1
|
Bode M, Choukroun S, Emslie MJ, Harrison HB, Leis JM, Mason LB, Srinivasan M, Williamson DH, Jones GP. Marine reserves contribute half of the larval supply to a coral reef fishery. SCIENCE ADVANCES 2025; 11:eadt0216. [PMID: 39908375 PMCID: PMC11797529 DOI: 10.1126/sciadv.adt0216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 01/08/2025] [Indexed: 02/07/2025]
Abstract
Marine reserves deliver impressive increases in the abundance and size of exploited species on protected reefs, but larval dispersal makes it difficult to estimate their wider benefits. Australia's Great Barrier Reef (GBR) contains an extensive network of marine reserves. By combining GBR-wide fish surveys, larval dispersal models, and commercial fishery catch data, we calculate the system-wide ecological and economic contributions of these reserves for coral groupers (Plectropomus spp.), the region's most important line fishery. Despite covering only 30% of reef habitat, the GBR's marine reserve network contains half of the species' biomass and generates most of its reproductive output (55%), half of the system's larval settlement (50%), and almost half of the total fishery yield (47%).
Collapse
Affiliation(s)
- Michael Bode
- School of Mathematical Sciences, Queensland University of Technology, Brisbane 4000, Australia
- Securing Antarctica’s Environmental Future, Queensland University of Technology, Brisbane 4000, Australia
| | - Severine Choukroun
- College of Science & Engineering, James Cook University, Townsville 4814, Australia
- Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER), James Cook University, Townsville 4811, Australia
| | | | - Hugo B. Harrison
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Jeffrey M. Leis
- Ecology & Biodiversity Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart 7001, Australia
- Ichthylogy, Australian Museum Research Institute, Sydney 2010, Australia
| | - Luciano B. Mason
- School of Mathematical Sciences, Queensland University of Technology, Brisbane 4000, Australia
| | - Maya Srinivasan
- College of Science & Engineering, James Cook University, Townsville 4814, Australia
- Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER), James Cook University, Townsville 4811, Australia
| | | | - Geoffrey P. Jones
- College of Science & Engineering, James Cook University, Townsville 4814, Australia
| |
Collapse
|
2
|
Li G, Chang YL, Miyazawa Y, Müller UK. The calculated voyage: benchmarking optimal strategies and consumptions in the Japanese eel's spawning migration. Sci Rep 2024; 14:26024. [PMID: 39482316 PMCID: PMC11528122 DOI: 10.1038/s41598-024-74979-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
Eels migrate along largely unknown routes to their spawning ground. By coupling Zermelo's navigation solution and data from the Japan Coastal Ocean Predictability Experiment 2 (JCOPE2M), we simulated a range of seasonal scenarios, swimming speeds, and swimming depths to predict paths that minimize migration duration and energy cost. Our simulations predict a trade-off between migration duration and energy cost. Given that eels do not refuel during their migration, our simulations suggest eels should travel at speeds of 0.4-0.6 body-length per second to retain enough energy reserves for reproduction. For real eels without full information of the ocean currents, they cannot optimize their migration in strong surface currents, thus when swimming at slow swimming speeds, they should swim at depths of 200 m or greater. Eels swimming near the surface are also influenced by seasonal factors, however, migrating at greater depths mitigates these effects. While greater depths present more favorable flow conditions, water temperature may become increasingly unfavorable, dropping near or below 5 °C. Our results serve as a benchmark, demonstrating the complex interplay between swimming speed, depth, seasonal factors, migration time, and energy consumption, to comprehend the migratory behaviors of Japanese eels and other migratory fish.
Collapse
Affiliation(s)
- Gen Li
- Center for Mathematical Science and Advanced Technology, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan.
| | - Yu-Lin Chang
- Application Laboratory, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan
| | - Yasumasa Miyazawa
- Application Laboratory, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan
| | - Ulrike K Müller
- Department of Biology, California State University, Fresno, USA
| |
Collapse
|
3
|
Teichert N, Tabouret H, Lizé A, Daverat F, Acou A, Trancart T, Virag LS, Pécheyran C, Feunteun E, Carpentier A. Quantifying larval dispersal portfolio in seabass nurseries using otolith chemical signatures. MARINE ENVIRONMENTAL RESEARCH 2024; 196:106426. [PMID: 38442591 DOI: 10.1016/j.marenvres.2024.106426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024]
Abstract
The temporal asynchronies in larvae production from different spawning areas are fundamental components for ensuring stability and resilience of marine metapopulations. Such a concept, named portfolio effect, supposes that diversifying larval dispersal histories should minimize the risk of recruitment failure by increasing the probability that at least some larvae successfully settle in nursery. Here, we used a reconstructive approach based on otolith chemistry to quantify the larval dispersal portfolio of the European seabass, Dicentrarchus labrax, across six estuarine nursery areas of the northeast Atlantic Ocean. The analysis of natal and trajectory signatures indicated that larvae hatch in distinct environments and then dispersed in water masses featured by contrasting chemical signatures. While some trace elements appeared affected by temporal changes (Mn and Sr), others varied spatially during the larval stage but remained poorly affected by temporal fluctuation and fish physiology (Ba, Cu, Rb and Zn). We then proposed two diversity metrics based on richness and variations of chemical signatures among populations to reflect spatio-temporal diversity in natal origins and larval trajectories (i.e., estimates of dispersal portfolio). Along the French coast, the diversity estimates were maximum in nurseries located at proximity of offshore spawning sites and featured by complex offshore hydrodynamic contexts, such as the Mont St-Michel bay. Finally, our findings indicate that the dispersal portfolio was positively related with the local abundance of seabass juveniles, supporting the assumption that heterogeneity in dispersal history contributes to promote recruitment success in nurseries.
Collapse
Affiliation(s)
- Nils Teichert
- UMR 8067 BOREA (MNHN, CNRS, IRD, SU, UCN, UA), Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques, Paris, France; MNHN, Station Marine de Dinard, CRESCO, 35800, Dinard, France.
| | - Hélène Tabouret
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Anne Lizé
- UMR 8067 BOREA (MNHN, CNRS, IRD, SU, UCN, UA), Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques, Paris, France; MNHN, Station Marine de Dinard, CRESCO, 35800, Dinard, France; School of Life Sciences, University of Liverpool, L697ZB, Liverpool, UK
| | | | - Anthony Acou
- Centre d'expertise et de données PatriNat (OFB-MNHN-CNRS-IRD), Station marine de Dinard, CRESCO, 35800, Dinard, France; Pôle R&D OFB, INRAE, Institut Agro -UPPA MIAME (MIgrateurs AMphihalins dans leur Environnement), 35000, Rennes, France
| | - Thomas Trancart
- UMR 8067 BOREA (MNHN, CNRS, IRD, SU, UCN, UA), Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques, Paris, France; MNHN, Station Marine de Dinard, CRESCO, 35800, Dinard, France
| | | | | | - Eric Feunteun
- UMR 8067 BOREA (MNHN, CNRS, IRD, SU, UCN, UA), Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques, Paris, France; MNHN, Station Marine de Dinard, CRESCO, 35800, Dinard, France; CGEL, EPHE-PSL, 35800, Dinard, France
| | - Alexandre Carpentier
- Université de Rennes, UMR 8067 BOREA (MNHN, CNRS, IRD, SU, UCN, UA) Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques, Rennes, France
| |
Collapse
|
4
|
The El Niño Southern Oscillation drives multidirectional inter-reef larval connectivity in the Great Barrier Reef. Sci Rep 2022; 12:21290. [PMID: 36494507 PMCID: PMC9734173 DOI: 10.1038/s41598-022-25629-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
The El Niño Southern Oscillation (ENSO) is the strongest source of interannual global climate variability, and extreme ENSO events are projected to increase in frequency under climate change. Interannual variability in the Coral Sea circulation has been associated with ENSO, although uncertainty remains regarding ENSO's influence on hydrodynamics and larval dispersal in the adjacent Great Barrier Reef (GBR). We investigated larval connectivity during ENSO events from 2010 to 2017 throughout the GBR, based on biophysical modelling of a widespread predatory reef fish, Lutjanus carponotatus. Our results indicate a well-connected system over the study period with high interannual variability in inter-reef connectivity associated with ENSO. Larval connectivity patterns were highly correlated to variations in the Southern Oscillation Index (SOI). During El Niño conditions and periods of weak SOI, larval dispersal patterns were predominantly poleward in the central and southern regions, reversing to a predominant equatorward flow during very strong SOI and extreme La Niña conditions. These ENSO-linked connectivity patterns were associated with positive connectivity anomalies among reefs. Our findings identify ENSO as an important source of variation in larval dispersal and connectivity patterns in the GBR, which can influence the stability of population dynamics and patterns of biodiversity in the region.
Collapse
|
5
|
McLeod AM, Leroux SJ. Incorporating abiotic controls on animal movements in metacommunities. Ecology 2021; 102:e03365. [PMID: 33871056 DOI: 10.1002/ecy.3365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/09/2020] [Accepted: 02/22/2021] [Indexed: 01/01/2023]
Abstract
Local dynamics are influenced by regional processes. Meta-ecology, or the study of spatial flows of energy, materials, and species between local systems, is becoming increasingly concerned with accurate depictions of species movements and the impacts of this movement on landscape-level ecosystem function. Indeed, incorporating diverse types of movement is a major frontier in metacommunity theory. Here, we synthesize literature to demonstrate that the movement of organisms between patches is governed by the interplay between both a species' ability to move and the combined effects of landscape structure and physical flows (termed abiotic controls), which together we refer to as abiotic-dependent species connectivity. For example, two lakes that share geographic proximity may be inaccessible for mobile fish species because they lack a river connecting them (landscape structure), but wind currents may disperse insects between them (physical flows). Empirical evidence suggests that abiotic controls, such as ocean currents, lead to abiotic-dependent species connectivity and that, in nature, this type of connectivity is the rule rather than the exception. Based on this empirical evidence, we introduce a novel mathematical framework to demonstrate how species movement capabilities and abiotic conditions, can interact to influence metacommunity stability. We apply this framework to predict how incorporating abiotic-dependent species connectivity applies to classic empirical examples of aquatic, aquatic-terrestrial, and terrestrial experimental metacommunities. We demonstrate that incorporating abiotic-dependent species connectivity into metacommunity models can lead to a much broader range of dynamics than models previously predicted, including a wider range of metacommunity stability. Our framework fills critical gaps in our basic understanding of organismal movement across landscapes and provides testable predictions for how such common natural phenomena impact landscape-level ecosystem function. Finally, we present future perspectives for further development of meta-ecological theory from questions about fragmentation to ecosystems. Anthropogenic change is not only leading to habitat loss from the damming of rivers to denuding the landscape, but altering the physical flows that have historically connected communities. Thus, recognizing the importance of these processes in tandem with species' movement abilities is critical for predicting and preserving the structure and function of ecological communities.
Collapse
Affiliation(s)
- Anne M McLeod
- Department of Biology, Memorial University of Newfoundland, St John's, Newfoundland and Labrador, A1B 3X9, Canada
| | - Shawn J Leroux
- Department of Biology, Memorial University of Newfoundland, St John's, Newfoundland and Labrador, A1B 3X9, Canada
| |
Collapse
|
6
|
Catalano KA, Dedrick AG, Stuart MR, Puritz JB, Montes HR, Pinsky ML. Quantifying dispersal variability among nearshore marine populations. Mol Ecol 2020; 30:2366-2377. [PMID: 33197290 DOI: 10.1111/mec.15732] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 01/17/2023]
Abstract
Dispersal drives diverse processes from population persistence to community dynamics. However, the amount of temporal variation in dispersal and its consequences for metapopulation dynamics is largely unknown for organisms with environmentally driven dispersal (e.g., many marine larvae, arthropods and plant seeds). Here, we used genetic parentage analysis to detect larval dispersal events in a common coral reef fish, Amphiprion clarkii, along 30 km of coastline consisting of 19 reef patches in Ormoc Bay, Leyte, Philippines. We quantified variation in the dispersal kernel across seven years (2012-2018) and monsoon seasons with 71 parentage assignments from 791 recruits and 1,729 adults. Connectivity patterns differed significantly among years and seasons in the scale and shape but not in the direction of dispersal. This interannual variation in dispersal kernels introduced positive temporal covariance among dispersal routes that theory predicts is likely to reduce stochastic metapopulation growth rates below the growth rates expected from only a single or a time-averaged connectivity estimate. The extent of variation in mean dispersal distance observed here among years is comparable in magnitude to the differences across reef fish species. Considering dispersal variation will be an important avenue for further metapopulation and metacommunity research across diverse taxa.
Collapse
Affiliation(s)
- Katrina A Catalano
- Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, USA
| | - Allison G Dedrick
- Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, USA
| | - Michelle R Stuart
- Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, USA
| | - Jonathan B Puritz
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| | | | - Malin L Pinsky
- Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
7
|
A connectivity portfolio effect stabilizes marine reserve performance. Proc Natl Acad Sci U S A 2020; 117:25595-25600. [PMID: 32989139 DOI: 10.1073/pnas.1920580117] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Well-managed and enforced no-take marine reserves generate important larval subsidies to neighboring habitats and thereby contribute to the long-term sustainability of fisheries. However, larval dispersal patterns are variable, which leads to temporal fluctuations in the contribution of a single reserve to the replenishment of local populations. Identifying management strategies that mitigate the uncertainty in larval supply will help ensure the stability of recruitment dynamics and minimize the volatility in fishery catches. Here, we use genetic parentage analysis to show extreme variability in both the dispersal patterns and recruitment contribution of four individual marine reserves across six discrete recruitment cohorts for coral grouper (Plectropomus maculatus) on the Great Barrier Reef. Together, however, the asynchronous contributions from multiple reserves create temporal stability in recruitment via a connectivity portfolio effect. This dampening effect reduces the variability in larval supply from individual reserves by a factor of 1.8, which effectively halves the uncertainty in the recruitment contribution of individual reserves. Thus, not only does the network of four marine reserves generate valuable larval subsidies to neighboring habitats, the aggregate effect of individual reserves mitigates temporal fluctuations in dispersal patterns and the replenishment of local populations. Our results indicate that small networks of marine reserves yield previously unrecognized stabilizing benefits that ensure a consistent larval supply to replenish exploited fish stocks.
Collapse
|
8
|
Rueger T, Harrison HB, Buston PM, Gardiner NM, Berumen ML, Jones GP. Natal philopatry increases relatedness within groups of coral reef cardinalfish. Proc Biol Sci 2020; 287:20201133. [PMID: 32635871 DOI: 10.1098/rspb.2020.1133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A central issue in evolutionary ecology is how patterns of dispersal influence patterns of relatedness in populations. In terrestrial organisms, limited dispersal of offspring leads to groups of related individuals. By contrast, for most marine organisms, larval dispersal in open waters is thought to minimize kin associations within populations. However, recent molecular evidence and theoretical approaches have shown that limited dispersal, sibling cohesion and/or differential reproductive success can lead to kin association and elevated relatedness. Here, we tested the hypothesis that limited dispersal explains small-scale patterns of relatedness in the pajama cardinalfish Sphaeramia nematoptera. We used 19 microsatellite markers to assess parentage of 233 juveniles and pairwise relatedness among 527 individuals from 41 groups in Kimbe Bay, Papua New Guinea. Our findings support three predictions of the limited dispersal hypothesis: (i) elevated relatedness within groups, compared with among groups and elevated relatedness within reefs compared with among reefs; (ii) a weak negative correlation of relatedness with distance; (iii) more juveniles than would be expected by chance in the same group and the same reef as their parents. We provide the first example for natal philopatry at the group level causing small-scale patterns of genetic relatedness in a marine fish.
Collapse
Affiliation(s)
- Theresa Rueger
- College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia.,Department of Biology and Marine Program, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Hugo B Harrison
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia.,Australian Institute of Marine Science, Townsville, Australia
| | - Peter M Buston
- Department of Biology and Marine Program, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Naomi M Gardiner
- College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - Michael L Berumen
- Red Sea Research Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, 23955-6900 Thuwal, Kingdom of Saudi Arabia
| | - Geoffrey P Jones
- College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia.,Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
9
|
Gary SF, Fox AD, Biastoch A, Roberts JM, Cunningham SA. Larval behaviour, dispersal and population connectivity in the deep sea. Sci Rep 2020; 10:10675. [PMID: 32606307 PMCID: PMC7326968 DOI: 10.1038/s41598-020-67503-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/09/2020] [Indexed: 01/15/2023] Open
Abstract
Ecosystem connectivity is an essential consideration for marine spatial planning of competing interests in the deep sea. Immobile, adult communities are connected through freely floating larvae, depending on new recruits for their health and to adapt to external pressures. We hypothesize that the vertical swimming ability of deep-sea larvae, before they permanently settle at the bottom, is one way larvae can control dispersal. We test this hypothesis with more than \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$3\times 10^{8}$$\end{document}3×108 simulated particles with a range of active swimming behaviours embedded within the currents of a high-resolution ocean model. Despite much stronger horizontal ocean currents, vertical swimming of simulated larvae can have an order of magnitude impact on dispersal. These strong relationships between larval dispersal, pathways, and active swimming demonstrate that lack of data on larval behaviour traits is a serious impediment to modelling deep-sea ecosystem connectivity; this uncertainty greatly limits our ability to develop ecologically coherent marine protected area networks.
Collapse
Affiliation(s)
- Stefan F Gary
- SAMS, Scottish Marine Institute, Oban, Argyll, PA37 1QA, UK.,Parallel Works Inc., 222 Merchandise Mart Plz. Suite 1212, Chicago, IL, 60654, USA
| | - Alan D Fox
- SAMS, Scottish Marine Institute, Oban, Argyll, PA37 1QA, UK. .,School of GeoSciences, The Grant Institute, University of Edinburgh, James Hutton Road, The King's Buildings, Edinburgh, EH9 3FE, UK.
| | - Arne Biastoch
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105, Kiel, Germany.,Kiel University, Christian-Albrechts-Platz 4, 24118, Kiel, Germany
| | - J Murray Roberts
- School of GeoSciences, The Grant Institute, University of Edinburgh, James Hutton Road, The King's Buildings, Edinburgh, EH9 3FE, UK
| | | |
Collapse
|
10
|
Mangesti Rahayu S, Suhadak, Saifi M. The reciprocal relationship between profitability and capital structure and its impacts on the corporate values of manufacturing companies in Indonesia. INTERNATIONAL JOURNAL OF PRODUCTIVITY AND PERFORMANCE MANAGEMENT 2019. [DOI: 10.1108/ijppm-05-2018-0196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PurposeThe purpose of this paper is to investigate the reciprocal relationship between profitability and capital structure and its impacts on the corporate values of manufacturing companies in Indonesia.Design/methodology/approachThis research is a quantitative research using the general structural component analysis as the analysis tool. This research involved a number of manufacturing companies registered in the Indonesia Stock Exchange in 2008‒2015 period.FindingsProfitability has a negative significant influence on capital structure, indicating that profitability is a determining factor upon the corporate capital structure. This finding also implies that the improvement in profitability in the forms of return on investment, return on equity and net profit margin triggers decrease in the proportion of debt within the capital structures of manufacturing companies registered in BEI or Indonesia Stock Exchange.Originality/valuePrevious research only addressed the one-way correlation between profitability and capital structure, whereas this research measured the two-way correlation and reciprocal relationship at the same time. This research measured the influences of profitability and capital structure on the corporate value, in order to find a consistent finding that has not been yet obtained in previous research. This research also attempted to find out whether the use of the same variables within different time and setting (in Indonesia) leads to different results. The inconsistent findings also motivate the researcher to re-explore the reciprocal influence of corporate profitability on corporate capital structure and its effect toward the corporate value.
Collapse
|
11
|
Schunter C, Pascual M, Raventos N, Garriga J, Garza JC, Bartumeus F, Macpherson E. A novel integrative approach elucidates fine-scale dispersal patchiness in marine populations. Sci Rep 2019; 9:10796. [PMID: 31346216 PMCID: PMC6658486 DOI: 10.1038/s41598-019-47200-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/12/2019] [Indexed: 11/24/2022] Open
Abstract
Dispersal is one of the main determining factors of population structure. In the marine habitat, well-connected populations with large numbers of reproducing individuals are common but even so population structure can exist on a small-scale. Variation in dispersal patterns between populations or over time is often associated to geographic distance or changing oceanographic barriers. Consequently, detecting structure and variation in dispersal on a fine-scale within marine populations still remains a challenge. Here we propose and use a novel approach of combining a clustering model, early-life history trait information from fish otoliths, spatial coordinates and genetic markers to detect very fine-scale dispersal patterns. We collected 1573 individuals (946 adults and 627 juveniles) of the black-faced blenny across a small-scale (2 km) coastline as well as at a larger-scale area (<50 kms). A total of 178 single nucleotide polymorphism markers were used to evaluate relatedness patterns within this well-connected population. In our clustering models we categorized SHORT-range dispersers to be potential local recruits based on their high relatedness within and low relatedness towards other spatial clusters. Local retention and/or dispersal of this potential local recruitment varied across the 2 km coastline with higher frequency of SHORT-range dispersers towards the southwest of the area for adults. An inverse pattern was found for juveniles, showing an increase of SHORT-range dispersers towards the northeast. As we rule out selective movement and mortality from one year to the next, this pattern reveals a complex but not full genetic mixing, and variability in coastal circulation is most likely the main driver of this fine-scale chaotic genetic patchiness within this otherwise homogeneous population. When focusing on the patterns within one recruitment season, we found large differences in temperatures (from approx. 17 °C to 25 °C) as well as pelagic larval duration (PLD) for juveniles from the beginning of the season and the end of the season. We were able to detect fine-scale differences in LONG-range juvenile dispersers, representing distant migrants, depending on whether they were born at the beginning of the season with a longer PLD, or at the end of the reproductive season. The ability to detect such fine-scale dispersal patchiness will aid in our understanding of the underlying mechanisms of population structuring and chaotic patchiness in a wide range of species even with high potential dispersal abilities.
Collapse
Affiliation(s)
- C Schunter
- Swire Institute of Marine Science, The University of Hong Kong, Pokfulam, Hong Kong SAR.
| | - M Pascual
- Dept. Genètica, Microbiologia i Estadística - IRBio, Universitat Barcelona, Diagonal 643, 08028, Barcelona, Spain
| | - N Raventos
- Laboratorio de Analisis de Estructurad Biologicas de Crecimiento (CEAB-CSIC), Car. Acc. Cala St. Francesc 14, Blanes, 17300, Girona, Spain
| | - J Garriga
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Car. Acc. Cala St. Francesc 14, Blanes, 17300, Girona, Spain
| | - J C Garza
- Southwest Fisheries Science Center, National Marine Fisheries Service and University of California, 110 McAllister Way, Santa Cruz, 95060, USA
| | - F Bartumeus
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Car. Acc. Cala St. Francesc 14, Blanes, 17300, Girona, Spain.,Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, 08010, Barcelona, Spain
| | - E Macpherson
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Car. Acc. Cala St. Francesc 14, Blanes, 17300, Girona, Spain
| |
Collapse
|
12
|
Bode M, Leis JM, Mason LB, Williamson DH, Harrison HB, Choukroun S, Jones GP. Successful validation of a larval dispersal model using genetic parentage data. PLoS Biol 2019; 17:e3000380. [PMID: 31299043 PMCID: PMC6655847 DOI: 10.1371/journal.pbio.3000380] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 07/24/2019] [Accepted: 07/02/2019] [Indexed: 11/19/2022] Open
Abstract
Larval dispersal is a critically important yet enigmatic process in marine ecology, evolution, and conservation. Determining the distance and direction that tiny larvae travel in the open ocean continues to be a challenge. Our current understanding of larval dispersal patterns at management-relevant scales is principally and separately informed by genetic parentage data and biological-oceanographic (biophysical) models. Parentage datasets provide clear evidence of individual larval dispersal events, but their findings are spatially and temporally limited. Biophysical models offer a more complete picture of dispersal patterns at regional scales but are of uncertain accuracy. Here, we develop statistical techniques that integrate these two important sources of information on larval dispersal. We then apply these methods to an extensive genetic parentage dataset to successfully validate a high-resolution biophysical model for the economically important reef fish species Plectropomus maculatus in the southern Great Barrier Reef. Our results demonstrate that biophysical models can provide accurate descriptions of larval dispersal at spatial and temporal scales that are relevant to management. They also show that genetic parentage datasets provide enough statistical power to exclude poor biophysical models. Biophysical models that included species-specific larval behaviour provided markedly better fits to the parentage data than assuming passive behaviour, but incorrect behavioural assumptions led to worse predictions than ignoring behaviour altogether. Our approach capitalises on the complementary strengths of genetic parentage datasets and high-resolution biophysical models to produce an accurate picture of larval dispersal patterns at regional scales. The results provide essential empirical support for the use of accurately parameterised biophysical larval dispersal models in marine spatial planning and management. Our understanding of marine fish larva dispersal is currently limited by sparse data and unvalidated models; combining DNA parentage matches with an oceanographic model of fish larvae on Australia’s Great Barrier Reef allows the authors to ground-truth a vital tool for sustainably managing coral reef fisheries.
Collapse
Affiliation(s)
- Michael Bode
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
- * E-mail:
| | - Jeffrey M. Leis
- Australian Museum Research Institute, Sydney, Australia
- The Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
| | - Luciano B. Mason
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
| | - David H. Williamson
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Hugo B. Harrison
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Severine Choukroun
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Geoffrey P. Jones
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
13
|
Van der Stocken T, Wee AKS, De Ryck DJR, Vanschoenwinkel B, Friess DA, Dahdouh-Guebas F, Simard M, Koedam N, Webb EL. A general framework for propagule dispersal in mangroves. Biol Rev Camb Philos Soc 2019; 94:1547-1575. [PMID: 31058451 DOI: 10.1111/brv.12514] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 03/19/2019] [Accepted: 03/27/2019] [Indexed: 12/29/2022]
Abstract
Dispersal allows species to shift their distributions in response to changing climate conditions. As a result, dispersal is considered a key process contributing to a species' long-term persistence. For many passive dispersers, fluid dynamics of wind and water fuel these movements and different species have developed remarkable adaptations for utilizing this energy to reach and colonize suitable habitats. The seafaring propagules (fruits and seeds) of mangroves represent an excellent example of such passive dispersal. Mangroves are halophytic woody plants that grow in the intertidal zones along tropical and subtropical shorelines and produce hydrochorous propagules with high dispersal potential. This results in exceptionally large coastal ranges across vast expanses of ocean and allows species to shift geographically and track the conditions to which they are adapted. This is particularly relevant given the challenges presented by rapid sea-level rise, higher frequency and intensity of storms, and changes in regional precipitation and temperature regimes. However, despite its importance, the underlying drivers of mangrove dispersal have typically been studied in isolation, and a conceptual synthesis of mangrove oceanic dispersal across spatial scales is lacking. Here, we review current knowledge on mangrove propagule dispersal across the various stages of the dispersal process. Using a general framework, we outline the mechanisms and ecological processes that are known to modulate the spatial patterns of mangrove dispersal. We show that important dispersal factors remain understudied and that adequate empirical data on the determinants of dispersal are missing for most mangrove species. This review particularly aims to provide a baseline for developing future research agendas and field campaigns, filling current knowledge gaps and increasing our understanding of the processes that shape global mangrove distributions.
Collapse
Affiliation(s)
- Tom Van der Stocken
- Earth Science Section, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, U.S.A.,Radar Science and Engineering Section, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, U.S.A.,Ecology and Biodiversity, Vrije Universiteit Brussel, Brussels, 1050, Belgium
| | - Alison K S Wee
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore.,Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, 530004, China
| | - Dennis J R De Ryck
- Ecology and Biodiversity, Vrije Universiteit Brussel, Brussels, 1050, Belgium
| | | | - Daniel A Friess
- Department of Geography, National University of Singapore, Singapore, 117570, Singapore
| | - Farid Dahdouh-Guebas
- Ecology and Biodiversity, Vrije Universiteit Brussel, Brussels, 1050, Belgium.,Systems Ecology and Resource Management, Université Libre de Bruxelles, Brussels, 1050, Belgium
| | - Marc Simard
- Radar Science and Engineering Section, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, U.S.A
| | - Nico Koedam
- Ecology and Biodiversity, Vrije Universiteit Brussel, Brussels, 1050, Belgium
| | - Edward L Webb
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| |
Collapse
|
14
|
Xuereb A, D’Aloia CC, Daigle RM, Andrello M, Dalongeville A, Manel S, Mouillot D, Guichard F, Côté IM, Curtis JMR, Bernatchez L, Fortin MJ. Marine Conservation and Marine Protected Areas. POPULATION GENOMICS 2019. [DOI: 10.1007/13836_2018_63] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
15
|
Entropy, or Information, Unifies Ecology and Evolution and Beyond. ENTROPY 2018; 20:e20100727. [PMID: 33265816 PMCID: PMC7512290 DOI: 10.3390/e20100727] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/18/2018] [Accepted: 09/11/2018] [Indexed: 02/07/2023]
Abstract
This article discusses how entropy/information methods are well-suited to analyzing and forecasting the four processes of innovation, transmission, movement, and adaptation, which are the common basis to ecology and evolution. Macroecologists study assemblages of differing species, whereas micro-evolutionary biologists study variants of heritable information within species, such as DNA and epigenetic modifications. These two different modes of variation are both driven by the same four basic processes, but approaches to these processes sometimes differ considerably. For example, macroecology often documents patterns without modeling underlying processes, with some notable exceptions. On the other hand, evolutionary biologists have a long history of deriving and testing mathematical genetic forecasts, previously focusing on entropies such as heterozygosity. Macroecology calls this Gini-Simpson, and has borrowed the genetic predictions, but sometimes this measure has shortcomings. Therefore it is important to note that predictive equations have now been derived for molecular diversity based on Shannon entropy and mutual information. As a result, we can now forecast all major types of entropy/information, creating a general predictive approach for the four basic processes in ecology and evolution. Additionally, the use of these methods will allow seamless integration with other studies such as the physical environment, and may even extend to assisting with evolutionary algorithms.
Collapse
|
16
|
Gracia-Lázaro C, Hernández L, Borge-Holthoefer J, Moreno Y. The joint influence of competition and mutualism on the biodiversity of mutualistic ecosystems. Sci Rep 2018; 8:9253. [PMID: 29915176 PMCID: PMC6006315 DOI: 10.1038/s41598-018-27498-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/01/2018] [Indexed: 11/17/2022] Open
Abstract
In the past years, there have been many advances –but also many debates– around mutualistic communities, whose structural features appear to facilitate mutually beneficial interactions and increase biodiversity, under some given population dynamics. However, most approaches neglect the structure of inter-species competition by adopting a mean-field perspective that does not deal with competitive interactions properly. Here, we build up a multilayer network that naturally accounts for mutualism and competition and show, through a dynamical population model and numerical simulations, that there is an intricate relation between competition and mutualism. Specifically, the multilayer structure is coupled to a dynamical model in which the intra-guild competitive terms are weighted by the abundance of shared mutualistic relations. We find that mutualism does not have the same consequences on the evolution of specialist and generalist species, and that there is a non-trivial profile of biodiversity in the parameter space of competition and mutualism. Our findings emphasize how the simultaneous consideration of positive and negative interactions derived from the real networks is key to understand the delicate trade-off between topology and biodiversity in ecosystems and call for the need to incorporate more realistic interaction patterns when modeling the structural and dynamical stability of mutualistic systems.
Collapse
Affiliation(s)
- Carlos Gracia-Lázaro
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain.,Department of Theoretical Physics, Faculty of Sciences, University of Zaragoza, Zaragoza, Spain
| | - Laura Hernández
- Laboratoire de Physique Théorique et Modélisation, UMR8089-CNRS, Université de Cergy-Pontoise, 2 Avenue Adolphe, Chauvin, F-95302, Cergy-Pontoise, Cedex, France
| | - Javier Borge-Holthoefer
- Internet Interdisciplinary Institute (IN3), Universitat Oberta de Catalunya, Catalunya, Spain
| | - Yamir Moreno
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain. .,Department of Theoretical Physics, Faculty of Sciences, University of Zaragoza, Zaragoza, Spain. .,ISI Foundation, Turin, Italy.
| |
Collapse
|
17
|
Fovargue R, Bode M, Armsworth PR. Size and spacing rules can balance conservation and fishery management objectives for marine protected areas. J Appl Ecol 2017. [DOI: 10.1111/1365-2664.13043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rachel Fovargue
- Department of Ecology and Evolutionary Biology The University of Tennessee Knoxville TN USA
| | - Michael Bode
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville Qld Australia
| | - Paul R. Armsworth
- Department of Ecology and Evolutionary Biology The University of Tennessee Knoxville TN USA
| |
Collapse
|
18
|
Bode M, Williamson DH, Harrison HB, Outram N, Jones GP. Estimating dispersal kernels using genetic parentage data. Methods Ecol Evol 2017. [DOI: 10.1111/2041-210x.12922] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michael Bode
- Australian Research Council Centre of Excellence for Coral Reef Studies James Cook University Townsville Qld Australia
| | - David H. Williamson
- Australian Research Council Centre of Excellence for Coral Reef Studies James Cook University Townsville Qld Australia
| | - Hugo B. Harrison
- Australian Research Council Centre of Excellence for Coral Reef Studies James Cook University Townsville Qld Australia
| | - Nick Outram
- Australian Research Council Centre of Excellence for Coral Reef Studies James Cook University Townsville Qld Australia
| | - Geoffrey P. Jones
- Australian Research Council Centre of Excellence for Coral Reef Studies James Cook University Townsville Qld Australia
- College of Marine and Environmental Sciences James Cook University Townsville Qld Australia
| |
Collapse
|
19
|
Bayesian semi-individual based model with approximate Bayesian computation for parameters calibration: Modelling Crown-of-Thorns populations on the Great Barrier Reef. Ecol Modell 2017. [DOI: 10.1016/j.ecolmodel.2017.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Thirty Years of Research on Crown-of-Thorns Starfish (1986–2016): Scientific Advances and Emerging Opportunities. DIVERSITY-BASEL 2017. [DOI: 10.3390/d9040041] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
21
|
Reproductive benefits of no-take marine reserves vary with region for an exploited coral reef fish. Sci Rep 2017; 7:9693. [PMID: 28852089 PMCID: PMC5575329 DOI: 10.1038/s41598-017-10180-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/04/2017] [Indexed: 12/02/2022] Open
Abstract
No-take marine reserves (NTMRs) are expected to benefit fisheries via the net export of eggs and larvae (recruitment subsidy) from reserves to adjacent fished areas. Quantifying egg production is the first step in evaluating recruitment subsidy potential. We calculated annual egg production per unit area (EPUA) from 2004 to 2013 for the commercially important common coral trout, Plectropomus leopardus, on fished and NTMR reefs throughout the Great Barrier Reef (GBR), Australia. Geographic region, NTMR status, fish size, and population density were all found to affect EPUA. The interactions among these factors were such that, EPUA on NTMR reefs compared to reefs open to fishing was 21% greater in the southern GBR, 152% greater in the central GBR, but 56% less in the northern GBR. The results show that while NTMRs can potentially provide a substantial recruitment subsidy (central GBR reefs), they may provide a far smaller subsidy (southern GBR), or serve as recruitment sinks (northern GBR) for the same species in nearby locations where demographic rates differ. This study highlights the importance of considering spatial variation in EPUA when assessing locations of NTMRs if recruitment subsidy is expected from them.
Collapse
|
22
|
Mari L, Bonaventura L, Storto A, Melià P, Gatto M, Masina S, Casagrandi R. Understanding large-scale, long-term larval connectivity patterns: The case of the Northern Line Islands in the Central Pacific Ocean. PLoS One 2017; 12:e0182681. [PMID: 28809937 PMCID: PMC5557558 DOI: 10.1371/journal.pone.0182681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 07/21/2017] [Indexed: 11/19/2022] Open
Abstract
Protecting key hotspots of marine biodiversity is essential to maintain ecosystem services at large spatial scales. Protected areas serve not only as sources of propagules colonizing other habitats, but also as receptors, thus acting as protected nurseries. To quantify the geographical extent and the temporal persistence of ecological benefits resulting from protection, we investigate larval connectivity within a remote archipelago, characterized by a strong spatial gradient of human impact from pristine to heavily exploited: the Northern Line Islands (NLIs), including part of the Pacific Remote Islands Marine National Monument (PRI-MNM). Larvae are described as passive Lagrangian particles transported by oceanic currents obtained from a oceanographic reanalysis. We compare different simulation schemes and compute connectivity measures (larval exchange probabilities and minimum/average larval dispersal distances from target islands). To explore the role of PRI-MNM in protecting marine organisms with pelagic larval stages, we drive millions of individual-based simulations for various Pelagic Larval Durations (PLDs), in all release seasons, and over a two-decades time horizon (1991-2010). We find that connectivity in the NLIs is spatially asymmetric and displays significant intra- and inter-annual variations. The islands belonging to PRI-MNM act more as sinks than sources of larvae, and connectivity is higher during the winter-spring period. In multi-annual analyses, yearly averaged southward connectivity significantly and negatively correlates with climatological anomalies (El Niño). This points out a possible system fragility and susceptibility to global warming. Quantitative assessments of large-scale, long-term marine connectivity patterns help understand region-specific, ecologically relevant interactions between islands. This is fundamental for devising scientifically-based protection strategies, which must be space- and time-varying to cope with the challenges posed by the concurrent pressures of human exploitation and global climate change.
Collapse
Affiliation(s)
- Lorenzo Mari
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milano, Italy
| | | | - Andrea Storto
- Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Bologna, Italy
| | - Paco Melià
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milano, Italy
| | - Marino Gatto
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milano, Italy
- Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Bologna, Italy
| | - Simona Masina
- Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Bologna, Italy
- Istituto Nazionale di Geofisica e Vulcanologia (INGV), Bologna, Italy
| | - Renato Casagrandi
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milano, Italy
- Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Bologna, Italy
| |
Collapse
|
23
|
Krueck NC, Ahmadia GN, Green A, Jones GP, Possingham HP, Riginos C, Treml EA, Mumby PJ. Incorporating larval dispersal into MPA design for both conservation and fisheries. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2017; 27:925-941. [PMID: 28039952 DOI: 10.1002/eap.1495] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 12/04/2016] [Accepted: 12/22/2016] [Indexed: 06/06/2023]
Abstract
Larval dispersal by ocean currents is a critical component of systematic marine protected area (MPA) design. However, there is a lack of quantitative methods to incorporate larval dispersal in support of increasingly diverse management objectives, including local population persistence under multiple types of threats (primarily focused on larval retention within and dispersal between protected locations) and benefits to unprotected populations and fisheries (primarily focused on larval export from protected locations to fishing grounds). Here, we present a flexible MPA design approach that can reconcile multiple such potentially conflicting management objectives by balancing various associated treatments of larval dispersal information. We demonstrate our approach based on alternative dispersal patterns, combinations of threats to populations, management objectives, and two different optimization strategies (site vs. network-based). Our outcomes highlight a consistently high effectiveness in selecting priority locations that are self-replenishing, inter-connected, and/or important larval sources. We find that the opportunity to balance these three dispersal attributes flexibly can help not only to prevent meta-population collapse, but also to ensure effective fisheries recovery, with average increases in the number of recruits at fishing grounds at least two times higher than achieved by standard habitat-based or ad-hoc MPA designs. Future applications of our MPA design approach should therefore be encouraged, specifically where management tools other than MPAs are not feasible.
Collapse
Affiliation(s)
- Nils C Krueck
- Marine Spatial Ecology Lab and Australian Research Council Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia Campus, Brisbane, Queensland, 4072, Australia
- School of Biological Sciences, The University of Queensland, St Lucia Campus, Brisbane, Queensland, 4072, Australia
| | - Gabby N Ahmadia
- Oceans Conservation, World Wildlife Fund (WWF), Washington, D.C., 20037, USA
| | - Alison Green
- The Nature Conservancy, 245 Riverside Drive, West End, Queensland, 4101, Australia
| | - Geoffrey P Jones
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| | - Hugh P Possingham
- School of Biological Sciences, The University of Queensland, St Lucia Campus, Brisbane, Queensland, 4072, Australia
- Australian Research Council Centre of Excellence for Environmental Decisions, The University of Queensland, St Lucia Campus, Brisbane, Queensland, 4072, Australia
| | - Cynthia Riginos
- School of Biological Sciences, The University of Queensland, St Lucia Campus, Brisbane, Queensland, 4072, Australia
| | - Eric A Treml
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Peter J Mumby
- Marine Spatial Ecology Lab and Australian Research Council Centre of Excellence for Coral Reef Studies, The University of Queensland, St Lucia Campus, Brisbane, Queensland, 4072, Australia
- School of Biological Sciences, The University of Queensland, St Lucia Campus, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
24
|
Bode M, Sanchirico JN, Armsworth PR. Returns from matching management resolution to ecological variation in a coral reef fishery. Proc Biol Sci 2016; 283:20152828. [PMID: 26984622 DOI: 10.1098/rspb.2015.2828] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
When managing heterogeneous socioecological systems, decision-makers must choose a spatial resolution at which to define management policies. Complex spatial policies allow managers to better reflect underlying ecological and economic heterogeneity, but incur higher compliance and enforcement costs. To choose the most appropriate management resolution, we need to characterize the relationship between management resolution and performance. We parameterize a model of the commercial coral trout fishery in the Great Barrier Reef, Australia, which is currently managed by a single, spatially homogeneous management policy. We use this model to estimate how the spatial resolution of management policies affect the amount of revenue generated, and assess whether a more spatially complex policy can be justified. Our results suggest that economic variation is likely to be a more important source of heterogeneity than ecological differences, and that the majority of this variation can be captured by a relatively simple spatial management policy. Moreover, while an increase in policy resolution can improve performance, the location of policy changes also needs to align with ecological and socioeconomic variation. Interestingly, the highly complex process of larval dispersal, which plays a critical ecological role in coral reef ecosystem dynamics, may not demand equally complex management policies.
Collapse
Affiliation(s)
- Michael Bode
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia ARC Centre of Excellence for Environmental Decisions, The University of Melbourne, Melbourne, Victoria, Australia
| | - James N Sanchirico
- Department of Environmental Science and Policy, University of California, Davis, CA, USA
| | - Paul R Armsworth
- Department of Ecology and Evolutionary Biology and NIMBioS, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
25
|
Lukoschek V, Riginos C, van Oppen MJH. Congruent patterns of connectivity can inform management for broadcast spawning corals on the Great Barrier Reef. Mol Ecol 2016; 25:3065-80. [DOI: 10.1111/mec.13649] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/18/2016] [Accepted: 04/12/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Vimoksalehi Lukoschek
- ARC Centre of Excellence for Coral Reef Studies; James Cook University; Townsville Qld 4811 Australia
| | - Cynthia Riginos
- School of Biological Sciences; The University of Queensland; St. Lucia Qld 4072 Australia
| | - Madeleine J. H. van Oppen
- ARC Centre of Excellence for Coral Reef Studies; James Cook University; Townsville Qld 4811 Australia
- Australian Institute of Marine Science; PMB 3; Townsville Mail Centre; Townsville Qld 4810 Australia
- School of BioSciences; The University of Melbourne; Parkville Vic. 3010 Australia
| |
Collapse
|
26
|
Bode M, Williamson DH, Weeks R, Jones GP, Almany GR, Harrison HB, Hopf JK, Pressey RL. Planning Marine Reserve Networks for Both Feature Representation and Demographic Persistence Using Connectivity Patterns. PLoS One 2016; 11:e0154272. [PMID: 27168206 PMCID: PMC4864080 DOI: 10.1371/journal.pone.0154272] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 04/11/2016] [Indexed: 11/19/2022] Open
Abstract
Marine reserve networks must ensure the representation of important conservation features, and also guarantee the persistence of key populations. For many species, designing reserve networks is complicated by the absence or limited availability of spatial and life-history data. This is particularly true for data on larval dispersal, which has only recently become available. However, systematic conservation planning methods currently incorporate demographic processes through unsatisfactory surrogates. There are therefore two key challenges to designing marine reserve networks that achieve feature representation and demographic persistence constraints. First, constructing a method that efficiently incorporates persistence as well as complementary feature representation. Second, incorporating persistence using a mechanistic description of population viability, rather than a proxy such as size or distance. Here we construct a novel systematic conservation planning method that addresses both challenges, and parameterise it to design a hypothetical marine reserve network for fringing coral reefs in the Keppel Islands, Great Barrier Reef, Australia. For this application, we describe how demographic persistence goals can be constructed for an important reef fish species in the region, the bar-cheeked trout (Plectropomus maculatus). We compare reserve networks that are optimally designed for either feature representation or demographic persistence, with a reserve network that achieves both goals simultaneously. As well as being practically applicable, our analyses also provide general insights into marine reserve planning for both representation and demographic persistence. First, persistence constraints for dispersive organisms are likely to be much harder to achieve than representation targets, due to their greater complexity. Second, persistence and representation constraints pull the reserve network design process in divergent directions, making it difficult to efficiently achieve both constraints. Although our method can be readily applied to the data-rich Keppel Islands case study, we finally consider the factors that limit the method's utility in information-poor contexts common in marine conservation.
Collapse
Affiliation(s)
- Michael Bode
- ARC Centre of Excellence for Environmental Decisions, School of Botany, The University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, 4811, QLD, Australia
- * E-mail:
| | - David H. Williamson
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, 4811, QLD, Australia
| | - Rebecca Weeks
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, 4811, QLD, Australia
| | - Geoff P. Jones
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, 4811, QLD, Australia
- College of Marine and Environmental Sciences, James Cook University, Townsville, 4811, QLD, Australia
| | - Glenn R. Almany
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, 4811, QLD, Australia
- Centre National de la Recherche Scientifique-EPHE-UPVD, Universite de Perpignan, 66860, Perpignan Cedex, France
| | - Hugo B. Harrison
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, 4811, QLD, Australia
| | - Jess K. Hopf
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, 4811, QLD, Australia
- College of Marine and Environmental Sciences, James Cook University, Townsville, 4811, QLD, Australia
| | - Robert L. Pressey
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, 4811, QLD, Australia
| |
Collapse
|
27
|
Wooldridge SA, Brodie JE. Environmental triggers for primary outbreaks of crown-of-thorns starfish on the Great Barrier Reef, Australia. MARINE POLLUTION BULLETIN 2015; 101:805-815. [PMID: 26460182 DOI: 10.1016/j.marpolbul.2015.08.049] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/28/2015] [Accepted: 08/31/2015] [Indexed: 06/05/2023]
Abstract
In this paper, we postulate a unique environmental triggering sequence for primary outbreaks of crown-of-thorns starfish (COTS, Acanthaster planci) on the central Great Barrier Reef (GBR, Australia). Notably, we extend the previous terrestrial runoff hypothesis, viz. nutrient-enriched terrestrial runoff → elevated phytoplankton 'bloom' concentrations → enhanced COTS larval survival, to include the additional importance of strong larvae retention around reefs or within reef groups (clusters) that share enhanced phytoplankton concentrations. For the central GBR, this scenario is shown to occur when El Niño-Southern Oscillation (ENSO) linked hydrodynamic conditions cause the 'regional' larval connectivity network to fragment into smaller 'local' reef clusters due to low ocean current velocities. As inter-annual variations in hydrodynamic circulation patterns are not amenable to direct management intervention, the ability to reduce the future frequency of COTS outbreaks on the central GBR is shown to be contingent on reducing terrestrial bioavailable nutrient loads ~20-40%.
Collapse
Affiliation(s)
- Scott A Wooldridge
- Centre for Tropical Water and Aquatic Ecosystem Research, JCU, Townsville, QLD 4811, Australia; Australian Institute of Marine Science, PMB 3, Townsville MC, QLD 4810, Australia.
| | - Jon E Brodie
- Centre for Tropical Water and Aquatic Ecosystem Research, JCU, Townsville, QLD 4811, Australia
| |
Collapse
|
28
|
Shima JS, Noonburg EG, Swearer SE. Consequences of variable larval dispersal pathways and resulting phenotypic mixtures to the dynamics of marine metapopulations. Biol Lett 2015; 11:20140778. [PMID: 25673001 DOI: 10.1098/rsbl.2014.0778] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Larval dispersal can connect distant subpopulations, with important implications for marine population dynamics and persistence, biodiversity conservation and fisheries management. However, different dispersal pathways may affect the final phenotypes, and thus the performance and fitness of individuals that settle into subpopulations. Using otolith microchemical signatures that are indicative of 'dispersive' larvae (oceanic signatures) and 'non-dispersive' larvae (coastal signatures), we explore the population-level consequences of dispersal-induced variability in phenotypic mixtures for the common triplefin (a small reef fish). We evaluate lipid concentration and otolith microstructure and find that 'non-dispersive' larvae (i) have greater and less variable lipid reserves at settlement (and this variability attenuates at a slower rate), (ii) grow faster after settlement, and (iii) experience similar carry-over benefits of lipid reserves on post-settlement growth relative to 'dispersive' larvae. We then explore the consequences of phenotypic mixtures in a metapopulation model with two identical subpopulations replenished by variable contributions of 'dispersive' and 'non-dispersive' larvae and find that the resulting phenotypic mixtures can have profound effects on the size of the metapopulation. We show that, depending upon the patterns of connectivity, phenotypic mixtures can lead to larger metapopulations, suggesting dispersal-induced demographic heterogeneity may facilitate metapopulation persistence.
Collapse
Affiliation(s)
- Jeffrey S Shima
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Erik G Noonburg
- Department of Biological Sciences, Florida Atlantic University, 3200 College Avenue, Davie, FL 33314, USA
| | - Stephen E Swearer
- Department of Zoology, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
29
|
Thomas CJ, Bridge TC, Figueiredo J, Deleersnijder E, Hanert E. Connectivity between submerged and near‐sea‐surface coral reefs: can submerged reef populations act as refuges? DIVERS DISTRIB 2015. [DOI: 10.1111/ddi.12360] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Christopher J. Thomas
- Institute of Mechanics Materials and Civil Engineering (iMMC) Université catholique de Louvain 1348 Louvain‐la‐Neuve Belgium
| | - Tom C.L. Bridge
- Australian Research Council Centre of Excellence for Coral Reef Studies James Cook University Townsville Qld 4811 Australia
- Australian Institute of Marine Science PMB #3 Townsville MC Qld 4810 Australia
| | - Joana Figueiredo
- Oceanographic Center Nova Southeastern University 8000 N Ocean Drive Dania Beach FL 33004 USA
| | - Eric Deleersnijder
- Institute of Mechanics Materials and Civil Engineering (iMMC) Université catholique de Louvain 1348 Louvain‐la‐Neuve Belgium
- Earth and Life Institute (ELI) Université catholique de Louvain 1348 Louvain‐la‐Neuve Belgium
- Delft Institute of Applied Mathematics (DIAM) Delft University of Technology Mekelweg 4 2628CD Delft The Netherlands
| | - Emmanuel Hanert
- Earth and Life Institute (ELI) Université catholique de Louvain 1348 Louvain‐la‐Neuve Belgium
| |
Collapse
|
30
|
Fraker ME, Anderson EJ, Brodnik RM, Carreon-Martinez L, DeVanna KM, Fryer BJ, Heath DD, Reichert JM, Ludsin SA. Particle backtracking improves breeding subpopulation discrimination and natal-source identification in mixed populations. PLoS One 2015; 10:e0120752. [PMID: 25799555 PMCID: PMC4370746 DOI: 10.1371/journal.pone.0120752] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 01/26/2015] [Indexed: 11/19/2022] Open
Abstract
We provide a novel method to improve the use of natural tagging approaches for subpopulation discrimination and source-origin identification in aquatic and terrestrial animals with a passive dispersive phase. Our method integrates observed site-referenced biological information on individuals in mixed populations with a particle-tracking model to retrace likely dispersal histories prior to capture (i.e., particle backtracking). To illustrate and test our approach, we focus on western Lake Erie's yellow perch (Perca flavescens) population during 2006-2007, using microsatellite DNA and otolith microchemistry from larvae and juveniles as natural tags. Particle backtracking showed that not all larvae collected near a presumed hatching location may have originated there, owing to passive drift during the larval stage that was influenced by strong river- and wind-driven water circulation. Re-assigning larvae to their most probable hatching site (based on probabilistic dispersal trajectories from the particle backtracking model) improved the use of genetics and otolith microchemistry to discriminate among local breeding subpopulations. This enhancement, in turn, altered (and likely improved) the estimated contributions of each breeding subpopulation to the mixed population of juvenile recruits. Our findings indicate that particle backtracking can complement existing tools used to identify the origin of individuals in mixed populations, especially in flow-dominated systems.
Collapse
Affiliation(s)
- Michael E. Fraker
- Aquatic Ecology Laboratory, Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| | | | - Reed M. Brodnik
- Aquatic Ecology Laboratory, Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Lucia Carreon-Martinez
- Department of Biology, University of Texas at Brownsville, Brownsville, Texas, United States of America
| | - Kristen M. DeVanna
- Aquatic Ecology Laboratory, Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Brian J. Fryer
- GLIER, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | | | | | - Stuart A. Ludsin
- Aquatic Ecology Laboratory, Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
31
|
Strona G. A spatially explicit model to investigate how dispersal/colonization tradeoffs between short and long distance movement strategies affect species ranges. Ecol Modell 2015. [DOI: 10.1016/j.ecolmodel.2014.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
Ekanayake AJ, Ekanayake DB. A seasonal SIR metapopulation model with an Allee effect with application to controlling plague in prairie dog colonies. JOURNAL OF BIOLOGICAL DYNAMICS 2014; 9 Suppl 1:262-290. [PMID: 25400201 DOI: 10.1080/17513758.2014.978400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
For wildlife species living among patchy habitats, disease and the Allee effect (reduced per capita birth rates at low population densities) may together drive a patch's population to extinction, particularly if births are seasonal. Yet local extinction may not be indicative of global extinction, and a patch may become recolonized by migrating individuals. We introduce deterministic and stochastic susceptible, infectious, and immune epidemic models with vector species to study disease in a metapopulation with an Allee effect and seasonal birth and dispersal. We obtain conditions for the existence of a strong Allee effect and existence and stability of a disease-free positive periodic solution. These general models have application to many wildlife diseases. As a case study, we apply them to evaluate dynamics of the sylvatic plague in prairie dog colonies interconnected through dispersal. We further evaluate the effects of control of the vector population and control by immunization on plague eradication.
Collapse
Affiliation(s)
- A J Ekanayake
- a Department of Mathematics , Western Illinois University , 1 University Circle, Macomb , IL 61455 , USA
| | | |
Collapse
|
33
|
Valdivia A, Bruno JF, Cox CE, Hackerott S, Green SJ. Re-examining the relationship between invasive lionfish and native grouper in the Caribbean. PeerJ 2014; 2:e348. [PMID: 24765582 PMCID: PMC3994649 DOI: 10.7717/peerj.348] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 03/25/2014] [Indexed: 11/20/2022] Open
Abstract
Biotic resistance is the idea that native species negatively affect the invasion success of introduced species, but whether this can occur at large spatial scales is poorly understood. Here we re-evaluated the hypothesis that native large-bodied grouper and other predators are controlling the abundance of exotic lionfish (Pterois volitans/miles) on Caribbean coral reefs. We assessed the relationship between the biomass of lionfish and native predators at 71 reefs in three biogeographic regions while taking into consideration several cofactors that may affect fish abundance, including among others, proxies for fishing pressure and habitat structural complexity. Our results indicate that the abundance of lionfish, large-bodied grouper and other predators were not negatively related. Lionfish abundance was instead controlled by several physical site characteristics, and possibly by culling. Taken together, our results suggest that managers cannot rely on current native grouper populations to control the lionfish invasion.
Collapse
Affiliation(s)
- Abel Valdivia
- Department of Biology, The University of North Carolina at Chapel Hill , Chapel Hill, NC , USA
| | - John F Bruno
- Department of Biology, The University of North Carolina at Chapel Hill , Chapel Hill, NC , USA
| | - Courtney E Cox
- Department of Biology, The University of North Carolina at Chapel Hill , Chapel Hill, NC , USA
| | - Serena Hackerott
- Department of Biology, The University of North Carolina at Chapel Hill , Chapel Hill, NC , USA
| | - Stephanie J Green
- Department of Zoology, Oregon State University , Corvallis, OR , USA
| |
Collapse
|
34
|
Carter AB, Russ GR, Tobin AJ, Williams AJ, Davies CR, Mapstone BD. Spatial variation in the effects of size and age on reproductive dynamics of common coral trout Plectropomus leopardus. JOURNAL OF FISH BIOLOGY 2014; 84:1074-1098. [PMID: 24641275 DOI: 10.1111/jfb.12346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 01/15/2014] [Indexed: 06/03/2023]
Abstract
The effects of size and age on reproductive dynamics of common coral trout Plectropomus leopardus populations were compared between coral reefs open or closed (no-take marine reserves) to fishing and among four geographic regions of the Great Barrier Reef (GBR), Australia. The specific reproductive metrics investigated were the sex ratio, the proportion of vitellogenic females and the spawning fraction of local populations. Sex ratios became increasingly male biased with length and age, as expected for a protogyne, but were more male biased in southern regions of the GBR (Mackay and Storm Cay) than in northern regions (Lizard Island and Townsville) across all lengths and ages. The proportion of vitellogenic females also increased with length and age. Female P. leopardus were capable of daily spawning during the spawning season, but on average spawned every 4·3 days. Mature females spawned most frequently on Townsville reserve reefs (every 2·3 days) and Lizard Island fished reefs (every 3·2 days). Females on Mackay reefs open to fishing showed no evidence of spawning over 4 years of sampling, while females on reserve reefs spawned only once every 2-3 months. No effect of length on spawning frequency was detected. Spawning frequency increased with age on Lizard Island fished reefs, declined with age on Storm Cay fished reefs, and declined with age on reserve reefs in all regions. It is hypothesized that the variation in P. leopardus sex ratios and spawning frequency among GBR regions is primarily driven by water temperature, while no-take management zones influence spawning frequency depending on the region in which the reserve is located. Male bias and lack of spawning activity on southern GBR, where densities of adult P. leopardus are highest, suggest that recruits may be supplied from central or northern GBR. Significant regional variation in reproductive traits suggests that a regional approach to management of P. leopardus is appropriate and highlights the need for considering spatial variation in reproduction where reserves are used as fishery or conservation management tools.
Collapse
Affiliation(s)
- A B Carter
- Centre for Sustainable Tropical Fisheries and Aquaculture and School of Earth and Environmental Sciences, James Cook University, Townsville, Qld 4811, Australia; School of Marine and Tropical Biology, James Cook University and ARC Centre of Excellence for Coral Reef Studies, Townsville, Qld 4811, Australia
| | | | | | | | | | | |
Collapse
|
35
|
Burgess SC, Nickols KJ, Griesemer CD, Barnett LAK, Dedrick AG, Satterthwaite EV, Yamane L, Morgan SG, White JW, Botsford LW. Beyond connectivity: how empirical methods can quantify population persistence to improve marine protected-area design. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2014; 24:257-70. [PMID: 24689139 DOI: 10.1890/13-0710.1] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Demographic connectivity is a fundamental process influencing the dynamics and persistence of spatially structured populations. Consequently, quantifying connectivity is essential for properly designing networks of protected areas so that they achieve their core ecological objective of maintaining population persistence. Recently, many empirical studies in marine systems have provided essential, and historically challenging to obtain, data on patterns of larval dispersal and export from marine protected areas (MPAs). Here, we review the empirical studies that have directly quantified the origins and destinations of individual larvae and assess those studies' relevance to the theory of population persistence and MPA design objectives. We found that empirical studies often do not measure or present quantities that are relevant to assessing population persistence, even though most studies were motivated or contextualized by MPA applications. Persistence of spatial populations, like nonspatial populations, depends on replacement, whether individuals reproduce enough in their lifetime to replace themselves. In spatial populations, one needs to account for the effect of larval dispersal on future recruitment back to the local population through local retention and other connectivity pathways. The most commonly reported descriptor of larval dispersal was the fraction of recruitment from local origin (self-recruitment). Self-recruitment does not inform persistence-based MPA design because it is a fraction of those arriving, not a fraction of those leaving (local retention), so contains no information on replacement. Some studies presented connectivity matrices, which can inform assessments of persistence with additional knowledge of survival and fecundity after recruitment. Some studies collected data in addition to larval dispersal that could inform assessments of population persistence but which were not presented in that way. We describe how three pieces of empirical information are needed to fully describe population persistence in a network of MPAs: (1) lifetime fecundity, (2) the proportion of larvae that are locally retained (or the full connectivity matrix), and (3) survival rate after recruitment. We conclude by linking theory and data to provide detailed guidance to empiricists and practitioners on field sampling design and data presentation that better informs the MPA objective of population persistence.
Collapse
|
36
|
Interspecific, spatial and temporal variability of self-recruitment in anemonefishes. PLoS One 2014; 9:e90648. [PMID: 24587406 PMCID: PMC3938785 DOI: 10.1371/journal.pone.0090648] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 02/03/2014] [Indexed: 11/24/2022] Open
Abstract
Polymorphic microsatellite DNA parentage analysis was used to investigate the spatio-temporal variability of self-recruitment in populations of two anemonefishes: Amphiprion ocellaris and A. perideraion. Tissue samples of A. ocellaris (n = 364) and A. perideraion (n = 105) were collected from fringing reefs around two small islands (Barrang Lompo and Samalona) in Spermonde Archipelago, Indonesia. Specimens were genotyped based on seven microsatellite loci for A. ocellaris and five microsatellite loci for A. perideraion, and parentage assignment as well as site fidelity were calculated. Both species showed high levels of self-recruitment: 65.2% of juvenile A. ocellaris in Samalona were the progeny of parents from the same island, while on Barrang Lompo 47.4% of A. ocellaris and 46.9% of A. perideraion juveniles had parents from that island. Self-recruitment of A. ocellaris in Barrang Lompo varied from 44% to 52% between the two sampling periods. The site fidelity of A. ocellaris juveniles that returned to their reef site in Barang Lompo was up to 44%, while for A. perideraion up to 19%. In Samalona, the percentage of juveniles that returned to their natal reef site ranged from 8% to 11%. Exchange of progeny between the two study islands, located 7.5 km apart, was also detected via parentage assignments. The larger Samalona adult population of A. ocellaris was identified as the parents of 21% of Barrang Lompo juveniles, while the smaller adult population on Barrang Lompo were the parents of only 4% of Samalona juveniles. High self-recruitment and recruitment to nearby island reefs have important implications for management and conservation of anemonefishes. Small MPAs, preferably on every island/reef, should ensure that a part of the population is protected to enable replenishment by the highly localised recruitment behaviour observed in these species.
Collapse
|
37
|
Lindegren M, Andersen KH, Casini M, Neuenfeldt S. A metacommunity perspective on source–sink dynamics and management: the Baltic Sea as a case study. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2014; 24:1820-1832. [PMID: 29210240 DOI: 10.1890/13-0566.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The degree to which metapopulation processes influence fish stock dynamics is a largely unresolved issue in marine science and management, especially for highly mobile species such as Atlantic cod (Gadus morhua) and herring (Clupea harengus). The Baltic Sea comprises a heterogeneous oceanographic environment that structures the spatial and temporal distribution of the dominant species cod, herring, and sprat (Sprattus sprattus). Despite local differences, the stocks are traditionally managed as homogeneous units. Here, we present a metacommunity-perspective on source–sink dynamics of Baltic Sea fish stocks by using a spatially disaggregated statistical food web model. The model is fitted to area-specific time series of multiple abiotic and biotic variables using state-space methods. Our analysis reveals pronounced net fluxes between areas, indicative of source–sink dynamics, as well as area-specific differences in species interactions (i.e., density dependence, competition, and predator–prey) and the degree of fishing and climate impact on survival and recruitment. Furthermore, model simulations show that decreasing exploitation pressure in the source area for cod (without reallocating fishing effort) produces an increase in neighboring sink habitats, but a decline of prey species in response to increased predation. Our approach provides valuable insight concerning metacommunity-structuring of marine fish and may serve as an important tool for implementing sustainable management strategies under the ecosystem approach to marine and fisheries management.
Collapse
|
38
|
Simpson SD, Piercy JJ, King J, Codling EA. Modelling larval dispersal and behaviour of coral reef fishes. ECOLOGICAL COMPLEXITY 2013. [DOI: 10.1016/j.ecocom.2013.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Huijbers CM, Nagelkerken I, Debrot AO, Jongejans E. Geographic coupling of juvenile and adult habitat shapes spatial population dynamics of a coral reef fish. Ecology 2013; 94:1859-70. [PMID: 24015529 DOI: 10.1890/11-1759.1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Marine spatial population dynamics are often addressed with a focus on larval dispersal, without taking into account movement behavior of individuals in later life stages. Processes occurring during demersal life stages may also drive spatial population dynamics if habitat quality is perceived differently by animals belonging to different life stages. In this study, we used a dual approach to understand how stage-structured habitat use and dispersal ability of adults shape the population of a marine fish species. Our study area and focal species provided us with the unique opportunity to study a closed island population. A spatial simulation model was used to estimate dispersal distances along a coral reef that surrounds the island, while contributions of different nursery bays were determined based on otolith stable isotope signatures of adult reef fish. The model showed that adult dispersal away from reef areas near nursery bays is limited. The results further show that different bays contributed unequally to the adult population on the coral reef, with productivity of juveniles in bay nursery habitat determining the degree of mixing among local populations on the reef and with one highly productive area contributing most to the island's reef fish population. The contribution of the coral reef as a nursery habitat was minimal, even though it had a much larger surface area. These findings indicate that the geographic distribution of nursery areas and their productivity are important drivers for the spatial distribution patterns of adults on coral reefs. We suggest that limited dispersal of adults on reefs can lead to a source-sink structure in the adult stage, where reefs close to nurseries replenish more isolated reef areas. Understanding these spatial population dynamics of the demersal phase of marine animals is of major importance for the design and placement of marine reserves, as nursery areas contribute differently to maintain adult populations.
Collapse
Affiliation(s)
- Chantal M Huijbers
- Radboud University Nijmegen, Institute for Water and Wetland Research, Department of Animal Ecology and Ecophysiology, Mail Box 31, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
40
|
Williams PD, Hastings A. Stochastic Dispersal and Population Persistence in Marine Organisms. Am Nat 2013; 182:271-82. [DOI: 10.1086/671059] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
41
|
Andrello M, Mouillot D, Beuvier J, Albouy C, Thuiller W, Manel S. Low connectivity between Mediterranean marine protected areas: a biophysical modeling approach for the dusky grouper Epinephelus marginatus. PLoS One 2013; 8:e68564. [PMID: 23861917 PMCID: PMC3704643 DOI: 10.1371/journal.pone.0068564] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 05/30/2013] [Indexed: 11/24/2022] Open
Abstract
Marine protected areas (MPAs) are major tools to protect biodiversity and sustain fisheries. For species with a sedentary adult phase and a dispersive larval phase, the effectiveness of MPA networks for population persistence depends on connectivity through larval dispersal. However, connectivity patterns between MPAs remain largely unknown at large spatial scales. Here, we used a biophysical model to evaluate connectivity between MPAs in the Mediterranean Sea, a region of extremely rich biodiversity that is currently protected by a system of approximately a hundred MPAs. The model was parameterized according to the dispersal capacity of the dusky grouper Epinephelus marginatus, an archetypal conservation-dependent species, with high economic importance and emblematic in the Mediterranean. Using various connectivity metrics and graph theory, we showed that Mediterranean MPAs are far from constituting a true, well-connected network. On average, each MPA was directly connected to four others and MPAs were clustered into several groups. Two MPAs (one in the Balearic Islands and one in Sardinia) emerged as crucial nodes for ensuring multi-generational connectivity. The high heterogeneity of MPA distribution, with low density in the South-Eastern Mediterranean, coupled with a mean dispersal distance of 120 km, leaves about 20% of the continental shelf without any larval supply. This low connectivity, here demonstrated for a major Mediterranean species, poses new challenges for the creation of a future Mediterranean network of well-connected MPAs providing recruitment to the whole continental shelf. This issue is even more critical given that the expected reduction of pelagic larval duration following sea temperature rise will likely decrease connectivity even more.
Collapse
Affiliation(s)
- Marco Andrello
- UMR 151 - Laboratoire Population Environnement et Développement, Institut de Recherche pour le Développement - Université Aix-Marseille, Marseille, France.
| | | | | | | | | | | |
Collapse
|
42
|
Moritz C, Meynard CN, Devictor V, Guizien K, Labrune C, Guarini JM, Mouquet N. Disentangling the role of connectivity, environmental filtering, and spatial structure on metacommunity dynamics. OIKOS 2013. [DOI: 10.1111/j.1600-0706.2013.00377.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Shea K, Metaxas A, Young CR, Fisher CR. Processes and Interactions in Macrofaunal Assemblages at Hydrothermal Vents: A Modeling Perspective. MAGMA TO MICROBE: MODELING HYDROTHERMAL PROCESSES AT OCEAN SPREADING CENTERS 2013. [DOI: 10.1029/178gm13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
44
|
Porobic J, Canales-Aguirre CB, Ernst B, Galleguillos R, Hernandez CE. Biogeography and Historical Demography of the Juan Fernandez Rock Lobster, Jasus frontalis (Milne Edwards, 1837). J Hered 2013; 104:223-33. [DOI: 10.1093/jhered/ess141] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
45
|
van der Meer MH, Hobbs JPA, Jones GP, van Herwerden L. Genetic connectivity among and self-replenishment within island populations of a restricted range subtropical reef fish. PLoS One 2012; 7:e49660. [PMID: 23185398 PMCID: PMC3504158 DOI: 10.1371/journal.pone.0049660] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 10/15/2012] [Indexed: 11/17/2022] Open
Abstract
Marine protected areas (MPAs) are increasingly being advocated and implemented to protect biodiversity on coral reefs. Networks of appropriately sized and spaced reserves can capture a high proportion of species diversity, with gene flow among reserves presumed to promote long term resilience of populations to spatially variable threats. However, numerically rare small range species distributed among isolated locations appear to be at particular risk of extinction and the likely benefits of MPA networks are uncertain. Here we use mitochondrial and microsatellite data to infer evolutionary and contemporary gene flow among isolated locations as well as levels of self-replenishment within locations of the endemic anemonefish Amphiprion mccullochi, restricted to three MPA offshore reefs in subtropical East Australia. We infer high levels of gene flow and genetic diversity among locations over evolutionary time, but limited contemporary gene flow amongst locations and high levels of self-replenishment (68 to 84%) within locations over contemporary time. While long distance dispersal explained the species' integrity in the past, high levels of self-replenishment suggest locations are predominantly maintained by local replenishment. Should local extinction occur, contemporary rescue effects through large scale connectivity are unlikely. For isolated islands with large numbers of endemic species, and high local replenishment, there is a high premium on local species-specific management actions.
Collapse
Affiliation(s)
- Martin H van der Meer
- Molecular Ecology and Evolution Laboratory, Australian Tropical Sciences and Innovation Precinct, James Cook University, Townsville, Queensland, Australia.
| | | | | | | |
Collapse
|
46
|
Saenz-Agudelo P, Jones GP, Thorrold SR, Planes S. Patterns and persistence of larval retention and connectivity in a marine fish metapopulation. Mol Ecol 2012; 21:4695-705. [DOI: 10.1111/j.1365-294x.2012.05726.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 06/16/2012] [Accepted: 06/20/2012] [Indexed: 11/28/2022]
Affiliation(s)
| | - Geoffrey P. Jones
- School of Marine and Tropical Biology, and ARC Centre of Excellence for Coral Reef Studies; James Cook University; Townsville; 4811; Qld; Australia
| | - Simon R. Thorrold
- Biology Department; MS 50, Woods Hole Oceanographic Institution; Woods Hole; MA; 02543; USA
| | - Serge Planes
- USR 3278 Laboratoire d'excellence CORAIL; CNRS-EPHE, CRIOBE - Centre de Biologie et d'Ecologie Tropicale et Méditerrannéenne; Université de Perpignan; 66860; Perpignan Cedex; France
| |
Collapse
|
47
|
Treml EA, Roberts JJ, Chao Y, Halpin PN, Possingham HP, Riginos C. Reproductive output and duration of the pelagic larval stage determine seascape-wide connectivity of marine populations. Integr Comp Biol 2012; 52:525-37. [PMID: 22821585 DOI: 10.1093/icb/ics101] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Connectivity among marine populations is critical for persistence of metapopulations, coping with climate change, and determining the geographic distribution of species. The influence of pelagic larval duration (PLD) on connectivity has been studied extensively, but relatively little is known about the influence of other biological parameters, such as the survival and behavior of larvae, and the fecundity of adults, on population connectivity. Furthermore, the interaction between the seascape (habitat structure and currents) and these biological parameters is unclear. We explore these interactions using a biophysical model of larval dispersal across the Indo-Pacific. We describe an approach that quantifies geographic patterns of connectivity from demographically relevant to evolutionarily significant levels across a range of species. We predict that at least 95% of larval settlement occurs within 155 km of the source population and within 13 days irrespective of the species' life history, yet long-distant connections remain likely. Self-recruitment is primarily driven by the local oceanography, larval mortality, and the larval precompetency period, whereas broad-scale connectivity is strongly influenced by reproductive output (abundance and fecundity of adults) and the length of PLD. The networks we have created are geographically explicit models of marine connectivity that define dispersal corridors, barriers, and the emergent structure of marine populations. These models provide hypotheses for empirical testing.
Collapse
Affiliation(s)
- Eric A Treml
- School of Biological Sciences, The University of Queensland, St. Lucia, Qld, Australia.
| | | | | | | | | | | |
Collapse
|
48
|
Pinsky ML, Palumbi SR, Andréfouët S, Purkis SJ. Open and closed seascapes: where does habitat patchiness create populations with high fractions of self-recruitment? ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2012; 22:1257-67. [PMID: 22827133 DOI: 10.1890/11-1240.1] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Which populations are replenished primarily by immigrants (open) and which by local production (closed) remains an important question for management with implications for response to exploitation, protection, and disturbance. However, we lack methods for predicting population openness. Here, we develop a model for openness and show that considering habitat isolation explains the existence of surprisingly closed populations in high-dispersal species, including many marine organisms. Relatively closed populations are expected when patch spacing is more than twice the standard deviation of a species'. dispersal kernel. In addition, natural scales of habitat patchiness on coral reefs are sufficient to create both largely open and largely closed populations. Contrary to some previous interpretations, largely closed marine populations do not require mean dispersal distances that are unusually short, even for species with relatively long pelagic larval durations. We predict that habitat patchiness has strong control over population openness for many marine and terrestrial species with a highly dispersive life stage and relatively sedentary adults. This information can be used to make initial predictions about where populations will be more or less resilient to local exploitation and disturbance.
Collapse
Affiliation(s)
- Malin L Pinsky
- Department of Ecology and Evolutionary Biology, Princeton University, 106A Guyot Hall, Princeton, New Jersey 08544, USA.
| | | | | | | |
Collapse
|
49
|
Allain V, Fernandez E, Hoyle SD, Caillot S, Jurado-Molina J, Andréfouët S, Nicol SJ. Interaction between coastal and oceanic ecosystems of the Western and Central Pacific Ocean through predator-prey relationship studies. PLoS One 2012; 7:e36701. [PMID: 22615796 PMCID: PMC3352925 DOI: 10.1371/journal.pone.0036701] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 04/05/2012] [Indexed: 11/18/2022] Open
Abstract
The Western and Central Pacific Ocean sustains the highest tuna production in the world. This province is also characterized by many islands and a complex bathymetry that induces specific current circulation patterns with the potential to create a high degree of interaction between coastal and oceanic ecosystems. Based on a large dataset of oceanic predator stomach contents, our study used generalized linear models to explore the coastal-oceanic system interaction by analyzing predator-prey relationship. We show that reef organisms are a frequent prey of oceanic predators. Predator species such as albacore (Thunnus alalunga) and yellowfin tuna (Thunnus albacares) frequently consume reef prey with higher probability of consumption closer to land and in the western part of the Pacific Ocean. For surface-caught-predators consuming reef prey, this prey type represents about one third of the diet of predators smaller than 50 cm. The proportion decreases with increasing fish size. For predators caught at depth and consuming reef prey, the proportion varies with predator species but generally represents less than 10%. The annual consumption of reef prey by the yellowfin tuna population was estimated at 0.8 ± 0.40 CV million tonnes or 2.17 × 10(12)± 0.40 CV individuals. This represents 6.1% ± 0.17 CV in weight of their diet. Our analyses identify some of the patterns of coastal-oceanic ecosystem interactions at a large scale and provides an estimate of annual consumption of reef prey by oceanic predators.
Collapse
Affiliation(s)
- Valerie Allain
- Oceanic Fisheries Programme, Secretariat of the Pacific Community, Noumea, New Caledonia.
| | | | | | | | | | | | | |
Collapse
|
50
|
Takashina N, Mougi A, Iwasa Y. Paradox of marine protected areas: suppression of fishing may cause species loss. POPUL ECOL 2012. [DOI: 10.1007/s10144-012-0323-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|