1
|
Wu W, Hoffman P. Verbal semantic expertise is associated with reduced functional connectivity between left and right anterior temporal lobes. Cereb Cortex 2024; 34:bhae256. [PMID: 38897815 PMCID: PMC11186671 DOI: 10.1093/cercor/bhae256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
The left and right anterior temporal lobes (ATLs) encode semantic representations. They show graded hemispheric specialization in function, with the left ATL contributing preferentially to verbal semantic processing. We investigated the cognitive correlates of this organization, using resting-state functional connectivity as a measure of functional segregation between ATLs. We analyzed two independent resting-state fMRI datasets (n = 86 and n = 642) in which participants' verbal semantic expertise was measured using vocabulary tests. In both datasets, people with more advanced verbal semantic knowledge showed weaker functional connectivity between left and right ventral ATLs. This effect was highly specific. It was not observed for within-hemisphere connections between semantic regions (ventral ATL and inferior frontal gyrus (IFG), though it was found for left-right IFG connectivity in one dataset). Effects were not found for tasks probing semantic control, nonsemantic cognition, or face recognition. Our results suggest that hemispheric specialization in the ATLs is not an innate property but rather emerges as people develop highly detailed verbal semantic representations. We speculate that this effect is a consequence of the left ATL's greater connectivity with left-lateralized written word recognition regions, which causes it to preferentially represent meaning for advanced vocabulary acquired primarily through reading.
Collapse
Affiliation(s)
- Wei Wu
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, 7 George Square, Edinburgh EH8 9JZ, United Kingdom
- Department of Music, Durham University, Palace Green, Durham DH1 3RL, United Kingdom
| | - Paul Hoffman
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, 7 George Square, Edinburgh EH8 9JZ, United Kingdom
| |
Collapse
|
2
|
Wu W, Lohani S, Homan T, Krieger-Redwood K, Hoffman P. Healthy ageing has divergent effects on verbal and non-verbal semantic cognition. Q J Exp Psychol (Hove) 2024; 77:1179-1189. [PMID: 37542428 PMCID: PMC11103919 DOI: 10.1177/17470218231195341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 06/16/2023] [Accepted: 07/20/2023] [Indexed: 08/07/2023]
Abstract
Semantic cognition refers to the storage and appropriate use of knowledge acquired over the lifespan and underpins our everyday verbal and non-verbal behaviours. Successful semantic cognition requires representation of knowledge and control processes which ensure that currently relevant aspects of knowledge are retrieved and selected. Although these abilities have been widely studied in healthy young populations and semantically impaired patients, it is unclear how they change as a function of healthy ageing, especially for non-verbal semantic processing. Here, we addressed this issue by comparing the performance profiles of young and older people on a semantic knowledge task and a semantic control task, across verbal (word) and non-verbal (picture) versions. The results revealed distinct patterns of change during adulthood for semantic knowledge and semantic control. Older people performed better in both verbal and non-verbal knowledge tasks than young people. However, although the older group showed preserved controlled retrieval for verbal semantics, they demonstrated a specific impairment for non-verbal semantic control. These findings indicate that the effects of ageing on semantic cognition are more complex than previously assumed, and that input modality plays an important role in the shifting cognitive architecture of semantics in later life.
Collapse
Affiliation(s)
- Wei Wu
- School of Philosophy, Psychology & Language Sciences, The University of Edinburgh, Edinburgh, UK
| | - Suchismita Lohani
- School of Philosophy, Psychology & Language Sciences, The University of Edinburgh, Edinburgh, UK
| | - Taylore Homan
- School of Philosophy, Psychology & Language Sciences, The University of Edinburgh, Edinburgh, UK
| | | | - Paul Hoffman
- School of Philosophy, Psychology & Language Sciences, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
3
|
Dong J, Yan H, Mei L, Wang G, Qu J, Liu X, Xu S, Jiang W, Zheng A, Feng G. Greater Pattern Similarity between Mother Tongue and Second Language in the Right ATL Facilitates Understanding of Written Language. Neuroscience 2024; 544:117-127. [PMID: 38447688 DOI: 10.1016/j.neuroscience.2024.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
Previous research has mapped out the brain regions that respond to semantic stimuli presented visually and auditorily, but there is debate about whether semantic representation is modality-specific (only written or only spoken) or modality-invariant (both written and spoken). The mechanism of semantic representation underlying native (L1) and second language (L2) comprehension in different modalities as well as how this mechanism is influenced by L2 proficiency, remains unclear. We used functional magnetic resonance imaging (fMRI) data from the OpenNEURO database to calculate neural pattern similarity across native and second languages (Spanish and English) for different input modalities (written and spoken) and learning sessions (before and after training). The correlations between behavioral performance and cross-language pattern similarity for L1 and L2 were also calculated. Spanish-English bilingual adolescents (N = 24; ages 16-17; 19 girls) participated in a 3-month English immersion after-school program. As L2 proficiency increased, greater cross-language pattern similarity between L1 and L2 spoken words was observed in the left pars triangularis. Cross-language pattern similarity between L1 and L2 written words was observed in the right anterior temporal lobe. Brain-behavior correlations indicated that increased cross-language pattern similarity between L1 and L2 written words in the right anterior temporal lobe was associated with L2 written word comprehension. This study identified an effective neurofunctional predictor related to L2 written word comprehension.
Collapse
Affiliation(s)
- Jie Dong
- Key Laboratory for Artificial Intelligence and Cognitive Neuroscience of Language, Xi'an International Studies University, Xi'an, China
| | - Hao Yan
- Key Laboratory for Artificial Intelligence and Cognitive Neuroscience of Language, Xi'an International Studies University, Xi'an, China
| | - Leilei Mei
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Gang Wang
- Xi'an GEM Flower Changqing Hospital, Xi'an, China
| | - Jing Qu
- Key Laboratory of Behavioral and Mental Health of Gansu, Northwest Normal University, Lanzhou, China
| | - Xinyi Liu
- Key Laboratory for Artificial Intelligence and Cognitive Neuroscience of Language, Xi'an International Studies University, Xi'an, China
| | - Shanshan Xu
- Key Laboratory for Artificial Intelligence and Cognitive Neuroscience of Language, Xi'an International Studies University, Xi'an, China
| | - Wenjing Jiang
- Key Laboratory for Artificial Intelligence and Cognitive Neuroscience of Language, Xi'an International Studies University, Xi'an, China
| | - Aoke Zheng
- Key Laboratory for Artificial Intelligence and Cognitive Neuroscience of Language, Xi'an International Studies University, Xi'an, China
| | - Genyi Feng
- Xi'an GEM Flower Changqing Hospital, Xi'an, China.
| |
Collapse
|
4
|
Zhang Y, Wu W, Mirman D, Hoffman P. Representation of event and object concepts in ventral anterior temporal lobe and angular gyrus. Cereb Cortex 2024; 34:bhad519. [PMID: 38185997 PMCID: PMC10839851 DOI: 10.1093/cercor/bhad519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
Semantic knowledge includes understanding of objects and their features and also understanding of the characteristics of events. The hub-and-spoke theory holds that these conceptual representations rely on multiple information sources that are integrated in a central hub in the ventral anterior temporal lobes. The dual-hub theory expands this framework with the claim that the ventral anterior temporal lobe hub is specialized for object representation, while a second hub in angular gyrus is specialized for event representation. To test these ideas, we used representational similarity analysis, univariate and psychophysiological interaction analyses of fMRI data collected while participants processed object and event concepts (e.g. "an apple," "a wedding") presented as images and written words. Representational similarity analysis showed that angular gyrus encoded event concept similarity more than object similarity, although the left angular gyrus also encoded object similarity. Bilateral ventral anterior temporal lobes encoded both object and event concept structure, and left ventral anterior temporal lobe exhibited stronger coding for events. Psychophysiological interaction analysis revealed greater connectivity between left ventral anterior temporal lobe and right pMTG, and between right angular gyrus and bilateral ITG and middle occipital gyrus, for event concepts compared to object concepts. These findings support the specialization of angular gyrus for event semantics, though with some involvement in object coding, but do not support ventral anterior temporal lobe specialization for object concepts.
Collapse
Affiliation(s)
- Yueyang Zhang
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom
| | - Wei Wu
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom
| | - Daniel Mirman
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom
| | - Paul Hoffman
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom
| |
Collapse
|
5
|
Dai Z, Song L, Luo C, Liu D, Li M, Han Z. Hemispheric lateralization of language processing: insights from network-based symptom mapping and patient subgroups. Cereb Cortex 2024; 34:bhad437. [PMID: 38031356 DOI: 10.1093/cercor/bhad437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
The hemispheric laterality of language processing has become a hot topic in modern neuroscience. Although most previous studies have reported left-lateralized language processing, other studies found it to be bilateral. A previous neurocomputational model has proposed a unified framework to explain that the above discrepancy might be from healthy and patient individuals. This model posits an initial symmetry but imbalanced capacity in language processing for healthy individuals, with this imbalance contributing to language recovery disparities following different hemispheric injuries. The present study investigated this model by analyzing the lateralization patterns of language subnetworks across multiple attributes with a group of 99 patients (compared to nonlanguage processing) and examining the lateralization patterns of language subnetworks in subgroups with damage to different hemispheres. Subnetworks were identified using a whole-brain network-based lesion-symptom mapping method, and the lateralization index was quantitatively measured. We found that all the subnetworks in language processing were left-lateralized, while subnetworks in nonlanguage processing had different lateralization patterns. Moreover, diverse hemisphere-injury subgroups exhibited distinct language recovery effects. These findings provide robust support for the proposed neurocomputational model of language processing.
Collapse
Affiliation(s)
- Zhiyun Dai
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Luping Song
- Shenzhen Sixth People's Hospital (Nanshan Hospital), Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Chongjing Luo
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Di Liu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Mingyang Li
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Yuquan Campus, Hangzhou 310027, China
| | - Zaizhu Han
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
6
|
Duque ACM, Cuesta TAC, Melo ADS, Maldonado IL. Right hemisphere and metaphor comprehension: A connectionist perspective. Neuropsychologia 2023; 187:108618. [PMID: 37321404 DOI: 10.1016/j.neuropsychologia.2023.108618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/11/2023] [Accepted: 06/10/2023] [Indexed: 06/17/2023]
Abstract
Metaphor comprehension is a cognitively complex task, with evidence pointing to the engagement of multiple cerebral areas. In addition, the involvement of the right hemisphere appears to vary with cognitive effort. Therefore, the interconnecting pathways of such distributed cortical centers should be taken into account when studying this topic. Despite this, the potential contribution of white matter fasciculi has received very little attention in the literature to date and is not mentioned in most metaphor comprehension studies. To highlight the probable implications of the right inferior fronto-occipital fasciculus, right superior longitudinal system, and callosal radiations, we bring together findings from different research fields. The aim is to describe important insights enabled by the cross-fertilization of functional neuroimaging, clinical findings, and structural connectivity.
Collapse
Affiliation(s)
- Anna Clara Mota Duque
- Programa de Pós-Graduação em Medicina e Saúde, Universidade Federal da Bahia, Salvador, Brazil; Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Taryn Ariadna Castro Cuesta
- Programa de Pós-Graduação em Medicina e Saúde, Universidade Federal da Bahia, Salvador, Brazil; Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Ailton de Souza Melo
- Programa de Pós-Graduação em Medicina e Saúde, Universidade Federal da Bahia, Salvador, Brazil; Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Igor Lima Maldonado
- Programa de Pós-Graduação em Medicina e Saúde, Universidade Federal da Bahia, Salvador, Brazil; Dep. Biomorfologia, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil; UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.
| |
Collapse
|
7
|
Vonk JM, Geerlings MI, Avila JF, Qian CL, Schupf N, Mayeux R, Brickman AM, Manly JJ. Semantic item-level metrics relate to future memory decline beyond existing cognitive tests in older adults without dementia. Psychol Aging 2023; 38:443-454. [PMID: 37199965 PMCID: PMC10440298 DOI: 10.1037/pag0000747] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In normal aging, the cognitive domain of semantic memory remains preserved, while the domain of episodic memory declines to some extent. In Alzheimer's disease dementia, both semantic and episodic memory become impaired early in the disease process. Given the need to develop sensitive and accessible cognitive markers for early detection of dementia, we investigated among older adults without dementia whether item-level metrics of semantic fluency related to episodic memory decline above and beyond existing neuropsychological measures and total fluency score. Participants were drawn from the community-based Washington Heights-Inwood Columbia Aging Project cohort (N = 583 English speakers, Mage = 76.3 ± 6.8) followed up to five visits across up to 11 years. We examined the association of semantic fluency metrics with subsequent declines in memory performance using latent growth curve models covaried for age and recruitment wave. Results showed that item-level metrics (e.g., lexical frequency, age of acquisition, and semantic neighborhood density) were associated with a decline in episodic memory-even when covarying for other cognitive tests-while the standard total score was not. Moderation analyses showed that the relationship of semantic fluency metrics with memory decline did not differ across race, sex/gender, or education. In conclusion, item-level data hold a wealth of information with potential to reveal subtle semantic memory impairment, which tracks with episodic memory impairment, among older adults without dementia beyond existing neuropsychological measures. Implementation of psycholinguistic metrics may point to cognitive tools that have better prognostic value or are more sensitive to cognitive change in the context of clinical trials or observational studies. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
- Jet M.J. Vonk
- Department of Neurology, Memory and Aging Center, University of California San Francisco (UCSF), San Francisco, CA, USA
- Julius Center for Health Sciences and Primary Care, Department of Epidemiology, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Mirjam I. Geerlings
- Julius Center for Health Sciences and Primary Care, Department of Epidemiology, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Justina F. Avila
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Carolyn L. Qian
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Nicole Schupf
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Richard Mayeux
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Adam M. Brickman
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Jennifer J. Manly
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
8
|
Meyer AM, Snider SF, Tippett DC, Saloma R, Turkeltaub PE, Hillis AE, Friedman RB. Baseline Conceptual-Semantic Impairment Predicts Longitudinal Treatment Effects for Anomia in Primary Progressive Aphasia and Alzheimer's Disease. APHASIOLOGY 2023; 38:205-236. [PMID: 38283767 PMCID: PMC10809875 DOI: 10.1080/02687038.2023.2183075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 02/16/2023] [Indexed: 01/30/2024]
Abstract
Background An individual's diagnostic subtype may fail to predict the efficacy of a given type of treatment for anomia. Classification by conceptual-semantic impairment may be more informative. Aims This study examined the effects of conceptual-semantic impairment and diagnostic subtype on anomia treatment effects in primary progressive aphasia (PPA) and Alzheimer's disease (AD). Methods & Procedures At baseline, the picture and word versions of the Pyramids and Palm Trees and Kissing and Dancing tests were used to measure conceptual-semantic processing. Based on norming that was conducted with unimpaired older adults, participants were classified as being impaired on both the picture and word versions (i.e., modality-general conceptual-semantic impairment), the picture version (Objects or Actions) only (i.e., visual-conceptual impairment), the word version (Nouns or Verbs) only (i.e., lexical-semantic impairment), or neither the picture nor the word version (i.e., no impairment). Following baseline testing, a lexical treatment and a semantic treatment were administered to all participants. The treatment stimuli consisted of nouns and verbs that were consistently named correctly at baseline (Prophylaxis items) and/or nouns and verbs that were consistently named incorrectly at baseline (Remediation items). Naming accuracy was measured at baseline, and it was measured at three, seven, eleven, fourteen, eighteen, and twenty-one months. Outcomes & Results Compared to baseline naming performance, lexical and semantic treatments both improved naming accuracy for treated Remediation nouns and verbs. For Prophylaxis items, lexical treatment was effective for both nouns and verbs, and semantic treatment was effective for verbs, but the pattern of results was different for nouns -- the effect of semantic treatment was initially nonsignificant or marginally significant, but it was significant beginning at 11 Months, suggesting that the effects of prophylactic semantic treatment may become more apparent as the disorder progresses. Furthermore, the interaction between baseline Conceptual-Semantic Impairment and the Treatment Condition (Lexical vs. Semantic) was significant for verb Prophylaxis items at 3 and 18 Months, and it was significant for noun Prophylaxis items at 14 and 18 Months. Conclusions The pattern of results suggested that individuals who have modality-general conceptual-semantic impairment at baseline are more likely to benefit from lexical treatment, while individuals who have unimpaired conceptual-semantic processing at baseline are more likely to benefit from semantic treatment as the disorder progresses. In contrast to conceptual-semantic impairment, diagnostic subtype did not typically predict the treatment effects.
Collapse
Affiliation(s)
- Aaron M. Meyer
- Center for Aphasia Research and Rehabilitation, Georgetown University Medical Center
| | - Sarah F. Snider
- Center for Aphasia Research and Rehabilitation, Georgetown University Medical Center
| | | | - Ryan Saloma
- Center for Aphasia Research and Rehabilitation, Georgetown University Medical Center
| | - Peter E. Turkeltaub
- Center for Aphasia Research and Rehabilitation, Georgetown University Medical Center
| | | | - Rhonda B. Friedman
- Center for Aphasia Research and Rehabilitation, Georgetown University Medical Center
| |
Collapse
|
9
|
Mesulam MM. Temporopolar regions of the human brain. Brain 2023; 146:20-41. [PMID: 36331542 DOI: 10.1093/brain/awac339] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/26/2022] [Accepted: 08/29/2022] [Indexed: 11/06/2022] Open
Abstract
Following prolonged neglect during the formative decades of behavioural neurology, the temporopolar region has become a site of vibrant research on the neurobiology of cognition and conduct. This turnaround can be attributed to increasing recognition of neurodegenerative diseases that target temporopolar regions for peak destruction. The resultant syndromes include behavioural dementia, associative agnosia, semantic forms of primary progressive aphasia and semantic dementia. Clinicopathological correlations show that object naming and word comprehension are critically dependent on the language-dominant (usually left) temporopolar region, whereas behavioural control and non-verbal object recognition display a more bilateral representation with a rightward bias. Neuroanatomical experiments in macaques and neuroimaging in humans show that the temporoparietal region sits at the confluence of auditory, visual and limbic streams of processing at the downstream (deep) pole of the 'what' pathway. The functional neuroanatomy of this region revolves around three axes, an anterograde horizontal axis from unimodal to heteromodal and paralimbic cortex; a radial axis where visual (ventral), auditory (dorsal) and paralimbic (medial) territories encircle temporopolar cortex and display hemispheric asymmetry; and a vertical depth-of-processing axis for the associative elaboration of words, objects and interoceptive states. One function of this neural matrix is to support the transformation of object and word representations from unimodal percepts to multimodal concepts. The underlying process is likely to start at canonical gateways that successively lead to generic (superordinate), specific (basic) and unique levels of recognition. A first sign of left temporopolar dysfunction takes the form of taxonomic blurring where boundaries among categories are preserved but not boundaries among exemplars of a category. Semantic paraphasias and coordinate errors in word-picture verification tests are consequences of this phenomenon. Eventually, boundaries among categories are also blurred and comprehension impairments become more profound. The medial temporopolar region belongs to the amygdalocentric component of the limbic system and stands to integrate exteroceptive information with interoceptive states underlying social interactions. Review of the pertinent literature shows that word comprehension and conduct impairments caused by temporopolar strokes and temporal lobectomy are far less severe than those seen in temporopolar atrophies. One explanation for this unexpected discrepancy invokes the miswiring of residual temporopolar neurons during the many years of indolently progressive neurodegeneration. According to this hypothesis, the temporopolar regions become not only dysfunctional but also sources of aberrant outputs that interfere with the function of areas elsewhere in the language and paralimbic networks, a juxtaposition not seen in lobectomy or stroke.
Collapse
Affiliation(s)
- M Marsel Mesulam
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
10
|
Younes K, Borghesani V, Montembeault M, Spina S, Mandelli ML, Welch AE, Weis E, Callahan P, Elahi FM, Hua AY, Perry DC, Karydas A, Geschwind D, Huang E, Grinberg LT, Kramer JH, Boxer AL, Rabinovici GD, Rosen HJ, Seeley WW, Miller ZA, Miller BL, Sturm VE, Rankin KP, Gorno-Tempini ML. Right temporal degeneration and socioemotional semantics: semantic behavioural variant frontotemporal dementia. Brain 2022; 145:4080-4096. [PMID: 35731122 PMCID: PMC10200288 DOI: 10.1093/brain/awac217] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 04/28/2022] [Accepted: 05/27/2022] [Indexed: 02/05/2023] Open
Abstract
Focal anterior temporal lobe degeneration often preferentially affects the left or right hemisphere. While patients with left-predominant anterior temporal lobe atrophy show severe anomia and verbal semantic deficits and meet criteria for semantic variant primary progressive aphasia and semantic dementia, patients with early right anterior temporal lobe atrophy are more difficult to diagnose as their symptoms are less well understood. Focal right anterior temporal lobe atrophy is associated with prominent emotional and behavioural changes, and patients often meet, or go on to meet, criteria for behavioural variant frontotemporal dementia. Uncertainty around early symptoms and absence of an overarching clinico-anatomical framework continue to hinder proper diagnosis and care of patients with right anterior temporal lobe disease. Here, we examine a large, well-characterized, longitudinal cohort of patients with right anterior temporal lobe-predominant degeneration and propose new criteria and nosology. We identified individuals from our database with a clinical diagnosis of behavioural variant frontotemporal dementia or semantic variant primary progressive aphasia and a structural MRI (n = 478). On the basis of neuroimaging criteria, we defined three patient groups: right anterior temporal lobe-predominant atrophy with relative sparing of the frontal lobes (n = 46), frontal-predominant atrophy with relative sparing of the right anterior temporal lobe (n = 79) and left-predominant anterior temporal lobe-predominant atrophy with relative sparing of the frontal lobes (n = 75). We compared the clinical, neuropsychological, genetic and pathological profiles of these groups. In the right anterior temporal lobe-predominant group, the earliest symptoms were loss of empathy (27%), person-specific semantic impairment (23%) and complex compulsions and rigid thought process (18%). On testing, this group exhibited greater impairments in Emotional Theory of Mind, recognition of famous people (from names and faces) and facial affect naming (despite preserved face perception) than the frontal- and left-predominant anterior temporal lobe-predominant groups. The clinical symptoms in the first 3 years of the disease alone were highly sensitive (81%) and specific (84%) differentiating right anterior temporal lobe-predominant from frontal-predominant groups. Frontotemporal lobar degeneration-transactive response DNA binding protein (84%) was the most common pathology of the right anterior temporal lobe-predominant group. Right anterior temporal lobe-predominant degeneration is characterized by early loss of empathy and person-specific knowledge, deficits that are caused by progressive decline in semantic memory for concepts of socioemotional relevance. Guided by our results, we outline new diagnostic criteria and propose the name, 'semantic behavioural variant frontotemporal dementia', which highlights the underlying cognitive mechanism and the predominant symptomatology. These diagnostic criteria will facilitate early identification and care of patients with early, focal right anterior temporal lobe degeneration as well as in vivo prediction of frontotemporal lobar degeneration-transactive response DNA binding protein pathology.
Collapse
Affiliation(s)
- Kyan Younes
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94304, USA
| | - Valentina Borghesani
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Maxime Montembeault
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Salvatore Spina
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Maria Luisa Mandelli
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Ariane E Welch
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Elizabeth Weis
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Patrick Callahan
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Fanny M Elahi
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Alice Y Hua
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - David C Perry
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Anna Karydas
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Daniel Geschwind
- Neurogenetics Program, Department of Neurology and Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA 90024, USA
| | - Eric Huang
- Department of Pathology, University of California, San Francisco, CA 94143, USA
| | - Lea T Grinberg
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
- Department of Pathology, University of California, San Francisco, CA 94143, USA
| | - Joel H Kramer
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Adam L Boxer
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Howard J Rosen
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
- Department of Pathology, University of California, San Francisco, CA 94143, USA
| | - Zachary A Miller
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Virginia E Sturm
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Katherine P Rankin
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Center, Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
- Dyslexia Center, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
11
|
Oishi K, Soldan A, Pettigrew C, Hsu J, Mori S, Albert M, Oishi K. Changes in pairwise functional connectivity associated with changes in cognitive performance in cognitively normal older individuals: A two-year observational study. Neurosci Lett 2022; 781:136618. [PMID: 35398188 PMCID: PMC9990522 DOI: 10.1016/j.neulet.2022.136618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/15/2022] [Accepted: 04/03/2022] [Indexed: 10/18/2022]
Abstract
Neurobiological substrates of cognitive decline in cognitively normal older individuals have been investigated by resting-state functional magnetic resonance imaging, but little is known about the relationship between longitudinal changes in the whole brain. In this study, we examined two-year changes in functional connectivity among 80 gray matter areas and investigated the relationship to two-year changes in cognitive performance. A cross-validated permutation variable importance measure was applied to select features related to a change in cognitive performance. Age-corrected changes in eleven pairs of functional connections were selected as important features, all related to brain areas that belong to the default mode network. A linear regression model with cross-validation demonstrated a mean correlation coefficient of 0.55 between measured and predicted changes in the cognitive composite score. These results suggest that intra- and inter-network connections in the default mode network are associated with cognitive changes over two years among cognitively normal individuals.
Collapse
Affiliation(s)
- Kumiko Oishi
- Center for Imaging Science, The Johns Hopkins University, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Anja Soldan
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Corinne Pettigrew
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Johnny Hsu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Susumu Mori
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marilyn Albert
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenichi Oishi
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
12
|
Hartwigsen G, Bengio Y, Bzdok D. How does hemispheric specialization contribute to human-defining cognition? Neuron 2021; 109:2075-2090. [PMID: 34004139 PMCID: PMC8273110 DOI: 10.1016/j.neuron.2021.04.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/22/2021] [Accepted: 04/26/2021] [Indexed: 12/30/2022]
Abstract
Uniquely human cognitive faculties arise from flexible interplay between specific local neural modules, with hemispheric asymmetries in functional specialization. Here, we discuss how these computational design principles provide a scaffold that enables some of the most advanced cognitive operations, such as semantic understanding of world structure, logical reasoning, and communication via language. We draw parallels to dual-processing theories of cognition by placing a focus on Kahneman's System 1 and System 2. We propose integration of these ideas with the global workspace theory to explain dynamic relay of information products between both systems. Deepening the current understanding of how neurocognitive asymmetry makes humans special can ignite the next wave of neuroscience-inspired artificial intelligence.
Collapse
Affiliation(s)
- Gesa Hartwigsen
- Max Planck Institute for Human Cognitive and Brain Sciences, Lise Meitner Research Group Cognition and Plasticity, Leipzig, Germany.
| | - Yoshua Bengio
- Mila, Montreal, QC, Canada; University of Montreal, Montreal, QC, Canada
| | - Danilo Bzdok
- Mila, Montreal, QC, Canada; Montreal Neurological Institute, McConnell Brain Imaging Centre, Faculty of Medicine, McGill University, Montreal, QC, Canada; Department of Biomedical Engineering, Faculty of Medicine, and School of Computer Science, McGill University, Montreal, QC, Canada.
| |
Collapse
|
13
|
Volfart A, Rice GE, Lambon Ralph MA, Rossion B. Implicit, automatic semantic word categorisation in the left occipito-temporal cortex as revealed by fast periodic visual stimulation. Neuroimage 2021; 238:118228. [PMID: 34082118 PMCID: PMC7613186 DOI: 10.1016/j.neuroimage.2021.118228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/27/2021] [Accepted: 05/30/2021] [Indexed: 11/22/2022] Open
Abstract
Conceptual knowledge allows the categorisation of items according to their meaning beyond their physical similarities. This ability to respond to different stimuli (e.g., a leek, a cabbage, etc.) based on similar semantic representations (e.g., belonging to the vegetable category) is particularly important for language processing, because word meaning and the stimulus form are unrelated. The neural basis of this core human ability is debated and is complicated by the strong reliance of most neural measures on explicit tasks, involving many non-semantic processes. Here we establish an implicit method, i.e., fast periodic visual stimulation (FPVS) coupled with electroencephalography (EEG), to study neural conceptual categorisation processes with written word stimuli. Fourteen neurotypical participants were presented with different written words belonging to the same semantic category (e.g., different animals) alternating at 4 Hz rate. Words from a different semantic category (e.g., different cities) appeared every 4 stimuli (i.e., at 1 Hz). Following a few minutes of recording, objective electrophysiological responses at 1 Hz, highlighting the human brain’s ability to implicitly categorize stimuli belonging to distinct conceptual categories, were found over the left occipito-temporal region. Topographic differences were observed depending on whether the periodic change involved living items, associated with relatively more ventro-temporal activity as compared to non-living items associated with relatively more dorsal posterior activity. Overall, this study demonstrates the validity and high sensitivity of an implicit frequency-tagged marker of word-based semantic memory abilities.
Collapse
Affiliation(s)
- Angelique Volfart
- University of Louvain, Psychological Sciences Research Institute, B-1348 Louvain-La-Neuve, Belgium; Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France
| | - Grace E Rice
- MRC Cognition and Brain Sciences Unit, University of Cambridge, CB2 7EF Cambridge, United Kingdom
| | - Matthew A Lambon Ralph
- MRC Cognition and Brain Sciences Unit, University of Cambridge, CB2 7EF Cambridge, United Kingdom.
| | - Bruno Rossion
- University of Louvain, Psychological Sciences Research Institute, B-1348 Louvain-La-Neuve, Belgium; Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000 Nancy, France.
| |
Collapse
|
14
|
Hogrefe K, Goldenberg G, Glindemann R, Klonowski M, Ziegler W. Nonverbal Semantics Test (NVST)-A Novel Diagnostic Tool to Assess Semantic Processing Deficits: Application to Persons with Aphasia after Cerebrovascular Accident. Brain Sci 2021; 11:brainsci11030359. [PMID: 33799816 PMCID: PMC7998888 DOI: 10.3390/brainsci11030359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 12/15/2022] Open
Abstract
Assessment of semantic processing capacities often relies on verbal tasks which are, however, sensitive to impairments at several language processing levels. Especially for persons with aphasia there is a strong need for a tool that measures semantic processing skills independent of verbal abilities. Furthermore, in order to assess a patient’s potential for using alternative means of communication in cases of severe aphasia, semantic processing should be assessed in different nonverbal conditions. The Nonverbal Semantics Test (NVST) is a tool that captures semantic processing capacities through three tasks—Semantic Sorting, Drawing, and Pantomime. The main aim of the current study was to investigate the relationship between the NVST and measures of standard neurolinguistic assessment. Fifty-one persons with aphasia caused by left hemisphere brain damage were administered the NVST as well as the Aachen Aphasia Test (AAT). A principal component analysis (PCA) was conducted across all AAT and NVST subtests. The analysis resulted in a two-factor model that captured 69% of the variance of the original data, with all linguistic tasks loading high on one factor and the NVST subtests loading high on the other. These findings suggest that nonverbal tasks assessing semantic processing capacities should be administered alongside standard neurolinguistic aphasia tests.
Collapse
Affiliation(s)
- Katharina Hogrefe
- Clinical Neuropsychology Research Group, Institute of Phonetics and Speech Processing, Ludwig-Maximilians-Universität München, 80799 Munich, Germany; (R.G.); (W.Z.)
- Correspondence:
| | - Georg Goldenberg
- Neurologische Klinik und Poliklinik, Klinikum Rechts der Isar, Technische Universität München, 81675 Munich, Germany;
| | - Ralf Glindemann
- Clinical Neuropsychology Research Group, Institute of Phonetics and Speech Processing, Ludwig-Maximilians-Universität München, 80799 Munich, Germany; (R.G.); (W.Z.)
| | - Madleen Klonowski
- Sprach- und Schlucktherapie, Schön Klinik München Schwabing, 80804 Munich, Germany;
| | - Wolfram Ziegler
- Clinical Neuropsychology Research Group, Institute of Phonetics and Speech Processing, Ludwig-Maximilians-Universität München, 80799 Munich, Germany; (R.G.); (W.Z.)
| |
Collapse
|
15
|
Brown-Schmidt S, Cho SJ, Nozari N, Klooster N, Duff M. The limited role of hippocampal declarative memory in transient semantic activation during online language processing. Neuropsychologia 2021; 152:107730. [PMID: 33346044 PMCID: PMC7882034 DOI: 10.1016/j.neuropsychologia.2020.107730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 09/13/2020] [Accepted: 12/15/2020] [Indexed: 11/17/2022]
Abstract
Recent findings point to a role for hippocampus in the moment-by-moment processing of language, including the use and generation of semantic features in certain contexts. What role the hippocampus might play in the processing of semantic relations in spoken language comprehension, however, is unknown. Here we test patients with bilateral hippocampal damage and dense amnesia in order to examine the necessity of hippocampus for lexico-semantic mapping processes in spoken language understanding. In two visual-world eye-tracking experiments, we monitor eye movements to images that are semantically related to spoken words and sentences. We find no impairment in amnesia, relative to matched healthy comparison participants. These findings suggest, at least for close semantic links and simple language comprehension tasks, a lack of necessity for hippocampus in lexico-semantic mapping between spoken words and simple pictures.
Collapse
Affiliation(s)
- Sarah Brown-Schmidt
- Vanderbilt University, Department of Psychology and Human Development, United States.
| | - Sun-Joo Cho
- Vanderbilt University, Department of Psychology and Human Development, United States
| | - Nazbanou Nozari
- Carnegie Mellon University, Department of Psychology, United States
| | | | - Melissa Duff
- Vanderbilt University Medical Center, Department of Hearing and Speech Science, United States
| |
Collapse
|
16
|
Effects of Rivastigmine on Brain Functional Networks in Patients With Alzheimer Disease Based on the Graph Theory. Clin Neuropharmacol 2020; 44:9-16. [PMID: 33337622 PMCID: PMC7813447 DOI: 10.1097/wnf.0000000000000427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aim of this study was to explore the effect of rivastigmine on brain function in Alzheimer disease (AD) by analyzing brain functional network based on the graph theory. METHODS We enrolled 9 patients with mild to moderate AD who received rivastigmine treatment and 9 healthy controls (HC). Subsequently, we used resting-state functional magnetic resonance imaging data to establish the whole-brain functional network using a graph theory-based analysis. Furthermore, we compared systemic and local network indicators between pre- and posttreatment. RESULTS Patients with AD exhibited a posttreatment increase in the Mini-Mental State Examination scores and a decrease in the Alzheimer's Disease Assessment Scale cognitive subscale scores and activities of daily living. The systemic network for HC and patients with AD had good pre- and posttreatment clustering coefficients. There was no change in the Cp, Lp, Gamma, Lambda, and Sigma in patients with AD. There were no significant between-group differences in the pre- and posttreatment systemic network measures. Regarding the regional network, patients with AD showed increased betweenness centrality in the bilateral caudate nucleus and right superior temporal pole after treatment with rivastigmine. However, there was no between-group difference in the pre- and posttreatment betweenness centrality of these regions. There were no significant correlations between regional network measure changes and clinical score alterations in patients with AD. CONCLUSIONS There are similar systemic network properties between patients with AD and HC. Rivastigmine cannot alter systemic network attributes in patients with AD. However, it improves the topological properties of regional networks and between-node information transmission in patients with AD.
Collapse
|
17
|
Intrinsic connectivity of anterior temporal lobe relates to individual differences in semantic retrieval for landmarks. Cortex 2020; 134:76-91. [PMID: 33259970 DOI: 10.1016/j.cortex.2020.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/28/2020] [Accepted: 10/16/2020] [Indexed: 01/16/2023]
Abstract
Contemporary neuroscientific accounts suggest that ventral anterior temporal lobe (ATL) acts as a bilateral heteromodal semantic hub, which is particularly critical for the specific-level knowledge needed to recognise unique entities, such as familiar landmarks and faces. There may also be graded functional differences between left and right ATL, relating to effects of modality (linguistic versus non-linguistic) and category (e.g., knowledge of people and places). Individual differences in intrinsic connectivity from left and right ATL might be associated with variation in semantic categorisation performance across these categories and modalities. We recorded resting-state fMRI in 74 individuals and, in a separate session, examined semantic categorisation. People with greater connectivity between left and right ATL were more efficient at categorising landmarks (e.g., Eiffel Tower), especially when these were presented visually. In addition, participants who showed stronger connectivity from right than left ATL to medial occipital cortex showed more efficient semantic categorisation of landmarks regardless of modality of presentation. These results can be interpreted in terms of graded differences in the patterns of connectivity across left and right ATL, which give rise to a bilateral yet partially segregated semantic 'hub'. More specifically, right ATL connectivity supports the efficient semantic categorisation of landmarks.
Collapse
|
18
|
Typical visual unfamiliar face individuation in left and right mesial temporal epilepsy. Neuropsychologia 2020; 147:107583. [PMID: 32771474 DOI: 10.1016/j.neuropsychologia.2020.107583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/07/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022]
Abstract
Patients with chronic mesial temporal lobe epilepsy have difficulties at identifying familiar faces as well as at explicit old/new face recognition tasks. However, the extent to which these difficulties can be attributed to visual individuation of faces, independently of general explicit learning and semantic memory processes, is unknown. We tested 42 mesial temporal lobe epilepsy patients divided into two groups according to the side of epilepsy (left and right) and 42 matched controls on an extensive series of individuation tasks of unfamiliar faces and control visual stimuli, as well as on face detection, famous face recognition and naming, and face and non-face learning. Overall, both patient groups had difficulties at identifying and naming famous faces, and at explicitly learning face and non-face images. However, there was no group difference in accuracy between patients and controls at the two most widely used neuropsychological tests assessing visual individuation of unfamiliar faces (Benton Facial Recognition Test and Cambridge Face Memory Test). While patients with right mesial temporal lobe epilepsy were slowed down at all tasks, this effect was not specific to faces or even high-level stimuli. Importantly, both groups showed the same profile of response as typical participants across various stimulus manipulations, showing no evidence of qualitative processing impairments. Overall, these results point to largely preserved visual face individuation processes in patients with mesial temporal lobe epilepsy, with semantic and episodic memory difficulties being consistent with the localization of the neural structures involved in their epilepsy (anterior temporal cortex and hippocampus). These observations have implications for the prediction of neuropsychological outcomes in the case of surgery and support the validity of intracranial electroencephalographic recordings performed in this population to understand neural mechanisms of human face individuation, notably through intracranial electrophysiological recordings and stimulations.
Collapse
|
19
|
Chen Y, Huang L, Chen K, Ding J, Zhang Y, Yang Q, Lv Y, Han Z, Guo Q. White matter basis for the hub-and-spoke semantic representation: evidence from semantic dementia. Brain 2020; 143:1206-1219. [PMID: 32155237 PMCID: PMC7191302 DOI: 10.1093/brain/awaa057] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/04/2020] [Accepted: 01/20/2020] [Indexed: 12/28/2022] Open
Abstract
The hub-and-spoke semantic representation theory posits that semantic knowledge is processed in a neural network, which contains an amodal hub, the sensorimotor modality-specific regions, and the connections between them. The exact neural basis of the hub, regions and connectivity remains unclear. Semantic dementia could be an ideal lesion model to construct the semantic network as this disease presents both amodal and modality-specific semantic processing (e.g. colour) deficits. The goal of the present study was to identify, using an unbiased data-driven approach, the semantic hub and its general and modality-specific semantic white matter connections by investigating the relationship between the lesion degree of the network and the severity of semantic deficits in 33 patients with semantic dementia. Data of diffusion-weighted imaging and behavioural performance in processing knowledge of general semantic and six sensorimotor modalities (i.e. object form, colour, motion, sound, manipulation and function) were collected from each subject. Specifically, to identify the semantic hub, we mapped the white matter nodal degree value (a graph theoretical index) of the 90 regions in the automated anatomical labelling atlas with the general semantic abilities of the patients. Of the regions, only the left fusiform gyrus was identified as the hub because its structural connectivity strength (i.e. nodal degree value) could significantly predict the general semantic processing of the patients. To identify the general and modality-specific semantic connections of the semantic hub, we separately correlated the white matter integrity values of each tract connected with the left fusiform gyrus, with the performance for general semantic processing and each of six semantic modality processing. The results showed that the hub region worked in concert with nine other regions in the semantic memory network for general semantic processing. Moreover, the connection between the hub and the left calcarine was associated with colour-specific semantic processing. The observed effects could not be accounted for by potential confounding variables (e.g. total grey matter volume, regional grey matter volume and performance on non-semantic control tasks). Our findings refine the neuroanatomical structure of the semantic network and underline the critical role of the left fusiform gyrus and its connectivity in the network.
Collapse
Affiliation(s)
- Yan Chen
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.,College of Biomedical Engineering and Instrument Sciences, Zhejiang University, Hangzhou 310027, China
| | - Lin Huang
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Keliang Chen
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Junhua Ding
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yumei Zhang
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Qing Yang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yingru Lv
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zaizhu Han
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Qihao Guo
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
20
|
Ding J, Chen K, Liu H, Huang L, Chen Y, Lv Y, Yang Q, Guo Q, Han Z, Lambon Ralph MA. A unified neurocognitive model of semantics language social behaviour and face recognition in semantic dementia. Nat Commun 2020; 11:2595. [PMID: 32444620 PMCID: PMC7244491 DOI: 10.1038/s41467-020-16089-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 04/01/2020] [Indexed: 12/11/2022] Open
Abstract
The anterior temporal lobes (ATL) have become a key brain region of interest in cognitive neuroscience founded upon neuropsychological investigations of semantic dementia (SD). The purposes of this investigation are to generate a single unified model that captures the known cognitive-behavioural variations in SD and map these to the patients' distribution of frontotemporal atrophy. Here we show that the degree of generalised semantic impairment is related to the patients' total, bilateral ATL atrophy. Verbal production ability is related to total ATL atrophy as well as to the balance of left > right ATL atrophy. Apathy is found to relate positively to the degree of orbitofrontal atrophy. Disinhibition is related to right ATL and orbitofrontal atrophy, and face recognition to right ATL volumes. Rather than positing mutually-exclusive sub-categories, the data-driven model repositions semantics, language, social behaviour and face recognition into a continuous frontotemporal neurocognitive space.
Collapse
Affiliation(s)
- Junhua Ding
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Keliang Chen
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Haoming Liu
- Department of Asian and North African Studies, Ca' Foscari University of Venice, Venice, Italy
| | - Lin Huang
- Department of gerontology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yan Chen
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- College of Biomedical Engineering and Instrument Sciences, Zhejiang University, Hangzhou, China
| | - Yingru Lv
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qing Yang
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China
| | - Qihao Guo
- Department of gerontology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Zaizhu Han
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
| | | |
Collapse
|
21
|
Gainotti G. Representional and connectivity-based accounts of the cognitive consequences of atrophy of the right and left anterior temporal lobes. Cogn Neuropsychol 2020; 37:466-481. [PMID: 32174279 DOI: 10.1080/02643294.2020.1739011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
According to the original "hub-and-spoke" model of conceptual representations, the neural network for semantic memory requires a single convergence zone located in the anterior temporal lobes (ATLs). However, a more recent version of this model acknowledges that a graded specialization of the left and right ATLs might emerge as a consequence of their differential connectivity with language and sensory-motor regions. A recent influential paper maintained that both the format of semantic representations (representational account) and their differential connectivity (connectivity account) could contribute to the cognitive consequences of atrophy to the left versus the right ATL atrophy. That paper, however, also raised questions as to whether the distinction between representational and connectivity accounts is a meaningful question. I argue that an important theoretical difference exists between the representational and the connectivity-based models and that investigations, based on this difference, should allow to choose between these alternative accounts.
Collapse
Affiliation(s)
- Guido Gainotti
- Institute of Neurology, Università Cattolica del Sacro Cuore, Rome, Italy.,Department of Clinical and Behavioral Neurology, IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
22
|
Bruffaerts R, Schaeverbeke J, De Weer AS, Nelissen N, Dries E, Van Bouwel K, Sieben A, Bergmans B, Swinnen C, Pijnenburg Y, Sunaert S, Vandenbulcke M, Vandenberghe R. Multivariate analysis reveals anatomical correlates of naming errors in primary progressive aphasia. Neurobiol Aging 2019; 88:71-82. [PMID: 31955981 DOI: 10.1016/j.neurobiolaging.2019.12.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/10/2019] [Accepted: 12/15/2019] [Indexed: 12/30/2022]
Abstract
Primary progressive aphasia (PPA) is an overarching term for a heterogeneous group of neurodegenerative diseases which affect language processing. Impaired picture naming has been linked to atrophy of the anterior temporal lobe in the semantic variant of PPA. Although atrophy of the anterior temporal lobe proposedly impairs picture naming by undermining access to semantic knowledge, picture naming also entails object recognition and lexical retrieval. Using multivariate analysis, we investigated whether cortical atrophy relates to different types of naming errors generated during picture naming in 43 PPA patients (13 semantic, 9 logopenic, 11 nonfluent, and 10 mixed variant). Omissions were associated with atrophy of the anterior temporal lobes. Semantic errors, for example, mistaking a rhinoceros for a hippopotamus, were associated with atrophy of the left mid and posterior fusiform cortex and the posterior middle and inferior temporal gyrus. Semantic errors and atrophy in these regions occurred in each PPA subtype, without major between-subtype differences. We propose that pathological changes to neural mechanisms associated with semantic errors occur across the PPA spectrum.
Collapse
Affiliation(s)
- Rose Bruffaerts
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium; Neurology Department, University Hospitals Leuven, Leuven, Belgium.
| | - Jolien Schaeverbeke
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - An-Sofie De Weer
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Natalie Nelissen
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Eva Dries
- Neurology Department, University Hospitals Leuven, Leuven, Belgium
| | - Karen Van Bouwel
- Neurology Department, University Hospitals Leuven, Leuven, Belgium
| | - Anne Sieben
- Neurology Department, University Hospital Ghent, Ghent, Belgium
| | - Bruno Bergmans
- Neurology Department, University Hospital Ghent, Ghent, Belgium; Neurology Department, AZ Sint-Jan Brugge-Oostende AV, Bruges, Belgium
| | | | - Yolande Pijnenburg
- Neurology Department, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Stefan Sunaert
- Radiology Department, University Hospitals Leuven, Leuven, Belgium
| | | | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium; Neurology Department, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
23
|
Mole JA, Baker IW, Ottley Munoz JM, Danby M, Warren JD, Butler CR. Avian agnosia: A window into auditory semantics. Neuropsychologia 2019; 134:107219. [PMID: 31593713 PMCID: PMC6891886 DOI: 10.1016/j.neuropsychologia.2019.107219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 02/03/2023]
Abstract
The functional and neural organisation of auditory knowledge is relatively poorly understood. The breakdown of conceptual knowledge in semantic dementia has revealed that pre-morbid expertise influences the extent to which knowledge is differentiated. Whether this principle applies to a similar extent in the auditory domain is not yet known. Previous reports of patients with impaired auditory vs. intact visual expert knowledge suggest that expertise may have differential effects upon the organisation of auditory and visual knowledge. An equally plausible alternative, however, is that auditory knowledge is simply more vulnerable to deterioration. Thus, expertise effects in the auditory domain may not yet have been observed because knowledge of auditory expert vs. non-expert knowledge has yet to be compared. We had the opportunity to address this issue by studying SA, a patient with semantic dementia and extensive pre-morbid knowledge of birds. We undertook a systematic investigation of SA's auditory vs. visual knowledge from matched expert vs. non-expert categories. Relative to a group of 10 age, education and IQ matched bird experts, SA showed impaired auditory vs. intact visual avian knowledge, despite intact basic auditory perceptual abilities. This was explained by independent effects of modality and expertise. Thus, he was also disproportionately impaired for auditory vs. visual knowledge of items from non-expert categories. In both auditory and visual modalities, his performance was relatively more impaired on tests of non-expert vs. expert knowledge. These findings suggest that, while auditory knowledge may be more vulnerable to deterioration, expertise modulates visual and auditory knowledge to a similar extent.
Collapse
Affiliation(s)
- J A Mole
- Russell Cairns Unit, John Radcliffe Hospital, Oxford, UK; Department of Neuropsychology, National Hospital for Neurology and Neurosurgery, London, UK.
| | - I W Baker
- Russell Cairns Unit, John Radcliffe Hospital, Oxford, UK
| | | | - M Danby
- Russell Cairns Unit, John Radcliffe Hospital, Oxford, UK
| | - J D Warren
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - C R Butler
- Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| |
Collapse
|
24
|
Hoffman P. Divergent effects of healthy ageing on semantic knowledge and control: Evidence from novel comparisons with semantically impaired patients. J Neuropsychol 2019; 13:462-484. [PMID: 29667366 PMCID: PMC6766984 DOI: 10.1111/jnp.12159] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/26/2018] [Indexed: 11/26/2022]
Abstract
Effective use of semantic knowledge requires a set of conceptual representations and control processes which ensure that currently relevant aspects of this knowledge are retrieved and selected. It is well-established that levels of semantic knowledge increase across the lifespan. However, the effects of ageing on semantic control processes have not been assessed. I addressed this issue by comparing the performance profiles of young and older people on a verbal comprehension test. Two sets of variables were used to predict accuracy and RT in each group: (1) the psycholinguistic properties of words probed in each trial and (2) the performance on each trial by two groups of semantically impaired neuropsychological patients. Young people demonstrated poor performance for low-frequency and abstract words, suggesting that they had difficulty processing words with intrinsically weak semantic representations. Indeed, performance in this group was strongly predicted by the performance of patients with semantic dementia, who suffer from degradation of semantic knowledge. In contrast, older adults performed poorly on trials where the target semantic relationship was weak and distractor relationships strong - conditions which require high levels of controlled processing. Their performance was not predicted by the performance of semantic dementia patients, but was predicted by the performance of patients with semantic control deficits. These findings indicate that the effects of ageing on semantic cognition are more complex than has previously been assumed. While older people have larger stores of knowledge than young people, they appear to be less skilled at exercising control over the activation of this knowledge.
Collapse
Affiliation(s)
- Paul Hoffman
- Centre for Cognitive Ageing and Cognitive Epidemiology (CCACE)Department of PsychologyUniversity of EdinburghUK
| |
Collapse
|
25
|
Chen Y, Chen K, Ding J, Zhang Y, Yang Q, Lv Y, Guo Q, Han Z. Neural substrates of amodal and modality-specific semantic processing within the temporal lobe: A lesion-behavior mapping study of semantic dementia. Cortex 2019; 120:78-91. [PMID: 31280071 DOI: 10.1016/j.cortex.2019.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 03/27/2019] [Accepted: 05/29/2019] [Indexed: 11/29/2022]
Abstract
Although the human temporal lobe has been documented to participate in semantic processing of both verbal and nonverbal stimuli, the exact neural basis underlying the common and unique processing of the two modalities is unclear. Semantic dementia (SD), a disease with a semantic-selective deficit due to predominant temporal lobe atrophy is an ideal lesion model to address this issue. However, many previous studies of SD used an impure patient sample or did not appropriately control for common components between tasks. To overcome these limitations, the present study aims to identify amodal semantic hubs and modality-specific regions in the temporal lobe by investigating behavioral performance on a verbal modality task (word associative matching) and a nonverbal modality task (picture associative matching) and neuroimaging data in 33 SD patients. We found that the left anterior fusiform gyrus was an amodal semantic hub whose gray matter volume correlated significantly with both modalities. We also observed two verbal modality-specific regions (the left posterior inferior temporal gyrus and the left middle superior temporal gyrus) and a nonverbal modality-specific region (the right lateral anterior middle temporal gyrus) whose gray matter volume correlated significantly with one modality when performance on the other modality was partialled out. The results remained significant when we excluded a wide range of potential confounding variables. Furthermore, to confirm the observed effects, we compared the performance of left- and right-hemispheric-predominant atrophic patients on the verbal and nonverbal tasks. The left-predominant patients showed more severe deficits in performance of the verbal task than the right-predominant patients, whereas the two groups of patients presented comparable deficits in the performance of the nonverbal task. These findings refined the structure of semantic network in the temporal lobe, deepening our understanding of the critical role of the temporal lobe in semantic processing.
Collapse
Affiliation(s)
- Yan Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875, China; College of Biomedical Engineering and Instrument Sciences, Zhejiang University, 310027, China
| | - Keliang Chen
- Department of Neurology, Huashan Hospital, Fudan University, 200040, China
| | - Junhua Ding
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875, China
| | - Yumei Zhang
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, 100050, China
| | - Qing Yang
- Department of Neurology, Huashan Hospital, Fudan University, 200040, China
| | - Yingru Lv
- Department of Radiology, Huashan Hospital, Fudan University, 200040, China
| | - Qihao Guo
- Department of Gerontology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 200233, China
| | - Zaizhu Han
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, 100875, China.
| |
Collapse
|
26
|
Rice GE, Hoffman P, Binney RJ, Lambon Ralph MA. Concrete versus abstract forms of social concept: an fMRI comparison of knowledge about people versus social terms. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0136. [PMID: 29915004 PMCID: PMC6015823 DOI: 10.1098/rstb.2017.0136] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2018] [Indexed: 12/14/2022] Open
Abstract
The anterior temporal lobes (ATLs) play a key role in conceptual knowledge representation. The hub-and-spoke theory suggests that the contribution of the ATLs to semantic representation is (a) transmodal, i.e. integrating information from multiple sensorimotor and verbal modalities, and (b) pan-categorical, representing concepts from all categories. Another literature, however, suggests that this region's responses are modality- and category-selective; prominent examples include category selectivity for socially relevant concepts and face recognition. The predictions of each approach have never been directly compared. We used data from three studies to compare category-selective responses within the ATLs. Study 1 compared ATL responses to famous people versus another conceptual category (landmarks) from visual versus auditory inputs. Study 2 compared ATL responses to famous people from pictorial and written word inputs. Study 3 compared ATL responses to a different kind of socially relevant stimuli, namely abstract non-person-related words, in order to ascertain whether ATL subregions are engaged for social concepts more generally or only for person-related knowledge. Across all three studies a dominant bilateral ventral ATL cluster responded to all categories in all modalities. Anterior to this ‘pan-category’ transmodal region, a second cluster responded more weakly overall yet selectively for people, but did so equally for spoken names and faces (Study 1). A third region in the anterior superior temporal gyrus responded selectively to abstract socially relevant words (Study 3), but did not respond to concrete socially relevant words (i.e. written names; Study 2). These findings can be accommodated by the graded hub-and-spoke model of concept representation. On this view, the ventral ATL is the centre point of a bilateral ATL hub, which contributes to conceptual representation through transmodal distillation of information arising from multiple modality-specific association cortices. Partial specialization occurs across the graded ATL hub as a consequence of gradedly differential connectivity across the region. This article is part of the theme issue ‘Varieties of abstract concepts: development, use and representation in the brain’.
Collapse
Affiliation(s)
- Grace E Rice
- Neuroscience and Aphasia Research Unit (NARU), University of Manchester, Manchester, UK
| | - Paul Hoffman
- Centre for Cognitive Ageing and Cognitive Epidemiology (CCACE), Department of Psychology, University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
27
|
Hoffman P, McClelland JL, Lambon Ralph MA. Concepts, control, and context: A connectionist account of normal and disordered semantic cognition. Psychol Rev 2019; 125:293-328. [PMID: 29733663 PMCID: PMC5937916 DOI: 10.1037/rev0000094] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Semantic cognition requires conceptual representations shaped by verbal and nonverbal experience and executive control processes that regulate activation of knowledge to meet current situational demands. A complete model must also account for the representation of concrete and abstract words, of taxonomic and associative relationships, and for the role of context in shaping meaning. We present the first major attempt to assimilate all of these elements within a unified, implemented computational framework. Our model combines a hub-and-spoke architecture with a buffer that allows its state to be influenced by prior context. This hybrid structure integrates the view, from cognitive neuroscience, that concepts are grounded in sensory-motor representation with the view, from computational linguistics, that knowledge is shaped by patterns of lexical co-occurrence. The model successfully codes knowledge for abstract and concrete words, associative and taxonomic relationships, and the multiple meanings of homonyms, within a single representational space. Knowledge of abstract words is acquired through (a) their patterns of co-occurrence with other words and (b) acquired embodiment, whereby they become indirectly associated with the perceptual features of co-occurring concrete words. The model accounts for executive influences on semantics by including a controlled retrieval mechanism that provides top-down input to amplify weak semantic relationships. The representational and control elements of the model can be damaged independently, and the consequences of such damage closely replicate effects seen in neuropsychological patients with loss of semantic representation versus control processes. Thus, the model provides a wide-ranging and neurally plausible account of normal and impaired semantic cognition.
Collapse
Affiliation(s)
- Paul Hoffman
- Neuroscience and Aphasia Research Unit, University of Manchester
| | - James L McClelland
- Department of Psychology, Center for Mind, Brain and Computation, Stanford University
| | | |
Collapse
|
28
|
Stampacchia S, Thompson HE, Ball E, Nathaniel U, Hallam G, Smallwood J, Lambon Ralph MA, Jefferies E. Shared processes resolve competition within and between episodic and semantic memory: Evidence from patients with LIFG lesions. Cortex 2018; 108:127-143. [PMID: 30172096 PMCID: PMC6238079 DOI: 10.1016/j.cortex.2018.07.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/13/2018] [Accepted: 07/10/2018] [Indexed: 11/21/2022]
Abstract
Semantic cognition is supported by two interactive components: semantic representations and mechanisms that regulate retrieval (cf. 'semantic control'). Neuropsychological studies have revealed a clear dissociation between semantic and episodic memory. This study explores if the same dissociation holds for control processes that act on episodic and semantic memory, or whether both types of long-term memory are supported by the same executive mechanisms. We addressed this question in a case-series of semantic aphasic patients who had difficulty retrieving both verbal and non-verbal conceptual information in an appropriate fashion following infarcts to left inferior frontal gyrus (LIFG). We observed parallel deficits in semantic and episodic memory: (i) the patients' difficulties extended beyond verbal materials to include picture tasks in both domains; (ii) both types of retrieval benefitted from cues designed to reduce the need for internal constraint; (iii) there was little impairment of both semantic and episodic tasks when control demands were minimised; (iv) there were similar effects of distractors across tasks. Episodic retrieval was highly susceptible to false memories elicited by semantically-related distractors, and confidence was inappropriately high in these circumstances. Semantic judgements were also prone to contamination from recent events. These findings demonstrate that patients with deregulated semantic cognition have comparable deficits in episodic retrieval. The results are consistent with a role for LIFG in resolving competition within both episodic and semantic memory, and also in biasing cognition towards task-relevant memory stores when episodic and semantic representations do not promote the same response.
Collapse
Affiliation(s)
| | - Hannah E Thompson
- Department of Psychology, University of York, UK; School of Psychology, University of Surrey, UK
| | - Emily Ball
- Department of Psychology, University of York, UK
| | - Upasana Nathaniel
- Department of Psychology, University of York, UK; Department of Psychology, University of Haifa, Israel
| | - Glyn Hallam
- Department of Psychology, University of York, UK; School of Human and Health Sciences, University of Huddersfield, UK
| | | | - Matthew A Lambon Ralph
- Neuroscience and Aphasia Research Unit (NARU), Division of Neuroscience & Experimental Psychology, School of Biological Sciences, University of Manchester, UK.
| | | |
Collapse
|
29
|
Hurley RS, Mesulam MM, Sridhar J, Rogalski EJ, Thompson CK. A nonverbal route to conceptual knowledge involving the right anterior temporal lobe. Neuropsychologia 2018; 117:92-101. [PMID: 29802865 DOI: 10.1016/j.neuropsychologia.2018.05.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 11/19/2022]
Abstract
The semantic variant of primary progressive aphasia (PPA-S) is diagnosed based on impaired single-word comprehension, but nonverbal impairments in face and object recognition can also be present, particularly in later disease stages. PPA-S is associated with focal atrophy in the left anterior temporal lobe (ATL), often accompanied by a lesser degree of atrophy in the right ATL. According to a dual-route account, the left ATL is critical for verbal access to conceptual knowledge while nonverbal access to conceptual knowledge depends upon the integrity of right ATL. Consistent with this view, single-word comprehension deficits in PPA-S have consistently been linked to the degree of atrophy in left ATL. In the current study we examined object processing and cortical thickness in 19 patients diagnosed with PPA-S, to evaluate the hypothesis that nonverbal object impairments would instead be determined by the amount of atrophy in the right ATL. All patients demonstrated inability to access conceptual knowledge on standardized tests with word stimuli: they were unable to match spoken words with their corresponding pictures on the Peabody Picture Vocabulary Test. Only a minority of patients, however, performed abnormally on an experimental thematic verification task, which requires judgments as to whether pairs of object pictures are thematically-associated, and does not rely on auditory or visual word input. The entire PPA-S group showed cortical thinning in left ATL, but atrophy in right ATL was more prominent in the subgroup with low verification scores. Thematic verification scores were correlated with cortical thickness in the right rather than left ATL, an asymmetric mapping which persisted when controlling for the degree of atrophy in the contralateral hemisphere. These results are consistent with a dual-route account of conceptual knowledge: breakdown of the verbal left hemispheric route produces an aphasic syndrome, which is only accompanied by visual object processing impairments when the nonverbal right hemispheric route is also compromised.
Collapse
Affiliation(s)
- Robert S Hurley
- Cognitive Neurology & Alzheimer's Disease Center, Northwestern University, Chicago, IL 60611, USA; Department of Neurology, Northwestern University, Chicago, IL 60611, USA; Department of Psychology, Cleveland State University, Cleveland, OH 44115, USA.
| | - M-Marsel Mesulam
- Cognitive Neurology & Alzheimer's Disease Center, Northwestern University, Chicago, IL 60611, USA; Department of Neurology, Northwestern University, Chicago, IL 60611, USA
| | - Jaiashre Sridhar
- Cognitive Neurology & Alzheimer's Disease Center, Northwestern University, Chicago, IL 60611, USA
| | - Emily J Rogalski
- Cognitive Neurology & Alzheimer's Disease Center, Northwestern University, Chicago, IL 60611, USA
| | - Cynthia K Thompson
- Cognitive Neurology & Alzheimer's Disease Center, Northwestern University, Chicago, IL 60611, USA; Department of Neurology, Northwestern University, Chicago, IL 60611, USA; Department of Communications Sciences and Disorders, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
30
|
Humphreys GF, Lambon Ralph MA. Mapping Domain-Selective and Counterpointed Domain-General Higher Cognitive Functions in the Lateral Parietal Cortex: Evidence from fMRI Comparisons of Difficulty-Varying Semantic Versus Visuo-Spatial Tasks, and Functional Connectivity Analyses. Cereb Cortex 2018; 27:4199-4212. [PMID: 28472382 DOI: 10.1093/cercor/bhx107] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Indexed: 11/13/2022] Open
Abstract
Numerous cognitive domains have been associated with the lateral parietal cortex, yet how these disparate functions are packed into this region remains unclear. Whilst areas within the dorsal and the ventral parietal cortex (DPC and VPC) show differential function, there is considerable disagreement as to what these functions might be. Studies focussed on individual domains have plotted out variations of function across the region. Direct cross-domain comparisons are rare yet, when they have been undertaken, at least some regions (particularly the intraparietal sulcus [IPS] and core angular gyrus [AG]) appear to have contrastive domain-general qualities. In order to pursue this parietal puzzle, this study utilized both functional and resting-state magnetic resonance imaging to investigate a potential unifying neurocomputational framework-in which both domain general as well as domain-selective regions arise from differential patterns of connectivity into subregions of the lateral parietal cortex. Specifically we found that, consistent with their contrastive patterns of functional connectivity, subregions of DPC (anterior IPS) and VPC (AG) exhibit counterpointed functions sensitive to task/item-difficulty irrespective of cognitive domain. We propose that these regions serve as top-down executively penetrated and automatic bottom-up domain-general buffers of active information, respectively. In contrast, other parietal and nonparietal regions are tuned toward specific domains.
Collapse
Affiliation(s)
- Gina F Humphreys
- Neuroscience and Aphasia Research Unit (NARU), School of Psychological Sciences, University of Manchester, ManchesterM13 9PL, UK
| | - Matthew A Lambon Ralph
- Neuroscience and Aphasia Research Unit (NARU), School of Psychological Sciences, University of Manchester, ManchesterM13 9PL, UK
| |
Collapse
|
31
|
Ding J, Chen K, Zhang W, Li M, Chen Y, Yang Q, Lv Y, Guo Q, Han Z. Topological Alterations and Symptom-Relevant Modules in the Whole-Brain Structural Network in Semantic Dementia. J Alzheimers Dis 2018; 59:1283-1297. [PMID: 28731453 DOI: 10.3233/jad-170449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Semantic dementia (SD) is characterized by a selective decline in semantic processing. Although the neuropsychological pattern of this disease has been identified, its topological global alterations and symptom-relevant modules in the whole-brain anatomical network have not been fully elucidated. OBJECTIVE This study aims to explore the topological alteration of anatomical network in SD and reveal the modules associated with semantic deficits in this disease. METHODS We first constructed the whole-brain white-matter networks of 20 healthy controls and 19 patients with SD. Then, the network metrics of graph theory were compared between these two groups. Finally, we separated the network of SD patients into different modules and correlated the structural integrity of each module with the severity of the semantic deficits across patients. RESULTS The network of the SD patients presented a significantly reduced global efficiency, indicating that the long-distance connections were damaged. The network was divided into the following four distinctive modules: the left temporal/occipital/parietal, frontal, right temporal/occipital, and frontal/parietal modules. The first two modules were associated with the semantic deficits of SD. CONCLUSION These findings illustrate the skeleton of the neuroanatomical network of SD patients and highlight the key role of the left temporal/occipital/parietal module and the left frontal module in semantic processing.
Collapse
Affiliation(s)
- Junhua Ding
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Keliang Chen
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Weibin Zhang
- Department of Psychology, Beijing Normal University, Beijing, China
| | - Ming Li
- Department of Psychology, Beijing Normal University, Beijing, China
| | - Yan Chen
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Qing Yang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yingru Lv
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qihao Guo
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zaizhu Han
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
32
|
Garcin B, Urbanski M, Thiebaut de Schotten M, Levy R, Volle E. Anterior Temporal Lobe Morphometry Predicts Categorization Ability. Front Hum Neurosci 2018; 12:36. [PMID: 29467637 PMCID: PMC5808329 DOI: 10.3389/fnhum.2018.00036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/23/2018] [Indexed: 11/13/2022] Open
Abstract
Categorization is the mental operation by which the brain classifies objects and events. It is classically assessed using semantic and non-semantic matching or sorting tasks. These tasks show a high variability in performance across healthy controls and the cerebral bases supporting this variability remain unknown. In this study we performed a voxel-based morphometry study to explore the relationships between semantic and shape categorization tasks and brain morphometric differences in 50 controls. We found significant correlation between categorization performance and the volume of the gray matter in the right anterior middle and inferior temporal gyri. Semantic categorization tasks were associated with more rostral temporal regions than shape categorization tasks. A significant relationship was also shown between white matter volume in the right temporal lobe and performance in the semantic tasks. Tractography revealed that this white matter region involved several projection and association fibers, including the arcuate fasciculus, inferior fronto-occipital fasciculus, uncinate fasciculus, and inferior longitudinal fasciculus. These results suggest that categorization abilities are supported by the anterior portion of the right temporal lobe and its interaction with other areas.
Collapse
Affiliation(s)
- Béatrice Garcin
- Frontlab, Institut du Cerveau et de la Moelle épinière (ICM), UPMC UMRS 1127, Inserm U 1127, CNRS UMR 7225, Paris, France.,Department of Neurology, Salpêtrière Hospital AP-HP, Paris, France
| | - Marika Urbanski
- Frontlab, Institut du Cerveau et de la Moelle épinière (ICM), UPMC UMRS 1127, Inserm U 1127, CNRS UMR 7225, Paris, France.,Service de Médecine et Réadaptation, Hôpitaux de Saint-Maurice, Saint-Maurice, France.,Brain Connectivity and Behaviour Group, Institut du Cerveau et de la Moelle Epinière, Paris, France
| | - Michel Thiebaut de Schotten
- Frontlab, Institut du Cerveau et de la Moelle épinière (ICM), UPMC UMRS 1127, Inserm U 1127, CNRS UMR 7225, Paris, France.,Brain Connectivity and Behaviour Group, Institut du Cerveau et de la Moelle Epinière, Paris, France.,Centre de NeuroImagerie de Recherche, Institut du Cerveau et de la Moelle Epinière, Paris, France
| | - Richard Levy
- Frontlab, Institut du Cerveau et de la Moelle épinière (ICM), UPMC UMRS 1127, Inserm U 1127, CNRS UMR 7225, Paris, France.,Department of Neurology, Salpêtrière Hospital AP-HP, Paris, France
| | - Emmanuelle Volle
- Frontlab, Institut du Cerveau et de la Moelle épinière (ICM), UPMC UMRS 1127, Inserm U 1127, CNRS UMR 7225, Paris, France.,Brain Connectivity and Behaviour Group, Institut du Cerveau et de la Moelle Epinière, Paris, France
| |
Collapse
|
33
|
Chen Q, Middleton E, Mirman D. Words fail: Lesion-symptom mapping of errors of omission in post-stroke aphasia. J Neuropsychol 2018; 13:183-197. [PMID: 29411521 DOI: 10.1111/jnp.12148] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 01/03/2018] [Indexed: 10/18/2022]
Abstract
Impaired object naming is a core deficit in post-stroke aphasia, which can manifest as errors of commission - producing an incorrect word or a non-word - or as errors of omission - failing to attempt to name the object. Detailed behavioural, computational, and neurological investigations of errors of commission have played a key role in the development of neurocognitive models of word production. In contrast, the neurocognitive basis of omission errors is radically underspecified despite being a prevalent phenomenon in aphasia and other populations. The prevalence of omission errors makes their neurocognitive basis important for characterizing an individual's deficits and, ideally, for personalizing treatment and evaluating treatment outcomes. This study leveraged established relationships between lesion location and errors of commission to investigate omission errors in picture naming. Omission error rates from the Philadelphia Naming Test for 123 individuals with post-stroke aphasia were analysed using support vector regression lesion-symptom mapping. Omission errors were most strongly associated with left frontal and mid-anterior temporal lobe lesions. Computational model analysis further showed that omission errors were positively associated with impaired semantically driven lexical retrieval rather than phonological retrieval. These results suggest that errors of omission in aphasia predominantly arise from lexical-semantic deficits in word retrieval and selection from a competitor set.
Collapse
Affiliation(s)
- Qi Chen
- School of Psychology, Center for Studies of Psychological Application and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Erica Middleton
- Moss Rehabilitation Research Institute, Elkins Park, Pennsylvania, USA
| | - Daniel Mirman
- Moss Rehabilitation Research Institute, Elkins Park, Pennsylvania, USA.,Department of Psychology, University of Alabama at Birmingham, USA
| |
Collapse
|
34
|
Hoffman P, Lambon Ralph MA. From percept to concept in the ventral temporal lobes: Graded hemispheric specialisation based on stimulus and task. Cortex 2018; 101:107-118. [PMID: 29475076 PMCID: PMC5885984 DOI: 10.1016/j.cortex.2018.01.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/29/2017] [Accepted: 01/17/2018] [Indexed: 01/28/2023]
Abstract
The left and right ventral anterior temporal lobes (vATL) have been implicated as key regions for the representation of conceptual knowledge. However, the nature and degree of hemispheric specialisation in their function is unclear. To address this issue, we investigated hemispheric specialisation in the ventral temporal lobes using a distortion-corrected spin-echo fMRI protocol that enhanced signal in vATL. We employed an orthogonal manipulation of stimulus (written words vs pictured objects) and task (naming vs recognition). Words elicited left-lateralised vATL activation while objects elicited bilateral activation with no hemispheric bias. In contrast, posterior ventral temporal cortex exhibited a rightward bias for objects as well as a leftward bias for words. Naming tasks produced left-lateralised activation in vATL while activity for recognition was equal in left and right vATLs. These findings are incompatible with proposals that left and right ATLs are strongly modular in function, since these predict rightward as well as leftward biases. Instead, they support an alternative model in which (a) left and right ATL together form a bilateral, integrated system for the representation of concepts and (b) within this system, graded hemispheric specialisation emerges as a consequence of differential connectivity with other neural systems. On this view, greater left vATL activation for written word processing develops as a consequence of the inputs this region receives from left-lateralised visual word processing system in posterior temporal cortex. Greater left vATL activation during naming tasks is most likely due to connectivity with left-lateralised speech output systems in prefrontal and motor cortices.
Collapse
Affiliation(s)
- Paul Hoffman
- Centre for Cognitive Ageing and Cognitive Epidemiology (CCACE), Department of Psychology, University of Edinburgh, UK; Neuroscience and Aphasia Research Unit (NARU), Division of Neuroscience & Experimental Psychology, School of Biological Sciences, University of Manchester, UK.
| | - Matthew A Lambon Ralph
- Neuroscience and Aphasia Research Unit (NARU), Division of Neuroscience & Experimental Psychology, School of Biological Sciences, University of Manchester, UK
| |
Collapse
|
35
|
Canini M, Della Rosa PA, Catricalà E, Strijkers K, Branzi FM, Costa A, Abutalebi J. Semantic interference and its control: A functional neuroimaging and connectivity study. Hum Brain Mapp 2018; 37:4179-4196. [PMID: 27355179 DOI: 10.1002/hbm.23304] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 11/06/2022] Open
Abstract
During picture naming, the ease with which humans generate words is dependent upon the context in which they are named. For instances, naming previously presented items results in facilitation. Instead, naming a picture semantically related to previous items displays persistent interference effects (i.e., cumulative semantic interference, CSI). The neural correlates of CSI are still unclear and it is a matter of debate whether semantic control, or cognitive control more in general, is necessary for the resolution of CSI. We carried out an event-related fMRI experiment to assess the neural underpinnings of the CSI effect and the involvement and nature of semantic control. Both left inferior frontal gyrus (LIFG) and the left caudate nucleus (LCN) showed a linear increase of BOLD response positively associated with the consecutive number of presentations of semantically related pictures independently of task-load. The generalized psychophysiological interaction analysis showed that LIFG demonstrated a quantitative neural connectivity difference with the left supramarginal and angular gyri for increases of task-load and with the fusiform gyri for linear CSI increases. Furthermore, seed-to-voxel functional connectivity showed that LIFG activity coupled with different regions involved in cognitive control and lexicosemantic processing when semantic interference was elicited to a minimum or maximum degree. Our results are consistent with the lexical-competitive nature of the CSI effect, and we provide novel evidence that semantic control lies upon a more general cognitive control network (i.e., LIFG and LCN) responsible for resolving interference between competing semantically related items through connectivity with different brain areas in order to guarantee the correct response. Hum Brain Mapp 37:4179-4196, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Matteo Canini
- Faculty of Psychology, San Raffaele University & San Raffaele Scientific Institute, Milano, Italy
| | | | | | | | - Francesca Martina Branzi
- Neuroscience and Aphasia Research Unit, School of Psychological Sciences, University of Manchester, Manchester, United Kingdom
| | - Albert Costa
- Universitat De Pompeu Fabra, Barcelona & ICREA, Barcelona, Spain
| | - Jubin Abutalebi
- Faculty of Psychology, San Raffaele University & San Raffaele Scientific Institute, Milano, Italy.
| |
Collapse
|
36
|
Woollams AM, Patterson K. Cognitive consequences of the left-right asymmetry of atrophy in semantic dementia. Cortex 2017; 107:64-77. [PMID: 29289335 DOI: 10.1016/j.cortex.2017.11.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 11/17/2022]
Abstract
Semantic dementia (SD) is a condition in which atrophy to the anterior temporal lobes (ATL) produces a selective deterioration of conceptual knowledge. As this atrophy is always bilateral but usually asymmetrical, differences in performance of the two SD subgroups-with left > right (L > R) versus right > left (R > L) atrophy-constitute a major source of evidence regarding the roles of the left and right sides of this region. We explored this issue using large scale case-series methodology, with a pool of 216 observations of neuropsychological data from 72 patients with SD. Anomia was significantly more severe in the L > R subgroup, even when cases from the two subgroups were matched on severity of comprehension deficits. For subgroups matched on the degree of anomia, we show that asymmetry of atrophy also affected both the nature of the naming errors produced, and the degree of a semantic category effect (living things vs artefacts). A comparison across tasks varying in their loading on verbal and visual processing revealed a greater deficit in object naming for L > R cases and in a picture-based semantic association test for R > L cases; this held true whether severity across subgroups was controlled using pairwise matching or statistically via principal components analysis. Importantly, the size of our sample allowed us to demonstrate considerable individual variation within each of the L > R and R > L subgroups, with consequent overlap between them. Our results paint a clear picture of how asymmetry of atrophy affects cognitive performance in SD, and we discuss the results in terms of two mechanisms that could contribute to these differences: variation in the information involved in semantic representations in the left and right ATL, and preferential connectivity between each ATL and other more modality specific intra-hemispheric regions.
Collapse
Affiliation(s)
- Anna M Woollams
- Neuroscience and Aphasia Research Unit, School of Biological Sciences, University of Manchester, Manchester, UK.
| | - Karalyn Patterson
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; MRC Cognition & Brain Sciences Unit, Cambridge, UK
| |
Collapse
|
37
|
Jung J, Williams SR, Sanaei Nezhad F, Lambon Ralph MA. GABA concentrations in the anterior temporal lobe predict human semantic processing. Sci Rep 2017; 7:15748. [PMID: 29146995 PMCID: PMC5691052 DOI: 10.1038/s41598-017-15981-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 11/01/2017] [Indexed: 11/16/2022] Open
Abstract
There is now considerable convergent evidence from multiple methodologies and clinical studies that the human anterior temporal lobe (ATL) is a semantic representational hub. However, the neurochemical nature of the ATL in the semantic processing remains unclear. The current study investigated the neurochemical mechanism underlying semantic processing in the ATL. We combined functional magnetic resonance imaging (fMRI) with resting-state magnetic resonance spectroscopy (MRS) to measure task-related blood-oxygen level-dependent (BOLD) signal changes during sematic processing and resting-state GABA concentrations in the ATL. Our combined fMRI and MRS investigation showed that the stronger ATL BOLD response induced by the semantic task, the lower GABA concentration in the same region. Moreover, individuals with higher GABA concentration in the ATL showed better semantic performance and stronger BOLD-related fluctuations in the semantic network. Our data demonstrated that the resting-state GABA concentration predicts neural changes in the human ATL and task performance during semantic processing. Our findings indicate that individuals with higher GABA may have a more efficient semantic processing leading to better task performance and imply that GABAergic neurochemical processes are potentially crucial to the neurobiological contribution of the ATL to semantic cognition.
Collapse
Affiliation(s)
- JeYoung Jung
- Neuroscience and Aphasia Research Unit (NARU), Division of Neuroscience & Experimental Psychology, School of Biological Sciences, University of Manchester, Manchester, UK.
| | - Stephen R Williams
- Centre for Imaging Science and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Faezeh Sanaei Nezhad
- Centre for Imaging Science and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Matthew A Lambon Ralph
- Neuroscience and Aphasia Research Unit (NARU), Division of Neuroscience & Experimental Psychology, School of Biological Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
38
|
Left Anterior Temporal Lobe and Bilateral Anterior Cingulate Cortex Are Semantic Hub Regions: Evidence from Behavior-Nodal Degree Mapping in Brain-Damaged Patients. J Neurosci 2017; 37:141-151. [PMID: 28053037 DOI: 10.1523/jneurosci.1946-16.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/13/2016] [Accepted: 11/11/2016] [Indexed: 11/21/2022] Open
Abstract
The organizational principles of semantic memory in the human brain are still controversial. Although studies have shown that the semantic system contains hub regions that bind information from different sensorimotoric modalities to form concepts, it is unknown whether there are hub regions other than the anterior temporal lobe (ATL). Meanwhile, previous studies have rarely used network measurements to explore the hubs or correlated network indexes with semantic performance, although the most direct supportive evidence of hubs should come from the network perspective. To fill this gap, we correlated the brain-network index with semantic performance in 86 brain-damaged patients. We especially selected the nodal degree measure that reflects how well a node is connected in the network. The measure was calculated as the total number of connections of a given node with other nodes in the resting-state functional MRI network. Semantic ability was measured using the performance of both general and modality-specific (object form, color, motion, sound, manipulation, and function) semantic tasks. We found that the left ATL and the bilateral anterior cingulate cortex could be semantic hubs because the reduced nodal degree values of these regions could effectively predict the deficits in both general and modality-specific semantic performance. Moreover, the effects remained when the analyses were performed only in the patients who did not have lesions in these regions. The two hub regions might support semantic representations and executive control processes, respectively. These data provide empirical evidence for the distributed-plus-hub theory of semantic memory from the network perspective. SIGNIFICANCE STATEMENT Although the distributed-plus-hub organization of semantic memory has been proposed for several years, it remains unclear which hubs other than the anterior temporal lobe are included in the semantic system. Here, we identified such hubs from an innovative network perspective. The voxelwise nodal degree values were correlated with the performance of general and modality-specific semantic tasks in 86 patients with brain damage. We observed that the left anterior temporal lobe and bilateral anterior cingulate cortex could be semantic hubs because their decreased nodal degree values were significantly correlated with the severity of the deficit in semantic performance. The two hub regions might contribute to semantic representational and control processes, respectively. These findings offer new evidence for the distributed-plus-hub theory.
Collapse
|
39
|
Brain grey and white matter predictors of verbal ability traits in older age: The Lothian Birth Cohort 1936. Neuroimage 2017; 156:394-402. [PMID: 28549795 PMCID: PMC5554782 DOI: 10.1016/j.neuroimage.2017.05.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 05/15/2017] [Accepted: 05/23/2017] [Indexed: 11/21/2022] Open
Abstract
Cerebral grey and white matter MRI parameters are related to general intelligence and some specific cognitive abilities. Less is known about how structural brain measures relate specifically to verbal processing abilities. We used multi-modal structural MRI to investigate the grey matter (GM) and white matter (WM) correlates of verbal ability in 556 healthy older adults (mean age = 72.68 years, s.d. = .72 years). Structural equation modelling was used to decompose verbal performance into two latent factors: a storage factor that indexed participants' ability to store representations of verbal knowledge and an executive factor that measured their ability to regulate their access to this information in a flexible and task-appropriate manner. GM volumes and WM fractional anisotropy (FA) for components of the language/semantic network were used as predictors of these verbal ability factors. Volume of the ventral temporal cortices predicted participants' storage scores (β = .12, FDR-adjusted p = .04), consistent with the theory that this region acts as a key substrate of semantic knowledge. This effect was mediated by childhood IQ, suggesting a lifelong association between ventral temporal volume and verbal knowledge, rather than an effect of cognitive decline in later life. Executive ability was predicted by FA fractional anisotropy of the arcuate fasciculus (β = .19, FDR-adjusted p = .001), a major language-related tract implicated in speech production. This result suggests that this tract plays a role in the controlled retrieval of word knowledge during speech. At a more general level, these data highlight a basic distinction between information representation, which relies on the accumulation of tissue in specialised GM regions, and executive control, which depends on long-range WM pathways for efficient communication across distributed cortical networks.
Collapse
|
40
|
Gainotti G. The Differential Contributions of Conceptual Representation Format and Language Structure to Levels of Semantic Abstraction Capacity. Neuropsychol Rev 2017; 27:134-145. [DOI: 10.1007/s11065-016-9339-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 12/21/2016] [Indexed: 11/24/2022]
|
41
|
Collins JA, Montal V, Hochberg D, Quimby M, Mandelli ML, Makris N, Seeley WW, Gorno-Tempini ML, Dickerson BC. Focal temporal pole atrophy and network degeneration in semantic variant primary progressive aphasia. Brain 2017; 140:457-471. [PMID: 28040670 PMCID: PMC5278308 DOI: 10.1093/brain/aww313] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 08/10/2016] [Accepted: 10/25/2016] [Indexed: 12/22/2022] Open
Abstract
A wealth of neuroimaging research has associated semantic variant primary progressive aphasia with distributed cortical atrophy that is most prominent in the left anterior temporal cortex; however, there is little consensus regarding which region within the anterior temporal cortex is most prominently damaged, which may indicate the putative origin of neurodegeneration. In this study, we localized the most prominent and consistent region of atrophy in semantic variant primary progressive aphasia using cortical thickness analysis in two independent patient samples (n = 16 and 28, respectively) relative to age-matched controls (n = 30). Across both samples the point of maximal atrophy was located in the same region of the left temporal pole. This same region was the point of maximal atrophy in 100% of individual patients in both semantic variant primary progressive aphasia samples. Using resting state functional connectivity in healthy young adults (n = 89), we showed that the seed region derived from the semantic variant primary progressive aphasia analysis was strongly connected with a large-scale network that closely resembled the distributed atrophy pattern in semantic variant primary progressive aphasia. In both patient samples, the magnitude of atrophy within a brain region was predicted by that region's strength of functional connectivity to the temporopolar seed region in healthy adults. These findings suggest that cortical atrophy in semantic variant primary progressive aphasia may follow connectional pathways within a large-scale network that converges on the temporal pole.
Collapse
Affiliation(s)
- Jessica A Collins
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, USA
| | - Victor Montal
- Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau-Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Daisy Hochberg
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, USA
| | - Megan Quimby
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, USA
| | - Maria Luisa Mandelli
- Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
| | - Nikos Makris
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, USA
| | - William W Seeley
- Department of Neurology, University of California at San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California at San Francisco, San Francisco, CA, USA
| | | | - Bradford C Dickerson
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
42
|
Likova LT. Addressing long-standing controversies in conceptual knowledge representation in the temporal pole: A cross-modal paradigm. IS&T INTERNATIONAL SYMPOSIUM ON ELECTRONIC IMAGING 2017; 2017:268-272. [PMID: 31423471 PMCID: PMC6697259 DOI: 10.2352/issn.2470-1173.2017.14.hvei-155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Conceptual knowledge allows us to comprehend the multisensory stimulation impinging on our senses. Its representation in the anterior temporal lobe is a subject of considerable debate, with the "enigmatic" temporal pole (TP) being at the center of that debate. The controversial models of the organization of knowledge representation in TP range from unilateral to fully unified bilateral representational systems. To address the multitude of mutually exclusive options, we developed a novel cross-modal approach in a multifactorial brain imaging study of the blind, manipulating the modality (verbal vs pictorial) of both the reception source (reading text/verbal vs images/pictorial) and the expression (writing text/verbal vs drawing/pictorial) of conceptual knowledge. Furthermore, we also varied the level of familiarity. This study is the first to investigate the functional organization of (amodal) conceptual knowledge in TP in the blind, as well as, the first study of drawing based on the conceptual knowledge from memory of sentences delivered through Braille reading. Through this paradigm, we were able to functionally identify two novel subdivisions of the temporal pole - the TPa, at the apex, and the TPdm - dorso-medially. Their response characteristics revealed a complex interplay of non-visual specializations within the temporal pole, with a diversity of excitatory/inhibitory inversions as a function of hemisphere, task-domain and familiarity, which motivate an expanded neurocognitive analysis of conceptual knowledge. The interplay of inter-hemispheric specializations found here accounts for the variety of seemingly conflicting models in previous research for conceptual knowledge representation, reconciling them through the set of factors we have investigated: the two main knowledge domains (verbal and pictorial/sensory-motor) and the two main knowledge processing modes (receptive and expressive), including the level of familiarity as a modifier. Furthermore, the interplay of these factors allowed us to also reveal for the first time a system of complementary symmetries, asymmetries and unexpected anti-symmetries in the TP organization. Thus, taken together these results constitute a unifying explanation of the conflicting models in previous research on conceptual knowledge representation.
Collapse
Affiliation(s)
- Lora T Likova
- Smith-Kettlewell Eye Research Institute, San Francisco, CA USA
| |
Collapse
|
43
|
Binney RJ, Hoffman P, Lambon Ralph MA. Mapping the Multiple Graded Contributions of the Anterior Temporal Lobe Representational Hub to Abstract and Social Concepts: Evidence from Distortion-corrected fMRI. Cereb Cortex 2016; 26:4227-4241. [PMID: 27600844 PMCID: PMC5066834 DOI: 10.1093/cercor/bhw260] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 07/03/2016] [Accepted: 07/30/2016] [Indexed: 11/13/2022] Open
Abstract
A growing body of recent convergent evidence indicates that the anterior temporal lobe (ATL) has connectivity-derived graded differences in semantic function: the ventrolateral region appears to be the transmodal, omni-category center-point of the hub whilst secondary contributions come from the peripheries of the hub in a manner that reflects their differential connectivity to different input/output modalities. One of the key challenges for this neurocognitive theory is how different types of concept, especially those with less reliance upon external sensory experience (such as abstract and social concepts), are coded across the graded ATL hub. We were able to answer this key question by using distortion-corrected fMRI to detect functional activations across the entire ATL region and thus to map the neural basis of social and psycholinguistically-matched abstract concepts. Both types of concept engaged a core left-hemisphere semantic network, including the ventrolateral ATL, prefrontal regions and posterior MTG. Additionally, we replicated previous findings of weaker differential activation of the superior and polar ATL for the processing of social stimuli, in addition to the stronger, omni-category activation observed in the vATL. These results are compatible with the view of the ATL as a graded transmodal substrate for the representation of coherent concepts.
Collapse
Affiliation(s)
- Richard J. Binney
- Neuroscience and Aphasia Research Unit (NARU), School of Psychological Sciences, University of Manchester, ManchesterM13 9PL, UK
- Eleanor M. Saffran Center for Cognitive Neuroscience, Department of Communication Sciences and Disorders, Temple University, Philadelphia, PA19122, USA
| | - Paul Hoffman
- Neuroscience and Aphasia Research Unit (NARU), School of Psychological Sciences, University of Manchester, ManchesterM13 9PL, UK
- Center for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, EH8 9JZ, UK
| | - Matthew A. Lambon Ralph
- Neuroscience and Aphasia Research Unit (NARU), School of Psychological Sciences, University of Manchester, ManchesterM13 9PL, UK
| |
Collapse
|
44
|
The Semantic Network at Work and Rest: Differential Connectivity of Anterior Temporal Lobe Subregions. J Neurosci 2016; 36:1490-501. [PMID: 26843633 DOI: 10.1523/jneurosci.2999-15.2016] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
UNLABELLED The anterior temporal lobe (ATL) makes a critical contribution to semantic cognition. However, the functional connectivity of the ATL and the functional network underlying semantic cognition has not been elucidated. In addition, subregions of the ATL have distinct functional properties and thus the potential differential connectivity between these subregions requires investigation. We explored these aims using both resting-state and active semantic task data in humans in combination with a dual-echo gradient echo planar imaging (EPI) paradigm designed to ensure signal throughout the ATL. In the resting-state analysis, the ventral ATL (vATL) and anterior middle temporal gyrus (MTG) were shown to connect to areas responsible for multimodal semantic cognition, including bilateral ATL, inferior frontal gyrus, medial prefrontal cortex, angular gyrus, posterior MTG, and medial temporal lobes. In contrast, the anterior superior temporal gyrus (STG)/superior temporal sulcus was connected to a distinct set of auditory and language-related areas, including bilateral STG, precentral and postcentral gyri, supplementary motor area, supramarginal gyrus, posterior temporal cortex, and inferior and middle frontal gyri. Complementary analyses of functional connectivity during an active semantic task were performed using a psychophysiological interaction (PPI) analysis. The PPI analysis highlighted the same semantic regions suggesting a core semantic network active during rest and task states. This supports the necessity for semantic cognition in internal processes occurring during rest. The PPI analysis showed additional connectivity of the vATL to regions of occipital and frontal cortex. These areas strongly overlap with regions found to be sensitive to executively demanding, controlled semantic processing. SIGNIFICANCE STATEMENT Previous studies have shown that semantic cognition depends on subregions of the anterior temporal lobe (ATL). However, the network of regions functionally connected to these subregions has not been demarcated. Here, we show that these ventrolateral anterior temporal subregions form part of a network responsible for semantic processing during both rest and an explicit semantic task. This demonstrates the existence of a core functional network responsible for multimodal semantic cognition regardless of state. Distinct connectivity is identified in the superior ATL, which is connected to auditory and language areas. Understanding the functional connectivity of semantic cognition allows greater understanding of how this complex process may be performed and the role of distinct subregions of the anterior temporal cortex.
Collapse
|
45
|
Gainotti G. Lower- and higher-level models of right hemisphere language. A selective survey. FUNCTIONAL NEUROLOGY 2016; 31:67-73. [PMID: 27358218 DOI: 10.11138/fneur/2016.31.2.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The models advanced to explain right hemisphere (RH) language function can be divided into two main types. According to the older (lower-level) models, RH language reflects the ontogenesis of conceptual and semantic-lexical development; the more recent models, on the other hand, suggest that the RH plays an important role in the use of higher-level language functions, such as metaphors, to convey complex, abstract concepts. The hypothesis that the RH may be preferentially involved in processing the semantic-lexical components of language was advanced by Zaidel in splitbrain patients and his model was confirmed by neuropsychological investigations, proving that right brain-damaged patients show selective semanticlexical disorders. The possible links between lower and higher levels of RH language are discussed, as is the hypothesis that the RH may have privileged access to the figurative aspects of novel metaphorical expressions, whereas conventionalization of metaphorical meaning could be a bilaterally-mediated process involving abstract semantic-lexical codes.
Collapse
|
46
|
Hoyau E, Cousin E, Jaillard A, Baciu M. Modulation of the inter-hemispheric processing of semantic information during normal aging. A divided visual field experiment. Neuropsychologia 2016; 93:425-436. [PMID: 26724229 DOI: 10.1016/j.neuropsychologia.2015.12.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 11/12/2015] [Accepted: 12/22/2015] [Indexed: 12/14/2022]
Abstract
We evaluated the effect of normal aging on the inter-hemispheric processing of semantic information by using the divided visual field (DVF) method, with words and pictures. Two main theoretical models have been considered, (a) the HAROLD model which posits that aging is associated with supplementary recruitment of the right hemisphere (RH) and decreased hemispheric specialization, and (b) the RH decline theory, which assumes that the RH becomes less efficient with aging, associated with increased LH specialization. Two groups of subjects were examined, a Young Group (YG) and an Old Group (OG), while participants performed a semantic categorization task (living vs. non-living) in words and pictures. The DVF was realized in two steps: (a) unilateral DVF presentation with stimuli presented separately in each visual field, left or right, allowing for their initial processing by only one hemisphere, right or left, respectively; (b) bilateral DVF presentation (BVF) with stimuli presented simultaneously in both visual fields, followed by their processing by both hemispheres. These two types of presentation permitted the evaluation of two main characteristics of the inter-hemispheric processing of information, the hemispheric specialization (HS) and the inter-hemispheric cooperation (IHC). Moreover, the BVF allowed determining the driver-hemisphere for processing information presented in BVF. Results obtained in OG indicated that: (a) semantic categorization was performed as accurately as YG, even if more slowly, (b) a non-semantic RH decline was observed, and (c) the LH controls the semantic processing during the BVF, suggesting an increased role of the LH in aging. However, despite the stronger involvement of the LH in OG, the RH is not completely devoid of semantic abilities. As discussed in the paper, neither the HAROLD nor the RH decline does fully explain this pattern of results. We rather suggest that the effect of aging on the hemispheric specialization and inter-hemispheric cooperation during semantic processing is explained not by only one model, but by an interaction between several complementary mechanisms and models.
Collapse
Affiliation(s)
- E Hoyau
- University Grenoble Alpes, LPNC, F-38040 Grenoble, France; CNRS, LPNC UMR 5105, F-38040 Grenoble, France
| | - E Cousin
- University Grenoble Alpes, LPNC, F-38040 Grenoble, France; CNRS, LPNC UMR 5105, F-38040 Grenoble, France; UMS IRMaGe, IRM 3T, CHU Grenoble, University Grenoble Alpes, F-38043 Grenoble, France
| | - A Jaillard
- UMS IRMaGe, IRM 3T, CHU Grenoble, University Grenoble Alpes, F-38043 Grenoble, France
| | - M Baciu
- University Grenoble Alpes, LPNC, F-38040 Grenoble, France; CNRS, LPNC UMR 5105, F-38040 Grenoble, France.
| |
Collapse
|
47
|
Rice GE, Lambon Ralph MA, Hoffman P. The Roles of Left Versus Right Anterior Temporal Lobes in Conceptual Knowledge: An ALE Meta-analysis of 97 Functional Neuroimaging Studies. Cereb Cortex 2015; 25:4374-91. [PMID: 25771223 PMCID: PMC4816787 DOI: 10.1093/cercor/bhv024] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The roles of the right and left anterior temporal lobes (ATLs) in conceptual knowledge are a source of debate between 4 conflicting accounts. Possible ATL specializations include: (1) Processing of verbal versus non-verbal inputs; (2) the involvement of word retrieval; and (3) the social content of the stimuli. Conversely, the "hub-and-spoke" account holds that both ATLs form a bilateral functionally unified system. Using activation likelihood estimation (ALE) to compare the probability of left and right ATL activation, we analyzed 97 functional neuroimaging studies of conceptual knowledge, organized according to the predictions of the three specialized hypotheses. The primary result was that ATL activation was predominately bilateral and highly overlapping for all stimulus types. Secondary to this bilateral representation, there were subtle gradations both between and within the ATLs. Activations were more likely to be left lateralized when the input was a written word or when word retrieval was required. These data are best accommodated by a graded version of the hub-and-spoke account, whereby representation of conceptual knowledge is supported through bilateral yet graded connectivity between the ATLs and various modality-specific sensory, motor, and limbic cortices.
Collapse
Affiliation(s)
- Grace E Rice
- Neuroscience and Aphasia Research Unit (NARU), School of Psychological Sciences, University of Manchester, Manchester, UK
| | - Matthew A Lambon Ralph
- Neuroscience and Aphasia Research Unit (NARU), School of Psychological Sciences, University of Manchester, Manchester, UK
| | - Paul Hoffman
- Neuroscience and Aphasia Research Unit (NARU), School of Psychological Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
48
|
Abstract
Considerable evidence from different methodologies has identified the anterior temporal lobes (ATLs) as key regions for the representation of semantic knowledge. Research interest is now shifting to investigate the roles of different ATL subregions in semantic representation, with particular emphasis on the functions of the left versus right ATLs. In this review, we provide evidence for graded specializations both between and within the ATLs. We argue (1) that multimodal, pan-category semantic representations are supported jointly by both left and right ATLs, yet (2) that the ATLs are not homogeneous in their function. Instead, subtle functional gradations both between and within the ATLs emerge as a consequence of differential connectivity with primary sensory/motor/limbic regions. This graded specialization account of semantic representation provides a compromise between theories that posit no differences between the functions of the left and right ATLs and those that posit that the left and right ATLs are entirely segregated in function. Evidence for this graded account comes from converging sources, and its benefits have been exemplified in formal computational models. We propose that this graded principle is not only a defining feature of the ATLs but is also a more general neurocomputational principle found throughout the temporal lobes.
Collapse
Affiliation(s)
- Grace E Rice
- Neuroscience and Aphasia Research Unit (NARU), University of Manchester, Manchester, United Kingdom
| | - Paul Hoffman
- Centre for Cognitive Ageing and Cognitive Epidemiology (CCACE), Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Matthew A Lambon Ralph
- Neuroscience and Aphasia Research Unit (NARU), University of Manchester, Manchester, United Kingdom
| |
Collapse
|
49
|
Caputi N, Di Giacomo D, Aloisio F, Passafiume D. Deterioration of semantic associative relationships in mild cognitive impairment and Alzheimer Disease. APPLIED NEUROPSYCHOLOGY-ADULT 2015; 23:186-95. [PMID: 26508434 PMCID: PMC4819827 DOI: 10.1080/23279095.2015.1030020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The aim of this research was to study semantic abilities and their loss in mild cognitive impairment (MCI) and in dementia, while analyzing efficiency in the use of associative relations, within verbal and visuoperceptual modalities. Participants were split into 4 groups: 19 participants with amnestic MCI, 16 patients with mild Alzheimer disease (AD), 20 patients with moderate AD, and 20 healthy controls (HCs). All participants performed standardized neuropsychological tests and experimental (naming and semantic associations) tasks to evaluate verbal and visuoperceptual semantic abilities. We analyzed 4 associative relations (part/whole, function, superordinate, and contiguity) in both verbal and visuoperceptual code. Our results suggest a progressive impairment in semantic categorization knowledge, with worse performance in the AD groups relative to the MCI and HC groups. Our data show a different pattern in the 4 associative relations and the involvement of associative semantic relations already in the early stage of disease, as well as a different pattern of deterioration between verbal and visuoperceptual modalities. Our data indicate that the visuoperceptual semantic network appears to be less deteriorated than the verbal network in AD. The verbal semantic network may be more sensitive in detecting patients at an early stage of the disease.
Collapse
Affiliation(s)
- Nicoletta Caputi
- a Department of Life, Health and Environmental Science , University of L'Aquila , L'Aquila , Italy
| | - Dina Di Giacomo
- a Department of Life, Health and Environmental Science , University of L'Aquila , L'Aquila , Italy
| | - Federica Aloisio
- a Department of Life, Health and Environmental Science , University of L'Aquila , L'Aquila , Italy
| | - Domenico Passafiume
- a Department of Life, Health and Environmental Science , University of L'Aquila , L'Aquila , Italy
| |
Collapse
|
50
|
Mirman D, Chen Q, Zhang Y, Wang Z, Faseyitan OK, Coslett HB, Schwartz MF. Neural organization of spoken language revealed by lesion-symptom mapping. Nat Commun 2015; 6:6762. [PMID: 25879574 PMCID: PMC4400840 DOI: 10.1038/ncomms7762] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 02/25/2015] [Indexed: 11/16/2022] Open
Abstract
Studies of patients with acquired cognitive deficits following brain damage and studies using contemporary neuroimaging techniques form two distinct streams of research on the neural basis of cognition. In this study, we combine high-quality structural neuroimaging analysis techniques and extensive behavioral assessment of patients with persistent acquired language deficits to study the neural basis of language. Our results reveal two major divisions within the language system – meaning vs. form and recognition vs. production – and their instantiation in the brain. Phonological form deficits are associated with lesions in peri-Sylvian regions, whereas semantic production and recognition deficits are associated with damage to the left anterior temporal lobe and white matter connectivity with frontal cortex, respectively. These findings provide a novel synthesis of traditional and contemporary views of the cognitive and neural architecture of language processing, emphasizing dual-routes for speech processing and convergence of white matter tracts for semantic control and/or integration.
Collapse
Affiliation(s)
- Daniel Mirman
- Moss Rehabilitation Research Institute, 50 Township Line Road, Elkins Park, Pennsylvania 19027, USA.,Department of Psychology, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, USA
| | - Qi Chen
- Moss Rehabilitation Research Institute, 50 Township Line Road, Elkins Park, Pennsylvania 19027, USA.,Center for Studies of Psychological Application and School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Yongsheng Zhang
- University of Pennsylvania, 3400 Spruce Street, Philadelphia, Pennsylvania 19104, USA
| | - Ze Wang
- University of Pennsylvania, 3400 Spruce Street, Philadelphia, Pennsylvania 19104, USA.,Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, Zhejiang Province 310005, China
| | - Olufunsho K Faseyitan
- University of Pennsylvania, 3400 Spruce Street, Philadelphia, Pennsylvania 19104, USA
| | - H Branch Coslett
- Moss Rehabilitation Research Institute, 50 Township Line Road, Elkins Park, Pennsylvania 19027, USA.,University of Pennsylvania, 3400 Spruce Street, Philadelphia, Pennsylvania 19104, USA
| | - Myrna F Schwartz
- Moss Rehabilitation Research Institute, 50 Township Line Road, Elkins Park, Pennsylvania 19027, USA
| |
Collapse
|