Cognitive Function. Clin Infect Dis 2021; 73:e2287-e2293. [PMID: 32948879 PMCID: PMC8492163 DOI: 10.1093/cid/ciaa1415] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND Human immunodeficiency virus (HIV)-associated neurocognitive impairment remains a prevalent comorbidity that impacts daily functioning and increases morbidity. While HIV infection is known to cause widespread disruptions in the brain, different magnetic resonance imaging (MRI) modalities have not been effectively integrated. In this study, we applied 3-way supervised fusion to investigate how structural and functional coalterations affect cognitive function. METHODS Participants (59 people living with HIV and 58 without HIV) completed comprehensive neuropsychological testing and multimodal MRI scanning to acquire high-resolution anatomical, diffusion-weighted, and resting-state functional images. Preprocessed data were reduced using voxel-based morphometry, probabilistic tractography, and regional homogeneity, respectively. We applied multimodal canonical correlation analysis with reference plus joint independent component analysis using global cognitive functioning as the reference. RESULTS Compared with controls, participants living with HIV had lower global cognitive functioning. One joint component was both group discriminating and correlated with cognitive function. This component included the following covarying regions: fractional anisotropy in the corpus callosum, short and long association fiber tracts, and corticopontine fibers; gray matter volume in the thalamus, prefrontal cortex, precuneus, posterior parietal regions, and occipital lobe; and functional connectivity in frontoparietal and visual processing regions. Component loadings for fractional anisotropy also correlated with immunosuppression. CONCLUSIONS These results suggest that coalterations in brain structure and function can distinguish people with and without HIV and may drive cognitive impairment. As MRI becomes more commonplace in HIV care, multimodal fusion may provide neural biomarkers to support diagnosis and treatment of cognitive impairment.
Collapse
Affiliation(s)
- Jing Sui
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, Georgia, USA
- Brainnetome Center & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Xiang Li
- Brainnetome Center & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Ryan P Bell
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Sheri L Towe
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Syam Gadde
- Brain Imaging and Analysis Center, Duke University, Durham, North Carolina, USA
| | - Nan-kuei Chen
- Brain Imaging and Analysis Center, Duke University, Durham, North Carolina, USA
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona, USA
| | - Christina S Meade
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina, USA
- Brain Imaging and Analysis Center, Duke University, Durham, North Carolina, USA
| |
Collapse
|
16
|
Gutierrez J, Porras TN, Yoo-Jeong M, Khasiyev F, Igwe KC, Laing KK, Brickman AM, Pavol M, Schnall R. Cerebrovascular Contributions to Neurocognitive Disorders in People Living With HIV. J Acquir Immune Defic Syndr 2021; 88:79-85. [PMID: 34397745 PMCID: PMC8371714 DOI: 10.1097/qai.0000000000002729] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 04/07/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND To investigate a comprehensive array of magnetic resonance imaging (MRI)-based biomarkers of cerebrovascular disease (CVD) in a cohort of people living with HIV (PLWH) and relate these imaging biomarkers to cognition. SETTINGS Cross-sectional, community-based study. METHODS Participants were PLWH in New York City, aged 50 years or older. They underwent a brain magnetic resonance angiography or MRI to ascertain 7 MRI markers of CVD: silent brain infarcts, dilated perivascular spaces, microhemorrhages, white matter hyperintensity volume, white matter fractional anisotropy and mean diffusivity (measures of white matter integrity), and intracranial large artery stenosis. Participants underwent a battery of neurocognitive tests to obtain individual and global cognitive scores representative of various aspects of cognition. RESULTS We included 85 participants (mean age 60 ± 6 years, 48% men, 78% non-Hispanic Black), most of them with well-controlled HIV (75% with CD4 cell count > 200 cells/mm3 and viral load < 400 copies/mL at or near the time of the MRI scan). Silent brain infarcts, intracranial large artery stenosis, and poor white matter integrity were associated with poorer performance in at least one cognitive domain, but the sum of these 3 MRI markers of CVD was associated with lower working memory (B = -0.213, P = 0.028), list learning (B = -0.275, P = 0.019), and global cognition (B = -0.129, P = 0.007). CONCLUSIONS We identified silent brain infarcts, intracranial large artery stenosis, and poor white matter integrity as exposures that may be modifiable and may, therefore, influence cognitive decline. In addition, these MRI markers of CVD may help in identifying PLWH at higher risk of cognitive decline, which may be more amenable to targeted therapies.
Collapse
Affiliation(s)
- Jose Gutierrez
- Department of Neurology, Columbia University Irving Medical Center, New York, NY
- Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
| | - Tiffany N Porras
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY
| | - Moka Yoo-Jeong
- School of Nursing, Bouvé College of Health Sciences, Northeastern University, Boston, MA
| | - Farid Khasiyev
- Department of Neurology, Saint Louis University, Saint Louis, MI
| | - Kay C Igwe
- Department of Neurology, Columbia University Irving Medical Center, New York, NY
| | - Krystal K Laing
- Department of Neurology, Columbia University Irving Medical Center, New York, NY
| | - Adam M Brickman
- Department of Neurology, Columbia University Irving Medical Center, New York, NY
- Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY
| | - Marykay Pavol
- Department of Neurology, Columbia University Irving Medical Center, New York, NY
| | - Rebecca Schnall
- School of Nursing, Columbia University Irving Medical Center, New York, NY; and
- Department of Population and Family Health, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
17
|
Robinson-Papp J, Saylor D. HIV in the Brain: From Devastating Dementia to White Matter Hyperintensities. Neurology 2021; 96:645-646. [PMID: 33637631 DOI: 10.1212/wnl.0000000000011735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Jessica Robinson-Papp
- From the Department of Neurology (J.R.-P.), Icahn School of Medicine at Mount Sinai, New York, NY; and Department of Neurology (D.S.), Johns Hopkins University School of Medicine, Baltimore, MD.
| | - Deanna Saylor
- From the Department of Neurology (J.R.-P.), Icahn School of Medicine at Mount Sinai, New York, NY; and Department of Neurology (D.S.), Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
18
|
Liu D, Zhao C, Wang W, Wang Y, Li R, Sun J, Liu J, Liu M, Zhang X, Liang Y, Li H. Altered Gray Matter Volume and Functional Connectivity in Human Immunodeficiency Virus-Infected Adults. Front Neurosci 2020; 14:601063. [PMID: 33343289 PMCID: PMC7744568 DOI: 10.3389/fnins.2020.601063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/05/2020] [Indexed: 01/10/2023] Open
Abstract
People living with human immunodeficiency virus (HIV) (PLWH) are at high risk of neurocognitive impairment. The pathogenesis of neurocognitive impairment remains unclear, and there is still no diagnostic biomarker. By coupling three-dimensional T1-weighted imaging and resting-state functional imaging, we explored structural and functional alterations in PLWH and examined whether such imaging alterations had the potential to denote neurocognitive function. A total of 98 PLWH and 47 seronegative controls aged 20-53 years were recruited. Structural alterations were first explored between HIV-negative controls and PLWH. Subsequently, brain regions showing gray matter alterations were used as seeds for separate whole-brain functional connectivity (FC) analysis. Finally, the relationships between imaging alterations and cognitive function were explored. PLWH suffered from thalamus, occipital lobe, and hippocampus/parahippocampus atrophy. Visual cortices in PLWH showed decreased anticorrelation with the posterior cingulate cortex and left angular gyrus of the default mode network. FC within the visual cortices (between the left calcarine and right calcarine) and in the thalamic prefrontal circuit and between the thalamus and somatosensory association cortex were also altered. In addition, FC between the left thalamus and right dorsolateral prefrontal cortex in the cognitively impaired group was significantly different from that in the cognitively normal group in PLWH. Partial correlation analysis uncorrected for multiple comparisons suggested that some imaging alterations can be associated with neurocognition. Our study supports the presence of brain atrophy and functional reconfiguration in PLWH. Imaging alterations can be associated with neurocognitive function. We hold that neuroimaging is a promising approach in evaluating PLWH and might have the potential to clarify the pathogenesis of HIV-associated neurocognitive disorder.
Collapse
Affiliation(s)
- Dan Liu
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Cui Zhao
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Wei Wang
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yuanyuan Wang
- Department of Radiology, Beijing Second Hospital, Beijing, China
| | - Ruili Li
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Jun Sun
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Jiaojiao Liu
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Mingming Liu
- Physical Examination Center, Cangzhou Central Hospital, Hebei, China
| | - Xu Zhang
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Ying Liang
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Hongjun Li
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- Beijing University of Aeronautics and Astronautics, Beijing, China
| |
Collapse
|
19
|
Wei J, Hou J, Su B, Jiang T, Guo C, Wang W, Zhang Y, Chang B, Wu H, Zhang T. The Prevalence of Frascati-Criteria-Based HIV-Associated Neurocognitive Disorder (HAND) in HIV-Infected Adults: A Systematic Review and Meta-Analysis. Front Neurol 2020; 11:581346. [PMID: 33335509 PMCID: PMC7736554 DOI: 10.3389/fneur.2020.581346] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Background: The HIV associated mortality is decreasing in most countries due to the widespread use of antiretroviral therapy. However, HIV-associated neurocognitive disorder (HAND) remains a problematic issue that lowers the quality of life and increases the public health burden among people living with HIV. The prevalence of HAND varies across studies and selected samples. Therefore, we aimed to quantitatively summarize the pooled prevalence of Frascati-criteria-based HAND and to explore the potential demographic, clinical, and immunological factors. Methods: A comprehensive literature search in PubMed/Medline, Web of Science, Embase, and PsycINFO was performed. A random-effects meta-analysis was conducted using the event rate (ER) for the estimation of the incidence of HAND. Subgroup meta-analyses were used to evaluate between-group differences in categorical variables. Meta-regression with the unrestricted maximum likelihood (ML) method was used to evaluate associations of continuous variables. Results: Eighteen studies whose sample sizes ranged from 206 to 1555 were included in the final analyses. The estimated prevalence of HAND, ANI, MND and HAD were 44.9% (95% CI 37.4-52.7%), 26.2% (95% CI 20.7-32.7%), 8.5% (95% CI 5.6-12.7%), 2.1% (95% CI 1.2-3.7%), respectively. Factors associated with HAND were percent female, current CD4 count, education level and country development level (all ps < 0.05). Conclusion: Longitudinal cohort and multimodal neuroimaging studies are needed to verify the clinical prognosis and the underlying neurocognitive mechanism of HAND. In addition, it is urgently necessary to establish a standardized HAND diagnostic process.
Collapse
Affiliation(s)
- Jiaqi Wei
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Jianhua Hou
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Bin Su
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Taiyi Jiang
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Caiping Guo
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Wen Wang
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yang Zhang
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Biru Chang
- Research Institute for International and Comparative Education, Shanghai Normal University, Shanghai, China.,Department of Psychology, Shanghai Normal University, Shanghai, China
| | - Hao Wu
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| | - Tong Zhang
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory for HIV/AIDS Research, Beijing, China
| |
Collapse
|
20
|
van Genderen JG, Van den Hof M, Boyd AC, Caan MWA, Wit FWNM, Reiss P, Pajkrt D. Differences in location of cerebral white matter hyperintensities in children and adults living with a treated HIV infection: A retrospective cohort comparison. PLoS One 2020; 15:e0241438. [PMID: 33112914 PMCID: PMC7592958 DOI: 10.1371/journal.pone.0241438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 10/14/2020] [Indexed: 11/19/2022] Open
Abstract
Cerebral white matter hyperintensities (WMH) persist in children and adults living with HIV, despite effective combination antiretroviral therapy (cART). As age and principal routes of transmission differ between children (perinatally) and adults (behaviorally), comparing the characteristics and determinants of WMH between these populations may increase our understanding of the pathophysiology of WMH. From separate cohorts of 31 children (NOVICE) and 74 adults (AGEhIV), we cross-sectionally assessed total WMH volume and number of WMH per location (periventricular vs. deep) using fluid-attenuated inversion recovery (FLAIR) MRI images. WMH were either periventricular when within 10mm of the lateral ventricles, or deep otherwise. We assessed patient- or HIV-related determinants of total WMH volume (adjusted for intracranial volume) and location of WMH using logistic regression, while stratifying on children and adults. At enrollment, median age of participants was 13.8 years (IQR 11.4-15.9) for children and 53.4 years (IQR 48.3-60.8) for adults and 27/31 children (87%) and 74/74 adults (100%) had an HIV RNA viral load <200 copies/mL. WMH were present in 16/27 (52%) children and 74/74 adults (100%). The prevalence of deep WMH was not different between groups, (16/16 [100%] in children vs. 71/74 [96%] in adults, p = 0,999), yet periventricular WMH were more prevalent in adults (74/74 [100%]) compared to children (9/16; 56%) (p<0.001). Median WMH volume was higher in adults compared to children (1182 mm3 [425-2617] vs. 109 mm3 [61.7-625], p<0.001). In children, boys were more likely to have deep WMH compared to girls. In adults, older age was associated with higher total WMH volume, and age, hypertension and lower CD4+ T-lymphocyte nadir with a higher number of periventricular WMH. Our findings suggest that the location of WMH differs between children and adults living with HIV, hinting at a different underlying pathogenesis.
Collapse
Affiliation(s)
- Jason G. van Genderen
- Department of Pediatric Infectious Diseases, Emma Children’s Hospital,
Amsterdam UMC, University of Amsterdam, Amsterdam, The
Netherlands
| | - Malon Van den Hof
- Department of Pediatric Infectious Diseases, Emma Children’s Hospital,
Amsterdam UMC, University of Amsterdam, Amsterdam, The
Netherlands
| | - Anders C. Boyd
- HIV Monitoring Foundation, Amsterdam, The Netherlands
- Public Health Service of Amsterdam, Department of Infectious Diseases,
Amsterdam, The Netherlands
| | - Matthan W. A. Caan
- Department of Biomedical Engineering and Physics, Amsterdam UMC,
University of Amsterdam, Amsterdam, The Netherlands
- Department of Radiology, Amsterdam UMC, University of Amsterdam,
Amsterdam, The Netherlands
| | - Ferdinand W. N. M. Wit
- HIV Monitoring Foundation, Amsterdam, The Netherlands
- Amsterdam Institute for Global Health and Development (AIGHD), Amsterdam,
The Netherlands
- Department of Global Health, Amsterdam UMC, University of Amsterdam,
Amsterdam, The Netherlands
| | - Peter Reiss
- HIV Monitoring Foundation, Amsterdam, The Netherlands
- Amsterdam Institute for Global Health and Development (AIGHD), Amsterdam,
The Netherlands
- Department of Global Health, Amsterdam UMC, University of Amsterdam,
Amsterdam, The Netherlands
| | - Dasja Pajkrt
- Department of Pediatric Infectious Diseases, Emma Children’s Hospital,
Amsterdam UMC, University of Amsterdam, Amsterdam, The
Netherlands
| |
Collapse
|
21
|
Chang L, Liang H, Kandel SR, He JJ. Independent and Combined Effects of Nicotine or Chronic Tobacco Smoking and HIV on the Brain: A Review of Preclinical and Clinical Studies. J Neuroimmune Pharmacol 2020; 15:658-693. [PMID: 33108618 DOI: 10.1007/s11481-020-09963-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023]
Abstract
Tobacco smoking is highly prevalent among HIV-infected individuals. Chronic smokers with HIV showed greater cognitive deficits and impulsivity, and had more psychopathological symptoms and greater neuroinflammation than HIV non-smokers or smokers without HIV infection. However, preclinical studies that evaluated the combined effects of HIV-infection and tobacco smoking are scare. The preclinical models typically used cell cultures or animal models that involved specific HIV viral proteins or the administration of nicotine to rodents. These preclinical models consistently demonstrated that nicotine had neuroprotective and anti-inflammatory effects, leading to cognitive enhancement. Although the major addictive ingredient in tobacco smoking is nicotine, chronic smoking does not lead to improved cognitive function in humans. Therefore, preclinical studies designed to unravel the interactive effects of chronic tobacco smoking and HIV infection are needed. In this review, we summarized the preclinical studies that demonstrated the neuroprotective effects of nicotine, the neurotoxic effects of the HIV viral proteins, and the scant literature on nicotine or tobacco smoke in HIV transgenic rat models. We also reviewed the clinical studies that evaluated the neurotoxic effects of tobacco smoking, HIV infection and their combined effects on the brain, including studies that evaluated the cognitive and behavioral assessments, as well as neuroimaging measures. Lastly, we compared the different approaches between preclinical and clinical studies, identified some gaps and proposed some future directions. Graphical abstract Independent and combined effects of HIV and tobacco/nicotine. Left top and bottom panels: Both clinical studies of HIV infected persons and preclinical studies using viral proteins in vitro or in vivo in animal models showed that HIV infection could lead to neurotoxicity and neuroinflammation. Right top and bottom panels: While clinical studies of tobacco smoking consistently showed deleterious effects of smoking, clinical and preclinical studies that used nicotine show mild cognitive enhancement, neuroprotective and possibly anti-inflammatory effects. In the developing brain, however, nicotine is neurotoxic. Middle overlapping panels: Clinical studies of persons with HIV who were smokers typically showed additive deleterious effects of HIV and tobacco smoking. However, in the preclinical studies, when nicotine was administered to the HIV-1 Tg rats, the neurotoxic effects of HIV were attenuated, but tobacco smoke worsened the inflammatory cascade.
Collapse
Affiliation(s)
- Linda Chang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 670 W. Baltimore Street, HSF III, Baltimore, MD, 21201, USA.
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA.
| | - Huajun Liang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 670 W. Baltimore Street, HSF III, Baltimore, MD, 21201, USA
| | - Suresh R Kandel
- Department of Microbiology and Immunology, Chicago Medical School, Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, 3333 Green Bay Road, Basic Science Building 2.300, North Chicago, IL, 60064, USA
| | - Johnny J He
- Department of Microbiology and Immunology, Chicago Medical School, Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, 3333 Green Bay Road, Basic Science Building 2.300, North Chicago, IL, 60064, USA.
| |
Collapse
|
22
|
Brief Report: Impact of ART Classes on the Increasing Risk of Cerebral Small-Vessel Disease in Middle-Aged, Well-Controlled, cART-Treated, HIV-Infected Individuals. J Acquir Immune Defic Syndr 2020; 81:547-551. [PMID: 31107300 DOI: 10.1097/qai.0000000000002084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Cerebral small-vessel disease (CSVD) is a chronic disease accounting for one-third of strokes and the second etiology of dementia. Despite sustained immunovirological control, CSVD prevalence is doubled in middle-aged persons living with HIV (PLHIVs), even after adjustment for traditional cardiovascular risk factors. We aimed to investigate whether exposure to any antiretroviral drug class could be associated with an increasing risk of CSVD. METHODS The MicroBREAK-2 case-control study (NCT02210130) enrolled PLHIVs aged 50 years and older, treated with combined antiretroviral therapy for ≥5 years, with plasma HIV load controlled for ≥12 months. Cases were PLHIVs with radiologically defined CSVD, and controls were CSVD-free PLHIVs matched for age (±5 years), sex, and year of HIV diagnosis (±5 years). Multivariable conditional logistic regression analyses focused on cumulative exposure to nucleoside reverse transcriptase inhibitors, non-nucleoside reverse transcriptase inhibitors, protease inhibitors and/or exposure to integrase inhibitors (yes or no), adjusted for hypertension, CD4 nadir, current CD4/CD8 ratio, and HIV transmission group. RESULTS Between May 2014 and April 2017, 77 cases and 77 controls (85.7% males) were recruited. PLHIVs' median age was 57.6 years, and median HIV diagnosis year was 1992. The increasing risk of CSVD was not associated with exposure to any ART class. CONCLUSION No deleterious effect of ART class exposure on the risk of CSVD was found for middle-aged treated PLHIVs.
Collapse
|
23
|
Chang K, Premeaux TA, Cobigo Y, Milanini B, Hellmuth J, Rubin LH, Javandel S, Allen I, Ndhlovu LC, Paul R, Valcour V. Plasma inflammatory biomarkers link to diffusion tensor imaging metrics in virally suppressed HIV-infected individuals. AIDS 2020; 34:203-213. [PMID: 31634200 PMCID: PMC6933087 DOI: 10.1097/qad.0000000000002404] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Inflammation may contribute to brain white matter health in people living with HIV who report cognitive symptoms despite adherence to combination antiretroviral therapy and viral suppression. We explored relationships between diffusion tensor imaging (DTI) metrics of white matter, plasma biomarkers of immune activation, and cognitive function in the HIV-infected population. DESIGN Retrospective study of older adults living with HIV who are combination antiretroviral therapy adherent, virally suppressed, and self-report cognitive symptoms. METHODS MRI, blood draws, and standardized neuropsychological test scores were collected from HIV-infected individuals. DTI metrics (fractional anisotropy, mean diffusivity, radial diffusivity, axial diffusivity) and plasma biomarkers (soluble CD163, soluble CD14, neopterin, IFN γ-induced protein 10, monocyte chemoattractant protein 1) were quantified. Statistical analysis explored associations between biomarker levels or neuropsychological test scores and DTI metrics using region of interest analyses and a voxelwise approach. RESULTS A total of 43 participants with median (interquartile range) age of 64 (62-66 years), CD4 cell count of 600 (400-760 cell/μl) who were all virally suppressed (<100 copies/ml) were selected. Higher levels of monocyte chemoattractant protein 1 associated with lower fractional anisotropy and higher mean diffusivity (P < 0.05) across white matter tracts including corpus callosum, corona radiata, and superior longitudinal fasciculus. Higher neopterin associated with higher mean diffusivity in the genu of corpus callosum, and higher soluble CD14 associated with lower fractional anisotropy in the bilateral superior corona radiata (P < 0.05). Worse global performance and speed domain scores associated with higher mean diffusivity and lower fractional anisotropy, and worse executive domain scores associated with lower fractional anisotropy (P < 0.05). CONCLUSION Elevated inflammatory plasma biomarkers link to white matter abnormalities among virally suppressed individuals. DTI abnormalities associate to cognitive performance. We conclude that inflammatory processes impact clinically relevant brain health indices despite viral suppression.
Collapse
Affiliation(s)
- Kevin Chang
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, California
| | - Thomas A Premeaux
- Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Yann Cobigo
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, California
| | - Benedetta Milanini
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, California
| | - Joanna Hellmuth
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, California
| | - Leah H Rubin
- Department of Neurology and Psychiatry, Johns Hopkins University School of Medicine
- Department of Epidemiology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland
| | - Shireen Javandel
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, California
| | - Isabel Allen
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - Lishomwa C Ndhlovu
- Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Robert Paul
- Missouri Institute of Mental Health, University of Missouri St Louis, St Louis, Missouri, USA
| | - Victor Valcour
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, California
| |
Collapse
|
24
|
Chilunda V, Calderon TM, Martinez-Aguado P, Berman JW. The impact of substance abuse on HIV-mediated neuropathogenesis in the current ART era. Brain Res 2019; 1724:146426. [PMID: 31473221 PMCID: PMC6889827 DOI: 10.1016/j.brainres.2019.146426] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/16/2019] [Accepted: 08/28/2019] [Indexed: 12/21/2022]
Abstract
Approximately 37 million people worldwide are infected with human immunodeficiency virus (HIV). One highly significant complication of HIV infection is the development of HIV-associated neurocognitive disorders (HAND) in 15-55% of people living with HIV (PLWH), that persists even in the antiretroviral therapy (ART) era. The entry of HIV into the central nervous system (CNS) occurs within 4-8 days after peripheral infection. This establishes viral reservoirs that may persist even in the presence of ART. Once in the CNS, HIV infects resident macrophages, microglia, and at low levels, astrocytes. In response to chronic infection and cell activation within the CNS, viral proteins, inflammatory mediators, and host and viral neurotoxic factors produced over extended periods of time result in neuronal injury and loss, cognitive deficits and HAND. Substance abuse is a common comorbidity in PLWH and has been shown to increase neuroinflammation and cognitive disorders. Additionally, it has been associated with poor ART adherence, and increased viral load in the cerebrospinal fluid (CSF), that may also contribute to increased neuroinflammation and neuronal injury. Studies have examined mechanisms that contribute to neuroinflammation and neuronal damage in PLWH, and how substances of abuse exacerbate these effects. This review will focus on how substances of abuse, with an emphasis on methamphetamine (meth), cocaine, and opioids, impact blood brain barrier (BBB) integrity and transmigration of HIV-infected and uninfected monocytes across the BBB, as well as their effects on monocytes/macrophages, microglia, and astrocytes within the CNS. We will also address how these substances of abuse may contribute to HIV-mediated neuropathogenesis in the context of suppressive ART. Additionally, we will review the effects of extracellular dopamine, a neurotransmitter that is increased in the CNS by substances of abuse, on HIV neuropathogenesis and how this may contribute to neuroinflammation, neuronal insult, and HAND in PLWH with active substance use. Lastly, we will discuss some potential therapies to limit CNS inflammation and damage in HIV-infected substance abusers.
Collapse
Affiliation(s)
- Vanessa Chilunda
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Tina M Calderon
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Pablo Martinez-Aguado
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Joan W Berman
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA.
| |
Collapse
|
25
|
Cole JH, Caan MWA, Underwood J, De Francesco D, van Zoest RA, Wit FWNM, Mutsaerts HJMM, Leech R, Geurtsen GJ, Portegies P, Majoie CBLM, Schim van der Loeff MF, Sabin CA, Reiss P, Winston A, Sharp DJ. No Evidence for Accelerated Aging-Related Brain Pathology in Treated Human Immunodeficiency Virus: Longitudinal Neuroimaging Results From the Comorbidity in Relation to AIDS (COBRA) Project. Clin Infect Dis 2019; 66:1899-1909. [PMID: 29309532 DOI: 10.1093/cid/cix1124] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/02/2018] [Indexed: 12/31/2022] Open
Abstract
Background Despite successful antiretroviral therapy, people living with human immunodeficiency virus (PLWH) experience higher rates of age-related morbidity, including abnormal brain structure, brain function, and cognitive impairment. This has raised concerns that PLWH may experience accelerated aging-related brain pathology. Methods We performed a multicenter longitudinal study of 134 virologically suppressed PLWH (median age, 56.0 years) and 79 demographically similar human immunodeficiency virus (HIV)-negative controls (median age, 57.2 years). To measure cognitive performance and brain pathology, we conducted detailed neuropsychological assessments and multimodality neuroimaging (T1-weighted, T2-weighted, diffusion magnetic resonance imaging [MRI], resting-state functional MRI, spectroscopy, arterial spin labeling) at baseline and at 2 years. Group differences in rates of change were assessed using linear mixed effects models. Results One hundred twenty-three PLWH and 78 HIV-negative controls completed longitudinal assessments (median interval, 1.97 years). There were no differences between PLWH and HIV-negative controls in age, sex, years of education, smoking or alcohol use. At baseline, PLWH had poorer global cognitive performance (P < .01), lower gray matter volume (P = .04), higher white matter hyperintensity load (P = .02), abnormal white matter microstructure (P < .005), and greater brain-predicted age difference (P = .01). Longitudinally, there were no significant differences in rates of change in any neuroimaging measure between PLWH and HIV-negative controls (P > .1). Cognitive performance was longitudinally stable in both groups. Conclusions We found no evidence that middle-aged PLWH, when receiving successful treatment, are at increased risk of accelerated aging-related brain changes or cognitive decline over 2 years.
Collapse
Affiliation(s)
- James H Cole
- Computational, Cognitive and Computational Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London.,Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Matthan W A Caan
- Department of Radiology and Nuclear Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | | | - Davide De Francesco
- Department of Infection and Population Health, University College London, United Kingdom
| | - Rosan A van Zoest
- Department of Global Health, Academic Medical Center, Amsterdam Institute for Global Health and Development
| | - Ferdinand W N M Wit
- Department of Global Health, Academic Medical Center, Amsterdam Institute for Global Health and Development.,Dutch HIV Monitoring Foundation, Amsterdam, The Netherlands
| | - Henk J M M Mutsaerts
- Department of Radiology and Nuclear Medicine, Academic Medical Center, Amsterdam, The Netherlands.,Kate Gleason College of Engineering, Rochester Institute of Technology, New York
| | - Rob Leech
- Computational, Cognitive and Computational Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London
| | | | - Peter Portegies
- Department of Neurology, OLVG Hospital.,Department of Neurology, Academic Medical Center
| | - Charles B L M Majoie
- Department of Radiology and Nuclear Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Maarten F Schim van der Loeff
- Department of Infectious Diseases, Public Health Service of Amsterdam.,Department of Infectious Diseases, Center for Immunity and Infection Amsterdam, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Caroline A Sabin
- Department of Infection and Population Health, University College London, United Kingdom
| | - Peter Reiss
- Department of Global Health, Academic Medical Center, Amsterdam Institute for Global Health and Development.,Dutch HIV Monitoring Foundation, Amsterdam, The Netherlands
| | - Alan Winston
- Division of Infectious Diseases, Imperial College London
| | - David J Sharp
- Computational, Cognitive and Computational Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London
| | | |
Collapse
|
26
|
Webel AR, Schreiner N, Salata RA, Friedman J, Jack AI, Sattar A, Fresco DM, Rodriguez M, Moore S. The Effect of an HIV Self-Management Intervention on Neurocognitive Behavioral Processing. West J Nurs Res 2019; 41:990-1008. [PMID: 30654713 PMCID: PMC6570548 DOI: 10.1177/0193945918823347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
People living with HIV (PLHIV) are increasingly diagnosed with comorbidities which require increasing self-management. We examined the effect of a self-management intervention on neurocognitive behavioral processing. Twenty-nine PLHIV completed a two-group, 3-month randomized clinical trial testing a self-management intervention to improve physical activity and dietary intake. At baseline and 3 months later, everyone completed validated assessments of physical, diet, and neurocognitive processing (functional magnetic resonance imaging [fMRI]-derived network analyses). We used linear mixed effects modeling with a random intercept to examine the effect of the intervention. The intervention improved healthy eating (p = .08) but did not improve other self-management behaviors. There was a significant effect of the intervention on several aspects of neurocognitive processing including in the task positive network (TPN) differentiation (p = .047) and an increase in the default mode network (DMN) differentiation (p = .10). Self-management interventions may influence neurocognitive processing in PLHIV, but those changes were not associated with positive changes in self-management behavior.
Collapse
Affiliation(s)
- Allison R Webel
- 1 Frances Payne Bolton School of Nursing, Case Western Reserve University, Cleveland, OH, USA
| | - Nathaniel Schreiner
- 1 Frances Payne Bolton School of Nursing, Case Western Reserve University, Cleveland, OH, USA
| | - Robert A Salata
- 1 Frances Payne Bolton School of Nursing, Case Western Reserve University, Cleveland, OH, USA
- 2 University Hospitals Harrington Heart & Vascular Institute, Cleveland, OH, USA
| | - Jared Friedman
- 1 Frances Payne Bolton School of Nursing, Case Western Reserve University, Cleveland, OH, USA
| | - Anthony I Jack
- 1 Frances Payne Bolton School of Nursing, Case Western Reserve University, Cleveland, OH, USA
| | - Abdus Sattar
- 1 Frances Payne Bolton School of Nursing, Case Western Reserve University, Cleveland, OH, USA
| | | | - Margaret Rodriguez
- 1 Frances Payne Bolton School of Nursing, Case Western Reserve University, Cleveland, OH, USA
| | - Shirley Moore
- 1 Frances Payne Bolton School of Nursing, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
27
|
Underwood J, De Francesco D, Cole JH, Caan MWA, van Zoest RA, Schmand BA, Sharp DJ, Sabin CA, Reiss P, Winston A. Validation of a Novel Multivariate Method of Defining HIV-Associated Cognitive Impairment. Open Forum Infect Dis 2019; 6:ofz198. [PMID: 31263729 PMCID: PMC6590980 DOI: 10.1093/ofid/ofz198] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/25/2019] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The optimum method of defining cognitive impairment in virally suppressed people living with HIV is unknown. We evaluated the relationships between cognitive impairment, including using a novel multivariate method (NMM), patient- reported outcome measures (PROMs), and neuroimaging markers of brain structure across 3 cohorts. METHODS Differences in the prevalence of cognitive impairment, PROMs, and neuroimaging data from the COBRA, CHARTER, and POPPY cohorts (total n = 908) were determined between HIV-positive participants with and without cognitive impairment defined using the HIV-associated neurocognitive disorders (HAND), global deficit score (GDS), and NMM criteria. RESULTS The prevalence of cognitive impairment varied by up to 27% between methods used to define impairment (eg, 48% for HAND vs 21% for NMM in the CHARTER study). Associations between objective cognitive impairment and subjective cognitive complaints generally were weak. Physical and mental health summary scores (SF-36) were lowest for NMM-defined impairment ( P < .05).There were no differences in brain volumes or cortical thickness between participants with and without cognitive impairment defined using the HAND and GDS measures. In contrast, those identified with cognitive impairment by the NMM had reduced mean cortical thickness in both hemispheres ( P < .05), as well as smaller brain volumes ( P < .01). The associations with measures of white matter microstructure and brain-predicted age generally were weaker. CONCLUSION Different methods of defining cognitive impairment identify different people with varying symptomatology and measures of brain injury. Overall, NMM-defined impairment was associated with most neuroimaging abnormalities and poorer self-reported health status. This may be due to the statistical advantage of using a multivariate approach.
Collapse
Affiliation(s)
- Jonathan Underwood
- Division of Infectious Diseases, Imperial College London, UK
- Department of Infectious Diseases, Cardiff and Vale University Health Board, Cardiff, UK
| | - Davide De Francesco
- Department of Infection and Population Health, University College London, UK
| | - James H Cole
- Division of Brain Sciences, Imperial College London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, UK
| | - Matthan W A Caan
- Department of Radiology and Nuclear Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Rosan A van Zoest
- Departments of Global Health and Internal Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Infection and Immunity Institute, and Amsterdam Institute for Global Health and Development (AIGHD), Amsterdam, The Netherlands
| | - Ben A Schmand
- Department of Medical Psychology, Academic Medical Center, Amsterdam, The Netherlands
| | - David J Sharp
- Division of Brain Sciences, Imperial College London, UK
| | - Caroline A Sabin
- Department of Infection and Population Health, University College London, UK
| | - Peter Reiss
- Departments of Global Health and Internal Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Infection and Immunity Institute, and Amsterdam Institute for Global Health and Development (AIGHD), Amsterdam, The Netherlands
- HIV Monitoring Foundation, Amsterdam, the Netherlands
| | - Alan Winston
- Division of Infectious Diseases, Imperial College London, UK
| |
Collapse
|
28
|
van Zoest RA, Underwood J, De Francesco D, Sabin CA, Cole JH, Wit FW, Caan MWA, Kootstra NA, Fuchs D, Zetterberg H, Majoie CBLM, Portegies P, Winston A, Sharp DJ, Gisslén M, Reiss P. Structural Brain Abnormalities in Successfully Treated HIV Infection: Associations With Disease and Cerebrospinal Fluid Biomarkers. J Infect Dis 2019; 217:69-81. [PMID: 29069436 DOI: 10.1093/infdis/jix553] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/20/2017] [Indexed: 01/06/2023] Open
Abstract
Background Brain structural abnormalities have been reported in persons living with human immunodeficiency virus (HIV; PLWH) who are receiving suppressive combination antiretroviral therapy (cART), but their pathophysiology remains unclear. Methods We investigated factors associated with brain tissue volumes and white matter microstructure (fractional anisotropy) in 134 PLWH receiving suppressive cART and 79 comparable HIV-negative controls, aged ≥45 years, from the Comorbidity in Relation to AIDS cohort, using multimodal neuroimaging and cerebrospinal fluid biomarkers. Results Compared with controls, PLWH had lower gray matter volumes (-13.7 mL; 95% confidence interval, -25.1 to -2.2) and fractional anisotropy (-0.0073; 95% confidence interval, -.012 to -.0024), with the largest differences observed in those with prior clinical AIDS. Hypertension and the soluble CD14 concentration in cerebrospinal fluid were associated with lower fractional anisotropy. These associations were independent of HIV serostatus (Pinteraction = .32 and Pinteraction = .59, respectively) and did not explain the greater abnormalities in brain structure in relation to HIV infection. Conclusions The presence of lower gray matter volumes and more white matter microstructural abnormalities in well-treated PLWH partly reflect a combination of historical effects of AIDS, as well as the more general influence of systemic factors, such as hypertension and ongoing neuroinflammation. Additional mechanisms explaining the accentuation of brain structure abnormalities in treated HIV infection remain to be identified.
Collapse
Affiliation(s)
- Rosan A van Zoest
- Department of Global Health, Academic Medical Center, and Amsterdam Institute for Global Health and Development, Amsterdam, the Netherlands
| | | | | | | | - James H Cole
- Division of Brain Sciences, Imperial College London, United Kingdom
| | - Ferdinand W Wit
- Department of Global Health, Academic Medical Center, and Amsterdam Institute for Global Health and Development, Amsterdam, the Netherlands.,Division of Infectious Diseases, Department of Internal Medicine, Amsterdam, the Netherlands.,HIV Monitoring Foundation, Amsterdam, the Netherlands
| | | | - Neeltje A Kootstra
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, the Netherlands
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Medical University of Innsbruck, Austria
| | - Henrik Zetterberg
- Department of Molecular Neuroscience, Institute of Neurology, United Kingdom.,UK Dementia Research Institute, Institute of Neurology, University College London, United Kingdom.,Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Gothenburg, Sweden
| | | | - Peter Portegies
- Department of Neurology, Onze Lieve Vrouwe Gasthuis, Amsterdam, the Netherlands
| | | | - David J Sharp
- Division of Brain Sciences, Imperial College London, United Kingdom
| | - Magnus Gisslén
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter Reiss
- Department of Global Health, Academic Medical Center, and Amsterdam Institute for Global Health and Development, Amsterdam, the Netherlands.,Division of Infectious Diseases, Department of Internal Medicine, Amsterdam, the Netherlands.,HIV Monitoring Foundation, Amsterdam, the Netherlands
| | | |
Collapse
|
29
|
Wu M, Fatukasi O, Yang S, Alger J, Barker PB, Hetherington H, Kim T, Levine A, Martin E, Munro CA, Parrish T, Ragin A, Sacktor N, Seaberg E, Becker JT. HIV disease and diabetes interact to affect brain white matter hyperintensities and cognition. AIDS 2018; 32:1803-1810. [PMID: 29794829 PMCID: PMC6082131 DOI: 10.1097/qad.0000000000001891] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Since the onset of combination antiretroviral therapy use, the incidence of HIV-associated dementia and of HIV encephalitis has fallen dramatically. The present study investigates the extent of white matter hyperintensities (WMHs) among individuals with HIV disease, and factors that predict their presence and their impact on psychomotor speed. METHODS A total of 322 men participating in the Multicenter AIDS Cohort Study (185 HIV-infected, age: 57.5 ± 6.0) underwent MRI scans of the brain. T1-weighted magnetization-prepared rapid gradient-echo (MP-RAGE) and T2-weighted Fluid Attenuated Inversion Recovery (FLAIR) images were obtained and processed using an automated method for identifying and measuring WMHs. WMH burden was expressed as the log10 transformed percentage of total white matter. RESULTS There were no significant associations between WMHs and HIV disease. However, the extent of WMHs was predicted by age more than 60 (β = 0.17), non-white race (β = 0.14), glomerular filtration rate (β = -0.11), and the presence of diabetes (β = 0.12). There were no interactions between HIV status and age (β = -0.03) or between age and diabetes (β = 0.07). However, the interaction between HIV infection and diabetes was significant (β = 0.26). The extent of WMHs was significantly associated with performance on measures of psychomotor speed (β = 0.15). CONCLUSION In today's therapeutic environment, in HIV-infected and HIV seronegative individuals, those factors which affect the cerebrovasculature are the best predictors of WMHs. Diabetes has a specific impact among HIV-infected, but not uninfected, men, suggesting the need for more aggressive treatment even in the prediabetes state, especially as WMHs affect cognitive functions.
Collapse
Affiliation(s)
- Minjie Wu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Omalara Fatukasi
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shaolin Yang
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| | - Jeffery Alger
- Department of Radiology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California
| | - Peter B Barker
- Departments of Radiology, The Johns Hopkins University, Baltimore, Maryland
| | - Hoby Hetherington
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Tae Kim
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Andrew Levine
- Department of Neurology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California
| | - Eileen Martin
- Department of Psychiatry, Rush University Medical School, Chicago, Illinois
| | - Cynthia A Munro
- Department of Neurology, The Johns Hopkins University, Baltimore, Maryland
| | - Todd Parrish
- Department of Radiology, Northwestern University, Evanston, Illinois
| | - Ann Ragin
- Department of Radiology, Northwestern University, Evanston, Illinois
| | - Ned Sacktor
- Department of Neurology, The Johns Hopkins University, Baltimore, Maryland
| | - Eric Seaberg
- Department of Epidemiology, The Johns Hopkins University, Baltimore, Maryland
| | - James T Becker
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurology
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
30
|
Underwood J, Cole JH, Leech R, Sharp DJ, Winston A. Multivariate Pattern Analysis of Volumetric Neuroimaging Data and Its Relationship With Cognitive Function in Treated HIV Disease. J Acquir Immune Defic Syndr 2018; 78:429-436. [PMID: 29608444 PMCID: PMC6019188 DOI: 10.1097/qai.0000000000001687] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Accurate prediction of longitudinal changes in cognitive function would potentially allow for targeted intervention in those at greatest risk of cognitive decline. We sought to build a multivariate model using volumetric neuroimaging data alone to accurately predict cognitive function. METHODS Volumetric T1-weighted neuroimaging data from virally suppressed HIV-positive individuals from the CHARTER cohort (n = 139) were segmented into gray and white matter and spatially normalized before entering into machine learning models. Prediction of cognitive function at baseline and longitudinally was determined using leave-one-out cross-validation. In addition, a multivariate model of brain aging was used to measure the deviation of apparent brain age from chronological age and assess its relationship with cognitive function. RESULTS Cognitive impairment, defined using the global deficit score, was present in 37.4%. However, it was generally mild and occurred more commonly in those with confounding comorbidities (P < 0.001). Although multivariate prediction of cognitive impairment as a dichotomous variable at baseline was poor (area under the receiver operator curve 0.59), prediction of the global T-score was better than a comparable linear model (adjusted R = 0.08, P < 0.01 vs. adjusted R = 0.01, P = 0.14). Accurate prediction of longitudinal changes in cognitive function was not possible (P = 0.82). Brain-predicted age exceeded chronological age by mean (95% confidence interval) 1.17 (-0.14 to 2.53) years but was greatest in those with confounding comorbidities [5.87 (1.74 to 9.99) years] and prior AIDS [3.03 (0.00 to 6.06) years]. CONCLUSION Accurate prediction of cognitive impairment using multivariate models using only T1-weighted data was not achievable, which may reflect the small sample size, heterogeneity of the data, or that impairment was usually mild.
Collapse
Affiliation(s)
| | - James H Cole
- Division of Brain Sciences, Imperial College London, UK
| | - Robert Leech
- Division of Brain Sciences, Imperial College London, UK
| | - David J Sharp
- Division of Brain Sciences, Imperial College London, UK
| | - Alan Winston
- Division of Infectious Diseases, Imperial College London, UK
| | | |
Collapse
|
31
|
Bell RP, Barnes LL, Towe SL, Chen NK, Song AW, Meade CS. Structural connectome differences in HIV infection: brain network segregation associated with nadir CD4 cell count. J Neurovirol 2018; 24:454-463. [PMID: 29687404 PMCID: PMC6105458 DOI: 10.1007/s13365-018-0634-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 01/21/2023]
Abstract
This study investigated structural brain organization using diffusion tensor imaging (DTI) in 35 HIV-positive and 35 HIV-negative individuals. We used global and nodal graph theory metrics to investigate whether HIV was associated with differences in brain network organization based on fractional anisotropy (FA) and mean diffusivity (MD). Participants also completed a comprehensive neuropsychological testing battery. For global network metrics, HIV-positive individuals displayed a lower FA clustering coefficient relative to HIV-negative individuals. For nodal network metrics, HIV-positive individuals had less MD nodal degree in the left thalamus. Within HIV-positive individuals, the FA global clustering coefficient was positively correlated with nadir CD4 cell count. Across the sample, cognitive performance was negatively correlated with characteristic path length and positively correlated with global efficiency for FA. These results suggest that, despite management with combination antiretroviral therapy, HIV infection is associated with altered structural brain network segregation and thalamic centrality and that low nadir CD4 cell count may be a risk factor. These graph theory metrics may serve as neural biomarkers to identify individuals at risk for HIV-related neurological complications.
Collapse
Affiliation(s)
- Ryan P Bell
- Department of Psychiatry & Behavioral Sciences, Duke University School of Medicine, Durham, NC, 27705, USA
| | - Laura L Barnes
- Department of Psychiatry & Behavioral Sciences, Duke University School of Medicine, Durham, NC, 27705, USA
| | - Sheri L Towe
- Department of Psychiatry & Behavioral Sciences, Duke University School of Medicine, Durham, NC, 27705, USA
| | - Nan-Kuei Chen
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC, 27710, USA
- Department of Radiology, Duke University School of Medicine, Durham, NC, 27705, USA
| | - Allen W Song
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC, 27710, USA
- Department of Radiology, Duke University School of Medicine, Durham, NC, 27705, USA
| | - Christina S Meade
- Department of Psychiatry & Behavioral Sciences, Duke University School of Medicine, Durham, NC, 27705, USA.
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
32
|
Samboju V, Philippi CL, Chan P, Cobigo Y, Fletcher JLK, Robb M, Hellmuth J, Benjapornpong K, Dumrongpisutikul N, Pothisri M, Paul R, Ananworanich J, Spudich S, Valcour V. Structural and functional brain imaging in acute HIV. NEUROIMAGE-CLINICAL 2018; 20:327-335. [PMID: 30101063 PMCID: PMC6082997 DOI: 10.1016/j.nicl.2018.07.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/30/2018] [Accepted: 07/25/2018] [Indexed: 01/03/2023]
Abstract
Background HIV RNA is identified in cerebrospinal fluid (CSF) within eight days of estimated viral exposure. Neurological findings and impaired neuropsychological testing performance are documented in a subset of individuals with acute HIV infection (AHI). The purpose of this study was to determine whether microstructural white matter and resting-state functional connectivity (rsFC) are disrupted in AHI. Methods We examined 49 AHI (100% male; mean age = 30 ± SD 9.9) and 23 HIV-uninfected Thai participants (78% male; age = 30 ± 5.5) with diffusion tensor imaging (DTI) and rsFC acquired at 3 Tesla, and four neuropsychological tests (summarized as NPZ-4). MRI for the AHI group was performed prior to combination antiretroviral treatment (ART) in 26 participants and on average two days (range:1–5) after ART in 23 participants. Fractional anisotropy (FA), mean (MD), axial (AD), and radial diffusivity (RD) were quantified for DTI. Seed-based voxelwise rsFC analyses were completed for the default mode (DMN), fronto-parietal, and salience and 6 subcortical networks. rsFC and DTI analyses were corrected for family-wise error, with voxelwise comparisons completed using t-tests. Group-specific voxelwise regressions were conducted to examine relationships between imaging indices, HIV disease variables, and treatment status. Results The AHI group had a mean (SD) CD4 count of 421(234) cells/mm3 plasma HIV RNA of 6.07(1.1) log10 copies/mL and estimated duration of infection of 20(5.5) days. Differences between AHI and CO groups did not meet statistical significance for DTI metrics. Within the AHI group, voxelwise analyses revealed associations between brief exposure to ART and higher FA and lower RD and MD bilaterally in the corpus callosum, corona radiata, and superior longitudinal fasciculus (p < 0.05). Diffusion indices were unrelated to clinical variables or NPZ-4. The AHI group had reduced rsFC between left parahippocampal cortex (PHC) of the DMN and left middle frontal gyrus compared to CO (p < 0.002). Within AHI, ART status was unrelated to rsFC. However, higher CD4 cell count associated with increased rsFC for the right lateral parietal and PHC seeds in the DMN. Direct associations were noted between NPZ-4 correspond to higher rsFC of the bilateral caudate seed (p < 0.002). Conclusions Study findings reveal minimal disruption to structural and functional brain integrity in the earliest stages of HIV. Longitudinal studies are needed to determine if treatment with ART initiated in AHI is sufficient to prevent the evolution of brain dysfunction identified in chronically infected individuals. DTI indicates no significant differences between acute HIV and uninfected controls. rsfMRI reflects limited reduced rsFC in acute HIV compared to uninfected controls. Relatively preserved brain integrity identified in acute HIV vs uninfected controls. Cognitive testing and CD4 lymphocyte counts associate with rsFC activity in acute HIV.
Collapse
Affiliation(s)
- Vishal Samboju
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | - Carissa L Philippi
- University of Missouri St. Louis, Department of Psychological Sciences, St. Louis, MO, USA
| | - Phillip Chan
- SEARCH, Thai Red Cross AIDS Research Centre, Bangkok, Thailand
| | - Yann Cobigo
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | | | - Merlin Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Joanna Hellmuth
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| | | | | | - Mantana Pothisri
- Department of Radiology, Chulalongkorn University Medical Center, Bangkok, Thailand
| | - Robert Paul
- University of Missouri St. Louis, Department of Psychological Sciences, St. Louis, MO, USA
| | - Jintanat Ananworanich
- SEARCH, Thai Red Cross AIDS Research Centre, Bangkok, Thailand; U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA; Department of Global Health, The University of Amsterdam, Amsterdam, The Netherlands
| | - Serena Spudich
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Victor Valcour
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA.
| | | | | |
Collapse
|
33
|
Underwood J, Cole JH, Caan M, De Francesco D, Leech R, van Zoest RA, Su T, Geurtsen GJ, Schmand BA, Portegies P, Prins M, Wit FWNM, Sabin CA, Majoie C, Reiss P, Winston A, Sharp DJ. Gray and White Matter Abnormalities in Treated Human Immunodeficiency Virus Disease and Their Relationship to Cognitive Function. Clin Infect Dis 2018; 65:422-432. [PMID: 28387814 DOI: 10.1093/cid/cix301] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/29/2017] [Indexed: 12/19/2022] Open
Abstract
Background Long-term comorbidities such as cognitive impairment remain prevalent in otherwise effectively treated people living with human immunodeficiency virus (HIV). We investigate the relationship between cognitive impairment and brain structure in successfully treated patients using multimodal neuroimaging from the Comorbidity in Relation to AIDS (COBRA) cohort. Methods Cognitive function, brain tissue volumes, and white matter microstructure were assessed in 134 HIV-infected patients and 79 controls. All patients had suppressed plasma HIV RNA at cohort entry. In addition to comprehensive voxelwise analyses of volumetric and diffusion tensor imaging, we used an unsupervised machine learning approach to combine cognitive, diffusion, and volumetric data, taking advantage of the complementary information they provide. Results Compared to the highly comparable control group, cognitive function was impaired in 4 of the 6 cognitive domains tested (median global T-scores: 50.8 vs 54.2; P < .001). Patients had lower gray but not white matter volumes, observed principally in regions where structure generally did not correlate with cognitive function. Widespread abnormalities in white matter microstructure were also seen, including reduced fractional anisotropy with increased mean and radial diffusivity. In contrast to the gray matter, these diffusion abnormalities correlated with cognitive function. Multivariate neuroimaging analysis identified a neuroimaging phenotype associated with poorer cognitive function, HIV infection, and systemic immune activation. Conclusions Cognitive impairment, lower gray matter volume, and white matter microstructural abnormalities were evident in HIV-infected individuals despite fully suppressive antiretroviral therapy. White matter abnormalities appear to be a particularly important determinant of cognitive dysfunction seen in well-treated HIV-infected individuals.
Collapse
Affiliation(s)
| | - James H Cole
- Brain Sciences, Imperial College London, United Kingdom
| | - Matthan Caan
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Davide De Francesco
- Department of Infection and Population Health, University College London, United Kingdom
| | - Robert Leech
- Brain Sciences, Imperial College London, United Kingdom
| | - Rosan A van Zoest
- Department of Global Health, Academic Medical Center, and Amsterdam Institute for Global Health and Development
| | - Tanja Su
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | - Ferdinand W N M Wit
- Department of Global Health, Academic Medical Center, and Amsterdam Institute for Global Health and Development.,HIV Monitoring Foundation.,Department of Internal Medicine, Division of Infectious Diseases, Academic Medical Center, Amsterdam, The Netherlands
| | - Caroline A Sabin
- Department of Infection and Population Health, University College London, United Kingdom
| | - Charles Majoie
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Peter Reiss
- Department of Global Health, Academic Medical Center, and Amsterdam Institute for Global Health and Development.,HIV Monitoring Foundation.,Department of Internal Medicine, Division of Infectious Diseases, Academic Medical Center, Amsterdam, The Netherlands
| | | | - David J Sharp
- Brain Sciences, Imperial College London, United Kingdom
| | | |
Collapse
|
34
|
Milanini B, Valcour V. Differentiating HIV-Associated Neurocognitive Disorders From Alzheimer's Disease: an Emerging Issue in Geriatric NeuroHIV. Curr HIV/AIDS Rep 2018; 14:123-132. [PMID: 28779301 DOI: 10.1007/s11904-017-0361-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review was to examine characteristics that may distinguish HIV-associated neurocognitive disorder (HAND) from early Alzheimer's disease (AD). RECENT FINDINGS Cerebrospinal fluid (CSF) AD biomarkers are perturbed in HIV, yet these alterations may be limited to settings of advanced dementia or unsuppressed plasma HIV RNA. Neuropsychological testing will require extensive batteries to maximize utility. Structural imaging is limited for early AD detection in the setting of HIV, but proper studies are absent. While positron-emission tomography (PET) amyloid imaging has altered the landscape of differential diagnosis for age-associated neurodegenerative disorders, costs are prohibitive. Risk for delayed AD diagnosis in the aging HIV-infected population is now among the most pressing issues in geriatric neuroHIV. While clinical, imaging, and biomarker characterizations of AD are extensively defined, fewer data define characteristics of HIV-associated neurocognitive disorder in the setting of suppressed plasma HIV RNA. Data needed to inform the phenotype of AD in the setting of HIV are equally few.
Collapse
Affiliation(s)
- Benedetta Milanini
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA.
| | - Victor Valcour
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA
| |
Collapse
|
35
|
Diffusion Basis Spectral Imaging Detects Ongoing Brain Inflammation in Virologically Well-Controlled HIV+ Patients. J Acquir Immune Defic Syndr 2018; 76:423-430. [PMID: 28796748 DOI: 10.1097/qai.0000000000001513] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Inflammation occurs after HIV infection and persists, despite highly active antiretroviral therapy (HAART). Diffusion tensor imaging (DTI) measures HIV-associated white matter changes, but can be confounded by inflammation. Currently, the influence of inflammation on white matter integrity in well-controlled HIV+ patients remains unknown. We used diffusion basis spectral imaging (DBSI)-derived cellularity to isolate restricted water diffusion associated with inflammation separated from the anisotropic diffusion associated with axonal integrity. Ninety-two virologically suppressed HIV+ patients on HAART and 66 HIV uninfected (HIV-) controls underwent neuropsychological performance (NP) testing and neuroimaging. NP tests assessed multiple domains (memory, psychomotor speed, and executive functioning). DTI- and DBSI-derived fractional anisotropy (FA) maps were processed with tract-based spatial statistics for comparison between both groups. Cellularity was assessed regarding age, HIV status, and NP. Within the HIV+ cohort, cellularity was compared with clinical (HAART duration) and laboratory measures of disease (eg, CD4 cell current and nadir). NP was similar for both groups. DTI-derived FA was lower in HIV+ compared with HIV- individuals. By contrast, DBSI-derived FA was similar for both groups. Instead, diffuse increases in cellularity were present in HIV+ individuals. Observed changes in cellularity were significantly associated with age, but not NP, in HIV+ individuals. A trend level association was seen between cellularity and HAART duration. Elevated inflammation, measured by cellularity, persists in virologically well-controlled HIV+ individuals. Widespread cellularity changes occur in younger HIV+ individuals and diminish with aging and duration of HAART.
Collapse
|
36
|
Buyukturkoglu K, Fleyser L, Byrd D, Morgello S, Inglese M. Diffusion Kurtosis Imaging Shows Similar Cerebral Axonal Damage in Patients with HIV Infection and Multiple Sclerosis. J Neuroimaging 2018; 28:320-327. [PMID: 29380545 DOI: 10.1111/jon.12497] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 12/21/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE In this pilot study, we sought to investigate the pathological changes in the white matter (WM) of medically complex, combination antiretroviral therapy (cART)-treated patients with human immunodeficiency virus (HIV), comparing them to patients with long-standing, secondary progressive multiple sclerosis (SPMS). METHODS Using diffusion kurtosis imaging (DKI)-derived WM tract integrity (WMTI) metrics, 15 HIV and 15 age- and sex-matched SPMS patients with similar disease duration underwent magnetic resonance imaging analysis. Maps of WMTI metrics were created. Tract-based spatial statistics analysis of the whole brain and regions of interest analysis of the corpus callosum (CC) and the anterior thalamic radiations (ATRs) were performed and the derived WMTI metrics were compared between the groups of patients. RESULTS Axonal water fraction, an index of chronic axonal loss, showed similarities between HIV and the chronic MS patients in all regions; in contrast, tortuosity, a measure more sensitive to myelin loss, was regionally variable. In addition, in HIV patients, WMTI metrics of the CC and left ATR were associated with cognitive test scores, suggesting clinical relevance for these measures of WM damage. CONCLUSIONS We conclude that DKI-derived WMTI metrics may be a valuable tool in assessing the WM changes of medically complex HIV-infected individuals. While not powered to examine potential etiologies of WM changes in this pilot sample, regional variations in WMTI metrics were seen. When contrasted with changes consequent to chronic MS of similar duration, HIV and its comorbidities appear to result in similar degrees of axonal damage, but regionally variable amounts of myelin loss and extraxonal abnormality.
Collapse
Affiliation(s)
| | - Lazar Fleyser
- Radiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Desiree Byrd
- Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Susan Morgello
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY.,Pathology, Icahn School of Medicine at Mount Sinai, New York, NY.,Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Matilde Inglese
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY.,Radiology, Icahn School of Medicine at Mount Sinai, New York, NY.,Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW HIV-associated neurocognitive disease is the most active topic for neuroAIDS investigations at present. Although impairment is mild in patients successfully treated with modern antiviral regimens, it remains an ongoing problem for HIV patients. It is important to update the emerging research concerning HIV-associated neurocognitive disease. RECENT FINDINGS The virus enters the brain during acute infection, with evidence for abnormal functioning that may occur early and often persists. Direct relationships with ongoing viral infection continue to be monitored, but chronic inflammation often associated with monocytes and macrophages appears to be the most likely driver of cognitive dysfunction. Appreciation for cerebrovascular disease as a significant comorbidity that is associated with cognitive deficits is increasing. Neuroimaging is actively being developed to address detection and measurement of changes in the brain. Optimal combined antiretroviral treatment therapy has vastly improved neurologic outcomes, but so far has not been demonstrated to reverse the remaining mild impairment. Inflammatory and vascular mechanisms of cerebral dysfunction may need to be addressed to achieve better outcomes. SUMMARY Ongoing research is required to improve neurological outcomes for persons living with HIV. It is likely that interventions beyond antiviral approaches will be required to control or reverse HIV-associated neurocognitive disease.
Collapse
|
38
|
Abstract
Human immunodeficiency virus (HIV) enters the brain early after infecting humans and may remain in the central nervous system despite successful antiretroviral treatment. Many neuroimaging techniques were used to study HIV+ patients with or without opportunistic infections. These techniques assessed abnormalities in brain structures (using computed tomography, structural magnetic resonance imaging (MRI), diffusion MRI) and function (using functional MRI at rest or during a task, and perfusion MRI with or without a contrast agent). In addition, single-photon emission computed tomography with various tracers (e.g., thallium-201, Tc99-HMPAO) and positron emission tomography with various agents (e.g., [18F]-dexoyglucose, [11C]-PiB, and [11C]-TSPO tracers), were applied to study opportunistic infections or HIV-associated neurocognitive disorders. Neuroimaging provides diagnoses and biomarkers to quantitate the severity of brain injury or to monitor treatment effects, and may yield insights into the pathophysiology of HIV infection. As the majority of antiretroviral-stable HIV+ patients are living longer, age-related comorbid disorders (e.g., additional neuroinflammation, cerebrovascular disorders, or other dementias) will need to be considered. Other highly prevalent conditions, such as substance use disorders, psychiatric illnesses, and the long-term effects of combined antiretroviral therapy, all may lead to additional brain injury. Neuroimaging studies could provide knowledge regarding how these comorbid conditions impact the HIV-infected brain. Lastly, specific molecular imaging agents may be needed to assess the central nervous system viral reservoir.
Collapse
Affiliation(s)
- Linda Chang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States; Department of Medicine and Department of Neurology, John A. Burns School of Medicine, University of Hawaii, Manoa, United States.
| | - Dinesh K Shukla
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
39
|
Abstract
The implementation of combination antiretroviral therapy (cART) has changed HIV infection into a chronic illness, conveying extensive benefits, including greater longevity and advantages for the central nervous system (CNS). However, studies increasingly confirm that the CNS gains are incomplete, with reports of persistent immune activation affecting the CNS despite suppression of plasma HIV RNA. The rate of cognitive impairment is unchanged, although severity is generally milder than in the pre-cART era. In this review, we discuss cognitive outcomes from recently published clinical HIV studies, review observations on HIV biomarkers for cognitive change, and emphasize longitudinal imaging findings. Additionally, we summarize recent studies on CNS viral invasion, CD8 encephalitis, and how CNS involvement during the earliest stages of infection may set the stage for later cognitive manifestations.
Collapse
|
40
|
Robinson-Papp J, Navis A, Dhamoon MS, Clark US, Gutierrez-Contreras J, Morgello S. The Use of Visual Rating Scales to Quantify Brain MRI Lesions in Patients with HIV Infection. J Neuroimaging 2017; 28:217-224. [PMID: 28833868 DOI: 10.1111/jon.12466] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/25/2017] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Human immunodeficiency virus (HIV)-infected patients commonly have abnormalities in cerebral white matter that are visible on magnetic resonance imaging (MRI) as hyperintensities (WMHs). Visual rating scales (VRSs) have been used to quantify WMH in other diseases such as cerebral small vessel disease (CSVD), but not in HIV. Such scales are advantageous because they are applicable to routinely acquired MRIs and so are suitable for large-scale studies and clinical care. We sought to establish the utility of three VRSs (the Fazekas, Scheltens, and van Sweiten scales) in HIV. METHODS The Manhattan HIV Brain Bank (MHBB) is a longitudinal cohort study that performs serial neurologic examinations and neuropsychological testing. All brain MRIs (n = 73) performed for clinical purposes on MHBB participants were scored using the three VRSs. We assessed reliability, validity, and correlation of the VRS with clinical factors relevant to HIV and CSVD. RESULTS The VRSs all showed acceptable internal consistency and interrater reliability and were highly correlated with one another (r = 0.836-0.916, P < .001). The Fazekas and Scheltens scales demonstrated more WMH in periventricular regions, and the Scheltens scale also suggested a frontal to occipital gradient, with greater WMH frontally. All three VRSs correlated significantly with cognitive impairment (global T score). Age and hepatitis C virus antibody serostatus were the strongest clinical/demographic correlates of WMH, followed by African-American race. CONCLUSIONS VRSs reliably quantify WMH in HIV-infected individuals and correlate with cognitive impairment. Future studies may find routinely acquired brain MRI quantified by VRS to be an accessible and meaningful neurologic outcome measure in HIV.
Collapse
Affiliation(s)
| | - Allison Navis
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Mandip S Dhamoon
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Uraina S Clark
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Susan Morgello
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
41
|
Cole JH, Underwood J, Caan MWA, De Francesco D, van Zoest RA, Leech R, Wit FWNM, Portegies P, Geurtsen GJ, Schmand BA, Schim van der Loeff MF, Franceschi C, Sabin CA, Majoie CBLM, Winston A, Reiss P, Sharp DJ. Increased brain-predicted aging in treated HIV disease. Neurology 2017; 88:1349-1357. [PMID: 28258081 PMCID: PMC5379929 DOI: 10.1212/wnl.0000000000003790] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 01/17/2017] [Indexed: 01/30/2023] Open
Abstract
OBJECTIVE To establish whether HIV disease is associated with abnormal levels of age-related brain atrophy, by estimating apparent brain age using neuroimaging and exploring whether these estimates related to HIV status, age, cognitive performance, and HIV-related clinical parameters. METHODS A large sample of virologically suppressed HIV-positive adults (n = 162, age 45-82 years) and highly comparable HIV-negative controls (n = 105) were recruited as part of the Comorbidity in Relation to AIDS (COBRA) collaboration. Using T1-weighted MRI scans, a machine-learning model of healthy brain aging was defined in an independent cohort (n = 2,001, aged 18-90 years). Neuroimaging data from HIV-positive and HIV-negative individuals were then used to estimate brain-predicted age; then brain-predicted age difference (brain-PAD = brain-predicted brain age - chronological age) scores were calculated. Neuropsychological and clinical assessments were also carried out. RESULTS HIV-positive individuals had greater brain-PAD score (mean ± SD 2.15 ± 7.79 years) compared to HIV-negative individuals (-0.87 ± 8.40 years; b = 3.48, p < 0.01). Increased brain-PAD score was associated with decreased performance in multiple cognitive domains (information processing speed, executive function, memory) and general cognitive performance across all participants. Brain-PAD score was not associated with age, duration of HIV infection, or other HIV-related measures. CONCLUSION Increased apparent brain aging, predicted using neuroimaging, was observed in HIV-positive adults, despite effective viral suppression. Furthermore, the magnitude of increased apparent brain aging related to cognitive deficits. However, predicted brain age difference did not correlate with chronological age or duration of HIV infection, suggesting that HIV disease may accentuate rather than accelerate brain aging.
Collapse
Affiliation(s)
- James H Cole
- From the Computational, Cognitive & Clinical Neuroimaging Laboratory, Division of Brain Sciences, Department of Medicine (J.H.C., R.L., D.J.S.), and Division of Infectious Diseases (J.U., A.W.), Imperial College London, UK; Departments of Radiology (M.W.A.C., C.B.L.M.M.), Global Health, Amsterdam Institute for Global Health and Development (AIGHD) (R.A.v.Z., F.W.N.M.W., P.R.), Neurology (P.P., B.A.S.), and Medical Psychology (G.J.G., B.A.S.), Academic Medical Center, Amsterdam, the Netherlands; Department of Infection & Population Health (D.D.F., C.A.S.), University College London, UK; Dutch HIV Monitoring Foundation (F.W.N.M.W., P.R.); Department of Neurology (P.P.), OLVG Hospital; Public Health Service of Amsterdam (M.F.S.v.d.L.), the Netherlands; and Alma Mater Studiorum (C.F.), University of Bologna, Italy.
| | - Jonathan Underwood
- From the Computational, Cognitive & Clinical Neuroimaging Laboratory, Division of Brain Sciences, Department of Medicine (J.H.C., R.L., D.J.S.), and Division of Infectious Diseases (J.U., A.W.), Imperial College London, UK; Departments of Radiology (M.W.A.C., C.B.L.M.M.), Global Health, Amsterdam Institute for Global Health and Development (AIGHD) (R.A.v.Z., F.W.N.M.W., P.R.), Neurology (P.P., B.A.S.), and Medical Psychology (G.J.G., B.A.S.), Academic Medical Center, Amsterdam, the Netherlands; Department of Infection & Population Health (D.D.F., C.A.S.), University College London, UK; Dutch HIV Monitoring Foundation (F.W.N.M.W., P.R.); Department of Neurology (P.P.), OLVG Hospital; Public Health Service of Amsterdam (M.F.S.v.d.L.), the Netherlands; and Alma Mater Studiorum (C.F.), University of Bologna, Italy
| | - Matthan W A Caan
- From the Computational, Cognitive & Clinical Neuroimaging Laboratory, Division of Brain Sciences, Department of Medicine (J.H.C., R.L., D.J.S.), and Division of Infectious Diseases (J.U., A.W.), Imperial College London, UK; Departments of Radiology (M.W.A.C., C.B.L.M.M.), Global Health, Amsterdam Institute for Global Health and Development (AIGHD) (R.A.v.Z., F.W.N.M.W., P.R.), Neurology (P.P., B.A.S.), and Medical Psychology (G.J.G., B.A.S.), Academic Medical Center, Amsterdam, the Netherlands; Department of Infection & Population Health (D.D.F., C.A.S.), University College London, UK; Dutch HIV Monitoring Foundation (F.W.N.M.W., P.R.); Department of Neurology (P.P.), OLVG Hospital; Public Health Service of Amsterdam (M.F.S.v.d.L.), the Netherlands; and Alma Mater Studiorum (C.F.), University of Bologna, Italy
| | - Davide De Francesco
- From the Computational, Cognitive & Clinical Neuroimaging Laboratory, Division of Brain Sciences, Department of Medicine (J.H.C., R.L., D.J.S.), and Division of Infectious Diseases (J.U., A.W.), Imperial College London, UK; Departments of Radiology (M.W.A.C., C.B.L.M.M.), Global Health, Amsterdam Institute for Global Health and Development (AIGHD) (R.A.v.Z., F.W.N.M.W., P.R.), Neurology (P.P., B.A.S.), and Medical Psychology (G.J.G., B.A.S.), Academic Medical Center, Amsterdam, the Netherlands; Department of Infection & Population Health (D.D.F., C.A.S.), University College London, UK; Dutch HIV Monitoring Foundation (F.W.N.M.W., P.R.); Department of Neurology (P.P.), OLVG Hospital; Public Health Service of Amsterdam (M.F.S.v.d.L.), the Netherlands; and Alma Mater Studiorum (C.F.), University of Bologna, Italy
| | - Rosan A van Zoest
- From the Computational, Cognitive & Clinical Neuroimaging Laboratory, Division of Brain Sciences, Department of Medicine (J.H.C., R.L., D.J.S.), and Division of Infectious Diseases (J.U., A.W.), Imperial College London, UK; Departments of Radiology (M.W.A.C., C.B.L.M.M.), Global Health, Amsterdam Institute for Global Health and Development (AIGHD) (R.A.v.Z., F.W.N.M.W., P.R.), Neurology (P.P., B.A.S.), and Medical Psychology (G.J.G., B.A.S.), Academic Medical Center, Amsterdam, the Netherlands; Department of Infection & Population Health (D.D.F., C.A.S.), University College London, UK; Dutch HIV Monitoring Foundation (F.W.N.M.W., P.R.); Department of Neurology (P.P.), OLVG Hospital; Public Health Service of Amsterdam (M.F.S.v.d.L.), the Netherlands; and Alma Mater Studiorum (C.F.), University of Bologna, Italy
| | - Robert Leech
- From the Computational, Cognitive & Clinical Neuroimaging Laboratory, Division of Brain Sciences, Department of Medicine (J.H.C., R.L., D.J.S.), and Division of Infectious Diseases (J.U., A.W.), Imperial College London, UK; Departments of Radiology (M.W.A.C., C.B.L.M.M.), Global Health, Amsterdam Institute for Global Health and Development (AIGHD) (R.A.v.Z., F.W.N.M.W., P.R.), Neurology (P.P., B.A.S.), and Medical Psychology (G.J.G., B.A.S.), Academic Medical Center, Amsterdam, the Netherlands; Department of Infection & Population Health (D.D.F., C.A.S.), University College London, UK; Dutch HIV Monitoring Foundation (F.W.N.M.W., P.R.); Department of Neurology (P.P.), OLVG Hospital; Public Health Service of Amsterdam (M.F.S.v.d.L.), the Netherlands; and Alma Mater Studiorum (C.F.), University of Bologna, Italy
| | - Ferdinand W N M Wit
- From the Computational, Cognitive & Clinical Neuroimaging Laboratory, Division of Brain Sciences, Department of Medicine (J.H.C., R.L., D.J.S.), and Division of Infectious Diseases (J.U., A.W.), Imperial College London, UK; Departments of Radiology (M.W.A.C., C.B.L.M.M.), Global Health, Amsterdam Institute for Global Health and Development (AIGHD) (R.A.v.Z., F.W.N.M.W., P.R.), Neurology (P.P., B.A.S.), and Medical Psychology (G.J.G., B.A.S.), Academic Medical Center, Amsterdam, the Netherlands; Department of Infection & Population Health (D.D.F., C.A.S.), University College London, UK; Dutch HIV Monitoring Foundation (F.W.N.M.W., P.R.); Department of Neurology (P.P.), OLVG Hospital; Public Health Service of Amsterdam (M.F.S.v.d.L.), the Netherlands; and Alma Mater Studiorum (C.F.), University of Bologna, Italy
| | - Peter Portegies
- From the Computational, Cognitive & Clinical Neuroimaging Laboratory, Division of Brain Sciences, Department of Medicine (J.H.C., R.L., D.J.S.), and Division of Infectious Diseases (J.U., A.W.), Imperial College London, UK; Departments of Radiology (M.W.A.C., C.B.L.M.M.), Global Health, Amsterdam Institute for Global Health and Development (AIGHD) (R.A.v.Z., F.W.N.M.W., P.R.), Neurology (P.P., B.A.S.), and Medical Psychology (G.J.G., B.A.S.), Academic Medical Center, Amsterdam, the Netherlands; Department of Infection & Population Health (D.D.F., C.A.S.), University College London, UK; Dutch HIV Monitoring Foundation (F.W.N.M.W., P.R.); Department of Neurology (P.P.), OLVG Hospital; Public Health Service of Amsterdam (M.F.S.v.d.L.), the Netherlands; and Alma Mater Studiorum (C.F.), University of Bologna, Italy
| | - Gert J Geurtsen
- From the Computational, Cognitive & Clinical Neuroimaging Laboratory, Division of Brain Sciences, Department of Medicine (J.H.C., R.L., D.J.S.), and Division of Infectious Diseases (J.U., A.W.), Imperial College London, UK; Departments of Radiology (M.W.A.C., C.B.L.M.M.), Global Health, Amsterdam Institute for Global Health and Development (AIGHD) (R.A.v.Z., F.W.N.M.W., P.R.), Neurology (P.P., B.A.S.), and Medical Psychology (G.J.G., B.A.S.), Academic Medical Center, Amsterdam, the Netherlands; Department of Infection & Population Health (D.D.F., C.A.S.), University College London, UK; Dutch HIV Monitoring Foundation (F.W.N.M.W., P.R.); Department of Neurology (P.P.), OLVG Hospital; Public Health Service of Amsterdam (M.F.S.v.d.L.), the Netherlands; and Alma Mater Studiorum (C.F.), University of Bologna, Italy
| | - Ben A Schmand
- From the Computational, Cognitive & Clinical Neuroimaging Laboratory, Division of Brain Sciences, Department of Medicine (J.H.C., R.L., D.J.S.), and Division of Infectious Diseases (J.U., A.W.), Imperial College London, UK; Departments of Radiology (M.W.A.C., C.B.L.M.M.), Global Health, Amsterdam Institute for Global Health and Development (AIGHD) (R.A.v.Z., F.W.N.M.W., P.R.), Neurology (P.P., B.A.S.), and Medical Psychology (G.J.G., B.A.S.), Academic Medical Center, Amsterdam, the Netherlands; Department of Infection & Population Health (D.D.F., C.A.S.), University College London, UK; Dutch HIV Monitoring Foundation (F.W.N.M.W., P.R.); Department of Neurology (P.P.), OLVG Hospital; Public Health Service of Amsterdam (M.F.S.v.d.L.), the Netherlands; and Alma Mater Studiorum (C.F.), University of Bologna, Italy
| | - Maarten F Schim van der Loeff
- From the Computational, Cognitive & Clinical Neuroimaging Laboratory, Division of Brain Sciences, Department of Medicine (J.H.C., R.L., D.J.S.), and Division of Infectious Diseases (J.U., A.W.), Imperial College London, UK; Departments of Radiology (M.W.A.C., C.B.L.M.M.), Global Health, Amsterdam Institute for Global Health and Development (AIGHD) (R.A.v.Z., F.W.N.M.W., P.R.), Neurology (P.P., B.A.S.), and Medical Psychology (G.J.G., B.A.S.), Academic Medical Center, Amsterdam, the Netherlands; Department of Infection & Population Health (D.D.F., C.A.S.), University College London, UK; Dutch HIV Monitoring Foundation (F.W.N.M.W., P.R.); Department of Neurology (P.P.), OLVG Hospital; Public Health Service of Amsterdam (M.F.S.v.d.L.), the Netherlands; and Alma Mater Studiorum (C.F.), University of Bologna, Italy
| | - Claudio Franceschi
- From the Computational, Cognitive & Clinical Neuroimaging Laboratory, Division of Brain Sciences, Department of Medicine (J.H.C., R.L., D.J.S.), and Division of Infectious Diseases (J.U., A.W.), Imperial College London, UK; Departments of Radiology (M.W.A.C., C.B.L.M.M.), Global Health, Amsterdam Institute for Global Health and Development (AIGHD) (R.A.v.Z., F.W.N.M.W., P.R.), Neurology (P.P., B.A.S.), and Medical Psychology (G.J.G., B.A.S.), Academic Medical Center, Amsterdam, the Netherlands; Department of Infection & Population Health (D.D.F., C.A.S.), University College London, UK; Dutch HIV Monitoring Foundation (F.W.N.M.W., P.R.); Department of Neurology (P.P.), OLVG Hospital; Public Health Service of Amsterdam (M.F.S.v.d.L.), the Netherlands; and Alma Mater Studiorum (C.F.), University of Bologna, Italy
| | - Caroline A Sabin
- From the Computational, Cognitive & Clinical Neuroimaging Laboratory, Division of Brain Sciences, Department of Medicine (J.H.C., R.L., D.J.S.), and Division of Infectious Diseases (J.U., A.W.), Imperial College London, UK; Departments of Radiology (M.W.A.C., C.B.L.M.M.), Global Health, Amsterdam Institute for Global Health and Development (AIGHD) (R.A.v.Z., F.W.N.M.W., P.R.), Neurology (P.P., B.A.S.), and Medical Psychology (G.J.G., B.A.S.), Academic Medical Center, Amsterdam, the Netherlands; Department of Infection & Population Health (D.D.F., C.A.S.), University College London, UK; Dutch HIV Monitoring Foundation (F.W.N.M.W., P.R.); Department of Neurology (P.P.), OLVG Hospital; Public Health Service of Amsterdam (M.F.S.v.d.L.), the Netherlands; and Alma Mater Studiorum (C.F.), University of Bologna, Italy
| | - Charles B L M Majoie
- From the Computational, Cognitive & Clinical Neuroimaging Laboratory, Division of Brain Sciences, Department of Medicine (J.H.C., R.L., D.J.S.), and Division of Infectious Diseases (J.U., A.W.), Imperial College London, UK; Departments of Radiology (M.W.A.C., C.B.L.M.M.), Global Health, Amsterdam Institute for Global Health and Development (AIGHD) (R.A.v.Z., F.W.N.M.W., P.R.), Neurology (P.P., B.A.S.), and Medical Psychology (G.J.G., B.A.S.), Academic Medical Center, Amsterdam, the Netherlands; Department of Infection & Population Health (D.D.F., C.A.S.), University College London, UK; Dutch HIV Monitoring Foundation (F.W.N.M.W., P.R.); Department of Neurology (P.P.), OLVG Hospital; Public Health Service of Amsterdam (M.F.S.v.d.L.), the Netherlands; and Alma Mater Studiorum (C.F.), University of Bologna, Italy
| | - Alan Winston
- From the Computational, Cognitive & Clinical Neuroimaging Laboratory, Division of Brain Sciences, Department of Medicine (J.H.C., R.L., D.J.S.), and Division of Infectious Diseases (J.U., A.W.), Imperial College London, UK; Departments of Radiology (M.W.A.C., C.B.L.M.M.), Global Health, Amsterdam Institute for Global Health and Development (AIGHD) (R.A.v.Z., F.W.N.M.W., P.R.), Neurology (P.P., B.A.S.), and Medical Psychology (G.J.G., B.A.S.), Academic Medical Center, Amsterdam, the Netherlands; Department of Infection & Population Health (D.D.F., C.A.S.), University College London, UK; Dutch HIV Monitoring Foundation (F.W.N.M.W., P.R.); Department of Neurology (P.P.), OLVG Hospital; Public Health Service of Amsterdam (M.F.S.v.d.L.), the Netherlands; and Alma Mater Studiorum (C.F.), University of Bologna, Italy
| | - Peter Reiss
- From the Computational, Cognitive & Clinical Neuroimaging Laboratory, Division of Brain Sciences, Department of Medicine (J.H.C., R.L., D.J.S.), and Division of Infectious Diseases (J.U., A.W.), Imperial College London, UK; Departments of Radiology (M.W.A.C., C.B.L.M.M.), Global Health, Amsterdam Institute for Global Health and Development (AIGHD) (R.A.v.Z., F.W.N.M.W., P.R.), Neurology (P.P., B.A.S.), and Medical Psychology (G.J.G., B.A.S.), Academic Medical Center, Amsterdam, the Netherlands; Department of Infection & Population Health (D.D.F., C.A.S.), University College London, UK; Dutch HIV Monitoring Foundation (F.W.N.M.W., P.R.); Department of Neurology (P.P.), OLVG Hospital; Public Health Service of Amsterdam (M.F.S.v.d.L.), the Netherlands; and Alma Mater Studiorum (C.F.), University of Bologna, Italy
| | - David J Sharp
- From the Computational, Cognitive & Clinical Neuroimaging Laboratory, Division of Brain Sciences, Department of Medicine (J.H.C., R.L., D.J.S.), and Division of Infectious Diseases (J.U., A.W.), Imperial College London, UK; Departments of Radiology (M.W.A.C., C.B.L.M.M.), Global Health, Amsterdam Institute for Global Health and Development (AIGHD) (R.A.v.Z., F.W.N.M.W., P.R.), Neurology (P.P., B.A.S.), and Medical Psychology (G.J.G., B.A.S.), Academic Medical Center, Amsterdam, the Netherlands; Department of Infection & Population Health (D.D.F., C.A.S.), University College London, UK; Dutch HIV Monitoring Foundation (F.W.N.M.W., P.R.); Department of Neurology (P.P.), OLVG Hospital; Public Health Service of Amsterdam (M.F.S.v.d.L.), the Netherlands; and Alma Mater Studiorum (C.F.), University of Bologna, Italy
| |
Collapse
|
42
|
Cysique LA, Soares JR, Geng G, Scarpetta M, Moffat K, Green M, Brew BJ, Henry RG, Rae C. White matter measures are near normal in controlled HIV infection except in those with cognitive impairment and longer HIV duration. J Neurovirol 2017; 23:539-547. [PMID: 28324319 DOI: 10.1007/s13365-017-0524-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 11/30/2022]
Abstract
The objective of the current study was to quantify the degree of white matter (WM) abnormalities in chronic and virally suppressed HIV-infected (HIV+) persons while carefully taking into account demographic and disease factors. Diffusion tensor imaging (DTI) was conducted in 40 HIV- and 82 HIV+ men with comparable demographics and life style factors. The HIV+ sample was clinically stable with successful viral control. Diffusion was measured across 32 non-colinear directions with a b-value of 1000 s/mm2; fractional anisotropy (FA) and mean diffusivity (MD) maps were quantified with Itrack IDL. Using the ENIGMA DTI protocol, FA and MD values were extracted for each participant and in 11 skeleton regions of interest (SROI) from standard labels in the JHU ICBM-81 atlas covering major striato-frontal and parietal tracks. We found no major differences in FA and MD values across the 11 SROI between study groups. Within the HIV+ sample, we found that a higher CNS penetrating antiretroviral treatment, higher current CD4+ T cell count, and immune recovery from the nadir CD4+ T cell count were associated with increased FA and decreased MD (p < 0.05-0.006), while HIV duration, symptomatic, and asymptomatic cognitive impairment were associated with decreased FA and increased MD (p < 0.01-0.004). Stability of HIV treatment and antiretroviral CNS penetration efficiency in addition to current and historical immune recovery were related to higher FA and lower MD (p = 0.04-p < 0.01). In conclusion, WM DTI measures are near normal except for patients with neurocognitive impairment and longer HIV disease duration.
Collapse
Affiliation(s)
- Lucette A Cysique
- Neuroscience Research Australia, 139 Barker Street, Randwick, NSW, 2031, Australia. .,Faculty of Medicine, UNSW Australia, Sydney, 2052, NSW, Australia. .,Peter Duncan Neuroscience Research Unit at the St. Vincent's Applied Medical Research Centre, Darlinghurst, 2010, NSW, Australia.
| | - James R Soares
- Neuroscience Research Australia, 139 Barker Street, Randwick, NSW, 2031, Australia
| | - Guangqiang Geng
- Neuroscience Research Australia, 139 Barker Street, Randwick, NSW, 2031, Australia
| | - Maia Scarpetta
- Neuroscience Research Australia, 139 Barker Street, Randwick, NSW, 2031, Australia
| | - Kirsten Moffat
- Department of Imaging, St. Vincent's Hospital, Darlinghurst, 2010, NSW, Australia
| | - Michael Green
- Neuroscience Research Australia, 139 Barker Street, Randwick, NSW, 2031, Australia
| | - Bruce J Brew
- Faculty of Medicine, UNSW Australia, Sydney, 2052, NSW, Australia.,Peter Duncan Neuroscience Research Unit at the St. Vincent's Applied Medical Research Centre, Darlinghurst, 2010, NSW, Australia.,Department of Neurology, Sydney St. Vincent's Hospital, Darlinghurst, 2010, NSW, Australia.,Department of Immunology, Sydney St. Vincent's Hospital, Darlinghurst, 2010, NSW, Australia
| | - Roland G Henry
- School of Medicine, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Caroline Rae
- Neuroscience Research Australia, 139 Barker Street, Randwick, NSW, 2031, Australia.,Faculty of Medicine, UNSW Australia, Sydney, 2052, NSW, Australia
| |
Collapse
|
43
|
3D scattering transforms for disease classification in neuroimaging. NEUROIMAGE-CLINICAL 2017; 14:506-517. [PMID: 28289601 PMCID: PMC5338908 DOI: 10.1016/j.nicl.2017.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 01/29/2017] [Accepted: 02/03/2017] [Indexed: 11/23/2022]
Abstract
Classifying neurodegenerative brain diseases in MRI aims at correctly assigning discrete labels to MRI scans. Such labels usually refer to a diagnostic decision a learner infers based on what it has learned from a training sample of MRI scans. Classification from MRI voxels separately typically does not provide independent evidence towards or against a class; the information relevant for classification is only present in the form of complicated multivariate patterns (or “features”). Deep learning solves this problem by learning a sequence of non-linear transformations that result in feature representations that are better suited to classification. Such learned features have been shown to drastically outperform hand-engineered features in computer vision and audio analysis domains. However, applying the deep learning approach to the task of MRI classification is extremely challenging, because it requires a very large amount of data which is currently not available. We propose to instead use a three dimensional scattering transform, which resembles a deep convolutional neural network but has no learnable parameters. Furthermore, the scattering transform linearizes diffeomorphisms (due to e.g. residual anatomical variability in MRI scans), making the different disease states more easily separable using a linear classifier. In experiments on brain morphometry in Alzheimer's disease, and on white matter microstructural damage in HIV, scattering representations are shown to be highly effective for the task of disease classification. For instance, in semi-supervised learning of progressive versus stable MCI, we reach an accuracy of 82.7%. We also present a visualization method to highlight areas that provide evidence for or against a certain class, both on an individual and group level. We have developed and implemented a feature extraction method based on the three dimensional (3D) scattering transform. We tested it for its ability to discriminate diseased from healthy subjects and subjects with mild cognitive impairment. We have clearly shown that our proposed methodology achieves higher accuracy than the best competing methods. The scattering transform linearizes diffeomorphisms leading to more separable disease states using a linear classifier. Scattering representations are shown to be highly effective for the task of disease classification. We present a visualization method to highlight areas that provide evidence for or against a certain class.
Collapse
|