1
|
Li R, Tendu A, Kane Y, Omondi V, Ying J, Mao L, Xu S, Xu R, Chen X, Chen Y, Descorps-Declère S, Bienes KM, Fassatoui M, Hughes AC, Berthet N, Wong G. Differential prevalence and risk factors for infection with coronaviruses in bats collected from Yunnan Province, China. One Health 2024; 19:100923. [PMID: 39605930 PMCID: PMC11600012 DOI: 10.1016/j.onehlt.2024.100923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/29/2024] Open
Abstract
Coronaviruses (CoVs) pose a threat to human health globally, as highlighted by severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS) and the COVID-19 pandemic. Bats from the Greater Mekong Subregion (GMS) are an important natural reservoir for CoVs. Here we report the differential prevalence of CoVs in bats within Yunnan Province across biological and ecological variables. We also show the coexistence of CoVs in individual bats and identify an additional putative host for SARS-related CoV, with higher dispersal capacity than other known hosts. Notably, 11 SARS-related coronaviruses (SARSr-CoVs) were discovered in horseshoe bats (family Rhinolophidae) and a Chinese water myotis bat (Myotis laniger) by pan-CoV detection and Illumina sequencing. Our findings facilitate an understanding of the fundamental features of the distribution and circulation of CoVs in nature as well as zoonotic spillover risk in the One health framework.
Collapse
Affiliation(s)
- Ruiya Li
- Viral Hemorrhagic Fevers Research Unit, Institut Pasteur of Shanghai (now Shanghai Institute of Immunity and Infection), Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Alexander Tendu
- Viral Hemorrhagic Fevers Research Unit, Institut Pasteur of Shanghai (now Shanghai Institute of Immunity and Infection), Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yakhouba Kane
- Viral Hemorrhagic Fevers Research Unit, Institut Pasteur of Shanghai (now Shanghai Institute of Immunity and Infection), Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Victor Omondi
- University of Chinese Academy of Sciences, Beijing 100049, China
- Centre for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Unit of Discovery and Molecular Characterization of Pathogens, Shanghai 200031, China
| | - Jiaxu Ying
- University of Chinese Academy of Sciences, Beijing 100049, China
- Centre for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Unit of Discovery and Molecular Characterization of Pathogens, Shanghai 200031, China
| | - Lingjing Mao
- University of Chinese Academy of Sciences, Beijing 100049, China
- Centre for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Unit of Discovery and Molecular Characterization of Pathogens, Shanghai 200031, China
| | - Shiman Xu
- Viral Hemorrhagic Fevers Research Unit, Institut Pasteur of Shanghai (now Shanghai Institute of Immunity and Infection), Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Xu
- Viral Hemorrhagic Fevers Research Unit, Institut Pasteur of Shanghai (now Shanghai Institute of Immunity and Infection), Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Chen
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Yanhua Chen
- Viral Hemorrhagic Fevers Research Unit, Institut Pasteur of Shanghai (now Shanghai Institute of Immunity and Infection), Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Kathrina Mae Bienes
- Centre for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Unit of Discovery and Molecular Characterization of Pathogens, Shanghai 200031, China
| | - Meriem Fassatoui
- Centre for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Unit of Discovery and Molecular Characterization of Pathogens, Shanghai 200031, China
| | - Alice C. Hughes
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Nicolas Berthet
- Centre for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Unit of Discovery and Molecular Characterization of Pathogens, Shanghai 200031, China
- Institut Pasteur, Unité Environnement et Risque Infectieux, Cellule d'Intervention Biologique d'Urgence, 75015 Paris, France
| | - Gary Wong
- Viral Hemorrhagic Fevers Research Unit, Institut Pasteur of Shanghai (now Shanghai Institute of Immunity and Infection), Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
2
|
Sánchez CA, Phelps KL, Frank HK, Geldenhuys M, Griffiths ME, Jones DN, Kettenburg G, Lunn TJ, Moreno KR, Mortlock M, Vicente-Santos A, Víquez-R LR, Kading RC, Markotter W, Reeder DM, Olival KJ. Advances in understanding bat infection dynamics across biological scales. Proc Biol Sci 2024; 291:20232823. [PMID: 38444339 PMCID: PMC10915549 DOI: 10.1098/rspb.2023.2823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024] Open
Abstract
Over the past two decades, research on bat-associated microbes such as viruses, bacteria and fungi has dramatically increased. Here, we synthesize themes from a conference symposium focused on advances in the research of bats and their microbes, including physiological, immunological, ecological and epidemiological research that has improved our understanding of bat infection dynamics at multiple biological scales. We first present metrics for measuring individual bat responses to infection and challenges associated with using these metrics. We next discuss infection dynamics within bat populations of the same species, before introducing complexities that arise in multi-species communities of bats, humans and/or livestock. Finally, we outline critical gaps and opportunities for future interdisciplinary work on topics involving bats and their microbes.
Collapse
Affiliation(s)
| | | | - Hannah K. Frank
- Department of Ecology & Evolutionary Biology, Tulane University, New Orleans, LA 70118, USA
| | - Marike Geldenhuys
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, South Africa
| | | | - Devin N. Jones
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | | | - Tamika J. Lunn
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
- Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Kelsey R. Moreno
- Department of Psychology, Saint Xavier University, Chicago, IL 60655, USA
| | - Marinda Mortlock
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, South Africa
| | | | - Luis R. Víquez-R
- Department of Biology, Bucknell University, Lewisburg, PA 17837, USA
| | - Rebekah C. Kading
- Department of Microbiology, Immunology and Pathology, Center for Vector-borne and Infectious Diseases, Colorado State University, Fort Collins, CO 80523, USA
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, South Africa
| | - DeeAnn M. Reeder
- Department of Biology, Bucknell University, Lewisburg, PA 17837, USA
| | | |
Collapse
|
3
|
Waller SJ, Tortosa P, Thurley T, O’Donnell CFJ, Jackson R, Dennis G, Grimwood RM, Holmes EC, McInnes K, Geoghegan JL. Virome analysis of New Zealand's bats reveals cross-species viral transmission among the Coronaviridae. Virus Evol 2024; 10:veae008. [PMID: 38379777 PMCID: PMC10878368 DOI: 10.1093/ve/veae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/02/2023] [Accepted: 01/21/2024] [Indexed: 02/22/2024] Open
Abstract
The lesser short-tailed bat (Mystacina tuberculata) and the long-tailed bat (Chalinolobus tuberculatus) are Aotearoa New Zealand's only native extant terrestrial mammals and are believed to have migrated from Australia. Long-tailed bats arrived in New Zealand an estimated two million years ago and are closely related to other Australian bat species. Lesser short-tailed bats, in contrast, are the only extant species within the Mystacinidae and are estimated to have been living in isolation in New Zealand for the past 16-18 million years. Throughout this period of isolation, lesser short-tailed bats have become one of the most terrestrial bats in the world. Through a metatranscriptomic analysis of guano samples from eight locations across New Zealand, we aimed to characterise the viromes of New Zealand's bats and determine whether viruses have jumped between these species over the past two million years. High viral richness was observed among long-tailed bats with viruses spanning seven different viral families. In contrast, no bat-specific viruses were identified in lesser short-tailed bats. Both bat species harboured an abundance of likely dietary- and environment-associated viruses. We also identified alphacoronaviruses in long-tailed bat guano that had previously been identified in lesser short-tailed bats, suggesting that these viruses had jumped the species barrier after long-tailed bats migrated to New Zealand. Of note, an alphacoronavirus species discovered here possessed a complete genome of only 22,416 nucleotides with entire deletions or truncations of several non-structural proteins, thereby representing what may be the shortest genome within the Coronaviridae identified to date. Overall, this study has revealed a diverse range of novel viruses harboured by New Zealand's only native terrestrial mammals, in turn expanding our understanding of bat viral dynamics and evolution globally.
Collapse
Affiliation(s)
- Stephanie J Waller
- Department of Microbiology and Immunology, University of Otago, 720 Cumberland Street, Dunedin 9016, New Zealand
| | - Pablo Tortosa
- UMR PIMIT Processus Infectieux en Milieu Insulaire Tropical, Université de La Réunion, CNRS 9192, INSERM 1187, IRD 249, Plateforme de recherche CYROI, 2 rue Maxime Rivière, Ste Clotilde 97490, France
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Tertia Thurley
- Department of Conservation, New Zealand Government, P.O. Box 10420, Wellington 6143, New Zealand
| | - Colin F J O’Donnell
- Department of Conservation, New Zealand Government, P.O. Box 10420, Wellington 6143, New Zealand
| | - Rebecca Jackson
- Department of Conservation, New Zealand Government, P.O. Box 10420, Wellington 6143, New Zealand
| | - Gillian Dennis
- Department of Conservation, New Zealand Government, P.O. Box 10420, Wellington 6143, New Zealand
| | - Rebecca M Grimwood
- Department of Microbiology and Immunology, University of Otago, 720 Cumberland Street, Dunedin 9016, New Zealand
| | | | - Kate McInnes
- Department of Conservation, New Zealand Government, P.O. Box 10420, Wellington 6143, New Zealand
| | - Jemma L Geoghegan
- Department of Microbiology and Immunology, University of Otago, 720 Cumberland Street, Dunedin 9016, New Zealand
- Institute of Environmental Science and Research, 34 Kenepuru Drive, Kenepuru, Porirua, Wellington 5022, New Zealand
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Westmead Hospital, Level 5, Block K, Westmead, Sydney, NSW 2006, Australia
| |
Collapse
|
4
|
Muylaert RL, Wilkinson DA, Kingston T, D'Odorico P, Rulli MC, Galli N, John RS, Alviola P, Hayman DTS. Using drivers and transmission pathways to identify SARS-like coronavirus spillover risk hotspots. Nat Commun 2023; 14:6854. [PMID: 37891177 PMCID: PMC10611769 DOI: 10.1038/s41467-023-42627-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
The emergence of SARS-like coronaviruses is a multi-stage process from wildlife reservoirs to people. Here we characterize multiple drivers-landscape change, host distribution, and human exposure-associated with the risk of spillover of zoonotic SARS-like coronaviruses to help inform surveillance and mitigation activities. We consider direct and indirect transmission pathways by modeling four scenarios with livestock and mammalian wildlife as potential and known reservoirs before examining how access to healthcare varies within clusters and scenarios. We found 19 clusters with differing risk factor contributions within a single country (N = 9) or transboundary (N = 10). High-risk areas were mainly closer (11-20%) rather than far ( < 1%) from healthcare. Areas far from healthcare reveal healthcare access inequalities, especially Scenario 3, which includes wild mammals and not livestock as secondary hosts. China (N = 2) and Indonesia (N = 1) had clusters with the highest risk. Our findings can help stakeholders in land use planning, integrating healthcare implementation and One Health actions.
Collapse
Affiliation(s)
- Renata L Muylaert
- School of Veterinary Science, Massey University, Palmerston North, New Zealand.
| | - David A Wilkinson
- UMR ASTRE, CIRAD, INRAE, Université de Montpellier, Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France
| | - Tigga Kingston
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Paolo D'Odorico
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, USA
| | - Maria Cristina Rulli
- Department of Civil and Environmental Engineering, Politecnico di Milano, Milan, Italy
| | - Nikolas Galli
- Department of Civil and Environmental Engineering, Politecnico di Milano, Milan, Italy
| | - Reju Sam John
- Department of Physics, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Phillip Alviola
- Institute of Biological Sciences, University of the Philippines- Los Banos, Laguna, Philippines
| | - David T S Hayman
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| |
Collapse
|
5
|
Geldenhuys M, Ross N, Dietrich M, de Vries JL, Mortlock M, Epstein JH, Weyer J, Pawęska JT, Markotter W. Viral maintenance and excretion dynamics of coronaviruses within an Egyptian rousette fruit bat maternal colony: considerations for spillover. Sci Rep 2023; 13:15829. [PMID: 37739999 PMCID: PMC10517123 DOI: 10.1038/s41598-023-42938-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/16/2023] [Indexed: 09/24/2023] Open
Abstract
Novel coronavirus species of public health and veterinary importance have emerged in the first two decades of the twenty-first century, with bats identified as natural hosts for progenitors of many coronaviruses. Targeted wildlife surveillance is needed to identify the factors involved in viral perpetuation within natural host populations, and drivers of interspecies transmission. We monitored a natural colony of Egyptian rousette bats at monthly intervals across two years to identify circulating coronaviruses, and to investigate shedding dynamics and viral maintenance within the colony. Three distinct lineages were detected, with different seasonal temporal excretion dynamics. For two lineages, the highest periods of coronavirus shedding were at the start of the year, when large numbers of bats were found in the colony. Highest peaks for a third lineage were observed towards the middle of the year. Among individual bat-level factors (age, sex, reproductive status, and forearm mass index), only reproductive status showed significant effects on excretion probability, with reproductive adults having lower rates of detection, though factors were highly interdependent. Analysis of recaptured bats suggests that viral clearance may occur within one month. These findings may be implemented in the development of risk reduction strategies for potential zoonotic coronavirus transmission.
Collapse
Affiliation(s)
- Marike Geldenhuys
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, Gauteng, South Africa.
| | | | - Muriel Dietrich
- UMR Processus Infectieux en Milieu Insulaire Tropical, Sainte-Clotilde, Reunion Island, France
| | - John L de Vries
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Marinda Mortlock
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Jonathan H Epstein
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, Gauteng, South Africa
- EcoHealth Alliance, New York, USA
| | - Jacqueline Weyer
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, Gauteng, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, Gauteng, South Africa
- Department of Microbiology and Infectious Diseases, School of Pathology, University of Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Janusz T Pawęska
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, Gauteng, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, Gauteng, South Africa
- Department of Microbiology and Infectious Diseases, School of Pathology, University of Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, Gauteng, South Africa.
| |
Collapse
|
6
|
Kim Y, Leopardi S, Scaravelli D, Zecchin B, Priori P, Festa F, Drzewnioková P, De Benedictis P, Nouvellet P. Transmission dynamics of lyssavirus in Myotis myotis: mechanistic modelling study based on longitudinal seroprevalence data. Proc Biol Sci 2023; 290:20230183. [PMID: 37072038 PMCID: PMC10113028 DOI: 10.1098/rspb.2023.0183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/13/2023] [Indexed: 04/20/2023] Open
Abstract
We investigated the transmission dynamics of lyssavirus in Myotis myotis and Myotis blythii, using serological, virological, demographic and ecological data collected between 2015 and 2022 from two maternity colonies in northern Italian churches. Despite no lyssavirus detection in 556 bats sampled over 11 events by reverse transcription-polymerase chain reaction (RT-PCR), 36.3% of 837 bats sampled over 27 events showed neutralizing antibodies to European bat lyssavirus 1, with a significant increase in summers. By fitting sets of mechanistic models to seroprevalence data, we investigated factors that influenced lyssavirus transmission within and between years. Five models were selected as a group of final models: in one model, a proportion of exposed bats (median model estimate: 5.8%) became infectious and died while the other exposed bats recovered with immunity without becoming infectious; in the other four models, all exposed bats became infectious and recovered with immunity. The final models supported that the two colonies experienced seasonal outbreaks driven by: (i) immunity loss particularly during hibernation, (ii) density-dependent transmission, and (iii) a high transmission rate after synchronous birthing. These findings highlight the importance of understanding ecological factors, including colony size and synchronous birthing timing, and potential infection heterogeneities to enable more robust assessments of lyssavirus spillover risk.
Collapse
Affiliation(s)
- Younjung Kim
- Department of Evolution, Behaviour, and Environment, School of Life Sciences, University of Sussex, BN1 9RH Brighton, UK
| | - Stefania Leopardi
- FAO and National Reference Centre for Rabies, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, Legnaro, 35020 Padua, Italy
| | - Dino Scaravelli
- S.T.E.R.N.A. and Museo Ornitologico ‘F. Foschi’, via Pedrali 12, 47121 Forlì, Italy
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi 3, 40126 Bologna, Italy
| | - Barbara Zecchin
- FAO and National Reference Centre for Rabies, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, Legnaro, 35020 Padua, Italy
| | - Pamela Priori
- S.T.E.R.N.A. and Museo Ornitologico ‘F. Foschi’, via Pedrali 12, 47121 Forlì, Italy
| | - Francesca Festa
- FAO and National Reference Centre for Rabies, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, Legnaro, 35020 Padua, Italy
| | - Petra Drzewnioková
- FAO and National Reference Centre for Rabies, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, Legnaro, 35020 Padua, Italy
| | - Paola De Benedictis
- FAO and National Reference Centre for Rabies, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, Legnaro, 35020 Padua, Italy
| | - Pierre Nouvellet
- Department of Evolution, Behaviour, and Environment, School of Life Sciences, University of Sussex, BN1 9RH Brighton, UK
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, SW7 2AZ London, UK
| |
Collapse
|
7
|
Hoarau AOG, Köster M, Dietrich M, Le Minter G, Joffrin L, Ramanantsalama RV, Mavingui P, Lebarbenchon C. Synchronicity of viral shedding in molossid bat maternity colonies. Epidemiol Infect 2023; 151:e47. [PMID: 36750225 PMCID: PMC10052574 DOI: 10.1017/s0950268823000171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Infection dynamics in vertebrates are driven by biological and ecological processes. For bats, population structure and reproductive cycles have major effects on RNA virus transmission. On Reunion Island, previous studies have shown that parturition of pregnant females and aggregation of juvenile Reunion free-tailed bats (Mormopterus francoismoutoui) are associated with major increase in the prevalence of bats shedding RNA viruses. The synchronicity of such shedding pulses, however, is yet to be assessed between viruses but also maternity colonies. Based on 3422 fresh faeces collected every 2-5 weeks during four consecutive birthing seasons, we report the prevalence of bats shedding astroviruses (AstVs), coronaviruses (CoVs) and paramyxoviruses (PMVs) in two maternity colonies on Reunion Island. We found that the proportion of bats shedding viruses is highly influenced by sampling collection periods, and therefore by the evolution of the population age structure. We highlight that virus shedding patterns are consistent among years and colonies for CoVs and to a lesser extent for PMVs, but not for AstVs. We also report that 1% of bats harbour co-infections, with two but not three of the viruses, and most co-infections were due to CoVs and PMVs.
Collapse
Affiliation(s)
- Axel O G Hoarau
- Université de La Réunion, Processus Infectieux en Milieu Insulaire Tropical, Inserm 1187, CNRS 9192, IRD 249, Sainte-Clotilde, La Réunion, France
| | - Marie Köster
- Université de La Réunion, Processus Infectieux en Milieu Insulaire Tropical, Inserm 1187, CNRS 9192, IRD 249, Sainte-Clotilde, La Réunion, France
| | - Muriel Dietrich
- Université de La Réunion, Processus Infectieux en Milieu Insulaire Tropical, Inserm 1187, CNRS 9192, IRD 249, Sainte-Clotilde, La Réunion, France
| | - Gildas Le Minter
- Université de La Réunion, Processus Infectieux en Milieu Insulaire Tropical, Inserm 1187, CNRS 9192, IRD 249, Sainte-Clotilde, La Réunion, France
| | - Léa Joffrin
- Université de La Réunion, Processus Infectieux en Milieu Insulaire Tropical, Inserm 1187, CNRS 9192, IRD 249, Sainte-Clotilde, La Réunion, France
| | - Riana V Ramanantsalama
- Université de La Réunion, Processus Infectieux en Milieu Insulaire Tropical, Inserm 1187, CNRS 9192, IRD 249, Sainte-Clotilde, La Réunion, France
| | - Patrick Mavingui
- Université de La Réunion, Processus Infectieux en Milieu Insulaire Tropical, Inserm 1187, CNRS 9192, IRD 249, Sainte-Clotilde, La Réunion, France
| | - Camille Lebarbenchon
- Université de La Réunion, Processus Infectieux en Milieu Insulaire Tropical, Inserm 1187, CNRS 9192, IRD 249, Sainte-Clotilde, La Réunion, France
| |
Collapse
|
8
|
Aguillon S, Le Minter G, Lebarbenchon C, Hoarau AOG, Toty C, Joffrin L, Ramanantsalama RV, Augros S, Tortosa P, Mavingui P, Dietrich M. A population in perpetual motion: Highly dynamic roosting behavior of a tropical island endemic bat. Ecol Evol 2023; 13:e9814. [PMID: 36789336 PMCID: PMC9919472 DOI: 10.1002/ece3.9814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 02/13/2023] Open
Abstract
Although island endemic bats are a source of considerable conservation concerns, their biology remains poorly known. Here, we studied the phenology and roosting behavior of a tropical island endemic species: the Reunion free-tailed bat (Mormopterus francoismoutoui). This widespread and abundant species occupies various natural and anthropogenic environments such as caves and buildings. We set up fine-scale monitoring of 19 roosts over 27 months in Reunion Island and analyzed roost size and composition, sexual and age-associated segregation of individuals, as well as the reproductive phenology and body condition of individuals. Based on extensive data collected from 6721 individuals, we revealed a highly dynamic roosting behavior, with marked seasonal sex-ratio variation, linked to distinct patterns of sexual aggregation among roosts. Despite the widespread presence of pregnant females all over the island, parturition was localized in a few roosts, and flying juveniles dispersed rapidly toward all studied roosts. Our data also suggested a 7-month delay between mating and pregnancy, highlighting a likely long interruption of the reproductive cycle in this tropical bat. Altogether, our results suggest a complex social organization in the Reunion free-tailed bat, with important sex-specific seasonal and spatial movements, including the possibility of altitudinal migration. Bat tracking and genetic studies would provide additional insights into the behavioral strategies that shape the biology of this enigmatic bat species. The fine-scale spatiotemporal data revealed by our study will serve to the delineation of effective conservation plans, especially in the context of growing urbanization and agriculture expansion in Reunion Island.
Collapse
Affiliation(s)
- Samantha Aguillon
- UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical)Université de la Réunion/INSERM1187/CNRS9192/IRD249Sainte‐ClotildeFrance
| | - Gildas Le Minter
- UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical)Université de la Réunion/INSERM1187/CNRS9192/IRD249Sainte‐ClotildeFrance
| | - Camille Lebarbenchon
- UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical)Université de la Réunion/INSERM1187/CNRS9192/IRD249Sainte‐ClotildeFrance
| | - Axel O. G. Hoarau
- UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical)Université de la Réunion/INSERM1187/CNRS9192/IRD249Sainte‐ClotildeFrance
| | - Céline Toty
- UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical)Université de la Réunion/INSERM1187/CNRS9192/IRD249Sainte‐ClotildeFrance
| | - Léa Joffrin
- UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical)Université de la Réunion/INSERM1187/CNRS9192/IRD249Sainte‐ClotildeFrance
| | - Riana V. Ramanantsalama
- UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical)Université de la Réunion/INSERM1187/CNRS9192/IRD249Sainte‐ClotildeFrance
| | | | - Pablo Tortosa
- UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical)Université de la Réunion/INSERM1187/CNRS9192/IRD249Sainte‐ClotildeFrance
| | - Patrick Mavingui
- UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical)Université de la Réunion/INSERM1187/CNRS9192/IRD249Sainte‐ClotildeFrance
| | - Muriel Dietrich
- UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical)Université de la Réunion/INSERM1187/CNRS9192/IRD249Sainte‐ClotildeFrance
| |
Collapse
|
9
|
Becker DJ, Eby P, Madden W, Peel AJ, Plowright RK. Ecological conditions predict the intensity of Hendra virus excretion over space and time from bat reservoir hosts. Ecol Lett 2023; 26:23-36. [PMID: 36310377 DOI: 10.1111/ele.14007] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 12/27/2022]
Abstract
The ecological conditions experienced by wildlife reservoirs affect infection dynamics and thus the distribution of pathogen excreted into the environment. This spatial and temporal distribution of shed pathogen has been hypothesised to shape risks of zoonotic spillover. However, few systems have data on both long-term ecological conditions and pathogen excretion to advance mechanistic understanding and test environmental drivers of spillover risk. We here analyse three years of Hendra virus data from nine Australian flying fox roosts with covariates derived from long-term studies of bat ecology. We show that the magnitude of winter pulses of viral excretion, previously considered idiosyncratic, are most pronounced after recent food shortages and in bat populations displaced to novel habitats. We further show that cumulative pathogen excretion over time is shaped by bat ecology and positively predicts spillover frequency. Our work emphasises the role of reservoir host ecology in shaping pathogen excretion and provides a new approach to estimate spillover risk.
Collapse
Affiliation(s)
- Daniel J Becker
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, USA.,Department of Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Peggy Eby
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia.,Centre for Planetary Health and Food Security, Griffith University, Queensland, Australia
| | - Wyatt Madden
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, USA
| | - Alison J Peel
- Centre for Planetary Health and Food Security, Griffith University, Queensland, Australia
| | - Raina K Plowright
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
10
|
Lebarbenchon C, Goodman SM, Hoarau AOG, Le Minter G, Dos Santos A, Schoeman MC, Léculier C, Raoul H, Gudo ES, Mavingui P. Bombali Ebolavirus in Mops condylurus Bats (Molossidae), Mozambique. Emerg Infect Dis 2022; 28:2583-2585. [PMID: 36418002 PMCID: PMC9707587 DOI: 10.3201/eid2812.220853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We detected Bombali ebolavirus RNA in 3 free-tailed bats (Mops condylurus, Molossidae) in Mozambique. Sequencing of the large protein gene revealed 98% identity with viruses previously detected in Sierra Leone, Kenya, and Guinea. Our findings further support the suspected role of Mops condylurus bats in maintaining Bombali ebolavirus.
Collapse
|
11
|
Montecino-Latorre D, Goldstein T, Kelly TR, Wolking DJ, Kindunda A, Kongo G, Bel-Nono SO, Kazwala RR, Suu-Ire RD, Barker CM, Johnson CK, Mazet JAK. Seasonal shedding of coronavirus by straw-colored fruit bats at urban roosts in Africa. PLoS One 2022; 17:e0274490. [PMID: 36107832 PMCID: PMC9477308 DOI: 10.1371/journal.pone.0274490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/29/2022] [Indexed: 11/19/2022] Open
Abstract
The straw-colored fruit bat (Eidolon helvum) is a pteropodid whose conservation is crucial for maintaining functional connectivity of plant populations in tropical Africa. Land conversion has pushed this species to adapt to roosting in urban centers across its range. These colonies often host millions of individuals, creating intensive human-bat contact interfaces that could facilitate the spillover of coronaviruses shed by these bats. A better understanding of coronavirus dynamics in these roosts is needed to identify peak times of exposure risk in order to propose evidence-based management that supports safe human-bat coexistence, as well as the conservation of this chiropteran. We studied the temporal patterns of coronavirus shedding in E. helvum, by testing thousands of longitudinally-collected fecal samples from two spatially distant urban roosts in Ghana and Tanzania. Shedding of coronaviruses peaked during the second part of pup weaning in both roosts. Assuming that coronavirus shedding is directly related to spillover risk, our results indicate that exposure mitigation should target reducing contact between people and E. helvum roosts during the pup "weaning" period. This recommendation can be applied across the many highly-populated urban sites occupied by E. helvum across Africa.
Collapse
Affiliation(s)
- Diego Montecino-Latorre
- One Health Institute, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Tracey Goldstein
- One Health Institute, School of Veterinary Medicine, University of California, Davis, California, United States of America
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Terra R. Kelly
- One Health Institute, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - David J. Wolking
- One Health Institute, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Adam Kindunda
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Godphrey Kongo
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| | | | - Rudovick R. Kazwala
- College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Richard D. Suu-Ire
- School of Veterinary Medicine, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Christopher M. Barker
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Christine Kreuder Johnson
- One Health Institute, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Jonna A. K. Mazet
- One Health Institute, School of Veterinary Medicine, University of California, Davis, California, United States of America
| |
Collapse
|
12
|
Lane JK, Negash Y, Randhawa N, Kebede N, Wells H, Ayalew G, Anthony SJ, Smith B, Goldstein T, Kassa T, Mazet JAK, Consortium P, Smith WA. Coronavirus and Paramyxovirus Shedding by Bats in a Cave and Buildings in Ethiopia. ECOHEALTH 2022; 19:216-232. [PMID: 35771308 PMCID: PMC9243955 DOI: 10.1007/s10393-022-01590-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
Bats are important hosts of zoonotic viruses with pandemic potential, including filoviruses, MERS-Coronavirus (CoV), SARS-CoV -1, and likely SARS-CoV-2. Viral infection and transmission among wildlife are dependent on a combination of factors that include host ecology and immunology, life history traits, roosting habitats, biogeography, and external stressors. Between 2016 and 2018, four species of insectivorous bats from a readily accessed roadside cave and buildings in Ethiopia were sampled and tested for viruses using consensus PCR assays for five viral families/genera. Previously identified and novel coronaviruses and paramyxoviruses were identified in 99 of the 589 sampled bats. Bats sampled from the cave site were more likely to test positive for a CoV than bats sampled from buildings; viral shedding was more common in the wet season; and rectal swabs were the most common sample type to test positive. A previously undescribed alphacoronavirus was detected in two bat species from different taxonomic families, sampling interfaces, geographic locations, and years. These findings expand knowledge of the range and diversity of coronaviruses and paramyxoviruses in insectivorous bats in Ethiopia and reinforce that an improved understanding of viral diversity and species-specific shedding dynamics is important for designing informed zoonotic disease surveillance and spillover risk reduction efforts.
Collapse
Affiliation(s)
- Jennifer K Lane
- One Health Institute and Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, 1089 Veterinary Medicine Drive, VM3B, Davis, CA, 95616, USA.
| | - Yohannes Negash
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Nistara Randhawa
- One Health Institute and Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, 1089 Veterinary Medicine Drive, VM3B, Davis, CA, 95616, USA
| | - Nigatu Kebede
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Heather Wells
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, 10027, USA
| | - Girma Ayalew
- Ethiopian Wildlife Conservation Authority, Ministry of Environment, Forestry and Climate Change, Addis Ababa, Ethiopia
| | - Simon J Anthony
- School of Veterinary Medicine, University of California, Davis, Davis, CA, 95616, USA
| | - Brett Smith
- Genome Center & Biomedical Engineering, School of Medicine, University of California, Davis, Davis, CA, 95616, USA
| | - Tracey Goldstein
- Zoological Pathology Program, University of Illinois at Urbana-Champaign, Brookfield, IL, 60513, USA
| | - Tesfu Kassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Jonna A K Mazet
- One Health Institute and Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, 1089 Veterinary Medicine Drive, VM3B, Davis, CA, 95616, USA
| | | | - Woutrina A Smith
- One Health Institute and Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, 1089 Veterinary Medicine Drive, VM3B, Davis, CA, 95616, USA.
| |
Collapse
|
13
|
Joffrin L, Hoarau AOG, Lagadec E, Torrontegi O, Köster M, Le Minter G, Dietrich M, Mavingui P, Lebarbenchon C. Seasonality of coronavirus shedding in tropical bats. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211600. [PMID: 35154796 PMCID: PMC8825989 DOI: 10.1098/rsos.211600] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/14/2021] [Indexed: 05/03/2023]
Abstract
Anticipating cross-species transmission of zoonotic diseases requires an understanding of pathogen infection dynamics within natural reservoir hosts. Although bats might be a source of coronaviruses (CoVs) for humans, the drivers of infection dynamics in bat populations have received limited attention. We conducted a fine-scale 2-year longitudinal study of CoV infection dynamics in the largest colony of Reunion free-tailed bats (Mormopterus francoismoutoui), a tropical insectivorous species. Real-time PCR screening of 1080 fresh individual faeces samples collected during the two consecutive years revealed an extreme variation of the detection rate of bats shedding viruses over the birthing season (from 0% to 80%). Shedding pulses were repeatedly observed and occurred both during late pregnancy and within two months after parturition. An additional shedding pulse at the end of the second year suggests some inter-annual variations. We also detected viral RNA in bat guano up to three months after bats had left the cave. Our results highlight the importance of fine-scale longitudinal studies to capture the rapid change of bat CoV infection over months, and that CoV shedding pulses in bats may increase spillover risk.
Collapse
Affiliation(s)
- Léa Joffrin
- Université de La Réunion, UMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM 1187, CNRS 9192, IRD 249, GIP CYROI, 2 rue Maxime Rivière, Saint Denis, La Réunion, France
| | - Axel O. G. Hoarau
- Université de La Réunion, UMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM 1187, CNRS 9192, IRD 249, GIP CYROI, 2 rue Maxime Rivière, Saint Denis, La Réunion, France
| | - Erwan Lagadec
- Université de La Réunion, UMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM 1187, CNRS 9192, IRD 249, GIP CYROI, 2 rue Maxime Rivière, Saint Denis, La Réunion, France
| | - Olalla Torrontegi
- Université de La Réunion, UMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM 1187, CNRS 9192, IRD 249, GIP CYROI, 2 rue Maxime Rivière, Saint Denis, La Réunion, France
| | - Marie Köster
- Université de La Réunion, UMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM 1187, CNRS 9192, IRD 249, GIP CYROI, 2 rue Maxime Rivière, Saint Denis, La Réunion, France
| | - Gildas Le Minter
- Université de La Réunion, UMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM 1187, CNRS 9192, IRD 249, GIP CYROI, 2 rue Maxime Rivière, Saint Denis, La Réunion, France
| | - Muriel Dietrich
- Université de La Réunion, UMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM 1187, CNRS 9192, IRD 249, GIP CYROI, 2 rue Maxime Rivière, Saint Denis, La Réunion, France
| | - Patrick Mavingui
- Université de La Réunion, UMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM 1187, CNRS 9192, IRD 249, GIP CYROI, 2 rue Maxime Rivière, Saint Denis, La Réunion, France
| | - Camille Lebarbenchon
- Université de La Réunion, UMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM 1187, CNRS 9192, IRD 249, GIP CYROI, 2 rue Maxime Rivière, Saint Denis, La Réunion, France
| |
Collapse
|