1
|
Zhao Y, Xiong L, Yin J, Zha X, Li W, Han Y. Understanding the effects of flash drought on vegetation photosynthesis and potential drivers over China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172926. [PMID: 38697519 DOI: 10.1016/j.scitotenv.2024.172926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Flash droughts characterized by rapid onset and intensification are expected to be a new normal under climate change and potentially affect vegetation photosynthesis and terrestrial carbon sink. However, the effects of flash drought on vegetation photosynthesis and their potential dominant driving factors remain uncertain. Here, we quantify the susceptibility and response magnitude of vegetation photosynthesis to flash drought across different ecosystems (i.e., forest, shrubland, grassland, and cropland) in China based on reanalysis and satellite observations. By employing the extreme gradient boosting model, we also identify the dominant factors that influence these flash drought-photosynthesis relationships. We show that over 51.46 % of ecosystems across China are susceptible to flash drought, and grasslands are substantially suppressed, as reflected in both sensitivity and response magnitude (with median gross primary productivity anomalies of -0.13). We further demonstrate that background climate differences (e.g., mean annual temperature and aridity) predominantly regulate the response variation in forest and shrubland, with hotter/colder or drier ecosystems being more severely suppressed by flash drought. However, in grasslands and croplands, the differential vegetation responses are attributed to the intensity of abnormal hydro-meteorological conditions during flash drought (e.g., vapor pressure deficit (VPD) and temperature anomalies). The effects of flash droughts intensify with increasing VPD and nonmonotonically relate to temperature, with colder or hotter temperatures leading to more severe vegetation loss. Our results identify the vulnerable ecological regions under flash drought and enable a better understanding of vegetation photosynthesis response to climate extremes, which may be useful for developing effective management strategies.
Collapse
Affiliation(s)
- Yue Zhao
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, PR China.
| | - Lihua Xiong
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, PR China.
| | - Jiabo Yin
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, PR China.
| | - Xini Zha
- Changjiang Water Resources Protection Institute, Wuhan 430051, PR China; Key Laboratory of Ecological Regulation of Non-point Source Pollution in Lake and Reservoir Water Sources, Changjiang Water Resources Commission, Wuhan 430051, PR China.
| | - Wenbin Li
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, PR China.
| | - Yajing Han
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
2
|
Xue R, Jiao L, Zhang P, Du D, Wu X, Wei M, Li Q, Wang X, Qi C. The key role of ecological resilience in radial growth processes of conifers under drought stress in the subalpine zone of marginal deserts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166864. [PMID: 37683873 DOI: 10.1016/j.scitotenv.2023.166864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/03/2023] [Accepted: 09/03/2023] [Indexed: 09/10/2023]
Abstract
Global climate change is exacerbating drought pressure on forests. However, the response patterns and physiological mechanisms of conifer species to drought, specifically in terms of radial growth, ecological resilience and soil water utilization, are not clearly understood. This study aims to quantify the effects of resilience on radial growth and identify the role of soil moisture utilization strategies in the resilience of species under drought intensities. We focus on two conifer species, Picea crassifolia (spruce) and Pinus tabuliformis (pine), located on the southern edge of the Tengger Desert in northwestern China. The dynamics of radial growth and ecological resilience were identified, and the seasonal growth rates of species based on soil water were simulated using the VS-oscilloscope model under varying drought stress. The results showed that spruce growth and recovery contributed by soil water were suppressed with frequent severe droughts, leading to a decline in growth (-0.5 cm2 year-1/10a, p < 0.05), despite its greater resistance to mild and moderate drought (-4.63 %). However, pine exhibited a stronger recovery (+40.25 %, p < 0.05) and higher variation in growth (-0.3 cm2 year-1/10a, p < 0.05) under soil moisture stress, despite its weaker resistance to drought (-23.53 %, p < 0.05). These findings provide insights into the growth, resilience, and water adaptation mechanisms of species under drought events, and theoretical support for the conservation and management of conifer diversity and forest ecosystem stability in climate-sensitive regions.
Collapse
Affiliation(s)
- Ruhong Xue
- College of Geography and Environmental Science, Northwest Normal University, No. 967, Anning East Road, Lanzhou 730070, China; Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Northwest Normal University, Lanzhou 730070, China
| | - Liang Jiao
- College of Geography and Environmental Science, Northwest Normal University, No. 967, Anning East Road, Lanzhou 730070, China; Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Northwest Normal University, Lanzhou 730070, China.
| | - Peng Zhang
- College of Geography and Environmental Science, Northwest Normal University, No. 967, Anning East Road, Lanzhou 730070, China; Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Northwest Normal University, Lanzhou 730070, China
| | - Dashi Du
- College of Geography and Environmental Science, Northwest Normal University, No. 967, Anning East Road, Lanzhou 730070, China; Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Northwest Normal University, Lanzhou 730070, China
| | - Xuan Wu
- College of Geography and Environmental Science, Northwest Normal University, No. 967, Anning East Road, Lanzhou 730070, China; Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Northwest Normal University, Lanzhou 730070, China
| | - Mengyuan Wei
- College of Geography and Environmental Science, Northwest Normal University, No. 967, Anning East Road, Lanzhou 730070, China; Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Northwest Normal University, Lanzhou 730070, China
| | - Qian Li
- College of Geography and Environmental Science, Northwest Normal University, No. 967, Anning East Road, Lanzhou 730070, China; Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Northwest Normal University, Lanzhou 730070, China
| | - Xuge Wang
- College of Geography and Environmental Science, Northwest Normal University, No. 967, Anning East Road, Lanzhou 730070, China; Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Northwest Normal University, Lanzhou 730070, China
| | - Changliang Qi
- College of Geography and Environmental Science, Northwest Normal University, No. 967, Anning East Road, Lanzhou 730070, China; Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
3
|
López-Ballesteros A, Rodríguez-Caballero E, Moreno G, Escribano P, Hereş AM, Yuste JC. Topography modulates climate sensitivity of multidecadal trends of holm oak decline. GLOBAL CHANGE BIOLOGY 2023; 29:6336-6349. [PMID: 37688536 DOI: 10.1111/gcb.16927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 09/11/2023]
Abstract
Forest decline events have increased worldwide over the last decades being holm oak (Quercus ilex L.) one of the tree species with the most worrying trends across Europe. Since this is one of the tree species with the southernmost distribution within the European continent, its vulnerability to climate change is a phenomenon of enormous ecological importance. Previous research identified drought and soil pathogens as the main causes behind holm oak decline. However, despite tree health loss is a multifactorial phenomenon where abiotic and biotic factors interact in time and space, there are some abiotic factors whose influence has been commonly overlooked. Here, we evaluate how land use (forests versus savannas), topography, and climate extremes jointly determine the spatiotemporal patterns of holm oak defoliation trends over almost three decades (1987-2014) in Spain, where holm oak represents the 25% of the national forested area. We found an increasing defoliation trend in 119 out of the total 134 holm oak plots evaluated, being this defoliation trend significantly higher in forests compared with savannas. Moreover, we have detected that the interaction between topography (which covariates with the land use) and summer precipitation anomalies explains trends of holm oak decline across the Mediterranean region. While a higher occurrence of dry summers increases defoliation trends in steeper terrains where forests dominate, an inverse relationship was found in flatter terrains where savannas are mainly located. These opposite relationships suggest different causal mechanisms behind decline. Whereas hydric stress is likely to occur in steeper terrains where soil water holding capacity is limited, soil waterlogging usually occurs in flatter terrains what increases tree vulnerability to soil pathogens. Our results contribute to the growing evidence of the influence of local topography on forest resilience and could assist in the identification of potential tree decline hotspots and its main causes over the Mediterranean region.
Collapse
Affiliation(s)
- Ana López-Ballesteros
- Department of Agricultural and Forest Systems, and the Environment, Agrifood Research and Technology Centre of Aragon (CITA), Zaragoza, Spain
| | - Emilio Rodríguez-Caballero
- Department of Agronomy and Centro de Investigación de Colecciones Científicas (CECOUAL), Universidad de Almería, Almeria, Spain
| | - Gerardo Moreno
- Forestry School, Institute for Dehesa Research (INDEHESA), Universidad de Extremadura, Plasencia, Spain
| | | | - Ana-Maria Hereş
- Faculty of Silviculture and Forest Engineering, Transilvania University of Braşov, Braşov, Romania
- BC3-Basque Centre for Climate Change, Scientific Campus of the University of the Basque Country, Leioa, Spain
| | - Jorge Curiel Yuste
- BC3-Basque Centre for Climate Change, Scientific Campus of the University of the Basque Country, Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
4
|
Abstract
The Mediterranean climate has dry and hot summers, which is harsh for plants, especially seedlings. During the 1950s and 1960s, most reforestations carried out in Central Spain, a Mediterranean climate area, were successful, but in recent decades an increasing difficulty in forest regeneration has been observed, often attributed to increased summer drought. This study analyses changes in climatic parameters related to forest regeneration through statistical treatment of meteorological data series from the mid-twentieth century to the present. Simple and multiple regressions and ANOVAs were performed for five parameters, considering annual, summer and extended summer values. Rainfall reduction and prolongation of the summer drought period were not statistically significant. The change that better explains regeneration problems is the increase in temperature, especially in July and August, which was mostly significant between 2002 and 2021. Raising temperatures increase the vapor pressure deficit, exacerbating drought effects and plant mortality. Climate change scenarios point to an increase in temperatures until 2100; thus, the tipping point for natural regeneration of some species could be passed. The most affected species are those at their ecological limit. It is necessary to facilitate the adaptation of these forests to climate change, since their future will depend on the actions carried out today.
Collapse
|
5
|
Robust Satellite-Based Identification and Monitoring of Forests Having Undergone Climate-Change-Related Stress. LAND 2022. [DOI: 10.3390/land11060825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Climate-induced drought events are responsible for forest decline and mortality in different areas of the world. Forest response to drought stress periods may be different, in time and space, depending on vegetation type and local factors. Stress analysis may be carried out by using field methods, but the use of remote sensing may be needed to highlight the effects of climate-change-induced phenomena at a larger spatial and temporal scale. In this context, satellite-based analyses are presented in this work to evaluate the drought effects during the 2000s and the possible climatological forcing over oak forests in Southern Italy. To this aim, two approaches based on the well-known Normalized Difference Vegetation Index (NDVI) were used: one based on NDVI values, averaged over selected decaying and non-decaying forests; another based on the Robust Satellite Techniques (RST). The analysis of the first approach mainly gave us overall information about 1984–2011 rising NDVI trends, despite a general decrease around the 2000s. The second, more refined approach was able to highlight a different drought stress impact over decaying and non-decaying forests. The combined use of the RST-based approach, Landsat satellite data, and Google Earth Engine (GEE) platform allowed us to identify in space domain and monitor over time significant oak forest changes and climate-driven effects (e.g., in 2001) from the local to the Basilicata region scale. By this way, the decaying status of the Gorgoglione forest was highlighted two years before the first visual field evidence (e.g., dryness of apical branches, bark detachment, root rot disease). The RST exportability to different satellite sensors and vegetation types, the availability of suitable satellite data, and the potential of GEE suggest the possibility of long-term monitoring of forest health, from the local to the global scale, to provide useful information to different end-user classes.
Collapse
|
6
|
Češljar G, Jovanović F, Brašanac-Bosanac L, Đorđević I, Mitrović S, Eremija S, Ćirković-Mitrović T, Lučić A. Impact of an Extremely Dry Period on Tree Defoliation and Tree Mortality in Serbia. PLANTS (BASEL, SWITZERLAND) 2022; 11:1286. [PMID: 35631711 PMCID: PMC9144404 DOI: 10.3390/plants11101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022]
Abstract
This paper presents research results on forest decline in Serbia. The results were obtained through monitoring defoliation of 34 tree species at 130 sample plots during the period from 2004 to 2018. This research aimed to determine whether the occurrence of defoliation and tree mortality were caused by drought. Defoliation was assessed in 5% steps according to the International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests) methodology. All the trees recorded as dead were singled out, and annual mortality rates were calculated. To determine changes in air temperature and precipitation regimes during the study period, we processed and analysed climatic data related to air temperature and precipitation throughout the year and in the growing season at 28 main weather stations in Serbia. Tree mortality patterns were established by classifying trees into three groups. The first group of trees exhibited a gradual increase in defoliation during the last few years of monitoring, with dying as the final outcome. The second group was characterised by sudden death of trees. The third group of trees reached a higher degree of defoliation immediately after the first monitoring year, and the trees died after several years. Tree mortality rates were compared between years using the Standardised Precipitation Evaporation Index (SPI) and the Standardised Precipitation Evapotranspiration Index (SPEI), the most common methods used to monitor drought. The most intensive forest decline was recorded during the period from 2013 to 2016, when the largest percentage of the total number of all trees died. According to the annual mortality rates calculated for the three observation periods (2004-2008, 2009-2013, and 2014-2018) the highest forest decline rate was recorded in the period from 2014 to 2018, with no statistically significant difference between broadleaved and coniferous tree species. As the sample of coniferous species was small, the number of sample plots should be increased in order to achieve better systematic forest condition monitoring in Serbia. The analysis of the relationship between defoliation and climatic parameters proved the correlation between them. It was noted that the forest decline in Serbia was preceded by an extremely dry period with high temperatures from 2011 to 2013, supporting the hypothesis that it was caused by drought. We therefore conclude that these unfavourable climatic conditions had serious and long-term consequences on forest ecosystems in Serbia.
Collapse
Affiliation(s)
- Goran Češljar
- Department of Spatial Regulation, GIS and Forest Policy, Institute of Forestry, 11030 Belgrade, Serbia;
| | - Filip Jovanović
- Department of Forest Establishment, Silviculture and Ecology, Institute of Forestry, 11030 Belgrade, Serbia; (F.J.); (S.E.); (T.Ć.-M.)
| | - Ljiljana Brašanac-Bosanac
- Department of Environmental Protection and Improvement, Institute of Forestry, 11030 Belgrade, Serbia; (L.B.-B.); (S.M.)
| | - Ilija Đorđević
- Department of Spatial Regulation, GIS and Forest Policy, Institute of Forestry, 11030 Belgrade, Serbia;
| | - Suzana Mitrović
- Department of Environmental Protection and Improvement, Institute of Forestry, 11030 Belgrade, Serbia; (L.B.-B.); (S.M.)
| | - Saša Eremija
- Department of Forest Establishment, Silviculture and Ecology, Institute of Forestry, 11030 Belgrade, Serbia; (F.J.); (S.E.); (T.Ć.-M.)
| | - Tatjana Ćirković-Mitrović
- Department of Forest Establishment, Silviculture and Ecology, Institute of Forestry, 11030 Belgrade, Serbia; (F.J.); (S.E.); (T.Ć.-M.)
| | - Aleksandar Lučić
- Department of Genetics, Plant Breeding, Seed and Nursery Production, Institute of Forestry, 11030 Belgrade, Serbia;
| |
Collapse
|
7
|
Encinas-Valero M, Esteban R, Hereş AM, Becerril JM, García-Plazaola JI, Artexe U, Vivas M, Solla A, Moreno G, Curiel Yuste J. Photoprotective compounds as early markers to predict holm oak crown defoliation in declining Mediterranean savannahs. TREE PHYSIOLOGY 2022; 42:208-224. [PMID: 33611551 DOI: 10.1093/treephys/tpab006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Dehesas, human-shaped savannah-like ecosystems, where the overstorey is mainly dominated by the evergreen holm oak (Quercus ilex L. subsp. ballota (Desf.) Samp.), are classified as a global conservation priority. Despite being Q. ilex a species adapted to the harsh Mediterranean environmental conditions, recent decades have witnessed worrisome trends of climate-change-induced holm oak mortality. Holm oak decline is evidenced by tree vigour loss, gradual defoliation and ultimately, death. However, before losing leaves, trees undergo leaf-level physiological adjustments in response to stress that may represent a promising field to develop biochemical early markers of holm oak decline. This study explored holm oak photoprotective responses (pigments, tocopherols and photosynthetic performance) in 144 mature holm oak trees with different health statuses (i.e., crown defoliation percentages) from healthy to first-stage declining individuals. Our results indicate differential photochemical performance and photoprotective compounds concentration depending on the trees' health status. Declining trees showed higher energy dissipation yield, lower photochemical efficiency and enhanced photoprotective compounds. In the case of total violaxanthin cycle pigments (VAZ) and tocopherols, shifts in leaf contents were significant at very early stages of crown defoliation, even before visual symptoms of decline were evident, supporting the value of these biochemical compounds as early stress markers. Linear mixed-effects models results showed an acute response, both in the photosynthesis performance index and in the concentration of foliar tocopherols, during the onset of tree decline, whereas VAZ showed a more gradual response along the defoliation gradient of the crown. These results collectively demonstrate that once a certain threshold of leaf physiological damage is surpassed, that leaf cannot counteract oxidative stress and progressive loss of leaves occurs. Therefore, the use of both photosynthesis performance indexes and the leaf tocopherols concentration as early diagnostic tools might predict declining trends, facilitating the implementation of preventive measures to counteract crown defoliation.
Collapse
Affiliation(s)
- Manuel Encinas-Valero
- BC3-Basque Centre for Climate Change, Scientific Campus of the University of the Basque Country, 48940 Leioa, Bizkaia, Spain
| | - Raquel Esteban
- Department of Plant Biology and Ecology, University of Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Bizkaia, Spain
| | - Ana-Maria Hereş
- BC3-Basque Centre for Climate Change, Scientific Campus of the University of the Basque Country, 48940 Leioa, Bizkaia, Spain
- Department of Forest Sciences, Transilvania University of Braşov, Sirul Beethoven-1, 500123 Braşov, Romania
| | - José María Becerril
- Department of Plant Biology and Ecology, University of Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Bizkaia, Spain
| | - José Ignacio García-Plazaola
- Department of Plant Biology and Ecology, University of Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Bizkaia, Spain
| | - Unai Artexe
- Department of Plant Biology and Ecology, University of Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Bizkaia, Spain
| | - María Vivas
- Faculty of Forestry, Institute for Dehesa Research (INDEHESA), University of Extremadura, Avenida Virgen del Puerto 2, 10600 Plasencia, Spain
| | - Alejandro Solla
- Faculty of Forestry, Institute for Dehesa Research (INDEHESA), University of Extremadura, Avenida Virgen del Puerto 2, 10600 Plasencia, Spain
| | - Gerardo Moreno
- Faculty of Forestry, Institute for Dehesa Research (INDEHESA), University of Extremadura, Avenida Virgen del Puerto 2, 10600 Plasencia, Spain
| | - Jorge Curiel Yuste
- BC3-Basque Centre for Climate Change, Scientific Campus of the University of the Basque Country, 48940 Leioa, Bizkaia, Spain
- IKERBASQUE, Basque Foundation for SciencePlaza Euskadi 548009 Bilbao, Bizkaia, Spain
| |
Collapse
|
8
|
Dundas SJ, Ruthrof KX, Hardy GES, Fleming PA. Some like it hot: Drought-induced forest die-off influences reptile assemblages. ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2021. [DOI: 10.1016/j.actao.2021.103714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Relationships between nitrogen cycling microbial community abundance and composition reveal the indirect effect of soil pH on oak decline. THE ISME JOURNAL 2021; 15:623-635. [PMID: 33067585 PMCID: PMC8027100 DOI: 10.1038/s41396-020-00801-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 09/11/2020] [Accepted: 09/30/2020] [Indexed: 01/30/2023]
Abstract
Tree decline is a global concern and the primary cause is often unknown. Complex interactions between fluctuations in nitrogen (N) and acidifying compounds have been proposed as factors causing nutrient imbalances and decreasing stress tolerance of oak trees. Microorganisms are crucial in regulating soil N available to plants, yet little is known about the relationships between soil N-cycling and tree health. Here, we combined high-throughput sequencing and qPCR analysis of key nitrification and denitrification genes with soil chemical analyses to characterise ammonia-oxidising bacteria (AOB), archaea (AOA) and denitrifying communities in soils associated with symptomatic (declining) and asymptomatic (apparently healthy) oak trees (Quercus robur and Q. petraea) in the United Kingdom. Asymptomatic trees were associated with a higher abundance of AOB that is driven positively by soil pH. No relationship was found between AOA abundance and tree health. However, AOA abundance was driven by lower concentrations of NH4+, further supporting the idea of AOA favouring lower soil NH4+ concentrations. Denitrifier abundance was influenced primarily by soil C:N ratio, and correlations with AOB regardless of tree health. These findings indicate that amelioration of soil acidification by balancing C:N may affect AOB abundance driving N transformations, reducing stress on declining oak trees.
Collapse
|
10
|
Grossiord C, Buckley TN, Cernusak LA, Novick KA, Poulter B, Siegwolf RTW, Sperry JS, McDowell NG. Plant responses to rising vapor pressure deficit. THE NEW PHYTOLOGIST 2020; 226:1550-1566. [PMID: 32064613 DOI: 10.1111/nph.16485] [Citation(s) in RCA: 375] [Impact Index Per Article: 93.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 02/04/2020] [Indexed: 05/24/2023]
Abstract
Recent decades have been characterized by increasing temperatures worldwide, resulting in an exponential climb in vapor pressure deficit (VPD). VPD has been identified as an increasingly important driver of plant functioning in terrestrial biomes and has been established as a major contributor in recent drought-induced plant mortality independent of other drivers associated with climate change. Despite this, few studies have isolated the physiological response of plant functioning to high VPD, thus limiting our understanding and ability to predict future impacts on terrestrial ecosystems. An abundance of evidence suggests that stomatal conductance declines under high VPD and transpiration increases in most species up until a given VPD threshold, leading to a cascade of subsequent impacts including reduced photosynthesis and growth, and higher risks of carbon starvation and hydraulic failure. Incorporation of photosynthetic and hydraulic traits in 'next-generation' land-surface models has the greatest potential for improved prediction of VPD responses at the plant- and global-scale, and will yield more mechanistic simulations of plant responses to a changing climate. By providing a fully integrated framework and evaluation of the impacts of high VPD on plant function, improvements in forecasting and long-term projections of climate impacts can be made.
Collapse
Affiliation(s)
- Charlotte Grossiord
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
- École Polytechnique Fédérale de Lausanne EPFL, School of Architecture, Civil and Environmental Engineering ENAC, 1015, Lausanne, Switzerland
| | - Thomas N Buckley
- Department of Plant Sciences, University of California, Davis, Davis, CA, 95616, USA
| | - Lucas A Cernusak
- College of Science and Engineering, James Cook University, Cairns, Qld, 4814, Australia
| | - Kimberly A Novick
- School of Public and Environmental Affairs, Indiana University Bloomington, Bloomington, IN, 47405, USA
| | - Benjamin Poulter
- Biospheric Sciences Lab, NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA
| | - Rolf T W Siegwolf
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - John S Sperry
- Department of Biology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Nate G McDowell
- Earth Systems Science Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| |
Collapse
|
11
|
Margalef-Marrase J, Pérez-Navarro MÁ, Lloret F. Relationship between heatwave-induced forest die-off and climatic suitability in multiple tree species. GLOBAL CHANGE BIOLOGY 2020; 26:3134-3146. [PMID: 32064733 DOI: 10.1111/gcb.15042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 01/20/2020] [Accepted: 02/02/2020] [Indexed: 06/10/2023]
Abstract
In recent decades, many forest die-off events have been reported in relation to climate-change-induced episodes, such as droughts and heat waves. To understand how these extreme climatic events induce forest die-off, it is important to find a tool to standardize the climatic conditions experienced by different populations during a specific climatic event, taking into account the historic climatic conditions of the site where these populations live (bioclimatic niche). In this study, we used estimates of climatic suitability calculated from species distribution models (SDMs) for such purpose. We studied forest die-off across France during the 2003 heatwave that affected Western Europe, using 2,943 forest inventory plots dominated by 14 single tree species. Die-off severity was estimated by Normalized Difference Vegetation Index (NDVI) loss using Moderate-resolution Imaging Spectroradiometer remote sensor imagery. Climatic suitability at the local level during the historical 1979-2002 period (HCS), the episode time (2003; ECS) and suitability deviance during the historical period (HCS-SD) were calculated for each species by means of boosted regression tree models using the CHELSA climate database and occurrences extracted from European forest inventories. Low HCS-SD and high mean annual temperature explained the overall regional pattern of vulnerability to die-off across different monospecific forests. The combination of high historical and low episode climatic suitability also contributed significantly to overall forest die-off. Furthermore, we observed different species-specific relationships between die-off vulnerability and climatic suitability: Sub-Mediterranean and Mediterranean species tended to be vulnerable in historically more suitable localities (high HCS), whereas Euro-Siberian species presented greater vulnerability when the hot drought episode was more intense. We demonstrated that at regional scale, past climatic legacy plays an important role in explaining NDVI loss during the episode. Moreover, we demonstrated that SDMs-derived indexes, such as HCS, ECS and HCS-SD, could constitute a tool for standardizing the ways that populations and species experience climatic variability across time and space.
Collapse
Affiliation(s)
| | | | - Francisco Lloret
- CREAF, Cerdanyola del Vallès, Spain
- Unitat d'Ecologia, Univ. Autònoma Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
12
|
Half-Sib Lines of Pedunculate Oak (Quercus robur L.) Respond Differently to Drought Through Biometrical, Anatomical and Physiological Traits. FORESTS 2020. [DOI: 10.3390/f11020153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Quercus robur L. is one of the most valued tree species of deciduous temperate forests. However, in the last decade, serious oak declines and loss of adaptation plasticity have been reported throughout Europe as a consequence of drought. Therefore, the aim of the present study was to define the adaptation potential of five Q. robur half-sib lines from the UNESCO Biosphere Reserve Mura-Drava-Danube to drought, using physiological, anatomical and biometrical traits. Half-sib lines that exhibited drought tolerance had particular suites of trait expression regarding biometrical traits (seedling height, root length, root to shoot ratio of dry mass and specific leaf area), leaf stomatal traits (stomatal density per mm2, stomata guard cell length and width, stomatal aperture length and width) and leaf structural traits (adaxial epidermis thickness, palisade parenchyma thickness, spongy parenchyma thickness, lamina thickness). All of the observed parameters of chlorophyll a fluorescence were shown to be good indicators of short-term and severe drought. For the selection of drought-tolerant half-sib lines, all studied chlorophyll a fluorescence parameters associated with the heat dissipation of light energy (coefficient of non-photochemical quenching, quantum yield of regulated energy dissipation, Stern-Volmer type non-photochemical fluorescence quenching) and one parameter related to photochemical dissipation of light energy (effective quantum yield (efficiency) of PS II photochemistry) were proven to be suitable. On the other hand, the coefficient of photochemical quenching, coefficient of photochemical fluorescence quenching assuming interconnected photosystem II antennae and electron transport rate were not suitable for distinguishing the different responses of the studied half-sib lines under drought. The importance of results of the present study is in the selection of drought-tolerant Q. robur half-sib lines for future reforestation programs, particularly in protected areas with sensitive forest management and restricted activities for mitigation of the adverse effects of climate changes.
Collapse
|
13
|
Foliar and Wood Traits Covary along a Vertical Gradient within the Crown of Long-Lived Light-Demanding Species of the Congo Basin Semi-Deciduous Forest. FORESTS 2019. [DOI: 10.3390/f11010035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Plant functional traits have shown to be relevant predictors of forest functional responses to climate change. However, the trait-based approach to study plant performances and ecological strategies has mostly been focused on trait comparisons at the interspecific and intraspecific levels. In this study, we analyzed traits variation and association at the individual level. We measured wood and leaf traits at different height locations within the crown of five individuals of Pericopsis elata (Harms) Meeuwen (Fabaceae) from the northern tropical forest of the Democratic Republic of the Congo. All traits varied between and within individuals. The between-individual variation was more important for leaf traits (23%–48%) than for wood traits (~10%) where the within-individual variation showed to be more important (33%–39%). The sample location height within the crown was found to be the driving factor of this within-individual variation. In a gradient from the base to the top of the crown, theoretical specific hydraulic conductivity and specific leaf area decreased while the stomatal density increased. We found significant relationships among traits and between wood and leaf traits. However, these relationships varied with the position within the crown. The relationship between vessel size and vessel density was negative at the bottom part of the crown but positive upward. Also, the negative relationship between stomatal density and stomatal size became stronger with increasing height within the crown. Finally, the positive relationship between specific leaf area and theoretical specific hydraulic conductivity became stronger in higher parts of the crown, suggesting that P. elata constantly adapts its water use with respect to its water supply, more strongly at the top of the crown where the environment is more extreme and less buffered against environmental fluctuations.
Collapse
|
14
|
Häder DP, Barnes PW. Comparing the impacts of climate change on the responses and linkages between terrestrial and aquatic ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 682:239-246. [PMID: 31121350 DOI: 10.1016/j.scitotenv.2019.05.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/23/2019] [Accepted: 05/03/2019] [Indexed: 05/20/2023]
Abstract
Aquatic and terrestrial organisms are being exposed to a number of anthropogenically-induced environmental stresses as a consequence of climate change. In addition, climate change is altering various linkages that exist between ecosystems on land and in water. Here we compare and contrast how climate change is altering aquatic and terrestrial environments and address some of the ways that the organisms in these ecosystems, especially the primary producers, are being affected by climate change factors, including changes in temperature, moisture, atmospheric carbon dioxide and solar UV radiation. Whereas there are some responses to climate change in common between terrestrial and aquatic ecosystems (e.g., changes in species composition and shifting geographic ranges and distributions), there are also responses that fundamentally differ between these two (e.g., responses to UV radiation). Climate change is also disrupting land-water connections in ways that influence biogeochemical and hydrologic cycles, and biosphere-atmosphere interactions in ways that can modify how aquatic and terrestrial ecosystems are affected by climate change and can influence climate change. The effects of climate change on these ecosystems are having wide-ranging effects on ecosystem biodiversity, structure and function and the abilities of these systems to provide essential services.
Collapse
Affiliation(s)
- Donat-P Häder
- Friedrich-Alexander University Erlangen-Nürnberg, Dept. Biology, 91096 Möhrendorf, Neue Str. 9, Germany.
| | - Paul W Barnes
- Loyola University New Orleans, Dept. Biological Sciences and Environment Program, 6363 St. Charles Ave., New Orleans, LA 70118, USA
| |
Collapse
|
15
|
Kharuk VI, Shushpanov AS, Petrov IA, Demidko DA, Im ST, Knorre AA. Fir (Abies sibirica Ledeb.) Mortality in Mountain Forests of the Eastern Sayan Ridge, Siberia. CONTEMP PROBL ECOL+ 2019. [DOI: 10.1134/s199542551904005x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Bachofen C, Wohlgemuth T, Moser B. Biomass partitioning in a future dry and
CO
2
enriched climate: Shading aggravates drought effects in Scots pine but not European black pine seedlings. J Appl Ecol 2019. [DOI: 10.1111/1365-2664.13325] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christoph Bachofen
- Forest DynamicsSwiss Federal Institute for Forest, Snow and Landscape Research WSL Birmensdorf Switzerland
- Department of Environmental Systems ScienceETH Zurich Zürich Switzerland
| | - Thomas Wohlgemuth
- Forest DynamicsSwiss Federal Institute for Forest, Snow and Landscape Research WSL Birmensdorf Switzerland
| | - Barbara Moser
- Forest DynamicsSwiss Federal Institute for Forest, Snow and Landscape Research WSL Birmensdorf Switzerland
| |
Collapse
|
17
|
Caldeira MC. The timing of drought coupled with pathogens may boost tree mortality. TREE PHYSIOLOGY 2019; 39:1-5. [PMID: 30615167 DOI: 10.1093/treephys/tpy141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 12/07/2018] [Indexed: 05/14/2023]
Affiliation(s)
- Maria C Caldeira
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
18
|
Lloret F, Kitzberger T. Historical and event-based bioclimatic suitability predicts regional forest vulnerability to compound effects of severe drought and bark beetle infestation. GLOBAL CHANGE BIOLOGY 2018; 24:1952-1964. [PMID: 29316042 DOI: 10.1111/gcb.14039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/30/2017] [Accepted: 12/13/2017] [Indexed: 06/07/2023]
Abstract
Vulnerability to climate change, and particularly to climate extreme events, is expected to vary across species ranges. Thus, we need tools to standardize the variability in regional climatic legacy and extreme climate across populations and species. Extreme climate events (e.g., droughts) can erode populations close to the limits of species' climatic tolerance. Populations in climatic-core locations may also become vulnerable because they have developed a greater demand for resources (i.e., water) that cannot be enough satisfied during the periods of scarcity. These mechanisms can become exacerbated in tree populations when combined with antagonistic biotic interactions, such as insect infestation. We used climatic suitability indices derived from Species Distribution Models (SDMs) to standardize the climatic conditions experienced across Pinus edulis populations in southwestern North America, during a historical period (1972-2000) and during an extreme event (2001-2007), when the compound effect of hot drought and bark beetle infestation caused widespread die-off and mortality. Pinus edulis climatic suitability diminished dramatically during the die-off period, with remarkable variation between years. P. edulis die-off occurred mainly not just in sites that experienced lower climatic suitability during the drought but also where climatic suitability was higher during the historical period. The combined effect of historically high climatic suitability and a marked decrease in the climatic suitability during the drought best explained the range-wide mortality. Lagged effects of climatic suitability loss in previous years and co-occurrence of Juniperus monosperma also explained P. edulis die-off in particular years. Overall, the study shows that past climatic legacy, likely determining acclimation, together with competitive interactions plays a major role in responses to extreme drought. It also provides a new approach to standardize the magnitude of climatic variability across populations using SDMs, improving our capacity to predict population's or species' vulnerability to climatic change.
Collapse
Affiliation(s)
- Francisco Lloret
- CREAF Cerdanyola del Vallès, Bellaterra, Spain
- Univ Autònoma Barcelona, Cerdanyola del Vallès, Spain
| | - Thomas Kitzberger
- Laboratorio Ecotono, INIBIOMA-CONICET, Universidad Nacional del Comahue, Bariloche, Argentina
| |
Collapse
|
19
|
Dai Y, Wang L, Wan X. Relative contributions of hydraulic dysfunction and carbohydrate depletion during tree mortality caused by drought. AOB PLANTS 2018; 10:plx069. [PMID: 29367873 PMCID: PMC5774510 DOI: 10.1093/aobpla/plx069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 11/30/2017] [Indexed: 05/29/2023]
Abstract
Drought-induced tree mortality has been observed worldwide. Nevertheless, the physiological mechanisms underlying this phenomenon are still being debated. Potted Robinia pseudoacacia and Platycladus orientalis saplings were subjected to drought and their hydraulic failure and carbon starvation responses were studied. They underwent simulated fast drought (FD) and slow drought (SD) until death. The dynamics of their growth, photosynthesis, water relations and carbohydrate concentration were measured. The results showed that during drought, growth and photosynthesis of all saplings were significantly reduced in both species. The predawn water potential in both species was ~ -8 MPa at mortality. The percentage loss of conductivity (PLC) was at a maximum at mortality under both FD and SD. For R. pseudoacacia and P. orientalis, they were >95 and ~45 %, respectively. At complete defoliation, the PLC of R. pseudoacacia was ~90 % but the trees continued to survive for around 46 days. The non-structural carbohydrate (NSC) concentrations in the stems and roots of both FD and SD R. pseudoacacia declined to a very low level near death. In contrast, the NSC concentrations in the needles, stems and roots of P. orientalis at mortality under FD did not significantly differ from those of the control, whereas the NSC concentrations in SD P. orientalis stems and roots at death were significantly lower than those of the control. These results suggest that the duration of the drought affected NSC at mortality in P. orientalis. In addition, the differences in NSC between FD and SD P. orientalis did not alter mortality thresholds associated with hydraulic failure. The drought-induced death of R. pseudoacacia occurred at 95 % PLC for both FD and SD, indicating that hydraulic failure played an important role in mortality. Nevertheless, the consistent decline in NSC in R. pseudoacacia saplings following drought-induced defoliation may have also contributed to its mortality.
Collapse
Affiliation(s)
- Yongxin Dai
- Institute of New Forestry Technology, Chinese Academy of Forestry, Beijing, P.R. China
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, P.R. China
| | - Lin Wang
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, P.R. China
| | - Xianchong Wan
- Institute of New Forestry Technology, Chinese Academy of Forestry, Beijing, P.R. China
| |
Collapse
|
20
|
Buras A, Menzel A. Projecting Tree Species Composition Changes of European Forests for 2061-2090 Under RCP 4.5 and RCP 8.5 Scenarios. FRONTIERS IN PLANT SCIENCE 2018; 9:1986. [PMID: 30687375 PMCID: PMC6337730 DOI: 10.3389/fpls.2018.01986] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 12/20/2018] [Indexed: 05/22/2023]
Abstract
Climate change poses certain threats to the World's forests. That is, tree performance declines if species-specific, climatic thresholds are surpassed. Prominent climatic changes negatively affecting tree performance are mainly associated with so-called hotter droughts. In combination with biotic pathogens, hotter droughts cause a higher tree vulnerability and thus mortality. As a consequence, global forests are expected to undergo vast changes in the course of climate change. Changed climatic conditions may on the one hand locally result in more frequent dieback of a particular tree species but on the other hand allow other-locally yet absent species-to establish themselves, thereby potentially changing local tree-species diversity. Although several studies provide valuable insights into potential risks of prominent European tree species, we yet lack a comprehensive assessment on how and to which extent the composition of European forests may change. To overcome this research gap, we here project future tree-species compositions of European forests. We combine the concept of climate analogs with national forest inventory data to project the tree-species composition for the 26 most important European tree species at any given location in Europe for the period 2061-2090 and the two most relevant CMIP5 scenarios RCP 4.5 and RCP 8.5. Our results indicate significant changes in European forests species compositions. Species richness generally declined in the Mediterranean and Central European lowlands, while Scandinavian and Central European high-elevation forests were projected an increasing diversity. Moreover, 76% (RCP 4.5) and 80% (RCP 8.5) of the investigated locations indicated a decreasing abundance of the locally yet most abundant tree species while 74 and 68% were projected an increasing tree-species diversity. Altogether, our study confirms the expectation of European forests undergoing remarkable changes until the end of the 21st century (i.e., 2061-2090) and provides a scientific basement for climate change adaptation with important implications for forestry and nature conservation.
Collapse
Affiliation(s)
- Allan Buras
- Professorship of Ecoclimatology, Technische Universität München, Freising, Germany
- Land-Surface-Atmosphere-Interactions, Technische Universität München, Freising, Germany
- *Correspondence: Allan Buras,
| | - Annette Menzel
- Professorship of Ecoclimatology, Technische Universität München, Freising, Germany
- Institute of Advanced Study, Technische Universität München, Garching, Germany
| |
Collapse
|
21
|
Detecting Drought-Induced Tree Mortality in Sierra Nevada Forests with Time Series of Satellite Data. REMOTE SENSING 2017. [DOI: 10.3390/rs9090929] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A five-year drought in California led to a significant increase in tree mortality in the Sierra Nevada forests from 2012 to 2016. Landscape level monitoring of forest health and tree dieback is critical for vegetation and disaster management strategies. We examined the capability of multispectral imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) in detecting and explaining the impacts of the recent severe drought in Sierra Nevada forests. Remote sensing metrics were developed to represent baseline forest health conditions and drought stress using time series of MODIS vegetation indices (VIs) and a water index. We used Random Forest algorithms, trained with forest aerial detection surveys data, to detect tree mortality based on the remote sensing metrics and topographical variables. Map estimates of tree mortality demonstrated that our two-stage Random Forest models were capable of detecting the spatial patterns and severity of tree mortality, with an overall producer’s accuracy of 96.3% for the classification Random Forest (CRF) and a RMSE of 7.19 dead trees per acre for the regression Random Forest (RRF). The overall omission errors of the CRF ranged from 19% for the severe mortality class to 27% for the low mortality class. Interpretations of the models revealed that forests with higher productivity preceding the onset of drought were more vulnerable to drought stress and, consequently, more likely to experience tree mortality. This method highlights the importance of incorporating baseline forest health data and measurements of drought stress in understanding forest response to severe drought.
Collapse
|
22
|
Felton AJ, Smith MD. Integrating plant ecological responses to climate extremes from individual to ecosystem levels. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160142. [PMID: 28483872 PMCID: PMC5434093 DOI: 10.1098/rstb.2016.0142] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2017] [Indexed: 01/28/2023] Open
Abstract
Climate extremes will elicit responses from the individual to the ecosystem level. However, only recently have ecologists begun to synthetically assess responses to climate extremes across multiple levels of ecological organization. We review the literature to examine how plant responses vary and interact across levels of organization, focusing on how individual, population and community responses may inform ecosystem-level responses in herbaceous and forest plant communities. We report a high degree of variability at the individual level, and a consequential inconsistency in the translation of individual or population responses to directional changes in community- or ecosystem-level processes. The scaling of individual or population responses to community or ecosystem responses is often predicated upon the functional identity of the species in the community, in particular, the dominant species. Furthermore, the reported stability in plant community composition and functioning with respect to extremes is often driven by processes that operate at the community level, such as species niche partitioning and compensatory responses during or after the event. Future research efforts would benefit from assessing ecological responses across multiple levels of organization, as this will provide both a holistic and mechanistic understanding of ecosystem responses to increasing climatic variability.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'.
Collapse
Affiliation(s)
- Andrew J Felton
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO 80523, USA
| | - Melinda D Smith
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
23
|
Kharuk VI, Im ST, Petrov IA, Golyukov AS, Ranson KJ, Yagunov MN. Climate-induced mortality of Siberian pine and fir in the Lake Baikal Watershed, Siberia. FOREST ECOLOGY AND MANAGEMENT 2017; 384:191-199. [PMID: 30002567 PMCID: PMC6038141 DOI: 10.1016/j.foreco.2016.10.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Siberian pine (Pinus sibirica) and fir (Abies sibirica) (so called "dark needle conifers", DNC) showed decreased radial growth increment within the Lake Baikal watershed since the 1980s with increasing mortality recorded since the year 2000. Tree ring width was strongly correlated with vapor pressure deficit, aridity and root zone moisture. Water stress from droughts made trees more susceptible to insect attacks causing mortality in about 10% of DNC stands within the Lake Baikal watershed. Within Siberia DNC mortality increased in the southern part of the DNC range. Biogeographically, tree mortality was located within the DNC - forest-steppes transition. Tree mortality was significantly correlated with drought and soil moisture anomalies. Within the interior of the DNC range mortality occurred within relief features with high water stress risk (i.e., steep convex south facing slopes with shallow well-drained soils). In general, DNC mortality in Siberia was induced by increased aridity and severe drought (inciting factors) in synergy with biotic attacks (contributing factor). In future climate scenarios with predicted increase in aridity DNC could be eliminated from the southern part of its current range and will be replaced by drought-resistant conifers and broadleaf species (e.g., Larix sibirica, Pinus silvestris, and Betula pubescence).
Collapse
Affiliation(s)
- Viacheslav I. Kharuk
- Sukachev Institute of Forest, 660036, Krasnoyarsk, Russia
- Siberian Federal University, 660041, Krasnoyarsk, Russia
| | - Sergey T. Im
- Sukachev Institute of Forest, 660036, Krasnoyarsk, Russia
- Siberian Federal University, 660041, Krasnoyarsk, Russia
- Siberian State Aerospace University, 660014, Krasnoyarsk, Russia
| | - Ilya A. Petrov
- Sukachev Institute of Forest, 660036, Krasnoyarsk, Russia
| | - Alexei S. Golyukov
- Sukachev Institute of Forest, 660036, Krasnoyarsk, Russia
- Siberian Federal University, 660041, Krasnoyarsk, Russia
| | | | | |
Collapse
|
24
|
Kroschel WA, King SL, Keim RF. Tree Regeneration by Seed in Bottomland Hardwood Forests: A Review. SOUTHEAST NAT 2016. [DOI: 10.1656/058.015.sp907] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Whitney A. Kroschel
- School of Renewable Natural Resources, Louisiana State University, Baton Rouge, LA 70803
| | - Sammy L. King
- US Geological Survey, Louisiana Cooperative Fish and Wildlife Research Unit, LSU School of Renewable Natural Resources, Baton Rouge, LA 70803
| | - Richard F. Keim
- School of Renewable Natural Resources, Louisiana State University, Baton Rouge, LA 70803
| |
Collapse
|
25
|
Kharuk VI, Im ST, Petrov IA, Yagunov MN. Decline of dark coniferous stands in Baikal Region. CONTEMP PROBL ECOL+ 2016. [DOI: 10.1134/s1995425516050073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Major Changes in Growth Rate and Growth Variability of Beech (Fagus sylvatica L.) Related to Soil Alteration and Climate Change in Belgium. FORESTS 2016. [DOI: 10.3390/f7080174] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
|
28
|
Lloret F, García C. Inbreeding and neighbouring vegetation drive drought‐induced die‐off within juniper populations. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12655] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Francisco Lloret
- CREAF Cerdanyola del Vallés Barcelona 08193 Spain
- Unitat d'Ecologia Department of Biologia Animal, Biologia Vegetal i Ecologia Universitat Autonòma Barcelona Cerdanyola del Vallés Barcelona 08193 Spain
| | - Cristina García
- Investigação em Biodiversidade e Biología Evolutiva (CIBIO/InBIO‐UP) Campus Agrário de Vairão, Rua Padre Armando Quintas Vairão 4485‐661 Porto Portugal
| |
Collapse
|
29
|
Acoustic Emissions to Measure Drought-Induced Cavitation in Plants. APPLIED SCIENCES-BASEL 2016. [DOI: 10.3390/app6030071] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
30
|
Roschanski AM, Csilléry K, Liepelt S, Oddou-Muratorio S, Ziegenhagen B, Huard F, Ullrich KK, Postolache D, Vendramin GG, Fady B. Evidence of divergent selection for drought and cold tolerance at landscape and local scales inAbies albaMill. in the French Mediterranean Alps. Mol Ecol 2016; 25:776-94. [DOI: 10.1111/mec.13516] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 11/20/2015] [Accepted: 12/09/2015] [Indexed: 01/13/2023]
Affiliation(s)
- Anna M. Roschanski
- Conservation Biology; Faculty of Biology; University of Marburg; Karl-von-Frisch-Straße Marburg 35032 Germany
| | - Katalin Csilléry
- INRA, UR629; Ecologie des Forêts Méditerranéennes (URFM); Avignon Cedex 9 84914 France
| | - Sascha Liepelt
- Conservation Biology; Faculty of Biology; University of Marburg; Karl-von-Frisch-Straße Marburg 35032 Germany
| | | | - Birgit Ziegenhagen
- Conservation Biology; Faculty of Biology; University of Marburg; Karl-von-Frisch-Straße Marburg 35032 Germany
| | | | - Kristian K. Ullrich
- Cell Biology; Faculty of Biology; University of Marburg; Karl-von-Frisch-Straße Marburg 35032 Germany
| | - Dragos Postolache
- Scuola Superiore Sant'Anna; Piazza Martiri della Libertà 33 Pisa 56127 Italy
- Institute of Biosciences and Bioresources; National Research Council (CNR); Via Madonna del Piano 10 Sesto Fiorentino (Firenze) 50019 Italy
- National Institute of Forest Research and Development (INCDS); Simeria Research Station; Str. Biscaria 1 Simeria 335900 Romania
| | - Giovanni G. Vendramin
- Institute of Biosciences and Bioresources; National Research Council (CNR); Via Madonna del Piano 10 Sesto Fiorentino (Firenze) 50019 Italy
| | - Bruno Fady
- INRA, UR629; Ecologie des Forêts Méditerranéennes (URFM); Avignon Cedex 9 84914 France
| |
Collapse
|
31
|
Climatic events inducing die-off in Mediterranean shrublands: are species’ responses related to their functional traits? Oecologia 2016; 180:961-73. [DOI: 10.1007/s00442-016-3550-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 01/04/2016] [Indexed: 11/25/2022]
|
32
|
Vandegehuchte MW, Bloemen J, Vergeynst LL, Steppe K. Woody tissue photosynthesis in trees: salve on the wounds of drought? THE NEW PHYTOLOGIST 2015; 208:998-1002. [PMID: 26226885 DOI: 10.1111/nph.13599] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/08/2015] [Indexed: 05/24/2023]
Affiliation(s)
- Maurits W Vandegehuchte
- Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium
| | - Jasper Bloemen
- Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium
- Institute of Ecology, Research Group Ecophysiology and Ecosystem Processes, University of Innsbruck, Sternwartestraβe 15, 6020, Innsbruck, Austria
| | - Lidewei L Vergeynst
- Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000, Ghent, Belgium
| |
Collapse
|
33
|
Allen CD, Breshears DD, McDowell NG. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 2015. [DOI: 10.1890/es15-00203.1] [Citation(s) in RCA: 1345] [Impact Index Per Article: 149.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
34
|
Aguadé D, Poyatos R, Gómez M, Oliva J, Martínez-Vilalta J. The role of defoliation and root rot pathogen infection in driving the mode of drought-related physiological decline in Scots pine (Pinus sylvestris L.). TREE PHYSIOLOGY 2015; 35:229-42. [PMID: 25724949 DOI: 10.1093/treephys/tpv005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 01/16/2015] [Indexed: 05/23/2023]
Abstract
Drought-related tree die-off episodes have been observed in all vegetated continents. Despite much research effort, however, the multiple interactions between carbon starvation, hydraulic failure and biotic agents in driving tree mortality under field conditions are still not well understood. We analysed the seasonal variability of non-structural carbohydrates (NSCs) in four organs (leaves, branches, trunk and roots), the vulnerability to embolism in roots and branches, native embolism (percentage loss of hydraulic conductivity (PLC)) in branches and the presence of root rot pathogens in defoliated and non-defoliated individuals in a declining Scots pine (Pinus sylvestris L.) population in the NE Iberian Peninsula in 2012, which included a particularly dry and warm summer. No differences were observed between defoliated and non-defoliated pines in hydraulic parameters, except for a higher vulnerability to embolism at pressures below -2 MPa in roots of defoliated pines. No differences were found between defoliation classes in branch PLC. Total NSC (TNSC, soluble sugars plus starch) values decreased during drought, particularly in leaves. Defoliation reduced TNSC levels across tree organs, especially just before (June) and during (August) drought. Root rot infection by the fungal pathogen Onnia P. Karst spp. was detected but it did not appear to be associated to tree defoliation. However, Onnia infection was associated with reduced leaf-specific hydraulic conductivity and sapwood depth, and thus contributed to hydraulic impairment, especially in defoliated pines. Infection was also associated with virtually depleted root starch reserves during and after drought in defoliated pines. Moreover, defoliated and infected trees tended to show lower basal area increment. Overall, our results show the intertwined nature of physiological mechanisms leading to drought-induced mortality and the inherent difficulty of isolating their contribution under field conditions.
Collapse
Affiliation(s)
- D Aguadé
- CREAF, Cerdanyola del Vallès, E-08193 Barcelona, Spain Universitat Autònoma Barcelona, Cerdanyola del Vallès, E-08193 Barcelona, Spain
| | - R Poyatos
- CREAF, Cerdanyola del Vallès, E-08193 Barcelona, Spain
| | - M Gómez
- Forest Science Centre of Catalonia, Solsona, Catalonia, Spain
| | - J Oliva
- Department of Forest Mycology and Plant Pathology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Box 7026, S-750 07 Uppsala, Sweden
| | - J Martínez-Vilalta
- CREAF, Cerdanyola del Vallès, E-08193 Barcelona, Spain Universitat Autònoma Barcelona, Cerdanyola del Vallès, E-08193 Barcelona, Spain
| |
Collapse
|
35
|
Oliva J, Stenlid J, Martínez-Vilalta J. The effect of fungal pathogens on the water and carbon economy of trees: implications for drought-induced mortality. THE NEW PHYTOLOGIST 2014; 203:1028-1035. [PMID: 24824859 DOI: 10.1111/nph.12857] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Affiliation(s)
- Jonàs Oliva
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, S-750 07, Uppsala, Sweden
| | - Jan Stenlid
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, S-750 07, Uppsala, Sweden
| | - Jordi Martínez-Vilalta
- CREAF, Cerdanyola del Vallès 08193, Barcelona, Spain
- Universitat Autònoma Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| |
Collapse
|
36
|
Intraspecific variability in functional traits matters: case study of Scots pine. Oecologia 2014; 175:1337-48. [DOI: 10.1007/s00442-014-2967-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 05/06/2014] [Indexed: 10/25/2022]
|
37
|
Clifford MJ, Royer PD, Cobb NS, Breshears DD, Ford PL. Precipitation thresholds and drought-induced tree die-off: insights from patterns of Pinus edulis mortality along an environmental stress gradient. THE NEW PHYTOLOGIST 2013; 200:413-421. [PMID: 23772860 DOI: 10.1111/nph.12362] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 05/15/2013] [Indexed: 06/02/2023]
Abstract
Recent regional tree die-off events appear to have been triggered by a combination of drought and heat - referred to as 'global-change-type drought'. To complement experiments focused on resolving mechanisms of drought-induced tree mortality, an evaluation of how patterns of tree die-off relate to highly spatially variable precipitation is needed. Here, we explore precipitation relationships with a die-off event of pinyon pine (Pinus edulis Engelm.) in southwestern North America during the 2002-2003 global-change-type drought. Pinyon die-off and its relationship with precipitation was quantified spatially along a precipitation gradient in north-central New Mexico with standard field plot measurements of die-off combined with canopy cover derived from normalized burn ratio (NBR) from Landsat imagery. Pinyon die-off patterns revealed threshold responses to precipitation (cumulative 2002-2003) and vapor pressure deficit (VPD), with little to no mortality (< 10%) above 600 mm and below warm season VPD of c. 1.7 kPa. [Correction added after online publication 17 June 2013; in the preceding sentence, the word 'below' has been inserted.] Our results refine how precipitation patterns within a region influence pinyon die-off, revealing a precipitation and VPD threshold for tree mortality and its uncertainty band where other factors probably come into play - a response type that influences stand demography and landscape heterogeneity and is of general interest, yet has not been documented.
Collapse
Affiliation(s)
- Michael J Clifford
- Earth and Environmental Science Department, Lehigh University, Bethlehem, PA, 18015, USA
| | - Patrick D Royer
- Columbia Basin Groundwater Management Area, Kennewick, WA, 99366, USA
- Intera Geoscience and Engineering, Richland, WA, 99354, USA
| | - Neil S Cobb
- Merriam-Powell Center for Environmental Research, Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - David D Breshears
- Department of Ecology & Evolutionary Biology, School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, 85721, USA
| | - Paulette L Ford
- USDA Forest Service Rocky Mountain Research Station, Albuquerque, NM, 87102, USA
| |
Collapse
|
38
|
Cavin L, Mountford EP, Peterken GF, Jump AS. Extreme drought alters competitive dominance within and between tree species in a mixed forest stand. Funct Ecol 2013. [DOI: 10.1111/1365-2435.12126] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Liam Cavin
- Biological and Environmental Sciences; School of Natural Sciences; University of Stirling; Stirling FK9 4LA UK
| | - Edward P. Mountford
- Joint Nature Conservation Committee; Monkstone House, City Road Peterborough PE1 1JY UK
| | | | - Alistair S. Jump
- Biological and Environmental Sciences; School of Natural Sciences; University of Stirling; Stirling FK9 4LA UK
| |
Collapse
|
39
|
Gálos B, Hagemann S, Hänsler A, Kindermann G, Rechid D, Sieck K, Teichmann C, Jacob D. Case study for the assessment of the biogeophysical effects of a potential afforestation in Europe. CARBON BALANCE AND MANAGEMENT 2013; 8:3. [PMID: 23369380 PMCID: PMC3626884 DOI: 10.1186/1750-0680-8-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 12/10/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND A regional-scale sensitivity study has been carried out to investigate the climatic effects of forest cover change in Europe. Applying REMO (regional climate model of the Max Planck Institute for Meteorology), the projected temperature and precipitation tendencies have been analysed for summer, based on the results of the A2 IPCC-SRES emission scenario simulation. For the end of the 21st century it has been studied, whether the assumed forest cover increase could reduce the effects of the greenhouse gas concentration change. RESULTS Based on the simulation results, biogeophysical effects of the hypothetic potential afforestation may lead to cooler and moister conditions during summer in most parts of the temperate zone. The largest relative effects of forest cover increase can be expected in northern Germany, Poland and Ukraine, which is 15-20% of the climate change signal for temperature and more than 50% for precipitation. In northern Germany and France, potential afforestation may enhance the effects of emission change, resulting in more severe heavy precipitation events. The probability of dry days and warm temperature extremes would decrease. CONCLUSIONS Large contiguous forest blocks can have distinctive biogeophysical effect on the climate on regional and local scale. In certain regions of the temperate zone, climate change signal due to greenhouse gas emission can be reduced by afforestation due to the dominant evaporative cooling effect during summer. Results of this case study with a hypothetical land cover change can contribute to the assessment of the role of forests in adapting to climate change. Thus they can build an important basis of the future forest policy.
Collapse
Affiliation(s)
- Borbála Gálos
- Max Planck Institute for Meteorology, Hamburg, Germany
| | | | - Andreas Hänsler
- Climate Service Center – eine Einrichtung am Helmholtz-Zentrum Geesthacht, Hamburg, Germany
| | - Georg Kindermann
- IIASA, International Institute for Applied Systems Analysis, Laxenburg, Austria
| | - Diana Rechid
- Max Planck Institute for Meteorology, Hamburg, Germany
| | - Kevin Sieck
- Max Planck Institute for Meteorology, Hamburg, Germany
| | | | - Daniela Jacob
- Max Planck Institute for Meteorology, Hamburg, Germany
- Climate Service Center – eine Einrichtung am Helmholtz-Zentrum Geesthacht, Hamburg, Germany
| |
Collapse
|
40
|
Yuste JC, Barba J, Fernandez-Gonzalez AJ, Fernandez-Lopez M, Mattana S, Martinez-Vilalta J, Nolis P, Lloret F. Changes in soil bacterial community triggered by drought-induced gap succession preceded changes in soil C stocks and quality. Ecol Evol 2013; 2:3016-31. [PMID: 23301169 PMCID: PMC3538997 DOI: 10.1002/ece3.409] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 09/19/2012] [Accepted: 09/25/2012] [Indexed: 11/11/2022] Open
Abstract
The aim of this study was to understand how drought-induced tree mortality and subsequent secondary succession would affect soil bacterial taxonomic composition as well as soil organic matter (SOM) quantity and quality in a mixed Mediterranean forest where the Scots pine (Pinus sylvestris) population, affected by climatic drought-induced die-off, is being replaced by Holm-oaks (HO; Quercus ilex). We apply a high throughput DNA pyrosequencing technique and (13)C solid-state Nuclear Magnetic Resonance (CP-MAS (13)C NMR) to soils within areas of influence (defined as an surface with 2-m radius around the trunk) of different trees: healthy and affected (defoliated) pines, pines that died a decade ago and healthy HOs. Soil respiration was also measured in the same spots during a spring campaign using a static close-chamber method (soda lime). A decade after death, and before aerial colonization by the more competitive HOs have even taken place, we could not find changes in soil C pools (quantity and/or quality) associated with tree mortality and secondary succession. Unlike C pools, bacterial diversity and community structure were strongly determined by tree mortality. Convergence between the most abundant taxa of soil bacterial communities under dead pines and colonizer trees (HOs) further suggests that physical gap colonization was occurring below-ground before above-ground colonization was taken place. Significantly higher soil respiration rates under dead trees, together with higher bacterial diversity and anomalously high representation of bacteria commonly associated with copiotrophic environments (r-strategic bacteria) further gives indications of how drought-induced tree mortality and secondary succession were influencing the structure of microbial communities and the metabolic activity of soils.
Collapse
Affiliation(s)
- Jorge Curiel Yuste
- Museo Nacional de Ciencias Naturales (MNCN), CSIC Serrano 115 dpdo, E-28006, Madrid, Spain ; Centre de Recerca Ecológica i Aplicacions Forestals (CREAF); Edifici C, Universitat Autònoma de Barcelona E-08193, Bellaterra, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|