1
|
Bobba PS, Weber CF, Higaki ARA, Mukherjee P, Scheinost D, Constable RT, Ment L, Taylor SN, Payabvash S. Impact of postnatal weight gain on brain white matter maturation in very preterm infants. J Neuroimaging 2023; 33:991-1002. [PMID: 37483073 PMCID: PMC10800683 DOI: 10.1111/jon.13145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND AND PURPOSE Very preterm infants (VPIs, <32 weeks gestational age at birth) are prone to long-term neurological deficits. While the effects of birth weight and postnatal growth on VPIs' neurological outcome are well established, the neurobiological mechanism behind these associations remains elusive. In this study, we utilized diffusion tensor imaging (DTI) to characterize how birth weight and postnatal weight gain influence VPIs' white matter (WM) maturation. METHODS We included VPIs with complete birth and postnatal weight data in their health record, and DTI scan as part of their predischarge Magnetic Resonance Imaging (MRI). We conducted voxel-wise general linear model and tract-based regression analyses to explore the impact of birth weight and postnatal weight gain on WM maturation. RESULTS We included 91 VPIs in our analysis. After controlling for gestational age at birth and time between birth and scan, higher birth weight Z-scores were associated with DTI markers of more mature WM tracts, most prominently in the corpus callosum and sagittal striatum. The postnatal weight Z-score changes over the first 4 weeks of life were also associated with increased maturity in these WM tracts, when controlling for gestational age at birth, birth weight Z-score, and time between birth and scan. CONCLUSIONS In VPIs, birth weight and post-natal weight gain are associated with markers of brain WM maturation, particularly in the corpus callosum, which can be captured on discharge MRI. These neuroimaging metrics can serve as potential biomarkers for the early effects of nutritional interventions on VPIs' brain development.
Collapse
Affiliation(s)
- Pratheek S Bobba
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Clara F Weber
- Social Neuroscience Lab, Department of Psychiatry and Psychotherapy, Lübeck University, Lübeck, Germany
| | - Adrian R Acuna Higaki
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Pratik Mukherjee
- Department of Radiology and Biomedical Imaging, Bioengineering, University of California, San Francisco, San Francisco, California, USA
| | - Dustin Scheinost
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - R Todd Constable
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| | - Laura Ment
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Sarah N Taylor
- Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Seyedmehdi Payabvash
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
2
|
Aho L, Sairanen V, Lönnberg P, Wolford E, Lano A, Metsäranta M. Visual alertness and brain diffusion tensor imaging at term age predict neurocognitive development at preschool age in extremely preterm-born children. Brain Behav 2023; 13:e3048. [PMID: 37165734 PMCID: PMC10338808 DOI: 10.1002/brb3.3048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/12/2023] [Accepted: 04/19/2023] [Indexed: 05/12/2023] Open
Abstract
INTRODUCTION Cognitive development is characterized by the structural and functional maturation of the brain. Diffusion-weighted magnetic resonance imaging (dMRI) provides methods of investigating the brain structure and connectivity and their correlations with the neurocognitive outcome. Our aim was to examine the relationship between early visual abilities, brain white matter structures, and the later neurocognitive outcome. METHODS This study included 20 infants who were born before 28 gestational weeks and followed until the age of 6.5 years. At term age, visual alertness was evaluated and dMRI was used to investigate the brain white matter structure using fractional anisotropy (FA) in tract-based spatial statistics analysis. The JHU DTI white matter atlas was used to locate the findings. The neuropsychological assessment was used to assess neurocognitive performance at 6.5 years. RESULTS Optimal visual alertness at term age was significantly associated with better visuospatial processing (p < .05), sensorimotor functioning (p < .05), and social perception (p < .05) at 6.5 years of age. Optimal visual alertness related to higher FA values, and further, the FA values positively correlated with the neurocognitive outcome. The tract-based spatial differences in FA values were detected between children with optimal and nonoptimal visual alertness according to performance at 6.5 years. CONCLUSION We provide neurobiological evidence for the global and tract-based spatial differences in the white matter maturation between extremely preterm children with optimal and nonoptimal visual alertness at term age and a link between white matter maturation, visual alertness and the neurocognitive outcome at 6.5 years proposing that early visual function is a building block for the later neurocognitive development.
Collapse
Affiliation(s)
- Leena Aho
- New Children's Hospital, Pediatric Research CenterUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Viljami Sairanen
- BABA Center, Pediatric Research Center, Department of Clinical NeurophysiologyChildren's HospitalHelsinki University Hospital and University of HelsinkiHelsinkiFinland
| | - Piia Lönnberg
- New Children's Hospital, Pediatric Research CenterUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Elina Wolford
- Department of Psychology and LogopedicsUniversity of HelsinkiHelsinkiFinland
| | - Aulikki Lano
- New Children's Hospital, Pediatric Research CenterUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Marjo Metsäranta
- New Children's Hospital, Pediatric Research CenterUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| |
Collapse
|
3
|
Shaked D, Katzel LI, Davatzikos C, Gullapalli RP, Seliger SL, Erus G, Evans MK, Zonderman AB, Waldstein SR. White matter integrity as a mediator between socioeconomic status and executive function. Front Hum Neurosci 2022; 16:1021857. [PMID: 36466616 PMCID: PMC9716285 DOI: 10.3389/fnhum.2022.1021857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/04/2022] [Indexed: 11/03/2023] Open
Abstract
Introduction Lower socioeconomic status (SES) is associated with poorer executive function, but the neural mechanisms of this association remain unclear. As healthy brain communication is essential to our cognitive abilities, white matter integrity may be key to understanding socioeconomic disparities. Methods Participants were 201 African American and White adults (ages 33-72) from the Healthy Aging in Neighborhoods of Diversity across the Life Span (HANDLS) SCAN study. Diffusion tensor imaging was used to estimate regional fractional anisotropy as a measure of white matter integrity. Adjusting for age, analyses examined if integrity of the anterior limb of the internal capsule (ALIC), external capsule (EC), superior longitudinal fasciculus (SLF), and cingulum mediated SES-executive function relations. Results Lower SES was related to poorer cognitive performance and white matter integrity. Lower Trails B performance was related to poorer integrity of the ALIC, EC, and SLF, and lower Stroop performance was associated with poorer integrity of the ALIC and EC. ALIC mediated the SES-Trails B relation, and EC mediated the SES-Trails B and SES-Stroop relations. Sensitivity analyses revealed that (1) adjustment for race rendered the EC mediations non-significant, (2) when using poverty status and continuous education as predictors, results were largely the same, (3) at least some of the study's findings may generalize to processing speed, (4) mediations are not age-dependent in our sample, and (5) more research is needed to understand the role of cardiovascular risk factors in these models. Discussion Findings demonstrate that poorer white matter integrity helps explain SES disparities in executive function and highlight the need for further clarification of the biopsychosocial mechanisms of the SES-cognition association.
Collapse
Affiliation(s)
- Danielle Shaked
- Department of Psychology, University of Maryland, Baltimore County, Baltimore, MD, United States
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging Intramural Research Program, Baltimore, MD, United States
- Department of Psychology, VA Boston Health Care System, Boston, MA, United States
| | - Leslie I. Katzel
- Division of Gerontology, Geriatrics, and Palliative Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Geriatric Research Education and Clinical Center, Baltimore VA Medical Center, Baltimore, MD, United States
| | - Christos Davatzikos
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Rao P. Gullapalli
- Department of Diagnostic Radiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Stephen L. Seliger
- Geriatric Research Education and Clinical Center, Baltimore VA Medical Center, Baltimore, MD, United States
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Guray Erus
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Michele K. Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging Intramural Research Program, Baltimore, MD, United States
| | - Alan B. Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging Intramural Research Program, Baltimore, MD, United States
| | - Shari R. Waldstein
- Department of Psychology, University of Maryland, Baltimore County, Baltimore, MD, United States
- Division of Gerontology, Geriatrics, and Palliative Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Geriatric Research Education and Clinical Center, Baltimore VA Medical Center, Baltimore, MD, United States
| |
Collapse
|
4
|
Evensen KAI, Aakvik KAD, Hollund IMH, Skranes J, Brubakk A, Indredavik MS. Multidisciplinary and neuroimaging findings in preterm born very low birthweight individuals from birth to 28 years of age: A systematic review of a Norwegian prospective cohort study. Paediatr Perinat Epidemiol 2022; 36:606-630. [PMID: 35867340 PMCID: PMC9542186 DOI: 10.1111/ppe.12890] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 12/20/2022]
Abstract
BACKGROUND Children born preterm with very low birthweight (VLBW) face long-lasting neurodevelopmental challenges, where multidisciplinary assessments are warranted. The International Classification of Functioning, Disability and Health (ICF) provides a framework for understanding and conceptualising these outcomes. OBJECTIVES We aimed to review clinical and neuroimaging findings from birth to adulthood in a Norwegian cohort of individuals born preterm with VLBW (gestational age <37 weeks, birthweight ≤1500 g) within the framework of ICF. DATA SOURCES We searched PubMed and Embase for articles reporting results of the Norwegian University of Science and Technology (NTNU) Low Birth Weight in a Lifetime Perspective study. STUDY SELECTION AND DATA EXTRACTION We included original articles reporting proportions of adverse outcomes, mean group differences, risk factors or associations between outcomes. Data were extracted according to ICF's two-level classification. Body functions and structures comprised outcomes of brain structures, cognition, mental health, vision, pain and physical health. Activities and participation comprised motor skills, general and social functioning, education, employment, and health-related quality of life. SYNTHESIS We performed a qualitative synthesis of included articles. Where mean (SD) was reported, we calculated group differences in SD units. RESULTS Fifty-eight publications were included. Within body functions and structures, increased prevalence of brain structure pathology, lower cognitive performance, mental health problems, visual and physical health impairments through childhood, adolescence and young adulthood were reported among preterm VLBW participants compared with controls. Within activities and participation, motor problems, lower general and social functioning, and lower academic attainment were found. Perinatal factors were associated with several outcomes, and longitudinal findings suggested persistent consequences of being born preterm with VLBW. CONCLUSIONS Being born preterm with VLBW has long-term influences on body functions and structures, activities and participation. The ICF is appropriate for assessing general domains of functioning and guiding the management of individuals born preterm with VLBW.
Collapse
Affiliation(s)
- Kari Anne I. Evensen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health SciencesNorwegian University of Science and TechnologyTrondheimNorway,Department of Physiotherapy, Faculty of Health SciencesOslo Metropolitan UniversityOsloNorway,Unit for Physiotherapy ServicesTrondheim MunicipalityTrondheimNorway
| | - Kristina Anna Djupvik Aakvik
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health SciencesNorwegian University of Science and TechnologyTrondheimNorway
| | - Ingrid Marie Husby Hollund
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health SciencesNorwegian University of Science and TechnologyTrondheimNorway,Department of Physical Medicine and RehabilitationSt. Olavs Hospital, Trondheim University HospitalTrondheimNorway
| | - Jon Skranes
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health SciencesNorwegian University of Science and TechnologyTrondheimNorway,Department of PediatricsSørlandet HospitalArendalNorway
| | - Ann‐Mari Brubakk
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health SciencesNorwegian University of Science and TechnologyTrondheimNorway
| | - Marit S. Indredavik
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health SciencesNorwegian University of Science and TechnologyTrondheimNorway
| |
Collapse
|
5
|
Solis-Urra P, Esteban-Cornejo I, Rodriguez-Ayllon M, Verdejo-Román J, Labayen I, Catena A, Ortega FB. Early life factors and white matter microstructure in children with overweight and obesity: The ActiveBrains project. Clin Nutr 2021; 41:40-48. [PMID: 34864454 DOI: 10.1016/j.clnu.2021.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/05/2021] [Accepted: 10/23/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND & AIMS Exposure to a suboptimal environment during the fetal and early infancy period's results in long-term consequences for brain morphology and function. We investigated the associations of early life factors such as anthropometric neonatal data (i.e., birth length, birth weight and birth head circumference) and breastfeeding practices (i.e., exclusive and any breastfeeding) with white matter (WM) microstructure, and ii) we tested whether WM tracts related to early life factors are associated with academic performance in children with overweight/obesity. METHODS 96 overweight/obese children (10.03 ± 1.16 years; 38.7% girls) were included from the ActiveBrains Project. WM microstructure indicators used were fractional anisotropy (FA) and mean diffusivity (MD), derived from Diffusion Tensor Imaging. Academic performance was evaluated with the Battery III Woodcock-Muñoz Tests of Achievement. Regression models were used to examine the associations of the early life factors with tract-specific FA and MD, as well as its association with academic performance. RESULTS Head circumference at birth was positively associated with FA of the inferior fronto-occipital fasciculus tract (0.441; p = 0.005), as well as negatively associated with MD of the cingulate gyrus part of cingulum (-0.470; p = 0.006), corticospinal (-0.457; p = 0.005) and superior thalamic radiation tract (-0.476; p = 0.001). Association of birth weight, birth length and exclusive breastfeeding with WM microstructure did not remain significant after false discovery rate correction. None tract related to birth head circumference was associated with academic performance (all p > 0.05). CONCLUSIONS Our results highlighted the importance of the perinatal growth in WM microstructure later in life, although its possible academic implications remain inconclusive.
Collapse
Affiliation(s)
- Patricio Solis-Urra
- PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Spain; Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar, Chile.
| | - Irene Esteban-Cornejo
- PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Spain
| | - María Rodriguez-Ayllon
- PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Spain
| | - Juan Verdejo-Román
- Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain; Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Center for Biomedical Technology (CTB), Madrid, Spain
| | - Idoia Labayen
- Institute for Innovation & Sustainable Development in Food Chain (IS-FOOD), Public University of Navarra, Pamplona, Spain
| | - Andrés Catena
- Department of Experimental Psychology, Mind, Brain and Behaviour Research Centre (CIMCYC), University of Granada, Granada, Spain
| | - Francisco B Ortega
- PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Spain; Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.
| |
Collapse
|
6
|
Bugada MC, Kline JE, Parikh NA. Microstructural Measures of the Inferior Longitudinal Fasciculus Predict Later Cognitive and Language Development in Infants Born With Extremely Low Birth Weight. J Child Neurol 2021; 36:981-989. [PMID: 34187223 PMCID: PMC8458222 DOI: 10.1177/08830738211019862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Extremely preterm children are at high risk for adverse neurodevelopmental outcomes. Identifying predictors of discrete developmental outcomes early in life would allow for targeted neuroprotective therapies when neuroplasticity is at its peak. Our goal was to examine whether diffusion magnetic resonance imaging (MRI) metrics of the inferior longitudinal and uncinate fasciculi early in life could predict later cognitive and language outcomes. STUDY DESIGN In this pilot study, 43 extremely low-birth-weight preterm infants were scanned using diffusion MRI at term-equivalent age. White matter tracts were assessed via diffusion tensor imaging metrics of fractional anisotropy and mean diffusivity. The Language and Cognitive subscale scores of the Bayley Scales of Infant & Toddler Development-III at 18-22 months corrected age were our outcomes of interest. Multiple linear regression models were created to assess diffusion metrics of the inferior longitudinal and uncinate fasciculi as predictors of Bayley scores. We controlled for brain injury score on structural MRI, maternal education, birth weight, and age at MRI scan. RESULTS Of the 43 infants, 36 infants had high-quality diffusion tensor imaging and returned for developmental testing. The fractional anisotropy of the inferior longitudinal fasciculus was associated with Bayley-III scores in univariate analyses and was an independent predictor of Bayley-III cognitive and language development over and above known predictors in multivariable analyses. CONCLUSIONS Incorporating new biomarkers such as the fractional anisotropy of the inferior longitudinal fasciculus with structural MRI findings could enhance accuracy of neurodevelopment predictive models. Additional research is needed to validate our findings in a larger cohort.
Collapse
Affiliation(s)
- Matthew C. Bugada
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Julia E. Kline
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Nehal A. Parikh
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Department of Pediatrics, University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
7
|
Roze E, Reijneveld SA, Stewart RE, Bos AF. Multi-domain cognitive impairments at school age in very preterm-born children compared to term-born peers. BMC Pediatr 2021; 21:169. [PMID: 33849468 PMCID: PMC8042721 DOI: 10.1186/s12887-021-02641-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/30/2021] [Indexed: 11/23/2022] Open
Abstract
Background Preterm infants are at risk for functional impairments in motor, cognitive, and behavioral development that may persist into childhood. The aim of this study was to determine the co-occurrence of cognitive impairments in multiple cognitive domains at school age in very preterm born children compared to term-born children. Methods Comparative study including 60 very preterm-born children (gestational age ≤ 32 weeks) and 120 term-born controls. At school age, we assessed intelligence with the WISC-III, and visuomotor integration with the NEPSY-II, verbal memory with the AVLT, attention with the TEA-ch, and executive functioning with the BRIEF. We investigated co-occurrence of various abnormal (<5th percentile) and suspect-abnormal (<15th percentile, including both suspect and abnormal) cognitive functions. Results At mean age 8.8 years, 15% of preterm children had abnormal outcomes in multiple cognitive functions (≥2), versus 3% of the controls (odds ratio, OR 4.65, 95%-confidence interval, CI 1.33–16.35). For multiple suspect-abnormal cognitive outcomes, rates were 55% versus 25% (OR 3.02, 95%-CI 1.49–6.12). We found no pattern of co-occurrence of cognitive impairments among preterm children that deviated from term-born controls. However, low performance IQ was more frequently accompanied by additional cognitive impairments in preterms than in controls (OR 5.43, 95%-CI 1.75–16.81). Conclusions A majority of preterm children showed co-occurrence of impairments in multiple cognitive domains, but with no specific pattern of impairments. The occurrence of multi-domain cognitive impairments is higher in preterms but this seems to reflect a general increase, not one with a pattern specific for preterm-born children. Supplementary Information The online version contains supplementary material available at 10.1186/s12887-021-02641-z.
Collapse
Affiliation(s)
- Elise Roze
- Division of Neonatology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, Netherlands. .,Divison of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands.
| | - Sijmen A Reijneveld
- Department of Health Sciences, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Roy E Stewart
- Department of Health Sciences, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Arend F Bos
- Division of Neonatology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
8
|
Lammertink F, Vinkers CH, Tataranno ML, Benders MJNL. Premature Birth and Developmental Programming: Mechanisms of Resilience and Vulnerability. Front Psychiatry 2021; 11:531571. [PMID: 33488409 PMCID: PMC7820177 DOI: 10.3389/fpsyt.2020.531571] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022] Open
Abstract
The third trimester of pregnancy represents a sensitive phase for infant brain plasticity when a series of fast-developing cellular events (synaptogenesis, neuronal migration, and myelination) regulates the development of neural circuits. Throughout this dynamic period of growth and development, the human brain is susceptible to stress. Preterm infants are born with an immature brain and are, while admitted to the neonatal intensive care unit, precociously exposed to stressful procedures. Postnatal stress may contribute to altered programming of the brain, including key systems such as the hypothalamic-pituitary-adrenal axis and the autonomic nervous system. These neurobiological systems are promising markers for the etiology of several affective and social psychopathologies. As preterm birth interferes with early development of stress-regulatory systems, early interventions might strengthen resilience factors and might help reduce the detrimental effects of chronic stress exposure. Here we will review the impact of stress following premature birth on the programming of neurobiological systems and discuss possible stress-related neural circuits and pathways involved in resilience and vulnerability. Finally, we discuss opportunities for early intervention and future studies.
Collapse
Affiliation(s)
- Femke Lammertink
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Christiaan H. Vinkers
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Maria L. Tataranno
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Manon J. N. L. Benders
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
9
|
Kallankari H, Saunavaara V, Parkkola R, Haataja L, Hallman M, Kaukola T. Diffusion tensor imaging in frontostriatal tracts is associated with executive functioning in very preterm children at 9 years of age. Pediatr Radiol 2021; 51:112-118. [PMID: 32870358 PMCID: PMC7796865 DOI: 10.1007/s00247-020-04802-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/27/2020] [Accepted: 08/05/2020] [Indexed: 01/26/2023]
Abstract
BACKGROUND Very preterm birth can disturb brain maturation and subject these high-risk children to neurocognitive difficulties later. OBJECTIVE The aim of the study was to evaluate the impact of prematurity on microstructure of frontostriatal tracts in children with no severe neurologic impairment, and to study whether the diffusion tensor imaging metrics of frontostriatal tracts correlate to executive functioning. MATERIALS AND METHODS The prospective cohort study comprised 54 very preterm children (mean gestational age 28.8 weeks) and 20 age- and gender-matched term children. None of the children had severe neurologic impairment. The children underwent diffusion tensor imaging and neuropsychological assessments at a mean age of 9 years. We measured quantitative diffusion tensor imaging metrics of frontostriatal tracts using probabilistic tractography. We also administered five subtests from the Developmental Neuropsychological Assessment, Second Edition, to evaluate executive functioning. RESULTS Very preterm children had significantly higher fractional anisotropy and axial diffusivity values (P<0.05, corrected for multiple comparison) in dorsolateral prefrontal caudate and ventrolateral prefrontal caudate tracts as compared to term-born children. We found negative correlations between the diffusion tensor imaging metrics of frontostriatal tracts and inhibition functions (P<0.05, corrected for multiple comparison) in very preterm children. CONCLUSION Prematurity has a long-term effect on frontostriatal white matter microstructure that might contribute to difficulties in executive functioning.
Collapse
Affiliation(s)
- Hanna Kallankari
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland. .,Department of Child Neurology, Oulu University Hospital, P.O. Box 23, FIN-90029 OYS, Oulu, Finland.
| | - Virva Saunavaara
- PET Center, Turku University Hospital, Turku, Finland ,Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Riitta Parkkola
- Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Leena Haataja
- Department of Child Neurology, Children and Adolescents, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mikko Hallman
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Tuula Kaukola
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland ,Department of Neonatology, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
10
|
Cardenas-Iniguez C, Moore TM, Kaczkurkin AN, Meyer FAC, Satterthwaite TD, Fair DA, White T, Blok E, Applegate B, Thompson LM, Rosenberg MD, Hedeker D, Berman MG, Lahey BB. Direct and Indirect Associations of Widespread Individual Differences in Brain White Matter Microstructure With Executive Functioning and General and Specific Dimensions of Psychopathology in Children. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 7:362-375. [PMID: 33518499 DOI: 10.1016/j.bpsc.2020.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Executive functions (EFs) are important partly because they are associated with risk for psychopathology and substance use problems. Because EFs have been linked to white matter microstructure, we tested the prediction that fractional anisotropy (FA) and mean diffusivity (MD) in white matter tracts are associated with EFs and dimensions of psychopathology in children younger than the age of widespread psychoactive substance use. METHODS Parent symptom ratings, EF test scores, and diffusion tensor parameters from 8588 9- to 10-year-olds in the ABCD Study (Adolescent Brain Cognitive Development Study) were used. RESULTS A latent factor derived from EF test scores was significantly associated with specific conduct problems and attention-deficit/hyperactivity disorder problems, with dimensions defined in a bifactor model. Furthermore, EFs were associated with FA and MD in 16 of 17 bilateral white matter tracts (range: β = .05; SE = .17; through β = -.31; SE = .06). Neither FA nor MD was directly associated with psychopathology, but there were significant indirect associations via EFs of both FA (range: β = .01; SE = .01; through β = -.09; SE = .02) and MD (range: β = .01; SE = .01; through β = .09; SE = .02) with both specific conduct problems and attention-deficit/hyperactivity disorder in all tracts except the forceps minor. CONCLUSIONS EFs in children are inversely associated with diffusion tensor imaging measures in nearly all tracts throughout the brain. Furthermore, variance in diffusion tensor measures that is shared with EFs is indirectly shared with attention-deficit/hyperactivity disorder and conduct problems.
Collapse
Affiliation(s)
- Carlos Cardenas-Iniguez
- Department of Psychology, Division of the Social Sciences, University of Chicago, Chicago, Illinois
| | - Tyler M Moore
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Antonia N Kaczkurkin
- Department of Psychological Sciences, Vanderbilt University, Nashville, Tennessee
| | - Francisco A C Meyer
- Department of Psychological Sciences, Vanderbilt University, Nashville, Tennessee
| | - Theodore D Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Damien A Fair
- Department of Behavioral Neuroscience, School of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Tonya White
- Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Elisabet Blok
- Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Brooks Applegate
- Department of Educational Leadership, Research and Technology, College of Education and Human Development, Western Michigan University, Kalamazoo, Michigan
| | - Lauren M Thompson
- Department of Public Health Sciences, Division of the Biological Sciences, University of Chicago, Chicago, Illinois
| | - Monica D Rosenberg
- Department of Psychology, Division of the Social Sciences, University of Chicago, Chicago, Illinois
| | - Donald Hedeker
- Department of Public Health Sciences, Division of the Biological Sciences, University of Chicago, Chicago, Illinois
| | - Marc G Berman
- Department of Psychology, Division of the Social Sciences, University of Chicago, Chicago, Illinois
| | - Benjamin B Lahey
- Department of Public Health Sciences, Division of the Biological Sciences, University of Chicago, Chicago, Illinois.
| |
Collapse
|
11
|
Schnider B, Disselhoff V, Held U, Latal B, Hagmann CF, Wehrle FM. Executive function deficits mediate the association between very preterm birth and behavioral problems at school-age. Early Hum Dev 2020; 146:105076. [PMID: 32470766 DOI: 10.1016/j.earlhumdev.2020.105076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/11/2020] [Accepted: 05/15/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND & AIMS Children and adolescents born very preterm are at increased risk to develop executive function deficits and to suffer from social, emotional and attentional problems. This study investigated whether executive function deficits contribute to behavioral problems in children and adolescents born very preterm at school-age. STUDY DESIGN Thirty-eight children and adolescents born very preterm and 41 age-matched term-born peers were assessed at a mean age of 12.9 (±1.8) years with a comprehensive battery of executive function tests, including working memory, planning, cognitive flexibility, and verbal fluency. A composite score was calculated to reflect overall executive function abilities. To assess behavioral problems, parents completed the Strengths and Difficulties Questionnaire (SDQ). Mediation analysis was applied to quantify the effect of preterm birth on behavioral problems with executive function abilities as a mediating variable. RESULTS Executive function abilities were poorer in the very preterm compared to the term-born group (d = 0.62, p = .005) and the parents of very preterm children reported more behavioral problems on the SDQ Total Difficulties Score (d = 0.54, p = .01). The effect of birth status on behavioral problems was significantly mediated by executive function abilities while adjusting for age at assessment, sex, and socioeconomic status (F(2, 76) = 6.42, p = .002, R2 = 0.14). CONCLUSION Results from this study suggest that the increase in behavioral symptoms in very preterm children at school-age compared to term-born peers may partly be explained by their executive function deficits. These findings highlight the importance of continuously monitoring the development of children born very preterm to provide optimal care as they grow up.
Collapse
Affiliation(s)
- Barbara Schnider
- University Children's Hospital Zurich, Department of Neonatology and Pediatric Intensive Care, Zurich, Switzerland; University Children's Hospital Zurich, Children's Research Center, Zurich, Switzerland
| | - Vera Disselhoff
- University Children's Hospital Zurich, Department of Neonatology and Pediatric Intensive Care, Zurich, Switzerland; University Children's Hospital Zurich, Children's Research Center, Zurich, Switzerland
| | - Ulrike Held
- University of Zurich, Epidemiology, Biostatistics and Prevention Institute, Zurich, Switzerland
| | - Beatrice Latal
- University Children's Hospital Zurich, Children's Research Center, Zurich, Switzerland; Child Development Center, University Children's Hospital Zurich, Switzerland
| | - Cornelia F Hagmann
- University Children's Hospital Zurich, Department of Neonatology and Pediatric Intensive Care, Zurich, Switzerland; University Children's Hospital Zurich, Children's Research Center, Zurich, Switzerland
| | - Flavia M Wehrle
- University Children's Hospital Zurich, Department of Neonatology and Pediatric Intensive Care, Zurich, Switzerland; University Children's Hospital Zurich, Children's Research Center, Zurich, Switzerland; Child Development Center, University Children's Hospital Zurich, Switzerland.
| |
Collapse
|
12
|
Altered brain metabolism contributes to executive function deficits in school-aged children born very preterm. Pediatr Res 2020; 88:739-748. [PMID: 32590836 PMCID: PMC7577839 DOI: 10.1038/s41390-020-1024-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Executive function deficits in children born very preterm (VPT) have been linked to anatomical abnormalities in white matter and subcortical brain structures. This study aimed to investigate how altered brain metabolism contributes to these deficits in VPT children at school-age. METHODS Fifty-four VPT participants aged 8-13 years and 62 term-born peers were assessed with an executive function test battery. Brain metabolites were obtained in the frontal white matter and the basal ganglia/thalami, using proton magnetic resonance spectroscopy (MRS). N-acetylaspartate (NAA)/creatine (Cr), choline (Cho)/Cr, glutamate + glutamine (Glx)/Cr, and myo-Inositol (mI)/Cr were compared between groups and associations with executive functions were explored using linear regression. RESULTS In the frontal white matter, VPT showed lower Glx/Cr (mean difference: -5.91%, 95% CI [-10.50, -1.32]), higher Cho/Cr (7.39%, 95%-CI [2.68, 12.10]), and higher mI/Cr (5.41%, 95%-CI [0.18, 10.64]) while there were no differences in the basal ganglia/thalami. Lower executive functions were associated with lower frontal Glx/Cr ratios in both groups (β = 0.16, p = 0.05) and higher mI/Cr ratios in the VPT group only (interaction: β = -0.17, p = 0.02). CONCLUSION Long-term brain metabolite alterations in the frontal white matter may be related to executive function deficits in VPT children at school-age. IMPACT Very preterm birth is associated with long-term brain metabolite alterations in the frontal white matter. Such alterations may contribute to deficits in executive function abilities. Injury processes in the brain can persist for years after the initial insult. Our findings provide new insights beyond structural and functional imaging, which help to elucidate the processes involved in abnormal brain development following preterm birth. Ultimately, this may lead to earlier identification of children at risk for developing deficits and more effective interventions.
Collapse
|
13
|
Tokariev M, Vuontela V, Lönnberg P, Lano A, Perkola J, Wolford E, Andersson S, Metsäranta M, Carlson S. Altered working memory-related brain responses and white matter microstructure in extremely preterm-born children at school age. Brain Cogn 2019; 136:103615. [PMID: 31563082 DOI: 10.1016/j.bandc.2019.103615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 11/28/2022]
Abstract
Preterm birth poses a risk for neurocognitive and behavioral development. Preterm children, who have not been diagnosed with neurological or cognitive deficits, enter normal schools and are expected to succeed as their term-born peers. Here we tested the hypotheses that despite an uneventful development after preterm birth, these children might exhibit subtle abnormalities in brain function and white-matter microstructure at school-age. We recruited 7.5-year-old children born extremely prematurely (<28 weeks' gestation), and age- and gender-matched term-born controls (≥37 weeks' gestation). We applied fMRI during working-memory (WM) tasks, and investigated white-matter microstructure with diffusion tensor imaging. Compared with controls, preterm-born children performed WM tasks less accurately, had reduced activation in several right prefrontal areas, and weaker deactivation of right temporal lobe areas. The weaker prefrontal activation correlated with poorer WM performance. Preterm-born children had higher fractional anisotropy (FA) and lower diffusivity than controls in several white-matter areas, and in the posterior cerebellum, the higher FA associated with poorer visuospatial test scores. In controls, higher FA and lower diffusivity correlated with faster WM performance. Together these findings demonstrate weaker WM-related brain activations and altered white matter microstructure in children born extremely preterm, who had normal global cognitive ability.
Collapse
Affiliation(s)
- Maksym Tokariev
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Virve Vuontela
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Piia Lönnberg
- Department of Child Neurology, Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Aulikki Lano
- Department of Child Neurology, Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jaana Perkola
- Department of Clinical Neurophysiology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Elina Wolford
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Sture Andersson
- Department of Pediatrics, Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Marjo Metsäranta
- Department of Pediatrics, Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Synnöve Carlson
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Advanced Magnetic Imaging Centre, Aalto University School of Science, Espoo, Finland.
| |
Collapse
|
14
|
Reduced white matter fractional anisotropy mediates cortical thickening in adults born preterm with very low birthweight. Neuroimage 2019; 188:217-227. [DOI: 10.1016/j.neuroimage.2018.11.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/14/2018] [Accepted: 11/27/2018] [Indexed: 12/14/2022] Open
|
15
|
Loe IM, Adams JN, Feldman HM. Executive Function in Relation to White Matter in Preterm and Full Term Children. Front Pediatr 2019; 6:418. [PMID: 30697535 PMCID: PMC6341022 DOI: 10.3389/fped.2018.00418] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/18/2018] [Indexed: 11/13/2022] Open
Abstract
Background: Executive function (EF) refers to cognitive abilities used to guide goal-directed behavior. Diffusion Tensor Imaging (DTI) provides quantitative characterization of white matter tracts in the brain. Children with preterm birth often have EF impairments and white matter injury. Aim: To examine the degree of association between EF scores and white matter fractional anisotropy (FA) as measured by DTI in children born preterm and term Study design: Cross-sectional study Subjects: Participants, 9-16 years of age, born preterm (n = 25; mean gestational age 28.6 weeks; mean birth weight 1,191 grams), and full term (n = 20) Outcome measures: White matter FA analyzed with Tract-Based Spatial Statistics, a technique that generates a skeleton representing the core of white matter tracts throughout the brain. Behavioral scores from EF tasks examining working memory, spatial memory capacity, and multiple skills from the Stockings of Cambridge. Results: The groups performed comparably on all tasks. In both groups, unfavorable working memory strategy scores were associated with lower FA. Other measures of EF were not associated with whole skeleton FA in either group in either direction. Conclusions: Strategy score on a spatial working memory task was associated with FA in preterm and full term children, suggesting common underlying neurobiology in both groups. Associations were found in frontal-parietal connections and other major tracts. Lack of associations between other EF tasks and FA may be due to variation in how children accomplish these EF tasks. Future research is required to fully understand the neurobiology of EF in children born preterm.
Collapse
Affiliation(s)
- Irene M. Loe
- Department of Pediatrics, Stanford University, Stanford, CA, United States
| | - Jenna N. Adams
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Heidi M. Feldman
- Department of Pediatrics, Stanford University, Stanford, CA, United States
| |
Collapse
|
16
|
Olsen A, Dennis EL, Evensen KAI, Husby Hollund IM, Løhaugen GCC, Thompson PM, Brubakk AM, Eikenes L, Håberg AK. Preterm birth leads to hyper-reactive cognitive control processing and poor white matter organization in adulthood. Neuroimage 2017; 167:419-428. [PMID: 29191480 PMCID: PMC6625518 DOI: 10.1016/j.neuroimage.2017.11.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 11/08/2017] [Accepted: 11/22/2017] [Indexed: 11/30/2022] Open
Abstract
Individuals born preterm with very low birth weight (VLBW; birth weight ≤ 1500 g) are at high risk for perinatal brain injuries and deviant brain development, leading to increased chances of later cognitive, emotional, and behavioral problems. Here we investigated the neuronal underpinnings of both reactive and proactive cognitive control processes in adults with VLBW. We included 32 adults born preterm with VLBW (before 37th week of gestation) and 32 term-born controls (birth weight ≥10th percentile for gestational age) between 22 and 24 years of age that have been followed prospectively since birth. Participants performed a well-validated Not-X continuous performance test (CPT) adapted for use in a mixed block- and event-related fMRI protocol. BOLD fMRI and DTI data was acquired on a 3T scanner. Performance on the Not-X CPT was highly similar between groups. However, the VLBW group demonstrated hyper-reactive cognitive control processing and disrupted white matter organization. The hyper-reactive brain activation signature in VLBW adults was associated with lower gestational age, lower fluid intelligence score, and anxiety problems. Automated Multi-Atlas Tract Extraction (AutoMATE) analyses revealed that this disruption of normal brain function was accompanied by poorer white matter organization in the anterior thalamic radiation and the cingulum, as reflected in both reduced fractional anisotropy and increased mean diffusivity. These findings show that the preterm behavioral phenotype is associated with predominantly reactive-, rather than proactive cognitive control processing, as well as white matter abnormalities, that may underlie common difficulties that many preterm born individuals experience in everyday life.
Collapse
Affiliation(s)
- Alexander Olsen
- Department of Psychology, NTNU, Norwegian University of Science and Technology, Trondheim, Norway; Department of Physical Medicine and Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway; Department of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Emily L Dennis
- Imaging Genetics Center, Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Kari Anne I Evensen
- Department of Laboratory Medicine, Children's and Women's Health, NTNU, Norwegian University of Science and Technology, Trondheim, Norway; Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway; Department of Physiotherapy, Trondheim Municipality, Trondheim, Norway
| | - Ingrid Marie Husby Hollund
- Department of Laboratory Medicine, Children's and Women's Health, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Paul M Thompson
- Imaging Genetics Center, Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Ann-Mari Brubakk
- Department of Laboratory Medicine, Children's and Women's Health, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Live Eikenes
- Department of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Asta K Håberg
- Department of Neuromedicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway; Department of Medical Imaging, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
17
|
Clark DB, Chung T, Martin CS, Hasler BP, Fitzgerald DH, Luna B, Brown SA, Tapert SF, Brumback T, Cummins K, Pfefferbaum A, Sullivan EV, Pohl KM, Colrain IM, Baker FC, De Bellis MD, Nooner KB, Nagel BJ. Adolescent Executive Dysfunction in Daily Life: Relationships to Risks, Brain Structure and Substance Use. Front Behav Neurosci 2017; 11:223. [PMID: 29180956 PMCID: PMC5694208 DOI: 10.3389/fnbeh.2017.00223] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 10/24/2017] [Indexed: 01/13/2023] Open
Abstract
During adolescence, problems reflecting cognitive, behavioral and affective dysregulation, such as inattention and emotional dyscontrol, have been observed to be associated with substance use disorder (SUD) risks and outcomes. Prior studies have typically been with small samples, and have typically not included comprehensive measurement of executive dysfunction domains. The relationships of executive dysfunction in daily life with performance based testing of cognitive skills and structural brain characteristics, thought to be the basis for executive functioning, have not been definitively determined. The aims of this study were to determine the relationships between executive dysfunction in daily life, measured by the Behavior Rating Inventory of Executive Function (BRIEF), cognitive skills and structural brain characteristics, and SUD risks, including a global SUD risk indicator, sleep quality, and risky alcohol and cannabis use. In addition to bivariate relationships, multivariate models were tested. The subjects (n = 817; ages 12 through 21) were participants in the National Consortium on Alcohol and Neurodevelopment in Adolescence (NCANDA) study. The results indicated that executive dysfunction was significantly related to SUD risks, poor sleep quality, risky alcohol use and cannabis use, and was not significantly related to cognitive skills or structural brain characteristics. In multivariate models, the relationship between poor sleep quality and risky substance use was mediated by executive dysfunction. While these cross-sectional relationships need to be further examined in longitudinal analyses, the results suggest that poor sleep quality and executive dysfunction may be viable preventive intervention targets to reduce adolescent substance use.
Collapse
Affiliation(s)
- Duncan B Clark
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Tammy Chung
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Christopher S Martin
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Brant P Hasler
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Douglas H Fitzgerald
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sandra A Brown
- Department of Psychology and Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Susan F Tapert
- Department of Psychology and Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Ty Brumback
- Department of Psychology and Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Kevin Cummins
- Department of Psychology and Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Adolf Pfefferbaum
- Center for Health Sciences, SRI International, Menlo Park, CA, United States.,Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Palo Alto, CA, United States
| | - Edith V Sullivan
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Palo Alto, CA, United States
| | - Kilian M Pohl
- Center for Health Sciences, SRI International, Menlo Park, CA, United States
| | - Ian M Colrain
- Center for Health Sciences, SRI International, Menlo Park, CA, United States
| | - Fiona C Baker
- Center for Health Sciences, SRI International, Menlo Park, CA, United States
| | | | - Kate B Nooner
- Department of Psychology, University of North Carolina Wilmington, Wilmington, NC, United States
| | - Bonnie J Nagel
- Department of Psychiatry, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
18
|
Skranes J. Executive function deficits in preterm subjects are a combination of social risk factors and brain maldevelopment. Acta Paediatr 2017; 106:1380-1382. [PMID: 28795500 DOI: 10.1111/apa.13955] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jon Skranes
- Department of Laboratory Medicine; Children's and Women's Health; Medical Faculty; Norwegian University of Science and Technology; Trondheim Norway
- Department of Pediatrics; Sørlandet Hospital Arendal HF; Arendal Norway
| |
Collapse
|
19
|
Vollmer B, Lundequist A, Mårtensson G, Nagy Z, Lagercrantz H, Smedler AC, Forssberg H. Correlation between white matter microstructure and executive functions suggests early developmental influence on long fibre tracts in preterm born adolescents. PLoS One 2017; 12:e0178893. [PMID: 28594884 PMCID: PMC5464584 DOI: 10.1371/journal.pone.0178893] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 05/19/2017] [Indexed: 12/04/2022] Open
Abstract
Main objectives Executive functions are frequently a weakness in children born preterm. We examined associations of executive functions and general cognitive abilities with brain structure in preterm born adolescents who were born with appropriate weight for gestational age and who have no radiological signs of preterm brain injury on neuroimaging. Methods The Stockholm Neonatal Project (SNP) is a longitudinal, population-based study of children born preterm (<36 weeks of gestation) with very low birth weight (<1501g) between 1988–1993. At age 18 years (mean 18 years, SD 2 weeks) 134 preterm born and 94 full term participants underwent psychological assessment (general intelligence, executive function measures). Of these, 71 preterm and 63 full term participants underwent Magnetic Resonance Imaging (MRI) at mean 15.2 years (range 12–18 years), including 3D T1-weighted images for volumetric analyses and Diffusion Tensor Imaging (DTI) for assessment of white matter microstructure. Group comparisons of regional grey and white matter volumes and fractional anisotropy (FA, as a measure of white matter microstructure) and, within each group, correlation analyses of cognitive measures with MRI metrics were carried out. Results Significant differences in grey and white matter regional volumes and widespread differences in FA were seen between the two groups. No significant correlations were found between cognitive measures and brain volumes in any group after correction for multiple comparisons. However, there were significant correlations between FA in projection fibres and long association fibres, linking frontal, temporal, parietal, and occipital lobes, and measures of executive function and general cognitive abilities in the preterm born adolescents, but not in the term born adolescents. Overall significance of the study In persons born preterm, in the absence of perinatal brain injury on visual inspection of MRI, widespread alterations in regional brain tissue volumes and microstructure are present in adolescence/young adulthood. Importantly, these alterations in WM tracts are correlated with measures of executive function and general cognitive abilities. Our findings suggest that disturbance of neural pathways, rather than changes in regional brain volumes, are involved in the impaired cognitive functions.
Collapse
Affiliation(s)
- Brigitte Vollmer
- Neuropaediatrics, Department of Women’s and Children’s Health, Karolinska Institutet, Astrid Lindgren Children’s Hospital, Stockholm, Sweden
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- * E-mail:
| | - Aiko Lundequist
- Neuropaediatrics, Department of Women’s and Children’s Health, Karolinska Institutet, Astrid Lindgren Children’s Hospital, Stockholm, Sweden
| | - Gustaf Mårtensson
- Neuropaediatrics, Department of Women’s and Children’s Health, Karolinska Institutet, Astrid Lindgren Children’s Hospital, Stockholm, Sweden
| | - Zoltan Nagy
- Department of Economics, University of Zürich, Zürich, Switzerland
| | - Hugo Lagercrantz
- Neonatal Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Astrid Lindgren Children’s Hospital, Stockholm, Sweden
| | | | - Hans Forssberg
- Neuropaediatrics, Department of Women’s and Children’s Health, Karolinska Institutet, Astrid Lindgren Children’s Hospital, Stockholm, Sweden
| |
Collapse
|
20
|
Wehrle FM, Latal B, O'Gorman RL, Hagmann CF, Huber R. Sleep EEG maps the functional neuroanatomy of executive processes in adolescents born very preterm. Cortex 2017; 86:11-21. [DOI: 10.1016/j.cortex.2016.10.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/03/2016] [Accepted: 10/17/2016] [Indexed: 01/26/2023]
|
21
|
Abstract
Executive function (EF) refers to the set of cognitive processes involved in the self-regulation of emotion and goal-directed behavior. These skills and the brain systems that support them develop throughout childhood and are frequently compromised in preterm children, even in those with broadly average global cognitive ability. Risks for deficits in EF in preterm children and attendant problems in learning and psychosocial functioning are higher in those with more extreme prematurity, neonatal complications, and related brain abnormalities. Associations of higher levels of EF with more supportive home and school environments suggest a potential for attenuating these risks, especially with early identification. Further research is needed to understand how deficits in EF evolve in preterm children, refine assessment methods, and develop interventions that either promote the development of EF in this population or help children to compensate for these weaknesses.
Collapse
Affiliation(s)
- H. Gerry Taylor
- Department of Pediatrics, Case Western Reserve University and Rainbow Babies & Children’s Hospital, University Hospitals Case Medical Center, Cleveland, OH, USA
| | - Caron A.C. Clark
- Department of Education, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
22
|
Ursache A, Noble KG. Socioeconomic status, white matter, and executive function in children. Brain Behav 2016; 6:e00531. [PMID: 27781144 PMCID: PMC5064342 DOI: 10.1002/brb3.531] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/31/2016] [Accepted: 06/03/2016] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND A growing body of evidence links socioeconomic status (SES) to children's brain structure. Few studies, however, have specifically investigated relations of SES to white matter structure. Further, although several studies have demonstrated that family SES is related to development of brain areas that support executive functions (EF), less is known about the role that white matter structure plays in the relation of SES to EF. One possibility is that white matter differences may partially explain SES disparities in EF (i.e., a mediating relationship). Alternatively, SES may differentially shape brain-behavior relations such that the relation of white matter structure to EF may differ as a function of SES (i.e., a moderating relationship). METHOD In a diverse sample of 1082 children and adolescents aged 3-21 years, we examined socioeconomic disparities in white matter macrostructure and microstructure. We further investigated relations between family SES, children's white matter volume and integrity in tracts supporting EF, and performance on EF tasks. RESULTS Socioeconomic status was associated with fractional anisotropy (FA) and volume in multiple white matter tracts. Additionally, family income moderated the relation between white matter structure and cognitive flexibility. Specifically, across multiple tracts of interest, lower FA or lower volume was associated with reduced cognitive flexibility among children from lower income families. In contrast, children from higher income families showed preserved cognitive flexibility in the face of low white matter FA or volume. SES factors did not mediate or moderate links between white matter and either working memory or inhibitory control. CONCLUSIONS This work adds to a growing body of literature suggesting that the socioeconomic contexts in which children develop not only shape cognitive functioning and its underlying neurobiology, but may also shape the relations between brain and behavior.
Collapse
|
23
|
BOLD fMRI and DTI in strabismic amblyopes following occlusion therapy. Int Ophthalmol 2015; 36:557-68. [PMID: 26659010 DOI: 10.1007/s10792-015-0159-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 11/25/2015] [Indexed: 10/22/2022]
Abstract
Evaluation of brain cluster activation using the functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) was sought in strabismic amblyopes. In this hospital-based case-control cross-sectional study, fMRI and DTI were conducted in strabismic amblyopes before initiation of any therapy and after visual recovery following the administration of occlusion therapy. FMRI was performed in 10 strabismic amblyopic subjects (baseline group) and in 5 left strabismic amblyopic children post-occlusion therapy after two-line visual improvement. Ten age-matched healthy children with right ocular dominance formed control group. Structural and functional MRI was carried out on 1.5T MR scanner. The visual task consisted of 8 Hz flickering checkerboard with red dot and occasional green dot. Blood-oxygen-level-dependent (BOLD) fMRI was analyzed using statistical parametric mapping and DTI on NordicIce (NordicNeuroLab) softwares. Reduced occipital activation was elicited when viewing with the amblyopic eye in amblyopes. An 'ipsilateral to viewing eye' pattern of calcarine BOLD activation was observed in controls and left amblyopes. Activation of cortical areas associated with visual processing differed in relation to the viewing eye. Following visual recovery on occlusion therapy, enhanced activity in bilateral hemispheres in striate as well as extrastriate regions when viewing with either eye was seen. Improvement in visual acuity following occlusion therapy correlates with hemodynamic activity in amblyopes.
Collapse
|
24
|
Travis KE, Adams JN, Ben-Shachar M, Feldman HM. Decreased and Increased Anisotropy along Major Cerebral White Matter Tracts in Preterm Children and Adolescents. PLoS One 2015; 10:e0142860. [PMID: 26560745 PMCID: PMC4641645 DOI: 10.1371/journal.pone.0142860] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/26/2015] [Indexed: 12/15/2022] Open
Abstract
Premature birth is highly prevalent and associated with neurodevelopmental delays and disorders. Adverse outcomes, particularly in children born before 32 weeks of gestation, have been attributed in large part to white matter injuries, often found in periventricular regions using conventional imaging. To date, tractography studies of white matter pathways in children and adolescents born preterm have evaluated only a limited number of tracts simultaneously. The current study compares diffusion properties along 18 major cerebral white matter pathways in children and adolescents born preterm (n = 27) and full term (n = 19), using diffusion magnetic resonance imaging and tractography. We found that compared to the full term group, the preterm group had significantly decreased FA in segments of the bilateral uncinate fasciculus and anterior segments of the right inferior fronto-occipital fasciculus. Additionally, the preterm group had significantly increased FA in segments of the right and left anterior thalamic radiations, posterior segments of the right inferior fronto-occipital fasciculus, and the right and left inferior longitudinal fasciculus. Increased FA in the preterm group was generally associated with decreased radial diffusivity. These findings indicate that prematurity-related white matter differences in later childhood and adolescence do not affect all tracts in the periventricular zone and can involve both decreased and increased FA. Differences in the patterns of radial diffusivity and axial diffusivity suggest that the tissue properties underlying group FA differences may vary within and across white matter tracts. Distinctive diffusion properties may relate to variations in the timing of injury in the neonatal period, extent of white matter dysmaturity and/or compensatory processes in childhood.
Collapse
Affiliation(s)
- Katherine E. Travis
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, 94303, United States of America
| | - Jenna N. Adams
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, 94303, United States of America
| | - Michal Ben-Shachar
- The Gonda Brain Research Center, Bar Ilan University, Ramat Gan, 5290002, Israel
- Department of English Literature and Linguistics, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Heidi M. Feldman
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, 94303, United States of America
| |
Collapse
|
25
|
Murray AL, Thompson DK, Pascoe L, Leemans A, Inder TE, Doyle LW, Anderson JFI, Anderson PJ. White matter abnormalities and impaired attention abilities in children born very preterm. Neuroimage 2015; 124:75-84. [PMID: 26318524 DOI: 10.1016/j.neuroimage.2015.08.044] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/16/2015] [Accepted: 08/20/2015] [Indexed: 12/23/2022] Open
Abstract
While attention impairments are commonly observed in very preterm (<32weeks' gestational age) children, neuroanatomical correlates of these difficulties are unclear. We aimed to determine whether the microstructural organization of key white matter tracts thought to be involved in attention (cingulum bundle, superior longitudinal fasciculi, reticular activating system, and corpus callosum) were altered in very preterm children compared with term-born controls. We also aimed to determine whether alterations in microstructural organization of these tracts were associated with attention functioning in very preterm children. One hundred and forty-nine very preterm children and 36 term-born controls underwent neuroimaging and assessment of their attention abilities at 7years. Constrained spherical deconvolution and probabilistic tractography was used to identify the key white matter tracts. Altered microstructural organization and reduced tract volume within reticular activating system and corpus callosum were found in the very preterm group compared with the control group. Diffusion and volume changes in the cingulum bundle, superior longitudinal fasciculi, reticular activating system, and corpus callosum were related to variations in attention functioning in the very preterm children. These findings emphasize that white matter tract integrity is associated with later attentional abilities in very preterm children.
Collapse
Affiliation(s)
- Andrea L Murray
- Victorian Infant Brain Studies, Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Australia; Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Australia
| | - Deanne K Thompson
- Victorian Infant Brain Studies, Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Australia; The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Royal Children's Hospital, Melbourne, Australia
| | - Leona Pascoe
- Victorian Infant Brain Studies, Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Australia
| | - Alexander Leemans
- Image Sciences Institute, University Medical Center, Utrecht, The Netherlands
| | - Terrie E Inder
- Victorian Infant Brain Studies, Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Australia; Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lex W Doyle
- Victorian Infant Brain Studies, Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Australia; Research Office, The Royal Women's Hospital, Grattan Street, Melbourne, Australia; Department of Obstetrics & Gynaecology, The University of Melbourne, Royal Women's Hospital, Melbourne, Australia
| | - Jacqueline F I Anderson
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Australia; Department of Psychology, The Alfred, Alfred Health, Melbourne, Australia
| | - Peter J Anderson
- Victorian Infant Brain Studies, Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Royal Children's Hospital, Melbourne, Australia.
| |
Collapse
|
26
|
Alterations of resting state networks and structural connectivity in relation to the prefrontal and anterior cingulate cortices in late prematurity. Neuroreport 2015; 26:22-6. [PMID: 25426826 DOI: 10.1097/wnr.0000000000000296] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Late preterm birth is increasingly recognized as a risk factor for cognitive and social deficits. The prefrontal cortex is particularly vulnerable to injury in late prematurity because of its protracted development and extensive cortical connections. Our study examined children born late preterm without access to advanced postnatal care to assess structural and functional connectivity related to the prefrontal cortex. Thirty-eight preadolescents [19 born late preterm (34-36 /7 weeks gestational age) and 19 at term] were recruited from a developing community in Brazil. Participants underwent neuropsychological testing. Individuals underwent three-dimensional T1-weighted, diffusion-weighted, and resting state functional MRI. Probabilistic tractography and functional connectivity analyses were carried out using unilateral seeds combining the medial prefrontal cortex and the anterior cingulate cortex. Late preterm children showed increased functional connectivity within regions of the default mode, salience, and central-executive networks from both right and left frontal cortex seeds. Decreased functional connectivity was observed within the right parahippocampal region from left frontal seeding. Probabilistic tractography showed a pattern of decreased streamlines in frontal white matter pathways and the corpus callosum, but also increased streamlines in the left orbitofrontal white matter and the right frontal white matter when seeded from the right. Late preterm children and term control children scored similarly on neuropsychological testing. Prefrontal cortical connectivity is altered in late prematurity, with hyperconnectivity observed in key resting state networks in the absence of neuropsychological deficits. Abnormal structural connectivity indicated by probabilistic tractography suggests subtle changes in white matter development, implying disruption of normal maturation during the late gestational period.
Collapse
|
27
|
Braga RM, Roze E, Ball G, Merchant N, Tusor N, Arichi T, Edwards D, Rueckert D, Counsell SJ. Development of the Corticospinal and Callosal Tracts from Extremely Premature Birth up to 2 Years of Age. PLoS One 2015; 10:e0125681. [PMID: 25955638 PMCID: PMC4425672 DOI: 10.1371/journal.pone.0125681] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 03/21/2015] [Indexed: 11/18/2022] Open
Abstract
White matter tracts mature asymmetrically during development, and this development can be studied using diffusion magnetic resonance imaging. The aims of this study were i. to generate dynamic population-averaged white matter registration templates covering in detail the period from 25 weeks gestational age to term, and extending to 2 years of age based on DTI and fractional anisotropy, ii. to produce tract-specific probability maps of the corticospinal tracts, forceps major and forceps minor using probabilistic tractography, and iii. to assess the development of these tracts throughout this critical period of neurodevelopment. We found evidence for asymmetric development across the fiber bundles studied, with the corticospinal tracts showing earlier maturation (as measured by fractional anisotropy) but slower volumetric growth compared to the callosal fibers. We also found evidence for an anterior to posterior gradient in white matter microstructure development (as measured by mean diffusivity) in the callosal fibers, with the posterior forceps major developing at a faster rate than the anterior forceps minor in this age range. Finally, we report a protocol for delineating callosal and corticospinal fibers in extremely premature cohorts, and make available population-averaged registration templates and a probabilistic tract atlas which we hope will be useful for future neonatal and infant white-matter imaging studies.
Collapse
Affiliation(s)
- Rodrigo M. Braga
- The Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Hammersmith Hospital Campus, Imperial College London, London, United Kingdom
- Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Elise Roze
- Wilhelmina Children’s Hospital, University Medical Center Utrecht, University of Utrecht, the Netherlands
| | - Gareth Ball
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, SE1 7EH, United Kingdom
| | - Nazakat Merchant
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, SE1 7EH, United Kingdom
| | - Nora Tusor
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, SE1 7EH, United Kingdom
| | - Tomoki Arichi
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, SE1 7EH, United Kingdom
| | - David Edwards
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, SE1 7EH, United Kingdom
| | - Daniel Rueckert
- Department of Computing, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Serena J. Counsell
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, SE1 7EH, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
Rollins CK, Watson CG, Asaro LA, Wypij D, Vajapeyam S, Bellinger DC, DeMaso DR, Robertson RL, Newburger JW, Rivkin MJ. White matter microstructure and cognition in adolescents with congenital heart disease. J Pediatr 2014; 165:936-44.e1-2. [PMID: 25217200 PMCID: PMC4258111 DOI: 10.1016/j.jpeds.2014.07.028] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 06/19/2014] [Accepted: 07/14/2014] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To describe the relationship between altered white matter microstructure and neurodevelopment in children with dextro-transposition of the great arteries (d-TGA). STUDY DESIGN We report correlations between regional white matter microstructure as measured by fractional anisotropy (FA) and cognitive outcome in a homogeneous group of adolescents with d-TGA. Subjects with d-TGA (n = 49) and controls (n = 29) underwent diffusion tensor imaging and neurocognitive testing. In the group with d-TGA, we correlated neurocognitive scores with FA in 14 composite regions of interest in which subjects with d-TGA had lower FA than controls. RESULTS Among the patients with d-TGA, mathematics achievement correlated with left parietal FA (r = 0.39; P = .006), inattention/hyperactivity symptoms correlated with right precentral FA (r = -0.39; P = .006) and left parietal FA (r = -0.30; P = .04), executive function correlated with right precentral FA (r = -0.30; P = .04), and visual-spatial skills correlated with right frontal FA (r = 0.30; P = .04). We also found an unanticipated correlation between memory and right posterior limb of the internal capsule FA (r = 0.29; P = .047). CONCLUSION Within the group with d-TGA, regions of reduced white matter microstructure are associated with cognitive performance in a pattern similar to that seen in healthy adolescents and adults. Diminished white matter microstructure may contribute to cognitive compromise in adolescents who underwent open-heart surgery in infancy.
Collapse
|
29
|
Memory function and hippocampal volumes in preterm born very-low-birth-weight (VLBW) young adults. Neuroimage 2014; 105:76-83. [PMID: 25451477 DOI: 10.1016/j.neuroimage.2014.10.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 10/05/2014] [Accepted: 10/08/2014] [Indexed: 11/19/2022] Open
Abstract
The hippocampi are regarded as core structures for learning and memory functions, which is important for daily functioning and educational achievements. Previous studies have linked reduction in hippocampal volume to working memory problems in very low birth weight (VLBW; ≤ 1500 g) children and reduced general cognitive ability in VLBW adolescents. However, the relationship between memory function and hippocampal volume has not been described in VLBW subjects reaching adulthood. The aim of the study was to investigate memory function and hippocampal volume in VLBW young adults, both in relation to perinatal risk factors and compared to term born controls, and to look for structure-function relationships. Using Wechsler Memory Scale-III and MRI, we included 42 non-disabled VLBW and 61 control individuals at age 19-20 years, and related our findings to perinatal risk factors in the VLBW-group. The VLBW young adults achieved lower scores on several subtests of the Wechsler Memory Scale-III, resulting in lower results in the immediate memory indices (visual and auditory), the working memory index, and in the visual delayed and general memory delayed indices, but not in the auditory delayed and auditory recognition delayed indices. The VLBW group had smaller absolute and relative hippocampal volumes than the controls. In the VLBW group inferior memory function, especially for the working memory index, was related to smaller hippocampal volume, and both correlated with lower birth weight and more days in the neonatal intensive care unit (NICU). Our results may indicate a structural-functional relationship in the VLBW group due to aberrant hippocampal development and functioning after preterm birth.
Collapse
|
30
|
Normal birth weight variation and children's neuropsychological functioning: links between language, executive functioning, and theory of mind. J Int Neuropsychol Soc 2014; 20:909-19. [PMID: 25171131 DOI: 10.1017/s1355617714000745] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The effect of low birth weight on children's development has been documented for a range of neurocognitive outcomes. However, few previous studies have examined the effect of birth weight variability within the normal range on children's neuropsychological development. The current study examined birth weight variation amongst children weighing ≥2500 g in relation to their language, executive functioning (EF), and theory of mind (ToM), and specified a developmental pathway in which birth weight was hypothesized to be associated with children's EF and ToM through their intermediary language skills. The current study used a prospective community birth cohort of 468 children. Families were recruited when children were newborns and followed up every 18 months until children were age 4.5. Language was assessed at age 3 using a standardized measure of receptive vocabulary (PPVT), and EF and ToM were measured at age 4.5 using previously validated and developmentally appropriate tasks. After controlling for potential confounding variables (family income, parent education, gestational age), birth weight within the normal range was associated with language ability at age 3 (β=.17; p=.012); and the effect of birth weight on both EF (z=2.09; p=.03) and ToM (z=2.07; p=.03) at age 4.5 operated indirectly through their language ability at age 3. Our findings indicate that the effects of birth weight on child neurocognition extend into the normal range of birth weight, and specific developmental mechanisms may link these skills over time.
Collapse
|
31
|
Brain volumes and cognitive function in very-low-birth-weight (VLBW) young adults. Eur J Paediatr Neurol 2014; 18:578-90. [PMID: 24775377 DOI: 10.1016/j.ejpn.2014.04.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 02/12/2014] [Accepted: 04/04/2014] [Indexed: 11/23/2022]
Abstract
BACKGROUND Preterm born very-low-birth-weight (VLBW: birth weight ≤1500 g) survivors have increased risk of perinatal brain injury that may cause deviant brain development and later neuroimpairments, including reduced cognitive functioning. AIMS In this long-term follow up study of three year-cohorts (birth years 1986-88) of VLBW subjects and term born controls with normal birth weight, the aim was to examine differences in brain volumes at age 20 years. In addition, the relationships between brain volumes and cognitive abilities and perinatal variables were explored. METHODS Forty-four VLBW subjects and 60 controls were assessed with cognitive testing (Wechsler Adult Intelligence Scale - WAIS-III) and structural MRI at 1.5 T, using the FreeSurfer 5.1 software for volumetric analysis. A subpopulation had MRI performed also at age 15, and for this group changes in brain volumes with age were examined. RESULTS The VLBW subjects had smaller brain volumes, especially of thalamus, globus pallidus and parts of the corpus callosum, and larger lateral ventricles than controls at age 20. However, no significant group differences in longitudinal change from age 15 to 20 were observed. The most immature and smallest VLBW subjects at birth, and those with the highest perinatal morbidity, showed most pronounced volume deviations. Positive associations between several brain volumes and full IQ, as well as three of four IQ indices in the VLBW group, were observed. CONCLUSION Reduced volumes of grey and white matter and ventricular dilatation in VLBW young adults may indicate permanent effects on brain development from perinatal brain injury with influence on later cognitive function.
Collapse
|
32
|
Executive functions in very-low-birth-weight young adults: a comparison between self-report and neuropsychological test results. J Int Neuropsychol Soc 2014; 20:506-15. [PMID: 24735984 DOI: 10.1017/s1355617714000332] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Executive functions are goal-directed control mechanisms that modulate the operation of other cognitive processes. Preterm born very-low-birth-weight (VLBW: birth weight<1500 grams) children have more problems with attention/executive function than their term born peers. The objective of this study is to examine if VLBW young adults had more self-reported attention/ executive problems and lower neuropsychological test results than controls. Furthermore, to investigate the relationship between self-reported attention/executive problems, general cognitive ability (IQ) and test results. Forty-two VLBW [mean birth weight 1237 (219) grams, and gestational age 29.3 (2.4) weeks] and 63 term born controls at age 19 years completed The BRIEF-A self-report of attention/executive functions in everyday life. The Wechsler Adult Intelligence Scale III was used to obtain IQ scores; subtests from Delis-Kaplan were used to assess attention/executive function. There were no differences between the VLBW young adults and controls on any of the BRIEF-A measures, but the VLBW subjects had lower scores on 8 of the 18 neuropsychological subtests (p<.01). Some correlations between BRIEF-A and the Stroop and TMT tests were found in the VLBW group. VLBW young adults do not report more problems regarding attention/executive function in daily life than controls despite lower results on several neuropsychological tests.
Collapse
|
33
|
Oishi K, Faria AV, Yoshida S, Chang L, Mori S. Reprint of "Quantitative evaluation of brain development using anatomical MRI and diffusion tensor imaging". Int J Dev Neurosci 2014; 32:28-40. [PMID: 24295553 PMCID: PMC4696018 DOI: 10.1016/j.ijdevneu.2013.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 05/24/2013] [Accepted: 06/13/2013] [Indexed: 01/18/2023] Open
Abstract
The development of the brain is structure-specific, and the growth rate of each structure differs depending on the age of the subject. Magnetic resonance imaging (MRI) is often used to evaluate brain development because of the high spatial resolution and contrast that enable the observation of structure-specific developmental status. Currently, most clinical MRIs are evaluated qualitatively to assist in the clinical decision-making and diagnosis. The clinical MRI report usually does not provide quantitative values that can be used to monitor developmental status. Recently, the importance of image quantification to detect and evaluate mild-to-moderate anatomical abnormalities has been emphasized because these alterations are possibly related to several psychiatric disorders and learning disabilities. In the research arena, structural MRI and diffusion tensor imaging (DTI) have been widely applied to quantify brain development of the pediatric population. To interpret the values from these MR modalities, a "growth percentile chart," which describes the mean and standard deviation of the normal developmental curve for each anatomical structure, is required. Although efforts have been made to create such a growth percentile chart based on MRI and DTI, one of the greatest challenges is to standardize the anatomical boundaries of the measured anatomical structures. To avoid inter- and intra-reader variability about the anatomical boundary definition, and hence, to increase the precision of quantitative measurements, an automated structure parcellation method, customized for the neonatal and pediatric population, has been developed. This method enables quantification of multiple MR modalities using a common analytic framework. In this paper, the attempt to create an MRI- and a DTI-based growth percentile chart, followed by an application to investigate developmental abnormalities related to cerebral palsy, Williams syndrome, and Rett syndrome, have been introduced. Future directions include multimodal image analysis and personalization for clinical application.
Collapse
Affiliation(s)
- Kenichi Oishi
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Andreia V Faria
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shoko Yoshida
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Linda Chang
- Neuroscience and Magnetic Resonance Research Program, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Susumu Mori
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
34
|
Thompson DK, Lee KJ, Egan GF, Warfield SK, Doyle LW, Anderson PJ, Inder TE. Regional white matter microstructure in very preterm infants: predictors and 7 year outcomes. Cortex 2013; 52:60-74. [PMID: 24405815 DOI: 10.1016/j.cortex.2013.11.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 10/18/2013] [Accepted: 11/27/2013] [Indexed: 02/01/2023]
Abstract
The aims of this study were to investigate regional white matter microstructural differences between very preterm (VPT) (<30 weeks' gestational age and/or <1250 g) and full term (FT) (≥37 weeks' gestational age) infants at term corrected age with diffusion tensor imaging, and to explore perinatal predictors of diffusion measures, and the relationship between regional diffusion measures and neurodevelopmental outcomes at age 7 years in VPT children. Mean (MD) (p = .003), axial (AD) (p = .008), and radial diffusivity (RD) (p = .003) in total white matter were increased in VPT compared with FT infants, with similar fractional anisotropy (FA) in the two groups. There was little evidence that group-wise differences were specific to any of the 8 regions studied for each hemisphere. Perinatal white matter abnormality and intraventricular hemorrhage (grade III or IV) were associated with increased diffusivity in the white matter of VPT infants. Higher white matter diffusivity measures of the inferior occipital and cerebellar region at term-equivalent age were associated with increased risk of impairments in motor and executive function at 7 years in VPT children, but there was little evidence for associations with IQ or memory impairment. In conclusion, myelination is likely disrupted or delayed in VPT infants, especially those with perinatal brain abnormality (BA). Altered diffusivity at term-equivalent age helps explain impaired functioning at 7 years. This study defines the nature of microstructural alterations in VPT infant white matter, assists in understanding the associated risk factors, and is the first study to reveal an important link between inferior occipital and cerebellar white matter disorganization in infancy, and executive and motor functioning 7 years later.
Collapse
Affiliation(s)
- Deanne K Thompson
- Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Vic, Australia; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Carlton, Vic, Australia.
| | - Katherine J Lee
- Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Vic, Australia; Department of Paediatrics, University of Melbourne, Carlton, Vic, Australia
| | - Gary F Egan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Carlton, Vic, Australia; Monash Biomedical Imaging, Monash University, Clayton, Vic, Australia
| | - Simon K Warfield
- Department of Radiology, Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lex W Doyle
- Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Vic, Australia; Department of Obstetrics and Gynecology, Royal Women's Hospital, The University of Melbourne, Carlton, Vic, Australia
| | - Peter J Anderson
- Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Vic, Australia; Department of Paediatrics, University of Melbourne, Carlton, Vic, Australia
| | - Terrie E Inder
- Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Vic, Australia; Department of Pediatrics, St Louis Children's Hospital, Washington University in St Louis, St Louis, MO, USA
| |
Collapse
|
35
|
Attention difficulties in a contemporary geographic cohort of adolescents born extremely preterm/extremely low birth weight. J Int Neuropsychol Soc 2013; 19:1097-108. [PMID: 24050646 DOI: 10.1017/s1355617713001057] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The aim of this study was to evaluate attention difficulties in a contemporary geographic cohort of adolescents born extremely preterm (EP, <28 weeks' gestation) or extremely low birth weight (ELBW, birth weight <1000 g). The EP/ELBW group included 228 adolescents (mean age = 17.0 years) born in Victoria, Australia in 1991 and 1992. The control group were 166 adolescents (mean age = 17.4 years) born of normal birth weight (birth weight >2499 g) who were recruited in the newborn period and matched to the EP/ELBW group on date of birth, gender, language spoken and health insurance status. Participants were assessed on measures of selective, sustained, and executive (shift and divided) attention, and parents and participants completed behavioral reports. The EP/ELBW group performed more poorly across tests of selective and executive attention, had greater rates of clinically significant difficulties compared with the control group, and also had greater behavioral attention problems as reported by parents. Neonatal risk factors were weakly associated with attention outcomes. In conclusion, higher rates of attention impairments are observed in individuals born EP/ELBW well into adolescence and may have consequences for their transition to adulthood.
Collapse
|
36
|
Oishi K, Faria AV, Yoshida S, Chang L, Mori S. Quantitative evaluation of brain development using anatomical MRI and diffusion tensor imaging. Int J Dev Neurosci 2013; 31:512-24. [PMID: 23796902 PMCID: PMC3830705 DOI: 10.1016/j.ijdevneu.2013.06.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 05/24/2013] [Accepted: 06/13/2013] [Indexed: 01/18/2023] Open
Abstract
The development of the brain is structure-specific, and the growth rate of each structure differs depending on the age of the subject. Magnetic resonance imaging (MRI) is often used to evaluate brain development because of the high spatial resolution and contrast that enable the observation of structure-specific developmental status. Currently, most clinical MRIs are evaluated qualitatively to assist in the clinical decision-making and diagnosis. The clinical MRI report usually does not provide quantitative values that can be used to monitor developmental status. Recently, the importance of image quantification to detect and evaluate mild-to-moderate anatomical abnormalities has been emphasized because these alterations are possibly related to several psychiatric disorders and learning disabilities. In the research arena, structural MRI and diffusion tensor imaging (DTI) have been widely applied to quantify brain development of the pediatric population. To interpret the values from these MR modalities, a "growth percentile chart," which describes the mean and standard deviation of the normal developmental curve for each anatomical structure, is required. Although efforts have been made to create such a growth percentile chart based on MRI and DTI, one of the greatest challenges is to standardize the anatomical boundaries of the measured anatomical structures. To avoid inter- and intra-reader variability about the anatomical boundary definition, and hence, to increase the precision of quantitative measurements, an automated structure parcellation method, customized for the neonatal and pediatric population, has been developed. This method enables quantification of multiple MR modalities using a common analytic framework. In this paper, the attempt to create an MRI- and a DTI-based growth percentile chart, followed by an application to investigate developmental abnormalities related to cerebral palsy, Williams syndrome, and Rett syndrome, have been introduced. Future directions include multimodal image analysis and personalization for clinical application.
Collapse
Affiliation(s)
- Kenichi Oishi
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | | | | | | | |
Collapse
|
37
|
Pandit AS, Ball G, Edwards AD, Counsell SJ. Diffusion magnetic resonance imaging in preterm brain injury. Neuroradiology 2013; 55 Suppl 2:65-95. [PMID: 23942765 DOI: 10.1007/s00234-013-1242-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 07/09/2013] [Indexed: 01/01/2023]
Abstract
INTRODUCTION White matter injury and abnormal maturation are thought to be major contributors to the neurodevelopmental disabilities observed in children and adolescents who were born preterm. Early detection of abnormal white matter maturation is important in the design of preventive, protective, and rehabilitative strategies for the management of the preterm infant. Diffusion-weighted magnetic resonance imaging (d-MRI) has become a valuable tool in assessing white matter maturation and injury in survivors of preterm birth. In this review, we aim to (1) describe the basic concepts of d-MRI; (2) evaluate the methods that are currently used to analyse d-MRI; (3) discuss neuroimaging correlates of preterm brain injury observed at term corrected age; during infancy, adolescence and in early adulthood; and (4) explore the relationship between d-MRI measures and subsequent neurodevelopmental performance. METHODS References for this review were identified through searches of PubMed and Google Scholar before March 2013. RESULTS The impact of premature birth on cerebral white matter can be observed from term-equivalent age through to adulthood. Disruptions to white matter development, identified by d-MRI, are related to diminished performance in functional domains including motor performance, cognition and behaviour in early childhood and in later life. CONCLUSION d-MRI is an effective tool for investigating preterm white matter injury. With advances in image acquisition and analysis approaches, d-MRI has the potential to be a biomarker of subsequent outcome and to evaluate efficacy of clinical interventions in this population.
Collapse
Affiliation(s)
- Anand S Pandit
- Centre for the Developing Brain, Department of Perinatal Imaging, Division of Imaging Sciences and Biomedical Engineering, King's College London, First Floor, South Wing, St Thomas' Hospital, London, UK
| | | | | | | |
Collapse
|
38
|
Noble KG, Korgaonkar MS, Grieve SM, Brickman AM. Higher education is an age-independent predictor of white matter integrity and cognitive control in late adolescence. Dev Sci 2013; 16:653-64. [PMID: 24033571 PMCID: PMC3775010 DOI: 10.1111/desc.12077] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 04/11/2013] [Indexed: 11/28/2022]
Abstract
Socioeconomic status is an important predictor of cognitive development and academic achievement. Late adolescence provides a unique opportunity to study how the attainment of socioeconomic status (in the form of years of education) relates to cognitive and neural development, during a time when age-related cognitive and neural development is ongoing. During late adolescence it is possible to disambiguate age- and education-related effects on the development of these processes. Here we assessed the degree to which higher educational attainment was related to performance on a cognitive control task, controlling for age. We then used diffusion tensor imaging (DTI) to assess the degree to which white matter microstructure might mediate this relationship. When covarying age, significant associations were found between educational attainment and fractional anisotropy (FA) in the superior longitudinal fasciculus (SLF) and cingulum bundle (CB). Further, when covarying age, FA in these regions was associated with cognitive control. Finally, mediation analyses revealed that the age-independent association between educational attainment and cognitive control was completely accounted for by FA in these regions. The uncinate fasciculus, a late-myelinated control region not implicated in cognitive control, did not mediate this effect.
Collapse
Affiliation(s)
- Kimberly G Noble
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, USA; Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, USA
| | | | | | | |
Collapse
|
39
|
Sansavini A, Guarini A, Caselli MC. Preterm birth: neuropsychological profiles and atypical developmental pathways. ACTA ACUST UNITED AC 2013; 17:102-13. [PMID: 23362030 DOI: 10.1002/ddrr.1105] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 05/10/2012] [Indexed: 11/08/2022]
Abstract
Preterm birth is characterized by multiple interacting atypical constraints affecting different aspects of neuropsychological development. In the first years of life, perceptual, motor, and communicative-linguistic abilities, as well as attention, processing speed, and memory are affected by preterm birth resulting in cascading effects on later development. From school age to adolescence, a catch-up of simpler competencies (i.e., receptive lexicon) along with a more selective effect on more complex competencies (i.e., complex linguistic functions, math, motor, and executive functions) are observed, as well as a relevant incidence of behavioral outcomes. A wide heterogeneity in preterm children's neuropsychological profiles is described depending on the interaction among the degree of neonatal immaturity, medical complications, neurological damages/alterations, environmental and social factors. Severe neuromotor and sensory damages are not frequent, while low severity impairments are common among preterm children. It is argued that developmental pathways of preterm children are atypical, and not merely delayed, and are characterized by different developmental patterns and relationships among competencies.
Collapse
|
40
|
Chew LJ, Fusar-Poli P, Schmitz T. Oligodendroglial alterations and the role of microglia in white matter injury: relevance to schizophrenia. Dev Neurosci 2013; 35:102-29. [PMID: 23446060 PMCID: PMC4531048 DOI: 10.1159/000346157] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 11/07/2012] [Indexed: 12/12/2022] Open
Abstract
Schizophrenia is a chronic and debilitating mental illness characterized by a broad range of abnormal behaviors, including delusions and hallucinations, impaired cognitive function, as well as mood disturbances and social withdrawal. Due to the heterogeneous nature of the disease, the causes of schizophrenia are very complex; its etiology is believed to involve multiple brain regions and the connections between them, and includes alterations in both gray and white matter regions. The onset of symptoms varies with age and severity, and there is some debate over a degenerative or developmental etiology. Longitudinal magnetic resonance imaging studies have detected progressive gray matter loss in the first years of disease, suggesting neurodegeneration; but there is also increasing recognition of a temporal association between clinical complications at birth and disease onset that supports a neurodevelopmental origin. Presently, neuronal abnormalities in schizophrenia are better understood than alterations in myelin-producing cells of the brain, the oligodendrocytes, which are the predominant constituents of white matter structures. Proper white matter development and its structural integrity critically impacts brain connectivity, which affects sensorimotor coordination and cognitive ability. Evidence of defective white matter growth and compromised white matter integrity has been found in individuals at high risk of psychosis, and decreased numbers of mature oligodendrocytes are detected in schizophrenia patients. Inflammatory markers, including proinflammatory cytokines and chemokines, are also associated with psychosis. A relationship between risk of psychosis, white matter defects and prenatal inflammation is being established. Animal models of perinatal brain injury are successful in producing white matter damage in the brain, typified by hypomyelination and/or dysmyelination, impaired motor coordination and prepulse inhibition of the acoustic startle reflex, recapitulating structural and functional characteristics observed in schizophrenia. In addition, elevated expression of inflammation-related genes in brain tissue and increased production of cytokines by blood cells from patients with schizophrenia indicate immunological dysfunction and abnormal inflammatory responses, which are also important underlying features in experimental models. Microglia, resident immune defenders of the central nervous system, play important roles in the development and protection of neural cells, but can contribute to injury under pathological conditions. This article discusses oligodendroglial changes in schizophrenia and focuses on microglial activity in the context of the disease, in neonatal brain injury and in various experimental models of white matter damage. These include disorders associated with premature birth, and animal models of perinatal bacterial and viral infection, oxygen deprivation (hypoxia) and excess (hyperoxia), and elevated systemic proinflammatory cytokine levels. We briefly review the effects of treatment with antipsychotic and anti-inflammatory agents in models of perinatal brain injury, and comment on the therapeutic potential of these strategies. By understanding the neurobiological basis of oligodendroglial abnormalities in schizophrenia, it is hoped that patients will benefit from the availability of targeted and more efficacious treatment options.
Collapse
Affiliation(s)
- Li-Jin Chew
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA.
| | | | | |
Collapse
|
41
|
Identification of a strategic brain network underlying processing speed deficits in vascular cognitive impairment. Neuroimage 2013; 66:177-83. [DOI: 10.1016/j.neuroimage.2012.10.084] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 10/02/2012] [Accepted: 10/30/2012] [Indexed: 01/13/2023] Open
|
42
|
Feldman HM, Lee ES, Yeatman JD, Yeom KW. Language and reading skills in school-aged children and adolescents born preterm are associated with white matter properties on diffusion tensor imaging. Neuropsychologia 2012; 50:3348-62. [PMID: 23088817 DOI: 10.1016/j.neuropsychologia.2012.10.014] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 10/12/2012] [Accepted: 10/12/2012] [Indexed: 10/27/2022]
Abstract
Children born preterm are at risk for deficits in language and reading. They are also at risk for injury to the white matter of the brain. The goal of this study was to determine whether performance in language and reading skills would be associated with white matter properties in children born preterm and full-term. Children born before 36 weeks gestation (n=23, mean±SD age 12.5±2.0 years, gestational age 28.7±2.5 weeks, birth weight 1184±431 g) and controls born after 37 weeks gestation (n=19, 13.1±2.1 years, 39.3±1.0 weeks, 3178±413 g) underwent a battery of language and reading tests. Diffusion tensor imaging (DTI) scans were processed using tract-based spatial statistics to generate a core white matter skeleton that was anatomically comparable across participants. Fractional anisotropy (FA) was the diffusion property used in analyses. In the full-term group, no regions of the whole FA-skeleton were associated with language and reading. In the preterm group, regions of the FA-skeleton were significantly associated with verbal IQ, linguistic processing speed, syntactic comprehension, and decoding. Combined, the regions formed a composite map of 22 clusters on 15 tracts in both hemispheres and in the ventral and dorsal streams. ROI analyses in the preterm group found that several of these regions also showed positive associations with receptive vocabulary, verbal memory, and reading comprehension. Some of the same regions showed weak negative correlations within the full-term group. Exploratory multiple regression in the preterm group found that specific white matter pathways were related to different aspects of language processing and reading, accounting for 27-44% of the variance. The findings suggest that higher performance in language and reading in a group of preterm but not full-term children is associated with higher fractional anisotropy of a bilateral and distributed white matter network.
Collapse
Affiliation(s)
- Heidi M Feldman
- Department of Pediatrics, Stanford University School of Medicine, CA 94304, USA.
| | | | | | | |
Collapse
|
43
|
Loe IM, Luna B, Bledsoe I, Yeom KW, Fritz BL, Feldman HM. Oculomotor assessments of executive function in preterm children. J Pediatr 2012; 161:427-433.e1. [PMID: 22480696 PMCID: PMC3638733 DOI: 10.1016/j.jpeds.2012.02.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 01/23/2012] [Accepted: 02/22/2012] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To use objective, nonverbal oculomotor tasks to assess executive function and infer the neural basis of impairments in preterm children. STUDY DESIGN Cross-sectional study of preterm children age 9-16 years (n = 69; mean gestational age 29 weeks) and full-term controls (n = 43). Tasks assessed sensorimotor function (reflexive prosaccades); resistance to peripheral distracters (fixation); response inhibition, response preparation, and execution of a voluntary saccade (antisaccades); and spatial working memory (memory-guided saccades). Group differences were analyzed using ANOVA. We used linear regression to analyze the contributions of age, sex, gestational age, and white matter category to task performance. RESULTS Preterm children did not differ from controls on basic sensorimotor function, response inhibition, and working memory. Compared with controls, preterm children showed greater susceptibility to peripheral distracters (P = .008) and were slower to initiate an inhibitory response (P = .003). Regression models showed contributions of age and white matter category to task performance. CONCLUSIONS Preterm children show intact basic sensorimotor function and demonstrate difficulties in processes underlying executive control, including increased distractibility and prolonged response preparation. These limitations may reflect specific neural abnormalities in fronto-subcortical executive control of behavior.
Collapse
Affiliation(s)
- Irene M. Loe
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA.
| | - Beatriz Luna
- Department of Psychiatry and Psychology, Western Psychiatric Institute and Clinics, University of Pittsburgh, Pittsburgh, PA
| | - Ian Bledsoe
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA
| | - Kristen W. Yeom
- Department of Radiology, Stanford University School of Medicine, Stanford, CA
| | - Barbara L. Fritz
- Department of Psychiatry and Psychology, Western Psychiatric Institute and Clinics, University of Pittsburgh, Pittsburgh, PA
| | - Heidi M. Feldman
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA.
| |
Collapse
|
44
|
de Kieviet JF, Zoetebier L, van Elburg RM, Vermeulen RJ, Oosterlaan J. Brain development of very preterm and very low-birthweight children in childhood and adolescence: a meta-analysis. Dev Med Child Neurol 2012; 54:313-23. [PMID: 22283622 DOI: 10.1111/j.1469-8749.2011.04216.x] [Citation(s) in RCA: 228] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM The aim of this article was to clarify the impact and consequences of very preterm birth (born <32wks of gestation) and/or very low birthweight ([VLBW], weighing <1500g) on brain volume development throughout childhood and adolescence. METHOD The computerized databases PubMed, Web of Knowledge, and EMBASE were searched for studies that reported volumetric outcomes during childhood or adolescence using magnetic resonance imaging and included a term-born comparison group. Fifteen studies were identified, encompassing 818 very preterm/VLBW children and 450 term-born peers. Average reductions in the total brain volume, white matter volume, grey matter volume, and in the size of the cerebellum, hippocampus, and corpus callosum were investigated using meta-analytic methods. RESULTS Very preterm/VLBW children were found to have a significantly smaller total brain volume than the comparison group (d=-0.58; 95% confidence interval [CI] -0.43 to -0.73; p<0.001), smaller white matter volume (d=-0.53; CI -0.40 to -0.67; p<0.001), smaller grey matter volume (d=-0.62; CI -0.48 to -0.76; p<0.001), smaller cerebellum (d=-0.74; CI -0.56 to -0.92; p<0.001), smaller hippocampus (d=-0.47; CI -0.26 to -0.69; p<0.001), and smaller corpus callosum (d=-0.71; CI -0.34 to -1.07; p<0.001). Reductions have been associated with decreased general cognitive functioning, and no relations with age at assessment were found. INTERPRETATION Very preterm/VLBW birth is associated with an overall reduction in brain volume, which becomes evident in equally sized reductions in white and grey matter volumes, as well as in volumes of diverse brain structures throughout childhood and adolescence.
Collapse
Affiliation(s)
- Jorrit F de Kieviet
- Department of Clinical Neuropsychology, VU University, Amsterdam, the Netherlands
| | | | | | | | | |
Collapse
|
45
|
Loe IM, Lee ES, Luna B, Feldman HM. Executive function skills are associated with reading and parent-rated child function in children born prematurely. Early Hum Dev 2012; 88:111-8. [PMID: 21849240 PMCID: PMC3660611 DOI: 10.1016/j.earlhumdev.2011.07.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 06/29/2011] [Accepted: 07/15/2011] [Indexed: 10/17/2022]
Abstract
BACKGROUND Preterm children are at risk for executive function (EF) problems, which have been linked to behavior and learning problems in full term children. In this study, we examine the relationship between EF and functional outcomes in preterm children. AIM To evaluate (1) EF skills of 9- to 16-year-old children born across the spectrum of gestational age (GA), (2) relationship of degree of prematurity to EF skills, and (3) contributions of EF skills to two functional outcomes - reading scores and parent-rated child function. METHOD Preterm children <36 weeks gestation (n=72) were compared to full term children (n=42) of similar age, gender and SES, on measures of EF, reading, and parent-ratings of child function. Multiple regression models evaluated contributions to EF skills and functional outcomes. RESULTS Compared to full term controls, preterm children had poorer EF performance on a complex planning and organization task and did not increase planning time as task difficulty increased. Their spatial memory capacity was not different. GA contributed to EF skills, but was mediated by IQ. EF contributed to the variance in reading skills but did not add to the variance in reading when IQ was considered. EF skills significantly contributed to the variance in parent-rated child function, but IQ did not. CONCLUSION EF skills contribute to measures of functional outcome in this high-risk population. The use of EF skills as an early marker for learning and functional problems and as a target for intervention in children born preterm warrants future study.
Collapse
Affiliation(s)
- Irene M Loe
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA.
| | | | | | | |
Collapse
|
46
|
Clark DB, Chung T, Thatcher DL, Pajtek S, Long EC. Psychological dysregulation, white matter disorganization and substance use disorders in adolescence. Addiction 2012; 107:206-14. [PMID: 21752141 PMCID: PMC3237873 DOI: 10.1111/j.1360-0443.2011.03566.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AIMS Adolescents with substance use disorders (SUD) have difficulties with cognitive, behavioral and affective regulation. White matter (WM) disorganization has been observed in adolescents with SUD and may be related to psychological dysregulation. This study compared adolescents with SUD and control adolescents to investigate relationships among psychological dysregulation, WM disorganization and SUD symptoms. DESIGN Cross-sectional observation. SETTING Adolescents with SUD were recruited from SUD treatment programs. Controls were recruited from the community. PARTICIPANTS The 55 participants were aged 14-19; 35 with SUD and 20 controls without SUD. MEASUREMENTS Psychological dysregulation was characterized by the Behavior Rating Inventory of Executive Function. WM disorganization was measured by diffusion tensor imaging, and fractional anisotropy, radial diffusivity and axial diffusivity were examined within cortical regions of interest. FINDINGS Compared to controls, SUD adolescents showed significantly greater psychological dysregulation and prefrontal and parietal WM disorganization. WM disorganization was correlated positively with psychological dysregulation and cannabis-related symptoms. In multivariate mediation models, the results were consistent with both the neurodevelopmental immaturity model, in which WM disorganization leads to psychological dysregulation and cannabis-related symptoms, and with the substance effects model, in which cannabis-related symptoms lead to WM disorganization and psychological dysregulation. CONCLUSIONS In adolescents, substance use disorder and psychological dysregulation appear to be associated with reduced frontoparietal network white matter maturation.
Collapse
Affiliation(s)
- Duncan B Clark
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA. clarkdb@upmc. edu
| | | | | | | | | |
Collapse
|
47
|
Krueger CE, Rosen HJ, Taylor HG, Espy KA, Schatz J, Rey-Casserly C, Kramer JH. Know thyself: real-world behavioral correlates of self-appraisal accuracy. Clin Neuropsychol 2011; 25:741-56. [PMID: 21547852 DOI: 10.1080/13854046.2011.569759] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Accurate appraisal of one's own abilities is one metacognitive skill considered to be an important factor affecting learning and behavior in childhood. The present study measured self-appraisal accuracy in children using tasks of executive function, and investigated relations between self-appraisal and informant ratings of real-world behaviors measured by the BRIEF. We examined self-appraisal accuracy on fluency tasks in 91 children ages 10-17. More accurate self-appraisal was correlated with fewer informant ratings of real-world behavior problems in inhibition and shifting, independent of actual performance. Findings suggest that self-appraisal represents cognitive processes that are at least partially independent of other functions putatively dependent on the frontal lobes, and these self-appraisal-specific processes have unique implications for optimal daily function.
Collapse
Affiliation(s)
- Casey E Krueger
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Woodward LJ, Clark CAC, Pritchard VE, Anderson PJ, Inder TE. Neonatal white matter abnormalities predict global executive function impairment in children born very preterm. Dev Neuropsychol 2011; 36:22-41. [PMID: 21253989 DOI: 10.1080/87565641.2011.540530] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Using prospective longitudinal data from 110 very preterm and 113 full term children, this article describes the executive functioning abilities of very preterm children at age 4, and examines relations between the extent of white matter abnormality on neonatal magnetic resonance imaging (MRI) and later executive function outcomes. Very preterm children performed less well than full term children on measures of planning ability, cognitive flexibility, selective attention, and inhibitory control. Executive impairments at age 4 were confined to preterm children with mild or moderate-severe white matter abnormalities on MRI. Findings support the importance of cerebral white matter integrity for later executive function.
Collapse
Affiliation(s)
- Lianne J Woodward
- Canterbury Child Development Research Group, Department of Psychology, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
49
|
Taylor HG, Filipek PA, Juranek J, Bangert B, Minich N, Hack M. Brain Volumes in Adolescents With Very Low Birth Weight: Effects on Brain Structure and Associations With Neuropsychological Outcomes. Dev Neuropsychol 2011; 36:96-117. [PMID: 21253993 DOI: 10.1080/87565641.2011.540544] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
50
|
Myers EH, Hampson M, Vohr B, Lacadie C, Frost SJ, Pugh KR, Katz KH, Schneider KC, Makuch RW, Constable RT, Ment LR. Functional connectivity to a right hemisphere language center in prematurely born adolescents. Neuroimage 2010; 51:1445-52. [PMID: 20347043 DOI: 10.1016/j.neuroimage.2010.03.049] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 03/02/2010] [Accepted: 03/18/2010] [Indexed: 11/25/2022] Open
Abstract
Prematurely born children are at increased risk for language deficits at school age and beyond, but the neurobiological basis of these findings remains poorly understood. Thirty-one PT adolescents (600-1250g birth weight) and 36 T controls were evaluated using an fMRI passive language task and neurodevelopmental assessments including: the Wechsler Intelligence Scale for Children-III (WISC-III), the Peabody Picture Vocabulary Test-Revised (PPVT-R), the Comprehensive Test of Phonological Processing (CTOPP) and the Test of Word Reading Efficiency (TOWRE) at 16years of age. Neural activity was assessed for language processing and the data were evaluated for connectivity and correlations to cognitive outcomes. PT subjects scored significantly lower on all components of the WISC-III (p<0.05) compared to term subjects, but there was no significant difference in PPVT-R scores between the groups. Functional connectivity (fcMRI) between Wernicke's area (left BA 22) and the right supramarginal gyrus (BA 40) was increased in preterm subjects relative to term controls (p=0.03), and the strength of this connection was inversely related to performance on both the PPVT-R (R(2)=0.553, p=0.002), and the verbal comprehension index (R(2)=0.439, p=0.019). Preterm adolescents engage a dorsal right hemisphere region for language at age 16years. Those with the greatest cognitive deficits demonstrate increasing reliance on this alternate pathway.
Collapse
Affiliation(s)
- Eliza H Myers
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520-8064, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|