1
|
Saqr A, Al-Kofahi M, Mohamed M, Dorr C, Remmel RP, Onyeaghala G, Oetting WS, Guan W, Mannon RB, Matas AJ, Israni A, Jacobson PA. Steroid-tacrolimus drug-drug interaction and the effect of CYP3A genotypes. Br J Clin Pharmacol 2024; 90:2837-2848. [PMID: 38994750 DOI: 10.1111/bcp.16172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/13/2024] [Accepted: 06/18/2024] [Indexed: 07/13/2024] Open
Abstract
AIMS Tacrolimus, metabolized by CYP3A4 and CYP3A5 enzymes, is susceptible to drug-drug interactions (DDI). Steroids induce CYP3A genes to increase tacrolimus clearance, but the effect is variable. We hypothesized that the extent of the steroid-tacrolimus DDI differs by CYP3A4/5 genotypes. METHODS Kidney transplant recipients (n = 2462) were classified by the number of loss of function alleles (LOF) (CYP3A5*3, *6 and *7 and CYP3A4*22) and steroid use at each tacrolimus trough in the first 6 months post-transplant. A population pharmacokinetic analysis was performed by nonlinear mixed-effect modelling (NONMEM) and stepwise covariate modelling to define significant covariates affecting tacrolimus clearance. A stochastic simulation was performed and translated into a Shiny application with the mrgsolve and Shiny packages in R. RESULTS Steroids were associated with modestly higher (3%-11.8%) tacrolimus clearance. Patients with 0-LOF alleles receiving steroids showed the greatest increase (11.8%) in clearance compared to no steroids, whereas those with 2-LOFs had a negligible increase (2.6%) in the presence of steroids. Steroid use increased tacrolimus clearance by 5% and 10.3% in patients with 1-LOF and 3/4-LOFs, respectively. CONCLUSIONS Steroids increase the clearance of tacrolimus but vary slightly by CYP3A genotype. This is important in individuals of African ancestry who are more likely to carry no LOF alleles, may more commonly receive steroid treatment, and will need higher tacrolimus doses.
Collapse
Affiliation(s)
- Abdelrahman Saqr
- Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, Minnesota, USA
| | - Mahmoud Al-Kofahi
- Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, Minnesota, USA
- Gilead Sciences, Inc., Foster City, California, USA
| | - Moataz Mohamed
- Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, Minnesota, USA
| | - Casey Dorr
- Hennepin Healthcare Research Institute, Minneapolis, Minnesota, USA
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Rory P Remmel
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Guillaume Onyeaghala
- Hennepin Healthcare Research Institute, Minneapolis, Minnesota, USA
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - William S Oetting
- Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, Minnesota, USA
| | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Roslyn B Mannon
- Division of Nephrology, Department of Internal Medicine, University of Nebraska, Omaha, Nebraska, USA
| | - Arthur J Matas
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ajay Israni
- Hennepin Healthcare Research Institute, Minneapolis, Minnesota, USA
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Epidemiology & Community Health, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Medicine, Hennepin Healthcare, Minneapolis, Minnesota, USA
| | - Pamala A Jacobson
- Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, Minnesota, USA
| |
Collapse
|
2
|
Obayemi JE, Callans L, Nair N, Gao H, Gandla D, Loza BL, Gao S, Mohebnasab M, Trofe-Clark J, Jacobson P, Keating B. Assessing the Utility of a Genotype-Guided Tacrolimus Equation in African American Kidney Transplant Recipients: A Single Institution Retrospective Study. J Clin Pharmacol 2024; 64:944-952. [PMID: 38766706 DOI: 10.1002/jcph.2461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/26/2024] [Indexed: 05/22/2024]
Abstract
Tacrolimus metabolism is heavily influenced by the CYP3A5 genotype, which varies widely among African Americans (AA). We aimed to assess the performance of a published genotype-informed tacrolimus dosing model in an independent set of adult AA kidney transplant (KTx) recipients. CYP3A5 genotypes were obtained for all AA KTx recipients (n = 232) from 2010 to 2019 who met inclusion criteria at a single transplant center in Philadelphia, Pennsylvania, USA. Medical record data were used to calculate predicted tacrolimus clearance using the published AA KTx dosing equation and two modified iterations. Observed and model-predicted trough levels were compared at 3 days, 3 months, and 6 months post-transplant. The mean prediction error at day 3 post-transplant was 3.05 ng/mL, indicating that the model tended to overpredict the tacrolimus trough. This bias improved over time to 1.36 and 0.78 ng/mL at 3 and 6 months post-transplant, respectively. Mean absolute prediction error-a marker of model precision-improved with time to 2.33 ng/mL at 6 months. Limiting genotype data in the model decreased bias and improved precision. The bias and precision of the published model improved over time and were comparable to studies in previous cohorts. The overprediction observed by the published model may represent overfitting to the initial cohort, possibly limiting generalizability.
Collapse
Affiliation(s)
- Joy E Obayemi
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Lauren Callans
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Transplant Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Nikhil Nair
- Penn Transplant Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Hui Gao
- Penn Transplant Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Divya Gandla
- Penn Transplant Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Bao-Li Loza
- Penn Transplant Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah Gao
- Penn Transplant Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Maedeh Mohebnasab
- Penn Transplant Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer Trofe-Clark
- Penn Transplant Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Pamala Jacobson
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Brendan Keating
- Penn Transplant Institute, University of Pennsylvania, Philadelphia, PA, USA
- Department of Surgery, New York University, New York, NY, USA
| |
Collapse
|
3
|
Meloche M, Pilon MO, Provost S, Leclair G, Oussaïd E, St-Jean I, Jutras M, Gaulin MJ, Lemieux Perreault LP, Valois D, Mongrain I, Busseuil D, Rouleau JL, Tardif JC, Dubé MP, de Denus S. A Genome-Wide Association Study of Oxypurinol Concentrations in Patients Treated with Allopurinol. J Pers Med 2024; 14:649. [PMID: 38929870 PMCID: PMC11204675 DOI: 10.3390/jpm14060649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Cohort studies have identified several genetic determinants that could predict the clinical response to allopurinol. However, they have not been commonly used for genome-wide investigations to identify genetic determinants on allopurinol metabolism and concentrations. We conducted a genome-wide association study of a prior cross-sectional investigation of patients from the Montreal Heart Institute Biobank undergoing allopurinol therapy. Four endpoints were investigated, namely plasma concentrations of oxypurinol, the active metabolite of allopurinol, allopurinol, and allopurinol-riboside, as well as allopurinol daily dosing. A total of 439 participants (mean age 69.4 years; 86.4% male) taking allopurinol (mean daily dose 194.5 mg) and who had quantifiable oxypurinol concentrations were included in the genome-wide analyses. Participants presented with multiple comorbidities and received concomitant cardiovascular medications. No association achieved the predefined genome-wide threshold values for any of the endpoints (all p > 5 × 10-8). Our results are consistent with prior findings regarding the difficulty in identifying genetic determinants of drug concentrations or pharmacokinetics of allopurinol and its metabolites, as well as allopurinol daily dosing. Given the size of this genome-wide study, collaborative investigations involving larger and diverse cohorts may be required to further identify pharmacogenomic determinants of allopurinol and measure their clinical relevance to personalize allopurinol therapy.
Collapse
Affiliation(s)
- Maxime Meloche
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Montreal Heart Institute, Montreal, QC H1T 1C8, Canada (D.B.)
- Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, QC H1T 1C8, Canada
| | - Marc-Olivier Pilon
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Montreal Heart Institute, Montreal, QC H1T 1C8, Canada (D.B.)
- Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, QC H1T 1C8, Canada
| | - Sylvie Provost
- Montreal Heart Institute, Montreal, QC H1T 1C8, Canada (D.B.)
- Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, QC H1T 1C8, Canada
| | - Grégoire Leclair
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Essaïd Oussaïd
- Montreal Heart Institute, Montreal, QC H1T 1C8, Canada (D.B.)
- Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, QC H1T 1C8, Canada
| | - Isabelle St-Jean
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Martin Jutras
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Marie-Josée Gaulin
- Montreal Heart Institute, Montreal, QC H1T 1C8, Canada (D.B.)
- Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, QC H1T 1C8, Canada
| | - Louis-Philippe Lemieux Perreault
- Montreal Heart Institute, Montreal, QC H1T 1C8, Canada (D.B.)
- Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, QC H1T 1C8, Canada
| | - Diane Valois
- Montreal Heart Institute, Montreal, QC H1T 1C8, Canada (D.B.)
- Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, QC H1T 1C8, Canada
| | - Ian Mongrain
- Montreal Heart Institute, Montreal, QC H1T 1C8, Canada (D.B.)
- Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, QC H1T 1C8, Canada
| | - David Busseuil
- Montreal Heart Institute, Montreal, QC H1T 1C8, Canada (D.B.)
- Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, QC H1T 1C8, Canada
| | - Jean-Lucien Rouleau
- Montreal Heart Institute, Montreal, QC H1T 1C8, Canada (D.B.)
- Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Jean-Claude Tardif
- Montreal Heart Institute, Montreal, QC H1T 1C8, Canada (D.B.)
- Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, QC H1T 1C8, Canada
- Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Marie-Pierre Dubé
- Montreal Heart Institute, Montreal, QC H1T 1C8, Canada (D.B.)
- Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, QC H1T 1C8, Canada
- Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Simon de Denus
- Faculty of Pharmacy, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Montreal Heart Institute, Montreal, QC H1T 1C8, Canada (D.B.)
- Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, QC H1T 1C8, Canada
| |
Collapse
|
4
|
Yow HY, Ikawati M, Siswanto S, Hermawan A, Rahmat AK, Tan JSL, Tee YC, Ng KP, Ikawati Z. Influence of genetic polymorphisms on pharmacokinetics and treatment response of mycophenolic acid: a scoping review. Pharmacogenomics 2024; 25:259-288. [PMID: 38884938 PMCID: PMC11388138 DOI: 10.1080/14622416.2024.2344430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/12/2024] [Indexed: 06/18/2024] Open
Abstract
This scoping review explores the impact of genetic polymorphisms on the pharmacokinetics and treatment responses of mycophenolic acid (MPA), an immunosuppressant. The study includes 83 articles from 1226 original studies, focusing on transplantation (n = 80) and autoimmune disorders (n = 3). Genetic variants in uridine 5'-diphospho-glucuronosyltransferase (UGT1A9, UGT1A8 and UGT2B7) and transmembrane transporters (ABCC2, SLCO1B1, SLCO1B3 and ABCB1) significantly affected MPA's pharmacokinetics and susceptibility to its adverse effect. Whereas variants in several genes including UGT1A9, UGT2B7, IMPDH1 and IMPDH2 have been associated with a higher risk of transplant rejection. However, there is a lack of studies on MPA's impact on autoimmune disorders and limited research on the Asian population. The findings underscore the need for further research on MPA's impact across different populations and diseases, particularly among other Asian ethnic groups, to advance personalized medicine in MPA therapy.
Collapse
Affiliation(s)
- Hui-Yin Yow
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Muthi Ikawati
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta, 55281, Indonesia
| | - Soni Siswanto
- Department of Pharmacology & Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta, 55281, Indonesia
| | - Adam Hermawan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta, 55281, Indonesia
- Advanced Pharmaceutical Sciences Laboratory, Faculty of Pharmacy, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta, 55281, Indonesia
| | - Alim Khodimul Rahmat
- Department of Pharmacology & Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta, 55281, Indonesia
| | - Janet Sui-Ling Tan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Ying-Chew Tee
- Rheumatology Unit, Department of Medicine, University Malaya, Kuala Lumpur, 50603, Malaysia
| | - Kok-Peng Ng
- Nephrology Unit, Department of Medicine, University Malaya, Kuala Lumpur, 50603, Malaysia
| | - Zullies Ikawati
- Department of Pharmacology & Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Daerah Istimewa Yogyakarta, 55281, Indonesia
| |
Collapse
|
5
|
Deininger KM, Anderson HD, Patrinos GP, Mitropoulou C, Aquilante CL. Cost-effectiveness analysis of CYP3A5 genotype-guided tacrolimus dosing in solid organ transplantation using real-world data. THE PHARMACOGENOMICS JOURNAL 2024; 24:14. [PMID: 38750044 DOI: 10.1038/s41397-024-00334-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 04/05/2024] [Accepted: 04/23/2024] [Indexed: 06/15/2024]
Abstract
The objective of this study was to estimate the cost-effectiveness of CYP3A5 genotype-guided tacrolimus dosing in kidney, liver, heart, and lung transplant recipients relative to standard of care (SOC) tacrolimus dosing, from a US healthcare payer perspective. We developed decision-tree models to compare economic and clinical outcomes between CYP3A5 genotype-guided and SOC tacrolimus therapy in the first six months post-transplant. We derived inputs for CYP3A5 phenotype frequencies and physician use of genotype test results to inform clinical care from literature; tacrolimus exposure [high vs low tacrolimus time in therapeutic range using the Rosendaal algorithm (TAC TTR-Rosendaal)] and outcomes (incidences of acute tacrolimus nephrotoxicity, acute cellular rejection, and death) from real-world data; and costs from the Medicare Fee Schedule and literature. We calculated cost per avoided event and performed sensitivity analyses to evaluate the robustness of the results to changes in inputs. Incremental costs per avoided event for CYP3A5 genotype-guided vs SOC tacrolimus dosing were $176,667 for kidney recipients, $364,000 for liver recipients, $12,982 for heart recipients, and $93,333 for lung recipients. The likelihood of CYP3A5 genotype-guided tacrolimus dosing leading to cost-savings was 19.8% in kidney, 32.3% in liver, 51.8% in heart, and 54.1% in lung transplant recipients. Physician use of genotype results to guide clinical care and the proportion of patients with a high TAC TTR-Rosendaal were key parameters driving the cost-effectiveness of CYP3A5 genotype-guided tacrolimus therapy. Relative to SOC, CYP3A5 genotype-guided tacrolimus dosing resulted in a slightly greater benefit at a higher cost. Further economic evaluations examining intermediary outcomes (e.g., dose modifications) are needed, particularly in populations with higher frequencies of CYP3A5 expressers.
Collapse
Affiliation(s)
- Kimberly M Deininger
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, USA
| | - Heather D Anderson
- Department of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, USA
| | - George P Patrinos
- Department of Pharmacy, University of Patras School of Health Sciences, Patras, Greece
- Department of Genetics and Genomics, United Arab Emirates University, College of Medicine and Health Sciences, Al-Ain, Abu Dhabi, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, Abu Dhabi, UAE
| | - Christina Mitropoulou
- Department of Genetics and Genomics, United Arab Emirates University, College of Medicine and Health Sciences, Al-Ain, Abu Dhabi, UAE
- The Golden Helix Foundation, London, UK
| | - Christina L Aquilante
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, USA.
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
6
|
Chauhan PM, Hemani RJ, Solanki ND, Shete NB, Gang SD, Konnur AM, Srivastava R, Pandey SN. A systematic review and meta-analysis recite the efficacy of Tacrolimus treatment in renal transplant patients in association with genetic variants of CYP3A5 gene. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2023; 11:275-292. [PMID: 37645617 PMCID: PMC10461032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/10/2023] [Indexed: 08/31/2023]
Abstract
Tacrolimus is an immunosuppressant with a narrow therapeutic index and pharmacokinetic variability. This variability may be attributed to genetic variants in gene CYP3A5 associated with Tacrolimus metabolism. Studies focusing on genetic variants in the CYP3A5 gene associated with Tacrolimus metabolism have been published, a meta-analysis of these published articles may provide a direction that can change the future research and clinical management of renal transplant patients. In this systematic review and meta-analysis, we have reviewed and analyzed the studies and clinical trials conducted to determine the association between genetic variants of CYP3A5 and Tacrolimus metabolism from the PubMed database and clinical trials (www.clinicaltrials.gov). This meta-analysis also assessed the correlation of CYP3A5 genotype (rs776746) with concentration/dose (Co/D) of Tacrolimus in renal transplant patients. The 59 published articles on genetic association of the CYP3A5 on Tacrolimus doses were reviewed for this systematic review. Meta-analysis showed that the Tacrolimus Co/D ratio is significantly lower in the CYP3A5 expressor group as compared with non-expressor in Asian, European as well as in mixed populations at any post-transplant period (P<0.0001). Our study further confirmed that the CYP3A5 variant (rs776746) is clinically relevant for the dose determination of Tacrolimus. Variations in Tacrolimus Co/D have been found to be significantly linked to the patient's CYP3A5 genetic variant (rs776746). The addition of other genetic variants involved in the pharmacokinetic of Tacrolimus may determine efficient regimen for drug dose. Our meta-analysis confirmed that the CYP3A5 genetic variant (rs776746) analysis is relevant in personalizing the Tacrolimus dose determination in renal transplant patients.
Collapse
Affiliation(s)
- Priyal M Chauhan
- Department of Pharmacology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT CampusChanga-388421, Gujarat, India
| | - Rashmi J Hemani
- Department of Pharmacology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT CampusChanga-388421, Gujarat, India
| | - Nilay D Solanki
- Department of Pharmacology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT CampusChanga-388421, Gujarat, India
| | - Nitiraj B Shete
- Department of Biostatistics, Muljibhai Patel Urological HospitalNadiad-387001 Gujarat, India
| | - Sishir D Gang
- Department of Nephrology, Muljibhai Patel Urological HospitalNadiad-387001, Gujarat, India
| | - Abhijit M Konnur
- Department of Nephrology, Muljibhai Patel Urological HospitalNadiad-387001, Gujarat, India
| | - Ratika Srivastava
- School of Life Sciences, Department of Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University)Lucknow-226025, UP, India
| | - Sachchida Nand Pandey
- Department of Pathology, Molecular Biology and Transplant Immunology, Muljibhai Patel Urological HospitalNadiad-387001, Gujarat, India
| |
Collapse
|
7
|
Tambur AR, Bestard O, Campbell P, Chong AS, Barrio MC, Ford ML, Gebel HM, Heidt S, Hickey M, Jackson A, Kosmoliaptsis V, Lefaucheur C, Louis K, Mannon RB, Mengel M, Morris A, Pinelli DF, Reed EF, Schinstock C, Taupin JL, Valenzuela N, Wiebe C, Nickerson P. Sensitization in transplantation: Assessment of Risk 2022 Working Group Meeting Report. Am J Transplant 2023; 23:133-149. [PMID: 36695615 DOI: 10.1016/j.ajt.2022.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/20/2022] [Accepted: 11/02/2022] [Indexed: 01/13/2023]
Abstract
The Sensitization in Transplantation: Assessment of Risk workgroup is a collaborative effort of the American Society of Transplantation and the American Society of Histocompatibility and Immunogenetics that aims at providing recommendations for clinical testing, highlights gaps in current knowledge, and proposes areas for further research to enhance histocompatibility testing in support of solid organ transplantation. This report provides updates on topics discussed by the previous Sensitization in Transplantation: Assessment of Risk working groups and introduces 2 areas of exploration: non-human leukocyte antigen antibodies and utilization of human leukocyte antigen antibody testing measurement to evaluate the efficacy of antibody-removal therapies.
Collapse
Affiliation(s)
- Anat R Tambur
- Department of Surgery, Comprehensive Transplant Center, Northwestern University, Chicago, Illinois, USA.
| | - Oriol Bestard
- Vall d'Hebron Institut de Recerca, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Patricia Campbell
- Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Canada
| | - Anita S Chong
- Section of Transplantation, Department of Surgery, The University of Chicago, Chicago, Illinois, USA
| | - Martha Crespo Barrio
- Department of Nephrology, Hospital del Mar & Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Mandy L Ford
- Department of Surgery and Emory Transplant Center, Emory University, Atlanta, Georgia, USA
| | - Howard M Gebel
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sebastiaan Heidt
- Department of Immunology, Leiden University Medical Center, Netherlands
| | - Michelle Hickey
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Annette Jackson
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, USA
| | | | - Carmen Lefaucheur
- Paris Translational Research Center for Organ Transplantation, Institut national de la santé et de la recherche médicale UMR-S970, Université de Paris, Paris, France
| | - Kevin Louis
- Paris Translational Research Center for Organ Transplantation, Institut national de la santé et de la recherche médicale UMR-S970, Université de Paris, Paris, France
| | - Roslyn B Mannon
- Department of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Michael Mengel
- Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, Canada
| | - Anna Morris
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - David F Pinelli
- Department of Surgery, Comprehensive Transplant Center, Northwestern University, Chicago, Illinois, USA
| | - Elaine F Reed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | | | - Jean-Luc Taupin
- Department of Immunology, Saint Louis Hospital and University Paris-Cité, Paris, France
| | - Nicole Valenzuela
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Chris Wiebe
- Department of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Peter Nickerson
- Department of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
8
|
Ong SS, Ho PJ, Khng AJ, Lim EH, Wong FY, Tan BKT, Lim SH, Tan EY, Tan SM, Tan VKM, Dent R, Tan TJY, Ngeow J, Madhukumar P, Hamzah JLB, Sim Y, Lim GH, Pang JS, Alcantara VS, Chan PMY, Chen JJC, Kuah S, Seah JCM, Buhari SA, Tang SW, Ng CWQ, Li J, Hartman M. Association between Breast Cancer Polygenic Risk Score and Chemotherapy-Induced Febrile Neutropenia: Null Results. Cancers (Basel) 2022; 14:cancers14112714. [PMID: 35681694 PMCID: PMC9179461 DOI: 10.3390/cancers14112714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The hypothesis that breast cancer (BC) susceptibility variants are linked to chemotherapy-induced toxicity has been previously explored. Here, we investigated the association between a validated 313-marker-based BC polygenic risk score (PRS) and chemotherapy-induced neutropenia without fever and febrile neutropenia (FNc) in Asian BC patients. METHODS This observational case-control study of Asian BC patients treated with chemotherapy included 161 FNc patients, 219 neutropenia patients, and 936 patients who did not develop neutropenia. A continuous PRS was calculated by summing weighted risk alleles associated with overall, estrogen receptor- (ER-) positive, and ER-negative BC risk. PRS distributions neutropenia or FNc cases were compared to controls who did not develop neutropenia using two-sample t-tests. Odds ratios (OR) and corresponding 95% confidence intervals were estimated for the associations between PRS (quartiles and per standard deviation (SD) increase) and neutropenia-related outcomes compared to controls. RESULTS PRS distributions were not significantly different in any of the comparisons. Higher PRSoverall quartiles were negatively correlated with neutropenia or FNc. However, the associations were not statistically significant (PRS per SD increase OR neutropenia: 0.91 [0.79-1.06]; FNc: 0.87 [0.73-1.03]). No dose-dependent trend was observed for the ER-positive weighted PRS (PRSER-pos) and ER-negative weighted PRS (PRSER-neg). CONCLUSION BC PRS was not strongly associated with chemotherapy-induced neutropenia or FNc.
Collapse
Affiliation(s)
- Seeu Si Ong
- Women’s Health and Genetics, Genome Institute of Singapore, 60 Biopolis Street, Genome, #02-01, Singapore 138672, Singapore; (S.S.O.); (P.J.H.); (A.J.K.)
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Peh Joo Ho
- Women’s Health and Genetics, Genome Institute of Singapore, 60 Biopolis Street, Genome, #02-01, Singapore 138672, Singapore; (S.S.O.); (P.J.H.); (A.J.K.)
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Singapore
| | - Alexis Jiaying Khng
- Women’s Health and Genetics, Genome Institute of Singapore, 60 Biopolis Street, Genome, #02-01, Singapore 138672, Singapore; (S.S.O.); (P.J.H.); (A.J.K.)
| | - Elaine Hsuen Lim
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore; (E.H.L.); (R.D.); (T.J.Y.T.); (J.N.)
| | - Fuh Yong Wong
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore;
| | - Benita Kiat-Tee Tan
- Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore; (B.K.-T.T.); (V.K.M.T.); (P.M.); (J.L.B.H.); (Y.S.)
- Department of Breast Surgery, Singapore General Hospital, Singapore 169608, Singapore
- Department of General Surgery, Sengkang General Hospital, Singapore 544886, Singapore
| | - Swee Ho Lim
- KK Breast Department, KK Women’s and Children’s Hospital, Singapore 229899, Singapore; (S.H.L.); (G.H.L.); (J.S.P.); (V.S.A.)
| | - Ern Yu Tan
- Department of General Surgery, Tan Tock Seng Hospital, Singapore 308433, Singapore; (E.Y.T.); (P.M.Y.C.); (J.J.C.C.); (S.K.)
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| | - Su-Ming Tan
- Division of Breast Surgery, Changi General Hospital, Singapore 529889, Singapore; (S.-M.T.); (J.C.M.S.)
| | - Veronique Kiak Mien Tan
- Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore; (B.K.-T.T.); (V.K.M.T.); (P.M.); (J.L.B.H.); (Y.S.)
- Department of Breast Surgery, Singapore General Hospital, Singapore 169608, Singapore
| | - Rebecca Dent
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore; (E.H.L.); (R.D.); (T.J.Y.T.); (J.N.)
| | - Tira Jing Ying Tan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore; (E.H.L.); (R.D.); (T.J.Y.T.); (J.N.)
| | - Joanne Ngeow
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore; (E.H.L.); (R.D.); (T.J.Y.T.); (J.N.)
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| | - Preetha Madhukumar
- Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore; (B.K.-T.T.); (V.K.M.T.); (P.M.); (J.L.B.H.); (Y.S.)
- Department of Breast Surgery, Singapore General Hospital, Singapore 169608, Singapore
| | - Julie Liana Bte Hamzah
- Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore; (B.K.-T.T.); (V.K.M.T.); (P.M.); (J.L.B.H.); (Y.S.)
- Department of Breast Surgery, Singapore General Hospital, Singapore 169608, Singapore
| | - Yirong Sim
- Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore; (B.K.-T.T.); (V.K.M.T.); (P.M.); (J.L.B.H.); (Y.S.)
- Department of Breast Surgery, Singapore General Hospital, Singapore 169608, Singapore
| | - Geok Hoon Lim
- KK Breast Department, KK Women’s and Children’s Hospital, Singapore 229899, Singapore; (S.H.L.); (G.H.L.); (J.S.P.); (V.S.A.)
| | - Jinnie Siyan Pang
- KK Breast Department, KK Women’s and Children’s Hospital, Singapore 229899, Singapore; (S.H.L.); (G.H.L.); (J.S.P.); (V.S.A.)
| | - Veronica Siton Alcantara
- KK Breast Department, KK Women’s and Children’s Hospital, Singapore 229899, Singapore; (S.H.L.); (G.H.L.); (J.S.P.); (V.S.A.)
| | - Patrick Mun Yew Chan
- Department of General Surgery, Tan Tock Seng Hospital, Singapore 308433, Singapore; (E.Y.T.); (P.M.Y.C.); (J.J.C.C.); (S.K.)
| | - Juliana Jia Chuan Chen
- Department of General Surgery, Tan Tock Seng Hospital, Singapore 308433, Singapore; (E.Y.T.); (P.M.Y.C.); (J.J.C.C.); (S.K.)
| | - Sherwin Kuah
- Department of General Surgery, Tan Tock Seng Hospital, Singapore 308433, Singapore; (E.Y.T.); (P.M.Y.C.); (J.J.C.C.); (S.K.)
| | - Jaime Chin Mui Seah
- Division of Breast Surgery, Changi General Hospital, Singapore 529889, Singapore; (S.-M.T.); (J.C.M.S.)
| | - Shaik Ahmad Buhari
- Department of Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore; (S.A.B.); (S.W.T.); (C.W.Q.N.)
| | - Siau Wei Tang
- Department of Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore; (S.A.B.); (S.W.T.); (C.W.Q.N.)
| | - Celene Wei Qi Ng
- Department of Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore; (S.A.B.); (S.W.T.); (C.W.Q.N.)
| | - Jingmei Li
- Women’s Health and Genetics, Genome Institute of Singapore, 60 Biopolis Street, Genome, #02-01, Singapore 138672, Singapore; (S.S.O.); (P.J.H.); (A.J.K.)
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Correspondence: ; Tel.: +65-6808-8312
| | - Mikael Hartman
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Singapore
- Department of Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore; (S.A.B.); (S.W.T.); (C.W.Q.N.)
| |
Collapse
|
9
|
Donor and recipient polygenic risk scores influence the risk of post-transplant diabetes. Nat Med 2022; 28:999-1005. [PMID: 35393535 DOI: 10.1038/s41591-022-01758-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 02/24/2022] [Indexed: 12/13/2022]
Abstract
Post-transplant diabetes mellitus (PTDM) reduces allograft and recipient life span. Polygenic risk scores (PRSs) show robust association with greater risk of developing type 2 diabetes (T2D). We examined the association of PTDM with T2D PRS in liver recipients (n = 1,581) and their donors (n = 1,555), and kidney recipients (n = 2,062) and their donors (n = 533). Recipient T2D PRS was associated with pre-transplant T2D and the development of PTDM. T2D PRS in liver donors, but not in kidney donors, was an independent risk factor for PTDM development. The inclusion of a combined liver donor and recipient T2D PRS significantly improved PTDM prediction compared with a model that included only clinical characteristics: the area under the curve (AUC) was 67.6% (95% confidence interval (CI) 64.1-71.1%) for the combined T2D PRS versus 62.3% (95% CI 58.8-65.8%) for the clinical characteristics model (P = 0.0001). Liver recipients in the highest quintile of combined donor and recipient T2D PRS had the greatest risk of PTDM, with an odds ratio of 3.22 (95% CI 2.07-5.00) (P = 1.92 × 10-7) compared with those in the lowest quintile. In conclusion, T2D PRS identifies transplant candidates with high risk of PTDM for which pre-emptive diabetes management and donor selection may be warranted.
Collapse
|
10
|
Kong CL, Kelly NK, Sundararajan M, Rathinam S, Gonzales JA, Thundikandy R, Vedhanayaki R, Kanakath A, Murugan B, Doan T, Goldstein D, Al-Dhibi HA, Acharya NR. Comparison of CD4 Counts with Mycophenolate Mofetil versus Methotrexate from the First-line Antimetabolites as Steroid-sparing Treatment (FAST) Uveitis Trial. Ocul Immunol Inflamm 2022; 30:198-202. [PMID: 32779952 PMCID: PMC7876156 DOI: 10.1080/09273948.2020.1774906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE Sub-analysis of the FAST Trial comparing change in CD4 (∆CD4) from baseline through 12 months in uveitis patients treated with mycophenolate mofetil (MMF) and methotrexate (MTX). METHODS Patients were randomly allocated to 1.5 g twice daily MMF or 25 mg weekly MTX. Individuals with CD4 counts at baseline, 6 months (or treatment failure prior), and 12 months (or treatment failure between 6 and 12 months) were included. The association between treatment and ∆CD4 (cells/μL) was analyzed using multivariable linear regression. RESULTS There was no significant difference in ∆CD4 between MMF and MTX at 6 months (-31.7 cells/μL for MMF compared to MTX; 95% CI: -358.2 to 294.8, P = .85) and 12 months (-78.3 cells/μL for MMF compared to MTX; 95% CI: -468.0 to 311.3; P = .69). CONCLUSION There was no significant difference in ∆CD4 between MMF and MTX from baseline to 12 months, suggesting that MMF does not confer additional risk of CD4 lymphopenia in uveitic patients.ClinicalTrials.gov Identifier: NCT01829295.
Collapse
Affiliation(s)
- Christina L. Kong
- F.I. Proctor Foundation, University of California, San Francisco, San Francisco, California, USA
| | - Nicole K Kelly
- F.I. Proctor Foundation, University of California, San Francisco, San Francisco, California, USA
| | - Miel Sundararajan
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California, USA
| | - S.R Rathinam
- Uvea Services, Aravind Eye Hospitals and Postgraduate Institute of Ophthalmology, Madurai, India
| | - John A. Gonzales
- F.I. Proctor Foundation, University of California, San Francisco, San Francisco, California, USA,Department of Ophthalmology, University of California, San Francisco, San Francisco, California, USA
| | - Radhika Thundikandy
- Uvea Services, Aravind Eye Hospitals and Postgraduate Institute of Ophthalmology, Madurai, India
| | - Rajesh Vedhanayaki
- Uvea Services, Aravind Eye Hospitals and Postgraduate Institute of Ophthalmology, Madurai, India
| | - Anuradha Kanakath
- Uvea Services, Aravind Eye Hospitals and Postgraduate Institute of Ophthalmology, Coimbatore, India
| | - Bala Murugan
- Uvea Services, Aravind Eye Hospitals and Postgraduate Institute of Ophthalmology, Pondicherry, India
| | - Thuy Doan
- F.I. Proctor Foundation, University of California, San Francisco, San Francisco, California, USA,Department of Ophthalmology, University of California, San Francisco, San Francisco, California, USA
| | - Debra Goldstein
- Department of Ophthalmology, Northwestern University, Chicago, Illinois, USA
| | - Hassan A. Al-Dhibi
- Division of Vitreoretinal Surgery and Uveitis, King Khaled Eye Specialist Hospital, Riyadh, Kingdom of Saudi Arabia
| | - Nisha R. Acharya
- F.I. Proctor Foundation, University of California, San Francisco, San Francisco, California, USA,Department of Ophthalmology, University of California, San Francisco, San Francisco, California, USA,Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
11
|
Yoon JG, Song SH, Choi S, Oh J, Jang IJ, Kim YJ, Moon S, Kim BJ, Cho Y, Kim HK, Min S, Ha J, Shin HS, Yang CW, Yoon HE, Yang J, Lee MG, Park JB, Kim MS. Unraveling the Genomic Architecture of the CYP3A Locus and ADME Genes for Personalized Tacrolimus Dosing. Transplantation 2021; 105:2213-2225. [PMID: 33654003 DOI: 10.1097/tp.0000000000003660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Tacrolimus (TAC) is an immunosuppressant widely prescribed following an allogenic organ transplant. Due to wide interindividual pharmacokinetic (PK) variability, optimizing TAC dosing based on genetic factors is required to minimize nephrotoxicity and acute rejections. METHODS We enrolled 1133 participants receiving TAC from 4 cohorts, consisting of 3 with kidney transplant recipients and 1 with healthy males from clinical trials. The effects of clinical factors were estimated to appropriately control confounding variables. A genome-wide association study, haplotype analysis, and a gene-based association test were conducted using the Korea Biobank Array or targeted sequencing for 114 pharmacogenes. RESULTS Genome-wide association study verified that CYP3A5*3 is the only common variant associated with TAC PK variability in Koreans. We detected several CYP3A5 and CYP3A4 rare variants that could potentially affect TAC metabolism. The haplotype structure of CYP3A5 stratified by CYP3A5*3 was a significant factor for CYP3A5 rare variant interpretation. CYP3A4 rare variant carriers among CYP3A5 intermediate metabolizers displayed higher TAC trough levels. Gene-based association tests in the 61 absorption, distribution, metabolism, and excretion genes revealed that CYP1A1 are associated with additional TAC PK variability: CYP1A1 rare variant carriers among CYP3A5 poor metabolizers showed lower TAC trough levels than the noncarrier controls. CONCLUSIONS Our study demonstrates that rare variant profiling of CYP3A5 and CYP3A4, combined with the haplotype structures of CYP3A locus, provide additive value for personalized TAC dosing. We also identified a novel association between CYP1A1 rare variants and TAC PK variability in the CYP3A5 nonexpressers that needs to be further investigated.
Collapse
Affiliation(s)
- Jihoon G Yoon
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute, Seoul, Republic of Korea
| | - Seung Hwan Song
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Surgery, Ewha Womans University Seoul Hospital, Seoul, Republic of Korea
| | - Sungkyoung Choi
- Department of Applied Mathematics, Hanyang University (ERICA), Ansan, Republic of Korea
| | - Jaeseong Oh
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - In-Jin Jang
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Young Jin Kim
- Division of Genome Research, Department of Precision Medicine, National Institute of Health, Chungcheongbuk-do, Republic of Korea
| | - Sanghoon Moon
- Division of Genome Research, Department of Precision Medicine, National Institute of Health, Chungcheongbuk-do, Republic of Korea
| | - Bong-Jo Kim
- Division of Genome Research, Department of Precision Medicine, National Institute of Health, Chungcheongbuk-do, Republic of Korea
| | - Yuri Cho
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyo Kee Kim
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sangil Min
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jongwon Ha
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
- Transplantation Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ho Sik Shin
- Division of Nephrology, Department of Internal Medicine, Gospel Hospital, Kosin University College of Medicine, Busan, Republic of Korea
| | - Chul Woo Yang
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, Seoul, Republic of Korea
| | - Hye Eun Yoon
- Divison of Nephrology, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, Republic of Korea
| | - Jaeseok Yang
- Department of Surgery, Transplantation Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Min Goo Lee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute, Seoul, Republic of Korea
| | - Jae Berm Park
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Myoung Soo Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
12
|
Muhammad A, Aka IT, Birdwell KA, Gordon AS, Roden DM, Wei WQ, Mosley JD, Van Driest SL. Genome-Wide Approach to Measure Variant-Based Heritability of Drug Outcome Phenotypes. Clin Pharmacol Ther 2021; 110:714-722. [PMID: 34151428 PMCID: PMC8376753 DOI: 10.1002/cpt.2323] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/16/2021] [Indexed: 12/18/2022]
Abstract
Pharmacogenomic studies have successfully identified variants-typically with large effect sizes in drug target and metabolism enzymes-that predict drug outcome phenotypes. However, these variants may account for a limited proportion of phenotype variability attributable to the genome. Using genome-wide common variation, we measured the narrow-sense heritability ( h SNP 2 ) of seven pharmacodynamic and five pharmacokinetic phenotypes across three cardiovascular drugs, two antibiotics, and three immunosuppressants. We used a Bayesian hierarchical mixed model, BayesR, to model the distribution of genome-wide variant effect sizes for each drug phenotype as a mixture of four normal distributions of fixed variance (0, 0.01%, 0.1%, and 1% of the total additive genetic variance). This model allowed us to parse h SNP 2 into bins representing contributions of no-effect, small-effect, moderate-effect, and large-effect variants, respectively. For the 12 phenotypes, a median of 969 (range 235-6,304) unique individuals of European ancestry and a median of 1,201,626 (range 777,427-1,514,275) variants were included in our analyses. The number of variants contributing to h SNP 2 ranged from 2,791 to 5,356 (median 3,347). Estimates for h SNP 2 ranged from 0.05 (angiotensin-converting enzyme inhibitor-induced cough) to 0.59 (gentamicin concentration). Small-effect and moderate-effect variants contributed a majority to h SNP 2 for every phenotype (range 61-95%). We conclude that drug outcome phenotypes are highly polygenic. Thus, larger genome-wide association studies of drug phenotypes are needed both to discover novel variants and to determine how genome-wide approaches may improve clinical prediction of drug outcomes.
Collapse
Affiliation(s)
- Ayesha Muhammad
- Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Ida T. Aka
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kelly A. Birdwell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Adam S. Gordon
- Department of Pharmacology, Northwestern University, Chicago, IL 60611, USA
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Dan M. Roden
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Wei-Qi Wei
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jonathan D. Mosley
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sara L. Van Driest
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
13
|
Hertz DL, Ramsey LB, Gopalakrishnan M, Leeder JS, Van Driest SL. Analysis Approaches to Identify Pharmacogenetic Associations With Pharmacodynamics. Clin Pharmacol Ther 2021; 110:589-594. [PMID: 34043820 PMCID: PMC10947489 DOI: 10.1002/cpt.2312] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 04/26/2021] [Indexed: 01/01/2023]
Abstract
Pharmacogenetics (PGx) seeks to enable selection of the right dose of the right drug for each patient to optimize therapeutic outcomes. Most PGx focuses on pharmacokinetics (PKs), due to our relatively advanced understanding of the genes involved in PKs and the causative effects of variants in those genes. Genetic variants can also affect pharmacodynamics (PDs), but relatively few PGx-PD associations have been identified. This is partially due to a more limited understanding of the relevant genes and the consequences of genetic variation, but is also due in part to the potential confounding of PK variability in assessments of clinical outcomes that have a contribution from both PKs and PDs. For example, it is challenging to confirm the effect of mu opioid receptor (OPRM1) genetic variation on opioid response due to the contribution of CYP2D6 genotype to bioactivation of some opioid drugs (i.e., codeine and tramadol). The objectives of this mini-review are to describe several recent efforts to discover and validate PGx-PD that disentangle the influence of PK variability and propose potential approaches that could be used in future PGx-PD analyses. We use the effect of OPRM1 genetics on opioid response to illustrate how these analyses could be conducted and conclude by discussing how PGx-PD could be translated into clinical practice to improve therapeutic outcomes.
Collapse
Affiliation(s)
- Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI, United States, 48109-1065
| | - Laura B Ramsey
- Divisions of Clinical Pharmacology & Research in Patient Services, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH United States, 45229
| | - Mathangi Gopalakrishnan
- Center for Translational Medicine, University of Maryland School of Pharmacy, Baltimore, Maryland – 21201, United States
| | - J. Steven Leeder
- Department of Pediatrics, Children’s Mercy Kansas City, Kansas City, MO, United States, 64108
| | - Sara L. Van Driest
- Departments of Pediatrics and Medicine, Vanderbilt University Medical Center, Nashville, TN, United States, 37232
| |
Collapse
|
14
|
Lentine KL, Pastan S, Mohan S, Reese PP, Leichtman A, Delmonico FL, Danovitch GM, Larsen CP, Harshman L, Wiseman A, Kramer HJ, Vassalotti J, Joseph J, Longino K, Cooper M, Axelrod DA. A Roadmap for Innovation to Advance Transplant Access and Outcomes: A Position Statement From the National Kidney Foundation. Am J Kidney Dis 2021; 78:319-332. [PMID: 34330526 DOI: 10.1053/j.ajkd.2021.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 05/01/2021] [Indexed: 02/07/2023]
Abstract
Over the past 65 years, kidney transplantation has evolved into the optimal treatment for patients with kidney failure, dramatically reducing suffering through improved survival and quality of life. However, access to transplant is still limited by organ supply, opportunities for transplant are inequitably distributed, and lifelong transplant survival remains elusive. To address these persistent needs, the National Kidney Foundation convened an expert panel to define an agenda for future research. The key priorities identified by the panel center on the needs to develop and evaluate strategies to expand living donation, improve waitlist management and transplant readiness, maximize use of available deceased donor organs, and extend allograft longevity. Strategies targeting the critical goal of decreasing organ discard that warrant research investment include educating patients and clinicians about potential benefits of accepting nonstandard organs, use of novel organ assessment technologies and real-time decision support, and approaches to preserve and resuscitate allografts before implantation. The development of personalized strategies to reduce the burden of lifelong immunosuppression and support "one transplant for life" was also identified as a vital priority. The panel noted the specific goal of improving transplant access and graft survival for children with kidney failure. This ambitious agenda will focus research investment to promote greater equity and efficiency in access to transplantation, and help sustain long-term benefits of the gift of life for more patients in need.
Collapse
Affiliation(s)
- Krista L Lentine
- Saint Louis University Center for Abdominal Transplantation, St Louis, MO.
| | - Stephen Pastan
- Department of Medicine, Emory Transplant Center, Atlanta, GA
| | - Sumit Mohan
- Department of Medicine, Columbia University Medical Center, New York, NY
| | - Peter P Reese
- Renal-Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA
| | - Alan Leichtman
- Department of Medicine, University of Michigan, Ann Arbor, MI
| | | | | | | | - Lyndsay Harshman
- Department of Pediatrics, University of Iowa Transplant Institute, Iowa City, IA
| | - Alexander Wiseman
- Department of Medicine, Centura Health-Porter Adventist Hospital, Aurora, CO
| | | | - Joseph Vassalotti
- National Kidney Foundation, New York, NY; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | | | - Matthew Cooper
- Department of Surgery, Medstar Georgetown Transplant Institute, Washington, DC
| | - David A Axelrod
- Department of Surgery, University of Iowa Transplant Institute, Iowa City, IA
| |
Collapse
|
15
|
Oreschak K, Saba LM, Rafaels N, Ambardekar AV, Deininger KM, PageII R, Lindenfeld J, Aquilante CL. Variants in mycophenolate and CMV antiviral drug pharmacokinetic and pharmacodynamic genes and leukopenia in heart transplant recipients. J Heart Lung Transplant 2021; 40:917-925. [PMID: 34253456 DOI: 10.1016/j.healun.2021.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The objective was to assess the relationship between single nucleotide polymorphisms in mycophenolate and cytomegalovirus antiviral drug pharmacokinetic and pharmacodynamic genes and drug-induced leukopenia in adult heart transplant recipients. METHODS This retrospective analysis included n = 148 patients receiving mycophenolate and a cytomegalovirus antiviral drug. In total, 81 single nucleotide polymorphisms in 21 pharmacokinetic and 23 pharmacodynamic genes were selected for investigation. The primary and secondary outcomes were mycophenolate and/or cytomegalovirus antiviral drug-induced leukopenia, defined as a white blood cell count <3.0 × 109/L, in the first six and 12 months post-heart transplant, respectively. RESULTS Mycophenolate and/or cytomegalovirus antiviral drug-induced leukopenia occurred in 20.3% of patients. HNF1A rs1169288 A>C (p.I27L) was associated with drug-induced leukopenia (unadjusted p = 0.002; false discovery rate <20%) in the first six months post-transplant. After adjusting for covariates, HNF1A rs1169288 variant C allele carriers had significantly higher odds of leukopenia compared to A/A homozygotes (odds ratio 6.19; 95% CI 1.97-19.43; p = 0.002). Single nucleotide polymorphisms in HNF1A, SLC13A1, and MBOAT1 were suggestively associated (p < 0.05) with the secondary outcome but were not significant after adjusting for multiple comparisons. CONCLUSION Our data suggest genetic variation may play a role in the development of leukopenia in patients receiving mycophenolate and cytomegalovirus antiviral drugs after heart transplantation. Following replication, pharmacogenetic markers, such as HNF1A rs1169288, could help identify patients at higher risk of drug-induced leukopenia, allowing for more personalized immunosuppressant therapy and cytomegalovirus prophylaxis following heart transplantation.
Collapse
Affiliation(s)
- Kris Oreschak
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, USA
| | - Laura M Saba
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, USA
| | - Nicholas Rafaels
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Amrut V Ambardekar
- Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kimberly M Deininger
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, USA
| | - RobertL PageII
- Department of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, USA
| | - JoAnn Lindenfeld
- Division of Cardiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Christina L Aquilante
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado, USA.
| |
Collapse
|
16
|
Bergan S, Brunet M, Hesselink DA, Johnson-Davis KL, Kunicki PK, Lemaitre F, Marquet P, Molinaro M, Noceti O, Pattanaik S, Pawinski T, Seger C, Shipkova M, Swen JJ, van Gelder T, Venkataramanan R, Wieland E, Woillard JB, Zwart TC, Barten MJ, Budde K, Dieterlen MT, Elens L, Haufroid V, Masuda S, Millan O, Mizuno T, Moes DJAR, Oellerich M, Picard N, Salzmann L, Tönshoff B, van Schaik RHN, Vethe NT, Vinks AA, Wallemacq P, Åsberg A, Langman LJ. Personalized Therapy for Mycophenolate: Consensus Report by the International Association of Therapeutic Drug Monitoring and Clinical Toxicology. Ther Drug Monit 2021; 43:150-200. [PMID: 33711005 DOI: 10.1097/ftd.0000000000000871] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/29/2021] [Indexed: 12/13/2022]
Abstract
ABSTRACT When mycophenolic acid (MPA) was originally marketed for immunosuppressive therapy, fixed doses were recommended by the manufacturer. Awareness of the potential for a more personalized dosing has led to development of methods to estimate MPA area under the curve based on the measurement of drug concentrations in only a few samples. This approach is feasible in the clinical routine and has proven successful in terms of correlation with outcome. However, the search for superior correlates has continued, and numerous studies in search of biomarkers that could better predict the perfect dosage for the individual patient have been published. As it was considered timely for an updated and comprehensive presentation of consensus on the status for personalized treatment with MPA, this report was prepared following an initiative from members of the International Association of Therapeutic Drug Monitoring and Clinical Toxicology (IATDMCT). Topics included are the criteria for analytics, methods to estimate exposure including pharmacometrics, the potential influence of pharmacogenetics, development of biomarkers, and the practical aspects of implementation of target concentration intervention. For selected topics with sufficient evidence, such as the application of limited sampling strategies for MPA area under the curve, graded recommendations on target ranges are presented. To provide a comprehensive review, this report also includes updates on the status of potential biomarkers including those which may be promising but with a low level of evidence. In view of the fact that there are very few new immunosuppressive drugs under development for the transplant field, it is likely that MPA will continue to be prescribed on a large scale in the upcoming years. Discontinuation of therapy due to adverse effects is relatively common, increasing the risk for late rejections, which may contribute to graft loss. Therefore, the continued search for innovative methods to better personalize MPA dosage is warranted.
Collapse
Affiliation(s)
- Stein Bergan
- Department of Pharmacology, Oslo University Hospital and Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Mercè Brunet
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, CIBERehd, Spain
| | - Dennis A Hesselink
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Kamisha L Johnson-Davis
- Department of Pathology, University of Utah Health Sciences Center and ARUP Laboratories, Salt Lake City, Utah
| | - Paweł K Kunicki
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warszawa, Poland
| | - Florian Lemaitre
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, Rennes, France
| | - Pierre Marquet
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | - Mariadelfina Molinaro
- Clinical and Experimental Pharmacokinetics Lab, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Ofelia Noceti
- National Center for Liver Tansplantation and Liver Diseases, Army Forces Hospital, Montevideo, Uruguay
| | | | - Tomasz Pawinski
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Warszawa, Poland
| | | | - Maria Shipkova
- Synlab TDM Competence Center, Synlab MVZ Leinfelden-Echterdingen GmbH, Leinfelden-Echterdingen, Germany
| | - Jesse J Swen
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Teun van Gelder
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, School of Pharmacy and Department of Pathology, Starzl Transplantation Institute, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eberhard Wieland
- Synlab TDM Competence Center, Synlab MVZ Leinfelden-Echterdingen GmbH, Leinfelden-Echterdingen, Germany
| | - Jean-Baptiste Woillard
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | - Tom C Zwart
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Markus J Barten
- Department of Cardiac- and Vascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Klemens Budde
- Department of Nephrology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Maja-Theresa Dieterlen
- Department of Cardiac Surgery, Heart Center, HELIOS Clinic, University Hospital Leipzig, Leipzig, Germany
| | - Laure Elens
- Integrated PharmacoMetrics, PharmacoGenomics and PharmacoKinetics (PMGK) Research Group, Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Vincent Haufroid
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique, UCLouvain and Department of Clinical Chemistry, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Satohiro Masuda
- Department of Pharmacy, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Olga Millan
- Pharmacology and Toxicology Laboratory, Biochemistry and Molecular Genetics Department, Biomedical Diagnostic Center, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, CIBERehd, Spain
| | - Tomoyuki Mizuno
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Dirk J A R Moes
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michael Oellerich
- Department of Clinical Pharmacology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
| | - Nicolas Picard
- INSERM, Université de Limoges, Department of Pharmacology and Toxicology, CHU de Limoges, U1248 IPPRITT, Limoges, France
| | | | - Burkhard Tönshoff
- Department of Pediatrics I, University Children's Hospital, Heidelberg, Germany
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Nils Tore Vethe
- Department of Pharmacology, Oslo University Hospital and Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Alexander A Vinks
- Department of Pharmacy, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Pierre Wallemacq
- Clinical Chemistry Department, Cliniques Universitaires St Luc, Université Catholique de Louvain, LTAP, Brussels, Belgium
| | - Anders Åsberg
- Department of Transplantation Medicine, Oslo University Hospital-Rikshospitalet and Department of Pharmacy, University of Oslo, Oslo, Norway; and
| | - Loralie J Langman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
17
|
Maldonado AQ, West-Thielke P, Joyal K, Rogers C. Advances in personalized medicine and noninvasive diagnostics in solid organ transplantation. Pharmacotherapy 2021; 41:132-143. [PMID: 33156560 DOI: 10.1002/phar.2484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/29/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022]
Abstract
Personalized medicine has been a mainstay and in practice in transplant pharmacotherapy since the advent of the field. Decisions pertaining to the diagnosis, selection, and monitoring of transplant pharmacotherapy are aimed toward the individual, the allograft, and the overall immunologic needs of the patient. Recent advances in pharmacogenomics, noninvasive biomarkers, and artificial intelligence (AI) technologies have the promise of transforming the way we individualize treatment and monitor allograft function. Pharmacogenomic testing can provide clinicians with additional data that can minimize toxicity and maximize therapeutic dosing in high-risk patients, leading to more informed decisions that may decrease the risk of rejection and adverse outcomes related to immunosuppressive therapies. Development of noninvasive strategies to monitor allograft function may offer safer and more convenient methods to detect allograft injury. Cell free DNA and gene expression profiling offer the potential to serve as "liquid biopsies" minimizing the risk to patients and providing clinicians with useful molecular data that may help individualize immunosuppression and rejection treatment. Use of big data in transplant and novel AI platforms, such as the iBox, hold tremendous promise in providing clinicians a "glimpse into the future" thereby allowing for a more individualized approach to immunosuppressive therapy that may minimize future adverse outcomes. Advances in diagnostics, laboratory science, and AI have made the application of personalized medicine even more tailored for solid organ transplant recipients. In this perspective, we summarize the current and emerging tools available, literature supporting use, and the horizon for future personalization of transplantation.
Collapse
Affiliation(s)
| | | | - Kayla Joyal
- Lahey Hospital and Medical Center, Burlington, Massachusetts, USA
| | | |
Collapse
|
18
|
Fu R, Tajima S, Shigematsu T, Zhang M, Tsuchimoto A, Egashira N, Ieiri I, Masuda S. Establishment of an experimental rat model of tacrolimus-induced kidney injury accompanied by interstitial fibrosis. Toxicol Lett 2021; 341:43-50. [PMID: 33516819 DOI: 10.1016/j.toxlet.2021.01.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 12/26/2022]
Abstract
Nephrotoxicity is the major adverse reaction to tacrolimus; however, the underlying mechanisms remain to be fully elucidated. Although several tacrolimus-induced nephrotoxicity animal models have been reported, most renal injury rat models contain factors other than tacrolimus. Here, we report the development of a new nephrotoxicity with interstitial fibrosis rat model induced by tacrolimus administration. Thirty Wistar rats were randomly divided into four groups: sham-operated (Sham), vehicle-treated ischemia reperfusion (I/R) injury (IRI), tacrolimus treated (TAC) and tacrolimus treated I/R injury (TAC + IRI). Rats subjected to IR injury and treated with tacrolimus for 2 weeks showed higher serum creatinine (Scr), blood urea nitrogen (BUN), serum magnesium (Mg) and serum potassium (K), indicating decreased renal function. In addition, tacrolimus treatment combined with IR injury increased histological injury (tubular vacuolation, glomerulosclerosis and interstitial fibrosis), as well as α-smooth muscle actin (α-SMA), transforming growth factor-β (TGF-β), and kidney injury molecule-1 (KIM-1) expression in the renal cortex. In summary, we have developed a tacrolimus-induced kidney injury rat model with interstitial fibrosis within 2 weeks by creating conditions mimicking renal transplantation via tacrolimus administration following ischemia-reperfusion.
Collapse
Affiliation(s)
- Rao Fu
- Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Japan
| | | | - Tomohiro Shigematsu
- Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Japan; Department of Pharmacy, Kyushu University Hospital, Japan
| | - Mengyu Zhang
- Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Japan
| | - Akihiro Tsuchimoto
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Nobuaki Egashira
- Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Japan; Department of Pharmacy, Kyushu University Hospital, Japan
| | - Ichiro Ieiri
- Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Japan; Department of Pharmacy, Kyushu University Hospital, Japan
| | - Satohiro Masuda
- Department of Pharmacy, International University of Health and Welfare Narita Hospital, Japan; Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, International University of Health and Welfare, Japan
| |
Collapse
|
19
|
Nguyen TT, Pearson RA, Mohamed ME, Schladt DP, Berglund D, Rivers Z, Skaar DJ, Wu B, Guan W, van Setten J, Keating BJ, Dorr C, Remmel RP, Matas AJ, Mannon RB, Israni AK, Oetting WS, Jacobson PA. Pharmacogenomics in kidney transplant recipients and potential for integration into practice. J Clin Pharm Ther 2020; 45:1457-1465. [PMID: 32662547 PMCID: PMC7719579 DOI: 10.1111/jcpt.13223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/14/2020] [Accepted: 06/11/2020] [Indexed: 11/29/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Pharmacogenomic biomarkers are now used in many clinical care settings and represent one of the successes of precision medicine. Genetic variants are associated with pharmacokinetic and pharmacodynamic changes leading to medication adverse effects and changes in clinical response. Actionable pharmacogenomic variants are common in transplant recipients and have implications for medications used in transplant, but yet are not broadly incorporated into practice. METHODS From the Clinical Pharmacogenetics Implementation Consortium and Dutch Pharmacogenetics Working Group guidelines, and PharmGKB databases, 12 pharmacogenomic genes with 30 variants were selected and used to create diplotypes and actionable pharmacogenomic phenotypes. A total of 853 kidney allograft recipients who had genomic information available from a genome-wide association study were included. RESULTS Each recipient had at least one actionable pharmacogenomic diplotype/phenotype, whereas the majority (58%) had three or four actionable diplotypes/phenotypes and 17.4% had five or more among the 12 genes. The participants carried actionable diplotypes/phenotypes for multiple medications, including tacrolimus, azathioprine, clopidogrel, warfarin, simvastatin, voriconazole, antidepressants and proton-pump inhibitors. WHAT IS NEW AND CONCLUSION Pharmacogenomic variants are common in transplant recipients, and transplant recipients receive medications that have actionable variants. CLINICAL TRIAL Genomics of Transplantation, clinicaltrials.gov (NCT01714440).
Collapse
Affiliation(s)
- Tam T Nguyen
- College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | | | - Moataz E Mohamed
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
- Department of Pharmacy Practice, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - David P Schladt
- Chronic Disease Research Group, Minneapolis Medical Research Foundation, Minneapolis, MN, USA
| | - Danielle Berglund
- Complex Care Core Analytics, Fairview University of Minnesota, Minneapolis, MN, USA
| | - Zachary Rivers
- Social and Administrative Pharmacy, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Debra J Skaar
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Baolin Wu
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Jessica van Setten
- Department of Cardiology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
| | - Brendan J Keating
- Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Casey Dorr
- Minneapolis Medical Research Foundation and Division of Nephrology, Hennepin Healthcare, Minneapolis, MN, USA
| | - Rory P Remmel
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Arthur J Matas
- Department of Surgery, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Roslyn B Mannon
- Department of Nephrology, School of Medicine, University of Nebraska, Omaha, NE, USA
| | - Ajay K Israni
- Division of Nephrology, Hennepin Healthcare, Minneapolis, MN, USA
- Epidemiology & Community Health, University of Minnesota, Minneapolis, MN, USA
| | - William S Oetting
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Pamala A Jacobson
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
20
|
Genetic background and transplantation outcomes: insights from genome-wide association studies. Curr Opin Organ Transplant 2020; 25:35-41. [PMID: 31815792 DOI: 10.1097/mot.0000000000000718] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW The current review summarizes recent advances in the genetic studies of transplantation outcomes, including new genome-wide association studies for acute rejection, allograft survival, pharmacogenomics, and common transplant comorbidities. RECENT FINDINGS Genetic studies of kidney transplantation outcomes have begun to address the question of genetic compatibility beyond human leukocyte antigens, including the role of genome-wide mismatches in missense variants, and the 'genomic collision' hypothesis under which the risk of rejection may be increased in recipients homozygous for loss-of-function variants with grafts from nonhomozygous donors. In recent pilot studies, missense mismatch scores for transmembrane and secreted proteins were associated with antibodies against the mismatched peptides and reduced allograft survival. A 'genomic collision' at the LIMS1 locus involving a common deletion near LIMS1 gene was associated with anti-LIMS1 antibody response and increased risk of rejection. Additional genetic factors under active investigation include genome-wide polygenic risk scores for renal function and apolipoprotein L1 risk genotypes in African-American kidney donors. Due to the heterogeneity and complexity of clinical outcomes, new genome-wide association studies for rejection, allograft survival, and specific transplant comorbidities will require larger multicenter meta-analyses. SUMMARY Genetic compatibilities between donor and recipient represent an important determinant of rejection and long-term allograft survival. Genetic background of transplant donors may be additionally predictive of allograft function, while recipient's genomes are likely determinant of a wide range of transplantation outcomes, from rejection susceptibility to pharmacogenetics and various comorbidities related to prolonged immunosuppression.
Collapse
|
21
|
van Gelder T, Meziyerh S, Swen JJ, de Vries APJ, Moes DJAR. The Clinical Impact of the C 0/D Ratio and the CYP3A5 Genotype on Outcome in Tacrolimus Treated Kidney Transplant Recipients. Front Pharmacol 2020; 11:1142. [PMID: 32848756 PMCID: PMC7411304 DOI: 10.3389/fphar.2020.01142] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/13/2020] [Indexed: 01/08/2023] Open
Abstract
Tacrolimus is metabolized by CYP3A4 and CYP3A5 enzymes. Patients expressing CYP3A5 (in Caucasian patients about 15% of the population but more frequent in African Americans and Asians) have a dose requirement that is around 50% higher than non-expressers to reach the target concentration. CYP3A5 expressers can be considered fast metabolizers. The trough concentration/dose (C0/D) ratio of tacrolimus has recently been proposed as a prognostic marker for poor outcome after kidney transplantation. Patients with a low C0/D ratio (also referred to as fast metabolizers) seem to have more tacrolimus-related nephrotoxicity, more BK-viremia, and a lower graft survival. At first sight, the expression of CYP3A5 and a low C0/D ratio seem to be overlapping factors, both pointing towards patients in whom a higher tacrolimus dose is needed to reach the tacrolimus target concentration. However, there are important differences, and these differences may explain why the impact of the C0/D ratio on long term outcome is stronger than for CYP3A5 genotype status. Patients with a low C0/D ratio require a high tacrolimus dose and are exposed to high tacrolimus peak concentrations. The higher peak exposure to tacrolimus (and/or its metabolites) may explain the higher incidence of nephrotoxicity, BK-viremia and graft loss. A potential confounder is the concurrent maintenance treatment of corticosteroids, as steroids are sometimes continued in patients at high immunological risk. Steroids induce the metabolism of tacrolimus via pregnane X receptor mediated increased CYP3A4 expression, resulting in lower tacrolimus C0/D ratio in high risk patients. Also non-adherence may result in lower C0/D ratio which is also associated with poor outcome. The C0/D ratio of tacrolimus does seem to identify a group of patients with increased risk of poor outcome after kidney transplantation. Our recommendation is to monitor tacrolimus peak concentrations in these patients, and if these are high then target slightly lower pre-dose concentrations. Another possibility would be to switch to a prolonged release formulation or to dose the drug more frequently, in smaller doses, to avoid high peak concentrations.
Collapse
Affiliation(s)
- Teun van Gelder
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, Netherlands
| | - Soufian Meziyerh
- Department of Internal Medicine, Division of Nephrology, Leiden University Medical Center, Leiden, Netherlands.,Leiden Transplant Center, Leiden University Medical Center, Leiden, Netherlands
| | - Jesse J Swen
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, Netherlands
| | - Aiko P J de Vries
- Department of Internal Medicine, Division of Nephrology, Leiden University Medical Center, Leiden, Netherlands.,Leiden Transplant Center, Leiden University Medical Center, Leiden, Netherlands
| | - Dirk Jan A R Moes
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
22
|
Fishman CE, Mohebnasab M, van Setten J, Zanoni F, Wang C, Deaglio S, Amoroso A, Callans L, van Gelder T, Lee S, Kiryluk K, Lanktree MB, Keating BJ. Genome-Wide Study Updates in the International Genetics and Translational Research in Transplantation Network (iGeneTRAiN). Front Genet 2019; 10:1084. [PMID: 31803228 PMCID: PMC6873800 DOI: 10.3389/fgene.2019.01084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 10/09/2019] [Indexed: 12/14/2022] Open
Abstract
The prevalence of end-stage renal disease (ESRD) and the number of kidney transplants performed continues to rise every year, straining the procurement of deceased and living kidney allografts and health systems. Genome-wide genotyping and sequencing of diseased populations have uncovered genetic contributors in substantial proportions of ESRD patients. A number of these discoveries are beginning to be utilized in risk stratification and clinical management of patients. Specifically, genetics can provide insight into the primary cause of chronic kidney disease (CKD), the risk of progression to ESRD, and post-transplant outcomes, including various forms of allograft rejection. The International Genetics & Translational Research in Transplantation Network (iGeneTRAiN), is a multi-site consortium that encompasses >45 genetic studies with genome-wide genotyping from over 51,000 transplant samples, including genome-wide data from >30 kidney transplant cohorts (n = 28,015). iGeneTRAiN is statistically powered to capture both rare and common genetic contributions to ESRD and post-transplant outcomes. The primary cause of ESRD is often difficult to ascertain, especially where formal biopsy diagnosis is not performed, and is unavailable in ∼2% to >20% of kidney transplant recipients in iGeneTRAiN studies. We overview our current copy number variant (CNV) screening approaches from genome-wide genotyping datasets in iGeneTRAiN, in attempts to discover and validate genetic contributors to CKD and ESRD. Greater aggregation and analyses of well phenotyped patients with genome-wide datasets will undoubtedly yield insights into the underlying pathophysiological mechanisms of CKD, leading the way to improved diagnostic precision in nephrology.
Collapse
Affiliation(s)
- Claire E Fishman
- Division of Transplantation Department of Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Maede Mohebnasab
- Division of Transplantation Department of Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Jessica van Setten
- Department of Cardiology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
| | - Francesca Zanoni
- Department of Medicine, Division of Nephrology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, United States
| | - Chen Wang
- Department of Medicine, Division of Nephrology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, United States
| | - Silvia Deaglio
- Immunogenetics and Biology of Transplantation, Città della Salute e della Scienza, University Hospital of Turin, Turin, Italy.,Medical Genetics, Department of Medical Sciences, University Turin, Turin, Italy
| | - Antonio Amoroso
- Immunogenetics and Biology of Transplantation, Città della Salute e della Scienza, University Hospital of Turin, Turin, Italy.,Medical Genetics, Department of Medical Sciences, University Turin, Turin, Italy
| | - Lauren Callans
- Division of Transplantation Department of Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Teun van Gelder
- Department of Hospital Pharmacy, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Sangho Lee
- Department of Nephrology, Khung Hee University, Seoul, South Korea
| | - Krzysztof Kiryluk
- Department of Medicine, Division of Nephrology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, United States
| | - Matthew B Lanktree
- Division of Nephrology, St. Joseph's Healthcare Hamilton, McMaster University, Hamilton, ON, Canada
| | - Brendan J Keating
- Division of Transplantation Department of Surgery, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|