1
|
Shimizu K, Negishi L, Kurumizaka H, Suzuki M. Diversification of von Willebrand Factor A and Chitin-Binding Domains in Pif/BMSPs Among Mollusks. J Mol Evol 2024; 92:415-431. [PMID: 38864871 PMCID: PMC11291548 DOI: 10.1007/s00239-024-10180-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/23/2024] [Indexed: 06/13/2024]
Abstract
Pif is a shell matrix protein (SMP) identified in the nacreous layer of Pinctada fucata (Pfu) comprised two proteins, Pif97 and Pif 80. Pif97 contains a von Willebrand factor A (VWA) and chitin-binding domains, whereas Pif80 can bind calcium carbonate crystals. The VWA domain is conserved in the SMPs of various mollusk species; however, their phylogenetic relationship remains obscure. Furthermore, although the VWA domain participates in protein-protein interactions, its role in shell formation has not been established. Accordingly, in the current study, we investigate the phylogenetic relationship between PfuPif and other VWA domain-containing proteins in major mollusk species. The shell-related proteins containing VWA domains formed a large clade (the Pif/BMSP family) and were classified into eight subfamilies with unique sequential features, expression patterns, and taxa diversity. Furthermore, a pull-down assay using recombinant proteins containing the VWA domain of PfuPif 97 revealed that the VWA domain interacts with five nacreous layer-related SMPs of P. fucata, including Pif 80 and nacrein. Collectively, these results suggest that the VWA domain is important in the formation of organic complexes and participates in shell mineralisation.
Collapse
Affiliation(s)
- Keisuke Shimizu
- Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-Cho, Yokosuka, Kanagawa, 237-0061, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Lumi Negishi
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Hitoshi Kurumizaka
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Michio Suzuki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan.
| |
Collapse
|
2
|
Li Z, Yang M, Zhou C, Shi P, Hu P, Liang B, Jiang Q, Zhang L, Liu X, Lai C, Zhang T, Song H. Deciphering the molecular toolkit: regulatory elements governing shell biomineralization in marine molluscs. Integr Zool 2024. [PMID: 39030865 DOI: 10.1111/1749-4877.12876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
The intricate process of shell biomineralization in marine molluscs is governed by a complex interplay of regulatory elements, encompassing secretomes, transporters, and noncoding RNA. This review delves into recent advancements in understanding these regulatory mechanisms, emphasizing their significance in elucidating the functions and evolutionary dynamics of the molluscan shell biomineralization process. Central to this intricate orchestration are secretomes with diverse functional domains, selectively exported to the extrapallial space, which directly regulate crystal growth and morphology. Transporters are crucial for substrate transportation in the calcification and maintenance of cellular homeostasis. Beyond proteins and transporters, noncoding RNA molecules are integral components influencing shell biomineralization. This review underscores the nonnegligible roles played by these genetic elements at the molecular level. To comprehend the complexity of biomineralization in mollusc, we explore the origin and evolutionary history of regulatory elements, primarily secretomes. While some elements have recently evolved, others are ancient genes that have been co-opted into the biomineralization toolkit. These elements undergo structural and functional evolution through rapidly evolving repetitive low-complexity domains and domain gain/loss/rearrangements, ultimately shaping a distinctive set of secretomes characterized by both conserved features and evolutionary innovations. This comprehensive review enhances our understanding of molluscan biomineralization at the molecular and genetic levels.
Collapse
Affiliation(s)
- Zhuoqing Li
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Meijie Yang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cong Zhou
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pu Shi
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pengpeng Hu
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bin Liang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qingtian Jiang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Lili Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xiaoyan Liu
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Qingdao Agricultural University, Qingdao, China
| | - Changping Lai
- Lianyungang Blue Carbon Marine Technology Co., Lianyungang, China
| | - Tao Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hao Song
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Jin C, Cheng K, Jiang R, Zhang Y, Luo W. A Novel Kunitz-Type Serine Protease Inhibitor (HcKuSPI) is Involved in Antibacterial Defense in Innate Immunity and Participates in Shell Formation of Hyriopsis cumingii. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:37-49. [PMID: 38117374 DOI: 10.1007/s10126-023-10275-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023]
Abstract
Serine protease inhibitors (SPIs) are abundantly reported for its inhibition against specific proteases involved in the immune responses, but SPI data related to calcareous shells are scarce. Previously, our research group has reported the proteome analysis of non-nucleated pearl powder, and a candidate matrix protein containing two Kunitz domains in the acid soluble fraction caught our attention. In the present study, the full-length cDNA sequence of HcKuSPI was obtained from Hyriopsis cumingii. HcKuSPI was specifically expressed in the mantle, with hybridization signals mainly concentrated to dorsal epithelial cells at the mantle edge and weak signals at the mantle pallium, suggesting HcKuSPI was involved in shell formation. HcKuSPI expression in the mantle was upregulated after Aeromonas hydrophila and Staphylococcus aureus challenge to extrapallial fluids (EPFs). A glutathione S transferase (GST)-HcKuSPI recombinant protein showed strong inhibitory activity against the proteases, trypsin and chymotrypsin. Moreover, HcKuSPI expression in an experimental group was significantly higher when compared with a control group during pellicle growth and crystal deposition in shell regeneration processes, while the organic shell framework of newborn prisms and nacre tablets was completely destroyed after HcKuSPI RNA interference (RNAi). Therefore, HcKuSPI secreted by the mantle may effectively neutralize excess proteases and bacterial proteases in the EPF during bacterial infection and could prevent matrix protein extracellular degradation by suppressing protease proteolytic activity, thereby ensuring a smooth shell biomineralization. In addition, GST-HcKuSPI was also crucial for crystal morphology regulation. These results have important implications for our understanding of the potential roles of SPIs during shell biomineralization.
Collapse
Affiliation(s)
- Can Jin
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, 312000, People's Republic of China
| | - Kang Cheng
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, 312000, People's Republic of China
| | - Rui Jiang
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, 312000, People's Republic of China
| | - Yihang Zhang
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, 312000, People's Republic of China
| | - Wen Luo
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, 312000, People's Republic of China.
| |
Collapse
|
4
|
Schwaner C, Farhat S, Boutet I, Tanguy A, Barbosa M, Grouzdev D, Pales Espinosa E, Allam B. Combination of RNAseq and RADseq to Identify Physiological and Adaptive Responses to Acidification in the Eastern Oyster (Crassostrea virginica). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:997-1019. [PMID: 37864760 DOI: 10.1007/s10126-023-10255-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/29/2023] [Indexed: 10/23/2023]
Abstract
Ocean acidification (OA) is a major stressor threatening marine calcifiers, including the eastern oyster (Crassostrea virginica). In this paper, we provide insight into the molecular mechanisms associated with resilience to OA, with the dual intentions of probing both acclimation and adaptation potential in this species. C. virginica were spawned, and larvae were reared in control or acidified conditions immediately after fertilization. RNA samples were collected from larvae and juveniles, and DNA samples were collected from juveniles after undergoing OA-induced mortality and used to contrast gene expression (RNAseq) and SNP (ddRADseq) profiles from animals reared under both conditions. Results showed convergence of evidence from both approaches, particularly in genes involved in biomineralization that displayed significant changes in variant frequencies and gene expression levels among juveniles that survived acidification as compared to controls. Downregulated genes were related to immune processes, supporting previous studies demonstrating a reduction in immunity from exposure to OA. Acclimation to OA via regulation of gene expression might confer short-term resilience to immediate threats; however, the costs may not be sustainable, underscoring the importance of selection of resilient genotypes. Here, we identified SNPs associated with survival under OA conditions, suggesting that this commercially and ecologically important species might have the genetic variation needed for adaptation to future acidification. The identification of genetic features associated with OA resilience is a highly-needed step for the development of marker-assisted selection of oyster stocks for aquaculture and restoration activities.
Collapse
Affiliation(s)
- Caroline Schwaner
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA
| | - Sarah Farhat
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Isabelle Boutet
- Station Biologique de Roscoff, CNRS/Sorbonne Université, Place Georges Teissier 29680, Roscoff, France
| | - Arnaud Tanguy
- Station Biologique de Roscoff, CNRS/Sorbonne Université, Place Georges Teissier 29680, Roscoff, France
| | - Michelle Barbosa
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA
| | - Denis Grouzdev
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA
| | | | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA.
| |
Collapse
|
5
|
Cheng M, Liu M, Chang L, Liu Q, Wang C, Hu L, Zhang Z, Ding W, Chen L, Guo S, Qi Z, Pan P, Chen J. Overview of structure, function and integrated utilization of marine shell. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161950. [PMID: 36740075 DOI: 10.1016/j.scitotenv.2023.161950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/15/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Marine shell resources have received great attention from researchers owing to their unique merits such as high hardness, good toughness, corrosion resistance, high adsorption, and bioactivity. Restricted by the level of comprehensive utilization technology, the utilization rate of shells is extremely low, resulting in serious waste and pollution. The research shows that the unique brick-mud structure of shells makes them have diverse and good functional characteristics, which guides them to have great utilization potential in different fields. Hence, this review highlights the constitutive relationship between microstructure-function-application of shells (e.g., gastropods, cephalopods, and amniotes), and the comprehensive applications and development ideas in the fields of biomedicine, adsorption enrichment, pHotocatalysis, marine carbon sink, and environmental deicer. It is worth mentioning that marine shells are currently well developed in three areas: bone repair, health care and medicinal value, and drug carrier, which together promote the progress of biomedical field. In addition, an in-depth summary of the application of marine shells in the adsorption and purification of various impurities such as crude oil, heavy metal ions and dyes at low-cost and high efficiency is presented. Finally, by integrating thoughts and approaches from different applications, we are committed to providing new pathways for the excavation and future high-value of shell resources, clarifying the existing development stages and bottlenecks, promoting the development of related technology industries, and achieving the synergistic win-win situation of economic and environmental benefits.
Collapse
Affiliation(s)
- Meiqi Cheng
- Marine College, Shandong University, Weihai 264209, China
| | - Man Liu
- Marine College, Shandong University, Weihai 264209, China
| | - Lirong Chang
- Weihai Changqing Ocean Science Technology Co., Ltd., Rongcheng 264300, China
| | - Qing Liu
- Marine College, Shandong University, Weihai 264209, China
| | - Chunxiao Wang
- Marine College, Shandong University, Weihai 264209, China
| | - Le Hu
- Marine College, Shandong University, Weihai 264209, China
| | - Ziyue Zhang
- Marine College, Shandong University, Weihai 264209, China
| | - Wanying Ding
- Marine College, Shandong University, Weihai 264209, China
| | - Li Chen
- College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China
| | - Sihan Guo
- Business School, Shandong University, Weihai 264209, China
| | - Zhi Qi
- Business School, Shandong University, Weihai 264209, China
| | - Panpan Pan
- Marine College, Shandong University, Weihai 264209, China; Weihai Changqing Ocean Science Technology Co., Ltd., Rongcheng 264300, China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China.
| | - Jingdi Chen
- Marine College, Shandong University, Weihai 264209, China; Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai 265599, China.
| |
Collapse
|
6
|
Gold DA, Vermeij GJ. Deep resilience: An evolutionary perspective on calcification in an age of ocean acidification. Front Physiol 2023; 14:1092321. [PMID: 36818444 PMCID: PMC9935589 DOI: 10.3389/fphys.2023.1092321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
The success of today's calcifying organisms in tomorrow's oceans depends, in part, on the resilience of their skeletons to ocean acidification. To the extent this statement is true there is reason to have hope. Many marine calcifiers demonstrate resilience when exposed to environments that mimic near-term ocean acidification. The fossil record similarly suggests that resilience in skeletons has increased dramatically over geologic time. This "deep resilience" is seen in the long-term stability of skeletal chemistry, as well as a decreasing correlation between skeletal mineralogy and extinction risk over time. Such resilience over geologic timescales is often attributed to genetic canalization-the hardening of genetic pathways due to the evolution of increasingly complex regulatory systems. But paradoxically, our current knowledge on biomineralization genetics suggests an opposing trend, where genes are co-opted and shuffled at an evolutionarily rapid pace. In this paper we consider two possible mechanisms driving deep resilience in skeletons that fall outside of genetic canalization: microbial co-regulation and macroevolutionary trends in skeleton structure. The mechanisms driving deep resilience should be considered when creating risk assessments for marine organisms facing ocean acidification and provide a wealth of research avenues to explore.
Collapse
|
7
|
Structural and functional analyses of chitinolytic enzymes in the nacreous layer of Pinctada fucata. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Shimizu K, Negishi L, Ito T, Touma S, Matsumoto T, Awaji M, Kurumizaka H, Yoshitake K, Kinoshita S, Asakawa S, Suzuki M. Evolution of nacre- and prisms-related shell matrix proteins in the pen shell, Atrina pectinata. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 44:101025. [PMID: 36075178 DOI: 10.1016/j.cbd.2022.101025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 01/27/2023]
Abstract
The molluscan shell is a good model for understanding the mechanisms underlying biomineralization. It is composed of calcium carbonate crystals and many types of organic molecules, such as the matrix proteins, polysaccharides, and lipids. The pen shell Atrina pectinata (Pterioida, Pinnidae) has two shell microstructures: an outer prismatic layer and an inner nacreous layer. Similar microstructures are well known in pearl oysters (Pteriidae), such as Pinctada fucata, and many kinds of shell matrix proteins (SMPs) have been identified from their shells. However, the members of SMPs that consist of the nacreous and prismatic layers of Pinnidae bivalves remain unclear. In this study, we identified 114 SMPs in the nacreous and prismatic layers of A. pectinata, of which only seven were found in both microstructures. 54 of them were found to bind calcium carbonate. Comparative analysis of nine molluscan shell proteomes showed that 69 of 114 SMPs of A. pectinata were found to have sequential similarity with at least one or more SMPs of other molluscan species. For instance, nacrein, tyrosinase, Pif/BMSP-like, chitinase (CN), chitin-binding proteins, CD109, and Kunitz-type serine proteinase inhibitors are widely shared among bivalves and gastropods. Our results provide new insights for understanding the complex evolution of SMPs related to nacreous and prismatic layer formation in the pteriomorph bivalves.
Collapse
Affiliation(s)
- Keisuke Shimizu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Lumi Negishi
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Takumi Ito
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Shogo Touma
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Toshie Matsumoto
- National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, 422-1 Nakatsuhama, Minami-Ise, Watarai, Mie 516-0193, Japan
| | - Masahiko Awaji
- National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, 422-1 Nakatsuhama, Minami-Ise, Watarai, Mie 516-0193, Japan
| | - Hitoshi Kurumizaka
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Kazutoshi Yoshitake
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Shigeharu Kinoshita
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Shuichi Asakawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Michio Suzuki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan.
| |
Collapse
|
9
|
Yoshida MA, Hirota K, Imoto J, Okuno M, Tanaka H, Kajitani R, Toyoda A, Itoh T, Ikeo K, Sasaki T, Setiamarga DHE. Gene Recruitments and Dismissals in the Argonaut Genome Provide Insights into Pelagic Lifestyle Adaptation and Shell-like Eggcase Reacquisition. Genome Biol Evol 2022; 14:evac140. [PMID: 36283693 PMCID: PMC9635652 DOI: 10.1093/gbe/evac140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2022] [Indexed: 10/01/2023] Open
Abstract
The paper nautilus or greater argonaut, Argonauta argo, is a species of octopods which is characterized by its pelagic lifestyle and by the presence of a protective spiral-shaped shell-like eggcase in females. To reveal the genomic background of how the species adapted to the pelagic lifestyle and acquired its shell-like eggcase, we sequenced the draft genome of the species. The genome size was 1.1 Gb, which is the smallest among the cephalopods known to date, with the top 215 scaffolds (average length 5,064,479 bp) covering 81% (1.09 Gb) of the total assembly. A total of 26,433 protein-coding genes were predicted from 16,802 assembled scaffolds. From these, we identified nearly intact HOX, Parahox, Wnt clusters, and some gene clusters that could probably be related to the pelagic lifestyle, such as reflectin, tyrosinase, and opsin. The gene models also revealed several homologous genes related to calcified shell formation in Conchiferan mollusks, such as Pif-like, SOD, and TRX. Interestingly, comparative genomics analysis revealed that the homologous genes for such genes were also found in the genome of the shell-less octopus, as well as Nautilus, which has a true outer shell. Therefore, the draft genome sequence of Arg. argo presented here has helped us to gain further insights into the genetic background of the dynamic recruitment and dismissal of genes to form an important, converging extended phenotypic structure such as the shell and the shell-like eggcase. Additionally, it allows us to explore the evolution of from benthic to pelagic lifestyles in cephalopods and octopods.
Collapse
Affiliation(s)
- Masa-aki Yoshida
- Marine Biological Science Section, Education and Research Center for Biological Resources, Faculty of Life and Environmental Science, Shimane University, Okinoshima, Shimane 685-0024, Japan
| | - Kazuki Hirota
- Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
- Department of Applied Chemistry and Biochemistry, National Institute of Technology (KOSEN), Wakayama College, Gobo, Wakayama 644-0012, Japan
| | - Junichi Imoto
- Center for Information Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Miki Okuno
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Hiroyuki Tanaka
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Rei Kajitani
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Takehiko Itoh
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Kazuho Ikeo
- Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Takenori Sasaki
- Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
- The University Museum, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Davin H E Setiamarga
- Department of Applied Chemistry and Biochemistry, National Institute of Technology (KOSEN), Wakayama College, Gobo, Wakayama 644-0012, Japan
- The University Museum, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
10
|
Luo W, Jiang R, Ren G, Jin C. Hic12, a novel acidic matrix protein promotes the transformation of calcite into vaterite in Hyriopsis cumingii. Comp Biochem Physiol B Biochem Mol Biol 2022; 261:110755. [PMID: 35580805 DOI: 10.1016/j.cbpb.2022.110755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 11/27/2022]
Abstract
Shell acidic matrix proteins are widely considered to be essential for shell formation given their low affinity and high loading for calcium ion. In the present study, a novel matrix protein, hic12, was isolated from the mantle of Hyriopsis cumingii. High expression in tissue and positive signals with in situ hybridization were detected in the mantle center and mantle pallium, indicating that hic12 mainly participated in the biomineralization of the shell nacreous layer. The expression pattern of hic12 in the pearl sac during early pearl formation indicated that it was involved in pearl biomineralization. Moreover, the recombinant protein, rGST-Hic12, was successfully expressed and purified. The addition of rGST-Hic12 could accelerate the calcium carbonate deposition rate, change the morphology of crystals, and promote the conversion of calcite to vaterite. These results may provide new insights into the molecular mechanisms of aragonite mollusk shell formation.
Collapse
Affiliation(s)
- Wen Luo
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, PR China
| | - Rui Jiang
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, PR China
| | - Gang Ren
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, PR China
| | - Can Jin
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, PR China.
| |
Collapse
|
11
|
Rivera-Pérez C, Arroyo-Loranca RG, Hernández-Saavedra NY. An acidic protein, Hf15, from Haliotis fulgens involved in biomineralization. Comp Biochem Physiol A Mol Integr Physiol 2022; 272:111276. [PMID: 35853523 DOI: 10.1016/j.cbpa.2022.111276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/20/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022]
Abstract
Biomineralization leads to the hardening of mineralized materials, such as the shell of Mollusk, to fulfill a wide range of functions, such as (but not limited to) skeletal support, protection of the soft tissues, navigation, etc. The study of the proteins responsible for this process, shell matrix proteins (SMPs), allows addressing questions related to structure-function relationship and to the mechanism of mineral formation, which is limited in gastropod species. In this study, a low molecular weight protein was isolated from the insoluble fraction after decalcification with acetic acid of the shell of Haliotis fulgens and, named Hf15. The unglycosylated protein has a theoretical molecular weight of 15 kDa, it possesses calcium and chiting binding properties. Hf15 can precipitate calcium carbonate in vitro in presence of different salts. Analysis by LC-MS of the five peptide sequences of Hf15 generated by trypsinization revealed that two peptides displayed homology to an uncharacterized protein 3-like from Haliotis rufescens, Haliotis asinia and H. sorenseni. The results obtained indicated that Hf15 is a novel SMP involved in shell mineralization in Haliotis fulgens.
Collapse
Affiliation(s)
| | - Raquel G Arroyo-Loranca
- Fisheries Ecology, Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, Baja California Sur, Mexico
| | | |
Collapse
|
12
|
Shimizu K, Takeuchi T, Negishi L, Kurumizaka H, Kuriyama I, Endo K, Suzuki M. Evolution of EGF-like and Zona pellucida domains containing shell matrix proteins in mollusks. Mol Biol Evol 2022; 39:6633355. [PMID: 35796746 PMCID: PMC9290575 DOI: 10.1093/molbev/msac148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Several types of shell matrix proteins (SMPs) have been identified in molluskan shells. Their diversity is the consequence of various molecular processes, including domain shuffling and gene duplication. However, the evolutionary origin of most SMPs remains unclear. In this study, we investigated the evolutionary process EGF-like and zona pellucida (ZP) domains containing SMPs. Two types of the proteins (EGF-like protein (EGFL) and EGF-like and ZP domains containing protein (EGFZP)) were found in the pearl oyster, Pinctada fucata. In contrast, only EGFZP was identified in the gastropods. Phylogenetic analysis and genomic arrangement studies showed that EGFL and EGFZP formed a clade in bivalves, and their encoding genes were localized in tandem repeats on the same scaffold. In P. fucata, EGFL genes were expressed in the outer part of mantle epithelial cells are related to the calcitic shell formation. However, in both P. fucata and the limpet Nipponacmea fuscoviridis, EGFZP genes were expressed in the inner part of the mantle epithelial cells are related to aragonitic shell formation. Furthermore, our analysis showed that in P. fucata, the ZP domain interacts with eight SMPs that have various functions in the nacreous shell mineralization. The data suggest that the ZP domain can interact with other SMPs, and EGFL evolution in pterimorph bivalves represents an example of neo-functionalization that involves the acquisition of a novel protein through gene duplication.
Collapse
Affiliation(s)
- Keisuke Shimizu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Takeshi Takeuchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Lumi Negishi
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Hitoshi Kurumizaka
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Isao Kuriyama
- Mie Prefecture Fisheries Research Institute, 3564-3 Hamajima, Hamajima-cho, Shima-city, Mie 517-0404, Japan
| | - Kazuyoshi Endo
- Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan
| | - Michio Suzuki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| |
Collapse
|
13
|
Sato K, Setiamarga DHE, Yonemitsu H, Higuchi K. Microstructural and Genetic Insights Into the Formation of the “Winter Diffusion Layer” in Japanese Pearl Oyster Pinctada fucata and Its Relation to Environmental Temperature Changes. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.794287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Phenotypic plasticity in molluscan shell microstructures may be related to environmental changes. The “winter diffusion layer,” a shell microstructure of the Japanese pearl oyster Pinctada fucata, is an example of this phenomenon. In this study, we used P. fucata specimens with shared genetic background to evaluate the seasonal plasticity of shell microstructures, at molecular level. To detect the seasonal changes in shell microstructure and mineral composition, shells of multiple individuals were periodically collected and analyzed using scanning electron microscopy and Raman spectrophotometry. Our observations of the winter diffusion layer revealed that this irregular shell layer, located between the outer and middle shell layers, had a sphenoid shape in radial section. This distinct shape might be caused by the internal extension of the outer shell layer resulting from growth halts. The winter diffusion layer could be distinguished from the calcitic outer shell layer by its aragonitic components and microstructures. Moreover, the components of the winter diffusion layer were irregular simple prismatic (the outer and inner sublayers) and homogeneous structures (the middle sublayer). This irregular formation occurred until April, when the animals resumed their “normal” shell formation after hibernation. To check for a correlation between gene expression and the changes in microstructures, we conducted qPCR of seven major biomineralization-related shell matrix protein-coding genes (aspein, prismalin-14, msi7, msi60, nacrein, n16, and n19) in the shell-forming mantle tissue. Tissue samples were collected from the mantle edge (tissue secreting the outer shell layer) and mantle pallium (where the middle shell layer is constructed) of the same individuals used for microstructural observation and mineral identification that were collected in January (winter growth break period), April (irregular shell formation period), and August (normal shell formation period). Statistically significant differences in gene expression levels were observed between mantle edge and mantle pallium, but no seasonal differences were detected in the seasonal expression patterns of these genes. These results suggest that the formation of the irregular shell layer in P. fucata is caused by a currently unknown genetic mechanism unrelated to the genes targeted in the present study. Further studies using big data (transcriptomics and manipulation of gene expression) are required to answer the questions herein raised. Nevertheless, the results herein presented are essential to unravel the intriguing mystery of the formation of the winter diffusion layer, which may allow us to understand how marine mollusks adapt or acclimate to climate changes.
Collapse
|
14
|
Danabaş D, Kutluyer F, Ural M, Özçelik M, Kocabaş M. Age- and Sex-Specific Bioaccumulation of Selected Metals in Freshwater Mussel (Unio elangatulus eucirrus Bourguignat, 1860) Populating from Keban Dam Lake (Elazig, Turkey). BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:366-371. [PMID: 34817632 DOI: 10.1007/s00128-021-03414-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
In aquatic life, environmental chemicals are accumulated by mussels due to their sentinel nature and filter-feeding characteristics. Herein, the present study focused on assessing the concentrations of Cu, Zn, Mg, Mn, Fe, Cd, Pb, Ca, K, and Na levels in freshwater mussels (Unio elangatulus eucirrus) depending on sex and age. For all trace metals, some important differences of bioaccumulations were determined depending on ages and sex. In details, the results indicated that an important age-related accumulation of Mg, Cd, Ca, and K was in females and all trace elements, except Cu, Mg, and K levels in males (p < 0.05). No statistical differences were determined in mean concentrations of Cu, Zn, Mg, and Na. There are statistical differences in Mg, Mn, Fe, and Ca levels between females and males in four aged mussels (p < 0.05). Lead levels were under detectable limits. Overall, metal levels and their toxicity in freshwater mussels should be closely monitored for health of the environment, animals, and humans, since mussels and fish species fed on them are consumed highly in the research region and around.
Collapse
Affiliation(s)
- Durali Danabaş
- Fisheries Faculty, Munzur University, TR62000, Tunceli, Turkey.
| | - Filiz Kutluyer
- Fisheries Faculty, Munzur University, TR62000, Tunceli, Turkey
| | - Mesut Ural
- Fisheries Faculty, Munzur University, TR62000, Tunceli, Turkey
| | - Mehtap Özçelik
- High School of Health Sciences, Firat University, TR23100, Elaziğ, Turkey
| | - Mehmet Kocabaş
- Department Wildlife Ecology and Management, Forestry Faculty, Karadeniz Technical University, TR61080, Trabzon, Turkey
| |
Collapse
|
15
|
Diverse silk and silk-like proteins derived from terrestrial and marine organisms and their applications. Acta Biomater 2021; 136:56-71. [PMID: 34551332 DOI: 10.1016/j.actbio.2021.09.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 01/12/2023]
Abstract
Organisms develop unique systems in a given environment. In the process of adaptation, they employ materials in a clever way, which has inspired mankind extensively. Understanding the behavior and material properties of living organisms provides a way to emulate these natural systems and engineer various materials. Silk is a material that has been with human for over 5000 years, and the success of mass production of silkworm silk has realized its applications to medical, pharmaceutical, optical, and even electronic fields. Spider silk, which was characterized later, has expanded the application sectors to textile and military materials based on its tough mechanical properties. Because silk proteins are main components of these materials and there are abundant creatures producing silks that have not been studied, the introduction of new silk proteins would be a breakthrough of engineering materials to open innovative industry fields. Therefore, in this review, we present diverse silk and silk-like proteins and how they are utilized with respect to organism's survival. Here, the range of organisms are not constrained to silkworms and spiders but expanded to other insects, and even marine creatures which produce silk-like proteins that are not observed in terrestrial silks. This viewpoint broadening of silk and silk-like proteins would suggest diverse targets of engineering to design promising silk-based materials. STATEMENT OF SIGNIFICANCE: Silk has been developed as a biomedical material due to unique mechanical and chemical properties. For decades, silks from various silkworm and spider species have been intensively studied. More recently, other silk and silk-like proteins with different sequences and structures have been reported, not only limited to terrestrial organisms (honeybee, green lacewing, caddisfly, and ant), but also from marine creatures (mussel, squid, sea anemone, and pearl oyster). Nevertheless, there has hardly been well-organized literature on silks from such organisms. Regarding the relationship among sequence-structure-properties, this review addresses how silks have been utilized with respect to organism's survival. Finally, this information aims to improve the understanding of diverse silk and silk-like proteins which can offer a significant interest to engineering fields.
Collapse
|
16
|
The degradation of intracrystalline mollusc shell proteins: A proteomics study of Spondylus gaederopus. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140718. [PMID: 34506968 DOI: 10.1016/j.bbapap.2021.140718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/20/2021] [Accepted: 08/31/2021] [Indexed: 11/23/2022]
Abstract
Mollusc shells represent excellent systems for the preservation and retrieval of genuine biomolecules from archaeological or palaeontological samples. As a consequence, the post-mortem breakdown of intracrystalline mollusc shell proteins has been extensively investigated, particularly with regard to its potential use as a "molecular clock" for geochronological applications. But despite seventy years of ancient protein research, the fundamental aspects of diagenesis-induced changes to protein structures and sequences remain elusive. In this study we investigate the degradation of intracrystalline proteins by performing artificial degradation experiments on the shell of the thorny oyster, Spondylus gaederopus, which is particularly important for archaeological research. We used immunochemistry and tandem mass tag (TMT) quantitative proteomics to simultaneously track patterns of structural loss and of peptide bond hydrolysis. Powdered and bleached shell samples were heated in water at four different temperatures (80, 95, 110, 140 °C) for different time durations. The structural loss of carbohydrate and protein groups was investigated by immunochemical techniques (ELLA and ELISA) and peptide bond hydrolysis was studied by tracking the changes in protein/peptide relative abundances over time using TMT quantitative proteomics. We find that heating does not induce instant organic matrix decay, but first facilitates the uncoiling of cross-linked structures, thus improving matrix detection. We calculated apparent activation energies of structural loss: Ea (carbohydrate groups) = 104.7 kJ/mol, Ea (protein epitopes) = 104.4 kJ/mol, which suggests that secondary matrix structure degradation may proceed simultaneously with protein hydrolysis. While prolonged heating at 110 °C (10 days) results in complete loss of the structural signal, surviving peptide sequences were still observed. Eight hydrolysis-prone peptide bonds were identified in the top scoring shell sequence, the uncharacterised protein LOC117318053 from Pecten maximus. Interestingly, these were not the expected "weak" bonds based on published theoretical stabilities calculated for peptides in solution. This further confirms that intracrystalline protein degradation patterns are complex and that the overall microchemical environment plays an active role in protein stability. Our TMT approach represents a major stepping stone towards developing a model for studying protein diagenesis in biomineralised systems.
Collapse
|
17
|
Liu C, Ji X, Huang J, Wang Z, Liu Y, Hincke MT. Proteomics of Shell Matrix Proteins from the Cuttlefish Bone Reveals Unique Evolution for Cephalopod Biomineralization. ACS Biomater Sci Eng 2021; 9:1796-1807. [PMID: 34468131 DOI: 10.1021/acsbiomaterials.1c00693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In contrast to the external shells in bivalves and gastropods, most cephalopods are missing this external protection. The cuttlefish, belonging to class cephalopod, has an internal biomineralized structure made of mainly calcium carbonate for controlling buoyancy. However, the macromolecules, especially proteins that control cuttlebone mineral formation, are not sufficiently understood, limiting our understanding of the evolution of this internal shell. In this study, we extracted proteins from the cuttlebone of pharaoh cuttlefish Sepia pharaonis and performed liquid chromatography-tandem mass spectrometry to identify the shell matrix proteins (SMPs). In total, 41 SMPs were identified. Among them, hemocyanin, an oxygen-carrying protein, was the most abundant SMP. By comparison with SMPs of other marine biominerals, hemocyanin, apolipophorin, soul domain proteins, transferrin, FL-rich, and enolase were found to be unique to the cuttlebone. In contrast, typical SMPs of external shells such as carbonic anhydrase complement control protein, fibronectin type III, and G/A-rich proteins were lacking from the cuttlebone. Furthermore, the cluster analysis of biomineral SMPs suggests that the SMP repertoire of the cuttlebone does not resemble that of other species with external shells. Taken together, this study implies a potential relationship of the cuttlefish internal shell with other internal biominerals, which highlights a unique shell evolutionary pathway in invertebrates.
Collapse
Affiliation(s)
- Chuang Liu
- College of Oceanography, Hohai University, Xikang Road, Nanjing, Jiangsu 210098, China
| | - Xin Ji
- College of Oceanography, Hohai University, Xikang Road, Nanjing, Jiangsu 210098, China
| | - Jingliang Huang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhu hai, Guangdong 519082, China
| | - Zilin Wang
- College of Oceanography, Hohai University, Xikang Road, Nanjing, Jiangsu 210098, China
| | - Yangjia Liu
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Maxwell T Hincke
- Department of Innovation in Medical Education, and Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa K1H8M5, Ontario, Canada
| |
Collapse
|
18
|
Takeuchi T, Fujie M, Koyanagi R, Plasseraud L, Ziegler-Devin I, Brosse N, Broussard C, Satoh N, Marin F. The 'Shellome' of the Crocus Clam Tridacna crocea Emphasizes Essential Components of Mollusk Shell Biomineralization. Front Genet 2021; 12:674539. [PMID: 34168677 PMCID: PMC8217771 DOI: 10.3389/fgene.2021.674539] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/13/2021] [Indexed: 01/31/2023] Open
Abstract
Molluscan shells are among the most fascinating research objects because of their diverse morphologies and textures. The formation of these delicate biomineralized structures is a matrix-mediated process. A question that arises is what are the essential components required to build these exoskeletons. In order to understand the molecular mechanisms of molluscan shell formation, it is crucial to identify organic macromolecules in different shells from diverse taxa. In the case of bivalves, however, taxon sampling in previous shell proteomics studies are focused predominantly on representatives of the class Pteriomorphia such as pearl oysters, edible oysters and mussels. In this study, we have characterized the shell organic matrix from the crocus clam, Tridacna crocea, (Heterodonta) using various biochemical techniques, including SDS-PAGE, FT-IR, monosaccharide analysis, and enzyme-linked lectin assay (ELLA). Furthermore, we have identified a number of shell matrix proteins (SMPs) using a comprehensive proteomics approach combined to RNA-seq. The biochemical studies confirmed the presence of proteins, polysaccharides, and sulfates in the T. crocea shell organic matrix. Proteomics analysis revealed that the majority of the T. crocea SMPs are novel and dissimilar to known SMPs identified from the other bivalve species. Meanwhile, the SMP repertoire of the crocus clam also includes proteins with conserved functional domains such as chitin-binding domain, VWA domain, and protease inhibitor domain. We also identified BMSP (Blue Mussel Shell Protein, originally reported from Mytilus), which is widely distributed among molluscan shell matrix proteins. Tridacna SMPs also include low-complexity regions (LCRs) that are absent in the other molluscan genomes, indicating that these genes may have evolved in specific lineage. These results highlight the diversity of the organic molecules – in particular proteins – that are essential for molluscan shell formation.
Collapse
Affiliation(s)
- Takeshi Takeuchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Manabu Fujie
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Ryo Koyanagi
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Laurent Plasseraud
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302, Faculté des Sciences Mirande, Université de Bourgogne - Franche-Comté (UBFC), Dijon, France
| | - Isabelle Ziegler-Devin
- LERMAB, Faculté des Sciences et Technologies - Campus Aiguillettes, Université de Lorraine, Vandoeuvre-Lès-Nancy, France
| | - Nicolas Brosse
- LERMAB, Faculté des Sciences et Technologies - Campus Aiguillettes, Université de Lorraine, Vandoeuvre-Lès-Nancy, France
| | - Cédric Broussard
- 3P5 Proteomic Platform, Cochin Institute, University of Paris, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Frédéric Marin
- UMR CNRS 6282 Biogéosciences, Bâtiment des Sciences Gabriel, Université de Bourgogne - Franche-Comté (UBFC), Dijon, France
| |
Collapse
|
19
|
Rezende BS, Spotorno-Oliveira P, D'ávila S, Maia LF, Cappa de Oliveira LF. Evidence of a Biogenic Mineralization Process in Vermetid Feeding Mucus as Revealed by Raman Spectroscopy and Scanning Electron Microscopy. MALACOLOGIA 2021. [DOI: 10.4002/040.063.0206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Beatriz Seixas Rezende
- Museu de Malacologia Prof. Maury Pinto de Oliveira, Universidade Federal de Juiz de Fora, MG, Brazil
| | - Paula Spotorno-Oliveira
- Programa de Pós-Graduação em Oceanologia, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Sthefane D'ávila
- Museu de Malacologia Prof. Maury Pinto de Oliveira, Universidade Federal de Juiz de Fora, MG, Brazil
| | - Lenize Fernandes Maia
- Núcleo de Espectroscopia e Estrutura Molecular, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, MG, Brazil
| | - Luiz Fernando Cappa de Oliveira
- Núcleo de Espectroscopia e Estrutura Molecular, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, MG, Brazil
| |
Collapse
|
20
|
Liu C, Zhang R. Biomineral proteomics: A tool for multiple disciplinary studies. J Proteomics 2021; 238:104171. [PMID: 33652138 DOI: 10.1016/j.jprot.2021.104171] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/06/2021] [Accepted: 02/21/2021] [Indexed: 12/11/2022]
Abstract
The hard tissues of animals, such as skeletons and teeth, are constructed by a biologically controlled process called biomineralization. In invertebrate animals, biominerals are considered important for their evolutionary success. These biominerals are hieratical biocomposites with excellent mechanical properties, and their formation has intrigued researchers for decades. Although proteins account for ~5 wt% of biominerals, they are critical players in biomineralization. With the development of high-throughput analysis methods, such as proteomics, biomineral protein data are rapidly accumulating, thus necessitating a refined model for biomineralization. This review focuses on biomineral proteomics in invertebrate animals to highlight the diversity of biomineral proteins (generally 40-80 proteins), and the results indicate that biomineralization includes thermodynamic crystal growth as well as intense extracellular matrix activity and/or vesicle transport. Biominerals have multiple functions linked to biological immunity and antipathogen activity. A comparison of proteomes across species and biomineral types showed that von Willebrand factor type A and epidermal growth factor, which frequently couple with other extracellular domains, are the most common domains. Combined with species-specific repetitive low complexity domains, shell matrix proteins can be employed to predict biomineral types. Furthermore, this review discusses the applications of biomineral proteomics in diverse fields, such as tissue regeneration, developmental biology, archeology, environmental science, and material science.
Collapse
Affiliation(s)
- Chuang Liu
- College of Oceanography, Hohai University, Xikang Road, Nanjing, Jiangsu 210098, China.
| | - Rongqing Zhang
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, 705 Yatai Road, Jiaxing 314006, PR China; College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| |
Collapse
|
21
|
Nędzarek A, Czerniejewski P, Tórz A. A comparison of the concentrations of heavy metals in modern and medieval shells of swollen river mussels (Unio tumidus) from the Szczecin Lagoon, SW Baltic basin. MARINE POLLUTION BULLETIN 2021; 163:111959. [PMID: 33450444 DOI: 10.1016/j.marpolbul.2020.111959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/24/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
The shells of mussels, live-collected bivalves or during archaeological excavations, can be used as bioindicators of current and historical levels of heavy metal contamination. In this study, we examined the shells of Unio tumidus, commonly found in the Baltic Sea region, and determined the concentrations of Zn, Cu, Fe, Pb, Ni, and Cd in samples from the 10th, 11th, and 21st century from the area of the Szczecin Lagoon. The average levels of heavy metals (in μg g-1 dry weight) in the shells from the Middle Ages were: 137.5 (Fe), 3.87 (Zn), 0.789 (Cu), 0.012 (Pb), 0.047 (Ni), and 0.0009 (Cd). Shells from the 21st century were significantly (P<0.05) more abundant in Fe, Cu, Ni, Pb, and Cd (rates of increase: 1.96×, 3.54×, 2.71×, 2.08×, and 3.55×, respectively) than shells from the Middle Ages. These results reflect contemporary anthropogenic pollution of the environment with heavy metals and confirm the possibility of using U. tumidus shells in the assessment of heavy metal pollution levels.
Collapse
Affiliation(s)
- Arkadiusz Nędzarek
- West Pomeranian University of Technology in Szczecin, Faculty of Food Sciences and Fisheries, Kazimierza Królewicza Street 4, 71-550 Szczecin, Poland.
| | - Przemysław Czerniejewski
- West Pomeranian University of Technology in Szczecin, Faculty of Food Sciences and Fisheries, Kazimierza Królewicza Street 4, 71-550 Szczecin, Poland.
| | - Agnieszka Tórz
- West Pomeranian University of Technology in Szczecin, Faculty of Food Sciences and Fisheries, Kazimierza Królewicza Street 4, 71-550 Szczecin, Poland.
| |
Collapse
|
22
|
Diversified Biomineralization Roles of Pteria penguin Pearl Shell Lectins as Matrix Proteins. Int J Mol Sci 2021; 22:ijms22031081. [PMID: 33499178 PMCID: PMC7865697 DOI: 10.3390/ijms22031081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 12/03/2022] Open
Abstract
Previously, we isolated jacalin-related lectins termed PPL2, PPL3 (PPL3A, 3B and 3C) and PPL4 from the mantle secretory fluid of Pteria penguin (Mabe) pearl shell. They showed the sequence homology with the plant lectin family, jacalin-related β-prism fold lectins (JRLs). While PPL3s and PPL4 shared only 35%–50% homology to PPL2A, respectively, they exhibited unique carbohydrate binding properties based on the multiple glycan-binding profiling data sets from frontal affinity chromatography analysis. In this paper, we investigated biomineralization properties of these lectins and compared their biomineral functions. It was found that these lectins showed different effects on CaCO3 crystalization, respectively, although PPL3 and PPL2A showed similar carbohydrate binding specificities. PPL3 suppressed the crystal growth of CaCO3 calcite, while PPL2A increased the number of contact polycrystalline calcite composed of more than one crystal with various orientations. Furthermore, PPL4 alone showed no effect on CaCO3 crystalization; however, PPL4 regulated the size of crystals collaborated with N-acetyl-D-glucosamine and chitin oligomer, which are specific in recognizing carbohydrates for PPL4. These observations highlight the unique functions and molecular evolution of this lectin family involved in the mollusk shell formation.
Collapse
|
23
|
Le Roy N, Ganot P, Aranda M, Allemand D, Tambutté S. The skeletome of the red coral Corallium rubrum indicates an independent evolution of biomineralization process in octocorals. BMC Ecol Evol 2021; 21:1. [PMID: 33514311 PMCID: PMC7853314 DOI: 10.1186/s12862-020-01734-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 12/13/2020] [Indexed: 12/16/2022] Open
Abstract
Background The process of calcium carbonate biomineralization has arisen multiple times during metazoan evolution. In the phylum Cnidaria, biomineralization has mostly been studied in the subclass Hexacorallia (i.e. stony corals) in comparison to the subclass Octocorallia (i.e. red corals); the two diverged approximately 600 million years ago. The precious Mediterranean red coral, Corallium rubrum, is an octocorallian species, which produces two distinct high-magnesium calcite biominerals, the axial skeleton and the sclerites. In order to gain insight into the red coral biomineralization process and cnidarian biomineralization evolution, we studied the protein repertoire forming the organic matrix (OM) of its two biominerals. Results We combined High-Resolution Mass Spectrometry and transcriptome analysis to study the OM composition of the axial skeleton and the sclerites. We identified a total of 102 OM proteins, 52 are found in the two red coral biominerals with scleritin being the most abundant protein in each fraction. Contrary to reef building corals, the red coral organic matrix possesses a large number of collagen-like proteins. Agrin-like glycoproteins and proteins with sugar-binding domains are also predominant. Twenty-seven and 23 proteins were uniquely assigned to the axial skeleton and the sclerites, respectively. The inferred regulatory function of these OM proteins suggests that the difference between the two biominerals is due to the modeling of the matrix network, rather than the presence of specific structural components. At least one OM component could have been horizontally transferred from prokaryotes early during Octocorallia evolution. Conclusion Our results suggest that calcification of the red coral axial skeleton likely represents a secondary calcification of an ancestral gorgonian horny axis. In addition, the comparison with stony coral skeletomes highlighted the low proportion of similar proteins between the biomineral OMs of hexacorallian and octocorallian corals, suggesting an independent acquisition of calcification in anthozoans.
Collapse
Affiliation(s)
- Nathalie Le Roy
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, Monaco, MC, 98000, Monaco. .,BOA UMR83, INRAe Centre Val de Loire, 37380, Nouzilly, France.
| | - Philippe Ganot
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, Monaco, MC, 98000, Monaco
| | - Manuel Aranda
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Denis Allemand
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, Monaco, MC, 98000, Monaco
| | - Sylvie Tambutté
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, Monaco, MC, 98000, Monaco
| |
Collapse
|
24
|
McDougall C, Aguilera F, Shokoohmand A, Moase P, Degnan BM. Pearl Sac Gene Expression Profiles Associated With Pearl Attributes in the Silver-Lip Pearl Oyster, Pinctada maxima. Front Genet 2021; 11:597459. [PMID: 33488672 PMCID: PMC7820862 DOI: 10.3389/fgene.2020.597459] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/07/2020] [Indexed: 11/21/2022] Open
Abstract
Pearls are highly prized biomineralized gemstones produced by molluscs. The appearance and mineralogy of cultured pearls can vary markedly, greatly affecting their commercial value. To begin to understand the role of pearl sacs—organs that form in host oysters from explanted mantle tissues that surround and synthesize pearls—we undertook transcriptomic analyses to identify genes that are differentially expressed in sacs producing pearls with different surface and structural characteristics. Our results indicate that gene expression profiles correlate with different pearl defects, suggesting that gene regulation in the pearl sac contributes to pearl appearance and quality. For instance, pearl sacs that produced pearls with surface non-lustrous calcification significantly down-regulate genes associated with cilia and microtubule function compared to pearl sacs giving rise to lustrous pearls. These results suggest that gene expression profiling can advance our understanding of processes that control biomineralization, which may be of direct value to the pearl industry, particularly in relation to defects that result in low value pearls.
Collapse
Affiliation(s)
- Carmel McDougall
- Centre for Marine Science, School of Biological Sciences, The University of Queensland, St. Lucia, QLD, Australia.,Australian Rivers Institute, Griffith University, Nathan, QLD, Australia
| | - Felipe Aguilera
- Centre for Marine Science, School of Biological Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Ali Shokoohmand
- Australian Rivers Institute, Griffith University, Nathan, QLD, Australia
| | - Patrick Moase
- Clipper Pearls and Autore Pearling, Broome, WA, Australia
| | - Bernard M Degnan
- Centre for Marine Science, School of Biological Sciences, The University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
25
|
Shimizu K, Kintsu H, Awaji M, Matumoto T, Suzuki M. Evolution of Biomineralization Genes in the Prismatic Layer of the Pen Shell Atrina pectinata. J Mol Evol 2020; 88:742-758. [PMID: 33236260 DOI: 10.1007/s00239-020-09977-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/18/2020] [Indexed: 11/29/2022]
Abstract
Molluscan shells are composed of calcium carbonates, with small amounts of extracellular matrices secreted from mantle epithelial cells. Many types of shell matrix proteins (SMPs) have been identified from molluscan shells or mantle cells. The pen shell Atrina pectinata (Pinnidae) has two different shell microstructures, the nacreous and prismatic layers. Nacreous and prismatic layer-specific matrix proteins have been reported in Pteriidae bivalves, but remain unclear in Pinnidae. We performed transcriptome analysis using the mantle cells of A. pectinata to screen the candidate transcripts involved in its prismatic layer formation. We found Asprich and nine highly conserved prismatic layer-specific SMPs encoding transcript in P. fucata, P. margaritifera, and P. maxima (Tyrosinase, Chitinase, EGF-like proteins, Fibronectin, valine-rich proteins, and prismatic uncharacterized shell protein 2 [PUSP2]) using molecular phylogenetic analysis or multiple alignment. We confirmed these genes were expressed in the epithelial cells of the mantle edge (outer surface of the outer fold) and the mantle pallium. Phylogenetic character mapping of these SMPs was used to infer a possible evolutionary scenario of them in Pteriomorphia. EGF-like proteins, Fibronectin, and valine-rich proteins encoding genes each evolved in the linage leading to four Pteriomorphia (Mytilidae, Pinnidae, Ostreidae, and Pteriidae), PUSP2 evolved in the linage leading to three Pteriomorphia families (Pinnidae, Ostreidae, and Pteriidae), and chitinase was independently evolved as SMPs in Mytilidae and in other Pteriomorphia (Pinnidae, Ostreidae, and Pteriidae). Our results provide a new dataset for A. pectinata SMP annotation, and a basis for understanding the evolution of prismatic layer formation in bivalves.
Collapse
Affiliation(s)
- Keisuke Shimizu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Hiroyuki Kintsu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan.,Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Masahiko Awaji
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 422-1 Nakatsuhama, Minami-Ise, Watarai, Mie, 516-0193, Japan
| | - Toshie Matumoto
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 422-1 Nakatsuhama, Minami-Ise, Watarai, Mie, 516-0193, Japan
| | - Michio Suzuki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan.
| |
Collapse
|
26
|
Sun Q, Jiang Y, Yan X, Fan M, Zhang X, Xu H, Liao Z. Molecular Characterization of a Novel Shell Matrix Protein With PDZ Domain From Mytilus coruscus. Front Physiol 2020; 11:543758. [PMID: 33123020 PMCID: PMC7573561 DOI: 10.3389/fphys.2020.543758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/04/2020] [Indexed: 11/16/2022] Open
Abstract
Mollusk shells are products of biomineralization and possess excellent mechanical properties, and shell matrix proteins (SMPs) have important functions in shell formation. A novel SMP with a PDZ domain (PDZ-domain-containing-protein-1, PDCP-1) was identified from the shell matrices of Mytilus coruscus. In this study, the gene expression, function, and location of PDCP-1 were analyzed. PDCP-1 was characterized as an ∼70 kDa protein with a PDZ (postsynaptic density/discs large/zonula occludes) domain and a ZM (ZASP-like motif) domain. The PDCP-1 gene has a high expression level and specific location in the foot, mantle and adductor muscle. Recombinantly expressed PDCP-1 (rPDCP-1) altered the morphology of calcite crystals, the polymorph of calcite crystals, binding with both calcite and aragonite crystals, and inhibition of the crystallization rate of calcite crystals. In addition, anti-rPDCP-1 antibody was prepared, and immunohistochemistry and immunofluorescence analyses revealed the specific location of PDCP-1 in the mantle, the adductor muscle, and the aragonite (nacre and myostracum) layer of the shell, suggesting multiple functions of PDCP-1 in biomineralization, muscle-shell attachment, and muscle attraction. Furthermore, pull-down analysis revealed 19 protein partners of PDCP-1 from the shell matrices, which accordingly provided a possible interaction network of PDCP-1 in the shell. These results expand the understanding of the functions of PDZ-domain-containing proteins (PDCPs) in biomineralization and the supramolecular chemistry that contributes to shell formation.
Collapse
|
27
|
Iwamoto S, Shimizu K, Negishi L, Suzuki N, Nagata K, Suzuki M. Characterization of the chalky layer-derived EGF-like domain-containing protein (CgELC) in the pacific oyster, Crassostrea gigas. J Struct Biol 2020; 212:107594. [PMID: 32736075 DOI: 10.1016/j.jsb.2020.107594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/16/2022]
Abstract
The shells of the Pacific oyster Crassostrea gigas contain calcite crystals with three types of microstructures: prismatic, chalky, and foliated layers. Many shell matrix proteins were annotated from the shells of C. gigas; however, it is unclear which SMPs play important roles in their shell mineralization. The matrix proteins have never been reported from the chalky layer. In this study, we identified a chalky layer-derived EGF-like domain-containing protein (CgELC) from the chalky layer of C. gigas shells. The gene sequence of the CgELC was encoded under CGI_ 10,017,544 of the C. gigas genome database. Only peptide fragments in the N-terminal region of CGI_ 10,017,544 were detected by LC-MS/MS analyses, suggesting that CGI_ 10,017,544 was digested at the predicted protease digestion dibasic site by post-translational modification to become a mature CgELC protein. We produced three types of CgELC recombinant proteins, namely, the full length CgELC, as well as the N-terminal and C-terminal parts of CgELC (CgELC-N or -C, respectively), for in vitro crystallization experiments. In the presence of these recombinant proteins, the aggregation of polycrystalline calcite was observed. Some fibrous organic components seemed to be incorporated into the calcite crystals in the presence of the r-CgELC protein. We also noted different features in the crystallization between CgELC-N and CgELC-C; some crystals were inhibited crystal plane formation and contained many columnar prisms inside the crystals (CgELC-N) and formed numerous holes on their surfaces (CgELC-C). These results suggest that CgELC is involved in crystal aggregation and incorporated into calcite crystals.
Collapse
Affiliation(s)
- Shihori Iwamoto
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Keisuke Shimizu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Lumi Negishi
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Nobuo Suzuki
- Institute of Nature and Environmental Technology, Kanazawa University, 4-1 Ogimu, Notocho, Hosu-gun, Ishikawa 927-0553, Japan
| | - Koji Nagata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Michio Suzuki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan.
| |
Collapse
|
28
|
Harayashiki CAY, Márquez F, Cariou E, Castro ÍB. Mollusk shell alterations resulting from coastal contamination and other environmental factors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114881. [PMID: 32505962 DOI: 10.1016/j.envpol.2020.114881] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/13/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Effects of contamination on aquatic organisms have been investigated and employed as biomarkers in environmental quality assessment for years. A commonly referenced aquatic organism, mollusks represent a group of major interest in toxicological studies. Both gastropods and bivalves have external mineral shells that protects their soft tissue from predation and desiccation. These structures are composed of an organic matrix and an inorganic matrix, both of which are affected by environmental changes, including exposure to hazardous chemicals. This literature review evaluates studies that propose mollusk shell alterations as biomarkers of aquatic system quality. The studies included herein show that changes to natural variables such as salinity, temperature, food availability, hydrodynamics, desiccation, predatory pressure, and substrate type may influence the form, structure, and composition of mollusk shells. However, in the spatial and temporal studies performed in coastal waters around the world, shells of organisms sampled from multi-impacted areas were found to differ in the form and composition of both organic and inorganic matrices relative to shells from less contaminated areas. Though these findings are useful, the toxicological studies were often performed in the field and were not able to attribute shell alterations to a specific molecule. It is known that the organic matrix of shells regulates the biomineralization process; proteomic analyses of shells may therefore elucidate how different contaminants affect shell biomineralization. Further research using approaches that allow a clearer distinction between shell alterations caused by natural variations and those caused by anthropogenic influence, as well as studies to identify which molecule is responsible for such alterations or to determine the ecological implications of shell alterations, are needed before any responses can be applied universally.
Collapse
Affiliation(s)
- Cyntia Ayumi Yokota Harayashiki
- Departamento de Ciências do Mar, Universidade Federal de São Paulo (UNIFESP), Rua Carvalho de Mendonça 144, CEP, 11070-100, Santos, Brazil.
| | - Federico Márquez
- LARBIM - IBIOMAR. CCT CONICET-CENPAT, Bvd. Brown 2915, U9120ACV, Puerto Madryn, Chubut, Argentina; Facultad de Ciencias Naturales, Universidad Nacional de La Patagonia San Juan Bosco (UNPSJB), Bvd. Brown 3051, U9120ACV, Puerto Madryn, Chubut, Argentina
| | - Elsa Cariou
- Observatory of Universe Sciences of Nantes-Atlantique, University of Nantes, Campus Lombarderie, 2 Rue de La Houssinière, 44322, Nantes, France
| | - Ítalo Braga Castro
- Departamento de Ciências do Mar, Universidade Federal de São Paulo (UNIFESP), Rua Carvalho de Mendonça 144, CEP, 11070-100, Santos, Brazil
| |
Collapse
|
29
|
Skeffington AW, Donath A. ProminTools: shedding light on proteins of unknown function in biomineralization with user friendly tools illustrated using mollusc shell matrix protein sequences. PeerJ 2020; 8:e9852. [PMID: 32974096 PMCID: PMC7489238 DOI: 10.7717/peerj.9852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/11/2020] [Indexed: 01/24/2023] Open
Abstract
Biominerals are crucial to the fitness of many organism and studies of the mechanisms of biomineralization are driving research into novel materials. Biomineralization is generally controlled by a matrix of organic molecules including proteins, so proteomic studies of biominerals are important for understanding biomineralization mechanisms. Many such studies identify large numbers of proteins of unknown function, which are often of low sequence complexity and biased in their amino acid composition. A lack of user-friendly tools to find patterns in such sequences and robustly analyse their statistical properties relative to the background proteome means that they are often neglected in follow-up studies. Here we present ProminTools, a user-friendly package for comparison of two sets of protein sequences in terms of their global properties and motif content. Outputs include data tables, graphical summaries in an html file and an R-script as a starting point for data-set specific visualizations. We demonstrate the utility of ProminTools using a previously published shell matrix proteome of the giant limpet Lottia gigantea.
Collapse
Affiliation(s)
| | - Andreas Donath
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| |
Collapse
|
30
|
Chakraborty A, Parveen S, Chanda DK, Aditya G. An insight into the structure, composition and hardness of a biological material: the shell of freshwater mussels. RSC Adv 2020; 10:29543-29554. [PMID: 35521146 PMCID: PMC9055989 DOI: 10.1039/d0ra04271d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/29/2020] [Indexed: 12/17/2022] Open
Abstract
The shell of the freshwater mussel (Mollusca: Bivalvia) is a composite biological material linked with multifunctional roles in sustaining ecosystem services. Apart from providing mechanical strength and support, the shell is an important site for adherence and growth of multiple types of algae and periphyton. Variations in the shell architecture are observed in the mussels both within a species and among different species. Considering the prospective utility of the shell of the freshwater mussels as a biological material, an assessment of the shell characteristics was accomplished using Corbicula bensoni and Lamellidens marginalis as model species. The calcium carbonate (CaCO3) content of the shells, physical features and mechanical strength were assessed along with the morphometric analysis. The CaCO3 content of the shell (upto 95% to 96% of the shell weight) of both the mussels was positively correlated with the shell length, suggesting increased deposition of CaCO3 in shells with the growth of the species. The cross sectioned views of FE-SEM images of the shells exhibited distinct layered structure with external periostracum and inner nacreous layer varying distinctly. In the growing region, the growth line was prominent in the mussel shells revealed through the FESEM images. In addition XRD, FTIR and EDS studies on the mussel shells confirmed the existence of both aragonite and calcite forms of the calcium carbonate crystals with the incidence of various functional groups. The mechanical strength of the mussel shells was explored through nanoindentation experiments, revealed significant strength at the nanoparticle level of the shells. It was apparent from the results that the shell of the freshwater mussel L. marginalis and C. bensoni qualify as a biological material with prospective multiple applications for human well-being and sustaining environmental quality.
Collapse
Affiliation(s)
- Anupam Chakraborty
- Department of Zoology, University of Calcutta 35 Ballygunge Circular Road Kolkata 700019 India +91-8902595675
| | - Saida Parveen
- Department of Zoology, The University of Burdwan Golapbag Burdwan 713104 India
| | - Dipak Kr Chanda
- Advanced Mechanical and Materials Characterization Division, CSIR-Central Glass and Ceramic Research Institute Kolkata 700 032 India
| | - Gautam Aditya
- Department of Zoology, University of Calcutta 35 Ballygunge Circular Road Kolkata 700019 India +91-8902595675
- Department of Zoology, The University of Burdwan Golapbag Burdwan 713104 India
| |
Collapse
|
31
|
Sun Q, Jiang Y, Fan M, Zhang X, Xu H, Liao Z. Characterization of a novel shell matrix protein with vWA domain from Mytilus coruscus. Biosci Biotechnol Biochem 2020; 84:1629-1644. [PMID: 32314940 DOI: 10.1080/09168451.2020.1756735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Mollusk shell is a product of biomineralization with excellent mechanical properties, and the shell matrix proteins (SMPs) have important functions in shell formation. A vWA domain-containing protein (VDCP) was identified from the shell of Mytilus coruscus as a novel shell matrix protein. The VDCP gene is expressed at a high level in specific locations in the mantle and adductor muscle. Recombinant VDCP (rVDCP) showed abilities to alter the morphology of both calcite and aragonite, induce the polymorph change of calcite, bind calcite, and decrease the crystallization rate of calcite. In addition, immunohistochemistry analyses revealed the specific location of VDCP in the mantle, the adductor muscle, and the myostracum layer of the shell. Furthermore, a pull-down analysis revealed eight protein interaction partners of VDCP in shell matrices and provided a possible protein-protein interaction network of VDCP in the shell.
Collapse
Affiliation(s)
- Qi Sun
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University , Zhoushan City, Zhejiang, China
| | - Yuting Jiang
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University , Zhoushan City, Zhejiang, China
| | - Meihua Fan
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University , Zhoushan City, Zhejiang, China
| | - Xiaolin Zhang
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University , Zhoushan City, Zhejiang, China
| | - Huanzhi Xu
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University , Zhoushan City, Zhejiang, China
| | - Zhi Liao
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University , Zhoushan City, Zhejiang, China
| |
Collapse
|
32
|
Molecular characterization of a whirlin-like protein with biomineralization-related functions from the shell of Mytilus coruscus. PLoS One 2020; 15:e0231414. [PMID: 32267882 PMCID: PMC7141649 DOI: 10.1371/journal.pone.0231414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/23/2020] [Indexed: 11/19/2022] Open
Abstract
Mollusc shells are produced from calcified skeletons and have excellent mechanical properties. Shell matrix proteins (SMPs) have important functions in shell formation. A 16.6 kDa whirlin-like protein (WLP) with a PDZ domain was identified in the shell of Mytilus coruscus as a novel SMP. In this study, the expression, function, and location of WLP were analysed. The WLP gene was highly expressed and specifically located in the adductor muscle and mantle. The expression of recombinant WLP (rWLP) was associated with morphological change, polymorphic change, binding ability, and crystallization rate inhibition of the calcium carbonate crystals in vitro. In addition, an anti-rWLP antibody was prepared, and the results from immunohistochemistry and immunofluorescence analyses revealed the specific location of the WLP in the mantle, adductor muscle, and myostracum layer of the shell, suggesting multiple functions for WLP in biomineralization, muscle-shell attachment, and muscle attraction. Furthermore, results from a pull-down analysis revealed 10 protein partners of WLP in the shell matrices and a possible network of interacting WLPs in the shell. In addition, in this study, one of the WLP partners, actin, was confirmed to have the ability to bind WLP. These results expand the understanding of the functions of PDZ-domain-containing proteins in biomineralization and provide clues for determining the mechanisms of myostracum formation and muscle-shell attachment.
Collapse
|
33
|
Sakalauskaite J, Plasseraud L, Thomas J, Albéric M, Thoury M, Perrin J, Jamme F, Broussard C, Demarchi B, Marin F. The shell matrix of the european thorny oyster, Spondylus gaederopus: microstructural and molecular characterization. J Struct Biol 2020; 211:107497. [PMID: 32220629 DOI: 10.1016/j.jsb.2020.107497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/20/2020] [Accepted: 03/22/2020] [Indexed: 11/18/2022]
Abstract
Molluscs, the largest marine phylum, display extraordinary shell diversity and sophisticated biomineral architectures. However, mineral-associated biomolecules involved in biomineralization are still poorly characterised. We report the first comprehensive structural and biomolecular study of Spondylus gaederopus, a pectinoid bivalve with a peculiar shell texture. Used since prehistoric times, this is the best-known shell of Europe's cultural heritage. We find that Spondylus microstructure is very poor in mineral-bound organics, which are mostly intercrystalline and concentrated at the interface between structural layers. Using high-resolution liquid chromatography tandem mass spectrometry (LC-MS/MS) we characterized several shell protein fractions, isolated following different bleaching treatments. Several peptides were identified as well as six shell proteins, which display features and domains typically found in biomineralized tissues, including the prevalence of intrinsically disordered regions. It is very likely that these sequences only partially represent the full proteome of Spondylus, considering the lack of genomics data for this genus and the fact that most of the reconstructed peptides do not match with any known shell proteins, representing consequently lineage-specific sequences. This work sheds light onto the shell matrix involved in the biomineralization in spondylids. Our proteomics data suggest that Spondylus has evolved a shell-forming toolkit, distinct from that of other better studied pectinoids - fine-tuned to produce shell structures with high mechanical properties, while limited in organic content. This study therefore represents an important milestone for future studies on biomineralized skeletons and provides the first reference dataset for forthcoming molecular studies of Spondylus archaeological artifacts.
Collapse
Affiliation(s)
- Jorune Sakalauskaite
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; Biogeosciences, UMR CNRS 6282, University of Burgundy-Franche-Comté (UBFC), 6 Boulevard Gabriel, 21000 Dijon, France.
| | - Laurent Plasseraud
- Institute of Molecular Chemistry, ICMUB UMR CNRS 6302, University of Burgundy-Franche-Comté (UBFC), 9 Avenue Alain Savary, 21000 Dijon, France
| | - Jérôme Thomas
- Biogeosciences, UMR CNRS 6282, University of Burgundy-Franche-Comté (UBFC), 6 Boulevard Gabriel, 21000 Dijon, France
| | - Marie Albéric
- Laboratoire Chimie de la Matière Condensée de Paris, UMR, CNRS 7574, Sorbonne Université, Place Jussieu 4, 75252 Paris, France
| | - Mathieu Thoury
- IPANEMA, CNRS, ministère de la Culture, UVSQ, USR3461, Université Paris-Saclay, F-91192 Gif-sur-Yvette, France
| | - Jonathan Perrin
- Synchrotron SOLEIL, L'Orme des Merisiers, 91192 Gif sur Yvette Cedex, France
| | - Frédéric Jamme
- Synchrotron SOLEIL, L'Orme des Merisiers, 91192 Gif sur Yvette Cedex, France
| | - Cédric Broussard
- 3P5 Proteomic Platform, University of Paris, Cochin Institute, INSERM, U1016, CNRS, UMR8104, F-75014 Paris, France
| | - Beatrice Demarchi
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy
| | - Frédéric Marin
- Biogeosciences, UMR CNRS 6282, University of Burgundy-Franche-Comté (UBFC), 6 Boulevard Gabriel, 21000 Dijon, France.
| |
Collapse
|
34
|
Oliveira F, Diez-Quijada L, Turkina MV, Morais J, Felpeto AB, Azevedo J, Jos A, Camean AM, Vasconcelos V, Martins JC, Campos A. Physiological and Metabolic Responses of Marine Mussels Exposed to Toxic Cyanobacteria Microcystis aeruginosa and Chrysosporum ovalisporum. Toxins (Basel) 2020; 12:E196. [PMID: 32245045 PMCID: PMC7150937 DOI: 10.3390/toxins12030196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/14/2020] [Accepted: 03/18/2020] [Indexed: 01/12/2023] Open
Abstract
Toxic cyanobacterial blooms are a major contaminant in inland aquatic ecosystems. Furthermore, toxic blooms are carried downstream by rivers and waterways to estuarine and coastal ecosystems. Concerning marine and estuarine animal species, very little is known about how these species are affected by the exposure to freshwater cyanobacteria and cyanotoxins. So far, most of the knowledge has been gathered from freshwater bivalve molluscs. This work aimed to infer the sensitivity of the marine mussel Mytilus galloprovincialis to single as well as mixed toxic cyanobacterial cultures and the underlying molecular responses mediated by toxic cyanobacteria. For this purpose, a mussel exposure experiment was outlined with two toxic cyanobacteria species, Microcystis aeruginosa and Chrysosporum ovalisporum at 1 × 105 cells/mL, resembling a natural cyanobacteria bloom. The estimated amount of toxins produced by M. aeruginosa and C. ovalisporum were respectively 0.023 pg/cell of microcystin-LR (MC-LR) and 7.854 pg/cell of cylindrospermopsin (CYN). After 15 days of exposure to single and mixed cyanobacteria, a depuration phase followed, during which mussels were fed only non-toxic microalga Parachlorella kessleri. The results showed that the marine mussel is able to filter toxic cyanobacteria at a rate equal or higher than the non-toxic microalga P. kessleri. Filtration rates observed after 15 days of feeding toxic microalgae were 1773.04 mL/ind.h (for M. aeruginosa), 2151.83 mL/ind.h (for C. ovalisporum), 1673.29 mL/ind.h (for the mixture of the 2 cyanobacteria) and 2539.25 mL/ind.h (for the non-toxic P. kessleri). Filtering toxic microalgae in combination resulted in the accumulation of 14.17 ng/g dw MC-LR and 92.08 ng/g dw CYN. Other physiological and biochemical endpoints (dry weight, byssus production, total protein and glycogen) measured in this work did not change significantly in the groups exposed to toxic cyanobacteria with regard to control group, suggesting that mussels were not affected with the toxic microalgae. Nevertheless, proteomics revealed changes in metabolism of mussels related to diet, specially evident in those fed on combined cyanobacteria. Changes in metabolic pathways related with protein folding and stabilization, cytoskeleton structure, and gene transcription/translation were observed after exposure and feeding toxic cyanobacteria. These changes occur in vital metabolic processes and may contribute to protect mussels from toxic effects of the toxins MC-LR and CYN.
Collapse
Affiliation(s)
- Flavio Oliveira
- CIIMAR- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450–208 Porto, Portugal; (F.O.); (J.M.); (A.B.F.); (J.A.); (V.V.); (J.C.M.)
| | - Leticia Diez-Quijada
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n2, 41012 Seville, Spain; (L.D.-Q.); (A.J.); (A.M.C.)
| | - Maria V. Turkina
- Department of Biomedical and Clinical Sciences, Faculty of Medicine and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden;
| | - João Morais
- CIIMAR- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450–208 Porto, Portugal; (F.O.); (J.M.); (A.B.F.); (J.A.); (V.V.); (J.C.M.)
| | - Aldo Barreiro Felpeto
- CIIMAR- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450–208 Porto, Portugal; (F.O.); (J.M.); (A.B.F.); (J.A.); (V.V.); (J.C.M.)
| | - Joana Azevedo
- CIIMAR- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450–208 Porto, Portugal; (F.O.); (J.M.); (A.B.F.); (J.A.); (V.V.); (J.C.M.)
| | - Angeles Jos
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n2, 41012 Seville, Spain; (L.D.-Q.); (A.J.); (A.M.C.)
| | - Ana M. Camean
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n2, 41012 Seville, Spain; (L.D.-Q.); (A.J.); (A.M.C.)
| | - Vitor Vasconcelos
- CIIMAR- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450–208 Porto, Portugal; (F.O.); (J.M.); (A.B.F.); (J.A.); (V.V.); (J.C.M.)
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169–007 Porto, Portugal
| | - José Carlos Martins
- CIIMAR- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450–208 Porto, Portugal; (F.O.); (J.M.); (A.B.F.); (J.A.); (V.V.); (J.C.M.)
| | - Alexandre Campos
- CIIMAR- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450–208 Porto, Portugal; (F.O.); (J.M.); (A.B.F.); (J.A.); (V.V.); (J.C.M.)
| |
Collapse
|
35
|
Ps19, a novel chitin binding protein from Pteria sterna capable to mineralize aragonite plates in vitro. PLoS One 2020; 15:e0230431. [PMID: 32191756 PMCID: PMC7081993 DOI: 10.1371/journal.pone.0230431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/28/2020] [Indexed: 11/19/2022] Open
Abstract
Mollusk shell is composed of two CaCO3 polymorphs (calcite and aragonite) and an organic matrix that consists of acetic acid- or ethylenediaminetetraacetic acid (EDTA)-soluble and insoluble proteins and other biomolecules (polysaccharides, β-chitin). However, the shell matrix proteins involved in nacre formation are not fully known. Thus, the aim of this study was to identify and characterize a novel protein from the acetic acid-insoluble fraction from the shell of Pteria sterna, named in this study as Ps19, to have a better understanding of the biomineralization process. Ps19 biochemical characterization showed that it is a glycoprotein that exhibits calcium- and chitin-binding capabilities. Additionally, it is capable of inducing aragonite plate crystallization in vitro. Ps19 partial peptide sequence showed similarity with other known shell matrix proteins, but it displayed similarity with proteins from Crassostrea gigas, Mizuhopecten yessoensis, Biomphalaria glabrata, Alpysia californica, Lottia gigantea and Elysia chlorotica. The results obtained indicated that Ps19 might play an important role in nacre growth of mollusk shells.
Collapse
|
36
|
Miglioli A, Dumollard R, Balbi T, Besnardeau L, Canesi L. Characterization of the main steps in first shell formation in Mytilus galloprovincialis: possible role of tyrosinase. Proc Biol Sci 2019; 286:20192043. [PMID: 31771478 DOI: 10.1098/rspb.2019.2043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bivalve biomineralization is a highly complex and organized process, involving several molecular components identified in adults and larval stages. However, information is still scarce on the ontogeny of the organic matrix before calcification occurs. In this work, first shell formation was investigated in the mussel Mytilus galloprovincialis. The time course of organic matrix and CaCO3 deposition were followed at close times post fertilization (24, 26, 29, 32, 48 h) by calcofluor and calcein staining, respectively. Both components showed an exponential trend in growth, with a delay between organic matrix and CaCO3 deposition. mRNA levels of genes involved in matrix deposition (chitin synthase; tyrosinase- TYR) and calcification (carbonic anhydrase; extrapallial protein) were quantified by qPCR at 24 and 48 hours post fertilization (hpf) with respect to eggs. All transcripts were upregulated across early development, with TYR showing highest mRNA levels from 24 hpf. TYR transcripts were closely associated with matrix deposition as shown by in situ hybridization. The involvement of tyrosinase activity was supported by data obtained with the enzyme inhibitor N-phenylthiourea. Our results underline the pivotal role of shell matrix in driving first CaCO3 deposition and the importance of tyrosinase in the formation of the first shell in M. galloprovincialis.
Collapse
Affiliation(s)
- A Miglioli
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, DISTAV, Università di Genova, Corso Europa 26, 16132 Genova, Italy.,Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Institut de la mer, Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-mer, France
| | - R Dumollard
- Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Institut de la mer, Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-mer, France
| | - T Balbi
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, DISTAV, Università di Genova, Corso Europa 26, 16132 Genova, Italy
| | - L Besnardeau
- Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Institut de la mer, Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-mer, France
| | - L Canesi
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, DISTAV, Università di Genova, Corso Europa 26, 16132 Genova, Italy
| |
Collapse
|
37
|
Evans JS. The Biomineralization Proteome: Protein Complexity for a Complex Bioceramic Assembly Process. Proteomics 2019; 19:e1900036. [DOI: 10.1002/pmic.201900036] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/04/2019] [Indexed: 12/20/2022]
Affiliation(s)
- John Spencer Evans
- Laboratory for Chemical PhysicsDepartment of Skeletal and Craniofacial BiologyNew York University College of Dentistry New York NY 10010 USA
| |
Collapse
|
38
|
Liao Z, Jiang YT, Sun Q, Fan MH, Wang JX, Liang HY. Microstructure and in-depth proteomic analysis of Perna viridis shell. PLoS One 2019; 14:e0219699. [PMID: 31323046 PMCID: PMC6641155 DOI: 10.1371/journal.pone.0219699] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/28/2019] [Indexed: 12/20/2022] Open
Abstract
For understanding the structural characteristics and the proteome of Perna shell, the microstructure, polymorph, and protein composition of the adult Perna viridis shell were investigated. The P. viridis shell have two distinct mineral layers, myostracum and nacre, with the same calcium carbonate polymorph of aragonite, determined by scanning electron microscope, Fourier transform infrared spectroscopy, and x-ray crystalline diffraction. Using Illumina sequencing, the mantle transcriptome of P. viridis was investigated and a total of 69,859 unigenes was generated. Using a combined proteomic/transcriptomic approach, a total of 378 shell proteins from P. viridis shell were identified, in which, 132 shell proteins identified with more than two matched unique peptides. Of the 132 shell proteins, 69 are exclusive to the nacre, 12 to the myostracum, and 51 are shared by both. The Myosin-tail domain containing proteins, Filament-like proteins, and Chitin-binding domain containing proteins represent the most abundant molecules. In addition, the shell matrix proteins (SMPs) containing biomineralization-related domains, such as Kunitz, A2M, WAP, EF-hand, PDZ, VWA, Collagen domain, and low complexity regions with abundant certain amino acids, were also identified from P. viridis shell. Collagenase and chitinase degradation can significantly change the morphology of the shell, indicating the important roles of collagen and chitin in the shell formation and the muscle-shell attachment. Our results present for the first time the proteome of P. viridis shell and increase the knowledge of SMPs in this genus.
Collapse
Affiliation(s)
- Zhi Liao
- Laboratory of Marine Biological Source and Molecular Engineering, College of Marine Science, Zhejiang Ocean University, Zhoushan, Zhejiang, P.R. China
| | - Yu-ting Jiang
- Laboratory of Marine Biological Source and Molecular Engineering, College of Marine Science, Zhejiang Ocean University, Zhoushan, Zhejiang, P.R. China
| | - Qi Sun
- Laboratory of Marine Biological Source and Molecular Engineering, College of Marine Science, Zhejiang Ocean University, Zhoushan, Zhejiang, P.R. China
| | - Mei-hua Fan
- Laboratory of Marine Biological Source and Molecular Engineering, College of Marine Science, Zhejiang Ocean University, Zhoushan, Zhejiang, P.R. China
| | - Jian-xin Wang
- Laboratory of Marine Biological Source and Molecular Engineering, College of Marine Science, Zhejiang Ocean University, Zhoushan, Zhejiang, P.R. China
| | - Hai-ying Liang
- Fisheries College, Guangdong Ocean University, Zhanjiang, Guangdong, P.R. China
- * E-mail:
| |
Collapse
|
39
|
Cardoso JCR, Ferreira V, Zhang X, Anjos L, Félix RC, Batista FM, Power DM. Evolution and diversity of alpha-carbonic anhydrases in the mantle of the Mediterranean mussel (Mytilus galloprovincialis). Sci Rep 2019; 9:10400. [PMID: 31320702 PMCID: PMC6639325 DOI: 10.1038/s41598-019-46913-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/05/2019] [Indexed: 01/17/2023] Open
Abstract
The α-carbonic anhydrases (α-CAs) are a large and ancient group of metazoan-specific enzymes. They generate bicarbonate from metabolic carbon dioxide and through calcium carbonate crystal formation play a key role in the regulation of mineralized structures. To better understand how α-CAs contribute to shell mineralization in the marine Mediterranean mussel (Mytilus galloprovincialis) we characterized them in the mantle. Phylogenetic analysis revealed that mollusc α-CA evolution was affected by lineage and species-specific events. Ten α-CAs were found in the Mediterranean mussel mantle and the most abundant form was named, MgNACR, as it grouped with oyster nacreins (NACR). Exposure of the Mediterranean mussel to reduced water salinity (18 vs 37 ppt), caused a significant reduction (p < 0.05) in mantle esterase activity and MgNACR transcript abundance (p < 0.05). Protonograms revealed multiple proteins in the mantle with α-CA hydratase activity and mapped to a protein with a similar size to that deduced for monomeric MgNACR. Our data indicate that MgNACR is a major α-CA enzyme in mantle and that by homology with oyster nacreins likely regulates mussel shell production. We propose that species-dependent α-CA evolution may contribute to explain the diversity of bivalve shell structures and their vulnerability to environmental changes.
Collapse
Affiliation(s)
- João C R Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| | - Vinicius Ferreira
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Xushuai Zhang
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Liliana Anjos
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Rute C Félix
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Frederico M Batista
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.,Centre for Environment Fisheries and Aquaculture Science (CEFAS), Weymouth, Dorset, UK
| | - Deborah M Power
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal. .,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China. .,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
40
|
|
41
|
Zhao R, Takeuchi T, Luo YJ, Ishikawa A, Kobayashi T, Koyanagi R, Villar-Briones A, Yamada L, Sawada H, Iwanaga S, Nagai K, Satoh N, Endo K. Dual Gene Repertoires for Larval and Adult Shells Reveal Molecules Essential for Molluscan Shell Formation. Mol Biol Evol 2019; 35:2751-2761. [PMID: 30169718 PMCID: PMC6231486 DOI: 10.1093/molbev/msy172] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Molluscan shells, mainly composed of calcium carbonate, also contain organic components such as proteins and polysaccharides. Shell organic matrices construct frameworks of shell structures and regulate crystallization processes during shell formation. To date, a number of shell matrix proteins (SMPs) have been identified, and their functions in shell formation have been studied. However, previous studies focused only on SMPs extracted from adult shells, secreted after metamorphosis. Using proteomic analyses combined with genomic and transcriptomic analyses, we have identified 31 SMPs from larval shells of the pearl oyster, Pinctada fucata, and 111 from the Pacific oyster, Crassostrea gigas. Larval SMPs are almost entirely different from those of adults in both species. RNA-seq data also confirm that gene expression profiles for larval and adult shell formation are nearly completely different. Therefore, bivalves have two repertoires of SMP genes to construct larval and adult shells. Despite considerable differences in larval and adult SMPs, some functional domains are shared by both SMP repertoires. Conserved domains include von Willebrand factor type A (VWA), chitin-binding (CB), carbonic anhydrase (CA), and acidic domains. These conserved domains are thought to play crucial roles in shell formation. Furthermore, a comprehensive survey of animal genomes revealed that the CA and VWA-CB domain-containing protein families expanded in molluscs after their separation from other Lophotrochozoan linages such as the Brachiopoda. After gene expansion, some family members were co-opted for molluscan SMPs that may have triggered to develop mineralized shells from ancestral, nonmineralized chitinous exoskeletons.
Collapse
Affiliation(s)
- Ran Zhao
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takeshi Takeuchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Yi-Jyun Luo
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA
| | - Akito Ishikawa
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tatsushi Kobayashi
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ryo Koyanagi
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Alejandro Villar-Briones
- Instrumental Analysis Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Lixy Yamada
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima, Toba, Japan
| | - Hitoshi Sawada
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima, Toba, Japan
| | | | - Kiyohito Nagai
- Pearl Research Institute, Mikimoto CO., LTD, Shima, Mie, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Kazuyoshi Endo
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
42
|
Jin C, Liu XJ, Li JL. A Kunitz proteinase inhibitor (HcKuPI) participated in antimicrobial process during pearl sac formation and induced the overgrowth of calcium carbonate in Hyriopsis cumingii. FISH & SHELLFISH IMMUNOLOGY 2019; 89:437-447. [PMID: 30980916 DOI: 10.1016/j.fsi.2019.04.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/06/2019] [Accepted: 04/07/2019] [Indexed: 06/09/2023]
Abstract
Proteinase inhibitors with the ability to inhibit specific proteinases are usually closely connected with the immune system. Interestingly, proteinase inhibitors are also a common ingredient in the organic matrix of mollusk shells. However, the molecular mechanism that underlies the role of proteinase inhibitors in immune system and shell mineralization is poorly known. In this study, a Kunitz serine proteinase inhibitor (HcKuPI) was isolated from the mussel Hyriopsis cumingii. HcKuPI was specifically expressed in dorsal epithelial cells of the mantle pallium and HcKuPI dsRNA injection caused an irregular surface and disordered deposition on the aragonite tablets of the nacreous layer. These results indicated that HcKuPI plays a vital role in shell nacreous layer biomineralization. Moreover, the expression pattern of HcKuPI during LPS challenge and pearl formation indicated its involvement in the antimicrobial process during pearl sac formation and nacre tablets accumulation during pearl formation. In the in vitro calcium carbonate crystallization assay, the addition of GST-HcKuPI increased the precipitation rate of calcium carbonate and induced the crystal overgrowth of calcium carbonate. Taken together, these results indicate that HcKuPI is involved in antimicrobial process during pearl formation, and participates in calcium carbonate deposition acceleration and morphological regulation of the crystals during nacreous layer formation. These findings extend our knowledge of the role of proteinase inhibitors in immune system and shell biomineralization.
Collapse
Affiliation(s)
- Can Jin
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, 201306, China
| | - Xiao-Jun Liu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| | - Jia-Le Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306, China.
| |
Collapse
|
43
|
Hichin, a chitin binding protein is essential for the self-assembly of organic frameworks and calcium carbonate during shell formation. Int J Biol Macromol 2019; 135:745-751. [PMID: 31152837 DOI: 10.1016/j.ijbiomac.2019.05.205] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/25/2019] [Accepted: 05/28/2019] [Indexed: 12/13/2022]
Abstract
Shell biomineralization is a process where inorganic minerals accumulate upon a chitinous scaffold under the control of multifunctional matrix proteins. In this study, we cloned a novel matrix protein gene from the mantle of Hyriopsis cumingii. The predicted protein, hichin, contains a chitin-binding domain and exhibited the highest expressional level in mantle tissue, with positive signals mainly detected in dorsal epithelial cells of the pallial mantle according to in situ hybridization, indicating its possible involvement in shell nacreous layer biomineralization. RNA interference showed that hichin suppression induced disordered self-assembly of the insoluble framework in the nacreous layer, and that the newly formed calcium carbonate crystals could not bind to organic frameworks. Furthermore, hichin was primarily responsible for building the framework during initial nacre deposition in pearl formation. Moreover, the chitin-binding domain of hichin also provided crystal morphology regulation in vitro crystallization assay. These results indicated that hichin is involved in the self-assembly of organic frameworks and morphological regulation in shell nacreous layer.
Collapse
|
44
|
Sakalauskaite J, Andersen SH, Biagi P, Borrello MA, Cocquerez T, Colonese AC, Dal Bello F, Girod A, Heumüller M, Koon H, Mandili G, Medana C, Penkman KE, Plasseraud L, Schlichtherle H, Taylor S, Tokarski C, Thomas J, Wilson J, Marin F, Demarchi B. 'Palaeoshellomics' reveals the use of freshwater mother-of-pearl in prehistory. eLife 2019; 8:45644. [PMID: 31060688 PMCID: PMC6542584 DOI: 10.7554/elife.45644] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/20/2019] [Indexed: 01/14/2023] Open
Abstract
The extensive use of mollusc shell as a versatile raw material is testament to its importance in prehistoric times. The consistent choice of certain species for different purposes, including the making of ornaments, is a direct representation of how humans viewed and exploited their environment. The necessary taxonomic information, however, is often impossible to obtain from objects that are small, heavily worked or degraded. Here we propose a novel biogeochemical approach to track the biological origin of prehistoric mollusc shell. We conducted an in-depth study of archaeological ornaments using microstructural, geochemical and biomolecular analyses, including ‘palaeoshellomics’, the first application of palaeoproteomics to mollusc shells (and indeed to any invertebrate calcified tissue). We reveal the consistent use of locally-sourced freshwater mother-of-pearl for the standardized manufacture of ‘double-buttons’. This craft is found throughout Europe between 4200–3800 BCE, highlighting the ornament-makers’ profound knowledge of the biogeosphere and the existence of cross-cultural traditions. Just like people do today, prehistoric humans liked to adorn themselves with beautiful objects. Shells, from creatures like clams and snails, were used to decorate clothing or worn as jewelry at least as far back as 100,000 years ago. Later people used shells as the raw materials to make beads or bracelets. Learning where the shells came from may help scientists understand why prehistoric people chose certain shells and not others. It may also offer clues about how they used natural resources and the cultural significance of these objects. But identifying the shells is difficult because they lose many of their original distinctive features when worked into ornaments. New tools that use DNA or proteins to identify the raw materials used to craft ancient artifacts have emerged that may help. So far, scientists have mostly used these genomic and proteomic tools to identify the source of materials made from animal hide, ivory or bone – where collagen is the most abundant protein molecule. Yet it is more challenging to extract and characterize proteins or genetic material from mollusc shells. This is partly because the amount of proteins in shells is at least 300 times lower than in bone, and also because the makeup of proteins in shells is not as well-known as in collagen. Sakalauskaite et al. have now overcome these issues by combining the analytical tools used to study the proteins and mineral content of modern shells with those of ancient protein research. They then used this approach, which they named palaeoshellomics, to extract proteins from seven “double-buttons” – pearl-like ornaments crafted by prehistoric people in Europe. The double-buttons were made between 4200 and 3800 BC and found at archeological sites in Denmark, Germany and Romania. Comparing the extracted proteins to those from various mollusc shells showed that the double-buttons were made from freshwater mussels belonging to a group known as the Unionoida. The discovery helps settle a decade-long debate in archeology about the origin of the shells used to make double-buttons in prehistoric Europe. Ancient people often crafted ornaments from marine shells, because they were exotic and considered more prestigious. But the results on the double-buttons suggest instead that mother-of-pearl from fresh water shells was valued and used by groups throughout Europe, even those living in coastal areas. The palaeoshellomics technique used by Sakalauskaite et al. may now help identify the origins of shells from archeological and palaeontological sites.
Collapse
Affiliation(s)
- Jorune Sakalauskaite
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy.,UMR CNRS 6282 Biogéosciences, University of Burgundy-Franche-Comté, Dijon, France
| | | | - Paolo Biagi
- Department of Asian and North African Studies, University of Ca' Foscari, Venice, Italy
| | | | - Théophile Cocquerez
- UMR CNRS 6282 Biogéosciences, University of Burgundy-Franche-Comté, Dijon, France
| | | | - Federica Dal Bello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | | | - Marion Heumüller
- Niedersächsisches Landesamt für Denkmalpflege, Hannover, Germany
| | - Hannah Koon
- School of Archaeological and Forensic Sciences, University of Bradford, Bradford, United Kingdom
| | - Giorgia Mandili
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy.,Centre for Experimental and Clinical Studies, University of Turin, Turin, Italy
| | - Claudio Medana
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Kirsty Eh Penkman
- Department of Chemistry, University of York, Heslington, United Kingdom
| | - Laurent Plasseraud
- Institute of Molecular Chemistry, ICMUB UMR CNRS 6302, University of Burgundy-Franche-Comté, Dijon, France
| | - Helmut Schlichtherle
- Landesamt für Denkmalpflege im Regierungspräsidium Stuttgart, Gaienhofen, Germany
| | - Sheila Taylor
- Department of Chemistry, University of York, Heslington, United Kingdom
| | - Caroline Tokarski
- Miniaturization for Synthesis, Analysis & Proteomics, USR CNRS 3290, University of Lille, Lille, France
| | - Jérôme Thomas
- UMR CNRS 6282 Biogéosciences, University of Burgundy-Franche-Comté, Dijon, France
| | - Julie Wilson
- Department of Mathematics, University of York, Heslington, United Kingdom
| | - Frédéric Marin
- UMR CNRS 6282 Biogéosciences, University of Burgundy-Franche-Comté, Dijon, France
| | - Beatrice Demarchi
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy.,Department of Archaeology, University of York, Heslington, United Kingdom
| |
Collapse
|
45
|
Fernández Robledo JA, Yadavalli R, Allam B, Pales Espinosa E, Gerdol M, Greco S, Stevick RJ, Gómez-Chiarri M, Zhang Y, Heil CA, Tracy AN, Bishop-Bailey D, Metzger MJ. From the raw bar to the bench: Bivalves as models for human health. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 92:260-282. [PMID: 30503358 PMCID: PMC6511260 DOI: 10.1016/j.dci.2018.11.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/09/2018] [Accepted: 11/24/2018] [Indexed: 05/05/2023]
Abstract
Bivalves, from raw oysters to steamed clams, are popular choices among seafood lovers and once limited to the coastal areas. The rapid growth of the aquaculture industry and improvement in the preservation and transport of seafood have enabled them to be readily available anywhere in the world. Over the years, oysters, mussels, scallops, and clams have been the focus of research for improving the production, managing resources, and investigating basic biological and ecological questions. During this decade, an impressive amount of information using high-throughput genomic, transcriptomic and proteomic technologies has been produced in various classes of the Mollusca group, and it is anticipated that basic and applied research will significantly benefit from this resource. One aspect that is also taking momentum is the use of bivalves as a model system for human health. In this review, we highlight some of the aspects of the biology of bivalves that have direct implications in human health including the shell formation, stem cells and cell differentiation, the ability to fight opportunistic and specific pathogens in the absence of adaptive immunity, as source of alternative drugs, mucosal immunity and, microbiome turnover, toxicology, and cancer research. There is still a long way to go; however, the next time you order a dozen oysters at your favorite raw bar, think about a tasty model organism that will not only please your palate but also help unlock multiple aspects of molluscan biology and improve human health.
Collapse
Affiliation(s)
| | | | - Bassem Allam
- Stony Brook University, School of Marine and Atmospheric Sciences, Stony Brook, NY, 11794, USA
| | | | - Marco Gerdol
- University of Trieste, Department of Life Sciences, 34127, Trieste, Italy
| | - Samuele Greco
- University of Trieste, Department of Life Sciences, 34127, Trieste, Italy
| | - Rebecca J Stevick
- University of Rhode Island, Graduate School of Oceanography, Narragansett, RI, 02882, USA
| | - Marta Gómez-Chiarri
- University of Rhode Island, Department of Fisheries, Animal and Veterinary Science, Kingston, RI, 02881, USA
| | - Ying Zhang
- University of Rhode Island, Department of Cell and Molecular Biology, Kingston, RI, 02881, USA
| | - Cynthia A Heil
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, 04544, USA
| | - Adrienne N Tracy
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, 04544, USA; Colby College, Waterville, 4,000 Mayflower Hill Dr, ME, 04901, USA
| | | | | |
Collapse
|
46
|
Zheng Z, Hao R, Xiong X, Jiao Y, Deng Y, Du X. Developmental characteristics of pearl oyster Pinctada fucata martensii: insight into key molecular events related to shell formation, settlement and metamorphosis. BMC Genomics 2019; 20:122. [PMID: 30736747 PMCID: PMC6368781 DOI: 10.1186/s12864-019-5505-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/01/2019] [Indexed: 01/08/2023] Open
Abstract
Background Marine bivalves undergo complex development processes, such as shell morphology conversion and changes of anatomy and life habits. In this study, the transcriptomes of pearl oyster Pinctada fucata martensii and Pacific oyster Crassostrea gigas at different development stages were analyzed to determine the key molecular events related to shell formation, settlement and metamorphosis. Result According to the shell matrix proteome, biomineralization-related genes exhibited a consensus expression model with the critical stages of shell formation. Differential expression analysis of P. f. martensii, revealed the negative regulation and feedback of extracellular matrixs as well as growth factor pathways involved in shell formation of larvae, similar to that in C. gigas. Furthermore, neuroendocrine pathways in hormone receptors, neurotransmitters and neuropeptide receptors were involved in shell formation, settlement and metamorphosis. Conclusion Our research demonstrated the main clusters of regulation elements related to shell formation, settlement and metamorphosis. The regulation of shell formation and metamorphosis could be coupled forming the neuroendocrine-biomineralization crosstalk in metamorphosis. These findings could provide new insights into the regulation in bivalve development. Electronic supplementary material The online version of this article (10.1186/s12864-019-5505-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhe Zheng
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China.,Pearl Breeding and Processing Engineering Technology Research Center of Guangdong Province, Zhanjiang, 524088, China
| | - Ruijuan Hao
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China.,Pearl Breeding and Processing Engineering Technology Research Center of Guangdong Province, Zhanjiang, 524088, China
| | - Xinwei Xiong
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China.,Pearl Breeding and Processing Engineering Technology Research Center of Guangdong Province, Zhanjiang, 524088, China
| | - Yu Jiao
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China.,Pearl Breeding and Processing Engineering Technology Research Center of Guangdong Province, Zhanjiang, 524088, China
| | - Yuewen Deng
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China. .,Pearl Breeding and Processing Engineering Technology Research Center of Guangdong Province, Zhanjiang, 524088, China.
| | - Xiaodong Du
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China. .,Pearl Breeding and Processing Engineering Technology Research Center of Guangdong Province, Zhanjiang, 524088, China.
| |
Collapse
|
47
|
Le Luyer J, Auffret P, Quillien V, Leclerc N, Reisser C, Vidal-Dupiol J, Ky CL. Whole transcriptome sequencing and biomineralization gene architecture associated with cultured pearl quality traits in the pearl oyster, Pinctada margaritifera. BMC Genomics 2019; 20:111. [PMID: 30727965 PMCID: PMC6366105 DOI: 10.1186/s12864-019-5443-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/09/2019] [Indexed: 01/31/2023] Open
Abstract
Background Cultured pearls are unique gems produced by living organisms, mainly molluscs of the Pinctada genus, through the biomineralization properties of pearl sac tissue. Improvement of P. margaritifera pearl quality is one of the biggest challenges that Polynesian research has faced to date. To achieve this goal, a better understanding of the complex mechanisms related to nacre and pearl formation is essential and can now be approached through the use of massive parallel sequencing technologies. The aim of this study was to use RNA-seq to compare whole transcriptome expression of pearl sacs that had producing pearls with high and low quality. For this purpose, a comprehensive reference transcriptome of P. margaritifera was built based on multi-tissue sampling (mantle, gonad, whole animal), including different living stages (juvenile, adults) and phenotypes (colour morphotypes, sex). Results Strikingly, few genes were found to be up-regulated for high quality pearls (n = 16) compared to the up-regulated genes in low quality pearls (n = 246). Biomineralization genes up-regulated in low quality pearls were specific to prismatic and prism-nacre layers. Alternative splicing was further identified in several key biomineralization genes based on a recent P. margaritifera draft genome. Conclusion This study lifts the veil on the multi-level regulation of biomineralization genes associated with pearl quality determination. Electronic supplementary material The online version of this article (10.1186/s12864-019-5443-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- J Le Luyer
- Ifremer, UMR 241 Ecosystèmes Insulaires Océaniens (EIO), Labex Corail, Centre Ifremer du Pacifique, BP 49, 98719, Tahiti, French Polynesia
| | - P Auffret
- Ifremer, UMR 241 Ecosystèmes Insulaires Océaniens (EIO), Labex Corail, Centre Ifremer du Pacifique, BP 49, 98719, Tahiti, French Polynesia
| | - V Quillien
- Ifremer, UMR 241 Ecosystèmes Insulaires Océaniens (EIO), Labex Corail, Centre Ifremer du Pacifique, BP 49, 98719, Tahiti, French Polynesia
| | - N Leclerc
- Ifremer, UMR 241 Ecosystèmes Insulaires Océaniens (EIO), Labex Corail, Centre Ifremer du Pacifique, BP 49, 98719, Tahiti, French Polynesia
| | - C Reisser
- Ifremer, UMR 241 Ecosystèmes Insulaires Océaniens (EIO), Labex Corail, Centre Ifremer du Pacifique, BP 49, 98719, Tahiti, French Polynesia
| | - J Vidal-Dupiol
- Ifremer, UMR 241 Ecosystèmes Insulaires Océaniens (EIO), Labex Corail, Centre Ifremer du Pacifique, BP 49, 98719, Tahiti, French Polynesia.,Ifremer, UMR 5244 Interactions Hôtes-Pathogènes-Environnements, Université de Montpellier, Place Eugène Bataillon CC 80, 34095, Montpellier, France
| | - C-L Ky
- Ifremer, UMR 241 Ecosystèmes Insulaires Océaniens (EIO), Labex Corail, Centre Ifremer du Pacifique, BP 49, 98719, Tahiti, French Polynesia.
| |
Collapse
|
48
|
Shimizu K, Kimura K, Isowa Y, Oshima K, Ishikawa M, Kagi H, Kito K, Hattori M, Chiba S, Endo K. Insights into the Evolution of Shells and Love Darts of Land Snails Revealed from Their Matrix Proteins. Genome Biol Evol 2019; 11:380-397. [PMID: 30388206 PMCID: PMC6368272 DOI: 10.1093/gbe/evy242] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2018] [Indexed: 12/14/2022] Open
Abstract
Over the past decade, many skeletal matrix proteins that are possibly related to calcification have been reported in various calcifying animals. Molluscs are among the most diverse calcifying animals and some gastropods have adapted to terrestrial ecological niches. Although many shell matrix proteins (SMPs) have already been reported in molluscs, most reports have focused on marine molluscs, and the SMPs of terrestrial snails remain unclear. In addition, some terrestrial stylommatophoran snails have evolved an additional unique calcified character, called a "love dart," used for mating behavior. We identified 54 SMPs in the terrestrial snail Euhadra quaesita, and found that they contain specific domains that are widely conserved in molluscan SMPs. However, our results also suggest that some of them possibly have evolved independently by domain shuffling, domain recruitment, or gene co-option. We then identified four dart matrix proteins, and found that two of them are the same proteins as those identified as SMPs. Our results suggest that some dart matrix proteins possibly have evolved by independent gene co-option from SMPs during dart evolution events. These results provide a new perspective on the evolution of SMPs and "love darts" in land snails.
Collapse
Affiliation(s)
- Keisuke Shimizu
- Department of Earth and Planetary Science, The University of Tokyo, Hongo, Japan
- College of Life and Environmental Sciences, University of Exeter, United Kingdom
| | - Kazuki Kimura
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
- Research Institute for Ulleungdo and Dokdo Islands, Kyungpook National University, Bukgu, Daegu, Korea
| | - Yukinobu Isowa
- Organization for the Strategic Coordination of Research and Intellectual Properties, Meiji University, Kawasaki, Kanagawa, Japan
| | - Kenshiro Oshima
- Center for Omics and Bioinformatics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Makiko Ishikawa
- Department of Earth and Planetary Science, The University of Tokyo, Hongo, Japan
- Faculty of Animal Health Technology, Yamazaki University of Animal Health Technology, Hachioji, Tokyo, Japan
| | - Hiroyuki Kagi
- Geochemical Research Center, Graduate School of Science, The University of Tokyo, Hongo, Japan
| | - Keiji Kito
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Masahira Hattori
- Center for Omics and Bioinformatics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
- Cooperative Major of Advanced Health Science, Graduate School of Advanced Science and Engineering, Waseda University, Japan
| | - Satoshi Chiba
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Kazuyoshi Endo
- Department of Earth and Planetary Science, The University of Tokyo, Hongo, Japan
| |
Collapse
|
49
|
Chen Y, Liu C, Li S, Liu Z, Xie L, Zhang R. Repaired Shells of the Pearl Oyster Largely Recapitulate Normal Prismatic Layer Growth: A Proteomics Study of Shell Matrix Proteins. ACS Biomater Sci Eng 2018; 5:519-529. [DOI: 10.1021/acsbiomaterials.8b01355] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yan Chen
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chuang Liu
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang Province 314006, China
| | - Shiguo Li
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ziwen Liu
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Liping Xie
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Rongqing Zhang
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang Province 314006, China
| |
Collapse
|
50
|
Zhao R, Takeuchi T, Luo YJ, Ishikawa A, Kobayashi T, Koyanagi R, Villar-Briones A, Yamada L, Sawada H, Iwanaga S, Nagai K, Satoh N, Endo K. Dual Gene Repertoires for Larval and Adult Shells Reveal Molecules Essential for Molluscan Shell Formation. Mol Biol Evol 2018. [PMID: 30169718 DOI: 10.1093/molbev/msy1172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023] Open
Abstract
Molluscan shells, mainly composed of calcium carbonate, also contain organic components such as proteins and polysaccharides. Shell organic matrices construct frameworks of shell structures and regulate crystallization processes during shell formation. To date, a number of shell matrix proteins (SMPs) have been identified, and their functions in shell formation have been studied. However, previous studies focused only on SMPs extracted from adult shells, secreted after metamorphosis. Using proteomic analyses combined with genomic and transcriptomic analyses, we have identified 31 SMPs from larval shells of the pearl oyster, Pinctada fucata, and 111 from the Pacific oyster, Crassostrea gigas. Larval SMPs are almost entirely different from those of adults in both species. RNA-seq data also confirm that gene expression profiles for larval and adult shell formation are nearly completely different. Therefore, bivalves have two repertoires of SMP genes to construct larval and adult shells. Despite considerable differences in larval and adult SMPs, some functional domains are shared by both SMP repertoires. Conserved domains include von Willebrand factor type A (VWA), chitin-binding (CB), carbonic anhydrase (CA), and acidic domains. These conserved domains are thought to play crucial roles in shell formation. Furthermore, a comprehensive survey of animal genomes revealed that the CA and VWA-CB domain-containing protein families expanded in molluscs after their separation from other Lophotrochozoan linages such as the Brachiopoda. After gene expansion, some family members were co-opted for molluscan SMPs that may have triggered to develop mineralized shells from ancestral, nonmineralized chitinous exoskeletons.
Collapse
Affiliation(s)
- Ran Zhao
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takeshi Takeuchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Yi-Jyun Luo
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA
| | - Akito Ishikawa
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tatsushi Kobayashi
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ryo Koyanagi
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Alejandro Villar-Briones
- Instrumental Analysis Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Lixy Yamada
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima, Toba, Japan
| | - Hitoshi Sawada
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Sugashima, Toba, Japan
| | | | - Kiyohito Nagai
- Pearl Research Institute, Mikimoto CO., LTD, Shima, Mie, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Kazuyoshi Endo
- Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|