1
|
Pittet MP, Marini D, Ly L, Au-Young SH, Chau V, Seed M, Miller SP, Hahn CD. Prevalence, Risk Factors, and Impact of Preoperative Seizures in Neonates With Congenital Heart Disease. J Clin Neurophysiol 2022; 39:616-624. [PMID: 33560701 DOI: 10.1097/wnp.0000000000000825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
PURPOSE The purpose of this study was to assess the prevalence, risk factors, and impact of electrographic seizures in neonates with complex congenital heart disease before cardiac surgery. METHODS A cohort of 31 neonates with congenital heart disease monitored preoperatively with continuous video-EEG (cEEG) was first reviewed for electrographic seizure burden and EEG background abnormalities. Second, cEEG findings were correlated with brain MRI and 18-month outcomes. RESULTS Continuous video-EEG was recorded preoperatively for a median duration of 20.5 hours (range, 2.5-93.5 hours). The five neonates (16%; 95% confidence interval, 5.5% to 34%) with seizures detected on cEEG in the preoperative period had a diagnosis of transposition of the great arteries or similar physiology, detected in four of five postnatally. None of the 157 recorded electrographic seizures had a clinical correlate. The median time to first seizure was 65 minutes (range, 6-300 minutes) after cEEG hookup. The median maximum hourly seizure burden was 12.4 minutes (range, 7-23 minutes). Before the first electrographic seizure, a prolonged interburst interval (>10 seconds) was not associated with seizures (coefficient 1.2; 95% confidence interval, -1.1 to 3.6). MRI brain lesions were three times more common in neonates with seizures. Sharp wave transients on cEEG were associated with delayed opercular development. CONCLUSIONS In this cohort, preoperative electrographic seizures were common, were all subclinical, and were associated with MRI brain injury and postnatal diagnosis of transposition of the great arteries. The findings motivate further study of the mechanisms of preoperative brain injury, particularly among neonates with a postnatal diagnosis of transposition of the great arteries.
Collapse
Affiliation(s)
- Marie P Pittet
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Division of Paediatric Neurology, Department of Paediatrics, Geneva University Hospital, Geneva, Switzerland
| | - Davide Marini
- Division of Cardiology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada; and
| | - Linh Ly
- Division of Neonatology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Stephanie H Au-Young
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Vann Chau
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Mike Seed
- Division of Cardiology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada; and
| | - Steven P Miller
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Cecil D Hahn
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Kanel D, Vanes LD, Pecheva D, Hadaya L, Falconer S, Counsell SJ, Edwards DA, Nosarti C. Neonatal White Matter Microstructure and Emotional Development during the Preschool Years in Children Who Were Born Very Preterm. eNeuro 2021; 8:ENEURO.0546-20.2021. [PMID: 34373253 PMCID: PMC8489022 DOI: 10.1523/eneuro.0546-20.2021] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 11/21/2022] Open
Abstract
Children born very preterm (<33 weeks of gestation) are at a higher risk of developing socio-emotional difficulties compared with those born at term. In this longitudinal study, we tested the hypothesis that diffusion characteristics of white matter (WM) tracts implicated in socio-emotional processing assessed in the neonatal period are associated with socio-emotional development in 151 very preterm children previously enrolled into the Evaluation of Preterm Imaging study (EudraCT 2009-011602-42). All children underwent diffusion tensor imaging at term-equivalent age and fractional anisotropy (FA) was quantified in the uncinate fasciculus (UF), inferior fronto-occipital fasciculus (IFOF), inferior longitudinal fasciculus (ILF), and superior longitudinal fasciculus (SLF). Children's socio-emotional development was evaluated at preschool age (median = 4.63 years). Exploratory factor analysis conducted on the outcome variables revealed a three-factor structure, with latent constructs summarized as: "emotion moderation," "social function," and "empathy." Results of linear regression analyses, adjusting for full-scale IQ and clinical and socio-demographic variables, showed an association between lower FA in the right UF and higher "emotion moderation" scores (β = -0.280; p < 0.001), which was mainly driven by negative affectivity scores (β = -0.281; p = 0.001). Results further showed an association between higher full-scale IQ and better social functioning (β = -0.334, p < 0.001). Girls had higher empathy scores than boys (β = -0.341, p = 0.006). These findings suggest that early alterations of diffusion characteristics of the UF could represent a biological substrate underlying the link between very preterm birth and emotional dysregulation in childhood and beyond.
Collapse
Affiliation(s)
- Dana Kanel
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom
| | - Lucy D Vanes
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Diliana Pecheva
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Laila Hadaya
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom
| | - Shona Falconer
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - David A Edwards
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| | - Chiara Nosarti
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom
| |
Collapse
|
3
|
A Biomarker for Predicting Responsiveness to Stem Cell Therapy Based on Mechanism-of-Action: Evidence from Cerebral Injury. Cell Rep 2021; 31:107622. [PMID: 32402283 DOI: 10.1016/j.celrep.2020.107622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/16/2020] [Accepted: 04/16/2020] [Indexed: 11/20/2022] Open
Abstract
To date, no stem cell therapy has been directed to specific recipients-and, conversely, withheld from others-based on a clinical or molecular profile congruent with that cell's therapeutic mechanism-of-action (MOA) for that condition. We address this challenge preclinically with a prototypical scenario: human neural stem cells (hNSCs) against perinatal/neonatal cerebral hypoxic-ischemic injury (HII). We demonstrate that a clinically translatable magnetic resonance imaging (MRI) algorithm, hierarchical region splitting, provides a rigorous, expeditious, prospective, noninvasive "biomarker" for identifying subjects with lesions bearing a molecular profile indicative of responsiveness to hNSCs' neuroprotective MOA. Implanted hNSCs improve lesional, motor, and/or cognitive outcomes only when there is an MRI-measurable penumbra that can be forestalled from evolving into necrotic core; the core never improves. Unlike the core, a penumbra is characterized by a molecular profile associated with salvageability. Hence, only lesions characterized by penumbral > core volumes should be treated with cells, making such measurements arguably a regenerative medicine selection biomarker.
Collapse
|
4
|
Ouyang M, Peng Q, Jeon T, Heyne R, Chalak L, Huang H. Diffusion-MRI-based regional cortical microstructure at birth for predicting neurodevelopmental outcomes of 2-year-olds. eLife 2020; 9:58116. [PMID: 33350380 PMCID: PMC7755384 DOI: 10.7554/elife.58116] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 12/06/2020] [Indexed: 12/11/2022] Open
Abstract
Cerebral cortical architecture at birth encodes regionally differential dendritic arborization and synaptic formation. It underlies behavioral emergence of 2-year-olds. Brain changes in 0-2 years are most dynamic across the lifespan. Effective prediction of future behavior with brain microstructure at birth will reveal structural basis of behavioral emergence in typical development and identify biomarkers for early detection and tailored intervention in atypical development. Here we aimed to evaluate the neonate whole-brain cortical microstructure quantified by diffusion MRI for predicting future behavior. We found that individual cognitive and language functions assessed at the age of 2 years were robustly predicted by neonate cortical microstructure using support vector regression. Remarkably, cortical regions contributing heavily to the prediction models exhibited distinctive functional selectivity for cognition and language. These findings highlight regional cortical microstructure at birth as a potential sensitive biomarker in predicting future neurodevelopmental outcomes and identifying individual risks of brain disorders.
Collapse
Affiliation(s)
- Minhui Ouyang
- Radiology Research, Children's Hospital of Philadelphia, Philadelphia, United States
| | - Qinmu Peng
- Radiology Research, Children's Hospital of Philadelphia, Philadelphia, United States.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Tina Jeon
- Radiology Research, Children's Hospital of Philadelphia, Philadelphia, United States
| | - Roy Heyne
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Lina Chalak
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Hao Huang
- Radiology Research, Children's Hospital of Philadelphia, Philadelphia, United States.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
5
|
Nunes AS, Kozhemiako N, Hutcheon E, Chau C, Ribary U, Grunau RE, Doesburg SM. Atypical neuromagnetic resting activity associated with thalamic volume and cognitive outcome in very preterm children. Neuroimage Clin 2020; 27:102275. [PMID: 32480286 PMCID: PMC7264077 DOI: 10.1016/j.nicl.2020.102275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 11/11/2022]
Abstract
Children born very preterm, even in the absence of overt brain injury or major impairment, are at increased risk of cognitive difficulties. This risk is associated with developmental disruptions of the thalamocortical system during critical periods while in the neonatal intensive care unit. The thalamus is an important structure that not only relays sensory information but acts as a hub for integration of cortical activity which regulates cortical power across a range of frequencies. In this study, we investigate the association between atypical power at rest in children born very preterm at school age using magnetoencephalography (MEG), neurocognitive function and structural alterations related to the thalamus using MRI. Our results indicate that children born extremely preterm have higher power at slow frequencies (delta and theta) and lower power at faster frequencies (alpha and beta), compared to controls born full-term. A similar pattern of spectral power was found to be associated with poorer neurocognitive outcomes, as well as with normalized T1 intensity and the volume of the thalamus. Overall, this study provides evidence regarding relations between structural alterations related to very preterm birth, atypical oscillatory power at rest and neurocognitive difficulties at school-age children born very preterm.
Collapse
Affiliation(s)
- Adonay S Nunes
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada.
| | - Nataliia Kozhemiako
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Evan Hutcheon
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Cecil Chau
- Pediatrics Department, University of British Columbia, Vancouver, BC, Canada; B.C. Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Urs Ribary
- Behavioral & Cognitive Neuroscience Institute, Simon Fraser University, Burnaby, BC, Canada; Pediatrics Department, University of British Columbia, Vancouver, BC, Canada; B.C. Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Psychology, Simon Fraser University, Burnaby, BC, Canada
| | - Ruth E Grunau
- Pediatrics Department, University of British Columbia, Vancouver, BC, Canada; B.C. Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Sam M Doesburg
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada; Behavioral & Cognitive Neuroscience Institute, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
6
|
Hodkinson DJ, Mongerson CRL, Jennings RW, Bajic D. Neonatal functional brain maturation in the context of perioperative critical care and pain management: A case report. Heliyon 2019; 5:e02350. [PMID: 31485532 PMCID: PMC6716350 DOI: 10.1016/j.heliyon.2019.e02350] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 06/03/2019] [Accepted: 08/19/2019] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Remarkable plasticity during the first year of life imparts heighted vulnerability of the developing infant brain. Application of resting-state functional magnetic resonance imaging (rs-fMRI) in infants may contribute to our understanding of neuroplastic changes associated with therapeutic interventions and/or brain insults. In addition to showing clinically relevant incidental brain MRI findings, the objective of our pilot study was to test feasibility of rs-fMRI methods at this early age in the context of pediatric perioperative critical care. METHODS We report the case of a former 33-week premature infant born with long-gap esophageal atresia that underwent complex perioperative critical care (Foker process) requiring prolonged post-operative sedation and whom presented with incidental subdural hematoma. Rs-fMRI data was acquired before (at 1-month corrected age) and after (at 2.25-months corrected age) complex perioperative care. We evaluated resting-state functional connectivity (RSFC) using graph theory to explore the complex structure of brain networks. RESULTS A transient increase in head circumference coincided temporally with lifting of sedation and initiation of sedation drugs weaning, and qualified for hydrocephalus (93%) but not macrocephaly (>95%). RSFC analysis identified networks spatially consistent with those previously described in the literature, with notable pre-post-treatment qualitative differences in correlated and anticorrelated spontaneous brain activity. DISCUSSION Current definitions of macrocephaly may require lower threshold criteria for monitoring of critically ill infants. Although we demonstrate that available rs-fMRI could be effectively applied in a critically ill infant in the setting of brain pathology, future group-level studies should investigate RSFC to evaluate maintenance of network homeostasis during development of both healthy and critically ill infants.
Collapse
Affiliation(s)
- Duncan Jack Hodkinson
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, 300 Longwood Ave., Bader 3, Boston, MA
- Harvard Medical School, 25 Shattuck St., Boston, MA
| | - Chandler Rebecca Lee Mongerson
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, 300 Longwood Ave., Bader 3, Boston, MA
| | - Russell William Jennings
- Harvard Medical School, 25 Shattuck St., Boston, MA
- Esophageal and Airway Treatment Center, Department of Surgery, Boston Children's Hospital, 300 Longwood Ave., Boston, MA
| | - Dusica Bajic
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, 300 Longwood Ave., Bader 3, Boston, MA
- Harvard Medical School, 25 Shattuck St., Boston, MA
| |
Collapse
|
7
|
Pietsch M, Christiaens D, Hutter J, Cordero-Grande L, Price AN, Hughes E, Edwards AD, Hajnal JV, Counsell SJ, Tournier JD. A framework for multi-component analysis of diffusion MRI data over the neonatal period. Neuroimage 2019; 186:321-337. [PMID: 30391562 PMCID: PMC6347572 DOI: 10.1016/j.neuroimage.2018.10.060] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 10/17/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022] Open
Abstract
We describe a framework for creating a time-resolved group average template of the developing brain using advanced multi-shell high angular resolution diffusion imaging data, for use in group voxel or fixel-wise analysis, atlas-building, and related applications. This relies on the recently proposed multi-shell multi-tissue constrained spherical deconvolution (MSMT-CSD) technique. We decompose the signal into one isotropic component and two anisotropic components, with response functions estimated from cerebrospinal fluid and white matter in the youngest and oldest participant groups, respectively. We build an orientationally-resolved template of those tissue components from data acquired from 113 babies between 33 and 44 weeks postmenstrual age, imaged as part of the Developing Human Connectome Project. These data were split into weekly groups, and registered to the corresponding group average templates using a previously-proposed non-linear diffeomorphic registration framework, designed to align orientation density functions (ODF). This framework was extended to allow the use of the multiple contrasts provided by the multi-tissue decomposition, and shown to provide superior alignment. Finally, the weekly templates were registered to the same common template to facilitate investigations into the evolution of the different components as a function of age. The resulting multi-tissue atlas provides insights into brain development and accompanying changes in microstructure, and forms the basis for future longitudinal investigations into healthy and pathological white matter maturation.
Collapse
Affiliation(s)
- Maximilian Pietsch
- Centre for the Developing Brain, School of Bioengineering and Imaging Sciences, Kings College London, Kings Health Partners, St. Thomas Hospital, London, SE1 7EH, UK; Department of Biomedical Engineering, School of Bioengineering and Imaging Sciences, Kings College London, Kings Health Partners, St. Thomas Hospital, London, SE1 7EH, UK.
| | - Daan Christiaens
- Centre for the Developing Brain, School of Bioengineering and Imaging Sciences, Kings College London, Kings Health Partners, St. Thomas Hospital, London, SE1 7EH, UK; Department of Biomedical Engineering, School of Bioengineering and Imaging Sciences, Kings College London, Kings Health Partners, St. Thomas Hospital, London, SE1 7EH, UK
| | - Jana Hutter
- Centre for the Developing Brain, School of Bioengineering and Imaging Sciences, Kings College London, Kings Health Partners, St. Thomas Hospital, London, SE1 7EH, UK; Department of Biomedical Engineering, School of Bioengineering and Imaging Sciences, Kings College London, Kings Health Partners, St. Thomas Hospital, London, SE1 7EH, UK
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, School of Bioengineering and Imaging Sciences, Kings College London, Kings Health Partners, St. Thomas Hospital, London, SE1 7EH, UK; Department of Biomedical Engineering, School of Bioengineering and Imaging Sciences, Kings College London, Kings Health Partners, St. Thomas Hospital, London, SE1 7EH, UK
| | - Anthony N Price
- Centre for the Developing Brain, School of Bioengineering and Imaging Sciences, Kings College London, Kings Health Partners, St. Thomas Hospital, London, SE1 7EH, UK; Department of Biomedical Engineering, School of Bioengineering and Imaging Sciences, Kings College London, Kings Health Partners, St. Thomas Hospital, London, SE1 7EH, UK
| | - Emer Hughes
- Centre for the Developing Brain, School of Bioengineering and Imaging Sciences, Kings College London, Kings Health Partners, St. Thomas Hospital, London, SE1 7EH, UK
| | - A David Edwards
- Centre for the Developing Brain, School of Bioengineering and Imaging Sciences, Kings College London, Kings Health Partners, St. Thomas Hospital, London, SE1 7EH, UK
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Bioengineering and Imaging Sciences, Kings College London, Kings Health Partners, St. Thomas Hospital, London, SE1 7EH, UK; Department of Biomedical Engineering, School of Bioengineering and Imaging Sciences, Kings College London, Kings Health Partners, St. Thomas Hospital, London, SE1 7EH, UK
| | - Serena J Counsell
- Centre for the Developing Brain, School of Bioengineering and Imaging Sciences, Kings College London, Kings Health Partners, St. Thomas Hospital, London, SE1 7EH, UK
| | - J-Donald Tournier
- Centre for the Developing Brain, School of Bioengineering and Imaging Sciences, Kings College London, Kings Health Partners, St. Thomas Hospital, London, SE1 7EH, UK; Department of Biomedical Engineering, School of Bioengineering and Imaging Sciences, Kings College London, Kings Health Partners, St. Thomas Hospital, London, SE1 7EH, UK
| |
Collapse
|
8
|
Smyser CD, Wheelock MD, Limbrick DD, Neil JJ. Neonatal brain injury and aberrant connectivity. Neuroimage 2019; 185:609-623. [PMID: 30059733 PMCID: PMC6289815 DOI: 10.1016/j.neuroimage.2018.07.057] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 06/21/2018] [Accepted: 07/24/2018] [Indexed: 12/12/2022] Open
Abstract
Brain injury sustained during the neonatal period may disrupt development of critical structural and functional connectivity networks leading to subsequent neurodevelopmental impairment in affected children. These networks can be characterized using structural (via diffusion MRI) and functional (via resting state-functional MRI) neuroimaging techniques. Advances in neuroimaging have led to expanded application of these approaches to study term- and prematurely-born infants, providing improved understanding of cerebral development and the deleterious effects of early brain injury. Across both modalities, neuroimaging data are conducive to analyses ranging from characterization of individual white matter tracts and/or resting state networks through advanced 'connectome-style' approaches capable of identifying highly connected network hubs and investigating metrics of network topology such as modularity and small-worldness. We begin this review by summarizing the literature detailing structural and functional connectivity findings in healthy term and preterm infants without brain injury during the postnatal period, including discussion of early connectome development. We then detail common forms of brain injury in term- and prematurely-born infants. In this context, we next review the emerging body of literature detailing studies employing diffusion MRI, resting state-functional MRI and other complementary neuroimaging modalities to characterize structural and functional connectivity development in infants with brain injury. We conclude by reviewing technical challenges associated with neonatal neuroimaging, highlighting those most relevant to studying infants with brain injury and emphasizing the need for further targeted study in this high-risk population.
Collapse
Affiliation(s)
- Christopher D Smyser
- Departments of Neurology, Pediatrics and Radiology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8111, St. Louis, MO, 63110, USA.
| | - Muriah D Wheelock
- Department of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8134, St. Louis, MO, 63110, USA.
| | - David D Limbrick
- Departments of Neurosurgery and Pediatrics, Washington University School of Medicine, One Children's Place, Suite S20, St. Louis, MO, 63110, USA.
| | - Jeffrey J Neil
- Department of Pediatric Neurology, Boston Children's Hospital, 300 Longwood Avenue, BCH3443, Boston, MA, 02115, USA.
| |
Collapse
|
9
|
Neuroinflammation in preterm babies and autism spectrum disorders. Pediatr Res 2019; 85:155-165. [PMID: 30446768 DOI: 10.1038/s41390-018-0208-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 12/23/2022]
Abstract
Genetic anomalies have a role in autism spectrum disorders (ASD). Each genetic factor is responsible for a small fraction of cases. Environment factors, like preterm delivery, have an important role in ASD. Preterm infants have a 10-fold higher risk of developing ASD. Preterm birth is often associated with maternal/fetal inflammation, leading to a fetal/neonatal inflammatory syndrome. There are demonstrated experimental links between fetal inflammation and the later development of behavioral symptoms consistent with ASD. Preterm infants have deficits in connectivity. Most ASD genes encode synaptic proteins, suggesting that ASD are connectivity pathologies. Microglia are essential for normal synaptogenesis. Microglia are diverted from homeostatic functions towards inflammatory phenotypes during perinatal inflammation, impairing synaptogenesis. Preterm infants with ASD have a different phenotype from term born peers. Our original hypothesis is that exposure to inflammation in preterm infants, combined with at risk genetic background, deregulates brain development leading to ASD.
Collapse
|
10
|
Makropoulos A, Robinson EC, Schuh A, Wright R, Fitzgibbon S, Bozek J, Counsell SJ, Steinweg J, Vecchiato K, Passerat-Palmbach J, Lenz G, Mortari F, Tenev T, Duff EP, Bastiani M, Cordero-Grande L, Hughes E, Tusor N, Tournier JD, Hutter J, Price AN, Teixeira RPAG, Murgasova M, Victor S, Kelly C, Rutherford MA, Smith SM, Edwards AD, Hajnal JV, Jenkinson M, Rueckert D. The developing human connectome project: A minimal processing pipeline for neonatal cortical surface reconstruction. Neuroimage 2018. [PMID: 29409960 DOI: 10.1101/125526] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Developing Human Connectome Project (dHCP) seeks to create the first 4-dimensional connectome of early life. Understanding this connectome in detail may provide insights into normal as well as abnormal patterns of brain development. Following established best practices adopted by the WU-MINN Human Connectome Project (HCP), and pioneered by FreeSurfer, the project utilises cortical surface-based processing pipelines. In this paper, we propose a fully automated processing pipeline for the structural Magnetic Resonance Imaging (MRI) of the developing neonatal brain. This proposed pipeline consists of a refined framework for cortical and sub-cortical volume segmentation, cortical surface extraction, and cortical surface inflation, which has been specifically designed to address considerable differences between adult and neonatal brains, as imaged using MRI. Using the proposed pipeline our results demonstrate that images collected from 465 subjects ranging from 28 to 45 weeks post-menstrual age (PMA) can be processed fully automatically; generating cortical surface models that are topologically correct, and correspond well with manual evaluations of tissue boundaries in 85% of cases. Results improve on state-of-the-art neonatal tissue segmentation models and significant errors were found in only 2% of cases, where these corresponded to subjects with high motion. Downstream, these surfaces will enhance comparisons of functional and diffusion MRI datasets, supporting the modelling of emerging patterns of brain connectivity.
Collapse
Affiliation(s)
- Antonios Makropoulos
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Emma C Robinson
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom; Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom.
| | - Andreas Schuh
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Robert Wright
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Sean Fitzgibbon
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Jelena Bozek
- Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Johannes Steinweg
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Katy Vecchiato
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Jonathan Passerat-Palmbach
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Gregor Lenz
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Filippo Mortari
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Tencho Tenev
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Eugene P Duff
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Matteo Bastiani
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Emer Hughes
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Nora Tusor
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Jacques-Donald Tournier
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Jana Hutter
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Anthony N Price
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Rui Pedro A G Teixeira
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Maria Murgasova
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Suresh Victor
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Christopher Kelly
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Mary A Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Stephen M Smith
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - A David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Mark Jenkinson
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Daniel Rueckert
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| |
Collapse
|
11
|
Makropoulos A, Robinson EC, Schuh A, Wright R, Fitzgibbon S, Bozek J, Counsell SJ, Steinweg J, Vecchiato K, Passerat-Palmbach J, Lenz G, Mortari F, Tenev T, Duff EP, Bastiani M, Cordero-Grande L, Hughes E, Tusor N, Tournier JD, Hutter J, Price AN, Teixeira RPAG, Murgasova M, Victor S, Kelly C, Rutherford MA, Smith SM, Edwards AD, Hajnal JV, Jenkinson M, Rueckert D. The developing human connectome project: A minimal processing pipeline for neonatal cortical surface reconstruction. Neuroimage 2018; 173:88-112. [PMID: 29409960 DOI: 10.1016/j.neuroimage.2018.01.054] [Citation(s) in RCA: 246] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 01/19/2018] [Accepted: 01/21/2018] [Indexed: 12/11/2022] Open
Abstract
The Developing Human Connectome Project (dHCP) seeks to create the first 4-dimensional connectome of early life. Understanding this connectome in detail may provide insights into normal as well as abnormal patterns of brain development. Following established best practices adopted by the WU-MINN Human Connectome Project (HCP), and pioneered by FreeSurfer, the project utilises cortical surface-based processing pipelines. In this paper, we propose a fully automated processing pipeline for the structural Magnetic Resonance Imaging (MRI) of the developing neonatal brain. This proposed pipeline consists of a refined framework for cortical and sub-cortical volume segmentation, cortical surface extraction, and cortical surface inflation, which has been specifically designed to address considerable differences between adult and neonatal brains, as imaged using MRI. Using the proposed pipeline our results demonstrate that images collected from 465 subjects ranging from 28 to 45 weeks post-menstrual age (PMA) can be processed fully automatically; generating cortical surface models that are topologically correct, and correspond well with manual evaluations of tissue boundaries in 85% of cases. Results improve on state-of-the-art neonatal tissue segmentation models and significant errors were found in only 2% of cases, where these corresponded to subjects with high motion. Downstream, these surfaces will enhance comparisons of functional and diffusion MRI datasets, supporting the modelling of emerging patterns of brain connectivity.
Collapse
Affiliation(s)
- Antonios Makropoulos
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Emma C Robinson
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom; Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom.
| | - Andreas Schuh
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Robert Wright
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Sean Fitzgibbon
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Jelena Bozek
- Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Johannes Steinweg
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Katy Vecchiato
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Jonathan Passerat-Palmbach
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Gregor Lenz
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Filippo Mortari
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Tencho Tenev
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Eugene P Duff
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Matteo Bastiani
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Emer Hughes
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Nora Tusor
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Jacques-Donald Tournier
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Jana Hutter
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Anthony N Price
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Rui Pedro A G Teixeira
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Maria Murgasova
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Suresh Victor
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Christopher Kelly
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Mary A Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Stephen M Smith
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - A David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Mark Jenkinson
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Daniel Rueckert
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| |
Collapse
|
12
|
Prenatal methadone exposure is associated with altered neonatal brain development. NEUROIMAGE-CLINICAL 2017; 18:9-14. [PMID: 29326869 PMCID: PMC5760461 DOI: 10.1016/j.nicl.2017.12.033] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/15/2017] [Accepted: 12/22/2017] [Indexed: 11/29/2022]
Abstract
Methadone is used for medication-assisted treatment of heroin addiction during pregnancy. The neurodevelopmental outcome of children with prenatal methadone exposure can be sub-optimal. We tested the hypothesis that brain development is altered among newborn infants whose mothers were prescribed methadone. 20 methadone-exposed neonates born after 37 weeks' postmenstrual age (PMA) and 20 non-exposed controls underwent diffusion MRI at mean PMA of 39+ 2 and 41+ 1 weeks, respectively. An age-optimized Tract-based Spatial Statistics (TBSS) pipeline was used to perform voxel-wise statistical comparison of fractional anisotropy (FA) data between exposed and non-exposed neonates. Methadone-exposed neonates had decreased FA within the centrum semiovale, inferior longitudinal fasciculi (ILF) and the internal and external capsules after adjustment for GA at MRI (p < 0.05, TFCE corrected). Median FA across the white matter skeleton was 12% lower among methadone-exposed infants. Mean head circumference (HC) z-scores were lower in the methadone-exposed group (− 0.52 (0.99) vs 1.15 (0.84), p < 0.001); after adjustment for HC z-scores, differences in FA remained in the anterior and posterior limbs of the internal capsule and the ILF. Polydrug use among cases was common. Prenatal methadone exposure is associated with microstructural alteration in major white matter tracts, which is present at birth and is independent of head growth. Although the findings cannot be attributed to methadone per se, the data indicate that further research to determine optimal management of opioid use disorder during pregnancy is required. Future studies should evaluate childhood outcomes including infant brain development and long-term neurocognitive function. Prenatal methadone exposure is associated with atypical white matter development. Reduced FA in the white matter skeleton is apparent soon after birth. Polydrug use among cases limits causal inference. Infant brain development should be evaluated in studies of opioid use in pregnancy.
Collapse
|
13
|
Dean DC, Planalp EM, Wooten W, Adluru N, Kecskemeti SR, Frye C, Schmidt CK, Schmidt NL, Styner MA, Goldsmith HH, Davidson RJ, Alexander AL. Mapping White Matter Microstructure in the One Month Human Brain. Sci Rep 2017; 7:9759. [PMID: 28852074 PMCID: PMC5575288 DOI: 10.1038/s41598-017-09915-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/01/2017] [Indexed: 11/24/2022] Open
Abstract
White matter microstructure, essential for efficient and coordinated transmission of neural communications, undergoes pronounced development during the first years of life, while deviations to this neurodevelopmental trajectory likely result in alterations of brain connectivity relevant to behavior. Hence, systematic evaluation of white matter microstructure in the normative brain is critical for a neuroscientific approach to both typical and atypical early behavioral development. However, few studies have examined the infant brain in detail, particularly in infants under 3 months of age. Here, we utilize quantitative techniques of diffusion tensor imaging and neurite orientation dispersion and density imaging to investigate neonatal white matter microstructure in 104 infants. An optimized multiple b-value diffusion protocol was developed to allow for successful acquisition during non-sedated sleep. Associations between white matter microstructure measures and gestation corrected age, regional asymmetries, infant sex, as well as newborn growth measures were assessed. Results highlight changes of white matter microstructure during the earliest periods of development and demonstrate differential timing of developing regions and regional asymmetries. Our results contribute to a growing body of research investigating the neurobiological changes associated with neurodevelopment and suggest that characteristics of white matter microstructure are already underway in the weeks immediately following birth.
Collapse
Affiliation(s)
- D C Dean
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA.
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA.
| | - E M Planalp
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - W Wooten
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA
| | - N Adluru
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - S R Kecskemeti
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - C Frye
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA
| | - C K Schmidt
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA
| | - N L Schmidt
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA
| | - M A Styner
- Department of Psychiatry, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
- Department of Computer Science, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - H H Goldsmith
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - R J Davidson
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Psychiatry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - A L Alexander
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychiatry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
14
|
Anblagan D, Pataky R, Evans MJ, Telford EJ, Serag A, Sparrow S, Piyasena C, Semple SI, Wilkinson AG, Bastin ME, Boardman JP. Association between preterm brain injury and exposure to chorioamnionitis during fetal life. Sci Rep 2016; 6:37932. [PMID: 27905410 PMCID: PMC5131360 DOI: 10.1038/srep37932] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 11/02/2016] [Indexed: 12/27/2022] Open
Abstract
Preterm infants are susceptible to inflammation-induced white matter injury but the exposures that lead to this are uncertain. Histologic chorioamnionitis (HCA) reflects intrauterine inflammation, can trigger a fetal inflammatory response, and is closely associated with premature birth. In a cohort of 90 preterm infants with detailed placental histology and neonatal brain magnetic resonance imaging (MRI) data at term equivalent age, we used Tract-based Spatial Statistics (TBSS) to perform voxel-wise statistical comparison of fractional anisotropy (FA) data and computational morphometry analysis to compute the volumes of whole brain, tissue compartments and cerebrospinal fluid, to test the hypothesis that HCA is an independent antenatal risk factor for preterm brain injury. Twenty-six (29%) infants had HCA and this was associated with decreased FA in the genu, cingulum cingulate gyri, centrum semiovale, inferior longitudinal fasciculi, limbs of the internal capsule, external capsule and cerebellum (p < 0.05, corrected), independent of degree of prematurity, bronchopulmonary dysplasia and postnatal sepsis. This suggests that diffuse white matter injury begins in utero for a significant proportion of preterm infants, which focuses attention on the development of methods for detecting fetuses and placentas at risk as a means of reducing preterm brain injury.
Collapse
Affiliation(s)
- Devasuda Anblagan
- MRC Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Rozalia Pataky
- MRC Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Margaret J Evans
- Department of Pathology, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh, EH16 4SA, UK
| | - Emma J Telford
- MRC Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Ahmed Serag
- MRC Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Sarah Sparrow
- MRC Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Chinthika Piyasena
- Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Scott I Semple
- Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.,Clinical Research Imaging Centre, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | | | - Mark E Bastin
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - James P Boardman
- MRC Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| |
Collapse
|
15
|
Goldstein RD, Kinney HC, Willinger M. Sudden Unexpected Death in Fetal Life Through Early Childhood. Pediatrics 2016; 137:e20154661. [PMID: 27230764 PMCID: PMC4894250 DOI: 10.1542/peds.2015-4661] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/07/2016] [Indexed: 11/24/2022] Open
Abstract
In March 2015, the Eunice Kennedy Shriver National Institute of Child Health and Human Development held a workshop entitled "Sudden Unexpected Death in Fetal Life Through Early Childhood: New Opportunities." Its objective was to advance efforts to understand and ultimately prevent sudden deaths in early life, by considering their pathogenesis as a potential continuum with some commonalities in biological origins or pathways. A second objective of this meeting was to highlight current issues surrounding the classification of sudden infant death syndrome (SIDS), and the implications of variations in the use of the term "SIDS" in forensic practice, and pediatric care and research. The proceedings reflected the most current knowledge and understanding of the origins and biology of vulnerability to sudden unexpected death, and its environmental triggers. Participants were encouraged to consider the application of new technologies and "omics" approaches to accelerate research. The major advances in delineating the intrinsic vulnerabilities to sudden death in early life have come from epidemiologic, neural, cardiac, metabolic, genetic, and physiologic research, with some commonalities among cases of unexplained stillbirth, SIDS, and sudden unexplained death in childhood observed. It was emphasized that investigations of sudden unexpected death are inconsistent, varying by jurisdiction, as are the education, certification practices, and experience of death certifiers. In addition, there is no practical consensus on the use of "SIDS" as a determination in cause of death. Major clinical, forensic, and scientific areas are identified for future research.
Collapse
Affiliation(s)
- Richard D Goldstein
- Department of Psychosocial Oncology and Palliative Care, Dana-Farber Cancer Institute, Department of Medicine, and
| | - Hannah C Kinney
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Marian Willinger
- Pregnancy and Perinatology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
16
|
Kansagra AP, Mabray MC, Ferriero DM, Barkovich AJ, Xu D, Hess CP. Microstructural maturation of white matter tracts in encephalopathic neonates. Clin Imaging 2016; 40:1009-13. [PMID: 27314214 DOI: 10.1016/j.clinimag.2016.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/19/2016] [Accepted: 05/25/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE This study aims to apply neurite orientation dispersion and density imaging (NODDI) to measure white matter microstructural features during early development. METHODS NODDI parameters were measured in twelve newborns and thirteen 6-month infants, all with perinatal clinical encephalopathy. RESULTS Between 0 and 6 months, there were significant differences in fractional anisotropy (FA) for all tracts; in neurite density for internal capsules, optic radiations, and splenium; and in orientation dispersion for anterior limb of internal capsule and optic radiations. There were no appreciable differences in NODDI parameters related to outcome. CONCLUSION NODDI may allow more detailed characterization of microstructural maturation than FA.
Collapse
Affiliation(s)
- Akash P Kansagra
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd., Campus Box 8131, Saint Louis, MO 63110.
| | - Marc C Mabray
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Avenue, M-391, San Francisco, CA 94143
| | - Donna M Ferriero
- Departments of Pediatrics and Neurology, University of California, San Francisco, 400 Parnassus Avenue, San Francisco, CA 94143
| | - A James Barkovich
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Avenue, M-391, San Francisco, CA 94143; Departments of Pediatrics and Neurology, University of California, San Francisco, 400 Parnassus Avenue, San Francisco, CA 94143
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Avenue, M-391, San Francisco, CA 94143
| | - Christopher P Hess
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, 505 Parnassus Avenue, M-391, San Francisco, CA 94143
| |
Collapse
|
17
|
Kelly CE, Thompson DK, Chen J, Leemans A, Adamson CL, Inder TE, Cheong JLY, Doyle LW, Anderson PJ. Axon density and axon orientation dispersion in children born preterm. Hum Brain Mapp 2016; 37:3080-102. [PMID: 27133221 DOI: 10.1002/hbm.23227] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/12/2016] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Very preterm birth (VPT, <32 weeks' gestation) is associated with altered white matter fractional anisotropy (FA), the biological basis of which is uncertain but may relate to changes in axon density and/or dispersion, which can be measured using Neurite Orientation Dispersion and Density Imaging (NODDI). This study aimed to compare whole brain white matter FA, axon dispersion, and axon density between VPT children and controls (born ≥37 weeks' gestation), and to investigate associations with perinatal factors and neurodevelopmental outcomes. METHODS FA, neurite dispersion, and neurite density were estimated from multishell diffusion magnetic resonance images for 145 VPT and 33 control 7-year-olds. Diffusion values were compared between groups and correlated with perinatal factors (gestational age, birthweight, and neonatal brain abnormalities) and neurodevelopmental outcomes (IQ, motor, academic, and behavioral outcomes) using Tract-Based Spatial Statistics. RESULTS Compared with controls, VPT children had lower FA and higher axon dispersion within many major white matter fiber tracts. Neonatal brain abnormalities predicted lower FA and higher axon dispersion in many major tracts in VPT children. Lower FA, higher axon dispersion, and lower axon density in various tracts correlated with poorer neurodevelopmental outcomes in VPT children. CONCLUSIONS FA and NODDI measures distinguished VPT children from controls and were associated with neonatal brain abnormalities and neurodevelopmental outcomes. This study provides a more detailed and biologically meaningful interpretation of white matter microstructure changes associated with prematurity. Hum Brain Mapp 37:3080-3102, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Claire E Kelly
- Murdoch Childrens Research Institute, Melbourne, Australia
| | - Deanne K Thompson
- Murdoch Childrens Research Institute, Melbourne, Australia.,Florey Institute of Neuroscience and Mental Health, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Jian Chen
- Murdoch Childrens Research Institute, Melbourne, Australia.,Department of Medicine, Monash Medical Centre, Monash University, Melbourne, Australia
| | - Alexander Leemans
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | - Jeanie L Y Cheong
- Murdoch Childrens Research Institute, Melbourne, Australia.,Royal Women's Hospital, Melbourne, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Australia
| | - Lex W Doyle
- Murdoch Childrens Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia.,Royal Women's Hospital, Melbourne, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, Australia
| | - Peter J Anderson
- Murdoch Childrens Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| |
Collapse
|
18
|
Developmental Care Rounds: An Interdisciplinary Approach to Support Developmentally Appropriate Care of Infants Born with Complex Congenital Heart Disease. Clin Perinatol 2016; 43:147-56. [PMID: 26876127 DOI: 10.1016/j.clp.2015.11.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Newborn infants with complex congenital heart disease are at risk for developmental delay. Developmental care practices benefit prematurely born infants in neonatal intensive care units. Cardiac intensive care units until recently had not integrated developmental care practices into their care framework. Interdisciplinary developmental care rounds in our center have helped in the promotion of developmentally supportive care for infants before and after cardiac surgery. This article discusses basic principles of developmental care, the role of each member of the interdisciplinary team on rounds, common developmental care practices integrated into care from rounds, and impacts to patients, families, and staff.
Collapse
|
19
|
Abstract
BACKGROUND Over the past two decades, imaging techniques have allowed for better visualization of the newborn brain. This has enabled us to detect patterns, understand mechanisms and guide diagnosis and treatment. OBJECTIVES The purpose of this review is to discuss imaging characteristics of acquired perinatal brain injury. METHODS Through literature review and the author's research, this review assesses published data on the distinct imaging patterns that occur in the neonatal period due to acquired brain insults. RESULTS In the term brain, susceptibility to hypoxia-ischemia, hypoglycemia and hyperbilirubinemia results in unique patterns of injury. Stroke commonly occurs in the newborn period. Infections, especially viral, have distinct patterns of white matter injury. In the preterm brain, white matter injury occurs commonly and is affected by postnatal growth, stress and infection. The cerebellum is uniquely vulnerable during this period, with resultant hemorrhages in almost half of preterm infants. Cerebellar growth is affected by intraventricular hemorrhage, drugs and placental pathology. Periventricular hemorrhagic infarction is the most serious consequence of the spectrum of intraventricular hemorrhage and results in profound disabilities. CONCLUSIONS Taken together, the acquired perinatal brain injuries can have lifelong devastating consequences, so the search for therapies must continue.
Collapse
Affiliation(s)
- Donna M Ferriero
- Department of Pediatrics, UCSF Benioff Children's Hospitals, University of California, San Francisco, San Francisco, Calif., USA
| |
Collapse
|
20
|
Morton PD, Ishibashi N, Jonas RA, Gallo V. Congenital cardiac anomalies and white matter injury. Trends Neurosci 2015; 38:353-63. [PMID: 25939892 PMCID: PMC4461528 DOI: 10.1016/j.tins.2015.04.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 12/17/2022]
Abstract
Cardiac abnormalities are the most common birth defects. Derangement of circulatory flow affects many vital organs; without proper supply of oxygenated blood, the brain is particularly vulnerable. Although surgical interventions have greatly reduced mortality rates, patients often suffer an array of neurological deficits throughout life. Neuroimaging provides a macroscopic assessment of brain injury and has shown that white matter (WM) is at risk. Oligodendrocytes and myelinated axons have been identified as major targets of WM injury, but still little is known about how congenital heart anomalies affect the brain at the cellular level. Further integration of animal model studies and clinical research will define novel therapeutic targets and new standards of care to prevent developmental delay associated with cardiac abnormalities.
Collapse
Affiliation(s)
- Paul D Morton
- Center for Neuroscience Research and Children's National Heart Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Nobuyuki Ishibashi
- Center for Neuroscience Research and Children's National Heart Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Richard A Jonas
- Center for Neuroscience Research and Children's National Heart Institute, Children's National Medical Center, Washington, DC 20010, USA
| | - Vittorio Gallo
- Center for Neuroscience Research and Children's National Heart Institute, Children's National Medical Center, Washington, DC 20010, USA.
| |
Collapse
|
21
|
Leviton A, Gressens P, Wolkenhauer O, Dammann O. Systems approach to the study of brain damage in the very preterm newborn. Front Syst Neurosci 2015; 9:58. [PMID: 25926780 PMCID: PMC4396381 DOI: 10.3389/fnsys.2015.00058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 03/26/2015] [Indexed: 12/11/2022] Open
Abstract
Background: A systems approach to the study of brain damage in very preterm newborns has been lacking. Methods: In this perspective piece, we offer encephalopathy of prematurity as an example of the complexity and interrelatedness of brain-damaging molecular processes that can be initiated inflammatory phenomena. Results: Using three transcription factors, nuclear factor-kappa B (NF-κB), Notch-1, and nuclear factor erythroid 2 related factor 2 (NRF2), we show the inter-connectedness of signaling pathways activated by some antecedents of encephalopathy of prematurity. Conclusions: We hope that as biomarkers of exposures and processes leading to brain damage in the most immature newborns become more readily available, those who apply a systems approach to the study of neuroscience can be persuaded to study the pathogenesis of brain disorders in the very preterm newborn.
Collapse
Affiliation(s)
- Alan Leviton
- Neuroepidemiology Unit, Boston Children's Hospital Boston, MA, USA ; Department of Neurology, Harvard Medical School Boston, MA, USA
| | - Pierre Gressens
- Inserm, U1141 Paris, France ; Department of Perinatal Imaging and Health, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital London, UK
| | - Olaf Wolkenhauer
- Department of Systems Biology and Bioinformatics, University of Rostock Rostock, Germany ; Stellenbosch Institute for Advanced Study (STIAS) Stellenbosch, South Africa
| | - Olaf Dammann
- Department of Public Health and Community Medicine, Tufts University School of Medicine Boston, MA, USA ; Perinatal Epidemiology Unit, Department of Gynecology and Obstetrics, Hannover Medical School Hannover, Germany
| |
Collapse
|