1
|
Jones W, Menon PNK, Qvarnström A. Location and timing of infection drives a sex-bias in Haemoproteus prevalence in a hole-nesting bird. Parasitology 2024:1-9. [PMID: 39428850 DOI: 10.1017/s0031182024001021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Sex biases in prevalence of disease are often attributed to intrinsic factors, such as physiological differences while a proximate role of extrinsic factors such as behavioural or ecological differences may be more difficult to establish. We combined large-scale screening for the presence and lineage identity of avian malaria (haemosporidian) parasites, in 1234 collared flycatchers (Ficedula albicollis) with life-history information from each bird to establish the location and timing of infection. We found an overall infection rate of 36.2% ± 0.03 (95% CI) with 25 distinct malaria lineages. Interestingly, first-year breeding males and females had similar infection prevalence while females accrued a significantly higher infection rate than males later in life. The sex difference in infection rate was driven by the most abundant Haemoproteus, lineage, hPHSIB1, while the infection rate of Plasmodium lineages was similar in males and females. Furthermore, when infections were assigned to an apparent transmission location, we found that the sex difference in infection rate trend was driven by lineages transmitted in Europe, more specifically by one lineage (the hPHSIB1), while no similar pattern was found in African lineages. We deduce that the observed infection patterns are likely to be caused by differences in breeding behaviour, with incubating females (and nestling individuals of both sexes) being easy targets for the biting insects that are the vectors of avian malaria parasites. Overall, our results are most consistent with ecological factors rather than intrinsic factors underlying the observed sex-biased infection rate of avian malaria in collared flycatchers.
Collapse
Affiliation(s)
- William Jones
- Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, 75236, Sweden
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, 4032, Hungary
| | - P Navaneeth Krishna Menon
- Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, 75236, Sweden
- DUW Zoology, University of Basel, Vesalgasse 1, CH-4051, Basel, Switzerland
| | - Anna Qvarnström
- Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, 75236, Sweden
| |
Collapse
|
2
|
Ostridge HJ, Fontsere C, Lizano E, Soto DC, Schmidt JM, Saxena V, Alvarez-Estape M, Barratt CD, Gratton P, Bocksberger G, Lester JD, Dieguez P, Agbor A, Angedakin S, Assumang AK, Bailey E, Barubiyo D, Bessone M, Brazzola G, Chancellor R, Cohen H, Coupland C, Danquah E, Deschner T, Dotras L, Dupain J, Egbe VE, Granjon AC, Head J, Hedwig D, Hermans V, Hernandez-Aguilar RA, Jeffery KJ, Jones S, Junker J, Kadam P, Kaiser M, Kalan AK, Kambere M, Kienast I, Kujirakwinja D, Langergraber KE, Lapuente J, Larson B, Laudisoit A, Lee KC, Llana M, Maretti G, Martín R, Meier A, Morgan D, Neil E, Nicholl S, Nixon S, Normand E, Orbell C, Ormsby LJ, Orume R, Pacheco L, Preece J, Regnaut S, Robbins MM, Rundus A, Sanz C, Sciaky L, Sommer V, Stewart FA, Tagg N, Tédonzong LR, van Schijndel J, Vendras E, Wessling EG, Willie J, Wittig RM, Yuh YG, Yurkiw K, Vigilant L, Piel A, Boesch C, Kühl HS, Dennis MY, Marques-Bonet T, Arandjelovic M, Andrés AM. Local genetic adaptation to habitat in wild chimpanzees. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.601734. [PMID: 39026872 PMCID: PMC11257515 DOI: 10.1101/2024.07.09.601734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
How populations adapt to their environment is a fundamental question in biology. Yet we know surprisingly little about this process, especially for endangered species such as non-human great apes. Chimpanzees, our closest living relatives, are particularly interesting because they inhabit diverse habitats, from rainforest to woodland-savannah. Whether genetic adaptation facilitates such habitat diversity remains unknown, despite having wide implications for evolutionary biology and conservation. Using 828 newly generated exomes from wild chimpanzees, we find evidence of fine-scale genetic adaptation to habitat. Notably, adaptation to malaria in forest chimpanzees is mediated by the same genes underlying adaptation to malaria in humans. This work demonstrates the power of non-invasive samples to reveal genetic adaptations in endangered populations and highlights the importance of adaptive genetic diversity for chimpanzees.
Collapse
Affiliation(s)
- Harrison J Ostridge
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Claudia Fontsere
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Esther Lizano
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Daniela C Soto
- University of California, Davis, Genome Center, MIND Institute, Department of Biochemistry & Molecular Medicine, One Shields Drive, Davis, CA, 95616, USA
| | - Joshua M Schmidt
- Flinders Health and Medical Research Institute (FHMRI), Department of Ophthalmology, Flinders University Sturt Rd, Bedford Park South Australia 5042 Australia
| | - Vrishti Saxena
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Marina Alvarez-Estape
- University of California, Davis, Genome Center, MIND Institute, Department of Biochemistry & Molecular Medicine, One Shields Drive, Davis, CA, 95616, USA
| | - Christopher D Barratt
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, the Netherlands
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Leipzig-Jena, Puschstrasse 4, 04103 Leipzig, Germany
| | - Paolo Gratton
- University of Rome "Tor Vergata" Department of Biology Via Cracovia, 1, Roma, Italia
| | - Gaëlle Bocksberger
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage, 60325 Frankfurt am Main, Germany
| | - Jack D Lester
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Paula Dieguez
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Leipzig-Jena, Puschstrasse 4, 04103 Leipzig, Germany
| | - Anthony Agbor
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Samuel Angedakin
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Alfred Kwabena Assumang
- Department of Wildlife and Range Management, Faculty of Renewable Natural Resources, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Emma Bailey
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Donatienne Barubiyo
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Mattia Bessone
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
- University of Konstanz, Centre for the Advanced Study of Collective Behaviour, Universitätsstraße 10, 78464, Konstanz, Germany
| | - Gregory Brazzola
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Rebecca Chancellor
- West Chester University, Depts of Anthropology & Sociology and Psychology, West Chester, PA, 19382 USA
| | - Heather Cohen
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Leipzig-Jena, Puschstrasse 4, 04103 Leipzig, Germany
| | - Charlotte Coupland
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Emmanuel Danquah
- Department of Wildlife and Range Management, Faculty of Renewable Natural Resources, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Tobias Deschner
- Institute of Cognitive Science, University of Osnabrück, Artilleriestrasse 34, 49076 Osnabrück, Germany
| | - Laia Dotras
- Jane Goodall Institute Spain and Senegal, Dindefelo Biological Station, Dindefelo, Kedougou, Senegal
- Department of Social Psychology and Quantitative Psychology, Serra Hunter Programme, University of Barcelona, Barcelona, Spain
| | - Jef Dupain
- Antwerp Zoo Foundation, RZSA, Kon.Astridplein 26, 2018 Antwerp, Belgium
| | - Villard Ebot Egbe
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Anne-Céline Granjon
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Josephine Head
- The Biodiversity Consultancy, 3E Kings Parade, Cambridge, CB2 1SJ, UK
| | - Daniela Hedwig
- Elephant Listening Project, K. Lisa Yang Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, 159 Sapsucker Woods Road, Ithaca, NY 14850, USA
| | - Veerle Hermans
- KMDA, Centre for Research and Conservation, Royal Zoological Society of Antwerp, Koningin Astridplein 20-26, B-2018 Antwerp, Belgium
| | - R Adriana Hernandez-Aguilar
- Jane Goodall Institute Spain and Senegal, Dindefelo Biological Station, Dindefelo, Kedougou, Senegal
- Department of Social Psychology and Quantitative Psychology, Serra Hunter Programme, University of Barcelona, Barcelona, Spain
| | - Kathryn J Jeffery
- School of Natural Sciences, University of Stirling, UK
- Agence National des Parcs Nationaux (ANPN) Batterie 4, BP20379, Libreville, Gabon
| | - Sorrel Jones
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Jessica Junker
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Leipzig-Jena, Puschstrasse 4, 04103 Leipzig, Germany
| | - Parag Kadam
- Greater Mahale Ecosystem Research and Conservation Project
| | - Michael Kaiser
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Ammie K Kalan
- Department of Anthropology, University of Victoria, 3800 Finnerty Rd, Victoria, BC V8P 5C2, Canada
| | - Mbangi Kambere
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Ivonne Kienast
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY 14850, USA
- K. Lisa Yang Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, Ithaca, NY 14850, USA
| | - Deo Kujirakwinja
- Wildlife Conservation Society (WCS), 2300 Southern Boulevard. Bronx, New York 10460, USA
| | - Kevin E Langergraber
- School of Human Evolution and Social Change, Institute of Human Origins, Arizona State University, 777 East University Drive, Tempe, AZ 85287 Arizona State University, PO Box 872402, Tempe, AZ 85287-2402 USA
- Institute of Human Origins, Arizona State University, 900 Cady Mall, Tempe, AZ 85287 Arizona State University, PO Box 872402, Tempe, AZ 85287-2402 USA
| | - Juan Lapuente
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | | | | | - Kevin C Lee
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
- K. Lisa Yang Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, Ithaca, NY 14850, USA
| | - Manuel Llana
- Jane Goodall Institute Spain and Senegal, Dindefelo Biological Station, Dindefelo, Kedougou, Senegal
| | - Giovanna Maretti
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Rumen Martín
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Amelia Meier
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
- Hawai'i Insititute of Marine Biology, University of Hawai'i at Manoa, 46-007 Lilipuna Place, Kaneohe, HI, 96744, USA
| | - David Morgan
- Lester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, 2001 North Clark Street, Chicago, Illinois 60614 USA
| | - Emily Neil
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Sonia Nicholl
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Stuart Nixon
- North of England Zoological Society, Chester Zoo, Upton by Chester, CH2 1LH, United Kingdom
| | | | - Christopher Orbell
- Panthera, 8 W 40TH ST, New York, NY 10018, USA
- School of Natural Sciences, University of Stirling, UK
| | - Lucy Jayne Ormsby
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Robinson Orume
- Korup Rainforest Conservation Society, c/o Korup National Park, P.O. Box 36 Mundemba, South West Region, Cameroon
| | - Liliana Pacheco
- Save the Dogs and Other Animals, DJ 223 Km 3, 905200 Cernavoda CT, Romania
| | - Jodie Preece
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | | | - Martha M Robbins
- Max Planck Institute for Evolutionary Anthropology, Department of Primate Behavior and Evolution, Deutscher Platz 6, 04103 Leipzig
| | - Aaron Rundus
- West Chester University, Depts of Anthropology & Sociology and Psychology, West Chester, PA, 19382 USA
| | - Crickette Sanz
- Washington University in Saint Louis, Department of Anthropology, One Brookings Drive, St. Louis, MO 63130, USA
- Congo Program, Wildlife Conservation Society, 151 Avenue Charles de Gaulle, Brazzaville, Republic of Congo
| | - Lilah Sciaky
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Volker Sommer
- University College London, Department of Anthropology, 14 Taviton Street, London WC1H 0BW, UK
| | - Fiona A Stewart
- University College London, Department of Anthropology, 14 Taviton Street, London WC1H 0BW, UK
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Nikki Tagg
- KMDA, Centre for Research and Conservation, Royal Zoological Society of Antwerp, Koningin Astridplein 20-26, B-2018 Antwerp, Belgium
- Born Free Foundation, Floor 2 Frazer House, 14 Carfax, Horsham, RH12 1ER, UK
| | - Luc Roscelin Tédonzong
- KMDA, Centre for Research and Conservation, Royal Zoological Society of Antwerp, Koningin Astridplein 20-26, B-2018 Antwerp, Belgium
| | - Joost van Schijndel
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Elleni Vendras
- Frankfurt Zoological Society, Bernhard-Grzimek-Allee 1, 60316 Frankfurt, Germany
| | - Erin G Wessling
- Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg-August-University Göttingen,Göttingen, Germany
- German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Jacob Willie
- KMDA, Centre for Research and Conservation, Royal Zoological Society of Antwerp, Koningin Astridplein 20-26, B-2018 Antwerp, Belgium
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University (UGent), K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Roman M Wittig
- Ape Social Mind Lab, Institute for Cognitive Sciences Marc Jeannerod, CNRS UMR 5229 CNRS, 67 bd Pinel, 69675 Bron CEDEX, France
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, BP 1301, Abidjan 01, CI
| | - Yisa Ginath Yuh
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Kyle Yurkiw
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Linda Vigilant
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Alex Piel
- University College London, Department of Anthropology, 14 Taviton Street, London WC1H 0BW, UK
| | | | - Hjalmar S Kühl
- Senckenberg Museum for Natural History Görlitz, Senckenberg - Member of the Leibniz Association Am Museum 1, 02826 Görlitz, Germany
- International Institute Zittau, Technische Universität Dresden, Markt 23, 02763 Zittau, Germany
| | - Megan Y Dennis
- University of California, Davis, Genome Center, MIND Institute, Department of Biochemistry & Molecular Medicine, One Shields Drive, Davis, CA, 95616, USA
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, 08010, Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Mimi Arandjelovic
- Max Planck Institute for Evolutionary Anthropology, Department of Primate Behavior and Evolution, Deutscher Platz 6, 04103 Leipzig
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103
| | - Aida M Andrés
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
3
|
Sánchez KL, Baird JK, Nielsen A, Nurillah A, Agustina F, Komara, Fadilah F, Prameswari W, Nugraha RTP, Saputra S, Nurkanto A, Dharmayanthi AB, Pratama R, Exploitasia I, Greenwood AD. Naturally acquired immunity to Plasmodium pitheci in Bornean orangutans ( Pongo pygmaeus). Parasitology 2024; 151:380-389. [PMID: 38361461 PMCID: PMC11044065 DOI: 10.1017/s0031182024000155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 01/17/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
Naturally acquired immunity to the different types of malaria in humans occurs in areas of endemic transmission and results in asymptomatic infection of peripheral blood. The current study examined the possibility of naturally acquired immunity in Bornean orangutans, Pongo pygmaeus, exposed to endemic Plasmodium pitheci malaria. A total of 2140 peripheral blood samples were collected between January 2017 and December 2022 from a cohort of 135 orangutans housed at a natural forested Rescue and Rehabilitation Centre in West Kalimantan, Indonesia. Each individual was observed for an average of 4.3 years during the study period. Blood samples were examined by microscopy and polymerase chain reaction for the presence of plasmodial parasites. Infection rates and parasitaemia levels were measured among age groups and all 20 documented clinical malaria cases were reviewed to estimate the incidence of illness and risk ratios among age groups. A case group of all 17 individuals that had experienced clinical malaria and a control group of 34 individuals having an event of >2000 parasites μL−1 blood but with no outward or clinical sign of illness were studied. Immature orangutans had higher-grade and more frequent parasitaemia events, but mature individuals were more likely to suffer from clinical malaria than juveniles. The case orangutans having patent clinical malaria were 256 times more likely to have had no parasitaemia event in the prior year relative to asymptomatic control orangutans. The findings are consistent with rapidly acquired immunity to P. pitheci illness among orangutans that wanes without re-exposure to the pathogen.
Collapse
Affiliation(s)
- Karmele Llano Sánchez
- IAR Indonesia Foundation, Yayasan Inisiasi Alam Rehabilitasi Indonesia (YIARI), Sinarwangi, Bogor, West Java, Indonesia
- International Animal Rescue, Uckfield, UK
- School of Veterinary Medicine, Freie Universität, Berlin, Germany
| | - John Kevin Baird
- Oxford University Clinical Research Unit-Indonesia, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Aileen Nielsen
- Center for Law and Economics, ETH Zurich, Zurich, Switzerland
| | - Andini Nurillah
- IAR Indonesia Foundation, Yayasan Inisiasi Alam Rehabilitasi Indonesia (YIARI), Sinarwangi, Bogor, West Java, Indonesia
| | - Fitria Agustina
- IAR Indonesia Foundation, Yayasan Inisiasi Alam Rehabilitasi Indonesia (YIARI), Sinarwangi, Bogor, West Java, Indonesia
| | - Komara
- IAR Indonesia Foundation, Yayasan Inisiasi Alam Rehabilitasi Indonesia (YIARI), Sinarwangi, Bogor, West Java, Indonesia
| | - Fina Fadilah
- IAR Indonesia Foundation, Yayasan Inisiasi Alam Rehabilitasi Indonesia (YIARI), Sinarwangi, Bogor, West Java, Indonesia
| | - Wendi Prameswari
- IAR Indonesia Foundation, Yayasan Inisiasi Alam Rehabilitasi Indonesia (YIARI), Sinarwangi, Bogor, West Java, Indonesia
| | | | - Sugiyono Saputra
- Research Center for Applied Zoology, National Research and Innovation Agency (BRIN), Jakarta, Indonesia
| | - Arif Nurkanto
- Research Center for Biosystematics and Evolution, National Research and Innovation Agency (BRIN), Jakarta, Indonesia
| | - Anik Budhi Dharmayanthi
- Research Center for Biosystematics and Evolution, National Research and Innovation Agency (BRIN), Jakarta, Indonesia
| | - Rahadian Pratama
- Center for Biomedical Research, Research Organization for Health, National Research and Innovation Agency (BRIN), Jakarta, Indonesia
| | - Indra Exploitasia
- Biodiversity Conservation Directorate of the General Director of Natural Resources and Ecosystem Conservation, Ministry of Environment and Forestry of the Republic of Indonesia, Jakarta, Indonesia
| | - Alex D. Greenwood
- School of Veterinary Medicine, Freie Universität, Berlin, Germany
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| |
Collapse
|
4
|
Wroblewski EE, Guethlein LA, Anderson AG, Liu W, Li Y, Heisel SE, Connell AJ, Ndjango JBN, Bertolani P, Hart JA, Hart TB, Sanz CM, Morgan DB, Peeters M, Sharp PM, Hahn BH, Parham P. Malaria-driven adaptation of MHC class I in wild bonobo populations. Nat Commun 2023; 14:1033. [PMID: 36823144 PMCID: PMC9950436 DOI: 10.1038/s41467-023-36623-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
The malaria parasite Plasmodium falciparum causes substantial human mortality, primarily in equatorial Africa. Enriched in affected African populations, the B*53 variant of HLA-B, a cell surface protein that presents peptide antigens to cytotoxic lymphocytes, confers protection against severe malaria. Gorilla, chimpanzee, and bonobo are humans' closest living relatives. These African apes have HLA-B orthologs and are infected by parasites in the same subgenus (Laverania) as P. falciparum, but the consequences of these infections are unclear. Laverania parasites infect bonobos (Pan paniscus) at only one (TL2) of many sites sampled across their range. TL2 spans the Lomami River and has genetically divergent subpopulations of bonobos on each side. Papa-B, the bonobo ortholog of HLA-B, includes variants having a B*53-like (B07) peptide-binding supertype profile. Here we show that B07 Papa-B occur at high frequency in TL2 bonobos and that malaria appears to have independently selected for different B07 alleles in the two subpopulations.
Collapse
Affiliation(s)
- Emily E Wroblewski
- Department of Anthropology, Washington University in St. Louis, Saint Louis, 63130, MO, USA.
| | - Lisbeth A Guethlein
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Aaron G Anderson
- Department of Anthropology, Washington University in St. Louis, Saint Louis, 63130, MO, USA
| | - Weimin Liu
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yingying Li
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sara E Heisel
- Department of Anthropology, Washington University in St. Louis, Saint Louis, 63130, MO, USA
| | - Andrew Jesse Connell
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jean-Bosco N Ndjango
- Department of Ecology and Management of Plant and Animal Resources, Faculty of Sciences, University of Kisangani, BP 2012, Kisangani, Democratic Republic of the Congo
| | - Paco Bertolani
- Institute of Human Sciences, School of Anthropology and Museum Ethnography, University of Oxford, Oxford, UK
| | - John A Hart
- Frankfurt Zoological Society, Lomami National Park Project, Kinshasa, Democratic Republic of the Congo
| | - Terese B Hart
- Frankfurt Zoological Society, Lomami National Park Project, Kinshasa, Democratic Republic of the Congo
| | - Crickette M Sanz
- Department of Anthropology, Washington University in St. Louis, Saint Louis, 63130, MO, USA
- Congo Program, Wildlife Conservation Society, Brazzaville, Republic of the Congo
| | - David B Morgan
- Lester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, IL, 60614, USA
| | - Martine Peeters
- Recherche Translationnelle Appliquée au VIH et aux Maladies Infectieuses, Institut de Recherche pour le Développement, University of Montpellier, INSERM, 34090, Montpellier, France
| | - Paul M Sharp
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, EH9 3FL, UK
- Centre for Immunity, Infection, and Evolution, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Beatrice H Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Peter Parham
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
5
|
Sanchez KL, Greenwood AD, Nielsen A, Nugraha RTP, Prameswari W, Nurillah A, Agustina F, Campbell-Smith G, Dharmayanthi AB, Pratama R, Exploitasia I, Baird JK. Plasmodium pitheci malaria in Bornean orang-utans at a rehabilitation centre in West Kalimantan, Indonesia. Malar J 2022; 21:280. [PMID: 36184593 PMCID: PMC9528059 DOI: 10.1186/s12936-022-04290-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plasmodial species naturally infecting orang-utans, Plasmodium pitheci and Plasmodium silvaticum, have been rarely described and reportedly cause relatively benign infections. Orang-utans at Rescue Rehabilitation Centres (RRC) across the orang-utan natural range suffer from malaria illness. However, the species involved and clinical pathology of this illness have not been described in a systematic manner. The objective of the present study was to identify the Plasmodium species infecting orang-utans under our care, define the frequency and character of malaria illness among the infected, and establish criteria for successful diagnosis and treatment. METHODS During the period 2017-2021, prospective active surveillance of malaria among 131 orang-utans resident in a forested RRC in West Kalimantan (Indonesia) was conducted. A total of 1783 blood samples were analysed by microscopy and 219 by nucleic acid based (PCR) diagnostic testing. Medical records of inpatient orang-utans at the centre from 2010 to 2016 were also retrospectively analysed for instances of symptomatic malaria. RESULTS Active surveillance revealed 89 of 131 orang-utans were positive for malaria at least once between 2017 and 2021 (period prevalence = 68%). During that period, 14 cases (affecting 13 orang-utans) developed clinical malaria (0.027 attacks/orang-utan-year). Three other cases were found to have occurred from 2010-2016. Sick individuals presented predominantly with fever, anaemia, thrombocytopenia, and leukopenia. All had parasitaemias in excess of 4000/μL and as high as 105,000/μL, with severity of illness correlating with parasitaemia. Illness and parasitaemia quickly resolved following administration of artemisinin-combined therapies. High levels of parasitaemia also sometimes occurred in asymptomatic cases, in which case, parasitaemia cleared spontaneously. CONCLUSIONS This study demonstrated that P. pitheci very often infected orang-utans at this RRC. In about 14% of infected orang-utans, malaria illness occurred and ranged from moderate to severe in nature. The successful clinical management of acute pitheci malaria is described. Concerns are raised about this infection potentially posing a threat to this endangered species in the wild.
Collapse
Affiliation(s)
- Karmele Llano Sanchez
- IAR Indonesia Foundation - Yayasan Inisiasi Alam Rehabilitasi Indonesia (YIARI), Ketapang, West Kalimantan, Indonesia.
- International Animal Rescue, Uckfield, UK.
- Department of Veterinary Medicine, Frei Universität, Berlin, Germany.
| | - Alex D Greenwood
- Department of Veterinary Medicine, Frei Universität, Berlin, Germany
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Aileen Nielsen
- Center for Law and Economics, ETH Zurich, Zurich, Switzerland
| | - R Taufiq P Nugraha
- Research Center for Applied Zoology, National Research and Innovation Agency, Republic of Indonesia (BRIN), Cibinong, Indonesia
| | - Wendi Prameswari
- IAR Indonesia Foundation - Yayasan Inisiasi Alam Rehabilitasi Indonesia (YIARI), Ketapang, West Kalimantan, Indonesia
| | - Andini Nurillah
- IAR Indonesia Foundation - Yayasan Inisiasi Alam Rehabilitasi Indonesia (YIARI), Ketapang, West Kalimantan, Indonesia
| | - Fitria Agustina
- IAR Indonesia Foundation - Yayasan Inisiasi Alam Rehabilitasi Indonesia (YIARI), Ketapang, West Kalimantan, Indonesia
| | - Gail Campbell-Smith
- IAR Indonesia Foundation - Yayasan Inisiasi Alam Rehabilitasi Indonesia (YIARI), Ketapang, West Kalimantan, Indonesia
- International Animal Rescue, Uckfield, UK
| | - Anik Budhi Dharmayanthi
- Research Center for Biosystematics and Evolution, National Research and Innovation Agency, Republic of Indonesia (BRIN), Cibinong, Indonesia
| | - Rahadian Pratama
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia
| | - Indra Exploitasia
- Biodiversity Conservation Directorate of the General Director of Natural Resources and Ecosystem Conservation, Ministry of Environment and Forestry of the Republic of Indonesia, Jakarta, Indonesia
| | - J Kevin Baird
- Clinical Research Unit-Indonesia, Faculty of Medicine, Oxford University, Universitas Indonesia, Jakarta, Indonesia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Scully EJ, Liu W, Li Y, Ndjango JBN, Peeters M, Kamenya S, Pusey AE, Lonsdorf EV, Sanz CM, Morgan DB, Piel AK, Stewart FA, Gonder MK, Simmons N, Asiimwe C, Zuberbühler K, Koops K, Chapman CA, Chancellor R, Rundus A, Huffman MA, Wolfe ND, Duraisingh MT, Hahn BH, Wrangham RW. The ecology and epidemiology of malaria parasitism in wild chimpanzee reservoirs. Commun Biol 2022; 5:1020. [PMID: 36167977 PMCID: PMC9515101 DOI: 10.1038/s42003-022-03962-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 09/01/2022] [Indexed: 11/09/2022] Open
Abstract
Chimpanzees (Pan troglodytes) harbor rich assemblages of malaria parasites, including three species closely related to P. falciparum (sub-genus Laverania), the most malignant human malaria parasite. Here, we characterize the ecology and epidemiology of malaria infection in wild chimpanzee reservoirs. We used molecular assays to screen chimpanzee fecal samples, collected longitudinally and cross-sectionally from wild populations, for malaria parasite mitochondrial DNA. We found that chimpanzee malaria parasitism has an early age of onset and varies seasonally in prevalence. A subset of samples revealed Hepatocystis mitochondrial DNA, with phylogenetic analyses suggesting that Hepatocystis appears to cross species barriers more easily than Laverania. Longitudinal and cross-sectional sampling independently support the hypothesis that mean ambient temperature drives spatiotemporal variation in chimpanzee Laverania infection. Infection probability peaked at ~24.5 °C, consistent with the empirical transmission optimum of P. falciparum in humans. Forest cover was also positively correlated with spatial variation in Laverania prevalence, consistent with the observation that forest-dwelling Anophelines are the primary vectors. Extrapolating these relationships across equatorial Africa, we map spatiotemporal variation in the suitability of chimpanzee habitat for Laverania transmission, offering a hypothetical baseline indicator of human exposure risk.
Collapse
Affiliation(s)
- Erik J Scully
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Department of Immunology & Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Weimin Liu
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yingying Li
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jean-Bosco N Ndjango
- Department of Ecology and Management of Plant and Animal Resources, Faculty of Sciences, University of Kisangani, BP 2012, Kisangani, Democratic Republic of the Congo
| | - Martine Peeters
- Recherche Translationnelle Appliquée au VIH et aux Maladies Infectieuses, Institut de Recherche pour le Développement, University of Montpellier, INSERM, 34090, Montpellier, France
| | - Shadrack Kamenya
- Gombe Stream Research Centre, The Jane Goodall Institute, Tanzania, Kigoma, Tanzania
| | - Anne E Pusey
- Department of Evolutionary Anthropology, Duke University, Durham, NC, 27708, USA
| | - Elizabeth V Lonsdorf
- Department of Psychology, Franklin and Marshall College, Lancaster, PA, 17604, USA
| | - Crickette M Sanz
- Department of Anthropology, Washington University in St. Louis, St Louis, MO, 63130, USA
- Congo Program, Wildlife Conservation Society, BP 14537, Brazzaville, Republic of the Congo
| | - David B Morgan
- Lester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, IL, 60614, USA
| | - Alex K Piel
- Department of Anthropology, University College London, 14 Taviton St, Bloomsbury, WC1H OBW, London, UK
| | - Fiona A Stewart
- Department of Anthropology, University College London, 14 Taviton St, Bloomsbury, WC1H OBW, London, UK
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Mary K Gonder
- Department of Biology, Drexel University, Philadelphia, PA, 19104, USA
| | - Nicole Simmons
- Zoology Department, Makerere University, P.O. Box 7062, Kampala, Uganda
| | | | - Klaus Zuberbühler
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
- Department of Comparative Cognition, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Kathelijne Koops
- Department of Ape Behaviour & Ecology Group, University of Zurich, Zurich, Switzerland
| | - Colin A Chapman
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, George Washington University, Washington, DC, USA
- School of Life Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| | - Rebecca Chancellor
- Department of Anthropology & Sociology, West Chester University, West Chester, PA, USA
- Department of Psychology, West Chester University, West Chester, PA, USA
| | - Aaron Rundus
- Department of Psychology, West Chester University, West Chester, PA, USA
| | - Michael A Huffman
- Center for International Collaboration and Advanced Studies in Primatology, Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | | | - Manoj T Duraisingh
- Department of Immunology & Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA.
| | - Beatrice H Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Richard W Wrangham
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
7
|
Brown R, Salgado-Lynn M, Jumail A, Jalius C, Chua TH, Vythilingam I, Ferguson HM. Exposure of Primate Reservoir Hosts to Mosquito Vectors in Malaysian Borneo. ECOHEALTH 2022; 19:233-245. [PMID: 35553290 PMCID: PMC9276546 DOI: 10.1007/s10393-022-01586-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 03/05/2022] [Accepted: 03/10/2022] [Indexed: 06/15/2023]
Abstract
Several vector-borne pathogens of primates have potential for human spillover. An example is the simian malaria Plasmodium knowlesi which is now a major public health problem in Malaysia. Characterization of exposure to mosquito vectors is essential for assessment of the force of infection within wild simian populations, however few methods exist to do so. Here we demonstrate the use of thermal imaging and mosquito magnet independence traps (MMIT) to assess the abundance, diversity and infection rates in mosquitoes host seeking near long-tailed macaque (Macaca fasicularis) sleeping sites in the Lower Kinabatangan Wildlife Sanctuary, Malaysian Borneo. The primary Plasmodium knowlesi vector, Anopheles balabacensis, was trapped at higher abundance near sleeping sites than control trees. Although none of the An. balabacensis collected (n = 15) were positive for P. knowlesi by PCR screening, two were infected with another simian malaria Plasmodium inui. Analysis of macaque stools from sleeping sites confirmed a high prevalence of Plasmodium infection, suspected to be P. inui. Recently, natural transmission of P. inui has been detected in humans and An. cracens in Peninsular Malaysia. The presence of P. inui in An. balabacensis here and previously in human-biting collections highlight its potential for spillover from macaques to humans in Sabah. We advocate the use of MMITs for non-invasive sampling of mosquito vectors that host seek on wild simian populations.
Collapse
Affiliation(s)
- Rebecca Brown
- Department of Vector Biology, Liverpool School of Tropical Medicine and Hygiene, Liverpool, L3 5QA, UK.
| | - Milena Salgado-Lynn
- Danau Girang Field Centre C/O Sabah Wildlife Department, Wisma Muis, Kota Kinabalu, Sabah, Malaysia
- School of Biosciences and Sustainable Places Research Institute, Cardiff University, Cardiff, UK
- Wildlife Health, Genetic and Forensic Laboratory, Kampung Potuki, Kota Kinabalu, Sabah, Malaysia
| | - Amaziasizamoria Jumail
- Danau Girang Field Centre C/O Sabah Wildlife Department, Wisma Muis, Kota Kinabalu, Sabah, Malaysia
| | - Cyrlen Jalius
- Wildlife Health, Genetic and Forensic Laboratory, Kampung Potuki, Kota Kinabalu, Sabah, Malaysia
| | - Tock-Hing Chua
- Department of Pathobiology and Medical Diagnostics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Indra Vythilingam
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Heather M Ferguson
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, University Avenue, Glasgow, G12 8QQ, UK
| |
Collapse
|
8
|
Carrillo-Bilbao G, Martin-Solano S, Saegerman C. Zoonotic Blood-Borne Pathogens in Non-Human Primates in the Neotropical Region: A Systematic Review. Pathogens 2021; 10:1009. [PMID: 34451473 PMCID: PMC8400055 DOI: 10.3390/pathogens10081009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 01/17/2023] Open
Abstract
Background: Understanding which non-human primates (NHPs) act as a wild reservoir for blood-borne pathogens will allow us to better understand the ecology of diseases and the role of NHPs in the emergence of human diseases in Ecuador, a small country in South America that lacks information on most of these pathogens. Methods and principal findings: A systematic review was carried out using PRISMA guidelines from 1927 until 2019 about blood-borne pathogens present in NHPs of the Neotropical region (i.e., South America and Middle America). Results: A total of 127 publications were found in several databases. We found in 25 genera (132 species) of NHPs a total of 56 blood-borne pathogens in 197 records where Protozoa has the highest number of records in neotropical NHPs (n = 128) compared to bacteria (n = 12) and viruses (n = 57). Plasmodium brasilianum and Trypanosoma cruzi are the most recorded protozoa in NHP. The neotropical primate genus with the highest number of blood-borne pathogens recorded is Alouatta sp. (n = 32). The use of non-invasive samples for neotropical NHPs remains poor in a group where several species are endangered or threatened. A combination of serological and molecular techniques is common when detecting blood-borne pathogens. Socioecological and ecological risk factors facilitate the transmission of these parasites. Finally, a large number of countries remain unsurveyed, such as Ecuador, which can be of public health importance. Conclusions and significance: NHPs are potential reservoirs of a large number of blood-borne pathogens. In Ecuador, research activities should be focused on bacteria and viruses, where there is a gap of information for neotropical NHPs, in order to implement surveillance programs with regular and effective monitoring protocols adapted to NHPs.
Collapse
Affiliation(s)
- Gabriel Carrillo-Bilbao
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULiège), Fundamental and Applied Research for Animal and Health (FARAH) Center, Department of Infections and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium;
- Facultad de Filosofía y Letras y Ciencias de la Educación, Universidad Central del Ecuador, 170521 Quito, Ecuador
- Instituto de Investigación en Zoonosis (CIZ), Universidad Central del Ecuador, 170521 Quito, Ecuador;
| | - Sarah Martin-Solano
- Instituto de Investigación en Zoonosis (CIZ), Universidad Central del Ecuador, 170521 Quito, Ecuador;
- Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas—ESPE, 171103 Sangolquí, Ecuador
| | - Claude Saegerman
- Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULiège), Fundamental and Applied Research for Animal and Health (FARAH) Center, Department of Infections and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium;
| |
Collapse
|
9
|
Abstract
African apes harbor at least twelve Plasmodium species, some of which have been a source of human infection. It is now well established that Plasmodium falciparum emerged following the transmission of a gorilla parasite, perhaps within the last 10,000 years, while Plasmodium vivax emerged earlier from a parasite lineage that infected humans and apes in Africa before the Duffy-negative mutation eliminated the parasite from humans there. Compared to their ape relatives, both human parasites have greatly reduced genetic diversity and an excess of nonsynonymous mutations, consistent with severe genetic bottlenecks followed by rapid population expansion. A putative new Plasmodium species widespread in chimpanzees, gorillas, and bonobos places the origin of Plasmodium malariae in Africa. Here, we review what is known about the origins and evolutionary history of all human-infective Plasmodium species, the time and circumstances of their emergence, and the diversity, host specificity, and zoonotic potential of their ape counterparts.
Collapse
Affiliation(s)
- Paul M Sharp
- Institute of Evolutionary Biology and Centre for Immunity, Infection and Evolution, University of Edinburgh, EH9 3FL, United Kingdom
| | - Lindsey J Plenderleith
- Institute of Evolutionary Biology and Centre for Immunity, Infection and Evolution, University of Edinburgh, EH9 3FL, United Kingdom
| | - Beatrice H Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| |
Collapse
|
10
|
Deere JR, Schaber KL, Foerster S, Gilby IC, Feldblum JT, VanderWaal K, Wolf TM, Travis DA, Raphael J, Lipende I, Mjungu D, Pusey AE, Lonsdorf EV, Gillespie TR. Gregariousness is associated with parasite species richness in a community of wild chimpanzees. Behav Ecol Sociobiol 2021; 75:87. [PMID: 34456452 PMCID: PMC8386636 DOI: 10.1007/s00265-021-03030-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 11/25/2022]
Abstract
Increased risk of pathogen transmission through proximity and contact is a well-documented cost of sociality. Affiliative social contact, however, is an integral part of primate group life and can benefit health. Despite its importance to the evolution and maintenance of sociality, the tradeoff between costs and benefits of social contact for group-living primate species remains poorly understood. To improve our understanding of this interplay, we used social network analysis to investigate whether contact via association in the same space and/or physical contact measured through grooming were associated with helminth parasite species richness in a community of wild chimpanzees (Pan troglodytes schweinfurthii). We identified parasite taxa in 381 fecal samples from 36 individuals from the Kasekela community of chimpanzees in Gombe National Park, Tanzania, from November 1, 2006 - October 31, 2012. Over the study period, eight environmentally transmitted helminth taxa were identified. We quantified three network metrics for association and grooming contact, including degree strength, betweenness, and closeness. Our findings suggest that more gregarious individuals - those who spent more time with more individuals in the same space - had higher parasite richness, while the connections in the grooming network were not related to parasite richness. The expected parasite richness in individuals increased by 1.13 taxa (CI: 1.04, 1.22; p = 0.02) per one standard deviation increase in degree strength of association contact. The results of this study add to the understanding of the role that different types of social contact plays in the parasite richness of group-living social primates.
Collapse
Affiliation(s)
- Jessica R. Deere
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN USA
| | - Kathryn L. Schaber
- Department of Environmental Sciences and Program in Population Biology, Ecology, and Evolutionary Biology, Emory University, Atlanta, GA USA
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA USA
| | - Steffen Foerster
- Department of Evolutionary Anthropology, Duke University, Durham, NC USA
| | - Ian C. Gilby
- School of Human Evolution and Social Change, and Institute of Human Origins, Arizona State University, Tempe, AZ USA
| | - Joseph T. Feldblum
- Department of Anthropology, and Society of Fellows, University of Michigan, Ann Arbor, MI US
| | - Kimberly VanderWaal
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN USA
| | - Tiffany M. Wolf
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN USA
| | - Dominic A. Travis
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN USA
| | - Jane Raphael
- Tanzanian National Park Authority, Arusha, Tanzania
| | - Iddi Lipende
- Tanzania Wildlife Research Institute, Arusha, Tanzania
| | - Deus Mjungu
- Gombe Stream Research Center, The Jane Goodall Institute, Kigoma, Tanzania
| | - Anne E. Pusey
- Department of Evolutionary Anthropology, Duke University, Durham, NC USA
| | | | - Thomas R. Gillespie
- Department of Environmental Sciences and Program in Population Biology, Ecology, and Evolutionary Biology, Emory University, Atlanta, GA USA
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA USA
| |
Collapse
|
11
|
Buery JC, de Alencar FEC, Duarte AMRDC, Loss AC, Vicente CR, Ferreira LM, Fux B, Medeiros MM, Cravo P, Arez AP, Cerutti Junior C. Atlantic Forest Malaria: A Review of More than 20 Years of Epidemiological Investigation. Microorganisms 2021; 9:132. [PMID: 33430150 PMCID: PMC7826787 DOI: 10.3390/microorganisms9010132] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/25/2020] [Accepted: 01/06/2021] [Indexed: 01/17/2023] Open
Abstract
In the south and southeast regions of Brazil, cases of malaria occur outside the endemic Amazon region near the Atlantic Forest in some coastal states, where Plasmodium vivax is the recognized parasite. Characteristics of cases and vectors, especially Anopheles (Kerteszia) cruzii, raise the hypothesis of a zoonosis with simians as reservoirs. The present review aims to report on investigations of the disease over a 23-year period. Two main sources have provided epidemiological data: the behavior of Anopheles vectors and the genetic and immunological aspects of Plasmodium spp. obtained from humans, Alouatta simians, and Anopheles spp. mosquitoes. Anopheles (K.) cruzii is the most captured species in the forest canopy and is the recognized vector. The similarity between P. vivax and Plasmodium simium and that between Plasmodium malariae and Plasmodium brasilianum shared between simian and human hosts and the involvement of the same vector in the transmission to both hosts suggest interspecies transfer of the parasites. Finally, recent evidence points to the presence of Plasmodium falciparum in a silent cycle, detected only by molecular methods in asymptomatic individuals and An. (K.) cruzii. In the context of malaria elimination, it is paramount to assemble data about transmission in such non-endemic low-incidence areas.
Collapse
Affiliation(s)
- Julyana Cerqueira Buery
- Unidade de Medicina Tropical, Universidade Federal do Espírito Santo, Vitória 29047-105, Brazil; (F.E.C.d.A.); (C.R.V.); (L.M.F.); (B.F.); (C.C.J.)
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, 1349-008 Lisboa, Portugal; (M.M.M.); (P.C.); (A.P.A.)
| | | | - Ana Maria Ribeiro de Castro Duarte
- Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo 05403-000, Brazil;
- Superintendência de Controle de Endemias do Estado de São Paulo, São Paulo 01027-000, Brazil
| | - Ana Carolina Loss
- Instituto Nacional da Mata Atlântica, Santa Teresa 29650-000, Brazil;
| | - Creuza Rachel Vicente
- Unidade de Medicina Tropical, Universidade Federal do Espírito Santo, Vitória 29047-105, Brazil; (F.E.C.d.A.); (C.R.V.); (L.M.F.); (B.F.); (C.C.J.)
| | - Lucas Mendes Ferreira
- Unidade de Medicina Tropical, Universidade Federal do Espírito Santo, Vitória 29047-105, Brazil; (F.E.C.d.A.); (C.R.V.); (L.M.F.); (B.F.); (C.C.J.)
| | - Blima Fux
- Unidade de Medicina Tropical, Universidade Federal do Espírito Santo, Vitória 29047-105, Brazil; (F.E.C.d.A.); (C.R.V.); (L.M.F.); (B.F.); (C.C.J.)
| | - Márcia Melo Medeiros
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, 1349-008 Lisboa, Portugal; (M.M.M.); (P.C.); (A.P.A.)
| | - Pedro Cravo
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, 1349-008 Lisboa, Portugal; (M.M.M.); (P.C.); (A.P.A.)
| | - Ana Paula Arez
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, 1349-008 Lisboa, Portugal; (M.M.M.); (P.C.); (A.P.A.)
| | - Crispim Cerutti Junior
- Unidade de Medicina Tropical, Universidade Federal do Espírito Santo, Vitória 29047-105, Brazil; (F.E.C.d.A.); (C.R.V.); (L.M.F.); (B.F.); (C.C.J.)
| |
Collapse
|
12
|
Sandel AA, Rushmore J, Negrey JD, Mitani JC, Lyons DM, Caillaud D. Social Network Predicts Exposure to Respiratory Infection in a Wild Chimpanzee Group. ECOHEALTH 2020; 17:437-448. [PMID: 33404931 PMCID: PMC7786864 DOI: 10.1007/s10393-020-01507-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 06/12/2023]
Abstract
Respiratory pathogens are expected to spread through social contacts, but outbreaks often occur quickly and unpredictably, making it challenging to simultaneously record social contact and disease incidence data, especially in wildlife. Thus, the role of social contacts in the spread of infectious disease is often treated as an assumption in disease simulation studies, and few studies have empirically demonstrated how pathogens spread through social networks. In July-August 2015, an outbreak of respiratory disease was observed in a wild chimpanzee community in Kibale National Park, Uganda, during an ongoing behavioral study of male chimpanzees, offering a rare opportunity to evaluate how social behavior affects individual exposure to socially transmissible diseases. From May to August 2015, we identified adult and adolescent male chimpanzees displaying coughs and rhinorrhea and recorded 5-m proximity data on males (N = 40). Using the network k-test, we found significant relationships between male network connectivity and the distribution of cases within the network, supporting the importance of short-distance contacts for the spread of the respiratory outbreak. Additionally, chimpanzees central to the network were more likely to display clinical signs than those with fewer connections. Although our analyses were limited to male chimpanzees, these findings underscore the value of social connectivity data in predicting disease outcomes and elucidate a potential evolutionary cost of being social.
Collapse
Affiliation(s)
- Aaron A Sandel
- Department of Anthropology, University of Texas at Austin, 2201 Speedway Stop C3200, Austin, TX, 78712, USA.
| | - Julie Rushmore
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA, USA
- Epicenter for Disease Dynamics, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Jacob D Negrey
- Department of Pathobiological Sciences, University of Wisconsin, Madison, WI, USA
| | - John C Mitani
- Department of Anthropology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel M Lyons
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Damien Caillaud
- Department of Anthropology, University of California, Davis, CA, USA
| |
Collapse
|
13
|
Charpentier MJE, Boundenga L, Beaulieu M, Dibakou SE, Arnathau C, Sidobre C, Willaume E, Mercier-Delarue S, Simon F, Rougeron V, Prugnolle F. A longitudinal molecular study of the ecology of malaria infections in free-ranging mandrills. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2019; 10:241-251. [PMID: 31667087 PMCID: PMC6812016 DOI: 10.1016/j.ijppaw.2019.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/20/2022]
Abstract
Unravelling the determinants of host variation in susceptibility and exposure to parasite infections, infection dynamics and the consequences of parasitism on host health is of paramount interest to understand the evolution of complex host-parasite interactions. In this study, we evaluated the determinants, temporal changes and physiological correlates of Plasmodium infections in a large natural population of mandrills (Mandrillus sphinx). Over six consecutive years, we obtained detailed parasitological and physiological data from 100 male and female mandrills of all ages. The probability of infection by Plasmodium gonderi and P. mandrilli was elevated (ca. 40%) but most infections were chronical and dynamic, with several cases of parasite switching and clearance. Positive co-infections also occurred between both parasites. Individual age and sex influenced the probability of infections with some differences between parasites: while P. mandrilli appeared to infect its hosts rather randomly, P. gonderi particularly infected middle-aged mandrills. Males were also more susceptible to P. gonderi than females and were more likely to be infected by this parasite at the beginning of an infection by the simian immunodeficiency virus. P. gonderi, and to a lesser extent P. mandrilli, influenced mandrills’ physiology: skin temperatures and neutrophil/lymphocyte ratio were both impacted, generally depending on individual age and sex. These results highlight the ecological complexity of Plasmodium infections in nonhuman primates and the efforts that need to be done to decipher the epidemiology of such parasites. Longitudinal epidemiological and physiological data on Plasmodium infection obtained from a wild primate population. Elevated chronical infections by two species of Plasmodium. Contrasted dynamics of infection and physiological effects of P. gonderi and P. mandrilli. Elevated parasitaemia (P. gonderi) in male mandrills in primo-infection by the simian immunodeficiency virus.
Collapse
Affiliation(s)
- M J E Charpentier
- Institut des Sciences de L'Evolution de Montpellier UMR 5554, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - L Boundenga
- Centre International de Recherches Médicales de Franceville, Franceville, Gabon
| | - M Beaulieu
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany.,German Oceanographic Museum, Stralsund, Germany
| | - S E Dibakou
- Université des Sciences et Techniques de Masuku, Franceville, Gabon
| | - C Arnathau
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle UMR, 224-5290, Montpellier, France
| | - C Sidobre
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle UMR, 224-5290, Montpellier, France
| | - E Willaume
- Société D'Exploitation Du Parc de La Lékédi, Bakoumba, Gabon
| | - S Mercier-Delarue
- Département des Agents Infectieux, Hôpital Saint Louis, Faculté de Médecine Paris Diderot, Paris, France
| | - F Simon
- Département des Agents Infectieux, Hôpital Saint Louis, Faculté de Médecine Paris Diderot, Paris, France
| | - V Rougeron
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle UMR, 224-5290, Montpellier, France
| | - F Prugnolle
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle UMR, 224-5290, Montpellier, France
| |
Collapse
|
14
|
Löhrich T, Behringer V, Wittig RM, Deschner T, Leendertz FH. The Use of Neopterin as a Noninvasive Marker in Monitoring Diseases in Wild Chimpanzees. ECOHEALTH 2018; 15:792-803. [PMID: 30117002 DOI: 10.1007/s10393-018-1357-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 05/28/2023]
Abstract
Pathogen analysis in wild great apes is both time- and resource-consuming. Therefore, we examined the potential use of urinary neopterin, a sensitive marker of cell-mediated immune system activation, as a disease marker and unspecific screening tool to facilitate informed pathogen analysis in great ape health monitoring. To test this, urinary neopterin was correlated to other disease markers such as sickness behaviors, fever, and urine parameters. Seasonal variation in urinary neopterin levels was investigated as well. The study encompassed noninvasively collected longitudinal data of young wild chimpanzees from the Taï National Park, Côte d´Ivoire. Relationships between disease markers were examined using a linear mixed model and a case study approach. Seasonal variation in urinary neopterin was tested using a linear mixed model. While the linear mixed model found no obvious relationship between urinary neopterin levels and other disease markers, the case study approach revealed a pattern resembling those found in humans. Urinary neopterin levels indicated seasonal immune system activation peaking in times of low ambient temperatures. We suggest the use of urinary neopterin as an unspecific screening tool in great ape health monitoring to identify relevant samples, individuals, and time periods for selective pathogen analysis and zoonotic risk assessment.
Collapse
Affiliation(s)
- Therese Löhrich
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
- Institute of Microbiology and Epizootics, Free University, 14163, Berlin, Germany
| | - Verena Behringer
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
| | - Roman M Wittig
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan 01, Côte d'Ivoire
| | - Tobias Deschner
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
| | - Fabian H Leendertz
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany.
| |
Collapse
|
15
|
Sironi M, Forni D, Clerici M, Cagliani R. Genetic conflicts with Plasmodium parasites and functional constraints shape the evolution of erythrocyte cytoskeletal proteins. Sci Rep 2018; 8:14682. [PMID: 30279439 PMCID: PMC6168477 DOI: 10.1038/s41598-018-33049-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/19/2018] [Indexed: 11/19/2022] Open
Abstract
Plasmodium parasites exerted a strong selective pressure on primate genomes and mutations in genes encoding erythrocyte cytoskeleton proteins (ECP) determine protective effects against Plasmodium infection/pathogenesis. We thus hypothesized that ECP-encoding genes have evolved in response to Plasmodium-driven selection. We analyzed the evolutionary history of 15 ECP-encoding genes in primates, as well as of their Plasmodium-encoded ligands (KAHRP, MESA and EMP3). Results indicated that EPB42, SLC4A1, and SPTA1 evolved under pervasive positive selection and that episodes of positive selection tended to occur more frequently in primate species that host a larger number of Plasmodium parasites. Conversely, several genes, including ANK1 and SPTB, displayed extensive signatures of purifying selection in primate phylogenies, Homininae lineages, and human populations, suggesting strong functional constraints. Analysis of Plasmodium genes indicated adaptive evolution in MESA and KAHRP; in the latter, different positively selected sites were located in the spectrin-binding domains. Because most of the positively selected sites in alpha-spectrin localized to the domains involved in the interaction with KAHRP, we suggest that the two proteins are engaged in an arms-race scenario. This observation is relevant because KAHRP is essential for the formation of “knobs”, which represent a major virulence determinant for P. falciparum.
Collapse
Affiliation(s)
- Manuela Sironi
- Bioinformatics, Scientific Institute, IRCCS E. Medea, 23842, Bosisio Parini, Lecco, Italy
| | - Diego Forni
- Bioinformatics, Scientific Institute, IRCCS E. Medea, 23842, Bosisio Parini, Lecco, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, 20090, Milan, Italy.,Don C. Gnocchi Foundation ONLUS, IRCCS, 20148, Milan, Italy
| | - Rachele Cagliani
- Bioinformatics, Scientific Institute, IRCCS E. Medea, 23842, Bosisio Parini, Lecco, Italy.
| |
Collapse
|
16
|
Wu DF, Löhrich T, Sachse A, Mundry R, Wittig RM, Calvignac-Spencer S, Deschner T, Leendertz FH. Seasonal and inter-annual variation of malaria parasite detection in wild chimpanzees. Malar J 2018; 17:38. [PMID: 29347985 PMCID: PMC5774132 DOI: 10.1186/s12936-018-2187-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 01/15/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Cross-sectional surveys of chimpanzee (Pan troglodytes) communities across sub-Saharan Africa show large geographical variation in malaria parasite (Plasmodium spp.) prevalence. The drivers leading to this apparent spatial heterogeneity may also be temporally dynamic but data on prevalence variation over time are missing for wild great apes. This study aims to fill this fundamental gap. METHODS Some 681 faecal samples were collected from 48 individuals of a group of habituated chimpanzees (Taï National Park, Côte d'Ivoire) across four non-consecutive sampling periods between 2005 and 2015. RESULTS Overall, 89 samples (13%) were PCR-positive for malaria parasite DNA. The proportion of positive samples ranged from 0 to 43% per month and 4 to 27% per sampling period. Generalized Linear Mixed Models detected significant seasonal and inter-annual variation, with seasonal increases during the wet seasons and apparently stochastic inter-annual variation. Younger individuals were also significantly more likely to test positive. CONCLUSIONS These results highlight strong temporal fluctuations of malaria parasite detection rates in wild chimpanzees. They suggest that the identification of other drivers of malaria parasite prevalence will require longitudinal approaches and caution against purely cross-sectional studies, which may oversimplify the dynamics of this host-parasite system.
Collapse
Affiliation(s)
- Doris F. Wu
- Project Group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institut, Seestraße 10, 13353 Berlin, Germany
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Therese Löhrich
- Project Group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institut, Seestraße 10, 13353 Berlin, Germany
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Andreas Sachse
- Project Group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institut, Seestraße 10, 13353 Berlin, Germany
| | - Roger Mundry
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Roman M. Wittig
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, BP 1303, Abidjan 01, Côte d’Ivoire
| | - Sébastien Calvignac-Spencer
- Project Group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institut, Seestraße 10, 13353 Berlin, Germany
| | - Tobias Deschner
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Fabian H. Leendertz
- Project Group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institut, Seestraße 10, 13353 Berlin, Germany
| |
Collapse
|
17
|
De Nys H, Löhrich T, Wu D, Calvignac-Spencer S, Leendertz F. Wild African great apes as natural hosts of malaria parasites: current knowledge and research perspectives. Primate Biol 2017; 4:47-59. [PMID: 32110692 PMCID: PMC7041518 DOI: 10.5194/pb-4-47-2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 02/24/2017] [Indexed: 11/24/2022] Open
Abstract
Humans and African great apes (AGAs) are naturally infected with several species of closely related malaria parasites. The need to understand the origins of human malaria as well as the risk of zoonotic transmissions and emergence of new malaria strains in human populations has markedly encouraged research on great ape Plasmodium parasites. Progress in the use of non-invasive methods has rendered investigations into wild ape populations possible. Present knowledge is mainly focused on parasite diversity and phylogeny, with still large gaps to fill on malaria parasite ecology. Understanding what malaria infection means in terms of great ape health is also an important, but challenging avenue of research and has been subject to relatively few research efforts so far. This paper reviews current knowledge on African great ape malaria and identifies gaps and future research perspectives.
Collapse
Affiliation(s)
- Hélène Marie De Nys
- Project group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
- current address: UMI 233, Institut de Recherche pour le Développement (IRD), INSERM U1175, and University of Montpellier, Montpellier, France
| | - Therese Löhrich
- Project group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
| | - Doris Wu
- Project group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
| | | | - Fabian Hubertus Leendertz
- Project group Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
18
|
Mapua MI, Petrželková KJ, Burgunder J, Dadáková E, Brožová K, Hrazdilová K, Stewart FA, Piel AK, Vallo P, Fuehrer HP, Hashimoto C, Modrý D, Qablan MA. A comparative molecular survey of malaria prevalence among Eastern chimpanzee populations in Issa Valley (Tanzania) and Kalinzu (Uganda). Malar J 2016; 15:423. [PMID: 27543045 PMCID: PMC4992209 DOI: 10.1186/s12936-016-1476-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 08/10/2016] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Habitat types can affect vector and pathogen distribution and transmission dynamics. The prevalence and genetic diversity of Plasmodium spp. in two eastern chimpanzee populations-Kalinzu Forest Reserve, Uganda and Issa Valley, Tanzania-inhabiting different habitat types was investigated. As a follow up study the effect of host sex and age on infections patterns in Kalinzu Forest Reserve chimpanzees was determined. METHODS Molecular methods were employed to detect Plasmodium DNA from faecal samples collected from savanna-woodland (Issa Valley) and forest (Kalinzu Forest Reserve) chimpanzee populations. RESULTS Based on a Cytochrome-b PCR assay, 32 out of 160 Kalinzu chimpanzee faecal samples were positive for Plasmodium DNA, whilst no positive sample was detected in 171 Issa Valley chimpanzee faecal samples. Sequence analysis revealed that previously known Laverania species (Plasmodium reichenowi, Plasmodium billbrayi and Plasmodium billcollinsi) are circulating in the Kalinzu chimpanzees. A significantly higher proportion of young individuals were tested positive for infections, and switching of Plasmodium spp. was reported in one individual. Amongst the positive individuals sampled more than once, the success of amplification of Plasmodium DNA from faeces varied over sampling time. CONCLUSION The study showed marked differences in the prevalence of malaria parasites among free ranging chimpanzee populations living in different habitats. In addition, a clear pattern of Plasmodium infections with respect to host age was found. The results presented in this study contribute to understanding the ecological aspects underlying the malaria infections in the wild. Nevertheless, integrative long-term studies on vector abundance, Plasmodium diversity during different seasons between sites would provide more insight on the occurrence, distribution and ecology of these pathogens.
Collapse
Affiliation(s)
- Mwanahamisi I Mapua
- Department of Pathology and Parasitology, University of Veterinary and Pharmaceutical Sciences Brno, 612 42, Brno, Czech Republic.
| | - Klára J Petrželková
- Institute of Vertebrate Biology, Czech Academy of Sciences, 603 00, Brno, Czech Republic.,Liberec Zoo, 460 01, Liberec, Czech Republic.,Institute of Parasitology, Biology Centre, Czech of the Academy of Sciences, 370 05, České Budějovice, Czech Republic
| | - Jade Burgunder
- Department of Pathology and Parasitology, University of Veterinary and Pharmaceutical Sciences Brno, 612 42, Brno, Czech Republic.,Faculty of Science, Masaryk University, 611 37, Brno, Czech Republic
| | - Eva Dadáková
- Department of Pathology and Parasitology, University of Veterinary and Pharmaceutical Sciences Brno, 612 42, Brno, Czech Republic
| | - Kristýna Brožová
- Department of Pathology and Parasitology, University of Veterinary and Pharmaceutical Sciences Brno, 612 42, Brno, Czech Republic
| | - Kristýna Hrazdilová
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, 612 42, Brno, Czech Republic.,Department of Virology, Veterinary Research Institute, 621 00, Brno, Czech Republic.,CEITEC-Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences Brno, 612 42, Brno, Czech Republic
| | - Fiona A Stewart
- Division of Biological Anthropology, Department of Archaeology and Anthropology, University of Cambridge, Cambridge, CB2 3QG, UK
| | - Alex K Piel
- School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, L33AF, UK
| | - Peter Vallo
- Institute of Vertebrate Biology, Czech Academy of Sciences, 603 00, Brno, Czech Republic.,Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Albert-Einstein Allee 11, 89069, Ulm, Germany
| | - Hans-Peter Fuehrer
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Chie Hashimoto
- Primate Research Institute, Kyoto University, Kanrin, Inuyama, Aichi, 484-8506, Japan
| | - David Modrý
- Department of Pathology and Parasitology, University of Veterinary and Pharmaceutical Sciences Brno, 612 42, Brno, Czech Republic.,Institute of Parasitology, Biology Centre, Czech of the Academy of Sciences, 370 05, České Budějovice, Czech Republic.,CEITEC-Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences Brno, 612 42, Brno, Czech Republic
| | - Moneeb A Qablan
- Department of Pathology and Parasitology, University of Veterinary and Pharmaceutical Sciences Brno, 612 42, Brno, Czech Republic.,CEITEC-Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences Brno, 612 42, Brno, Czech Republic.,Department of Veterinary Medicine, College of Food and Agriculture, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| |
Collapse
|
19
|
Loy DE, Liu W, Li Y, Learn GH, Plenderleith LJ, Sundararaman SA, Sharp PM, Hahn BH. Out of Africa: origins and evolution of the human malaria parasites Plasmodium falciparum and Plasmodium vivax. Int J Parasitol 2016; 47:87-97. [PMID: 27381764 DOI: 10.1016/j.ijpara.2016.05.008] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/25/2016] [Accepted: 05/28/2016] [Indexed: 12/22/2022]
Abstract
Plasmodium falciparum and Plasmodium vivax account for more than 95% of all human malaria infections, and thus pose a serious public health challenge. To control and potentially eliminate these pathogens, it is important to understand their origins and evolutionary history. Until recently, it was widely believed that P. falciparum had co-evolved with humans (and our ancestors) over millions of years, whilst P. vivax was assumed to have emerged in southeastern Asia following the cross-species transmission of a parasite from a macaque. However, the discovery of a multitude of Plasmodium spp. in chimpanzees and gorillas has refuted these theories and instead revealed that both P. falciparum and P. vivax evolved from parasites infecting wild-living African apes. It is now clear that P. falciparum resulted from a recent cross-species transmission of a parasite from a gorilla, whilst P. vivax emerged from an ancestral stock of parasites that infected chimpanzees, gorillas and humans in Africa, until the spread of the protective Duffy-negative mutation eliminated P. vivax from human populations there. Although many questions remain concerning the biology and zoonotic potential of the P. falciparum- and P. vivax-like parasites infecting apes, comparative genomics, coupled with functional parasite and vector studies, are likely to yield new insights into ape Plasmodium transmission and pathogenesis that are relevant to the treatment and prevention of human malaria.
Collapse
Affiliation(s)
- Dorothy E Loy
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Weimin Liu
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yingying Li
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gerald H Learn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lindsey J Plenderleith
- Institute of Evolutionary Biology, and Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Sesh A Sundararaman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul M Sharp
- Institute of Evolutionary Biology, and Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Beatrice H Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
20
|
Springer A, Fichtel C, Calvignac-Spencer S, Leendertz FH, Kappeler PM. Hemoparasites in a wild primate: Infection patterns suggest interaction of Plasmodium and Babesia in a lemur species. Int J Parasitol Parasites Wildl 2015; 4:385-95. [PMID: 26767166 PMCID: PMC4683568 DOI: 10.1016/j.ijppaw.2015.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/21/2015] [Accepted: 10/16/2015] [Indexed: 01/11/2023]
Abstract
Hemoparasites can cause serious morbidity in humans and animals and often involve wildlife reservoirs. Understanding patterns of hemoparasite infections in natural populations can therefore inform about emerging disease risks, especially in the light of climate change and human disruption of natural ecosystems. We investigated the effects of host age, sex, host group size and season on infection patterns of Plasmodium sp., Babesia sp. and filarial nematodes in a population of wild Malagasy primates, Verreaux's sifakas (Propithecus verreauxi), as well as the effects of these infections on hematological variables. We tested 45 blood samples from 36 individuals and identified two species of Plasmodium, one species of Babesia and two species of filarial nematodes. Plasmodium spp. and Babesia sp. infections showed opposite patterns of age-dependency, with babesiosis being prevalent among young animals, while older animals were infected with Plasmodium sp. In addition, Babesia sp. infection was a statistically significant negative predictor of Plasmodium sp. infection. These results suggest that Plasmodium and Babesia parasites may interact within the host, either through cross-immunity or via resource competition, so that Plasmodium infections can only establish after babesiosis has resolved. We found no effects of host sex, host group size and season on hemoparasite infections. Infections showed high prevalences and did not influence hematological variables. This preliminary evidence supports the impression that the hosts and parasites considered in this study appear to be well-adapted to each other, resulting in persistent infections with low pathogenic and probably low zoonotic potential. Our results illustrate the crucial role of biodiversity in host-parasite relationships, specifically how within-host pathogen diversity may regulate the abundance of parasites.
Collapse
Affiliation(s)
- Andrea Springer
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
| | - Claudia Fichtel
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
| | - Sébastien Calvignac-Spencer
- Project Group “Epidemiology of Highly Pathogenic Microorganisms”, Robert-Koch-Institut, Seestraße 10, 13353 Berlin, Germany
| | - Fabian H. Leendertz
- Project Group “Epidemiology of Highly Pathogenic Microorganisms”, Robert-Koch-Institut, Seestraße 10, 13353 Berlin, Germany
| | - Peter M. Kappeler
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
- Department of Sociobiology and Anthropology, University of Göttingen, Kellnerweg 6, 30077 Göttingen, Germany
| |
Collapse
|
21
|
Larremore DB, Sundararaman SA, Liu W, Proto WR, Clauset A, Loy DE, Speede S, Plenderleith LJ, Sharp PM, Hahn BH, Rayner JC, Buckee CO. Ape parasite origins of human malaria virulence genes. Nat Commun 2015; 6:8368. [PMID: 26456841 PMCID: PMC4633637 DOI: 10.1038/ncomms9368] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 08/14/2015] [Indexed: 12/22/2022] Open
Abstract
Antigens encoded by the var gene family are major virulence factors of the human malaria parasite Plasmodium falciparum, exhibiting enormous intra- and interstrain diversity. Here we use network analysis to show that var architecture and mosaicism are conserved at multiple levels across the Laverania subgenus, based on var-like sequences from eight single-species and three multi-species Plasmodium infections of wild-living or sanctuary African apes. Using select whole-genome amplification, we also find evidence of multi-domain var structure and synteny in Plasmodium gaboni, one of the ape Laverania species most distantly related to P. falciparum, as well as a new class of Duffy-binding-like domains. These findings indicate that the modular genetic architecture and sequence diversity underlying var-mediated host-parasite interactions evolved before the radiation of the Laverania subgenus, long before the emergence of P. falciparum. Antigens encoded by var genes are major virulence factors of the human malaria parasite Plasmodium falciparum. Here, Larremore et al. identify var-like genes in distantly related Plasmodium species infecting African apes, indicating that these genes already existed in an ancestral ape parasite many millions of years ago.
Collapse
Affiliation(s)
- Daniel B Larremore
- Center for Communicable Disease Dynamics, Harvard School of Public Health, Boston, Massachusetts 02115, USA.,Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | - Sesh A Sundararaman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Weimin Liu
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - William R Proto
- Sanger Institute Malaria Programme, The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Aaron Clauset
- Department of Computer Science, University of Colorado, Boulder, Colorado 80309, USA.,Santa Fe Institute, Santa Fe, New Mexico 87501, USA.,BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, USA
| | - Dorothy E Loy
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Sheri Speede
- Sanaga-Yong Chimpanzee Rescue Center, IDA-Africa, Portland, Oregon 97204, USA
| | - Lindsey J Plenderleith
- Institute of Evolutionary Biology and Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Paul M Sharp
- Institute of Evolutionary Biology and Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Beatrice H Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Julian C Rayner
- Sanger Institute Malaria Programme, The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Caroline O Buckee
- Center for Communicable Disease Dynamics, Harvard School of Public Health, Boston, Massachusetts 02115, USA.,Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| |
Collapse
|
22
|
Siregar JE, Faust CL, Murdiyarso LS, Rosmanah L, Saepuloh U, Dobson AP, Iskandriati D. Non-invasive surveillance for Plasmodium in reservoir macaque species. Malar J 2015; 14:404. [PMID: 26459307 PMCID: PMC4603874 DOI: 10.1186/s12936-015-0857-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 08/22/2015] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Primates are important reservoirs for human diseases, but their infection status and disease dynamics are difficult to track in the wild. Within the last decade, a macaque malaria, Plasmodium knowlesi, has caused disease in hundreds of humans in Southeast Asia. In order to track cases and understand zoonotic risk, it is imperative to be able to quantify infection status in reservoir macaque species. In this study, protocols for the collection of non-invasive samples and isolation of malaria parasites from naturally infected macaques are optimized. METHODS Paired faecal and blood samples from 60 Macaca fascicularis and four Macaca nemestrina were collected. All animals came from Sumatra or Java and were housed in semi-captive breeding colonies around West Java. DNA was extracted from samples using a modified protocol. Nested polymerase chain reactions (PCR) were run to detect Plasmodium using primers targeting mitochondrial DNA. Sensitivity of screening faecal samples for Plasmodium was compared to other studies using Kruskal Wallis tests and logistic regression models. RESULTS The best primer set was 96.7 % (95 % confidence intervals (CI): 83.3-99.4 %) sensitive for detecting Plasmodium in faecal samples of naturally infected macaques (n = 30). This is the first study to produce definitive estimates of Plasmodium sensitivity and specificity in faecal samples from naturally infected hosts. The sensitivity was significantly higher than some other studies involving wild primates. CONCLUSIONS Faecal samples can be used for detection of malaria infection in field surveys of macaques, even when there are no parasites visible in thin blood smears. Repeating samples from individuals will improve inferences of the epidemiology of malaria in wild primates.
Collapse
Affiliation(s)
| | - Christina L Faust
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA.
| | | | - Lis Rosmanah
- Pusat Studi Satwa Primata, Institut Pertanian Bogor, Bogor, Indonesia.
| | - Uus Saepuloh
- Pusat Studi Satwa Primata, Institut Pertanian Bogor, Bogor, Indonesia.
| | - Andrew P Dobson
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA.
| | - Diah Iskandriati
- Pusat Studi Satwa Primata, Institut Pertanian Bogor, Bogor, Indonesia.
| |
Collapse
|
23
|
De Nys HM, Madinda NF, Merkel K, Robbins M, Boesch C, Leendertz FH, Calvignac-Spencer S. A cautionary note on fecal sampling and molecular epidemiology in predatory wild great apes. Am J Primatol 2015; 77:833-40. [PMID: 26031302 DOI: 10.1002/ajp.22418] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/18/2015] [Accepted: 03/22/2015] [Indexed: 11/06/2022]
Abstract
Fecal samples are an important source of information on parasites (viruses, prokaryotes, or eukaryotes) infecting wild great apes. Molecular analysis of fecal samples has already been used for deciphering the origins of major human pathogens such as HIV-1 or Plasmodium falciparum. However, for apes that hunt (chimpanzees and bonobos), detection of parasite nucleic acids may reflect either true infection of the host of interest or ingestion of an infected prey, for example, another non-human primate. To determine the potential magnitude of this issue, we estimated the prevalence of prey DNA in fecal samples obtained from two wild chimpanzee communities. We observed values >15%, which are higher than or close to the fecal detection rates of many great ape parasites. Contamination of fecal samples with parasite DNA from dietary origin may therefore occasionally impact non-invasive epidemiological studies. This problem can be addressed (at least partially) by monitoring the presence of prey DNA.
Collapse
Affiliation(s)
- Hélène Marie De Nys
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Nordufer, Berlin, Germany.,Department of Primatology, Max-Planck-Institute for Evolutionary Anthropology, Deutscher Platz, Leipzig, Germany.,Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan, Merelbeke, Belgium
| | - Nadège Freda Madinda
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Nordufer, Berlin, Germany.,Department of Primatology, Max-Planck-Institute for Evolutionary Anthropology, Deutscher Platz, Leipzig, Germany.,Institut de Recherches en Ecologie Tropicale, Libreville, Gabon
| | - Kevin Merkel
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Nordufer, Berlin, Germany
| | - Martha Robbins
- Department of Primatology, Max-Planck-Institute for Evolutionary Anthropology, Deutscher Platz, Leipzig, Germany
| | - Christophe Boesch
- Department of Primatology, Max-Planck-Institute for Evolutionary Anthropology, Deutscher Platz, Leipzig, Germany
| | | | | |
Collapse
|
24
|
Herbert A, Boundenga L, Meyer A, Moukodoum DN, Okouga AP, Arnathau C, Durand P, Magnus J, Ngoubangoye B, Willaume E, Ba CT, Rougeron V, Renaud F, Ollomo B, Prugnolle F. Malaria-like symptoms associated with a natural Plasmodium reichenowi infection in a chimpanzee. Malar J 2015; 14:220. [PMID: 26032157 PMCID: PMC4502519 DOI: 10.1186/s12936-015-0743-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/20/2015] [Indexed: 11/28/2022] Open
Abstract
Although Plasmodium infections have never been clearly associated with symptoms in non-human primates, the question of the pathogenicity of Plasmodium parasites in non-human primates still remains unanswered. A young chimpanzee, followed before and after release to a sanctuary, in a semi-free ranging enclosure located in an equatorial forest, showed fever and strong anaemia associated with a high Plasmodium reichenowi infection, shortly after release. The animal recovered from anaemia after several months despite recurrent infection with other Plasmodium species. This may be the first description of malaria-like symptoms in a chimpanzee infected with Plasmodium.
Collapse
Affiliation(s)
- Anaïs Herbert
- Centre de Primatologie, Centre International de Recherches Médicales de Franceville, BP 769, Franceville, Gabon.
| | - Larson Boundenga
- Unité de Biodiversité, Ecologie et Evolution des Parasites (UBEEP), Centre International de Recherches Médicales de Franceville, BP 769, Franceville, Gabon. .,Laboratoire d'Écologie et Biologie évolutive, Département de Biologie Animale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, BP 5005, Dakar, Senegal.
| | - Anne Meyer
- Société d'Exploitation du Parc de la Lékédi, Bakoumba, Gabon.
| | - Diamella Nancy Moukodoum
- Unité de Biodiversité, Ecologie et Evolution des Parasites (UBEEP), Centre International de Recherches Médicales de Franceville, BP 769, Franceville, Gabon.
| | - Alain Prince Okouga
- Unité de Biodiversité, Ecologie et Evolution des Parasites (UBEEP), Centre International de Recherches Médicales de Franceville, BP 769, Franceville, Gabon.
| | - Céline Arnathau
- Laboratoire MIVEGEC; UM1-CNRS 5290-IRD 224, IRD Montpellier, Montpellier, France.
| | - Patrick Durand
- Laboratoire MIVEGEC; UM1-CNRS 5290-IRD 224, IRD Montpellier, Montpellier, France.
| | - Julie Magnus
- Unité de Biodiversité, Ecologie et Evolution des Parasites (UBEEP), Centre International de Recherches Médicales de Franceville, BP 769, Franceville, Gabon.
| | - Barthélémy Ngoubangoye
- Centre de Primatologie, Centre International de Recherches Médicales de Franceville, BP 769, Franceville, Gabon.
| | - Eric Willaume
- Société d'Exploitation du Parc de la Lékédi, Bakoumba, Gabon.
| | - Cheikh Tidiane Ba
- Laboratoire d'Écologie et Biologie évolutive, Département de Biologie Animale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, BP 5005, Dakar, Senegal.
| | - Virginie Rougeron
- Unité de Biodiversité, Ecologie et Evolution des Parasites (UBEEP), Centre International de Recherches Médicales de Franceville, BP 769, Franceville, Gabon. .,Laboratoire MIVEGEC; UM1-CNRS 5290-IRD 224, IRD Montpellier, Montpellier, France.
| | - François Renaud
- Laboratoire MIVEGEC; UM1-CNRS 5290-IRD 224, IRD Montpellier, Montpellier, France.
| | - Benjamin Ollomo
- Unité de Biodiversité, Ecologie et Evolution des Parasites (UBEEP), Centre International de Recherches Médicales de Franceville, BP 769, Franceville, Gabon.
| | - Franck Prugnolle
- Unité de Biodiversité, Ecologie et Evolution des Parasites (UBEEP), Centre International de Recherches Médicales de Franceville, BP 769, Franceville, Gabon. .,Laboratoire MIVEGEC; UM1-CNRS 5290-IRD 224, IRD Montpellier, Montpellier, France.
| |
Collapse
|
25
|
Ecology of malaria infections in western lowland gorillas inhabiting Dzanga Sangha Protected Areas, Central African Republic. Parasitology 2015; 142:890-900. [PMID: 25736484 DOI: 10.1017/s0031182015000086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
African great apes are susceptible to infections with several species of Plasmodium, including the predecessor of Plasmodium falciparum. Little is known about the ecology of these pathogens in gorillas. A total of 131 gorilla fecal samples were collected from Dzanga-Sangha Protected Areas to study the diversity and prevalence of Plasmodium species. The effects of sex and age as factors influencing levels of infection with Plasmodium in habituated gorilla groups were assessed. Ninety-five human blood samples from the same locality were also analysed to test for cross-transmission between humans and gorillas. According to a cytB PCR assay 32% of gorilla's fecal samples and 43·1% human individuals were infected with Plasmodium spp. All Laverania species, Plasmodium vivax, and for the first time Plasmodium ovale were identified from gorilla samples. Plasmodium praefalciparum was present only from habituated individuals and P. falciparum was detected from human samples. Although few P. vivax and P. ovale sequences were obtained from gorillas, the evidence for cross-species transmission between humans and gorillas requires more in depth analysis. No association was found between malaria infection and sex, however, younger individuals aged ≤6 years were more susceptible. Switching between two different Plasmodium spp. was observed in three individuals. Prolonged monitoring of Plasmodium infection during various seasons and recording behavioural data is necessary to draw a precise picture about the infection dynamics.
Collapse
|
26
|
De Nys HM, Calvignac-Spencer S, Boesch C, Dorny P, Wittig RM, Mundry R, Leendertz FH. Malaria parasite detection increases during pregnancy in wild chimpanzees. Malar J 2014; 13:413. [PMID: 25331753 PMCID: PMC4210475 DOI: 10.1186/1475-2875-13-413] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/27/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The diversity of malaria parasites (Plasmodium sp.) infecting chimpanzees (Pan troglodytes) and their close relatedness with those infecting humans is well documented. However, their biology is still largely unexplored and there is a need for baseline epidemiological data. Here, the effect of pregnancy, a well-known risk factor for malaria in humans, on the susceptibility of female chimpanzees to malaria infection was investigated. METHODS A series of 384 faecal samples collected during 40 pregnancies and 36 post-pregnancies from three habituated groups of wild chimpanzees in the Taï National Park, Côte d'Ivoire, were tested. Samples were tested for malaria parasites by polymerase chain reaction (PCR) and sequencing. Data were analysed using a generalized linear mixed model. RESULTS Probability of malaria parasite detection significantly increased towards the end of pregnancy and decreased with the age of the mother. CONCLUSIONS This study provides evidence that susceptibility to malaria parasite infection increases during pregnancy, and, as shown before, in younger individuals, which points towards similar dynamics of malaria parasite infection in human and chimpanzee populations and raises questions about the effects of such infections on pregnancy outcome and offspring morbidity/mortality.
Collapse
Affiliation(s)
- Hélène M De Nys
- />Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Nordufer 20, 13353 Berlin, Germany
- />Department of Primatology, Max-Planck-Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
- />Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Sébastien Calvignac-Spencer
- />Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Nordufer 20, 13353 Berlin, Germany
| | - Christophe Boesch
- />Department of Primatology, Max-Planck-Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Pierre Dorny
- />Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
- />Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, 2000 Antwerp, Belgium
| | - Roman M Wittig
- />Department of Primatology, Max-Planck-Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
- />Taï Chimpanzee Project, Centre Suisse de Recherche Scientifique, BP1301, Abidjan, Côte d’Ivoire
| | - Roger Mundry
- />Max-Planck-Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Fabian H Leendertz
- />Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Nordufer 20, 13353 Berlin, Germany
| |
Collapse
|