1
|
Riller Q, Schmutz M, Fourgeaud J, Fischer A, Neven B. Protective role of antibodies in enteric virus infections: Lessons from primary and secondary immune deficiencies. Immunol Rev 2024. [PMID: 39340232 DOI: 10.1111/imr.13402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Enteric viruses are the main cause of acute gastroenteritis worldwide with a significant morbidity and mortality, especially among children and aged adults. Some enteric viruses also cause disseminated infections and severe neurological manifestations such as poliomyelitis. Protective immunity against these viruses is not well understood in humans, with most knowledge coming from animal models, although the development of poliovirus and rotavirus vaccines has extended our knowledge. In a classical view, innate immunity involves the recognition of foreign DNA or RNA by pathogen recognition receptors leading to the production of interferons and other inflammatory cytokines. Antigen uptake and presentation to T cells and B cells then activate adaptive immunity and, in the case of the mucosal immunity, induce the secretion of dimeric IgA, the more potent immunoglobulins in viral neutralization. The study of Inborn errors of immunity (IEIs) offers a natural opportunity to study nonredundant immunity toward pathogens. In the case of enteric viruses, patients with a defective production of antibodies are at risk of developing neurological complications. Moreover, a recent description of patients with low or absent antibody production with protracted enteric viral infections associated with hepatitis reinforces the prominent role of B cells and immunoglobulins in the control of enteric virus.
Collapse
Affiliation(s)
- Quentin Riller
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, Université Paris Cité, INSERM UMR 1163, Paris, France
- IHU-Imagine, Paris, France
| | - Muriel Schmutz
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, Université Paris Cité, INSERM UMR 1163, Paris, France
- IHU-Imagine, Paris, France
| | - Jacques Fourgeaud
- Université Paris Cité, FETUS, Paris, France
- Microbiology Department, AP-HP, Hôpital Necker, Paris, France
| | - Alain Fischer
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker-Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- INSERM UMRS 1163, Institut Imagine, Paris, France
- Collège de France, Paris, France
| | - Bénédicte Neven
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute, Université Paris Cité, INSERM UMR 1163, Paris, France
- IHU-Imagine, Paris, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker-Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
2
|
Urbina TM, Warren AB, Helfrich AM, Horvat D, Smith KD. Respiratory Arrest in a Late Preterm Infant Presenting for a 2-Week Well-Visit. Pediatrics 2024; 154:e2023064756. [PMID: 38957894 DOI: 10.1542/peds.2023-064756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 07/04/2024] Open
Abstract
A 13-day-old, late preterm male, born appropriate for gestational age, presented to the pediatric clinic for his routine 2-week well visit with less than 1-day history of decreased oral intake and lethargy. During the baby's well exam, he acutely decompensated and required resuscitation and transfer to the emergency department, where he was intubated for frequent apneic events. He was admitted to the NICU for management and further workup. Physical examination and initial laboratory tests were unremarkable. An EEG demonstrated electrographic and clinical seizures. His initial MRI was unremarkable, and infection studies revealed the diagnosis. We review the patient's initial presentation, evaluation, hospital course, and the long-term implications of his diagnosis.
Collapse
Affiliation(s)
| | | | | | - David Horvat
- Neurology, Walter Reed National Military Medical Center, Bethesda, Maryland
| | | |
Collapse
|
3
|
Rembeck K, Elfving K, Patzi Churqui M, Saguti F, Studahl M, Norder H. Clinical Spectrum and Epidemiology of Human Parechovirus Infections in Infants: A Retrospective Study in the Western Part of Sweden. Open Forum Infect Dis 2024; 11:ofae268. [PMID: 38813262 PMCID: PMC11134459 DOI: 10.1093/ofid/ofae268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024] Open
Abstract
Background Human parechovirus (HPeV) infections can cause sepsis and meningoencephalitis in infants. To improve our knowledge of the consequences of HPeV infections in young children, the incidence, clinical spectrum, and short-term outcome among infants infected with HPeV were investigated retrospectively. Methods The presence of HPeV RNA was investigated by polymerase chain reaction in cerebrospinal fluid from 327 children aged 0 to 12 months sampled between 2014 and 2017. Eighty-one were infected with HPeV and included in the study. These infants were divided into 3 groups based on clinical assessment: HPeV was the presumed cause of disease (n = 35); HPeV could have contributed to or been considered the cause of disease (n = 24); and HPeV was not considered the cause of disease (n = 22). Results Infection with HPeV type 3 was common in all groups (n = 54), and most children were younger than 3 months (n = 63). The children in the first group (HPeV as presumed cause) had meningoencephalitis (n = 20), viral sepsis (n = 9), or non-severe viral infection (n = 6). The youngest were more prone to develop meningoencephalitis, while the slightly older children had symptoms of viral sepsis or nonsevere viral infection (P < .05). Eleven had symptom onset within 2 days after birth. Two infants diagnosed with sudden infant death syndrome were HPeV infected when tested postmortem. Conclusions HPeV infections were identified in 25% of children with suspected central nervous system infection. The clinical presentation of those infected with HPeV varied with age. HPeV infections may be associated with sudden infant death syndrome, although this is not well studied. The results suggest that HPeV infections may be underdiagnosed in young infants.
Collapse
Affiliation(s)
- Karolina Rembeck
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious diseases, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Kristina Elfving
- Department of Pediatrics, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marianela Patzi Churqui
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Fredy Saguti
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marie Studahl
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious diseases, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Heléne Norder
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| |
Collapse
|
4
|
Capendale PE, García-Rodríguez I, Ambikan AT, Mulder LA, Depla JA, Freeze E, Koen G, Calitz C, Sood V, Vieira de Sá R, Neogi U, Pajkrt D, Sridhar A, Wolthers KC. Parechovirus infection in human brain organoids: host innate inflammatory response and not neuro-infectivity correlates to neurologic disease. Nat Commun 2024; 15:2532. [PMID: 38514653 PMCID: PMC10958052 DOI: 10.1038/s41467-024-46634-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/29/2024] [Indexed: 03/23/2024] Open
Abstract
Picornaviruses are a leading cause of central nervous system (CNS) infections. While genotypes such as parechovirus A3 (PeV-A3) and echovirus 11 (E11) can elicit severe neurological disease, the highly prevalent PeV-A1 is not associated with CNS disease. Here, we expand our current understanding of these differences in PeV-A CNS disease using human brain organoids and clinical isolates of the two PeV-A genotypes. Our data indicate that PeV-A1 and A3 specific differences in neurological disease are not due to infectivity of CNS cells as both viruses productively infect brain organoids with a similar cell tropism. Proteomic analysis shows that PeV-A infection significantly alters the host cell metabolism. The inflammatory response following PeV-A3 (and E11 infection) is significantly more potent than that upon PeV-A1 infection. Collectively, our findings align with clinical observations and suggest a role for neuroinflammation, rather than viral replication, in PeV-A3 (and E11) infection.
Collapse
Affiliation(s)
- Pamela E Capendale
- OrganoVIR Labs, Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Inés García-Rodríguez
- OrganoVIR Labs, Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Anoop T Ambikan
- The Systems Virology Lab, Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, Stockholm, Sweden
| | - Lance A Mulder
- OrganoVIR Labs, Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Josse A Depla
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- UniQure Biopharma B.V., Department of Research & Development, Paasheuvelweg 25A, Amsterdam, The Netherlands
| | - Eline Freeze
- OrganoVIR Labs, Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Gerrit Koen
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Carlemi Calitz
- OrganoVIR Labs, Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Vikas Sood
- The Systems Virology Lab, Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, Stockholm, Sweden
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Renata Vieira de Sá
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- The Systems Virology Lab, Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, Stockholm, Sweden
| | - Ujjwal Neogi
- The Systems Virology Lab, Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, Stockholm, Sweden
| | - Dasja Pajkrt
- OrganoVIR Labs, Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Adithya Sridhar
- OrganoVIR Labs, Emma Children's Hospital, Department of Pediatric Infectious Diseases, Amsterdam UMC, Academic Medical Center, Amsterdam Institute for Infection and Immunity, Amsterdam Institute for Reproduction and Development, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Emma Center for Personalized Medicine, Amsterdam UMC, Amsterdam, The Netherlands
| | - Katja C Wolthers
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Bubba L, Broberg EK, Fischer TK, Simmonds P, Harvala H. Parechovirus A Circulation and Testing Capacities in Europe, 2015-2021. Emerg Infect Dis 2024; 30:234-244. [PMID: 38270192 PMCID: PMC10826775 DOI: 10.3201/eid3002.230647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
Parechovirus infections usually affect neonates and young children; manifestations vary from asymptomatic to life-threatening. We describe laboratory capacity in Europe for assessing parechovirus circulation, seasonality, and epidemiology. We used retrospective anonymized data collected from parechovirus infection case-patients identified in Europe during January 2015-December 2021. Of 21 laboratories from 18 countries that participated in the study, 16 (76%) laboratories with parechovirus detection capacity reported 1,845 positive samples; 12/16 (75%) with typing capability successfully identified 517 samples. Parechovirus A3 was the most common type (n = 278), followed by A1 (153), A6 (50), A4 (13), A5 (22), and A14 (1). Clinical data from 1,269 participants highlighted correlation of types A3, A4, and A5 with severe disease in neonates. We observed a wide capacity in Europe to detect, type, and analyze parechovirus data. To enhance surveillance and response for PeV outbreaks, sharing typing protocols and data on parechovirus-positive cases should be encouraged.
Collapse
|
6
|
Alali M, Tat K, Hamilton S, Streicher DA, Carlucci JG. Human parechovirus encephalitis in infants: a retrospective single-center study (2017-2022). Eur J Pediatr 2023; 182:4457-4465. [PMID: 37490108 DOI: 10.1007/s00431-023-05117-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/26/2023]
Abstract
Parechoviruses cause a spectrum of clinical presentations ranging from self-limited to severe encephalitis. In July 2022, state health departments across the USA received an increase in reports of PeV infections among infants. A retrospective cohort study describing the clinical characteristics and outcomes of PeV encephalitis in infants aged < 90 days. Rates of PeV encephalitis were determined based on the number of PeV encephalitis cases out of all meningoencephalitis multiplex polymerase chain reaction panel (MEP) obtained among infants aged < 90 days per year. Out of 2115 infants evaluated for meningoencephalitis, 32 (1.5%) cases of PeV encephalitis were identified. All cases had an absence of pleocytosis and normal protein and glucose levels on CSF analysis. Half of the cases presented with a symptomatic triad (fever, rash, and fussiness). More than one-third of cases (39%) presented with a sepsis-like syndrome, 13% presented with seizures, and 25% were admitted to the pediatric intensive care unit (PICU). MRI of the brain was obtained in four of the cases presented with seizure, all of which demonstrated characteristic radiological findings of the periventricular white matter with frontoparietal predominance and involving the corpus callosum, thalami, and internal and external capsules. Rates of PeV encephalitis varied from year to year, with the highest rates in 2018 and 2022. PeV was the second most detected pathogen in MEP in both 2018 and 2022, and the fifth most detected pathogen in all positive MEP during the study period 2017-2022. CONCLUSION PeV can cause encephalitis and sepsis-like syndrome in infants, and it should be considered even with normal CSF parameters. Prospective studies are needed to better understand PeV epidemiology and to monitor outbreaks. WHAT IS KNOWN • PeV is a frequent cause of encephalitis and clinical sepsis in infants in the first 90 days. • Normal CSF parameters in PeV encephalitis and diagnostic importance of MEP to avoid unnecessary prolonged antibiotics and hospitalization.. • Centers for Disease Control and Prevention (CDC) issued a Health Advisory alert in Summer 2022 of uptick PeV encephalitis cases in the USA likely secondary of COVID-19 mitigation measures relaxation, but no comparison with previous years.. WHAT IS NEW • Knowledge of radiological MRI brain characteristics in PeV encephalitis can be a clue diagnosis. • Knowledge of the biennial seasonality pattern in PeV infection. • PeV was the second most detected pathogen in BIOFIRE ME panel in both 2018 and 2022 in our cohort sample.
Collapse
Affiliation(s)
- Muayad Alali
- Department of Pediatrics, Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University School of Medicine, 705 Riley Hospital Drive, Indianapolis, IN, 46202, USA.
| | - Kiet Tat
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shannon Hamilton
- Department of Pediatrics, Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University School of Medicine, 705 Riley Hospital Drive, Indianapolis, IN, 46202, USA
| | - Drew A Streicher
- Department of Radiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - James G Carlucci
- Department of Pediatrics, Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University School of Medicine, 705 Riley Hospital Drive, Indianapolis, IN, 46202, USA
| |
Collapse
|
7
|
Coutinho CRM, Cardoso JF, Siqueira JAM, Machado RS, Chagas Júnior WDD, Tavares FN, Gabbay YB. Diversity of picornaviruses detected in diarrheal samples from children in Belém, Brazilian Amazon (1982-2019). J Med Virol 2023; 95:e28873. [PMID: 37349989 DOI: 10.1002/jmv.28873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/06/2023] [Accepted: 06/02/2023] [Indexed: 06/24/2023]
Abstract
In this investigation, fecal specimens from children with diarrhea were collected from four community studies conducted between 1982 and 2019 in Belém, Brazilian Amazon. A total of 234 samples were tested by quantitative reverse transcription polymerase chain reaction (RT-qPCR) to detect infections by picornaviruses of the Enterovirus (EV), Parechovirus (HPeV), Cosavirus (HCoSV), Kobuvirus (Aichivirus - AiV) and Salivirus (SalV) genera. The positive samples were subjected to different amplification protocols of the VP1 region of the genome, such as nested PCR or snPCR, and were subsequently genotyped by sequencing VP1 and VP3 of the viral genome. Positivity was observed in 76.5% (179/234) of the samples tested using RT-qPCR for at least one virus, and co-infection was observed in 37.4% (67/179) of the cases. EV was detected in 50.8% (119/234), HPeV in 29.9% (70/234), HCoSV in 27.3% (64/234), and AiV/SalV in 2.1% (5/234) of the specimens tested by RT-qPCR. Using nested PCR and/or snPCR techniques, the positivity rates were 94.11% (112/119) for EV, 72.85% (51/70) for HPeV, and 20.31% (13/64) for HCoSV. It was not possible to amplify the samples that were positive for AiV/SalV. Sequencing revealed 67.2% (80/119) EV, 51.4% (36/70) HPeV, and 20.31% (13/64) HCoSV. Forty-five different types of EV were found among species A, B, and C; HCoSV identified five species, including a possible recombinant strain; all HPeV were identified as belonging to species A, in two samples a possible recombination involving three different strains was verified. This study demonstrated the high circulation and diversity of different types of picornaviruses in fecal samples, including those collected more than 30 years ago. This endorsed the evaluation of important points in the epidemiology of these viruses, such as the presence of co-infection and the possibility of knowing more about these agents, considering that some were recently described; therefore, their detection in older samples can provide more data about their ancestry.
Collapse
Affiliation(s)
| | - Jedson Ferreira Cardoso
- Laboratório de Bioinformática-BIOINFO, Seção de Virologia-SAVIR, Instituto Evandro Chagas-IEC, Secretaria de Vigilância em Saúde e Ambiente-SVSA, Ministério da Saúde, Ananindeua, Pará, Brazil
| | - Jones Anderson Monteiro Siqueira
- Laboratório de Vírus Gastroentéricos-LVG, Seção de Virologia-SAVIR, Instituto Evandro Chagas-IEC, Secretaria de Vigilância em Saúde e Ambiente-SVSA, Ministério da Saúde, Ananindeua, Pará, Brazil
| | - Raiana Scerni Machado
- Programa de Pós-graduação em Medicina Tropical, Instituto Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, Brazil
| | - Wanderley Dias das Chagas Júnior
- Laboratório de Enterovírus-LEV, Seção de Virologia-SAVIR, Instituto Evandro Chagas-IEC, Secretaria de Vigilância em Saúde e Ambiente-SVSA, Ministério da Saúde, Ananindeua, Pará, Brazil
| | - Fernando Neto Tavares
- Laboratório de Enterovírus-LEV, Seção de Virologia-SAVIR, Instituto Evandro Chagas-IEC, Secretaria de Vigilância em Saúde e Ambiente-SVSA, Ministério da Saúde, Ananindeua, Pará, Brazil
| | - Yvone Benchimol Gabbay
- Laboratório de Vírus Gastroentéricos-LVG, Seção de Virologia-SAVIR, Instituto Evandro Chagas-IEC, Secretaria de Vigilância em Saúde e Ambiente-SVSA, Ministério da Saúde, Ananindeua, Pará, Brazil
| |
Collapse
|
8
|
Li W, Gao Z, Yan H, Tian Y, Liu B, Shen L, Wang Y, Jia L, Zhang D, Wang Q. Prevalence and genetic diversity of Parechovirus A in children with diarrhea in Beijing, China, 2017-2019. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 111:105435. [PMID: 37059255 DOI: 10.1016/j.meegid.2023.105435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
We analyzed the prevalence and genotypes of Parechovirus A (PeV-A) in children with diarrhea in Beijing, China, 2017-2019. A total of 1734 stool samples collected from children <5 years of age with diarrhea were tested for the presence of PeV-A. Viral RNA was detected by real-time RT-PCR, and then genotyped by nested RT-PCR. We detected PeV-A in 93 (5.4%, 93/1734) samples, of which 87 could be genotyped by amplification of either the complete or partial VP1 region or the VP3/VP1 junction region. The median age of PeV-A infected children was 10 months. Most PeV-A infections were observed between August and November, with a peak in September. Seven known genotypes of PeV-A1A, -A1B, -A3, -A4, -A6, -A8 and -A11 were detected and PeV-A1B was the most prevalent genotype. Coinfection with other diarrheal viruses was observed in 30.1% (28/93) of PeV-A positive samples. All strains of PeV-A1A, -A1B, -A4 and -A6 obtained in this study contained the arginine-glycine-aspartic (RGD) motif, while all strains of PeV-A3, -A8 and -A11 lacked it. This study revealed a high genetic diversity of PeV-A circulating in Beijing and PeV-A11 was reported for the first time in children with diarrhea in China.
Collapse
Affiliation(s)
- Weihong Li
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Zhiyong Gao
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Hanqiu Yan
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Yi Tian
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Baiwei Liu
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Lingyu Shen
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Yu Wang
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Lei Jia
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Daitao Zhang
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, Beijing, China.
| | - Quanyi Wang
- Beijing Center for Disease Prevention and Control.
| |
Collapse
|
9
|
Zhang M, Wu F, Liang M, Xian J, Zheng L, Li Q, Chen Q. Parechovirus A infection and risk of gastroenteritis in children: A systematic review and meta-analysis. Rev Med Virol 2022; 32:e2380. [PMID: 35822660 DOI: 10.1002/rmv.2380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 04/02/2022] [Accepted: 07/05/2022] [Indexed: 11/07/2022]
Abstract
Parechovirus A (PeV-A) belongs to the genus Parechovirus in the family Picornaviridae associated with gastroenteritis illness, particularly in children, but prior studies have produced ambiguous results. This study aimed to provide a systematic review of the PeV-A prevalence in paediatric patients with gastroenteritis and the association between PeV-A infection and the risk of gastroenteritis. A systematic search of the literature was conducted in Embase, PubMed, Scopus, and Web of Science, in combination with the reference lists of potentially relevant articles. A random effect-based model was applied to analyse data from included studies. The pooled odds ratio (OR) and 95% confidence interval (CI) were used for assessing the risk between PeV-A and gastroenteritis. A total of 41 studies assessing 21,850 cases and 1746 healthy controls were analysed. The overall prevalence of PeV-A among paediatric patients with gastroenteritis was 10.4% (95% CI: 7.9%-13.2%), while it was estimated at 8.1% (95% CI: 5.1%-11.7%) based on studies only investigating children without gastroenteritis. The pooled OR for all eight case-control studies was 1.079 (95% CI: 0.730-1.597), indicating there was no statistically significant association. PeV-A genotype 1 was the most frequent genotype of PeV-A infection in children with gastroenteritis. The PeV-A prevalence in cases of gastroenteritis is higher than that in children without gastroenteritis. However, the present meta-analysis did not indicate a statistically significant association between PeV-A infection and risk of gastroenteritis. Given the considerable heterogeneity and various sample sizes among the included studies, relevant investigations in the future should be carried out based on a large-scale population.
Collapse
Affiliation(s)
- Minyi Zhang
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Fei Wu
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Minyi Liang
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Juxian Xian
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Liting Zheng
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Qiushuang Li
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Qing Chen
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Multipathogen Detection in Patients with Respiratory Tract Infection: Identification of Non-respiratory Viruses Using Multiplex Real-time Polymerase Reaction. Jundishapur J Microbiol 2022. [DOI: 10.5812/jjm.120553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Due to the overlapping clinical characteristics of respiratory tract infections (RTIs) and the unavailability of appropriate diagnostic techniques, the diagnosis of RTIs is controversial. Objectives: The study aimed to prompt the diagnosis of RTIs using commercial multiplex real-time PCR. Methods: The survey undertook for two years (2019 - 2020) on 144 flu-negative immunocompetent outpatients. Respiratory samples were examined by multiplex PCR assays. Results: Study population consisted of females (n = 77, 53.5%) and males (n = 67, 46.5%). The mean age was 42.8 ± 23.7 years. Thirty-one (21.5%) patients were infected with only one viral or bacterial infection. Eighty-two (57%) were infected with more than one pathogen. Ninety-five (37%) and 161 (62%) tests were positive for bacterial and viral pathogens, respectively. Community-acquired Pneumonia (CAP) and atypical CAP pathogens included 17% and 10% of respiratory specimens, respectively. The predominant pathogens consisted of Human Herpes Virus 7 (HHV-7) (n = 38, 15.5%), Epstein-Barr Virus (EBV) (n = 34, 13.8%), Mycoplasma pneumoniae (n = 24, 9.8%), and Human Herpes Virus 6 (HHV-6) (n = 21, 8.5%). There were associations between pathogen findings and special age categories. Fever, cough, dyspnea, and hemoptysis were associated with certain pathogens. There was no substantial difference between viral and bacterial Ct concerning gender, age group, and comorbidities. Conclusions: Multiplex diagnostic assays significantly increased the rate of appropriate diagnosis of respiratory pathogens. However, further investigation is needed to find non-respiratory viruses' significance in respiratory specimens of immunocompetent symptomatic patients.
Collapse
|
11
|
García-Rodríguez I, van Eijk H, Koen G, Pajkrt D, Sridhar A, Wolthers KC. Parechovirus A Infection of the Intestinal Epithelium: Differences Between Genotypes A1 and A3. Front Cell Infect Microbiol 2021; 11:740662. [PMID: 34790587 PMCID: PMC8591172 DOI: 10.3389/fcimb.2021.740662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
Human parechovirus (PeV-A), one of the species within the Picornaviridae family, is known to cause disease in humans. The most commonly detected genotypes are PeV-A1, associated with mild gastrointestinal disease in young children, and PeV-A3, linked to severe disease with neurological symptoms in neonates. As PeV-A are detectable in stool and nasopharyngeal samples, entry is speculated to occur via the respiratory and gastro-intestinal routes. In this study, we characterized PeV-A1 and PeV-A3 replication and tropism in the intestinal epithelium using a primary 2D model based on human fetal enteroids. This model was permissive to infection with lab-adapted strains and clinical isolates of PeV-A1, but for PeV-A3, infection could only be established with clinical isolates. Replication was highest with infection established from the basolateral side with apical shedding for both genotypes. Compared to PeV-A1, replication kinetics of PeV-A3 were slower. Interestingly, there was a difference in cell tropism with PeV-A1 infecting both Paneth cells and enterocytes, while PeV-A3 infected mainly goblet cells. This difference in cell tropism may explain the difference in replication kinetics and associated disease in humans.
Collapse
Affiliation(s)
- Inés García-Rodríguez
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam University Medical Centers (UMC), location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
- Emma Children’s Hospital Department of Pediatrics Infectious Diseases, Amsterdam University Medical Centers (UMC), location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Hetty van Eijk
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam University Medical Centers (UMC), location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Gerrit Koen
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam University Medical Centers (UMC), location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Dasja Pajkrt
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam University Medical Centers (UMC), location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
- Emma Children’s Hospital Department of Pediatrics Infectious Diseases, Amsterdam University Medical Centers (UMC), location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Adithya Sridhar
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam University Medical Centers (UMC), location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
- Emma Children’s Hospital Department of Pediatrics Infectious Diseases, Amsterdam University Medical Centers (UMC), location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Katja C. Wolthers
- OrganoVIR Labs, Department of Medical Microbiology, Amsterdam University Medical Centers (UMC), location Academic Medical Center, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
12
|
Giustina ED, Giannelli C, Sintini M. Enterovirus Encephalitis in Newborns: Not-Periventricular Brain Involvement and Vascular Pathogenesis in a Novel Case. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0040-1716823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractNeonatal encephalitis by either enteroviruses (EVs) or parechoviruses (PeVs) is often complicated by hemispheric periventricular white matter lesions. Although showing many similarities, the two types of encephalitis differ in some clinical and laboratory aspects, mostly because PeV encephalitis does not show any change of protein and white cell content in the cerebrospinal fluid, and clinically, the onset of PeV encephalitis is often marked by early seizures accompanying a fever of sepsis-like disease. Instead, no difference exists relative to the white matter lesions, which are constantly described as periventricular, even in rare detailed neuropathological studies. Herein, taking a cue from a neonate with EV encephalitis who showed occipital white matter lesions involving the overlying cortex, but completely sparing the periventricular area, we demonstrate that the brain lesions in EV encephalitis in newborns can be more extended than known. To our knowledge, the not-periventricular involvement of the white matter with EV encephalitis has never been described so far, as well as the potential of EV to injure the cortex. We confirm the pathogenetic role of a vascular mechanism for the tissue injury, but other proposed mechanisms are also discussed. It is noteworthy that the neurological outcome of this newborn remained favorable, and no epileptic seizures occurred in the first few days nor afterward.
Collapse
Affiliation(s)
- Elvio Della Giustina
- Neurologic Outpatient Consulting Service, Cuore and Salute Center, Reggio Emilia, Italy
| | | | - Michele Sintini
- Istituto Sicurezza Sociale, San Marino Hospital, Republic of San Marino
| |
Collapse
|
13
|
de Ceano-Vivas M, García ML, Velázquez A, Martín del Valle F, Menasalvas A, Cilla A, Epalza C, Romero MP, Cabrerizo M, Calvo C. Neurodevelopmental Outcomes of Infants Younger Than 90 Days Old Following Enterovirus and Parechovirus Infections of the Central Nervous System. Front Pediatr 2021; 9:719119. [PMID: 34650940 PMCID: PMC8505960 DOI: 10.3389/fped.2021.719119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/30/2021] [Indexed: 11/24/2022] Open
Abstract
Enteroviruses (EVs) and human parechoviruses (HPeVs) are a major cause of central nervous system (CNS) infection in young infants. They have been implicated in neurodevelopmental delay, however limited data are available. The aim of this study is to describe the clinical outcome of young infants and to assess and compare the medium-term neurodevelopment following CNS infections caused by EV and HPeV. A multicentre observational ambispective study was conducted between May 2013 and March 2018. Children under 3 months of age with EV or HPeV CNS infection excluding encephalitis were included. Infants were contacted 1 year after the acute infection and their neurological development was evaluated using the Ages and Stages Questionnaire-3 (ASQ-3). If any area assessed was abnormal during the first round of tests, a second round was completed 6 to 12 months later. Forty-eight young infants with EV and HPeV CNS infection were identified: 33 (68.8%) were positive for EV and 15 (31.3%) for HPeV. At first assessment 14 out of 29 EV (48.3%) and 3 out of 15 HPeV (20%) positive cases presented some developmental concern in the ASQ-3 test. EV-positive infants showed mild and moderate alteration in all domains analyzed and HPeV-positive infants showed mild alterations only in gross and fine motor domains. Significant alterations in communication were observed in EV-positive but not in HPeV-positive infants (31 vs. 0%, p = 0.016). At second assessment 4 out of 13 EV-positive patients (30.8%) showed mild to moderate concerns in communication and gross motor function domains and 3 out of 13 (23.1%) showed significant concern in fine motor function. Although CNS infections without associated encephalitis are generally assumed to be benign our study shows that at a median age of 18 months almost half of the EV-infected infants (48.3%) and 20% of HPeV-positive infants presented some developmental concern in the ASQ-3 test. We recommend monitor the neurological development of infants during the first years of life after HPeV CNS infection and especially after EV CNS infection, even in mild cases, for an early intervention and stimulation of psychomotor development if necessary.
Collapse
Affiliation(s)
| | - M. Luz García
- Department of Pediatrics, Severo Ochoa University Hospital, Madrid, Spain
| | - Ana Velázquez
- Department of Pediatrics, La Paz University Hospital, Madrid, Spain
| | | | - Ana Menasalvas
- Department of Pediatrics, Virgen de la Arixaca University Hospital, Murcia, Spain
| | - Amaia Cilla
- Department of Pediatrics, Burgos University Hospital, Burgos, Spain
| | - Cristina Epalza
- Department of Pediatrics, 12 de Octubre University Hospital, Madrid, Spain
| | - M. Pilar Romero
- Department of Microbiology, La Paz University Hospital, Madrid, Spain
| | - María Cabrerizo
- National Centre for Microbiology, Instituto de Salud Carlos III, CIBER de Epidemiología y Salud Pública, Madrid, Spain
| | - Cristina Calvo
- Department of Pediatric Infectious Diseases, La Paz University Hospital and La Paz Research Institute (IdiPaz), Madrid, Spain
- Translational Research Network in Pediatric Infectious Diseases (Red de Investigación Traslacional en Infectología Pediátrica), Madrid, Spain
| |
Collapse
|
14
|
Skanke LH, Lysvand H, Heimdal I, Moe N, Krokstad S, Christensen A, Risnes K, Nordbø SA, Døllner H. Parechovirus A in Hospitalized Children With Respiratory Tract Infections: A 10-Year-Long Study From Norway. J Pediatric Infect Dis Soc 2021; 10:722-729. [PMID: 33899922 PMCID: PMC8364331 DOI: 10.1093/jpids/piab009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/04/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND The role of Parechovirus A (PeV-A) in hospitalized children with respiratory tract infections (RTIs) is unclear. We studied the occurrence and impact of PeV-A over 10 years. METHODS Children from Sør-Trøndelag County, Norway, hospitalized with RTI and a comparison group of asymptomatic children admitted to elective surgery, were prospectively enrolled from 2006 to 2016. Nasopharyngeal aspirates were cultured and analyzed with polymerase chain reaction tests for PeV-A and 19 other pathogens. The cycle threshold levels of PeV-A were reported as measures of viral genomic loads. Parechovirus A-positive samples were genotyped by amplification and sequencing of the VP3/VP1 junction. RESULTS Parechovirus A was detected in 8.8% (323/3689) patients with RTI and in 10.1% (45/444) of the children in the comparison group (P = .34). Parechovirus A genotyping (n = 188) revealed PeV-A1 (n = 121), PeV-A3 (n = 15), PeV-A5 (n = 6), and PeV-A6 (n = 46). Viral codetections occurred in 95% of patients and in 84% of the children in the comparison group (P = .016). In multivariable logistic regression analysis, RTI was unrelated to PeV-A genomic loads, adjusted for other viruses and covariates. Similar results were found for PeV-A1 and PeV-A6. CONCLUSIONS Parechovirus A and viral codetections were common in hospitalized children with RTI and asymptomatic children in a comparison group. Our findings suggest that PeV-A has a limited role in hospitalized children with RTI.
Collapse
Affiliation(s)
- Lars Høsøien Skanke
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway,Department of Pediatrics, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Hilde Lysvand
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Inger Heimdal
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Nina Moe
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway,Department of Pediatrics, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Sidsel Krokstad
- Department of Medical Microbiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Andreas Christensen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway,Department of Medical Microbiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Kari Risnes
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway,Department of Pediatrics, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway,Department of Research and Innovation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Svein Arne Nordbø
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway,Department of Medical Microbiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Henrik Døllner
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway,Department of Pediatrics, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway,Corresponding author: Henrik Døllner, MD, PhD, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway. E-mail:
| |
Collapse
|
15
|
Phylogenetic molecular evolution and recombination analysis of complete genome of human parechovirus in Thailand. Sci Rep 2021; 11:8572. [PMID: 33883644 PMCID: PMC8060412 DOI: 10.1038/s41598-021-88124-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/08/2021] [Indexed: 12/24/2022] Open
Abstract
Human parechovirus (HPeV), which is a member of the Picornavirus group of viruses, is a pathogen that is reported to be associated with manifestations that include respiratory tract involvement, gastroenteritis, sepsis-like symptom, and central nervous system complication. Until now, nineteen genotypes have been identified. The lack of proofreading property of viral RNA-dependent RNA polymerase (RdRp) together with recombination among the intra- and inter-genotypes of the virus results in high diversity. However, data specific to the molecular evolutionary perspective of the complete genome of HPeV remains limited. This study aimed to analyze the phylogenetic, molecular evolution, and recombination characteristics of the complete genome of HPeV strains isolated in Thailand during 2009–2012. Fifty-eight samples that were previously confirmed to be HPeV positive and then evaluated for genotyping were subjected to complete genome amplification to generate ten overlapping PCR fragments using a set of in-house designed primers. The same position of the viral genome was read in triplicate using direct Sanger sequencing. All samples were classified into the same previously defined genotypes in both whole-genome and VP1 phylogenic tree. However, sample B1091/HPeV14/2011 exhibited discordant grouping between whole-genome and VP1 on the phylogenetic tree. Bootscan analysis revealed that B1091/HPeV14/2011 inherited from two genotypic viruses, including VP1 from HPeV14, and the rest of the genome from HPeV1B. The results of this study provide important insights into the molecular evolution of and recombination in the viral genome of HPeV that will improve and accelerate our ability to develop treatment and prophylactic strategies in the future.
Collapse
|
16
|
Detection of Parechovirus A1 with Monoclonal Antibody against Capsid Protein VP0. Microorganisms 2020; 8:microorganisms8111794. [PMID: 33207765 PMCID: PMC7696872 DOI: 10.3390/microorganisms8111794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/11/2020] [Accepted: 11/15/2020] [Indexed: 01/11/2023] Open
Abstract
Parechovirus A (PeV-A; human parechovirus) causes mild infections and severe diseases such as neonatal sepsis, encephalitis, and cardiomyopathy in young children. Among the 19 types of PeV-A, PeV-A1 is the most common type of infection. We have previously established an immunofluorescence assay for detecting multiple PeV-A types with a polyclonal antibody against the conserved epitope of VP0. Although the polyclonal antibody is useful for PeV-A diagnosis, it could not distinguish the PeV-A genotypes. Thus, the development of a specific monoclonal antibody for identifying the common infection of PeV-A1 would be beneficial in clinical diagnosis practice. In this study, the recombinant full-length PeV-A1 VP0 protein was used in mouse immunization; a total 10 hybridomas were established. After evaluation by immunoblotting and fluorescence assays, six hybridoma clones with monoclonal antibody (mAb) production were confirmed. These mAbs, which specifically recognize viral protein PeV-A1 VP0 without cross-reactivity to PeV-A3, will prove useful in research and PeV-A1 diagnosis.
Collapse
|
17
|
Molecular characterization of the complete genome sequence of human Parechovirus 1 in Pakistan. Virus Res 2020; 290:198178. [PMID: 33010373 DOI: 10.1016/j.virusres.2020.198178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 11/22/2022]
Abstract
Human parechoviruses (HPeVs) are highly common pathogens in children under 2 years of age. Of the 19 distinct HPeV genotypes identified worldwide, HPeV1 is still the most prevalent type associated with respiratory and gastrointestinal symptoms in infants and young children. Pakistan's previous studies have focused only on the detection and partial sequencing of HPeV genotypes. In the present study, we have obtained the complete genomes of 2 HPeV1 strains (PAK419 and PAK663) from children using NGS method on Illumina Hiseq Platform. These samples were collected from children suffering from acute gastroenteritis in Rawalpindi, Pakistan during 2016. The near complete genome sequences obtained for two HPeV1 strains (PAK419 and PAK663) consist of total 6877 nucleotides with a single, large open reading frame (ORF) encoding a polyprotein gene. Phylogenetic analysis showed that both HPeV1 strains exhibited maximum amino acid similarity (97 %) to HPeV1 strains from The Nederlands (2007-863, GQ183034) and clustered closely with this and with other HPeV1 strains isolated from other countries in the world (Ethiopia, Taiwan, Russia and Brazil). A motif of arginine-glycine-aspartic acid (RGD) in the VP1 (Outer capsid protein) C-terminus region that is suggested to help virus entry into the host cell also identified in PAK419 and PAK663. SimPlot analysis revealed that intergenotypic recombination events may have take place in the non-structural region between both HPeV1 strains (PAK419, PAK663), two major strains of HPeV1 (GQ183034 and MG873157) and four minor strains of HPeV4 (AM235750), HPeV7 (EU556224), HPeV15 (MN265386) and HPeV18 (KT879915). The full genome of HPeV1 strains characterized in the current study will provide complete information on these newly isolated strains for further preventive or treatment measures.
Collapse
|
18
|
Huppertz HI. [Recommendations on the approach when unusual neurological symptoms occur in temporal association with vaccinations in childhood and adolescence]. Monatsschr Kinderheilkd 2020; 169:62-68. [PMID: 32836398 PMCID: PMC7372975 DOI: 10.1007/s00112-020-00975-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Vaccinations are often administered at an age when many neurological diseases of childhood and adolescence also occur. Febrile seizures may occur following vaccination in patients with an appropriate genetic predisposition. The occurrence of narcolepsy has been described more frequently after pandemic influenza A-H1N1 vaccinations. The causality has not been proven. Data regarding an association between Guillain-Barré syndrome and influenza vaccinations are inconclusive. It was conclusively shown that vaccinations do not cause neurological disorders, such as autism and do not trigger multiple sclerosis. In summary, there is currently no confirmed evidence for the occurrence of chronic neurological diseases as a consequence of generally recommended vaccinations in Germany. If unusual neurological symptoms are observed in temporal association with vaccinations, a comprehensive evaluation is necessary to exclude a causal relationship and to diagnose the underlying neurological disease independent of the vaccination. This statement gives specific recommendations for the practical approach when neurological symptoms are observed in temporal association with vaccinations with respect to taking the patient history, initial diagnostic procedures, accurate and prompt documentation and the obligation to report the event. The committee also proposes procedures for further clarification and differential diagnostics of causal neurological diseases in childhood and adolescence.
Collapse
Affiliation(s)
- Hans-Iko Huppertz
- Deutsche Akademie für Kinder- und Jugendmedizin e. V., Chausseestr. 128/129, 10115 Berlin, Deutschland
| |
Collapse
|
19
|
Shimizu H, Hashimoto K, Sato M, Sato A, Sato M, Maeda H, Kyozuka H, Kawasaki Y, Yokoyama T, Fujimori K, Yasumura S, Hosoya M. Association Between Neutralizing Antibody Titers against Parechovirus A3 in Maternal and Cord Blood Pairs and Perinatal Factors. J Pediatric Infect Dis Soc 2020; 9:320-325. [PMID: 31107961 DOI: 10.1093/jpids/piz029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 04/22/2019] [Indexed: 11/14/2022]
Abstract
BACKGROUND Parechovirus A3 (PeV-A3) is a pathogen that causes severe infectious diseases such as sepsis and meningoencephalitis in neonates and young infants. In this study, we aimed to measure the neutralizing antibody titer (NAT) against PeV-A3 in paired maternal and cord blood samples and to clarify the serum epidemiology of PeV-A3 and the association between the NAT and perinatal factors. METHODS NATs against PeV-A3 were measured in 1033 mothers (maternal and cord blood pairs; total of 2066 samples) who delivered their infant in Fukushima Prefecture between December 2013 and June 2014. RD-18S cells were used to measure NATs against PeV-A3. The association between NATs against PeV-A3 in maternal and cord blood and perinatal factors was determined using multivariate logistic regression analysis. RESULTS The median gestational age of the infants was 39 weeks 4 days (interquartile range, 38 weeks 4 days to 40 weeks 3 days). The NATs against PeV-A3 in maternal blood and in cord blood were almost the same. The proportion of samples assigned to the low-titer group (NAT ≤ 1:16) was approximately 70%, and the proportion of samples assigned to the high-titer group tended to increase with gestational age. The high-titer rate and geometric mean titers decreased with increased maternal age. CONCLUSIONS Cord blood indicates that neonates born at a lower gestational age and older mothers have a low NAT against PeV-A3. Thus, more attention should be paid to the onset of severe PeV-A3 disease in such neonates and young infants.
Collapse
Affiliation(s)
- Hiromi Shimizu
- Department of Pediatrics, Fukushima Medical University School of Medicine, Japan
| | - Koichi Hashimoto
- Department of Pediatrics, Fukushima Medical University School of Medicine, Japan.,Fukushima Regional Center for the Japan Environment and Children's Study, Japan
| | - Maki Sato
- Department of Pediatrics, Fukushima Medical University School of Medicine, Japan
| | - Akiko Sato
- Fukushima Regional Center for the Japan Environment and Children's Study, Japan
| | - Masatoki Sato
- Department of Pediatrics, Fukushima Medical University School of Medicine, Japan
| | - Hajime Maeda
- Department of Pediatrics, Fukushima Medical University School of Medicine, Japan
| | - Hyo Kyozuka
- Department of Obstetrics and Gynecology, Fukushima Medical University School of Medicine, Japan.,Fukushima Regional Center for the Japan Environment and Children's Study, Japan
| | - Yukihiko Kawasaki
- Department of Pediatrics, Fukushima Medical University School of Medicine, Japan
| | - Tadahiko Yokoyama
- Fukushima Regional Center for the Japan Environment and Children's Study, Japan
| | - Keiya Fujimori
- Department of Obstetrics and Gynecology, Fukushima Medical University School of Medicine, Japan.,Fukushima Regional Center for the Japan Environment and Children's Study, Japan
| | - Seiji Yasumura
- Department of Obstetrics and Gynecology, Fukushima Medical University School of Medicine, Japan.,Department of Public Health, Fukushima Medical University School of Medicine, Japan
| | - Mitsuaki Hosoya
- Department of Pediatrics, Fukushima Medical University School of Medicine, Japan.,Fukushima Regional Center for the Japan Environment and Children's Study, Japan
| |
Collapse
|
20
|
Fernandez-Garcia MD, Simon-Loriere E, Kebe O, Sakuntabhai A, Ndiaye K. Identification and molecular characterization of the first complete genome sequence of Human Parechovirus type 15. Sci Rep 2020; 10:6759. [PMID: 32317760 PMCID: PMC7174385 DOI: 10.1038/s41598-020-63467-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/26/2020] [Indexed: 12/29/2022] Open
Abstract
Using a metagenomics approach, we have determined the first full-length genome sequence of a human parechovirus type 15 (HPeV15) strain, isolated from a child with acute flaccid paralysis and co-infected with EV-A71. HPeV15 is a rarely reported type. To date, no full-length genome sequence of HPeV15 is available in the GenBank database, where only limited VP1 sequences of this virus are available. Pairwise comparisons of the complete VP1 nucleotide and deduced amino acid sequences revealed that the study strain belongs to type 15 as it displayed 79.6% nucleotide and 93.4% amino acid identity with the HPeV15 prototype strain. Comparative analysis of available genomic regions and phylogenetic analysis using the P2 and P3 coding regions revealed low nucleotide identity to HPeV reference genomes. Phylogenetic and similarity plot analyses showed that genomic recombination events might have occurred in the UTRs and nonstructural region during HPeV15 evolution. The study strain has high similarity features with different variants of HPeV3 suggesting intertypic recombination. Our data contributes to the scarce data available on HPeVs in Africa and provides valuable information for future studies that aim to understand the evolutionary history, molecular epidemiology or biological and pathogenic properties of HPeV15.
Collapse
|
21
|
Zhu YN, Ye YH, Zhang Z, Wu YJ, Chen L, Wang J, Tang YJ, Meng J, Zhang HL, Hu GF. Prevalence and molecular characterization of parechovirus A in children with acute gastroenteritis in Shenzhen, 2016-2018. Arch Virol 2020; 165:1377-1384. [PMID: 32296995 DOI: 10.1007/s00705-020-04587-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/08/2020] [Indexed: 11/30/2022]
Abstract
Parechovirus A (PeV-A), which causes a wide variety of diseases, is prevalent among young children. However, little is currently known about PeV-A infections in children with acute gastroenteritis in mainland China. In this study, we investigated the molecular epidemiology of acute gastroenteritis in Shenzhen, southern China, with an emphasis on PeV-A infections. A total of 1220 stool specimens from 1220 outpatient children under 5 years old with acute gastroenteritis were collected from January 2016 to December 2018. Viral RNA was detected by a real-time RT-PCR and PCR method. The PeV-A isolates were genotyped by sequencing the VP3/VP1 region. Of 1220 specimens, 148 (12.1%) were positive for PeV-A. The predominant genotype was PeV-A 1B (68.9%), followed by PeV-A 4 (12.2%), PeV-A 14 (6.1%), PeV-A 1A (5.4%), PeV-A 6 (2.7%), PeV-A 3 (2.7%) and PeV-A 5 (2.0%). It was found that 68.2% of PeV-A infections occurred in the summer and rainy months (June to September) in southern China. The majority of PeV-A-positive patients (97.3%) were younger than 24 months old. PeV-A coinfection with norovirus, rotavirus, astrovirus and adenovirus was found in thirty specimens (30/148, 20.3%), five specimens (5/148, 3.4%), five specimens (5/148, 3.4%), and two specimens (2/148, 1.4%), respectively. Coinfections with more than one other enteric virus were not observed in any of the PeV-A-positive specimens. Phylogenetic analysis revealed that the PeV-A isolates from Shenzhen were closely related to each other and to strains circulating in China, suggesting endemic circulation of PeV-A in China. The results of this study indicate that PeV-A is one of important pathogens of acute gastroenteritis in young children and that coinfection is a possible mode of PeV-A infection. PeV-A associated with acute gastroenteritis exhibited high genotypic diversity in Shenzhen, southern China.
Collapse
Affiliation(s)
- Ya-Nan Zhu
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yu-Hui Ye
- Preventive Care Center, PeKing University Shenzhen Hospital, Shenzhen, 518036, China
| | - Zhen Zhang
- Information & Technology Division, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Yan-Jie Wu
- Preventive Care Center, PeKing University Shenzhen Hospital, Shenzhen, 518036, China
| | - Long Chen
- Major Infectious Disease Control Key Laboratory and Shenzhen Public Service Platform of Pathogenic Microorganisms Repository, Institute of Pathogen Biology, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Jing Wang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yi-Jun Tang
- Major Infectious Disease Control Key Laboratory and Shenzhen Public Service Platform of Pathogenic Microorganisms Repository, Institute of Pathogen Biology, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Jun Meng
- Major Infectious Disease Control Key Laboratory and Shenzhen Public Service Platform of Pathogenic Microorganisms Repository, Institute of Pathogen Biology, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Hai-Long Zhang
- Major Infectious Disease Control Key Laboratory and Shenzhen Public Service Platform of Pathogenic Microorganisms Repository, Institute of Pathogen Biology, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China.
| | - Gui-Fang Hu
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
22
|
Miyazaki M, Hara K, Takayoshi T, Kawase T, Nakagawa Y, Arai T, Sugimoto T, Nishiyama K, Gonzalez G, Hanaoka N, Fujimoto T, Yasutomo Y, Yokono K. Epidemic Myalgia Associated with Human Parechovirus Type 3 Infection. Intern Med 2020; 59:739-744. [PMID: 31666464 PMCID: PMC7086318 DOI: 10.2169/internalmedicine.3326-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A 42-year-old man was hospitalized due to a fever, orchiodynia, and extremely severe myalgia predominantly in the extremities, which made it difficult for him to stand or walk. He had a history of contact with his son who had acute upper respiratory infection. Based on the characteristic clinical symptoms and detection of the partial sequence of human parechovirus type 3 (HPeV3) in throat swabs as well as stool and serum samples, he was diagnosed with epidemic myalgia associated with HPeV3 infection. Because HPeV3 infection is widespread among children in Japan, HPeV3-associated myalgia should be considered when adult patients manifest such distinguishing clinical characteristics.
Collapse
Affiliation(s)
- Moemi Miyazaki
- Department of Internal and Geriatric Medicine, Kita-Harima Medical Center, Japan
| | - Kenta Hara
- Department of Diabetes and Endocrine Disease, Kita-Harima Medical Center, Japan
| | - Tomofumi Takayoshi
- Department of Diabetes and Endocrine Disease, Kita-Harima Medical Center, Japan
| | - Tetsuya Kawase
- Department of Diabetes and Endocrine Disease, Kita-Harima Medical Center, Japan
| | - Yasushi Nakagawa
- Department of Diabetes and Endocrine Disease, Kita-Harima Medical Center, Japan
| | - Takashi Arai
- Department of Internal and Geriatric Medicine, Kita-Harima Medical Center, Japan
| | - Takeshi Sugimoto
- Department of Hematology and Oncology, Kita-Harima Medical Center, Japan
| | - Katsuhito Nishiyama
- Department of Internal and Geriatric Medicine, Kita-Harima Medical Center, Japan
| | - Gabriel Gonzalez
- Research Center for Zoonosis Control, Hokkaido University, Japan
| | - Nozomu Hanaoka
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Japan
| | - Tsuguto Fujimoto
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Japan
| | - Yoshiro Yasutomo
- Department of Internal and Geriatric Medicine, Kita-Harima Medical Center, Japan
| | - Koichi Yokono
- Department of Internal and Geriatric Medicine, Kita-Harima Medical Center, Japan
| |
Collapse
|
23
|
Antifungal Triazole Posaconazole Targets an Early Stage of the Parechovirus A3 Life Cycle. Antimicrob Agents Chemother 2020; 64:AAC.02372-19. [PMID: 31818821 DOI: 10.1128/aac.02372-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 12/18/2022] Open
Abstract
Viruses in species Parechovirus A (Picornaviridae) are associated with a wide variety of clinical manifestations. Parechovirus A3 (PeV-A3) is known to cause sepsis-like illness, meningitis, and encephalitis in infants and young children. To date, no specific therapies are available to treat PeV-A3-infected children. We had previously identified two FDA-cleared antifungal drugs, itraconazole (ITC) and posaconazole (POS), with potent and specific antiviral activity against PeV-A3. Time-of-addition and synchronized infection assays revealed that POS targets an early stage of the PeV-A3 life cycle. POS exerts an antiviral effect, evidenced by a reduction in viral titer following the addition of POS to Vero-P cells before infection, coaddition of POS and PeV-A3 to Vero-P cells, incubation of POS and PeV-A3 prior to Vero-P infection, and at attachment. POS exerts less of an effect on virus entry. A PeV-A3 enzyme-linked immunosorbent assay inhibition experiment, using an anti-PeV-A3 monoclonal antibody, suggested that POS binds directly to the PeV-A3 capsid. POS-resistant PeV-A3 strains developed by serial passage in the presence of POS acquired substitutions in multiple regions of the genome, including the capsid. Reverse genetics confirmed substitutions in capsid proteins VP0, VP3, and VP1 and nonstructural proteins 2A and 3A. Single mutants VP0_K66R, VP0_A124T, VP3_N88S, VP1_Y224C, 2A_S78L, and 3A_T1I were 4-, 9-, 12-, 34-, 51-, and 119-fold more resistant to POS, respectively, than the susceptible prototype strain. Our studies demonstrate that POS may be a valuable tool in developing an antiviral therapy for PeV-A3.
Collapse
|
24
|
Sridhar A, Karelehto E, Brouwer L, Pajkrt D, Wolthers KC. Parechovirus A Pathogenesis and the Enigma of Genotype A-3. Viruses 2019; 11:v11111062. [PMID: 31739613 PMCID: PMC6893760 DOI: 10.3390/v11111062] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/12/2019] [Accepted: 11/12/2019] [Indexed: 12/16/2022] Open
Abstract
Parechovirus A is a species in the Parechovirus genus within the Picornaviridae family that can cause severe disease in children. Relatively little is known on Parechovirus A epidemiology and pathogenesis. This review aims to explore the Parechovirus A literature and highlight the differences between Parechovirus A genotypes from a pathogenesis standpoint. In particular, the curious case of Parechovirus-A3 and the genotype-specific disease association will be discussed. Finally, a brief outlook on Parechovirus A research is provided.
Collapse
Affiliation(s)
- Adithya Sridhar
- Laboratory of Clinical Virology, Department of Medical Microbiology, Amsterdam UMC, location Academic Medical Center, University of Amsterdam, 1100 AZ Amsterdam, The Netherlands; (E.K.); (L.B.); (K.C.W.)
- Correspondence:
| | - Eveliina Karelehto
- Laboratory of Clinical Virology, Department of Medical Microbiology, Amsterdam UMC, location Academic Medical Center, University of Amsterdam, 1100 AZ Amsterdam, The Netherlands; (E.K.); (L.B.); (K.C.W.)
| | - Lieke Brouwer
- Laboratory of Clinical Virology, Department of Medical Microbiology, Amsterdam UMC, location Academic Medical Center, University of Amsterdam, 1100 AZ Amsterdam, The Netherlands; (E.K.); (L.B.); (K.C.W.)
| | - Dasja Pajkrt
- Department of Pediatrics, Emma Children’s Hospital, Amsterdam UMC, location Academic Medical Center, University of Amsterdam, 1100 AZ Amsterdam, The Netherlands;
| | - Katja C. Wolthers
- Laboratory of Clinical Virology, Department of Medical Microbiology, Amsterdam UMC, location Academic Medical Center, University of Amsterdam, 1100 AZ Amsterdam, The Netherlands; (E.K.); (L.B.); (K.C.W.)
| |
Collapse
|
25
|
Piralla A, Perniciaro S, Ossola S, Giardina F, De Carli A, Bossi A, Agosti M, Baldanti F. Human parechovirus type 5 neurological infection in a neonate with a favourable outcome: A case report. Int J Infect Dis 2019; 89:175-178. [PMID: 31626981 DOI: 10.1016/j.ijid.2019.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/03/2019] [Accepted: 10/03/2019] [Indexed: 11/18/2022] Open
Abstract
The majority of parechovirus A type 5 (PeV-A5) infections have been reported in patients with gastrointestinal syndromes. In contrast, a sepsis-like illness associated with PeV-A5 infection has been reported only anecdotally. Herein, we report the first case in Italy of a PeV-A5 neurological infection presenting in a neonate with a sepsis-like syndrome. The patient, a healthy male infant born at 41 weeks of gestation, was highly distressed and inconsolable, and had been crying persistently, with poor breastfeeding, since the previous day. From day 2 to day 4, the newborn was feverish with mild irritability; breastfeeding was preserved and regularly supported. His clinical condition progressively improved, with defervescence on day 4. He was discharged after 7 days, and neurological examination results indicated only mild impairment in visual fixation and vertical eye tracking and mild axial hypotonia. The Italian PeV-A5 strain was phylogenetically related to three strains detected in Denmark in 2012, as well as to one detected in Australia and one in Greece in 2015, with an average nucleotide identity of 97.9% (range 95.9-100.0%). Enterovirus/PeV infection in the newborn should be ruled out in cases of infants with unexplained fever and/or a sepsis-like syndrome and/or meningoencephalitis. An aetiological diagnosis is essential to avoid the unnecessary administration of antibiotics and to plan long-term follow-up until schooling.
Collapse
Affiliation(s)
- Antonio Piralla
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy.
| | - Simona Perniciaro
- NICU - Woman and Child Department, F. Del Ponte Hospital, 21100 Varese, Italy
| | - Serena Ossola
- NICU - Woman and Child Department, F. Del Ponte Hospital, 21100 Varese, Italy
| | - Federica Giardina
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Agnese De Carli
- NICU - Woman and Child Department, F. Del Ponte Hospital, 21100 Varese, Italy
| | - Angela Bossi
- NICU - Woman and Child Department, F. Del Ponte Hospital, 21100 Varese, Italy
| | - Massimo Agosti
- Woman and Child Department, F. Del Ponte Hospital, University of Insubria, 21100 Varese, Italy
| | - Fausto Baldanti
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
26
|
Tokak S, Özdemir M. İnsan parechoviruslarının özellikleri, epidemiyolojisi ve klinik önemi. CUKUROVA MEDICAL JOURNAL 2019. [DOI: 10.17826/cumj.528673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
27
|
Karelehto E, Brouwer L, Benschop K, Kok J, Basile K, McMullan B, Rawlinson W, Druce J, Nicholson S, Selvarangan R, Harrison C, Lankachandra K, van Eijk H, Koen G, de Jong M, Pajkrt D, Wolthers KC. Seroepidemiology of Parechovirus A3 Neutralizing Antibodies, Australia, the Netherlands, and United States. Emerg Infect Dis 2019; 25:148-152. [PMID: 30561318 PMCID: PMC6302606 DOI: 10.3201/eid2501.180352] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Recent parechovirus A3 (PeV-A3) outbreaks in Australia suggest lower population immunity compared with regions that have endemic PeV-A3 circulation. A serosurvey among populations in the Netherlands, the United States, and Australia before and after the 2013 Australia outbreak showed high PeV-A3 neutralizing antibody prevalence across all regions and time periods, indicating widespread circulation.
Collapse
|
28
|
Recombinant Strains of Human Parechovirus in Rural Areas in the North of Brazil. Viruses 2019; 11:v11060488. [PMID: 31146371 PMCID: PMC6630568 DOI: 10.3390/v11060488] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 02/07/2023] Open
Abstract
We characterized the 24 nearly full-length genomes of human parechoviruses (PeV) from children in the north of Brazil. The initial phylogenetic analysis indicated that 17 strains belonged to genotype 1, 5 to genotype 4, and 1 to genotype 17. A more detailed analysis revealed a high frequency of recombinant strains (58%): A total of 14 of our PeV-As were chimeric, with four distinct recombination patterns identified. Five strains were composed of genotypes 1 and 5 (Rec1/5); five strains shared a complex mosaic pattern formed by genotypes 4, 5, and 17 (Rec4/17/5); two strains were composed of genotypes 1 and 17 (Rec1/17); and two strains were composed of genotype 1 and an undetermined strain (Rec1/und). Coalescent analysis based on the Vp1 gene, which is free of recombination, indicated that the recombinant strains most likely arose in this region approximately 30 years ago. They are present in high frequencies and are circulating in different small and isolated cities in the state of Tocantins. Further studies will be needed to establish whether the detected recombinant strains have been replacing parental strains or if they are co-circulating in distinct frequencies in Tocantins.
Collapse
|
29
|
Kadambari S, Harvala H, Simmonds P, Pollard AJ, Sadarangani M. Strategies to improve detection and management of human parechovirus infection in young infants. THE LANCET. INFECTIOUS DISEASES 2019; 19:e51-e58. [DOI: 10.1016/s1473-3099(18)30288-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 04/11/2018] [Accepted: 04/27/2018] [Indexed: 12/13/2022]
|
30
|
de Crom SC. Enterovirus and parechovirus infections in children: differences in clinical presentation, mechanisms for meningitis without pleocytosis and mechanisms involved in the neurological outcome. Minerva Pediatr 2018; 71:150-158. [PMID: 30511561 DOI: 10.23736/s0026-4946.18.05449-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Enterovirus (EV) and Parechovirus (HPeV) are a frequent cause of infection in children. This review gives an overview of possible causes for differences in clinical presentation. EV and HPeV can cause a meningitis with or without pleocytosis. Different possible mechanisms for meningitis without pleocytosis are given. Little is known about the prognosis and long-term effects of EV and HPeV meningitis in children. Only some studies with a small number of children with EV or HPeV meningitis are reported. The different possible mechanisms involved in the neurological outcome after EV or HPeV meningitis will be discussed.
Collapse
|
31
|
Lin GL, McGinley JP, Drysdale SB, Pollard AJ. Epidemiology and Immune Pathogenesis of Viral Sepsis. Front Immunol 2018; 9:2147. [PMID: 30319615 PMCID: PMC6170629 DOI: 10.3389/fimmu.2018.02147] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/30/2018] [Indexed: 12/11/2022] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. Sepsis can be caused by a broad range of pathogens; however, bacterial infections represent the majority of sepsis cases. Up to 42% of sepsis presentations are culture negative, suggesting a non-bacterial cause. Despite this, diagnosis of viral sepsis remains very rare. Almost any virus can cause sepsis in vulnerable patients (e.g., neonates, infants, and other immunosuppressed groups). The prevalence of viral sepsis is not known, nor is there enough information to make an accurate estimate. The initial standard of care for all cases of sepsis, even those that are subsequently proven to be culture negative, is the immediate use of broad-spectrum antibiotics. In the absence of definite diagnostic criteria for viral sepsis, or at least to exclude bacterial sepsis, this inevitably leads to unnecessary antimicrobial use, with associated consequences for antimicrobial resistance, effects on the host microbiome and excess healthcare costs. It is important to understand non-bacterial causes of sepsis so that inappropriate treatment can be minimised, and appropriate treatments can be developed to improve outcomes. In this review, we summarise what is known about viral sepsis, its most common causes, and how the immune responses to severe viral infections can contribute to sepsis. We also discuss strategies to improve our understanding of viral sepsis, and ways we can integrate this new information into effective treatment.
Collapse
Affiliation(s)
- Gu-Lung Lin
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research, Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Joseph P McGinley
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research, Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Simon B Drysdale
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research, Oxford Biomedical Research Centre, Oxford, United Kingdom.,Department of Paediatrics, St George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research, Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
32
|
Abstract
Sepsis in children is typically presumed to be bacterial in origin until proven otherwise, but frequently bacterial cultures ultimately return negative. Although viruses may be important causative agents of culture-negative sepsis worldwide, the incidence, disease burden and mortality of viral-induced sepsis is poorly elucidated. Consideration of viral sepsis is critical as its recognition carries implications on appropriate use of antibacterial agents, infection control measures, and, in some cases, specific, time-sensitive antiviral therapies. This review outlines our current understanding of viral sepsis in children and addresses its epidemiology and pathophysiology, including pathogen-host interaction during active infection. Clinical manifestation, diagnostic testing, and management options unique to viral infections will be outlined.
Collapse
Affiliation(s)
- Neha Gupta
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Robert Richter
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Stephen Robert
- Division of Pediatric Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Michele Kong
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
33
|
Karelehto E, Cristella C, Yu X, Sridhar A, Hulsdouw R, de Haan K, van Eijk H, Koekkoek S, Pajkrt D, de Jong MD, Wolthers KC. Polarized Entry of Human Parechoviruses in the Airway Epithelium. Front Cell Infect Microbiol 2018; 8:294. [PMID: 30211126 PMCID: PMC6119779 DOI: 10.3389/fcimb.2018.00294] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/02/2018] [Indexed: 12/11/2022] Open
Abstract
Human parechoviruses (HPeVs), a poorly studied genus within the Picornaviridae family, are classified into 19 genotypes of which HPeV1 and HPeV3 are the most often detected. HPeV1 VP1 C terminus contains an arginine-glycine-aspartic acid (RGD) motif and has been shown to depend on the host cell surface αV integrins (αV ITGs) and heparan sulfate (HS) for entry. HPeV3 lacks this motif and the receptors remain unknown. HPeVs can be detected in patient nasopharyngeal and stool samples, and infection is presumed to occur after respiratory or gastro-intestinal transmission. HPeV pathogenesis is poorly understood as there are no animal models and previous studies have been conducted in immortalized monolayer cell cultures which do not adequately represent the characteristics of human tissues. To bridge this gap, we determined the polarity of infection, replication kinetics, and cell tropism of HPeV1 and HPeV3 in the well-differentiated human airway epithelial (HAE) model. We found the HAE cultures to be permissive for HPeVs. Both HPeV genotypes infected the HAE preferentially from the basolateral surface while the progeny virus was shed toward the apical side. Confocal microscopy revealed the target cell type to be the p63+ basal cells for both viruses, αV ITG and HS blocking had no effect on the replication of either virus, and transcriptional profiling suggested that HPeV3 infection induced stronger immune activation than HPeV1. Genotype-specific host responses may contribute to the differences in pathogenesis and clinical outcomes associated with HPeV1 and HPeV3.
Collapse
Affiliation(s)
- Eveliina Karelehto
- Laboratory of Clinical Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Cosimo Cristella
- Laboratory of Clinical Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Xiao Yu
- Laboratory of Clinical Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Adithya Sridhar
- Laboratory of Clinical Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Rens Hulsdouw
- Laboratory of Clinical Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Karen de Haan
- Laboratory of Clinical Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Hetty van Eijk
- Laboratory of Clinical Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Sylvie Koekkoek
- Laboratory of Clinical Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Dasja Pajkrt
- Department of Pediatric Infectious Diseases, Academic Medical Center, Emma's Children's Hospital, Amsterdam, Netherlands
| | - Menno D de Jong
- Laboratory of Clinical Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Katja C Wolthers
- Laboratory of Clinical Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
34
|
Strenger V, Diedrich S, Boettcher S, Richter S, Maritschnegg P, Gangl D, Fuchs S, Grangl G, Resch B, Urlesberger B. Nosocomial Outbreak of Parechovirus 3 Infection among Newborns, Austria, 2014. Emerg Infect Dis 2018; 22:1631-4. [PMID: 27532333 PMCID: PMC4994342 DOI: 10.3201/eid2209.151497] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In 2014, sepsis-like illness affected 9 full-term newborns in 1 hospital in Austria. Although results of initial microbiological testing were negative, electron microscopy identified picornavirus. Archived serum samples and feces obtained after discharge were positive by PCR for human parechovirus 3. This infection should be included in differential diagnoses of sepsis-like illness in newborns.
Collapse
|
35
|
Olijve L, Jennings L, Walls T. Human Parechovirus: an Increasingly Recognized Cause of Sepsis-Like Illness in Young Infants. Clin Microbiol Rev 2018; 31:e00047-17. [PMID: 29142080 PMCID: PMC5740974 DOI: 10.1128/cmr.00047-17] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human parechovirus (HPeV) is increasingly being recognized as a potentially severe viral infection in neonates and young infants. HPeV belongs to the family Picornaviridae and is currently divided into 19 genotypes. HPeV-1 is the most prevalent genotype and most commonly causes gastrointestinal and respiratory disease. HPeV-3 is clinically the most important genotype due to its association with severe disease in younger infants, which may partly be explained by its distinct virological properties. In young infants, the typical clinical presentation includes fever, severe irritability, and rash, often leading to descriptions of "hot, red, angry babies." Infants with severe central nervous system (CNS) infections are at an increased risk of long-term sequelae. Considering the importance of HPeV as a cause of severe viral infections in young infants, we recommend that molecular diagnostic techniques for early detection be included in the standard practice for the investigation of sepsis-like illnesses and CNS infections in this age group.
Collapse
Affiliation(s)
- Laudi Olijve
- Department of Paediatrics, University of Otago, Christchurch School of Medicine, Christchurch, New Zealand
| | - Lance Jennings
- Canterbury Health Laboratories, Christchurch, New Zealand
| | - Tony Walls
- Department of Paediatrics, University of Otago, Christchurch School of Medicine, Christchurch, New Zealand
| |
Collapse
|
36
|
Pellegrinelli L, Bubba L, Galli C, Anselmi G, Primache V, Binda S, Pariani E. Epidemiology and molecular characterization of influenza viruses, human parechoviruses and enteroviruses in children up to 5 years with influenza-like illness in Northern Italy during seven consecutive winter seasons (2010–2017). J Gen Virol 2017; 98:2699-2711. [DOI: 10.1099/jgv.0.000937] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Laura Pellegrinelli
- Department of Biomedical Sciences for Health, University of Milan, Via Carlo Pascal, 36 - 20133 Milan, Italy
| | - Laura Bubba
- Department of Biomedical Sciences for Health, University of Milan, Via Carlo Pascal, 36 - 20133 Milan, Italy
| | - Cristina Galli
- Department of Biomedical Sciences for Health, University of Milan, Via Carlo Pascal, 36 - 20133 Milan, Italy
| | - Giovanni Anselmi
- Department of Biomedical Sciences for Health, University of Milan, Via Carlo Pascal, 36 - 20133 Milan, Italy
| | - Valeria Primache
- Department of Biomedical Sciences for Health, University of Milan, Via Carlo Pascal, 36 - 20133 Milan, Italy
| | - Sandro Binda
- Department of Biomedical Sciences for Health, University of Milan, Via Carlo Pascal, 36 - 20133 Milan, Italy
| | - Elena Pariani
- Department of Biomedical Sciences for Health, University of Milan, Via Carlo Pascal, 36 - 20133 Milan, Italy
- Department of Health Sciences, CIRI-IT, University of Genoa, Via Antonio Pastore, 1 - 16132 Genoa, Italy
| |
Collapse
|
37
|
Chiang GPK, Chen Z, Chan MCW, Lee SHM, Kwok AK, Yeung ACM, Nelson EAS, Hon KL, Leung TF, Chan PKS. Clinical features and seasonality of parechovirus infection in an Asian subtropical city, Hong Kong. PLoS One 2017; 12:e0184533. [PMID: 28886185 PMCID: PMC5590978 DOI: 10.1371/journal.pone.0184533] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/25/2017] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The epidemiology of human parechovirus (HPeV) in Asia remains obscure. We elucidated the prevalence, seasonality, type distribution and clinical presentation of HPeV among children in Hong Kong. METHODS A 24-month prospective study to detect HPeV in children ≤36 months hospitalized for acute viral illnesses. RESULTS 2.3% of the 3911 children examined had HPeV infection, with most (87.5%) concentrated in September-January (autumn-winter). 81.3% were HPeV1 and 12.5% were HPeV4, while HPeV3 was rare (2.5%). HPeV was a probable cause of the disease in 47.7% (42/88), mostly self-limiting including acute gastroenteritis, upper respiratory tract infection and maculopapular rash. A neonate developed severe sepsis-like illness with HPeV3 as the only pathogen detected. A high proportion (60.0%) of children coinfected with HPeV and other respiratory virus(es) had acute bronchiolitis or pneumonia. Six children with HPeV coinfections developed convulsion / pallid attack. Most rash illnesses exhibited a generalized maculopapular pattern involving the trunk and limbs, and were more likely associated with HPeV4 compared to other syndrome groups (36.4% vs. 3.1%, p = 0.011). CONCLUSIONS In Hong Kong, HPeV exhibits a clear seasonality (autumn-winter) and was found in a small proportion (2.3%) of young children (≤36 months) admitted with features of acute viral illnesses. The clinical presentation ranged from mild gastroenteritis, upper respiratory tract infection and febrile rash to convulsion and severe sepsis-like illness. HPeV3, which is reported to associate with more severe disease in neonates, is rare in Hong Kong. HPeV coinfection might associate with convulsion and aggravate other respiratory tract infections.
Collapse
Affiliation(s)
- Grace P. K. Chiang
- Departments of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Zigui Chen
- Departments of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Martin C. W. Chan
- Departments of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Simon H. M. Lee
- Departments of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Angela K. Kwok
- Departments of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Apple C. M. Yeung
- Departments of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - E. Anthony S. Nelson
- Departments of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Kam Lun Hon
- Departments of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Ting Fan Leung
- Departments of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Paul K. S. Chan
- Departments of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
38
|
Pankovics P, Boros Á, Mátics R, Kapusinszky B, Delwart E, Reuter G. Ljungan/Sebokele-like picornavirus in birds of prey, common kestrel (Falco tinnunculus) and red-footed falcon (F. vespertinus). INFECTION GENETICS AND EVOLUTION 2017; 55:14-19. [PMID: 28843546 DOI: 10.1016/j.meegid.2017.08.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 01/11/2023]
Abstract
Ljungan and Sebokele viruses are thought to be rodent-borne (picorna)viruses in the genus Parechovirus. Using random amplification and next generation sequencing method a novel Ljungan/Sebokele-like picornavirus was identified in birds of prey. Viral RNA was detected in total of 1 (9%) of the 11 and 2 (28.6%) of the 7 faecal samples from common kestrels and red-footed falcons in Hungary, respectively. High faecal viral RNA load (4.77×106 genomic copies/ml) measured by qPCR. The complete genome of picornavirus strain falcon/HA18_080/2014/HUN (KY645497) is 7964-nucleotide (nt) long including a 867-nt 5'end and a 101-nt 3'end (excluding the poly(A)-tail). Falcon/HA18_080/2014/HUN has type-II IRES related to hunnivirus IRES, encodes a polyprotein lacking a leader protein, a VP0 maturation cleavage site and it predicted to encode three 2A proteins (2A1NPG↓P, 2A2NPG↓P and 2A3H-Box/NC), two of them end with 'ribosome-skipping' sites (DxExNPG↓P). Sequence analyses indicated that the ORF1 (6996nt) polyprotein (2331 amino acid - aa) of falcon/HA18_080/2014/HUN shares the highest aa identity, 59% and 57%, to the corresponding polyproteins of Ljungan and Sebokele viruses. This study reports the identification and complete genome characterization of a novel Ljungan/Sebokele-like picornavirus in faeces of birds of prey which suggests that the genetic diversity and the potential host species spectrum of Ljungan/Sebokele-like viruses in genus Parechovirus are wider than previously thought.
Collapse
Affiliation(s)
- Péter Pankovics
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary; Department of Medical Microbiology and Immunology, Medical Center, University of Pécs, Pécs, Hungary
| | - Ákos Boros
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary; Department of Medical Microbiology and Immunology, Medical Center, University of Pécs, Pécs, Hungary
| | - Róbert Mátics
- Department of Pathophysiology, University of Pécs Medical Center, Hungary; Hungarian Nature Research Society, (HuNaReS), Ajka, Hungary
| | - Beatrix Kapusinszky
- Blood Systems Research Institute, San Francisco, CA, USA; University of California, San Francisco, CA, USA
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, CA, USA; University of California, San Francisco, CA, USA
| | - Gábor Reuter
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, Pécs, Hungary; Department of Medical Microbiology and Immunology, Medical Center, University of Pécs, Pécs, Hungary.
| |
Collapse
|
39
|
Vidal LRR, Cavalli B, Almeida SMD, Raboni SM, Nogueira MB. Human parechovirus: sepsis-like illness with pulmonary infection. Braz J Infect Dis 2017; 21:675-677. [PMID: 28688627 PMCID: PMC7129718 DOI: 10.1016/j.bjid.2017.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/31/2017] [Accepted: 06/11/2017] [Indexed: 11/28/2022] Open
Affiliation(s)
- Luíne Rosele Renaud Vidal
- Universidade Federal do Paraná, Hospital de Clínicas, Laboratório de Virologia, Curitiba, PR, Brazil.
| | - Bárbara Cavalli
- Universidade Federal do Paraná, Hospital de Clínicas, Laboratório de Virologia, Curitiba, PR, Brazil
| | - Sérgio Monteiro de Almeida
- Universidade Federal do Paraná, Hospital de Clínicas, Laboratório de Virologia, Curitiba, PR, Brazil; Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil
| | - Sônia Mara Raboni
- Universidade Federal do Paraná, Hospital de Clínicas, Laboratório de Virologia, Curitiba, PR, Brazil
| | - Meri Bordignon Nogueira
- Universidade Federal do Paraná, Hospital de Clínicas, Laboratório de Virologia, Curitiba, PR, Brazil; Universidade Federal do Paraná, Programa de Pós-graduação em Tocoginecologia, Curitiba, PR, Brazil; Universidade Federal do Paraná, Departamento de Análises Clínicas, Curitiba, PR, Brazil
| |
Collapse
|
40
|
Abstract
Infections with enteroviruses and human parechoviruses are highly prevalent, particularly in neonates, where they may cause substantial morbidity and mortality. Individuals with B-cell-related immunodeficiencies are at risk for severe enteroviral infections, usually a chronic and fatal meningoencephalitis. In transplant recipients and patients with malignancy, enterovirus infections typically involve the respiratory tract, but cases of severe, disseminated infection have been described. The mainstay of diagnosis for enterovirus and human parechovirus infections involves the use of molecular diagnostic techniques. However, routine nucleic acid-detection methods for enteroviruses will not detect human parechoviruses. Laboratory diagnosis of these viral infections is important in determining a patient's prognosis and guiding clinical management.
Collapse
|
41
|
Shinomoto M, Kawasaki T, Sugahara T, Nakata K, Kotani T, Yoshitake H, Yuasa K, Saeki M, Fujiwara Y. First report of human parechovirus type 3 infection in a pregnant woman. Int J Infect Dis 2017; 59:22-24. [PMID: 28347852 DOI: 10.1016/j.ijid.2017.03.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 12/15/2022] Open
Abstract
Human parechovirus type 3 (HPeV3) can cause serious conditions in neonates, such as sepsis and encephalitis, but data for adults are lacking. The case of a pregnant woman with HPeV3 infection is reported herein. A 28-year-old woman at 36 weeks of pregnancy was admitted because of myalgia and muscle weakness. Her grip strength was 6.0kg for her right hand and 2.5kg for her left hand. The patient's symptoms, probably due to fasciitis and not myositis, improved gradually with conservative treatment, however labor pains with genital bleeding developed unexpectedly 3 days after admission. An obstetric consultation was obtained and a cesarean section was performed, with no complications. A real-time PCR assay for the detection of viral genomic ribonucleic acid against HPeV showed positive results for pharyngeal swabs, feces, and blood, and negative results for the placenta, umbilical cord, umbilical cord blood, amniotic fluid, and breast milk. The HPeV3 was genotyped by sequencing of the VP1 region. The woman made a full recovery and was discharged with her infant in a stable condition.
Collapse
Affiliation(s)
- Makiko Shinomoto
- Department of Neurology, Matsushita Memorial Hospital, Osaka, Japan.
| | - Tatsuya Kawasaki
- Department of General Internal Medicine, Matsushita Memorial Hospital, Osaka, Japan
| | - Takuya Sugahara
- Department of Obstetrics and Gynecology, Matsushita Memorial Hospital, Osaka, Japan
| | - Keiko Nakata
- Department of Infectious Diseases, Osaka Prefectural Institute of Public Health, Osaka, Japan
| | - Tomoya Kotani
- Department of General Internal Medicine, Matsushita Memorial Hospital, Osaka, Japan
| | - Hidetaka Yoshitake
- Department of General Internal Medicine, Matsushita Memorial Hospital, Osaka, Japan
| | - Kento Yuasa
- Department of General Internal Medicine, Matsushita Memorial Hospital, Osaka, Japan
| | - Masashi Saeki
- Department of Neurology, Matsushita Memorial Hospital, Osaka, Japan
| | | |
Collapse
|
42
|
Abstract
Human parechovirus-3 has been associated with severe clinical manifestations in infants, such as sepsis-like illness and meningoencephalitis. Nevertheless, the vast majority of patients have a favorable outcome. We report the occurrence of this infection in dizygotic infants with extreme hyperferritinemia and a transient impairment of natural killer cell cytotoxicity.
Collapse
|
43
|
Cabrerizo M, Díaz-Cerio M, Muñoz-Almagro C, Rabella N, Tarragó D, Romero MP, Pena MJ, Calvo C, Rey-Cao S, Moreno-Docón A, Martínez-Rienda I, Otero A, Trallero G. Molecular epidemiology of enterovirus and parechovirus infections according to patient age over a 4-year period in Spain. J Med Virol 2016; 89:435-442. [PMID: 27505281 DOI: 10.1002/jmv.24658] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2016] [Indexed: 12/28/2022]
Abstract
The epidemiology and clinical association of enterovirus (EV) and parechovirus (HPeV) infections, as well as the type-distribution-according-to-age, were determined during a 4-year study period in Spain. During 2010-2013, a total of 21,832 clinical samples were screened for EV and the detection frequency was 6.5% (1,430). Of the total EV-negative samples, only 1,873 samples from 2011 to 2013 were available for HPeV testing. HPeV was detected in 42 (2%) of them. Positive samples were genotyped using PCR and sequencing. EV infections occurred in all age groups of patients: neonates (17%), children 28 days to 2 years (29%), children 2-14 years (40%), and adults (14%). Thirty-four different EV types were identified. HPeV infections were detected exclusively in infants <8 m (70% neonates, P < 0.05). All but one HPeV were HPeV-3. Differences in type frequency detection were found according to age and clinical manifestation. Coxsackievirus (CV)-B4 (61%), CV-B5 (83%), and HPeV-3 (64%) were more frequent in neonates than in older patients (P < 0.05). Echovirus (E)-3 (60%), E-18 (47%), E-25 (62%), CV-A6 (61%), CV-A16 (72%), and EV-71 (75%) were mainly detected in children 28 days to 2 years (P < 0.05), whereas, E-6 (79%), E-20 (88%), and E-30 (85%) were predominant in children >2 years and adults (P < 0.05). Clinically, meningitis was associated with EV (P < 0.01) whereas, encephalitis was more frequent in HPeV-infected patients. CV-B types were associated with myocarditis (90%; P < 0.05) and EV species A with hand-foot-mouth-disease/atypical exanthema (88%; P < 0.05). J. Med. Virol. 89:435-442, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- María Cabrerizo
- National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - María Díaz-Cerio
- National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | - David Tarragó
- National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | | | - María José Pena
- Hospital Gran Canaria Dr Negrín, Las Palmas de Gran Canaria, Spain
| | | | | | | | | | - Almudena Otero
- National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Gloria Trallero
- National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
44
|
Harvala H, Simmonds P. Viral meningitis: epidemiology and diagnosis. THE LANCET. INFECTIOUS DISEASES 2016; 16:1211-1212. [PMID: 27527750 DOI: 10.1016/s1473-3099(16)30221-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 06/30/2016] [Indexed: 11/18/2022]
Affiliation(s)
- Heli Harvala
- Public Health Agency of Sweden, Solna, Sweden; European Programme for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Peter Simmonds
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford, UK.
| |
Collapse
|
45
|
de Crom SCM, Rossen JWA, van Furth AM, Obihara CC. Enterovirus and parechovirus infection in children: a brief overview. Eur J Pediatr 2016; 175:1023-9. [PMID: 27156106 PMCID: PMC4930465 DOI: 10.1007/s00431-016-2725-7] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/25/2016] [Accepted: 04/18/2016] [Indexed: 02/07/2023]
Abstract
UNLABELLED Enterovirus and parechovirus are a frequent cause of infection in children. This review is an overview of what is known from enterovirus and parechovirus infection in children and contains information about the epidemiology, pathogenesis, clinical presentation, diagnosis, treatment, and prognosis of enterovirus and parechovirus infection in children. CONCLUSIONS EV and HPeV infections are a frequent cause of infection in childhood. The clinical presentation is diverse. RT-qPCR is the best way to detect an EV or HPeV. Cerebrospinal fluid, blood and feces have the highest sensitivity for detecting an EV or HPeV. There is no treatment for EV and HPeV infections. Two vaccines against EV 71 are just licensed in China and will be available on the private market. Little is known about the prognosis of EV and HPeV infections. WHAT IS KNOWN •EV and HPeV are a frequent cause of infection in children. What is new: •This review gives a brief overview over EV and HPeV infection in children.
Collapse
Affiliation(s)
- S C M de Crom
- Department of Pediatrics, St. Elisabeth Hospital, Tilburg, The Netherlands.
- Department of Pediatrics, Maastricht University Medical Centre, PO Box 5800, 6202 AZ, Maastricht, The Netherlands.
| | - J W A Rossen
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - A M van Furth
- Department of Pediatric Infectious Diseases Immunology and Rheumatology, VU Medical Centre, Amsterdam, The Netherlands
| | - C C Obihara
- Department of Pediatrics, Maastricht University Medical Centre, PO Box 5800, 6202 AZ, Maastricht, The Netherlands
| |
Collapse
|
46
|
Gahr M. Empfehlungen zum Vorgehen bei Auftreten ungewöhnlicher neurologischer Symptome in zeitlichem Zusammenhang mit Impfungen im Kindes- und Jugendalter. Monatsschr Kinderheilkd 2016. [DOI: 10.1007/s00112-016-0058-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
Morriss FH, Lindower JB, Bartlett HL, Atkins DL, Kim JO, Klein JM, Ford BA. Neonatal Enterovirus Infection: Case Series of Clinical Sepsis and Positive Cerebrospinal Fluid Polymerase Chain Reaction Test with Myocarditis and Cerebral White Matter Injury Complications. AJP Rep 2016; 6:e344-e351. [PMID: 27695644 PMCID: PMC5042705 DOI: 10.1055/s-0036-1593406] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Objective We describe five neonates with enteroviral (EV) infection to demonstrate central nervous system (CNS) and cardiac complications and report successful treatment of myocarditis with immunoglobulin intravenous (IVIG) in two. Study Design Case series identified during three enteroviral seasons in one neonatal intensive care unit (NICU) by cerebral spinal fluid (CSF) reverse transcriptase polymerase chain reaction (PCR) testing for EV in neonates suspected to have sepsis, but with sterile bacterial cultures. Results Cases were identified in each of three sequential years in a NICU with 800 to 900 admissions/year. Two cases were likely acquired perinatally; all were symptomatic with lethargy and poor feeding by age 5 to 10 days. All had signs of sepsis and/or meningitis; one progressed to periventricular leukomalacia and encephalomalacia. Two recovered from myocarditis after treatment that included IVIG 3 to 5 g/kg. Conclusion Neonates who appear septic without bacterial etiology may have EV CNS infections that can be diagnosed rapidly by CSF PCR testing. Cases may be underdiagnosed in the early neonatal period if specific testing is not performed. Neonates with EV infection should be investigated for evidence of periventricular leukomalacia, screened for myocarditis, and considered for IVIG treatment.
Collapse
Affiliation(s)
- Frank H Morriss
- Stead Family Department of Pediatrics, University of Iowa Children's Hospital, Iowa City, Iowa; Departments of Pediatrics and of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Julie B Lindower
- Stead Family Department of Pediatrics, University of Iowa Children's Hospital, Iowa City, Iowa; Departments of Pediatrics and of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | | | - Dianne L Atkins
- Stead Family Department of Pediatrics, University of Iowa Children's Hospital, Iowa City, Iowa; Departments of Pediatrics and of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Jean O Kim
- Department of Pediatrics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Jonathan M Klein
- Stead Family Department of Pediatrics, University of Iowa Children's Hospital, Iowa City, Iowa; Departments of Pediatrics and of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Bradley A Ford
- Departments of Pediatrics and of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; Department of Pathology, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| |
Collapse
|
48
|
Nielsen NM, Midgley SE, Nielsen ACY, Christiansen CB, Fischer TK. Severe Human Parechovirus Infections in Infants and the Role of Older Siblings. Am J Epidemiol 2016; 183:664-70. [PMID: 26968944 DOI: 10.1093/aje/kwv206] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 08/10/2015] [Indexed: 11/14/2022] Open
Abstract
Human parechovirus (HPeV) is a cause of severe morbidity among infants and young children. To evaluate the associations between early environmental risk factors and HPeV infections, we carried out a nationwide cohort study linking registry data on birth and sibship characteristics with a laboratory surveillance database, covering all HPeV infections detected in Denmark during 2009-2012 among children <5 years of age. Incidence rate ratios were calculated in log-linear Poisson regression analyses. Overall, 133 HPeV infections, 85 caused by human parechovirus type 3 (HPeV-3) and 48 by human parechovirus other than type 3 (non-HPeV-3), were detected among 132 children. Neither birth weight, mode of delivery, Apgar score, nor gestational age was associated with the risk of HPeV infections. Compared with firstborn children, secondborn children were at a 9-fold increased risk (incidence rate ratio = 8.68, 95% confidence interval: 3.85, 19.53) of contracting HPeV-3 infections, but at no increased risk of contracting non-HPeV-3 infections. However, the shorter the age gap to the nearest older sibling, the higher the risk of HPeV-3 as well as non-HPeV-3 infections, although the trend was strongest for HPeV-3 infections. Our study is the first to suggest that having a slightly older sibling increases the risk for severe neonatal HPeV infections. This new knowledge might lead to new preventive measures.
Collapse
|
49
|
Cumming G, Khatami A, McMullan BJ, Musto J, Leung K, Nguyen O, Ferson MJ, Papadakis G, Sheppeard V. Parechovirus Genotype 3 Outbreak among Infants, New South Wales, Australia, 2013-2014. Emerg Infect Dis 2016; 21:1144-52. [PMID: 26082289 PMCID: PMC4480380 DOI: 10.3201/eid2107.141149] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Syndromic surveillance was useful for outbreak monitoring, and public health response helped reduce hospitalization times. From October 2013 through February 2014, human parechovirus genotype 3 infection was identified in 183 infants in New South Wales, Australia. Of those infants, 57% were male and 95% required hospitalization. Common signs and symptoms were fever >38°C (86%), irritability (80%), tachycardia (68%), and rash (62%). Compared with affected infants in the Northern Hemisphere, infants in New South Wales were slightly older, both sexes were affected more equally, and rash occurred with considerably higher frequency. The New South Wales syndromic surveillance system, which uses near real-time emergency department and ambulance data, was useful for monitoring the outbreak. An alert distributed to clinicians reduced unnecessary hospitalization for patients with suspected sepsis.
Collapse
|
50
|
Vollbach S, Müller A, Drexler JF, Simon A, Drosten C, Eis-Hübinger AM, Panning M. Prevalence, type and concentration of human enterovirus and parechovirus in cerebrospinal fluid samples of pediatric patients over a 10-year period: a retrospective study. Virol J 2015; 12:199. [PMID: 26607060 PMCID: PMC4660665 DOI: 10.1186/s12985-015-0427-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/16/2015] [Indexed: 11/14/2022] Open
Abstract
Background Human enterovirus (EV) and parechovirus (HPeV) are significant causes of encephalitis and meningitis in children. The aim of this study was to determine the prevalence, type and viral RNA concentration of EV and HPeV in cerebrospinal fluid (CSF) samples in an unselected cohort of patients <18 years admitted to Bonn university hospital from 1998 to 2008. Methods A total of 327 CSF samples from 327 patients were retrospectively tested by real-time reverse-transcriptase PCR (RT-PCR) for EV and HPeV, and by real-time PCR for cytomegalovirus (CMV), herpes simplex virus 1/2 (HSV), and varizella zoster-virus (VZV). Samples had been submitted for routine virological work-up due to suspected meningitis or encephalitis and had been stored at −20 °C hereafter. Positive samples for EV and HPeV were sequenced within the gene encoding the VP1 region (EV), the VP2 and the VP3/VP1 junction region (HPeV). Results The overall prevalence was 4.3 % (14/327) for EV, 0.6 % (2/327) for HPeV, and 0.3 % (1/327) for HSV and VZV, respectively. CMV was not detected in this cohort. In children less than 3 months of age the prevalence was 7.7 % (2/26) for EV and 7.7 % (2/26) for HPeV, respectively. Frequency of EV detection ranged from 0 to 12 % per year and highest rates were observed from June to September. All typed EV belonged to species B. Both HPeV infections were detected in the fall of 2008 and were typed as HPeV genotype 3. Viral RNA concentrations were highest in patients with HPeV infection, followed by echovirus 30 and other EV. In total, 86 % (12/14) of EV infections presented as aseptic meningitis, whereas both HPeV infections presented as severe sepsis-like illness. Conclusions EV and HPeV were equally prevalent in children <3 months of age. Beyond the detection of EV and HPeV, the determination of viral RNA concentration and typing of EV and HPeV might prove beneficial for patient management and public health.
Collapse
Affiliation(s)
- Silke Vollbach
- Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud Str. 25, 53105, Bonn, Germany.
| | - Andreas Müller
- Department of Paediatrics, University of Bonn Medical Centre, Sigmund-Freud Str. 25, 53105, Bonn, Germany.
| | - Jan Felix Drexler
- Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud Str. 25, 53105, Bonn, Germany.
| | - Arne Simon
- Department of Paediatrics, University of Bonn Medical Centre, Sigmund-Freud Str. 25, 53105, Bonn, Germany. .,Present address: Paediatric Oncology and Haematology, University of the Saarland, Homburg, Germany.
| | - Christian Drosten
- Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud Str. 25, 53105, Bonn, Germany.
| | - Anna Maria Eis-Hübinger
- Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud Str. 25, 53105, Bonn, Germany.
| | - Marcus Panning
- Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud Str. 25, 53105, Bonn, Germany. .,Institute of Virology, Medical Center - University of Freiburg, Hermann-Herder Str. 11, 79104, Freiburg, Germany.
| |
Collapse
|