1
|
Sim MM, Mollica MY, Alfar HR, Hollifield M, Chung DW, Fu X, Gandhapudi S, Coenen DM, Prakhya KS, Mahmood DFD, Banerjee M, Peng C, Li X, Thornton AC, Porterfield JZ, Sturgill JL, Sievert GA, Barton-Baxter M, Zheng Z, Campbell KS, Woodward JG, López JA, Whiteheart SW, Garvy BA, Wood JP. Unfolded Von Willebrand Factor Binds Protein S and Reduces Anticoagulant Activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.08.579463. [PMID: 38370737 PMCID: PMC10871343 DOI: 10.1101/2024.02.08.579463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Protein S (PS), the critical plasma cofactor for the anticoagulants tissue factor (TF) pathway inhibitor (TFPI) and activated protein C (APC), circulates in two functionally distinct pools: free (anticoagulant) or bound to complement component 4b-binding protein (C4BP) (anti-inflammatory). Acquired free PS deficiency is detected in several viral infections, but its cause is unclear. Here, we identified a shear-dependent interaction between PS and von Willebrand Factor (VWF) by mass spectrometry. Consistently, plasma PS and VWF comigrated in both native and agarose gel electrophoresis. The PS/VWF interaction was blocked by TFPI but not APC, suggesting an interaction with the C-terminal sex hormone binding globulin (SHBG) region of PS. Microfluidic systems, mimicking arterial laminar flow or disrupted turbulent flow, demonstrated that PS stably binds VWF as VWF unfolds under turbulent flow. PS/VWF complexes also localized to platelet thrombi under laminar arterial flow. In thrombin generation-based assays, shearing plasma decreased PS activity, an effect not seen in the absence of VWF. Finally, free PS deficiency in COVID-19 patients, measured using an antibody that binds near the C4BP binding site in SHBG, correlated with changes in VWF, but not C4BP, and with thrombin generation. Our data suggest that PS binds to a shear-exposed site on VWF, thus sequestering free PS and decreasing its anticoagulant activity, which would account for the increased thrombin generation potential. As many viral infections present with free PS deficiency, elevated circulating VWF, and increased vascular shear, we propose that the PS/VWF interaction reported here is a likely contributor to virus-associated thrombotic risk.
Collapse
Affiliation(s)
- Martha M.S. Sim
- Department of Molecular and Cellular Biochemistry, University of Kentucky, KY, USA
| | - Molly Y. Mollica
- Bloodworks Northwest Research Institute, WA, USA
- Division of Hematology, School of Medicine, University of Washington, WA, USA
- Department of Mechanical Engineering, University of Maryland, Baltimore County, MD, USA
| | - Hammodah R. Alfar
- Department of Molecular and Cellular Biochemistry, University of Kentucky, KY, USA
| | - Melissa Hollifield
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, KY, USA
| | - Dominic W. Chung
- Bloodworks Northwest Research Institute, WA, USA
- Department of Biochemistry, University of Washington, WA, USA
| | - Xiaoyun Fu
- Bloodworks Northwest Research Institute, WA, USA
- Division of Hematology, School of Medicine, University of Washington, WA, USA
| | - Siva Gandhapudi
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, KY, USA
| | - Daniëlle M. Coenen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, KY, USA
| | | | | | - Meenakshi Banerjee
- Department of Molecular and Cellular Biochemistry, University of Kentucky, KY, USA
| | - Chi Peng
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, KY, USA
| | - Xian Li
- Saha Cardiovascular Research Center, University of Kentucky, KY, USA
| | | | - James Z. Porterfield
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, KY, USA
- Division of Infectious Disease, University of Kentucky, KY, USA
| | - Jamie L. Sturgill
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, KY, USA
| | - Gail A. Sievert
- Center for Clinical and Translational Science, University of Kentucky, KY, USA
| | | | - Ze Zheng
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
- Versiti Blood Research Institute, Milwaukee, WI, USA
| | - Kenneth S. Campbell
- Center for Clinical and Translational Science, University of Kentucky, KY, USA
| | - Jerold G. Woodward
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, KY, USA
| | - José A. López
- Bloodworks Northwest Research Institute, WA, USA
- Division of Hematology, School of Medicine, University of Washington, WA, USA
| | - Sidney W. Whiteheart
- Department of Molecular and Cellular Biochemistry, University of Kentucky, KY, USA
- Saha Cardiovascular Research Center, University of Kentucky, KY, USA
| | - Beth A. Garvy
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, KY, USA
| | - Jeremy P. Wood
- Department of Molecular and Cellular Biochemistry, University of Kentucky, KY, USA
- Saha Cardiovascular Research Center, University of Kentucky, KY, USA
- Division of Cardiovascular Medicine Gill Heart and Vascular Institute, University of Kentucky, KY, USA
| |
Collapse
|
2
|
Li X, Song X, Mahmood DFD, Sim MMS, Bidarian SJ, Wood JP. Activated protein C, protein S, and tissue factor pathway inhibitor cooperate to inhibit thrombin activation. Thromb Res 2023; 230:84-93. [PMID: 37660436 PMCID: PMC10543463 DOI: 10.1016/j.thromres.2023.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/20/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023]
Abstract
INTRODUCTION Thrombin, the enzyme which converts fibrinogen into a fibrin clot, is produced by the prothrombinase complex, composed of factor Xa (FXa) and factor Va (FVa). Down-regulation of this process is critical, as excess thrombin can lead to life-threatening thrombotic events. FXa and FVa are inhibited by the anticoagulants tissue factor pathway inhibitor alpha (TFPIα) and activated protein C (APC), respectively, and their common cofactor protein S (PS). However, prothrombinase is resistant to either of these inhibitory systems in isolation. MATERIALS AND METHODS We hypothesized that these anticoagulants function best together, and tested this hypothesis using purified proteins and plasma-based systems. RESULTS In plasma, TFPIα had greater anticoagulant activity in the presence of APC and PS, maximum PS activity required both TFPIα and APC, and antibodies against TFPI and APC had an additive procoagulant effect, which was mimicked by an antibody against PS alone. In purified protein systems, TFPIα dose-dependently inhibited thrombin activation by prothrombinase, but only in the presence of APC, and this activity was enhanced by PS. Conversely, FXa protected FVa from cleavage by APC, even in the presence of PS, and TFPIα reversed this protection. However, prothrombinase assembled on platelets was still protected from inhibition, even in the presence of TFPIα, APC, and PS. CONCLUSIONS We propose a model of prothrombinase inhibition through combined targeting of both FXa and FVa, and that this mechanism enables down-regulation of thrombin activation outside of a platelet clot. Platelets protect prothrombinase from inhibition, however, supporting a procoagulant environment within the clot.
Collapse
Affiliation(s)
- Xian Li
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States of America
| | - Xiaohong Song
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States of America
| | - Dlovan F D Mahmood
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States of America
| | - Martha M S Sim
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States of America
| | - Sara J Bidarian
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States of America
| | - Jeremy P Wood
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States of America; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States of America; Division of Cardiovascular Medicine, Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY, United States of America.
| |
Collapse
|
3
|
Wójcik K, Bazan-Socha S, Celejewska-Wójcik N, Górka K, Lichołai S, Polok K, Stachura T, Zaręba L, Dziedzic R, Gradzikiewicz A, Sanak M, Musiał J, Sładek K, Iwaniec T. Decreased protein C activity, lower ADAMTS13 antigen and free protein S levels accompanied by unchanged thrombin generation potential in hospitalized COVID-19 patients. Thromb Res 2023; 223:80-86. [PMID: 36709678 PMCID: PMC9872442 DOI: 10.1016/j.thromres.2023.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/27/2022] [Accepted: 01/16/2023] [Indexed: 01/26/2023]
Abstract
INTRODUCTION COVID-19 is associated with an increased thromboembolic risk. However, the mechanisms triggering clot formation in those patients remain unknown. PATIENTS AND METHODS In 118 adult Caucasian severe but non-critically ill COVID-19 patients (median age 58 years; 73 % men) and 46 controls, we analyzed in vitro plasma thrombin generation profile (calibrated automated thrombogram [CAT assay]) and investigated thrombophilia-related factors, such as protein C and antithrombin activity, free protein S level, presence of antiphospholipid antibodies and factor V Leiden R506Q and prothrombin G20210A mutations. We also measured circulating von Willebrand factor (vWF) antigen and a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13) antigen and activity. In patients, blood samples were collected on admission to the hospital before starting any therapy, including heparin. Finally, we examined the relationship between observed alterations and disease follow-up, such as thromboembolic complications. RESULTS COVID-19 patients showed 17 % lower protein C activity, 22 % decreased free protein S levels, and a higher prevalence of positive results for IgM anticardiolipin antibodies. They also had 151 % increased vWF, and 27 % decreased ADAMTS13 antigens compared with controls (p < 0.001, all). On the contrary, thrombin generation potential was similar to controls. In the follow-up, pulmonary embolism (PE) occurred in thirteen (11 %) patients. They were characterized by a 55 % elevated D-dimer (p = 0.04) and 2.7-fold higher troponin I (p = 0.002) during hospitalization and 29 % shorter time to thrombin peak in CAT assay (p = 0.009) compared to patients without PE. CONCLUSIONS In COVID-19, we documented prothrombotic abnormalities of peripheral blood. PE was characterized by more dynamic thrombin generation growth in CAT assay performed on admittance to the hospital.
Collapse
Affiliation(s)
- Krzysztof Wójcik
- Jagiellonian University Medical College, Faculty of Medicine, Department of Internal Medicine, 30-688 Krakow, Poland
| | - Stanisława Bazan-Socha
- Jagiellonian University Medical College, Faculty of Medicine, Department of Internal Medicine, 30-688 Krakow, Poland.
| | - Natalia Celejewska-Wójcik
- Jagiellonian University Medical College, Faculty of Medicine, Department of Internal Medicine, 30-688 Krakow, Poland
| | - Karolina Górka
- Jagiellonian University Medical College, Faculty of Medicine, Department of Internal Medicine, 30-688 Krakow, Poland
| | - Sabina Lichołai
- Jagiellonian University Medical College, Faculty of Medicine, Department of Internal Medicine, 30-688 Krakow, Poland
| | - Kamil Polok
- Jagiellonian University Medical College, Faculty of Medicine, Department of Internal Medicine, 30-688 Krakow, Poland
| | - Tomasz Stachura
- Jagiellonian University Medical College, Faculty of Medicine, Department of Internal Medicine, 30-688 Krakow, Poland
| | - Lech Zaręba
- University of Rzeszow, College of Natural Sciences, Interdisciplinary Center for Computational Modelling, 35-310 Rzeszow, Poland
| | - Radosław Dziedzic
- Jagiellonian University Medical College, Students' Scientific Group of Immune Diseases and Hypercoagulation, 30-688 Krakow, Poland; Jagiellonian University Medical College, Doctoral School of Medical and Health Sciences, Łazarza 16, 31-530 Krakow, Poland
| | - Ada Gradzikiewicz
- Jagiellonian University Medical College, Students' Scientific Group of Immune Diseases and Hypercoagulation, 30-688 Krakow, Poland
| | - Marek Sanak
- Jagiellonian University Medical College, Faculty of Medicine, Department of Internal Medicine, 30-688 Krakow, Poland
| | - Jacek Musiał
- Jagiellonian University Medical College, Faculty of Medicine, Department of Internal Medicine, 30-688 Krakow, Poland
| | - Krzysztof Sładek
- Jagiellonian University Medical College, Faculty of Medicine, Department of Internal Medicine, 30-688 Krakow, Poland
| | - Teresa Iwaniec
- Jagiellonian University Medical College, Department of Haematology, 31-501 Krakow, Poland
| |
Collapse
|
4
|
Prado Y, Aravena D, Llancalahuen FM, Aravena C, Eltit F, Echeverría C, Gatica S, Riedel CA, Simon F. Statins and Hemostasis: Therapeutic Potential Based on Clinical Evidence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1408:25-47. [PMID: 37093420 DOI: 10.1007/978-3-031-26163-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Hemostasis preserves blood fluidity and prevents its loss after vessel injury. The maintenance of blood fluidity requires a delicate balance between pro-coagulant and fibrinolytic status. Endothelial cells (ECs) in the inner face of blood vessels maintain hemostasis through balancing anti-thrombotic and pro-fibrinolytic activities. Dyslipidemias are linked to hemostatic alterations. Thus, it is necessary a better understanding of the underlying mechanisms linking hemostasis with dyslipidemia. Statins are drugs that decrease cholesterol levels in the blood and are the gold standard for treating hyperlipidemias. Statins can be classified into natural and synthetic molecules, approved for the treatment of hypercholesterolemia. The classical mechanism of action of statins is by competitive inhibition of a key enzyme in the synthesis pathway of cholesterol, the HMG-CoA reductase. Statins are frequently administrated by oral ingestion and its interaction with other drugs and food supplements is associated with altered bioavailability. In this review we deeply discuss the actions of statins beyond the control of dyslipidemias, focusing on the actions in thrombotic modulation, vascular and cardiovascular-related diseases, metabolic diseases including metabolic syndrome, diabetes, hyperlipidemia, and hypertension, and chronic diseases such as cancer, chronic obstructive pulmonary disease, and chronic kidney disease. Furthermore, we were prompted to delved deeper in the molecular mechanisms by means statins regulate coagulation acting on liver, platelets, and endothelium. Clinical evidence show that statins are effective regulators of dyslipidemia with a high impact in hemostasis regulation and its deleterious consequences. However, studies are required to elucidate its underlying molecular mechanism and improving their therapeutical actions.
Collapse
Affiliation(s)
- Yolanda Prado
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Diego Aravena
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Felipe M Llancalahuen
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Cristobal Aravena
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Felipe Eltit
- Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
- Vancouver Prostate Centre, Vancouver, Canada
| | - Cesar Echeverría
- Laboratory of Molecular Biology, Nanomedicine and Genomics, Faculty of Medicine, University of Atacama, Copiapo, Chile
| | - Sebastian Gatica
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Claudia A Riedel
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Felipe Simon
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.
- Millennium Nucleus of Ion Channel-Associated Diseases, Santiago, Chile.
| |
Collapse
|
5
|
Sim MM, Wood JP. Dysregulation of Protein S in COVID-19. Best Pract Res Clin Haematol 2022; 35:101376. [PMID: 36494145 PMCID: PMC9395234 DOI: 10.1016/j.beha.2022.101376] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 12/15/2022]
Abstract
Coronavirus Disease 2019 (COVID-19) has been widely associated with increased thrombotic risk, with many different proposed mechanisms. One such mechanism is acquired deficiency of protein S (PS), a plasma protein that regulates coagulation and inflammatory processes, including complement activation and efferocytosis. Acquired PS deficiency is common in patients with severe viral infections and has been reported in multiple studies of COVID-19. This deficiency may be caused by consumption, degradation, or clearance of the protein, by decreased synthesis, or by binding of PS to other plasma proteins, which block its anticoagulant activity. Here, we review the functions of PS, the evidence of acquired PS deficiency in COVID-19 patients, the potential mechanisms of PS deficiency, and the evidence that those mechanisms may be occurring in COVID-19.
Collapse
Affiliation(s)
- Martha M.S. Sim
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Jeremy P. Wood
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA,Gill Heart and Vascular Institute, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Kentucky, Lexington, KY, USA,Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA,Corresponding author. University of Kentucky, 741 S Limestone, BBSRB B359, Lexington, KY, 40536, USA
| |
Collapse
|