1
|
Karabag D, Heneka MT, Ising C. The putative contribution of cellular senescence to driving tauopathies. Trends Immunol 2024; 45:837-848. [PMID: 39306559 DOI: 10.1016/j.it.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 10/13/2024]
Abstract
During mammalian aging, senescent cells accumulate in the body. Recent evidence suggests that senescent cells potentially contribute to age-related neurodegenerative diseases in the central nervous system (CNS), including tauopathies such as Alzheimer's disease (AD). Senescent cells undergo irreversible cell cycle arrest and release an inflammatory 'senescence-associated secretory profile' (SASP), which can exert devastating effects on surrounding cells. Senescent markers and SASP factors have been detected in multiple brain cells in tauopathies, including microglia, astrocytes, and perhaps even post-mitotic neurons, possibly contributing to the initiation as well as progression of these diseases. Here, we discuss the implications of presenting a senescent phenotype in tauopathies and highlight a potential role for the NOD-like receptor protein 3 (NLRP3) inflammasome as a newfound mechanism implicated in senescence and SASP formation.
Collapse
Affiliation(s)
- Deniz Karabag
- Department for Neuroimmunology, Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Cologne, Germany
| | - Michael T Heneka
- Department for Neuroimmunology, Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg; Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Christina Ising
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Cologne, Germany.
| |
Collapse
|
2
|
Chamberland É, Moravveji S, Doyon N, Duchesne S. A computational model of Alzheimer's disease at the nano, micro, and macroscales. Front Neuroinform 2024; 18:1348113. [PMID: 38586183 PMCID: PMC10995318 DOI: 10.3389/fninf.2024.1348113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/26/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction Mathematical models play a crucial role in investigating complex biological systems, enabling a comprehensive understanding of interactions among various components and facilitating in silico testing of intervention strategies. Alzheimer's disease (AD) is characterized by multifactorial causes and intricate interactions among biological entities, necessitating a personalized approach due to the lack of effective treatments. Therefore, mathematical models offer promise as indispensable tools in combating AD. However, existing models in this emerging field often suffer from limitations such as inadequate validation or a narrow focus on single proteins or pathways. Methods In this paper, we present a multiscale mathematical model that describes the progression of AD through a system of 19 ordinary differential equations. The equations describe the evolution of proteins (nanoscale), cell populations (microscale), and organ-level structures (macroscale) over a 50-year lifespan, as they relate to amyloid and tau accumulation, inflammation, and neuronal death. Results Distinguishing our model is a robust foundation in biological principles, ensuring improved justification for the included equations, and rigorous parameter justification derived from published experimental literature. Conclusion This model represents an essential initial step toward constructing a predictive framework, which holds significant potential for identifying effective therapeutic targets in the fight against AD.
Collapse
Affiliation(s)
- Éléonore Chamberland
- Centre de Recherche CERVO, Institut Universitaire de Santé Mentale de Québec, Québec, QC, Canada
- Département de Mathématiques et de Statistique, Québec, QC, Canada
| | - Seyedadel Moravveji
- Centre de Recherche CERVO, Institut Universitaire de Santé Mentale de Québec, Québec, QC, Canada
- Département de Mathématiques et de Statistique, Québec, QC, Canada
| | - Nicolas Doyon
- Centre de Recherche CERVO, Institut Universitaire de Santé Mentale de Québec, Québec, QC, Canada
- Département de Mathématiques et de Statistique, Québec, QC, Canada
| | - Simon Duchesne
- Centre de Recherche CERVO, Institut Universitaire de Santé Mentale de Québec, Québec, QC, Canada
- Département de Radiologie et Médecine Nucléaire, Université Laval, Québec, QC, Canada
- Centre de Recherche de l'Institut Universitaire en Cardiologie et Pneumologie de Québec, Québec, QC, Canada
| |
Collapse
|
3
|
Saha P, Ahmad F. Neuroprotective, Anti-Inflammatory and Antifibrillogenic Offerings by Emodin against Alzheimer's Dementia: A Systematic Review. ACS OMEGA 2024; 9:7296-7309. [PMID: 38405501 PMCID: PMC10882671 DOI: 10.1021/acsomega.3c07178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 02/27/2024]
Abstract
Background: Alzheimer's disease (AD) is among the major causes of dementia in the elderly and exerts tremendous clinical, psychological and socio-economic constraints. Currently, there are no effective disease-modifying/retarding anti-AD agents. Emodin is a bioactive phytochemical with potent multimodal anti-inflammatory, antioxidant, and antifibrillogenic properties. In particular, emodin may result in significant repression of the pathogenic mechanisms underlying AD. The purpose of this review is to accumulate and summarize all the primary research data evaluating the therapeutic actions of emodin in AD pathogenesis. Methodology: The search, selection, and retrieval of pertinent primary research articles were systematically performed using a methodically designed approach. A variety of keyword combinations were employed on online scholarly web-databases. Strict preset inclusion and exclusion criteria were used to select the retrieved studies. Data from the individual studies were summarized and compiled into different sections, based upon their findings. Results: Cellular and animal research indicates that emodin exerts robust multimodal neuroprotection in AD. While emodin effectively prevents tau and amyloid-beta (Aβ) oligomerization, it also mitigates their neurotoxicity by attenuating neuroinflammatory, oxidative, and bioenergetic defects. Evidences for emodin-mediated enhancements in memory, learning, and cognition were also found in the literature. Conclusion: Emodin is a potential anti-AD dietary supplement; however, further studies are warrantied to thoroughly understand its target players and mechanisms. Moreover, human clinical data on emodin-mediated amelioration of AD phenotype is largely lacking, and must be addressed in the future. Lastly, the safety of exogenously supplemented emodin must be thoroughly evaluated.
Collapse
Affiliation(s)
- Priyanka Saha
- Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology, Vellore 632014, India
| | - Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology, Vellore 632014, India
| |
Collapse
|
4
|
Plantone D, Pardini M, Righi D, Manco C, Colombo BM, De Stefano N. The Role of TNF-α in Alzheimer's Disease: A Narrative Review. Cells 2023; 13:54. [PMID: 38201258 PMCID: PMC10778385 DOI: 10.3390/cells13010054] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
This review analyzes the role of TNF-α and its increase in biological fluids in mild cognitive impairment, and Alzheimer's disease (AD). The potential inhibition of TNF-α with pharmacological strategies paves the way for preventing AD and improving cognitive function in people at risk for dementia. We conducted a narrative review to characterize the evidence in relation to the involvement of TNF-α in AD and its possible therapeutic inhibition. Several studies report that patients with RA and systemic inflammatory diseases treated with TNF-α blocking agents reduce the probability of emerging dementia compared with the general population. Animal model studies also showed interesting results and are discussed. An increasing amount of basic scientific data and clinical studies underscore the importance of inflammatory processes and subsequent glial activation in the pathogenesis of AD. TNF-α targeted therapy is a biologically plausible approach for cognition preservation and further trials are necessary to investigate the potential benefits of therapy in populations at risk of developing AD.
Collapse
Affiliation(s)
- Domenico Plantone
- Department of Medicine, Surgery and Neuroscience, University of Siena, Viale Bracci 2, 53100 Siena, Italy; (D.R.); (C.M.); (N.D.S.)
| | - Matteo Pardini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, L.go P. Daneo 3, 16132 Genova, Italy;
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy;
| | - Delia Righi
- Department of Medicine, Surgery and Neuroscience, University of Siena, Viale Bracci 2, 53100 Siena, Italy; (D.R.); (C.M.); (N.D.S.)
| | - Carlo Manco
- Department of Medicine, Surgery and Neuroscience, University of Siena, Viale Bracci 2, 53100 Siena, Italy; (D.R.); (C.M.); (N.D.S.)
| | - Barbara Maria Colombo
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy;
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Viale Bracci 2, 53100 Siena, Italy; (D.R.); (C.M.); (N.D.S.)
| |
Collapse
|
5
|
Zhou F, Sun Y, Xie X, Zhao Y. Blood and CSF chemokines in Alzheimer's disease and mild cognitive impairment: a systematic review and meta-analysis. Alzheimers Res Ther 2023; 15:107. [PMID: 37291639 DOI: 10.1186/s13195-023-01254-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
OBJECTIVE Chemokines, which are chemotactic inflammatory mediators involved in controlling the migration and residence of all immune cells, are closely associated with brain inflammation, recognized as one of the potential processes/mechanisms associated with cognitive impairment. We aim to determine the chemokines which are significantly altered in Alzheimer's disease (AD) and mild cognitive impairment (MCI), as well as the respective effect sizes, by performing a meta-analysis of chemokines in cerebrospinal fluid (CSF) and blood (plasma or serum). METHODS We searched three databases (Pubmed, EMBASE and Cochrane library) for studies regarding chemokines. The three pairwise comparisons were as follows: AD vs HC, MCI vs healthy controls (HC), and AD vs MCI. The fold-change was calculated using the ratio of mean (RoM) chemokine concentration for every study. Subgroup analyses were performed for exploring the source of heterogeneity. RESULTS Of 2338 records identified from the databases, 61 articles comprising a total of 3937 patients with AD, 1459 with MCI, and 4434 healthy controls were included. The following chemokines were strongly associated with AD compared with HC: blood CXCL10 (RoM, 1.92, p = 0.039), blood CXCL9 (RoM, 1.78, p < 0.001), blood CCL27 (RoM, 1.34, p < 0.001), blood CCL15 (RoM, 1.29, p = 0.003), as well as CSF CCL2 (RoM, 1.19, p < 0.001). In the comparison of AD with MCI, there was significance for blood CXCL9 (RoM, 2.29, p < 0.001), blood CX3CL1 (RoM, 0.77, p = 0.017), and blood CCL1 (RoM, 1.37, p < 0.001). Of the chemokines tested, blood CX3CL1 (RoM, 2.02, p < 0.001) and CSF CCL2 (RoM, 1.16, p = 0.004) were significant for the comparison of MCI with healthy controls. CONCLUSIONS Chemokines CCL1, CCL2, CCL15, CCL27, CXCL9, CXCL10, and CX3CL1 might be most promising to serve as key molecular markers of cognitive impairment, although more cohort studies with larger populations are needed.
Collapse
Affiliation(s)
- Futao Zhou
- School of Basic Medicine, Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, China.
| | - Yangyan Sun
- School of Basic Medicine, Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, China
| | - Xinhua Xie
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Yushi Zhao
- School of Basic Medicine, Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, China
| |
Collapse
|
6
|
Leonardo S, Fregni F. Association of inflammation and cognition in the elderly: A systematic review and meta-analysis. Front Aging Neurosci 2023; 15:1069439. [PMID: 36815174 PMCID: PMC9939705 DOI: 10.3389/fnagi.2023.1069439] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/05/2023] [Indexed: 02/09/2023] Open
Abstract
Background The development of mild cognitive impairment (MCI) and Alzheimer's disease (AD) may be associated with an inflammatory process. Inflammatory cytokines may be a surrogate for systemic inflammation leading to worsening neurological function. We aim to investigate the association between cognitive impairment and inflammation by pooling and analyzing the data from previously published studies. Methods We performed a systematic literature search on MEDLINE, PubMed, Embase, Web of Science, and Scopus for prospective longitudinal and cross-sectional studies evaluating the relationship between inflammation and cognitive functions. Results A total of 79 articles were included in our systematic review and meta-analysis. Pooled estimates from cross-sectional studies have demonstrated an increased level of C-reactive protein (CRP) [Hedges's g 0.35, 95% CI (0.16, 0.55), p < 0.05], IL-1β [0.94, 95% CI (-0.04, 1.92), p < 0.05], interleukin-6 (IL-6) [0.46, 95% CI (0.05, 0.88), p < 0.005], TNF alpha [0.22, 95% CI (-0.24, 0.68), p < 0.05], sTNFR-1 [0.74, 95% CI (0.46, 1.02), p < 0.05] in AD compared to controls. Similarly, higher levels of IL-1β [0.17, 95% CI (0.05, 0.28), p < 0.05], IL-6 [0.13, 95% CI (0.08, 0.18), p < 0.005], TNF alpha [0.28, 95% CI (0.07, 0.49), p < 0.05], sTNFR-1 [0.21, 95% CI (0.05, 0.48), p < 0.05] was also observed in MCI vs. control samples. The data from longitudinal studies suggested that levels of IL-6 significantly increased the risk of cognitive decline [OR = 1.34, 95% CI (1.13, 1.56)]. However, intermediate levels of IL-6 had no significant effect on the final clinical endpoint [OR = 1.06, 95% CI (0.8, 1.32)]. Conclusion The data from cross-sectional studies suggest a higher level of inflammatory cytokines in AD and MCI as compared to controls. Moreover, data from longitudinal studies suggest that the risk of cognitive deterioration may increase by high IL-6 levels. According to our analysis, CRP, antichymotrypsin (ACT), Albumin, and tumor necrosis factor (TNF) alpha may not be good surrogates for neurological degeneration over time.
Collapse
Affiliation(s)
- Sofia Leonardo
- Ph.D. Department, Universidad Francisco Marroquín, Guatemala City, Guatemala,*Correspondence: Sofia Leonardo,
| | - Felipe Fregni
- Center for Neuromodulation and Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
7
|
Llano DA, Devanarayan P, Devanarayan V. CSF peptides from VGF and other markers enhance prediction of MCI to AD progression using the ATN framework. Neurobiol Aging 2023; 121:15-27. [PMID: 36368195 DOI: 10.1016/j.neurobiolaging.2022.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/15/2022] [Accepted: 07/23/2022] [Indexed: 12/14/2022]
Abstract
The amyloid beta, tau, neurodegenerative markers framework has been proposed to serve as a system to classify and combine biomarkers for Alzheimer's Disease (AD). Although cerebrospinal (CSF) fluid AT (amyloid beta and tau)-based biomarkers have a well-established track record to distinguish AD from control subjects and to predict conversion from mild cognitive impairment (MCI) to AD, there is not an established non-tau based neurodegenerative ("N") marker from CSF. Here, we examine the ability of several candidate peptides in the CSF to serve as "N" markers to both classify disease state and predict MCI to AD conversion. We observed that although many putative N markers involved in synaptic processing and neuroinflammation were able to, when examined in isolation, distinguish MCI converters from non-converters, a derivative from VGF, when combined with AT markers, most strongly enhanced prediction of MCI to AD conversion. Low CSF VGF levels were also predictive of MCI to dementia conversion in the setting of normal AT markers, suggesting that it may serve as a very early predictor of dementia conversion. Other markers derived from neuronal pentraxin 2, GAP-43 and a 14-3-3 protein were also able to enhance MCI to AD prediction when used as a marker of neurodegeneration, but VGF had the highest predictive capacity. Thus, we propose that low levels of VGF in CSF may serve as "N" in the amyloid beta, tau, neurodegenerative markers framework to enhance the prediction of MCI to AD conversion.
Collapse
Affiliation(s)
- Daniel A Llano
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, Urbana, IL, USA; Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Beckman Institute for Advanced Science and Technology, Urbana, IL, USA; Carle Neuroscience Institute, Urbana, IL, USA.
| | - Priya Devanarayan
- Department of Biology and Schreyer Honors College, Pennsylvania State University, University Park, PA, USA
| | - Viswanath Devanarayan
- Eisai, Inc., Nutley, NJ, USA; Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, Chicago, IL, USA
| | | |
Collapse
|
8
|
Karvandi MS, Sheikhzadeh Hesari F, Aref AR, Mahdavi M. The neuroprotective effects of targeting key factors of neuronal cell death in neurodegenerative diseases: The role of ER stress, oxidative stress, and neuroinflammation. Front Cell Neurosci 2023; 17:1105247. [PMID: 36950516 PMCID: PMC10025411 DOI: 10.3389/fncel.2023.1105247] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/07/2023] [Indexed: 03/08/2023] Open
Abstract
Neuronal loss is one of the striking causes of various central nervous system (CNS) disorders, including major neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and Amyotrophic lateral sclerosis (ALS). Although these diseases have different features and clinical manifestations, they share some common mechanisms of disease pathology. Progressive regional loss of neurons in patients is responsible for motor, memory, and cognitive dysfunctions, leading to disabilities and death. Neuronal cell death in neurodegenerative diseases is linked to various pathways and conditions. Protein misfolding and aggregation, mitochondrial dysfunction, generation of reactive oxygen species (ROS), and activation of the innate immune response are the most critical hallmarks of most common neurodegenerative diseases. Thus, endoplasmic reticulum (ER) stress, oxidative stress, and neuroinflammation are the major pathological factors of neuronal cell death. Even though the exact mechanisms are not fully discovered, the notable role of mentioned factors in neuronal loss is well known. On this basis, researchers have been prompted to investigate the neuroprotective effects of targeting underlying pathways to determine a promising therapeutic approach to disease treatment. This review provides an overview of the role of ER stress, oxidative stress, and neuroinflammation in neuronal cell death, mainly discussing the neuroprotective effects of targeting pathways or molecules involved in these pathological factors.
Collapse
Affiliation(s)
- Mohammad Sobhan Karvandi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Amir Reza Aref
- Department of Medical Oncology, Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| | - Majid Mahdavi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- *Correspondence: Majid Mahdavi
| |
Collapse
|
9
|
Yousef MH, Salama M, El-Fawal HAN, Abdelnaser A. Selective GSK3β Inhibition Mediates an Nrf2-Independent Anti-inflammatory Microglial Response. Mol Neurobiol 2022; 59:5591-5611. [PMID: 35739410 PMCID: PMC9395457 DOI: 10.1007/s12035-022-02923-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 06/10/2022] [Indexed: 12/15/2022]
Abstract
Glycogen synthase kinase 3 (GSK3) is associated with the proinflammatory phenotype of microglia and has been shown to act in concert with nuclear factor kappa B (NF-κB). GSK3 is also a suppressor of nuclear factor erythroid 2-related factor 2 (Nrf2), the principal regulator of redox homeostasis. Agreeing with the oxidative paradigm of aging, Nrf2 is often deregulated in parainflammatory and neurodegenerative diseases. In this study, we aimed to explore a multimodal disease-modifying utility of GSK3 inhibition, beyond neuronal proteopathologies. Furthermore, we aimed to underscore the difference in therapeutic value between the two GSK3 paralogs by isoform-selective chemical inhibition. The anti-inflammatory effects of paralog-selective GSK3 inhibitors were evaluated as a function of the reductive capacity of each to mitigate LPS-induced activation of SIM-A9 microglia. The Griess method was employed to detect the nitrate-lowering capacity of selective GSK3 inhibition. Real-time PCR was used to assess post-treatment expression levels of pro-inflammatory markers and antioxidant genes; pro-inflammatory cytokines were assayed by ELISA. Nuclear lysates of treated cells were examined for Nrf2 and NF-κB accumulation by immunoblotting. Finally, to infer whether the counter-inflammatory activity of GSK3 inhibition was Nrf2-dependent, DsiRNA-mediated knockdown of Nrf2 was attempted. Results from our experiments reveal a superior anti-inflammatory and anti-oxidative efficacy for GSK3β-selective inhibition, compared to GSK3α-selective and non-selective pan-inhibition; hence, use of selective GSK3β inhibitors is likely to be more propitious than non-selective dual inhibitors administered at comparable doses. Moreover, our results suggest that the anti-inflammatory effects of GSK3 inhibition are not Nrf2 dependent.
Collapse
Affiliation(s)
- Mohamed H Yousef
- School of Sciences and Engineering, Biotechnology Graduate Program, The American University in Cairo, P.O. Box: 74, Cairo, Egypt
| | - Mohamed Salama
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, P.O. Box: 74, Cairo, Egypt
| | - Hassan A N El-Fawal
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, P.O. Box: 74, Cairo, Egypt
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, P.O. Box: 74, Cairo, Egypt.
| |
Collapse
|
10
|
Garland EF, Hartnell IJ, Boche D. Microglia and Astrocyte Function and Communication: What Do We Know in Humans? Front Neurosci 2022; 16:824888. [PMID: 35250459 PMCID: PMC8888691 DOI: 10.3389/fnins.2022.824888] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Microglia and astrocytes play essential roles in the central nervous system contributing to many functions including homeostasis, immune response, blood-brain barrier maintenance and synaptic support. Evidence has emerged from experimental models of glial communication that microglia and astrocytes influence and coordinate each other and their effects on the brain environment. However, due to the difference in glial cells between humans and rodents, it is essential to confirm the relevance of these findings in human brains. Here, we aim to review the current knowledge on microglia-astrocyte crosstalk in humans, exploring novel methodological techniques used in health and disease conditions. This will include an in-depth look at cell culture and iPSCs, post-mortem studies, imaging and fluid biomarkers, genetics and transcriptomic data. In this review, we will discuss the advantages and limitations of these methods, highlighting the understanding these methods have brought the field on these cells communicative abilities, and the knowledge gaps that remain.
Collapse
Affiliation(s)
| | | | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
11
|
Tennakoon A, Katharesan V, Musgrave IF, Koblar SA, Faull RLM, Curtis MA, Johnson IP. Normal aging, motor neurone disease, and Alzheimer's disease are characterized by cortical changes in inflammatory cytokines. J Neurosci Res 2021; 100:653-669. [PMID: 34882833 DOI: 10.1002/jnr.24996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 10/29/2021] [Accepted: 11/06/2021] [Indexed: 12/12/2022]
Abstract
The role of increased brain inflammation in the development of neurodegenerative diseases is unclear. Here, we have compared cytokine changes in normal aging, motor neurone disease (MND), and Alzheimer's disease (AD). After an initial analysis, six candidate cytokines, interleukin (IL)- 4, 5, 6, 10, macrophage inhibitory protein (MIP)-1α, and fibroblast growth factor (FGF)-2, showing greatest changes were assayed in postmortem frozen human superior frontal gyri (n = 12) of AD patients, aging and young adult controls along with the precentral gyrus (n = 12) of MND patients. Healthy aging was associated with decreased anti-inflammatory IL-10 and FGF-2 levels. AD prefrontal cortex was associated with increased levels of IL-4, IL-5, and FGF-2, with the largest increase seen for FGF-2. Notwithstanding differences in the specific frontal lobe gyrus sampled, MND patients' primary motor cortex (precentral gyrus) was associated with increased levels of IL-5, IL-6, IL-10, and FGF-2 compared to the aging prefrontal cortex (superior frontal gyrus). Immunocytochemistry showed that FGF-2 is expressed in neurons, astrocytes, and microglia in normal aging prefrontal cortex, AD prefrontal cortex, and MND motor cortex. We report that healthy aging and age-related neurodegenerative diseases have different cortical inflammatory signatures that are characterized by increased levels of anti-inflammatory cytokines and call into question the view that increased inflammation underlies the development of age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Anuradha Tennakoon
- School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Viythia Katharesan
- School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | | | - Simon Andrea Koblar
- Department of Medical Specialties, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Richard Lewis Maxwell Faull
- Department of Anatomy and Medical Imaging and the Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Maurice Anthony Curtis
- Department of Anatomy and Medical Imaging and the Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Ian Paul Johnson
- Macquarie Medical School, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
12
|
Llano DA, Devanarayan V. Serum Phosphatidylethanolamine and Lysophosphatidylethanolamine Levels Differentiate Alzheimer's Disease from Controls and Predict Progression from Mild Cognitive Impairment. J Alzheimers Dis 2021; 80:311-319. [PMID: 33523012 DOI: 10.3233/jad-201420] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND There is intense interest in the development of blood-based biomarkers, not only that can differentiate Alzheimer's disease (AD) from controls, but that can also predict conversion from mild cognitive impairment (MCI) to AD. Serum biomarkers carry the potential advantage over imaging or spinal fluid markers both in terms of cost and invasiveness. OBJECTIVE Our objective was to measure the potential for serum lipid markers to differentiate AD from age-matched healthy controls as well as to predict conversion from MCI to AD. METHODS Using a publicly-available dataset, we examined the relationship between baseline serum levels of 349 known lipids from 16 classes of lipids to differentiate disease state as well as to predict the conversion from MCI to AD. RESULTS We observed that several classes of lipids (cholesteroyl ester, phosphatidylethanolamine, lysophosphatidylethanolamine, and acylcarnitine) differentiated AD from normal controls. Among these, only two classes, phosphatidylethanolamine (PE) and lysophosphatidylethanolamine (lyso-PE), predicted time to conversion from MCI to AD. Low levels of PE and high levels of lyso-PE result in two-fold faster median time to progression from MCI to AD, with hazard ratios 0.62 and 1.34, respectively. CONCLUSION These data suggest that serum PE and lyso-PE may be useful biomarkers for predicting MCI to AD conversion. In addition, since PE is converted to lyso-PE by phospholipase A2, an important inflammatory mediator that is dysregulated in AD, these data suggest that the disrupted serum lipid profile here may be related to an abnormal inflammatory response early in the AD pathologic cascade.
Collapse
Affiliation(s)
- Daniel A Llano
- Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Carle Neuroscience Institute, Urbana, IL, USA
| | - Viswanath Devanarayan
- GlaxoSmithKline, Collegeville, PA, USA.,Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, Chicago, IL, USA
| | | |
Collapse
|
13
|
Singh RK. Recent Trends in the Management of Alzheimer's Disease: Current Therapeutic Options and Drug Repurposing Approaches. Curr Neuropharmacol 2021; 18:868-882. [PMID: 31989900 PMCID: PMC7569317 DOI: 10.2174/1570159x18666200128121920] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/14/2020] [Accepted: 01/27/2020] [Indexed: 01/31/2023] Open
Abstract
Alzheimer's disease is one of the most progressive forms of dementia, ultimately leading to death in aged populations. The major hallmarks of Alzheimer's disease include deposition of extracellular amyloid senile plaques and intracellular neurofibrillary tangles in brain neuronal cells. Although there are classical therapeutic options available for the treatment of the diseases, however, they provide only a symptomatic relief and do not modify the molecular pathophysiological course of the disease. Recent research advances in Alzheimer's disease have highlighted the potential role of anti-amyloid, anti-tau, and anti-inflammatory therapies. However, these therapies are still in different phases of pre-clinical/clinical development. In addition, drug repositioning/repurposing is another interesting and promising approach to explore rationalized options for the treatment of Alzheimer's disease. This review discusses the different aspects of the pathophysiological mechanism involved in the progression of Alzheimer's disease along with the limitations of current therapies. Furthermore, this review also highlights emerging investigational drugs along with recent drug repurposing approaches for Alzheimer's disease.
Collapse
Affiliation(s)
- Rakesh K Singh
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Manesar, Gurgaon-122413, Haryana, India,Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research,
Raebareli. Transit Campus, Bijnour-Sisendi Road, Sarojini Nagar, Lucknow-226002, Uttar Pradesh, India
| |
Collapse
|
14
|
Anuradha U, Kumar A, Singh RK. The clinical correlation of proinflammatory and anti-inflammatory biomarkers with Alzheimer disease: a meta-analysis. Neurol Sci 2021; 43:285-298. [PMID: 34032945 DOI: 10.1007/s10072-021-05343-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Numerous studies have indicated the role of inflammation in the pathogenesis of Alzheimer's disease (AD). However, the exact role of inflammatory markers in AD is still unclear. OBJECTIVE The main objective of the current study was to find out the association between the level of inflammatory markers and AD. MATERIAL AND METHODS The relevant articles have been extracted from PubMed as per the inclusion and exclusion criteria of the study. The mean value with standard deviation and number of participants in AD and control groups were extracted from relevant articles. The inverse variance was used as a statistical method and standard mean difference (SMD) as effect measure with 95% C.I. The random effect model was used and all analyses were done using Rev. Man 5.0. RESULTS A total of 38 articles have been found relevant and selected for analysis. The overall estimate results have shown that the level of IL-6, TGF-β1, and IL-1α were increased significantly in AD patients as compared to the control group among all other pro-inflammatory, inflammatory and anti-inflammatory mediators. CONCLUSION The findings of the current study suggest that IL-6, TGF-β1, and IL-1α may be a useful early marker in AD. However, further studies are required to confirm the exact utility of these inflammatory markers.
Collapse
Affiliation(s)
- Urati Anuradha
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, (U.P), Lucknow, 226002, India
| | - Anoop Kumar
- Department of Pharmacology, Delhi Pharmaceutical Sciences & Research University (DPSRU), New Delhi, 110017, India
| | - Rakesh Kumar Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Raebareli, (U.P), Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP, 226002, India.
| |
Collapse
|
15
|
|
16
|
Hashioka S, Wu Z, Klegeris A. Glia-Driven Neuroinflammation and Systemic Inflammation in Alzheimer's Disease. Curr Neuropharmacol 2021; 19:908-924. [PMID: 33176652 PMCID: PMC8686312 DOI: 10.2174/1570159x18666201111104509] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/28/2020] [Accepted: 11/06/2020] [Indexed: 11/29/2022] Open
Abstract
The neuroinflammatory hypothesis of Alzheimer's disease (AD) was proposed more than 30 years ago. The involvement of the two main types of glial cells microglia and astrocytes, in neuroinflammation, was suggested early on. In this review, we highlight that the exact contributions of reactive glia to AD pathogenesis remain difficult to define, likely due to the heterogeneity of glia populations and alterations in their activation states through the stages of AD progression. In the case of microglia, it is becoming apparent that both beneficially and adversely activated cell populations can be identified at various stages of AD, which could be selectively targeted to either limit their damaging actions or enhance beneficial functions. In the case of astrocytes, less information is available about potential subpopulations of reactive cells; it also remains elusive whether astrocytes contribute to the neuropathology of AD by mainly gaining neurotoxic functions or losing their ability to support neurons due to astrocyte damage. We identify L-type calcium channel blocker, nimodipine, as a candidate drug for AD, which potentially targets both astrocytes and microglia. It has already shown consistent beneficial effects in basic experimental and clinical studies. We also highlight the recent evidence linking peripheral inflammation and neuroinflammation. Several chronic systemic inflammatory diseases, such as obesity, type 2 diabetes mellitus, and periodontitis, can cause immune priming or adverse activation of glia, thus exacerbating neuroinflammation and increasing risk or facilitating the progression of AD. Therefore, reducing peripheral inflammation is a potentially effective strategy for lowering AD prevalence.
Collapse
Affiliation(s)
- Sadayuki Hashioka
- Address correspondence to these authors at the Department of Psychiatry, Shimane University, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan;, E-mail: and Department of Biology, Faculty of Science, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada; E-mail:
| | | | - Andis Klegeris
- Address correspondence to these authors at the Department of Psychiatry, Shimane University, 89-1 Enya-cho, Izumo, Shimane 693-8501, Japan;, E-mail: and Department of Biology, Faculty of Science, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada; E-mail:
| |
Collapse
|
17
|
Llano DA, Issa LK, Devanarayan P, Devanarayan V. Hearing Loss in Alzheimer's Disease Is Associated with Altered Serum Lipidomic Biomarker Profiles. Cells 2020; 9:cells9122556. [PMID: 33260532 PMCID: PMC7760745 DOI: 10.3390/cells9122556] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 01/01/2023] Open
Abstract
Recent data have found that aging-related hearing loss (ARHL) is associated with the development of Alzheimer’s Disease (AD). However, the nature of the relationship between these two disorders is not clear. There are multiple potential factors that link ARHL and AD, and previous investigators have speculated that shared metabolic dysregulation may underlie the propensity to develop both disorders. Here, we investigate the distribution of serum lipidomic biomarkers in AD subjects with or without hearing loss in a publicly available dataset. Serum levels of 349 known lipids from 16 lipid classes were measured in 185 AD patients. Using previously defined co-regulated sets of lipids, both age- and sex-adjusted, we found that lipid sets enriched in phosphatidylcholine and phosphatidylethanolamine showed a strong inverse association with hearing loss. Examination of biochemical classes confirmed these relationships and revealed that serum phosphatidylcholine levels were significantly lower in AD subjects with hearing loss. A similar relationship was not found in normal subjects. These data suggest that a synergistic relationship may exist between AD, hearing loss and metabolic biomarkers, such that in the context of a pathological state such as AD, alterations in serum metabolic profiles are associated with hearing loss. These data also point to a potential role for phosphatidylcholine, a molecule with antioxidant properties, in the underlying pathophysiology of ARHL in the context of AD, which has implications for our understanding and potential treatment of both disorders.
Collapse
Affiliation(s)
- Daniel A. Llano
- Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
- Carle Neuroscience Institute, Urbana, IL 61801, USA
- Correspondence:
| | - Lina K. Issa
- Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | - Priya Devanarayan
- Department of Biology and Schreyer Honors College, Pennsylvania State University, University Park, PA 16802, USA;
| | - Viswanath Devanarayan
- GlaxoSmithKline, Collegeville, PA 19426 USA;
- Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | |
Collapse
|
18
|
Edison P. Neuroinflammation, microglial activation, and glucose metabolism in neurodegenerative diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 154:325-344. [PMID: 32739010 DOI: 10.1016/bs.irn.2020.03.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease is characterized by aggregated amyloid beta plaques and neurofibrillary tangles. Apart from the plaques and tangles, microglial activation plays a significant role in neurodegeneration and neuronal function. This review discusses the way in which microglial activation influences neurodegeneration and how systemic inflammation, type 2 diabetes mellitus, obesity and hypercholesterolemia influence neuroinflammation. Also reviewed is how systemic inflammation influences microglial activation along with the relationship between microglial activation and glucose metabolism.
Collapse
Affiliation(s)
- Paul Edison
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom; Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
19
|
Shen XN, Niu LD, Wang YJ, Cao XP, Liu Q, Tan L, Zhang C, Yu JT. Inflammatory markers in Alzheimer's disease and mild cognitive impairment: a meta-analysis and systematic review of 170 studies. J Neurol Neurosurg Psychiatry 2019; 90:590-598. [PMID: 30630955 DOI: 10.1136/jnnp-2018-319148] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/05/2018] [Accepted: 12/10/2018] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Inflammation plays a crucial role in the pathogenesis of mild cognitive impairment (MCI) and Alzheimer's disease (AD). Our study aimed to analyse previous inconsistent results of inflammatory markers in AD and MCI quantitatively. METHODS Studies reporting concentrations of peripheral or cerebrospinal fluid (CSF) markers were included, and eligible data on AD, MCI and control were extracted. Pooled Hedges's g was adopted to illustrate comparisons, and various confounding factors were used to explore sources of heterogeneity. RESULTS A total of 170 studies were included in the meta-analysis and systematic review, which demonstrated increased peripheral levels of high-sensitivity C reactive protein (Hedges's g 0.281, p<0.05), interleukin-6 (IL-6) (0.429, p<0.005), soluble tumour necrosis factor receptor 1 (sTNFR1) (0.763, p<0.05), soluble tumour necrosis factor receptor 2 (sTNFR2) (0.354, p<0.005), alpha1-antichymotrypsin (α1-ACT) (1.217, p<0.005), IL-1β (0.615, p<0.05) and soluble CD40 ligand (0.868, p<0.005), and CSF levels of IL-10 (0.434, p<0.05), monocyte chemoattractant protein-1 (MCP-1) (0.798, p<0.005), transforming growth factor-beta 1 (1.009, p<0.05), soluble triggering receptor expressed on myeloid cells2 (sTREM2) (0.587, p<0.001), YKL-40 (0.849, p<0.001), α1-ACT (0.638, p<0.001), nerve growth factor (5.475, p<0.005) and visinin-like protein-1 (VILIP-1) (0.677, p<0.005), in AD compared with the control. Higher levels of sTNFR2 (0.265, p<0.05), IL-6 (0.129, p<0.05) and MCP-1 (0.779, p<0.05) and lower levels of IL-8 (-1.293, p<0.05) in the periphery, as well as elevated concentrations of YKL-40 (0.373, p<0.05), VILIP-1 (0.534, p<0.005) and sTREM2 (0.695, p<0.05) in CSF, were shown in MCI compared with the control. Additionally, increased peripheral sTNFR1 (0.582, p<0.05) and sTNFR2 (0.254, p<0.05) levels were observed in AD compared with MCI. CONCLUSION Significantly altered levels of inflammatory markers were verified in comparison between AD, MCI and control, supporting the notion that AD and MCI are accompanied by inflammatory responses in both the periphery and CSF.
Collapse
Affiliation(s)
- Xue-Ning Shen
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Li-Dong Niu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xi-Peng Cao
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao, China
| | - Qiang Liu
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Can Zhang
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease (MIND), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Rahman SO, Singh RK, Hussain S, Akhtar M, Najmi AK. A novel therapeutic potential of cysteinyl leukotrienes and their receptors modulation in the neurological complications associated with Alzheimer's disease. Eur J Pharmacol 2018; 842:208-220. [PMID: 30389631 DOI: 10.1016/j.ejphar.2018.10.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/16/2018] [Accepted: 10/29/2018] [Indexed: 01/28/2023]
Abstract
Cysteinyl leukotrienes (cysLTs) are member of eicosanoid inflammatory lipid mediators family produced by oxidation of arachidonic acid by action of the enzyme 5-lipoxygenase (5-LOX). 5-LOX is activated by enzyme 5-Lipoxygenase-activating protein (FLAP), which further lead to production of cysLTs i.e. leukotriene C4 (LTC4), leukotriene D4 (LTD4) and leukotriene E4 (LTE4). CysLTs then produce their potent inflammatory actions by activating CysLT1 and CysLT2 receptors. Inhibitors of cysLTs are indicated in asthma, allergic rhinitis and other inflammatory disorders. Earlier studies have associated cysLTs and their receptors in several neurodegenerative disorders diseases like, multiple sclerosis, Parkinson's disease, Huntington's disease, epilepsy and Alzheimer's disease (AD). These inflammatory lipid mediators have previously shown effects on various aggravating factors of AD. However, not much data has been elucidated to test their role against AD clinically. Herein, through this review, we have provided the current and emerging information on the role of cysLTs and their receptors in various neurological complications responsible for the development of AD. In addition, literature evidences for the effect of cysLT inhibitors on distinct aspects of abnormalities in AD has also been reviewed. Promising advancement in understanding on the role of cysLTs on the various neuromodulatory processes and mechanisms may contribute to the development of newer and safer therapy for the treatment of AD in future.
Collapse
Affiliation(s)
- Syed Obaidur Rahman
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Rakesh Kumar Singh
- School of Pharmaceutical Sciences, Apeejay Stya University, Sohna-Palwal Road, Sohna, Gurgaon 122013, Haryana, India.
| | - Salman Hussain
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohd Akhtar
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
21
|
Xing Z, He Z, Wang S, Yan Y, Zhu H, Gao Y, Zhao Y, Zhang L. Ameliorative effects and possible molecular mechanisms of action of fibrauretine from Fibraurea recisa Pierre on d-galactose/AlCl 3-mediated Alzheimer's disease. RSC Adv 2018; 8:31646-31657. [PMID: 35548215 PMCID: PMC9085853 DOI: 10.1039/c8ra05356a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/26/2018] [Indexed: 12/23/2022] Open
Abstract
Fibrauretine is one of the main active ingredients from the rattan stems of Fibraurea recisa Pierre It exhibits a series of significant pharmacological effects. The present study aimed to evaluate the potential anti Alzheimer's disease (AD) effects of fibrauretine on a d-galactose/AlCl3-induced mouse model, and the underlying mechanisms of action were further investigated for the first time. Our results showed that pretreatment with fibrauretine significantly improved the ability of spatial short-term working memory in the model mice during the Y-maze test, as well as the abilities of spatial learning and memory during the Morris water maze. The levels of brain tissue amyloid (Aβ), P-Tau, Tau and acetylcholinesterase (AchE) were evidently increased in d-galactose/AlCl3-intoxicated mice, and these effects were reversed by fibrauretine. In contrast, a significant increase in the levels of the neurotransmitter acetylcholine (Ach) and choline acetyl transferase (ChAT) was observed in the fibrauretine-treated groups compared with the model group. Neuronal oxidative stress, evidenced by increased malondialdehyde (MDA) and nitric oxide (NO) levels and a decline in glutathione (GSH), catalase (CAT) and superoxide dismutase (SOD) activity, was significantly alleviated by fibrauretine pretreatment. The suppression of the neuroinflammatory response by fibrauretine was realized not only by the decrease in the levels of tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in the brain tissues and by the enzyme-linked immunosorbent assay (ELISA) but also by the protein expression levels of nuclear factor-κB (NF-κB), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS), which were measured by immunohistochemistry and western blotting. In addition, the protein expression levels of inflammatory factors interleukin-33 (IL-33) and ST2 in the brain tissues were detected by immunohistochemistry. Furthermore, the effects of western blotting demonstrated that the administration of fibrauretine significantly suppressed the protein expression levels of caspase-3, cleaved caspase-3, and Bax and increased the protein expression levels of Bcl-2, and the results of the H&E and TUNEL assay all suggested the inhibition of apoptosis in the neurons. The results clearly suggest that the underlying molecular mechanisms of action of the fibrauretine-mediated alleviation of d-galactose/AlCl3-induced Alzheimer's disease may involve antioxidant, anti-inflammatory, and anti-apoptotic effects.
Collapse
Affiliation(s)
- Zhiheng Xing
- Jilin Agricultural University Changchun 130118 Jilin China +86 431 84533358 +86 431 84533358
| | - Zhongmei He
- Jilin Agricultural University Changchun 130118 Jilin China +86 431 84533358 +86 431 84533358
- College of Chinese Medicinal Materials Changchun 130118 Jilin China
| | - Shuning Wang
- Jilin Agricultural University Changchun 130118 Jilin China +86 431 84533358 +86 431 84533358
| | - Yu Yan
- Jilin Agricultural University Changchun 130118 Jilin China +86 431 84533358 +86 431 84533358
| | - Hongyan Zhu
- Jilin Agricultural University Changchun 130118 Jilin China +86 431 84533358 +86 431 84533358
- College of Chinese Medicinal Materials Changchun 130118 Jilin China
| | - Yugang Gao
- Jilin Agricultural University Changchun 130118 Jilin China +86 431 84533358 +86 431 84533358
- College of Chinese Medicinal Materials Changchun 130118 Jilin China
| | - Yan Zhao
- Jilin Agricultural University Changchun 130118 Jilin China +86 431 84533358 +86 431 84533358
- College of Chinese Medicinal Materials Changchun 130118 Jilin China
| | - Lianxue Zhang
- Jilin Agricultural University Changchun 130118 Jilin China +86 431 84533358 +86 431 84533358
- College of Chinese Medicinal Materials Changchun 130118 Jilin China
| |
Collapse
|
22
|
Swords GM, Nguyen LT, Mudar RA, Llano DA. Auditory system dysfunction in Alzheimer disease and its prodromal states: A review. Ageing Res Rev 2018; 44:49-59. [PMID: 29630950 DOI: 10.1016/j.arr.2018.04.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 01/15/2023]
Abstract
Recent findings suggest that both peripheral and central auditory system dysfunction occur in the prodromal stages of Alzheimer Disease (AD), and therefore may represent early indicators of the disease. In addition, loss of auditory function itself leads to communication difficulties, social isolation and poor quality of life for both patients with AD and their caregivers. Developing a greater understanding of auditory dysfunction in early AD may shed light on the mechanisms of disease progression and carry diagnostic and therapeutic importance. Herein, we review the literature on hearing abilities in AD and its prodromal stages investigated through methods such as pure-tone audiometry, dichotic listening tasks, and evoked response potentials. We propose that screening for peripheral and central auditory dysfunction in at-risk populations is a low-cost and effective means to identify early AD pathology and provides an entry point for therapeutic interventions that enhance the quality of life of AD patients.
Collapse
Affiliation(s)
| | - Lydia T Nguyen
- Neuroscience Program, University of Illinois at Urbana-Champaign, United States; Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, United States
| | - Raksha A Mudar
- Neuroscience Program, University of Illinois at Urbana-Champaign, United States; Department of Speech and Hearing Science, University of Illinois at Urbana-Champaign, United States
| | - Daniel A Llano
- University of Illinois College of Medicine, United States; Neuroscience Program, University of Illinois at Urbana-Champaign, United States; Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, United States; Beckman Institute for Advanced Science and Technology, Urbana, IL, United States.
| |
Collapse
|
23
|
Naudé PJW, Dekens DW, Eisel ULM, den Daas I, De Deyn PP. Dynamics of neutrophil gelatinase-associated lipocalin plasma and cerebrospinal fluid concentrations in older males. Eur J Clin Invest 2017; 47. [PMID: 29082525 DOI: 10.1111/eci.12853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 10/25/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Neutrophil gelatinase-associated lipocalin (NGAL) is an inflammatory protein with gaining increasing interest for its use as marker in blood and cerebrospinal fluid (CSF) for several chronic diseases. Its biochemical properties make it an attractive marker. However, changes in blood and CSF NGAL concentrations during the diurnal rhythm in the elderly are unknown. This information is important for its optimal use as marker in studies with older people. METHODS Serial paired plasma and CSF samples were obtained from 8 healthy elderly males over a 30-hour period. NGAL and cortisol were quantified with ELISA. RESULTS No significant changes in plasma and CSF NGAL concentrations over time were found, whereas cortisol (included as internal control) concentrations displayed significant changes over time. Significant circadian patterns were found for plasma NGAL and for cortisol in both plasma and CSF. However, CSF NGAL concentrations did not follow a diurnal pattern in elderly males. CONCLUSIONS This study illustrates the temporal regulation of NGAL in plasma and CSF, which potentially is a useful reference for studies measuring NGAL as biomarker in older individuals.
Collapse
Affiliation(s)
- Petrus J W Naudé
- Department of Neurology and Alzheimer Research Center, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Doortje W Dekens
- Department of Neurology and Alzheimer Research Center, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Ulrich L M Eisel
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands.,University Center of Psychiatry & Interdisciplinary Center of Psychopathology of Emotion Regulation, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | | - Peter P De Deyn
- Department of Neurology and Alzheimer Research Center, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Laboratory of Neurochemistry and Behaviour, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
24
|
IL-33 Acts to Express Schaffer Collateral/CA1 LTP and Regulate Learning and Memory by Targeting MyD88. Neural Plast 2017; 2017:2531453. [PMID: 29147584 PMCID: PMC5632899 DOI: 10.1155/2017/2531453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/25/2017] [Accepted: 08/29/2017] [Indexed: 11/18/2022] Open
Abstract
Interleukin-33 (IL-33) is recognized to transmit a signal through a heterodimeric receptor complex ST2/interleukin-1 receptor accessory protein (IL-1RAcP) bearing activation of myeloid differentiation factor 88 (MyD88). High-frequency stimulation to the Schaffer collateral induced long-term potentiation (LTP) in the CA1 region of hippocampal slices from wild-type control mice. Schaffer collateral/CA1 LTP in IL-33-deficient mice was significantly suppressed, which was neutralized by application with IL-33. Similar suppression of the LTP was found with MyD88-deficient mice but not with ST2-deficient mice. In the water maze test, the acquisition latency in IL-33-deficient and MyD88-deficient mice was significantly prolonged as compared with that in wild-type control mice. Moreover, the retention latency in MyD88-deficient mice was markedly prolonged. In contrast, the acquisition and retention latencies in ST2-deficient mice were not affected. Taken together, these results show that IL-33 acts to express Schaffer collateral/CA1 LTP relevant to spatial learning and memory in a MyD88-dependent manner and that the LTP might be expressed through an IL-1R1/IL-1RAcP-MyD88 pathway in the absence of ST2.
Collapse
|
25
|
Engler H, Brendt P, Wischermann J, Wegner A, Röhling R, Schoemberg T, Meyer U, Gold R, Peters J, Benson S, Schedlowski M. Selective increase of cerebrospinal fluid IL-6 during experimental systemic inflammation in humans: association with depressive symptoms. Mol Psychiatry 2017; 22:1448-1454. [PMID: 28138158 DOI: 10.1038/mp.2016.264] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/03/2016] [Accepted: 12/14/2016] [Indexed: 12/31/2022]
Abstract
Systemic inflammation is accompanied by profound behavioral and mood changes that resemble symptoms of depression. Findings in animals suggest that pro-inflammatory cytokines released by activated immune cells in the periphery evoke these behavioral symptoms by driving inflammatory changes in the brain. However, experimental data in humans are lacking. Here we demonstrate in healthy male volunteers (10 endotoxin treated, 8 placebo treated) that intravenous administration of low-dose endotoxin (0.8 ng/kg body weight), a prototypical pathogen-associated molecular pattern that activates the innate immune system, not only induces a significant increase in peripheral blood cytokine concentrations (that is, tumor necrosis factor-α, interleukin (IL)-6, IL-10) but also results, with some latency, in a robust and selective increase of IL-6 in the cerebrospinal fluid (CSF). Moreover, we found a strong association between the endotoxin-induced increase of IL-6 in the CSF and the severity of mood impairment, with larger increases in CSF IL-6 concentration followed by a greater deterioration in mood. Taken together, these findings suggest that the appearance of depressive symptoms in inflammatory conditions might be primarily linked to an increase in central IL-6 concentration, identifying IL-6 as a potential therapeutic target in mood disorders.
Collapse
Affiliation(s)
- H Engler
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - P Brendt
- Clinic for Anesthesiology and Intensive Care Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - J Wischermann
- Clinic for Anesthesiology and Intensive Care Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - A Wegner
- Department of Orthopedic and Trauma Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - R Röhling
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - T Schoemberg
- Department of Neurosurgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - U Meyer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - R Gold
- Department of Neurology, St Josef-Hospital, Ruhr University, Bochum, Germany
| | - J Peters
- Clinic for Anesthesiology and Intensive Care Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - S Benson
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - M Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
26
|
Akyol S, Ugurcu V, Cakmak O, Altuntas A, Yukselten Y, Akyol O, Sunguroglu A, Demircan K. Evidence for the Control of Aggrecanases by Insulin and Glucose in Alzheimer's Disease. ACTA ACUST UNITED AC 2016. [DOI: 10.5455/bcp.20140905124459] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Sumeyya Akyol
- Turgut Özal University, Faculty of Medicine, Department of Medical Biology, Ankara - Turkey
| | - Veli Ugurcu
- Dumlupınar University, Faculty of Medicine, Department of Medical Biochemistry, Kütahya - Turkey
| | - Ozlem Cakmak
- Gazi University, Faculty of Education, Department of Biology Education, Ankara - Turkey
| | - Aynur Altuntas
- Ankara Regional Office of Council of Forensic Medicine, Department of Chemistry, Ankara - Turkey
| | - Yunus Yukselten
- Ankara University, Faculty of Medicine, Department of Medical Biology, Ankara - Turkey
| | - Omer Akyol
- Hacettepe University, Medical School, Department of Medical Biochemistry, Ankara - Turkey
| | - Asuman Sunguroglu
- Ankara University, Faculty of Medicine, Department of Medical Biology, Ankara - Turkey
| | - Kadir Demircan
- Turgut Özal University, Faculty of Medicine, Department of Medical Biology, Ankara - Turkey
| |
Collapse
|
27
|
Kleinschmidt M, Schoenfeld R, Göttlich C, Bittner D, Metzner JE, Leplow B, Demuth HU. Characterizing Aging, Mild Cognitive Impairment, and Dementia with Blood-Based Biomarkers and Neuropsychology. J Alzheimers Dis 2016; 50:111-26. [PMID: 26639953 DOI: 10.3233/jad-143189] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Current treatment in Alzheimer's disease (AD) is initiated at a stage where the brain already has irreversible structural deteriorations. Therefore, the concept of treatment prior to obvious cognitive deficits has become widely accepted, and simple biochemical tests to discriminate normal aging from prodromal or demented stages are now common practice. OBJECTIVE The objective of the study was the differentiation of controls, mild cognitive impairment (MCI) and AD patients by novel blood-based assays in combination with neuropsychological tests. METHODS In a cross-sectional study, 143 subjects aged 18 to 85 years were recruited. All participants were classified by a comprehensive neuropsychological assessment. Blood samples were analyzed for several amyloid-β (Aβ) species, pro-inflammatory markers, anti-Aβ autoantibodies, and ApoE allele status, respectively. RESULTS Plasma Aβ1-42 was significantly decreased in MCI and AD compared to age-matched controls, whereas Aβ1-40 did not differ, but increases with age in healthy controls. The Aβ1-42 to Aβ1-40 ratio was stepwise decreased from age-matched controls via MCI to AD, and shows a clear correlation with memory scores. Reduced Aβ1-42 and Aβ1-42 to Aβ1-40 ratio have strongly correlated with carrying ApoE ɛ4 allele. Autoantibodies against pyroglutamate-modified Aβ, but only a certain subclass, were significantly decreased in AD compared to MCI and age-matched controls, whereas autoantibodies against the unmodified N-terminus of Aβ did not differ. CONCLUSION Comprehensive sample preparation and assay standardization enable reliable usage of plasma Aβ for diagnosis of MCI and AD. Anti-pGlu-Aβ autoantibodies correlate with cognition, but not with ApoE, supporting the associated plasma Aβ analysis with additional and independent information.
Collapse
Affiliation(s)
- Martin Kleinschmidt
- Probiodrug AG, Halle (Saale), Germany.,Current address: Fraunhofer Institute of Cell Therapy and Immunology, Department of Drug Design and Target Validation, Halle (Saale), Germany
| | - Robby Schoenfeld
- Martin-Luther-University Halle-Wittenberg, Department of Psychology, Halle (Saale), Germany
| | - Claudia Göttlich
- Probiodrug AG, Halle (Saale), Germany.,Department Tissue Engineering & Regenerative Medicine (TERM), University Hospital Wuerzburg, Germany
| | - Daniel Bittner
- Clinic for Neurology, Otto-von-Guericke University Magdeburg, Germany
| | | | - Bernd Leplow
- Martin-Luther-University Halle-Wittenberg, Department of Psychology, Halle (Saale), Germany
| | - Hans-Ulrich Demuth
- Probiodrug AG, Halle (Saale), Germany.,Current address: Fraunhofer Institute of Cell Therapy and Immunology, Department of Drug Design and Target Validation, Halle (Saale), Germany
| |
Collapse
|
28
|
Calsolaro V, Edison P. Neuroinflammation in Alzheimer's disease: Current evidence and future directions. Alzheimers Dement 2016; 12:719-32. [DOI: 10.1016/j.jalz.2016.02.010] [Citation(s) in RCA: 738] [Impact Index Per Article: 92.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 02/14/2016] [Accepted: 02/25/2016] [Indexed: 01/19/2023]
Affiliation(s)
| | - Paul Edison
- Neurology Imaging Unit; Imperial College London; UK
| |
Collapse
|
29
|
Wang WY, Tan MS, Yu JT, Tan L. Role of pro-inflammatory cytokines released from microglia in Alzheimer's disease. ANNALS OF TRANSLATIONAL MEDICINE 2015. [PMID: 26207229 DOI: 10.3978/j.issn.2305-5839.2015.03.49] [Citation(s) in RCA: 477] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder of the brain, which is characterized by the formation of extracellular amyloid plaques (or senile plaques) and intracellular neurofibrillary tangles. However, increasing evidences demonstrated that neuroinflammatory changes, including chronic microgliosis are key pathological components of AD. Microglia, the resident immune cells of the brain, is constantly survey the microenvironment under physiological conditions. In AD, deposition of β-amyliod (Aβ) peptide initiates a spectrum of cerebral neuroinflammation mediated by activating microglia. Activated microglia may play a potentially detrimental role by eliciting the expression of pro-inflammatory cytokines such as interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) influencing the surrounding brain tissue. Emerging studies have demonstrated that up-regulation of pro-inflammatory cytokines play multiple roles in both neurodegeneration and neuroprotection. Understanding the pro-inflammatory cytokines signaling pathways involved in the regulation of AD is crucial to the development of strategies for therapy. This review will discuss the mechanisms and important role of pro-inflammatory cytokines in the pathogenesis of AD, and the ongoing drug targeting pro-inflammatory cytokine for therapeutic modulation.
Collapse
Affiliation(s)
- Wen-Ying Wang
- 1 Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266071, China ; 2 Department of Neurology, Qingdao Municipal Hospital, College of Medicine and Pharmaceutics, Ocean University of China, Qingdao 266071, China ; 3 Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Meng-Shan Tan
- 1 Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266071, China ; 2 Department of Neurology, Qingdao Municipal Hospital, College of Medicine and Pharmaceutics, Ocean University of China, Qingdao 266071, China ; 3 Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Jin-Tai Yu
- 1 Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266071, China ; 2 Department of Neurology, Qingdao Municipal Hospital, College of Medicine and Pharmaceutics, Ocean University of China, Qingdao 266071, China ; 3 Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Lan Tan
- 1 Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266071, China ; 2 Department of Neurology, Qingdao Municipal Hospital, College of Medicine and Pharmaceutics, Ocean University of China, Qingdao 266071, China ; 3 Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing 210006, China
| |
Collapse
|
30
|
Wang S, Yang H, Yu L, Jin J, Qian L, Zhao H, Xu Y, Zhu X. Oridonin attenuates Aβ1-42-induced neuroinflammation and inhibits NF-κB pathway. PLoS One 2014; 9:e104745. [PMID: 25121593 PMCID: PMC4133239 DOI: 10.1371/journal.pone.0104745] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/11/2014] [Indexed: 01/12/2023] Open
Abstract
Neuroinflammation induced by beta-amyloid (Aβ) plays a critical role in the pathogenesis of Alzheimer’s disease (AD), and inhibiting Aβ-induced neuroinflammation serves as a potential strategy for the treatment of AD. Oridonin (Ori), a compound of Rabdosia rubescens, has been shown to exert anti-inflammatory effects. In this study, we demonstrated that Ori inhibited glial activation and decreased the release of inflammatory cytokines in the hippocampus of Aβ1–42-induced AD mice. In addition, Ori inhibited the NF-κB pathway and Aβ1–42-induced apoptosis. Furthermore, Ori could attenuate memory deficits in Aβ1–42-induced AD mice. In conclusion, our study demonstrated that Ori inhibited the neuroinflammation and attenuated memory deficits induced by Aβ1–42, suggesting that Ori might be a promising candidate for AD treatment.
Collapse
Affiliation(s)
- Sulei Wang
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Hui Yang
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Linjie Yu
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, P. R. China
| | - Jiali Jin
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, P. R. China
| | - Lai Qian
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, P. R. China
| | - Hui Zhao
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, P. R. China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, P. R. China
- * E-mail: (YX); (XZ)
| | - Xiaolei Zhu
- Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, P. R. China
- * E-mail: (YX); (XZ)
| |
Collapse
|
31
|
Brosseron F, Krauthausen M, Kummer M, Heneka MT. Body fluid cytokine levels in mild cognitive impairment and Alzheimer's disease: a comparative overview. Mol Neurobiol 2014; 50:534-44. [PMID: 24567119 PMCID: PMC4182618 DOI: 10.1007/s12035-014-8657-1] [Citation(s) in RCA: 325] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/04/2014] [Indexed: 12/23/2022]
Abstract
This article gives a comprehensive overview of cytokine and other inflammation associated protein levels in plasma, serum and cerebrospinal fluid (CSF) of patients with Alzheimer's disease (AD) and mild cognitive impairment (MCI). We reviewed 118 research articles published between 1989 and 2013 to compare the reported levels of 66 cytokines and other proteins related to regulation and signaling in inflammation in the blood or CSF obtained from MCI and AD patients. Several cytokines are evidently regulated in (neuro-) inflammatory processes associated with neurodegenerative disorders. Others do not display changes in the blood or CSF during disease progression. However, many reports on cytokine levels in MCI or AD are controversial or inconclusive, particularly those which provide data on frequently investigated cytokines like tumor necrosis factor alpha (TNF-α) or interleukin-6 (IL-6). The levels of several cytokines are possible indicators of neuroinflammation in AD. Some of them might increase steadily during disease progression or temporarily at the time of MCI to AD conversion. Furthermore, elevated body fluid cytokine levels may correlate with an increased risk of conversion from MCI to AD. Yet, research results are conflicting. To overcome interindividual variances and to obtain a more definite description of cytokine regulation and function in neurodegeneration, a high degree of methodical standardization and patients collective characterization, together with longitudinal sampling over years is essential.
Collapse
|
32
|
Xiong Z, Thangavel R, Kempuraj D, Yang E, Zaheer S, Zaheer A. Alzheimer's disease: evidence for the expression of interleukin-33 and its receptor ST2 in the brain. J Alzheimers Dis 2014; 40:297-308. [PMID: 24413615 PMCID: PMC4015800 DOI: 10.3233/jad-132081] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Inflammatory responses are increasingly implicated in the pathogenesis of neurodegenerative diseases such as in Alzheimer's disease (AD). Interleukin-33 (IL-33), a member of IL-1 family, is constitutively expressed in the central nervous system and thought to be an important mediator of glial cell response to neuropathological lesions. Proinflammatory molecules are highly expressed at the vicinity of amyloid plaques (APs) and neurofibrillary tangles (NFTs), the hallmarks of AD pathology. We have investigated the expression of IL-33 and ST2 in relation to APs and NFTs in human AD and non-AD control brains by immunohistochemistry. Sections from the entorhinal cortex, where APs and NFTs appear in early stages of AD, were used for immunohistochemistry. Mouse primary astrocytes were cultured and incubated with amyloid-β1-42 (Aβ1-42), component of plaque for 72 h and analyzed for the expression of IL-33 by flow cytometry. We found strong expression of IL-33 and ST2 in the vicinity of Aβ and AT8 labelled APs and NFTs respectively, and in the glial cells in AD brains when compared to non-AD control brains. IL-33 and ST2 positive cells were also significantly increased in AD brains when compared to non-AD brains. Flow cytometric analysis revealed incubation of mouse astrocytes with Aβ1-42 increased astrocytic IL-33 expression in vitro. These results suggest that IL-33, an alamin cytokine, may induce inflammatory molecule release from the glial cells and may play an important role in the pathogenesis of AD.
Collapse
Affiliation(s)
- Zhi Xiong
- Department of Neurology, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Ramasamy Thangavel
- Veterans Affairs Health Care System, Iowa City, IA, USA
- Department of Neurology, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Duraisamy Kempuraj
- Veterans Affairs Health Care System, Iowa City, IA, USA
- Department of Neurology, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Evert Yang
- Department of Neurology, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Smita Zaheer
- Department of Neurology, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Asgar Zaheer
- Veterans Affairs Health Care System, Iowa City, IA, USA
- Department of Neurology, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| |
Collapse
|
33
|
Kindt JT, Luchansky MS, Qavi AJ, Lee SH, Bailey RC. Subpicogram per milliliter detection of interleukins using silicon photonic microring resonators and an enzymatic signal enhancement strategy. Anal Chem 2013; 85:10653-7. [PMID: 24171505 DOI: 10.1021/ac402972d] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The detection of biomolecules at ultralow (low to subpicogram per milliliter) concentrations and within complex, clinically relevant matrices is a formidable challenge that is complicated by limitations imposed by the Langmuir binding isotherm and mass transport, for surface-based affinity biosensors. Here we report the integration of an enzymatic signal enhancement scheme onto a multiplexable silicon photonic microring resonator detection platform. To demonstrate the analytical value of this combination, we simultaneously quantitated levels of the interleukins IL-2, IL-6, and IL-8 in undiluted cerebrospinal fluid in an assay format that is multiplexable, relatively rapid (90 min), and features a 3 order of magnitude dynamic range and a limit of detection ≤1 pg/mL. The modular nature of this assay and technology should lend itself broadly amenable to different analyte classes, making it a versatile tool for biomarker analysis in clinically relevant settings.
Collapse
Affiliation(s)
- Jared T Kindt
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 S. Matthews Ave., Urbana, IL 61801, United States
| | | | | | | | | |
Collapse
|
34
|
Yan FL, Han GL, Wu GJ. Cytotoxic role of advanced glycation end-products in PC12 cells treated with β‑amyloid peptide. Mol Med Rep 2013; 8:367-72. [PMID: 23799541 DOI: 10.3892/mmr.2013.1545] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 05/17/2013] [Indexed: 11/06/2022] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia afflicting the elderly. Recent studies have increasingly suggested that a high concentration of advanced glycation end products (AGEs) may be important in AD pathogenesis. However, the mechanisms and pathways involved remain unknown. The aim of this study was to explore whether the mechanism of the effect of AGEs on Aβ‑PC12 cells [PC12 cells treated with β‑amyloid (Aβ) peptide] was associated with oxidative stress; and to study whether inhibiting the activity of the receptor for AGE (RAGE) attenuated the toxic effect of AGEs and Aβ on PC12 cells. Several PC12 cells were pretreated with Aβ, and were then treated with different concentrations of AGEs. Other PC12 cells were treated with trypsin, a pancreatic protein enzyme and an inhibitor of RAGE, and were then treated with Aβ and AGEs. Apoptosis was measured by flow cytometry (FCM) and cell viability was measured by MTT assay. RAGE and nuclear factor‑κB (NF‑κB) were measured by reverse transcription-polymerase chain reaction (RT‑PCR) assay. With an increase in AGE concentration, the viability of Aβ‑PC12 cells treated with AGEs decreased. However, the Aβ‑PC12 cell viability was greater in the trypsin group than in the non‑trypsin group. Cell apoptosis rates and mRNA expression of RAGE and NF‑κB in Aβ‑PC12 cells treated with AGEs were significantly higher than in the Aβ‑PC12 cells. AGEs and Aβ were neurotoxic, and RAGE triggered the neural cytotoxic role of AGEs in Aβ‑PC12 cells. The molecular mechanisms may be connected with the expression of NF‑κB and apoptosis mediated by RAGE. Inhibiting the activity of RAGE may mitigate the toxic effect of AGEs and Aβ on neural cells.
Collapse
Affiliation(s)
- Fu-Ling Yan
- Department of Neurology, Zhongda Hospital of Southeast University, Nanjing, Jiangsu 210009, P.R. China.
| | | | | |
Collapse
|
35
|
Abstract
Dementia due to Alzheimer's disease (AD) is estimated to reach epidemic proportions by the year 2030. Given the limited accuracy of current AD clinical diagnosis, biomarkers of AD pathologies are currently being sought. Reductions in cerebrospinal fluid levels of β-amyloid 42 (a marker of amyloid plaques) and elevations in tau species (markers of neurofibrillary tangles and/or neurodegeneration) are well-established as biomarkers useful for AD diagnosis and prognosis. However, novel markers for other features of AD pathophysiology (e.g., β-amyloid processing, neuroinflammation and neuronal stress/dysfunction) and for other non-AD dementias are required to improve the accuracy of AD disease diagnosis, prognosis, staging and therapeutic monitoring (theragnosis). This article discusses the potential of several promising novel cerebrospinal fluid analytes, highlights the next steps critical for advancement in the field, and provides a prediction on how the field may evolve in 5-10 years.
Collapse
Affiliation(s)
- Anne M Fagan
- Department of Neurology, Washington University School of Medicine, 660 South Euclid Ave., St Louis, MO 63110, USA.
| | | |
Collapse
|