1
|
Peters H, Ralph GM, Rogers-Bennett L. Abalones at risk: A global Red List assessment of Haliotis in a changing climate. PLoS One 2024; 19:e0309384. [PMID: 39715210 DOI: 10.1371/journal.pone.0309384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 08/09/2024] [Indexed: 12/25/2024] Open
Abstract
There is increasing awareness that marine invertebrates such as abalones are at risk from the combined stressors of fishing and climate change. Abalones are an important marine fishery resource and of cultural importance to Indigenous and non-Indigenous people. A highly priced marine delicacy, they are inherently vulnerable: individuals are slow-growing and long-lived and successful reproduction requires dense assemblages. However, their global conservation status is poorly understood. Using IUCN Red List methodology, we assessed the extinction risk to all 54 species of abalone (genus Haliotis). Of the 21 fished commercially for human consumption either now and/or in the past, 15 (71.43%) are classified as threatened, i.e., those identified as Critically Endangered, Endangered or Vulnerable. Of the 33 unexploited species, only five (15.15%) are so classified, making exploited species over four times more likely to face extinction, underscoring the impact of fishing on abalones already confronting a changing climate. The highest concentration of threatened species occurs along the North American Pacific coast. Here six of the seven species have been exploited, yet despite years of fishery closures with exemptions only in Alaska and Mexico, all are categorised as threatened. Climate driven stressors have led to mass mortalities, with competition from sea urchins and disease, aggravated by harmful algal blooms. In Australia the picture is mixed despite robust stock management, with some regions experiencing mass mortalities from marine heatwaves and viral spread. Poaching has reached its apogee in South Africa, where organised criminal gangs have reduced the legal fishery of Haliotis midae, 'perlemoen' almost to a footnote, accompanied by widespread recruitment failure. In response, the authorities have focused on abalone ranching and stock enhancement. In Japan, with a long history of abalone fishing, wild stocks are routinely supplemented with hatchery-bred juveniles. Collaboration between restoration aquaculture and fisheries, including sea urchin control and kelp restoration, offers hope for rebuilding stocks against a backdrop of escalating environmental stressors.
Collapse
Affiliation(s)
- Howard Peters
- Department of Environment and Geography, University of York, Heslington, York, United Kingdom
| | - Gina M Ralph
- IUCN Marine Biodiversity Unit, Department of Biological Sciences, Old Dominion University, Norfolk, Virginia, United States of America
| | - Laura Rogers-Bennett
- Bodega Marine Laboratory, California Department of Fish and Wildlife and University of California Davis, Bodega Bay, California, United States of America
| |
Collapse
|
2
|
Asnicar D, Stranci F, Monti S, Badocco D, Marčeta T, Munari M, Marin MG. Investigating intraspecific variability in the biological responses of sea urchins (Paracentrotus lividus) to seawater acidification. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51687-51701. [PMID: 39120814 PMCID: PMC11374922 DOI: 10.1007/s11356-024-34618-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Alterations in seawater chemistry posed by acidification may lead to immunological and antioxidant defence impairment in sea urchins, with differences among local populations. Here, we analyzed the effects of reduced pH on Paracentrotus lividus, with a multibiomarker approach, and the possible intraspecific variations in sea urchin responses. Two groups of animals with different ecological histories (i.e., the pattern of environmental characteristics and pressures experienced throughout the organism's lifetime) were maintained at ambient pH and pH reduced of 0.4 units for 8 months. Changes in gonadosomatic index (GSI), immunological, and oxidative stress biomarkers were assessed in coelomic fluid, gonads, and digestive tract. Animals maintained at reduced pH showed limited impact of seawater acidification compared to the ambient pH condition. However, sea urchins from the two sites were differently influenced by the seawater pH (as shown by multivariate analyses). GSI and immunological and antioxidant status were differentially modulated between the two sexes, with generally higher values in females, but differences between sexes in relation to the pH of exposure were limited. Overall, our findings highlight that the impact of environmental stressors may differ in sea urchins from different locations. This has implications for the maintenance of P. lividus wild populations under future global change scenarios.
Collapse
Affiliation(s)
- Davide Asnicar
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy
- Aquatic Biosciences, Huntsman Marine Science Centre, 1 Lower Campus Road, E5B 2L7, St. Andrews, New Brunswick, Canada
| | - Federica Stranci
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy
| | - Silvia Monti
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy
| | - Denis Badocco
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Tihana Marčeta
- Institute of Marine Sciences (ISMAR), CNR, Castello 2737/F, 30122, Venezia, Italy
| | - Marco Munari
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy
- Department of Integrative Marine Ecology, Fano Marine Centre, Stazione Zoologica Anton Dohrn, Fano, Italy
| | - Maria Gabriella Marin
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy.
| |
Collapse
|
3
|
Iguchi A, Gibu K, Yorifuji M, Nishijima M, Suzuki A, Ono T, Matsumoto Y, Inoue M, Fujii M, Muraoka D, Fujita Y, Takami H. Transgenerational acclimation to acidified seawater and gene expression patterns in a sea urchin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172616. [PMID: 38642751 DOI: 10.1016/j.scitotenv.2024.172616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Transgenerational responses of susceptible calcifying organisms to progressive ocean acidification are an important issue in reducing uncertainty of future predictions. In this study, a two-generation rearing experiment was conducted using mature Mesocentrotus nudus, a major edible sea urchin that occurs along the coasts of northern Japan. Morphological observations and comprehensive gene expression analysis (RNA-seq) of resulting larvae were performed to examine transgenerational acclimation to acidified seawater. Two generations of rearing experiments showed that larvae derived from parents acclimated to acidified seawater tended to have higher survival and show less reduction in body size when exposed to acidified seawater of the same pH, suggesting that a positive carry-over effect occurred. RNA-seq analysis showed that gene expression patterns of larvae originated from both acclimated and non-acclimated parents to acidified seawater tended to be different than control condition, and the gene expression pattern of larvae originated from acclimated parents was substantially different than that of larvae of non-acclimated and control parents.
Collapse
Affiliation(s)
- Akira Iguchi
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8567, Japan; Research laboratory on environmentally-conscious developments and technologies [E-code], National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8567, Japan.
| | - Kodai Gibu
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8567, Japan
| | - Makiko Yorifuji
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8567, Japan
| | - Miyuki Nishijima
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8567, Japan
| | - Atsushi Suzuki
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8567, Japan; Research laboratory on environmentally-conscious developments and technologies [E-code], National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8567, Japan
| | - Tsuneo Ono
- Japan Fisheries Research and Education Agency, Fisheries Resources Institute, Yokohama 236-8648, Japan
| | - Yukio Matsumoto
- Japan Fisheries Research and Education Agency, Fisheries Technology Institute, Miyako Laboratory, Miyako 027-0097, Japan
| | - Mayuri Inoue
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Masahiko Fujii
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo 060-810, Japan
| | - Daisuke Muraoka
- Japan Fisheries Research and Education Agency, Fisheries Technology Institute, Miyako Laboratory, Miyako 027-0097, Japan
| | - Yamato Fujita
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-810, Japan
| | - Hideki Takami
- Japan Fisheries Research and Education Agency, Fisheries Resources Institute, Shiogama Laboratory, 3-27-5, Shiogama 985-0001, Japan
| |
Collapse
|
4
|
Hu N, Bourdeau PE, Hollander J. Responses of marine trophic levels to the combined effects of ocean acidification and warming. Nat Commun 2024; 15:3400. [PMID: 38649374 PMCID: PMC11035698 DOI: 10.1038/s41467-024-47563-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
Marine organisms are simultaneously exposed to anthropogenic stressors associated with ocean acidification and ocean warming, with expected interactive effects. Species from different trophic levels with dissimilar characteristics and evolutionary histories are likely to respond differently. Here, we perform a meta-analysis of controlled experiments including both ocean acidification and ocean warming factors to investigate single and interactive effects of these stressors on marine species. Contrary to expectations, we find that synergistic interactions are less common (16%) than additive (40%) and antagonistic (44%) interactions overall and their proportion decreases with increasing trophic level. Predators are the most tolerant trophic level to both individual and combined effects. For interactive effects, calcifying and non-calcifying species show similar patterns. We also identify climate region-specific patterns, with interactive effects ranging from synergistic in temperate regions to compensatory in subtropical regions, to positive in tropical regions. Our findings improve understanding of how ocean warming, and acidification affect marine trophic levels and highlight the need for deeper consideration of multiple stressors in conservation efforts.
Collapse
Affiliation(s)
- Nan Hu
- Department of Biology- Aquatic Ecology, Lund University, Lund, Sweden
| | - Paul E Bourdeau
- Department of Biological Sciences, California State Polytechnic University, Humboldt, Arcata, CA, USA
| | - Johan Hollander
- World Maritime University, Ocean Sustainability, Governance & Management Unit, 211 18, Malmö, Sweden.
| |
Collapse
|
5
|
Lang BJ, Donelson JM, Bairos‐Novak KR, Wheeler CR, Caballes CF, Uthicke S, Pratchett MS. Impacts of ocean warming on echinoderms: A meta-analysis. Ecol Evol 2023; 13:e10307. [PMID: 37565029 PMCID: PMC10409743 DOI: 10.1002/ece3.10307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/02/2023] [Indexed: 08/12/2023] Open
Abstract
Rising ocean temperatures are threatening marine species and populations worldwide, and ectothermic taxa are particularly vulnerable. Echinoderms are an ecologically important phylum of marine ectotherms and shifts in their population dynamics can have profound impacts on the marine environment. The effects of warming on echinoderms are highly variable across controlled laboratory-based studies. Accordingly, synthesis of these studies will facilitate the better understanding of broad patterns in responses of echinoderms to ocean warming. Herein, a meta-analysis incorporating the results of 85 studies (710 individual responses) is presented, exploring the effects of warming on various performance predictors. The mean responses of echinoderms to all magnitudes of warming were compared across multiple biological responses, ontogenetic life stages, taxonomic classes, and regions, facilitated by multivariate linear mixed effects models. Further models were conducted, which only incorporated responses to warming greater than the projected end-of-century mean annual temperatures at the collection sites. This meta-analysis provides evidence that ocean warming will generally accelerate metabolic rate (+32%) and reduce survival (-35%) in echinoderms, and echinoderms from subtropical (-9%) and tropical (-8%) regions will be the most vulnerable. The relatively high vulnerability of echinoderm larvae to warming (-20%) indicates that this life stage may be a significant developmental bottleneck in the near-future, likely reducing successful recruitment into populations. Furthermore, asteroids appear to be the class of echinoderms that are most negatively affected by elevated temperature (-30%). When considering only responses to magnitudes of warming representative of end-of-century climate change projections, the negative impacts on asteroids, tropical species and juveniles were exacerbated (-51%, -34% and -40% respectively). The results of these analyses enable better predictions of how keystone and invasive echinoderm species may perform in a warmer ocean, and the possible consequences for populations, communities and ecosystems.
Collapse
Affiliation(s)
- Bethan J. Lang
- Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- AIMS@JCUJames Cook UniversityTownsvilleQueenslandAustralia
| | - Jennifer M. Donelson
- Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
| | - Kevin R. Bairos‐Novak
- Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- AIMS@JCUJames Cook UniversityTownsvilleQueenslandAustralia
| | - Carolyn R. Wheeler
- Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- School for the EnvironmentThe University of Massachusetts BostonBostonMassachusettsUSA
| | - Ciemon F. Caballes
- Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- National Science Foundation EPSCoR—Guam Ecosystems Collaboratorium for Corals and OceansUniversity of Guam Marine LaboratoryMangilaoGuamUSA
| | - Sven Uthicke
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
| | - Morgan S. Pratchett
- Australian Research Council Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
| |
Collapse
|
6
|
Li J, Xue S, Mao Y. Seawater carbonate parameters function differently in affecting embryonic development and calcification in Pacific abalone (Haliotis discus hannai). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 257:106450. [PMID: 36827830 DOI: 10.1016/j.aquatox.2023.106450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/06/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
pH or pCO2 are usually taken to study the impact of ocean acidification on molluscs. Here we studied the different impact of seawater carbonate parameters on embryonic development and calcification of the Pacific abalone (Haliotis discus hannai). Early embryonic development was susceptible to elevated pCO2 level. Larvae hatching duration was positively and hatching rate was negatively correlated with the pCO2 level, respectively. Calcium carbonate (CaCO3) deposition of larval shell was found to be susceptible to calcium carbonate saturation state (Ω) rather than pCO2 or pH. Most larvae incubated in seawater with Ωarag = 1.5 succeeded in shell formation, even when seawater pCO2 level was higher than 3700 μatm and pHT was close to 7.4. Nevertheless, larvae failed to generate CaCO3 in seawater with Ωarag ≤ 0.52 and control level of pCO2, while seawater DIC level was lowered (≤ 852 μmol/kg). Surprisingly, some larvae completed CaCO3 deposition in seawater with Ωarag = 0.6 and slightly elevated DIC (2266 μmol/kg), while seawater pCO2 level was higher than 2700 μatm and pHT was lower than 7.3. This indicates that abalone may be capable of regulating carbonate chemistry to support shell formation, however, the capability was limited as surging pCO2 level lowered growth rate and jeopardized the integrity of larval shells. Larvae generated thicker shell in seawater with Ωarag = 5.6, while adult abalone could not deposit CaCO3 in seawater with Ωarag = 0.29 and DIC = 321 μmol/kg. This indicates that abalone may lack the ability to directly remove or add inorganic carbon at the calcifying sites. In conclusion, different seawater carbonate parameters play different roles in affecting early embryonic development and shell formation of the Pacific abalone, which may exhibit limited capacity to regulate carbonate chemistry.
Collapse
Affiliation(s)
- Jiaqi Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Piolet National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Suyan Xue
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Piolet National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Yuze Mao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Piolet National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China.
| |
Collapse
|
7
|
Hu N, Bourdeau PE, Harlos C, Liu Y, Hollander J. Meta-analysis reveals variance in tolerance to climate change across marine trophic levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154244. [PMID: 35245550 DOI: 10.1016/j.scitotenv.2022.154244] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Marine ecosystems are currently facing a variety of anthropogenic perturbations, including climate change. Trophic differences in response to climate change may disrupt ecological interactions and thereby threaten marine ecosystem function. Yet, we still do not have a comprehensive understanding of how different trophic levels respond to climate change stressors in marine ecosystems. By including 1278 experiments, comprising 236 different marine species from 18 different phyla in a meta-analysis of studies measuring the direct effect of ocean acidification and ocean warming on marine organisms, we found that higher trophic level species display greater tolerance to ocean acidification but greater sensitivity to warming. In contrast, marine herbivores were the most vulnerable trophic level to both acidification and warming. Such imbalances in the community and a general reduction of biodiversity and biomass in lower trophic levels can significantly disrupt the system and could drive negative bottom-up effects. In conclusion, with ocean acidification and elevated temperatures, there is an alarming risk that trophic disparity may disrupt species interactions, and thereby drive community destabilization under ocean climate change.
Collapse
Affiliation(s)
- Nan Hu
- Department of Biology- Aquatic ecology, Lund University, Lund, Sweden
| | - Paul E Bourdeau
- Department of Biological Sciences, Humboldt State University, Arcata, CA, USA
| | - Christian Harlos
- Department of Biology- Aquatic ecology, Lund University, Lund, Sweden
| | - Ying Liu
- Department of Biology- Aquatic ecology, Lund University, Lund, Sweden; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Johan Hollander
- Sasakawa Global Ocean Institute, World Maritime University, Malmö, Sweden.
| |
Collapse
|
8
|
Monitoring Bacterial Community Dynamics in Abalone (Haliotis discus hannai) and the Correlations Associated with Aquatic Diseases. WATER 2022. [DOI: 10.3390/w14111769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bacteria are an integral component of their host. However, information about the microbiota living in and around many aquatic animals is lacking. In this study, multiplex bar-coded pyrosequencing of the 16S ribosomal RNA gene was used to monitor the dynamics of abalone, Haliotis discus hannai, bacterial communities in the intestine, water from cement culture ponds, and surrounding sea areas. Correlations between the bacterial communities and common aquaculture diseases were also evaluated. A total of 329,798 valid sequences and 15,277 operational taxonomic units (OTUs) from 32 samples were obtained by 454 tag amplicon pyrosequencing. The Shannon indices of the seawater samples ranged from 2.84 to 5.6 and the Shannon indices of the abalone intestine samples ranged from 1.2 to 5.12, which were much lower than those of seawater. The dominant phyla in seawater samples were Proteobacteria, Bacteroidetes, Fusobacteria, Cyanobacteria, etc. The dominant phyla in the abalone intestine varied greatly in different months. The dominant genera in the seawater of the cement culture ponds changed in different months, mainly Psychrilyobacter and Pseudoalteromonas. The dominant genera in seawater from the open sea vary considerably between months. The dominant genus of bacteria in the abalone intestine during the months when abalones are susceptible to disease is mainly Mycoplasma spp. Canonical correspondence analysis revealed that bacterial communities in seawater and the intestine responded differently to environmental variables, with similar microbiota in the same area. pH, dissolved oxygen concentration, and temperature were closely related to the samples from the sea area. Oxidation-reduction potential, salinity, phosphate, nitrate, and ammonia nitrogen concentrations were closely related to the water samples from the artificial pools. These findings may add significantly to our understanding of the complex interactions between microbiota and environmental variables in the abalone intestine as well as in the surrounding seawater.
Collapse
|
9
|
Direct and latent effects of ocean acidification on the transition of a sea urchin from planktonic larva to benthic juvenile. Sci Rep 2022; 12:5557. [PMID: 35365731 PMCID: PMC8976010 DOI: 10.1038/s41598-022-09537-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 01/12/2022] [Indexed: 11/09/2022] Open
Abstract
Ongoing ocean acidification is expected to affect marine organisms and ecosystems. While sea urchins can tolerate a wide range of pH, this comes at a high energetic cost, and early life stages are particularly vulnerable. Information on how ocean acidification affects transitions between life-history stages is scarce. We evaluated the direct and indirect effects of pH (pHT 8.0, 7.6 and 7.2) on the development and transition between life-history stages of the sea urchin Strongylocentrotusdroebachiensis, from fertilization to early juvenile. Continuous exposure to low pH negatively affected larval mortality and growth. At pH 7.2, formation of the rudiment (the primordial juvenile) was delayed by two days. Larvae raised at pH 8.0 and transferred to 7.2 after competency had mortality rates five to six times lower than those kept at 8.0, indicating that pH also has a direct effect on older, competent larvae. Latent effects were visible on the larvae raised at pH 7.6: they were more successful in settling (45% at day 40 post-fertilization) and metamorphosing (30%) than larvae raised at 8.0 (17 and 1% respectively). These direct and indirect effects of ocean acidification on settlement and metamorphosis have important implications for population survival.
Collapse
|
10
|
Fanelli E, Di Giacomo S, Gambi C, Bianchelli S, Da Ros Z, Tangherlini M, Andaloro F, Romeo T, Corinaldesi C, Danovaro R. Effects of Local Acidification on Benthic Communities at Shallow Hydrothermal Vents of the Aeolian Islands (Southern Tyrrhenian, Mediterranean Sea). BIOLOGY 2022; 11:biology11020321. [PMID: 35205186 PMCID: PMC8868750 DOI: 10.3390/biology11020321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/04/2022]
Abstract
The Aeolian Islands (Mediterranean Sea) host a unique hydrothermal system called the "Smoking Land" due to the presence of over 200 volcanic CO2-vents, resulting in water acidification phenomena and the creation of an acidified benthic environment. Here, we report the results of a study conducted at three sites located at ca. 16, 40, and 80 m of depth, and characterized by CO2 emissions to assess the effects of acidification on meio- and macrobenthic assemblages. Acidification caused significant changes in both meio- and macrofaunal assemblages, with a clear decrease in terms of abundance and a shift in community composition. A noticeable reduction in biomass was observed only for macrofauna. The most sensitive meiofaunal taxa were kinorhynchs and turbellarians that disappeared at the CO2 sites, while the abundance of halacarids and ostracods increased, possibly as a result of the larger food availability and the lower predatory pressures by the sensitive meiofaunal and macrofaunal taxa. Sediment acidification also causes the disappearance of more sensitive macrofaunal taxa, such as gastropods, and the increase in tolerant taxa such as oligochaetes. We conclude that the effects of shallow CO2-vents result in the progressive simplification of community structure and biodiversity loss due to the disappearance of the most sensitive meio- and macrofaunal taxa.
Collapse
Affiliation(s)
- Emanuela Fanelli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; (S.D.G.); (C.G.); (S.B.); (Z.D.R.); (R.D.)
- Stazione Zoologica di Napoli Anton Dohrn, Villa Comunale, 80100 Naples, Italy; (M.T.); (F.A.); (T.R.)
- Correspondence:
| | - Simone Di Giacomo
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; (S.D.G.); (C.G.); (S.B.); (Z.D.R.); (R.D.)
| | - Cristina Gambi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; (S.D.G.); (C.G.); (S.B.); (Z.D.R.); (R.D.)
| | - Silvia Bianchelli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; (S.D.G.); (C.G.); (S.B.); (Z.D.R.); (R.D.)
| | - Zaira Da Ros
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; (S.D.G.); (C.G.); (S.B.); (Z.D.R.); (R.D.)
- Stazione Zoologica di Napoli Anton Dohrn, Villa Comunale, 80100 Naples, Italy; (M.T.); (F.A.); (T.R.)
| | - Michael Tangherlini
- Stazione Zoologica di Napoli Anton Dohrn, Villa Comunale, 80100 Naples, Italy; (M.T.); (F.A.); (T.R.)
| | - Franco Andaloro
- Stazione Zoologica di Napoli Anton Dohrn, Villa Comunale, 80100 Naples, Italy; (M.T.); (F.A.); (T.R.)
| | - Teresa Romeo
- Stazione Zoologica di Napoli Anton Dohrn, Villa Comunale, 80100 Naples, Italy; (M.T.); (F.A.); (T.R.)
| | - Cinzia Corinaldesi
- Department of Materials, Environmental Sciences and Urban Planning (SIMAU), Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy;
| | - Roberto Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; (S.D.G.); (C.G.); (S.B.); (Z.D.R.); (R.D.)
- Stazione Zoologica di Napoli Anton Dohrn, Villa Comunale, 80100 Naples, Italy; (M.T.); (F.A.); (T.R.)
| |
Collapse
|
11
|
Holland OJ, Young MA, Sherman CDH, Tan MH, Gorfine H, Matthews T, Miller AD. Ocean warming threatens key trophic interactions supporting a commercial fishery in a climate change hotspot. GLOBAL CHANGE BIOLOGY 2021; 27:6498-6511. [PMID: 34529873 DOI: 10.1111/gcb.15889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/09/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Worldwide, rising ocean temperatures are causing declines and range shifts in marine species. The direct effects of climate change on the biology of marine organisms are often well documented; yet, knowledge on the indirect effects, particularly through trophic interactions, is largely lacking. We provide evidence of ocean warming decoupling critical trophic interactions supporting a commercially important mollusc in a climate change hotspot. Dietary assessments of the Australian blacklip abalone (Haliotis rubra) indicate primary dependency on a widespread macroalgal species (Phyllospora comosa) which we show to be in state of decline due to ocean warming, resulting in abalone biomass reductions. Niche models suggest further declines in P. comosa over the coming decades and ongoing risks to H. rubra. This study highlights the importance of studies from climate change hotspots and understanding the interplay between climate and trophic interactions when determining the likely response of marine species to environmental changes.
Collapse
Affiliation(s)
- Owen J Holland
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Geelong, Victoria, Australia
- Deakin Genomics Centre, Deakin University, Geelong, Victoria, Australia
| | - Mary A Young
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Geelong, Victoria, Australia
| | - Craig D H Sherman
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Geelong, Victoria, Australia
- Deakin Genomics Centre, Deakin University, Geelong, Victoria, Australia
| | - Mun Hua Tan
- School of Biosciences, University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
| | - Harry Gorfine
- School of Biosciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Ty Matthews
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Geelong, Victoria, Australia
| | - Adam D Miller
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Geelong, Victoria, Australia
- Deakin Genomics Centre, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
12
|
Falkenberg LJ, Scanes E, Ducker J, Ross PM. Biotic habitats as refugia under ocean acidification. CONSERVATION PHYSIOLOGY 2021; 9:coab077. [PMID: 34540232 PMCID: PMC8445512 DOI: 10.1093/conphys/coab077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/25/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Habitat-forming organisms have an important role in ameliorating stressful conditions and may be of particular relevance under a changing climate. Increasing CO2 emissions are driving a range of environmental changes, and one of the key concerns is the rapid acceleration of ocean acidification and associated reduction in pH. Such changes in seawater chemistry are anticipated to have direct negative effects on calcifying organisms, which could, in turn, have negative ecological, economic and human health impacts. However, these calcifying organisms do not exist in isolation, but rather are part of complex ecosystems. Here, we use a qualitative narrative synthesis framework to explore (i) how habitat-forming organisms can act to restrict environmental stress, both now and in the future; (ii) the ways their capacity to do so is modified by local context; and (iii) their potential to buffer the effects of future change through physiological processes and how this can be influenced by management adopted. Specifically, we highlight examples that consider the ability of macroalgae and seagrasses to alter water carbonate chemistry, influence resident organisms under current conditions and their capacity to do so under future conditions, while also recognizing the potential role of other habitats such as adjacent mangroves and saltmarshes. Importantly, we note that the outcome of interactions between these functional groups will be context dependent, influenced by the local abiotic and biotic characteristics. This dependence provides local managers with opportunities to create conditions that enhance the likelihood of successful amelioration. Where individuals and populations are managed effectively, habitat formers could provide local refugia for resident organisms of ecological and economic importance under an acidifying ocean.
Collapse
Affiliation(s)
- Laura J Falkenberg
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Elliot Scanes
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, 2006, Australia
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| | - James Ducker
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Pauline M Ross
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, 2006, Australia
| |
Collapse
|
13
|
Donelan SC, Breitburg D, Ogburn MB. Context-dependent carryover effects of hypoxia and warming in a coastal ecosystem engineer. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021. [PMID: 33636022 DOI: 10.25573/serc.13341614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Organisms are increasingly likely to be exposed to multiple stressors repeatedly across ontogeny as climate change and other anthropogenic stressors intensify. Early life stages can be particularly sensitive to environmental stress, such that experiences early in life can "carry over" to have long-term effects on organism fitness. Despite the potential importance of these within-generation carryover effects, we have little understanding of how they vary across ecological contexts, particularly when organisms are re-exposed to the same stressors later in life. In coastal marine systems, anthropogenic nutrients and warming water temperatures are reducing average dissolved oxygen (DO) concentrations while also increasing the severity of naturally occurring daily fluctuations in DO. Combined effects of warming and diel-cycling DO can strongly affect the fitness and survival of coastal organisms, including the eastern oyster (Crassostrea virginica), a critical ecosystem engineer and fishery species. However, whether early life exposure to hypoxia and warming affects oysters' subsequent response to these stressors is unknown. Using a multiphase laboratory experiment, we explored how early life exposure to diel-cycling hypoxia and warming affected oyster growth when oysters were exposed to these same stressors 8 weeks later. We found strong, interactive effects of early life exposure to diel-cycling hypoxia and warming on oyster tissue : shell growth, and these effects were context-dependent, only manifesting when oysters were exposed to these stressors again two months later. This change in energy allocation based on early life stress exposure may have important impacts on oyster fitness. Exposure to hypoxia and warming also influenced oyster tissue and shell growth, but only later in life. Our results show that organisms' responses to current stress can be strongly shaped by their previous stress exposure, and that context-dependent carryover effects may influence the fitness, production, and restoration of species of management concern, particularly for sessile species such as oysters.
Collapse
Affiliation(s)
- Sarah C Donelan
- Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, Maryland, 21037, USA
| | - Denise Breitburg
- Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, Maryland, 21037, USA
| | - Matthew B Ogburn
- Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, Maryland, 21037, USA
| |
Collapse
|
14
|
Auzoux-Bordenave S, Chevret S, Badou A, Martin S, Di Giglio S, Dubois P. Acid-base balance in the hæmolymph of European abalone (Haliotis tuberculata) exposed to CO 2-induced ocean acidification. Comp Biochem Physiol A Mol Integr Physiol 2021; 259:110996. [PMID: 34058370 DOI: 10.1016/j.cbpa.2021.110996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 11/24/2022]
Abstract
Ocean acidification (OA) and the associated changes in seawater carbonate chemistry pose a threat to calcifying organisms. This is particularly serious for shelled molluscs, in which shell growth and microstructure has been shown to be highly sensitive to OA. To improve our understanding of the responses of abalone to OA, this study investigated the effects of CO2-induced ocean acidification on extra-cellular acid-base parameters in the European abalone Haliotis tuberculata. Three-year-old adult abalone were exposed for 15 days to three different pH levels (7.9, 7.7, 7.4) representing current and predicted near-future conditions. Hæmolymph pH and total alkalinity were measured at different time points during exposure and used to calculate the carbonate parameters of the extracellular fluid. Total protein content was also measured to determine whether seawater acidification influences the composition and buffer capacity of hæmolymph. Extracellular pH was maintained at seawater pH 7.7 indicating that abalones are able to buffer moderate acidification (-0.2 pH units). This was not due to an accumulation of HCO3- ions but rather to a high hæmolymph protein concentration. By contrast, hæmolymph pH was significantly decreased after 5 days of exposure to pH 7.4, indicating that abalone do not compensate for higher decreases in seawater pH. Total alkalinity and dissolved inorganic carbon were also significantly decreased after 15 days of low pH exposure. It is concluded that changes in the acid-base balance of the hæmolymph might be involved in deleterious effects recorded in adult H. tuberculata facing severe OA stress. This would impact both the ecology and aquaculture of this commercially important species.
Collapse
Affiliation(s)
- Stéphanie Auzoux-Bordenave
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Muséum national d'Histoire naturelle/CNRS/IRD/Sorbonne Université/UCN/UA, Station marine de Concarneau, 29900 Concarneau, France.
| | - Sandra Chevret
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Muséum national d'Histoire naturelle/CNRS/IRD/Sorbonne Université/UCN/UA, Station marine de Concarneau, 29900 Concarneau, France
| | - Aïcha Badou
- Direction Générale Déléguée à la Recherche, l'Expertise, la Valorisation et l'Enseignement (DGD REVE), Muséum national d'Histoire naturelle, Station marine de Concarneau, 29900 Concarneau, France
| | - Sophie Martin
- UMR 7144 "Adaptation et Diversité en Milieu Marin" (AD2M), CNRS/SU, Station Biologique de Roscoff, 29680 Roscoff Cedex, France
| | - Sarah Di Giglio
- Laboratoire de Biologie Marine, Université Libre de Bruxelles, CP160/15, 1050, Brussels, Belgium
| | - Philippe Dubois
- Laboratoire de Biologie Marine, Université Libre de Bruxelles, CP160/15, 1050, Brussels, Belgium
| |
Collapse
|
15
|
Donelan SC, Breitburg D, Ogburn MB. Context-dependent carryover effects of hypoxia and warming in a coastal ecosystem engineer. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02315. [PMID: 33636022 PMCID: PMC8243920 DOI: 10.1002/eap.2315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 11/06/2020] [Accepted: 12/06/2020] [Indexed: 05/20/2023]
Abstract
Organisms are increasingly likely to be exposed to multiple stressors repeatedly across ontogeny as climate change and other anthropogenic stressors intensify. Early life stages can be particularly sensitive to environmental stress, such that experiences early in life can "carry over" to have long-term effects on organism fitness. Despite the potential importance of these within-generation carryover effects, we have little understanding of how they vary across ecological contexts, particularly when organisms are re-exposed to the same stressors later in life. In coastal marine systems, anthropogenic nutrients and warming water temperatures are reducing average dissolved oxygen (DO) concentrations while also increasing the severity of naturally occurring daily fluctuations in DO. Combined effects of warming and diel-cycling DO can strongly affect the fitness and survival of coastal organisms, including the eastern oyster (Crassostrea virginica), a critical ecosystem engineer and fishery species. However, whether early life exposure to hypoxia and warming affects oysters' subsequent response to these stressors is unknown. Using a multiphase laboratory experiment, we explored how early life exposure to diel-cycling hypoxia and warming affected oyster growth when oysters were exposed to these same stressors 8 weeks later. We found strong, interactive effects of early life exposure to diel-cycling hypoxia and warming on oyster tissue : shell growth, and these effects were context-dependent, only manifesting when oysters were exposed to these stressors again two months later. This change in energy allocation based on early life stress exposure may have important impacts on oyster fitness. Exposure to hypoxia and warming also influenced oyster tissue and shell growth, but only later in life. Our results show that organisms' responses to current stress can be strongly shaped by their previous stress exposure, and that context-dependent carryover effects may influence the fitness, production, and restoration of species of management concern, particularly for sessile species such as oysters.
Collapse
Affiliation(s)
- Sarah C. Donelan
- Smithsonian Environmental Research Center647 Contees Wharf RoadEdgewaterMaryland21037USA
| | - Denise Breitburg
- Smithsonian Environmental Research Center647 Contees Wharf RoadEdgewaterMaryland21037USA
| | - Matthew B. Ogburn
- Smithsonian Environmental Research Center647 Contees Wharf RoadEdgewaterMaryland21037USA
| |
Collapse
|
16
|
Impacts of hypoxic events surpass those of future ocean warming and acidification. Nat Ecol Evol 2021; 5:311-321. [PMID: 33432134 DOI: 10.1038/s41559-020-01370-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 12/01/2020] [Indexed: 01/28/2023]
Abstract
Over the past decades, three major challenges to marine life have emerged as a consequence of anthropogenic emissions: ocean warming, acidification and oxygen loss. While most experimental research has targeted the first two stressors, the last remains comparatively neglected. Here, we implemented sequential hierarchical mixed-model meta-analyses (721 control-treatment comparisons) to compare the impacts of oxygen conditions associated with the current and continuously intensifying hypoxic events (1-3.5 O2 mg l-1) with those experimentally yielded by ocean warming (+4 °C) and acidification (-0.4 units) conditions on the basis of IPCC projections (RCP 8.5) for 2100. In contrast to warming and acidification, hypoxic events elicited consistent negative effects relative to control biological performance-survival (-33%), abundance (-65%), development (-51%), metabolism (-33%), growth (-24%) and reproduction (-39%)-across the taxonomic groups (mollusks, crustaceans and fish), ontogenetic stages and climate regions studied. Our findings call for a refocus of global change experimental studies, integrating oxygen concentration drivers as a key factor of ocean change. Given potential combined effects, multistressor designs including gradual and extreme changes are further warranted to fully disclose the future impacts of ocean oxygen loss, warming and acidification.
Collapse
|
17
|
Scanes E, Parker LM, Seymour JR, Siboni N, King WL, Danckert NP, Wegner KM, Dove MC, O'Connor WA, Ross PM. Climate change alters the haemolymph microbiome of oysters. MARINE POLLUTION BULLETIN 2021; 164:111991. [PMID: 33485019 DOI: 10.1016/j.marpolbul.2021.111991] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/14/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
The wellbeing of marine organisms is connected to their microbiome. Oysters are a vital food source and provide ecological services, yet little is known about how climate change such as ocean acidification and warming will affect their microbiome. We exposed the Sydney rock oyster, Saccostrea glomerata, to orthogonal combinations of temperature (24, 28 °C) and pCO2 (400 and 1000 μatm) for eight weeks and used amplicon sequencing of the 16S rRNA (V3-V4) gene to characterise the bacterial community in haemolymph. Overall, elevated pCO2 and temperature interacted to alter the microbiome of oysters, with a clear partitioning of treatments in CAP ordinations. Elevated pCO2 was the strongest driver of species diversity and richness and elevated temperature also increased species richness. Climate change, both ocean acidification and warming, will alter the microbiome of S. glomerata which may increase the susceptibility of oysters to disease.
Collapse
Affiliation(s)
- Elliot Scanes
- The University of Sydney, School of Life and Environmental Sciences, Camperdown, New South Wales 2006, Australia.
| | - Laura M Parker
- The University of New South Wales, School of Biological, Earth and Environmental Sciences, Kensington, New South Wales 2052, Australia
| | - Justin R Seymour
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Nachshon Siboni
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - William L King
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales 2007, Australia; Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Nathan P Danckert
- The University of Sydney, School of Life and Environmental Sciences, Camperdown, New South Wales 2006, Australia
| | - K Mathias Wegner
- Helmholtz Centre for Polar and Marine Research, Alfred Wegener Institute, Coastal Ecology, Wadden Sea Station, List, Sylt 25992, Germany
| | - Michael C Dove
- New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, New South Wales 2316, Australia
| | - Wayne A O'Connor
- New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, New South Wales 2316, Australia
| | - Pauline M Ross
- The University of Sydney, School of Life and Environmental Sciences, Camperdown, New South Wales 2006, Australia
| |
Collapse
|
18
|
Gall ML, Holmes SP, Campbell H, Byrne M. Effects of marine heatwave conditions across the metamorphic transition to the juvenile sea urchin (Heliocidaris erythrogramma). MARINE POLLUTION BULLETIN 2021; 163:111914. [PMID: 33385800 DOI: 10.1016/j.marpolbul.2020.111914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/29/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
For short development species, like the sea urchin Heliocidaris erythrogramma, the entire planktonic duration can be impacted by marine heatwaves (MHW). Developmental thermal tolerance of this species through metamorphosis was investigated over a broad range (7.6-28.0 °C), including temperatures across its distribution and MHW conditions. In controls (19.5-21.0 °C), 80% of individuals developed to metamorphosis at day 5, doubling to 10 days at 14.0 °C. The thermal range (14.4-21.2 °C) of metamorphosis on day 7 reflected the realised thermal niche with 25.9 °C the upper temperature for success (T40). By day 10, juvenile tolerance narrowed to the local range (16.2-19.0 °C), similar to levels tolerated by adults, indicating negative carryover effects across the metamorphic transition. Without phenotypic adjustment or adaptation, regional warming will be detrimental, although populations may be sustained by thermotolerant offspring. Our results show the importance of the metamorphic transition in understanding the cumulative sensitivity of species to MHW.
Collapse
Affiliation(s)
- Mailie L Gall
- School of Science and Health, Western Sydney University, Penrith, New South Wales 2751, Australia
| | - Sebastian P Holmes
- School of Science and Health, Western Sydney University, Penrith, New South Wales 2751, Australia
| | - Hamish Campbell
- School of Life and Environmental Sciences, The University of Sydney, New South Wales 2006, Australia
| | - Maria Byrne
- School of Life and Environmental Sciences, The University of Sydney, New South Wales 2006, Australia.
| |
Collapse
|
19
|
Devens HR, Davidson PL, Deaker DJ, Smith KE, Wray GA, Byrne M. Ocean acidification induces distinct transcriptomic responses across life history stages of the sea urchin Heliocidaris erythrogramma. Mol Ecol 2020; 29:4618-4636. [PMID: 33002253 PMCID: PMC8994206 DOI: 10.1111/mec.15664] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 09/01/2023]
Abstract
Ocean acidification (OA) from seawater uptake of rising carbon dioxide emissions impairs development in marine invertebrates, particularly in calcifying species. Plasticity in gene expression is thought to mediate many of these physiological effects, but how these responses change across life history stages remains unclear. The abbreviated lecithotrophic development of the sea urchin Heliocidaris erythrogramma provides a valuable opportunity to analyse gene expression responses across a wide range of life history stages, including the benthic, post-metamorphic juvenile. We measured the transcriptional response to OA in H. erythrogramma at three stages of the life cycle (embryo, larva, and juvenile) in a controlled breeding design. The results reveal a broad range of strikingly stage-specific impacts of OA on transcription, including changes in the number and identity of affected genes; the magnitude, sign, and variance of their expression response; and the developmental trajectory of expression. The impact of OA on transcription was notably modest in relation to gene expression changes during unperturbed development and much smaller than genetic contributions from parentage. The latter result suggests that natural populations may provide an extensive genetic reservoir of resilience to OA. Taken together, these results highlight the complexity of the molecular response to OA, its substantial life history stage specificity, and the importance of contextualizing the transcriptional response to pH stress in light of normal development and standing genetic variation to better understand the capacity for marine invertebrates to adapt to OA.
Collapse
Affiliation(s)
| | | | - Dione J Deaker
- School of Life and Environmental Science, The University of Sydney, Sydney, NSW, Australia
| | - Kathryn E Smith
- The Laboratory, The Marine Biological Association, Plymouth, UK
| | - Gregory A Wray
- Department of Biology, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Maria Byrne
- School of Life and Environmental Science, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
20
|
Evolved differences in energy metabolism and growth dictate the impacts of ocean acidification on abalone aquaculture. Proc Natl Acad Sci U S A 2020; 117:26513-26519. [PMID: 33020305 PMCID: PMC7584875 DOI: 10.1073/pnas.2006910117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The pH of the global ocean is decreasing due to the absorption of anthropogenically emitted CO2, causing ocean acidification (OA). OA negatively impacts marine shellfish and threatens the continuing economic viability of molluscan shellfish aquaculture, a global industry valued at more than 19 billion USD. We identify traits linked to growth and lipid regulation that contribute tolerance to OA in abalone aquaculture, with broader implications for adaptation efforts in other shellfish species. We also identify evolved heritable variation for physiological resilience to OA that may be exploited in commercial and restoration aquaculture breeding programs to offset the negative consequences of continuing climate change. Ocean acidification (OA) poses a major threat to marine ecosystems and shellfish aquaculture. A promising mitigation strategy is the identification and breeding of shellfish varieties exhibiting resilience to acidification stress. We experimentally compared the effects of OA on two populations of red abalone (Haliotis rufescens), a marine mollusc important to fisheries and global aquaculture. Results from our experiments simulating captive aquaculture conditions demonstrated that abalone sourced from a strong upwelling region were tolerant of ongoing OA, whereas a captive-raised population sourced from a region of weaker upwelling exhibited significant mortality and vulnerability to OA. This difference was linked to population-specific variation in the maternal provisioning of lipids to offspring, with a positive correlation between lipid concentrations and survival under OA. This relationship also persisted in experiments on second-generation animals, and larval lipid consumption rates varied among paternal crosses, which is consistent with the presence of genetic variation for physiological traits relevant for OA survival. Across experimental trials, growth rates differed among family lineages, and the highest mortality under OA occurred in the fastest growing crosses. Identifying traits that convey resilience to OA is critical to the continued success of abalone and other shellfish production, and these mitigation efforts should be incorporated into breeding programs for commercial and restoration aquaculture.
Collapse
|
21
|
Ma Z, Zheng X, Fu Z, Lin S, Yu G, Qin JG. Transcriptional analysis reveals physiological response to acute acidification stress of barramundi Lates calcarifer (Bloch) in coastal areas. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1729-1741. [PMID: 32533395 DOI: 10.1007/s10695-020-00824-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
To understand the physiological response of estuarine fish to acidification, barramundi (Lates calcarifer) juveniles were exposed to acidified seawater in experimental conditions. The molecular response of barramundi to acidification stress was assessed by RNA-seq analysis. A total of 2188 genes were identified as differential expression genes. The gene ontology classification system and Kyoto Encyclopedia of Genes and Genomes database analysis showed that acidification caused differential expressions of genes and pathways in the gills of barramundi. Acidification had a great influence on the signal transduction pathway in cell process. Furthermore, we detected that numerous unigenes involved in the pathways associated with lipid metabolism, carbohydrate metabolism, amino acid metabolism, glycan biosynthesis and metabolism specific and non-specific immunity were changed. This study indicates that the physiological responses in barramundi especially the immune system and energy allocation correspond to the variation of environmental pH. This study reveals the necessity for assessment of the potential of estuarine fishes to cope with acidification of the environment and the need to develop strategies for fish conservation in coastal areas.
Collapse
Affiliation(s)
- Zhenhua Ma
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, 572018, China
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, People's Republic of China
| | - Xing Zheng
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, 572018, China
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, People's Republic of China
| | - Zhengyi Fu
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, 572018, China
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, People's Republic of China
| | - Siqi Lin
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, 572018, China
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, People's Republic of China
| | - Gang Yu
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, 572018, China
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, People's Republic of China
| | - Jian G Qin
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia.
| |
Collapse
|
22
|
Fonseca JG, Laranjeiro F, Freitas DB, Oliveira IB, Rocha RJM, Machado J, Hinzmann M, Barroso CM, Galante-Oliveira S. Impairment of swimming performance in Tritia reticulata (L.) veligers under projected ocean acidification and warming scenarios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 731:139187. [PMID: 32413662 DOI: 10.1016/j.scitotenv.2020.139187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/24/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
Tritia reticulata (L.) is a neogastropod ubiquitous in the coastal communities of the NE Atlantic. Its life cycle relies on the swimming performance of planktonic early life stages, whose sensitivity to the climate conditions projected for the near future, namely of ocean acidification (OA) and warming (W), is, to our best knowledge, unknown. To examine the resilience of larval stages to future environmental conditions, this work investigates the effect of OA-W on the swimming performance of T. reticulata veligers under a range of experimental conditions, based on the end-of-century projections of the Intergovernmental Panel on Climate Change. Veligers were exposed to six experimental scenarios for 14 days, employing a full factorial design with three temperatures (T°C: 18, 20 and 22 °C) and two pH levels (pHtarget: 8.1 and 7.8). Mortality was assessed throughout the trial, after which swimming behaviour - characterised by the activity, speed and the distance travelled by veligers - was analysed by automated video recordings in a Zebrabox® device. Mortality increased with OA-W and, although more active, larvae travelled shorter distances revealing reduced swimming speed under acidic and warmer conditions, with the interaction of the tested stressors - pH and T°C - being highly significant. Results motivated the morpho-histological analysis of larvae preserved at the end of the trial, to check for the integrity of the organs involved in veligers' motion: statocysts, velum and foot. Statocyst and velar morpho-structure were conserved but histological damage of metapodial epithelia was evident under acidity, namely an apparent hypertrophy and protrusion of the secretory cells, with dispersed pigmented granules and, at 22 °C, less cilia, with potential functional implications. Negative consequences of the OA-W scenarios tested on veligers' competence are unveiled, pointing towards the eminent threat these phenomena constitute to T. reticulata perpetuation in case no mitigation measures are taken, and projections become effective.
Collapse
Affiliation(s)
- J G Fonseca
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - F Laranjeiro
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - D B Freitas
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - I B Oliveira
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - R J M Rocha
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - J Machado
- Laboratory of Applied Physiology, ICBAS, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - M Hinzmann
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - C M Barroso
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - S Galante-Oliveira
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
23
|
Navarro JM, Villanueva P, Rocha N, Torres R, Chaparro OR, Benítez S, Andrade-Villagrán PV, Alarcón E. Plastic response of the oyster Ostrea chilensis to temperature and pCO2 within the present natural range of variability. PLoS One 2020; 15:e0234994. [PMID: 32598370 PMCID: PMC7323991 DOI: 10.1371/journal.pone.0234994] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/05/2020] [Indexed: 11/21/2022] Open
Abstract
Estuaries are characterized by high fluctuation of their environmental conditions. Environmental parameters measured show that the seawater properties of the Quempillén estuary (i.e. temperature, salinity, pCO2, pH and ΩCaCO3) were highly fluctuating and related with season and tide. We test the effects of increasing temperature and pCO2 in the seawater on the physiological energetics of the bivalve Ostrea chilensis. Juvenile oysters were exposed to an orthogonal combination of three temperatures (10, 15, and 20°C) and two pCO2 levels (~400 and ~1000 μatm) for a period of 60 days to evaluate the temporal effect (i.e. 10, 20, 30, 60 days) on the physiological rates of the oysters. Results indicated a significant effect of temperature and time of exposure on the clearance rate, while pCO2 and the interaction between pCO2 and the other factors studied did not show significant effects. Significant effects of temperature and time of exposure were also observed on the absorption rate, but not the pCO2 nor its interaction with other factors studied. Oxygen consumption was significantly affected by pCO2, temperature and time. Scope for growth was only significantly affected by time; despite this, the highest values were observed for individuals subject to to 20°C and to ~1000 μatm pCO2. In this study, Ostrea chilensis showed high phenotypic plasticity to respond to the high levels of temperature and pCO2 experienced in its habitat as no negative physiological effects were observed. Thus, the highly variable conditions of this organism’s environment could select for individuals that are more resistant to future scenarios of climate change, mainly to warming and acidification.
Collapse
Affiliation(s)
- Jorge M. Navarro
- Facultad de Ciencias, Instituto Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
- Centro Fondap de Investigación Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile
- * E-mail:
| | - Paola Villanueva
- Facultad de Ciencias, Instituto Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - Natalia Rocha
- Facultad de Ciencias, Instituto Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - Rodrigo Torres
- Centro de Investigación en Ecosistemas de la Patagonia (CIEP), Coyhaique, Chile
| | - Oscar R. Chaparro
- Facultad de Ciencias, Instituto Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - Samanta Benítez
- Programa de Doctorado en Biología Marina, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Facultad de Ciencias, Centro de Investigación e Innovación para el Cambio Climático (CiiCC), Universidad Santo Tomás, Santiago, Chile
| | - Paola V. Andrade-Villagrán
- Facultad de Ciencias, Centro de Investigación en Biodiversidad y Ambientes sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Emilio Alarcón
- Centro Fondap de Investigación Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile
- Centro de Investigación en Ecosistemas de la Patagonia (CIEP), Coyhaique, Chile
| |
Collapse
|
24
|
Wolfe K, Nguyen HD, Davey M, Byrne M. Characterizing biogeochemical fluctuations in a world of extremes: A synthesis for temperate intertidal habitats in the face of global change. GLOBAL CHANGE BIOLOGY 2020; 26:3858-3879. [PMID: 32239581 DOI: 10.1111/gcb.15103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 03/17/2020] [Indexed: 05/24/2023]
Abstract
Coastal and intertidal habitats are at the forefront of anthropogenic influence and environmental change. The species occupying these habitats are adapted to a world of extremes, which may render them robust to the changing climate or more vulnerable if they are at their physiological limits. We characterized the diurnal, seasonal and interannual patterns of flux in biogeochemistry across an intertidal gradient on a temperate sandstone platform in eastern Australia over 6 years (2009-2015) and present a synthesis of our current understanding of this habitat in context with global change. We used rock pools as natural mesocosms to determine biogeochemistry dynamics and patterns of eco-stress experienced by resident biota. In situ measurements and discrete water samples were collected night and day during neap low tide events to capture diurnal biogeochemistry cycles. Calculation of pHT using total alkalinity (TA) and dissolved inorganic carbon (DIC) revealed that the mid-intertidal habitat exhibited the greatest flux over the years (pHT 7.52-8.87), and over a single tidal cycle (1.11 pHT units), while the low-intertidal (pHT 7.82-8.30) and subtidal (pHT 7.87-8.30) were less variable. Temperature flux was also greatest in the mid-intertidal (8.0-34.5°C) and over a single tidal event (14°C range), as typical of temperate rocky shores. Mean TA and DIC increased at night and decreased during the day, with the most extreme conditions measured in the mid-intertidal owing to prolonged emersion periods. Temporal sampling revealed that net ecosystem calcification and production were highest during the day and lowest at night, particularly in the mid-intertidal. Characterization of biogeochemical fluctuations in a world of extremes demonstrates the variable conditions that intertidal biota routinely experience and highlight potential microhabitat-specific vulnerabilities and climate change refugia.
Collapse
Affiliation(s)
- Kennedy Wolfe
- Marine Spatial Ecology Lab, School of Biological Sciences and ARC Centre of Excellence for Coral Reef Studies, University of Queensland, St Lucia, Qld, Australia
- School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Hong D Nguyen
- School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Madeline Davey
- Centre for Biodiversity and Conservation Science, School of Biological Sciences, University of Queensland, St Lucia, Qld, Australia
| | - Maria Byrne
- School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
25
|
Oliveira IB, Freitas DB, Fonseca JG, Laranjeiro F, Rocha RJM, Hinzmann M, Machado J, Barroso CM, Galante-Oliveira S. Vulnerability of Tritia reticulata (L.) early life stages to ocean acidification and warming. Sci Rep 2020; 10:5325. [PMID: 32210337 PMCID: PMC7093509 DOI: 10.1038/s41598-020-62169-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/02/2020] [Indexed: 11/09/2022] Open
Abstract
Ocean acidification and warming (OA-W) result mainly from the absorption of carbon dioxide and heat by the oceans, altering its physical and chemical properties and affecting carbonate secretion by marine calcifiers such as gastropods. These processes are ongoing, and the projections of their aggravation are not encouraging. This work assesses the concomitant effect of the predicted pH decrease and temperature rise on early life stages of the neogastropod Tritia reticulata (L.), a common scavenger of high ecological importance on coastal ecosystems of the NE Atlantic. Veligers were exposed for 14 days to 12 OA-W experimental scenarios generated by a factorial design of three pH levels (targeting 8.1, 7.8 and 7.5) at four temperatures (16, 18, 20 and 22 °C). Results reveal effects of both pH and temperature (T °C) on larval development, growth, shell integrity and survival, individually or interactively at different exposure times. All endpoints were initially driven by pH, with impaired development and high mortalities being recorded in the first week, constrained by the most acidic scenarios (pHtarget 7.5). Development was also significantly driven by T °C, and its acceleration with warming was observed for the remaining exposure time. Still, by the end of this 2-weeks trial, larval performance and survival were highly affected by the interaction between pH and T °C: growth under warming was evident but only for T °C ≤ 20 °C and carbonate saturation (pHtarget ≥ 7.8). In fact, carbonate undersaturation rendered critical larval mortality (100%) at 22 °C, and the occurrence of extremely vulnerable, unshelled specimens in all other tested temperatures. As recruitment cohorts are the foundation for future populations, our results point towards the extreme vulnerability of this species in case tested scenarios become effective that, according to the IPCC, are projected for the northern hemisphere, where this species is ubiquitous, by the end of the century. Increased veliger mortality associated with reduced growth rates, shell dissolution and loss under OA-W projected scenarios will reduce larval performance, jeopardizing T. reticulata subsistence.
Collapse
Affiliation(s)
- Isabel B Oliveira
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Daniela B Freitas
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Joana G Fonseca
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Filipe Laranjeiro
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Rui J M Rocha
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Mariana Hinzmann
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Jorge Machado
- Laboratory of Applied Physiology, ICBAS, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Carlos M Barroso
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Susana Galante-Oliveira
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
26
|
Byrne M, Foo SA, Ross PM, Putnam HM. Limitations of cross- and multigenerational plasticity for marine invertebrates faced with global climate change. GLOBAL CHANGE BIOLOGY 2020; 26:80-102. [PMID: 31670444 DOI: 10.1111/gcb.14882] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/12/2019] [Indexed: 05/18/2023]
Abstract
Although cross generation (CGP) and multigenerational (MGP) plasticity have been identified as mechanisms of acclimation to global change, the weight of evidence indicates that parental conditioning over generations is not a panacea to rescue stress sensitivity in offspring. For many species, there were no benefits of parental conditioning. Even when improved performance was observed, this waned over time within a generation or across generations and fitness declined. CGP and MGP studies identified resilient species with stress tolerant genotypes in wild populations and selected family lines. Several bivalves possess favourable stress tolerance and phenotypically plastic traits potentially associated with genetic adaptation to life in habitats where they routinely experience temperature and/or acidification stress. These traits will be important to help 'climate proof' shellfish ventures. Species that are naturally stress tolerant and those that naturally experience a broad range of environmental conditions are good candidates to provide insights into the physiological and molecular mechanisms involved in CGP and MGP. It is challenging to conduct ecologically relevant global change experiments over the long times commensurate with the pace of changing climate. As a result, many studies present stressors in a shock-type exposure at rates much faster than projected scenarios. With more gradual stressor introduction over longer experimental durations and in context with conditions species are currently acclimatized and/or adapted to, the outcomes for sensitive species might differ. We highlight the importance to understand primordial germ cell development and the timing of gametogenesis with respect to stressor exposure. Although multigenerational exposure to global change stressors currently appears limited as a universal tool to rescue species in the face of changing climate, natural proxies of future conditions (upwelling zones, CO2 vents, naturally warm habitats) show that phenotypic adjustment and/or beneficial genetic selection is possible for some species, indicating complex plasticity-adaptation interactions.
Collapse
Affiliation(s)
- Maria Byrne
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Shawna A Foo
- Center for Global Discovery and Conservation Science, Arizona State University, Tempe, AZ, USA
| | - Pauline M Ross
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
27
|
Cummings VJ, Smith AM, Marriott PM, Peebles BA, Halliday NJ. Effect of reduced pH on physiology and shell integrity of juvenile Haliotis iris (pāua) from New Zealand. PeerJ 2019; 7:e7670. [PMID: 31579589 PMCID: PMC6765356 DOI: 10.7717/peerj.7670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 08/13/2019] [Indexed: 11/20/2022] Open
Abstract
The New Zealand pāua or black footed abalone, Haliotis iris, is one of many mollusc species at potential risk from ocean acidification and warming. To investigate possible impacts, juvenile pāua (~24 mm shell length) were grown for 4 months in seawater pH/pCO2 conditions projected for 2100. End of century seawater projections (pHT 7.66/pCO2 ~1,000 μatm) were contrasted with local ambient conditions (pHT 8.00/pCO2 ~400 μatm) at two typical temperatures (13 and 15 °C). We used a combination of methods (morphometric, scanning electron microscopy, X-ray diffraction) to investigate effects on juvenile survival and growth, as well as shell mineralogy and integrity. Lowered pH did not affect survival, growth rate or condition, but animals grew significantly faster at the higher temperature. Juvenile pāua were able to biomineralise their inner nacreous aragonite layer and their outer prismatic calcite layer under end-of-century pH conditions, at both temperatures, and carbonate composition was not affected. There was some thickening of the nacre layer in the newly deposited shell with reduced pH and also at the higher temperature. Most obvious was post-depositional alteration of the shell under lowered pH: the prismatic calcite layer was thinner, and there was greater etching of the external shell surface; this dissolution was greater at the higher temperature. These results demonstrate the importance of even a small (2 °C) difference in temperature on growth and shell characteristics, and on modifying the effects at lowered pH. Projected CO2-related changes may affect shell quality of this iconic New Zealand mollusc through etching (dissolution) and thinning, with potential implications for resilience to physical stresses such as predation and wave action.
Collapse
Affiliation(s)
- Vonda J. Cummings
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
| | - Abigail M. Smith
- Department of Marine Science, University of Otago, Dunedin, New Zealand
| | - Peter M. Marriott
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
| | - Bryce A. Peebles
- Department of Marine Science, University of Otago, Dunedin, New Zealand
| | - N. Jane Halliday
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
| |
Collapse
|
28
|
Di G, Li Y, Zhu G, Guo X, Li H, Huang M, Shen M, Ke C. Effects of acidification on the proteome during early development of Babylonia areolata. FEBS Open Bio 2019; 9:1503-1520. [PMID: 31268628 PMCID: PMC6722889 DOI: 10.1002/2211-5463.12695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/24/2019] [Accepted: 07/02/2019] [Indexed: 11/11/2022] Open
Abstract
Increases in atmospheric CO2 partial pressure have lowered seawater pH in marine ecosystems, a process called ocean acidification (OA). The effects of OA during the critical stages of larval development may have disastrous consequences for some marine species, including Babylonia areolata (Link 1807), a commercially important sea snail in China and South East Asia. To investigate how OA affects the proteome of Babylonia areolata, here we used label-free proteomics to study protein changes in response to acidified (pH 7.6) or ambient seawater (pH 8.1) during three larvae developmental stages of B. areolata, namely, the veliger larvae before attachment (E1), veliger larvae after attachment (E2), and carnivorous juvenile snail (E3). In total, we identified 720 proteins. This result suggested that acidification seriously affects late veliger stage after attachment (E2). Further examination of the roles of differentially expressed proteins, which include glutaredoxin, heat-shock protein 70, thioredoxin, catalase, cytochrome-c-oxidase, peroxiredoxin 6, troponin T, CaM kinase II alpha, proteasome subunit N3 and cathepsin L, will be important for understanding the molecular mechanisms underlying pH reduction.
Collapse
Affiliation(s)
- Guilan Di
- College of FisheriesHenan Normal UniversityXinxiangChina
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth SciencesXiamen UniversityXiamenChina
| | - Yanfei Li
- College of FisheriesHenan Normal UniversityXinxiangChina
| | - Guorong Zhu
- College of FisheriesHenan Normal UniversityXinxiangChina
| | - Xiaoyu Guo
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth SciencesXiamen UniversityXiamenChina
| | - Hui Li
- College of FisheriesHenan Normal UniversityXinxiangChina
| | - Miaoqin Huang
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth SciencesXiamen UniversityXiamenChina
| | - Minghui Shen
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth SciencesXiamen UniversityXiamenChina
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental ScienceCollege of Ocean and Earth SciencesXiamen UniversityXiamenChina
| |
Collapse
|
29
|
Bogan SN, McMahon JB, Pechenik JA, Pires A. Legacy of Multiple Stressors: Responses of Gastropod Larvae and Juveniles to Ocean Acidification and Nutrition. THE BIOLOGICAL BULLETIN 2019; 236:159-173. [PMID: 31167086 DOI: 10.1086/702993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ocean acidification poses a significant threat to calcifying invertebrates by negatively influencing shell deposition and growth. An organism's performance under ocean acidification is not determined by the susceptibility of one single life-history stage, nor is it solely controlled by the direct physical consequences of ocean acidification. Shell development by one life-history stage is sometimes a function of the pH or pCO2 levels experienced during earlier developmental stages. Furthermore, environmental factors such as access to nutrition can buffer organismal responses of calcifying invertebrates to ocean acidification, or they can function as a co-occurring stressor when access is low. We reared larvae and juveniles of the planktotrophic marine gastropod Crepidula fornicata through combined treatments of nutritional stress and low pH, and we monitored how multiple stressors endured during the larval stage affected juvenile performance. Shell growth responded non-linearly to decreasing pH, significantly declining between pH 7.6 and pH 7.5 in larvae and juveniles. Larval rearing at pH 7.5 reduced juvenile growth as a carryover effect. Larval rearing at pH 7.6 reduced subsequent juvenile growth despite the absence of a negative impact on larval growth, demonstrating a latent effect. Low larval pH magnified the impact of larval nutritional stress on competence for metamorphosis and increased carryover effects of larval nutrition on juvenile growth. Trans-life-cycle effects of larval nutrition were thus modulated by larval exposure to ocean acidification.
Collapse
|
30
|
Guscelli E, Spicer JI, Calosi P. The importance of inter-individual variation in predicting species' responses to global change drivers. Ecol Evol 2019; 9:4327-4339. [PMID: 31031908 PMCID: PMC6476784 DOI: 10.1002/ece3.4810] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 04/10/2018] [Accepted: 06/15/2018] [Indexed: 11/30/2022] Open
Abstract
Inter-individual variation in phenotypic traits has long been considered as "noise" rather than meaningful phenotypic variation, with biological studies almost exclusively generating and reporting average responses for populations and species' average responses. Here, we compare the use of an individual approach in the investigation of extracellular acid-base regulation by the purple sea urchin Paracentrotus lividus challenged with elevated pCO2 and temperature conditions, with a more traditional approach which generates and formally compares mean values. We detected a high level of inter-individual variation in acid-base regulation parameters both within and between treatments. Comparing individual and mean values for the first (apparent) dissociation constant of the coelomic fluid for individual sea urchins resulted in substantially different (calculated) acid-base parameters, and models with stronger statistical support. While the approach using means showed that coelomic pCO2 was influenced by seawater pCO2 and temperature combined, the individual approach indicated that it was in fact seawater temperature in isolation that had a significant effect on coelomic pCO2. On the other hand, coelomic [HCO3 -] appeared to be primarily affected by seawater pCO2, and less by seawater temperature, irrespective of the approach adopted. As a consequence, we suggest that individual variation in physiological traits needs to be considered, and where appropriate taken into account, in global change biology studies. It could be argued that an approach reliant on mean values is a "procedural error." It produces an artefact, that is, a population's mean phenotype. While this may allow us to conduct relatively simple statistical analyses, it will not in all cases reflect, or take into account, the degree of (physiological) diversity present in natural populations.
Collapse
Affiliation(s)
- Ella Guscelli
- Département de Biologie, Chimie et GéographieUniversité du Québec à RimouskiRimouskiQuébecCanada
- Marine Biology and Ecology Research Centre, School of Biological and Marine SciencesUniversity of PlymouthPlymouthUK
| | - John I. Spicer
- Marine Biology and Ecology Research Centre, School of Biological and Marine SciencesUniversity of PlymouthPlymouthUK
| | - Piero Calosi
- Département de Biologie, Chimie et GéographieUniversité du Québec à RimouskiRimouskiQuébecCanada
- Marine Biology and Ecology Research Centre, School of Biological and Marine SciencesUniversity of PlymouthPlymouthUK
| |
Collapse
|
31
|
Asnaghi V, Collard M, Mangialajo L, Gattuso JP, Dubois P. Bottom-up effects on biomechanical properties of the skeletal plates of the sea urchin Paracentrotus lividus (Lamarck, 1816) in an acidified ocean scenario. MARINE ENVIRONMENTAL RESEARCH 2019; 144:56-61. [PMID: 30591257 DOI: 10.1016/j.marenvres.2018.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/14/2018] [Accepted: 12/15/2018] [Indexed: 06/09/2023]
Abstract
Sea urchins, ecologically important herbivores of shallow subtidal temperate reefs, are considered particularly threatened in a future ocean acidification scenario, since their carbonate structures (skeleton and grazing apparatus) are made up of the very soluble high-magnesium calcite, particularly sensitive to a decrease in pH. The biomechanical properties of their skeletal structures are of great importance for their individual fitness, because the skeleton provides the means for locomotion, grazing and protection from predators. Sea urchin skeleton is composed of discrete calcite plates attached to each other at sutures by organic ligaments. The present study addressed the fate of the sea urchin Paracentrotus lividus (Lamarck, 1816) skeleton in acidified oceans, taking into account the combined effect of reduced pH and macroalgal diet, with potential cascading consequences at the ecosystem level. A breaking test on individual plates of juvenile specimens fed different macroalgal diets has been performed, teasing apart plate strength and stiffness from general robustness. Results showed no direct short-term effect of a decrease in seawater pH nor of the macroalgal diet on single plate mechanical properties. Nevertheless, results from apical plates, the ones presumably formed during the experimental period, provided an indication of a possible diet-mediated response, with sea urchins fed the more calcified macroalga sustaining higher forces before breakage than the one fed the non-calcified algae. This, on the long term, may produce bottom-up effects on sea urchins, leading to potential shifts in the ecosystem equilibrium under an ocean acidified scenario.
Collapse
Affiliation(s)
- Valentina Asnaghi
- Department of Earth, Environment and Life Science, DiSTAV, University of Genoa, Italy.
| | - Marie Collard
- Laboratoire de Biologie marine CP160/15, Université Libre de Bruxelles, Av F.D. Roosevelt, 50, B-1050, Bruxelles, Belgium
| | - Luisa Mangialajo
- Université de Nice-Sophia Antipolis, EA 4228 ECOMERS, Nice, France
| | - Jean-Pierre Gattuso
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, 181 chemin du Lazaret, F 06230, Villefranche-sur-mer, France; Institute for Sustainable Development and International Relations, Sciences Po, 27 rue Saint Guillaume, F75007, Paris, France
| | - Philippe Dubois
- Laboratoire de Biologie marine CP160/15, Université Libre de Bruxelles, Av F.D. Roosevelt, 50, B-1050, Bruxelles, Belgium
| |
Collapse
|
32
|
Effect of CO2–induced ocean acidification on the early development and shell mineralization of the European abalone (Haliotis tuberculata). JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY 2018. [DOI: 10.1016/j.jembe.2018.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
33
|
Campanati C, Dupont S, Williams GA, Thiyagarajan V. Differential sensitivity of larvae to ocean acidification in two interacting mollusc species. MARINE ENVIRONMENTAL RESEARCH 2018; 141:66-74. [PMID: 30115535 DOI: 10.1016/j.marenvres.2018.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 08/03/2018] [Accepted: 08/05/2018] [Indexed: 06/08/2023]
Abstract
Anthropogenically-induced ocean acidification (OA) scenarios of decreased pH and altered carbonate chemistry are threatening the fitness of coastal species and hence near-shore ecosystems' biodiversity. Differential tolerances to OA between species at different trophic levels, for example, may alter species interactions and impact community stability. Here we evaluate the effect of OA on the larval stages of the rock oyster, Saccostrea cucullata, a dominant Indo-Pacific ecosystem engineer, and its key predator, the whelk, Reishia clavigera. pH as low as 7.4 had no significant effect on mortality, abnormality or growth of oyster larvae, whereas whelk larvae exposed to pH 7.4 experienced increased mortality (up to ∼30%), abnormalities (up to 60%) and ∼3 times higher metabolic rates compared to controls. Although these impacts' long-term consequences are yet to be investigated, greater vulnerability of whelk larvae to OA could impact predation rates on intertidal rocky shores, and have implications for subsequent community dynamics.
Collapse
Affiliation(s)
- Camilla Campanati
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Sam Dupont
- Department of Biological and Environmental Sciences, University of Gothenburg, The Sven Lovén Centre for Marine Infrastructure, Kristineberg, Fiskebäckskil, 45178, Sweden
| | - Gray A Williams
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Vengatesen Thiyagarajan
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
34
|
Onitsuka T, Takami H, Muraoka D, Matsumoto Y, Nakatsubo A, Kimura R, Ono T, Nojiri Y. Effects of ocean acidification with pCO 2 diurnal fluctuations on survival and larval shell formation of Ezo abalone, Haliotis discus hannai. MARINE ENVIRONMENTAL RESEARCH 2018; 134:28-36. [PMID: 29289362 DOI: 10.1016/j.marenvres.2017.12.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/13/2017] [Accepted: 12/17/2017] [Indexed: 05/27/2023]
Abstract
This study assessed the effects of constant and diurnally fluctuating pCO2 on development and shell formation of larval abalone Haliotis discus hannai. The larvae was exposed to different pCO2 conditions; constant [450, 800, or 1200 μatm in the first experiment (Exp. I), 450 or 780 μatm in the second experiment (Exp. II)] or diurnally fluctuating pCO2 (800 ± 400 or 1200 ± 400 μatm in Exp. I, 450 ± 80, 780 ± 200 or 780 ± 400 μatm in Exp. II). Mortality, malformation rates or shell length of larval abalone were not significantly different among the 450, 800, and 800 ± 400 μatm pCO2 treatments. Meanwhile, significantly higher malformation rates and smaller shells were detected in the 1200 and 1200 ± 400 μatm pCO2 treatments than in the 450 μatm pCO2 treatment. The negative impacts were greater in the 1200 ± 400 μatm than in the 1200 μatm. Shell length and malformation rate of larval abalone were related with aragonite saturation state (Ω-aragonite) in experimental seawater, and greatly changed around 1.1 of Ω-aragonite which corresponded to 1000-1300 μatm pCO2. These results indicate that there is a pCO2 threshold associated with Ω-aragonite in the seawater, and that pCO2 fluctuations produce additional negative impacts on abalone when above the threshold. Clear relationships were detected between abalone fitness and the integrated pCO2 value over the threshold, indicating that the effects of OA on development and shell formation of larval abalone can be determined by intensity and time of exposure to pCO2 over the threshold.
Collapse
Affiliation(s)
- Toshihiro Onitsuka
- Kushiro Laboratory, Hokkaido National Fisheries Research Institute, Japan Fisheries Research and Education Agency, 116 Katsurakoi, Kushiro, Hokkaido 085-0802, Japan.
| | - Hideki Takami
- Tohoku National Fisheries Research Institute, Japan Fisheries Research and Education Agency, 3-27-5 Shinhama, Shiogama, Miyagi 985-0001, Japan
| | - Daisuke Muraoka
- Miyako Laboratory, Tohoku National Fisheries Research Institute, Japan Fisheries Research and Education Agency, 4-9-1 Sakiyama, Miyako, Iwate 027-0097, Japan
| | - Yukio Matsumoto
- Miyako Laboratory, Tohoku National Fisheries Research Institute, Japan Fisheries Research and Education Agency, 4-9-1 Sakiyama, Miyako, Iwate 027-0097, Japan
| | - Ayumi Nakatsubo
- Faculty of Agriculture, Yamagata University, 5-3 Takasaka, Tsuruoka, Yamagata 997-0369, Japan
| | - Ryo Kimura
- Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-8648, Japan
| | - Tsuneo Ono
- Yokohama Laboratory, National Research Institute of Far Seas Fisheries, Japan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-8648, Japan
| | - Yukihiro Nojiri
- Department of Earth and Environmental Sciences, Hirosaki University, 3 Bunkyocho, Hirosaki, Aomori 036-8560, Japan
| |
Collapse
|
35
|
Hammill E, Johnson E, Atwood TB, Harianto J, Hinchliffe C, Calosi P, Byrne M. Ocean acidification alters zooplankton communities and increases top-down pressure of a cubozoan predator. GLOBAL CHANGE BIOLOGY 2018; 24:e128-e138. [PMID: 28850765 DOI: 10.1111/gcb.13849] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 07/14/2017] [Indexed: 06/07/2023]
Abstract
The composition of local ecological communities is determined by the members of the regional community that are able to survive the abiotic and biotic conditions of a local ecosystem. Anthropogenic activities since the industrial revolution have increased atmospheric CO2 concentrations, which have in turn decreased ocean pH and altered carbonate ion concentrations: so called ocean acidification (OA). Single-species experiments have shown how OA can dramatically affect zooplankton development, physiology and skeletal mineralization status, potentially reducing their defensive function and altering their predatory and antipredatory behaviors. This means that increased OA may indirectly alter the biotic conditions by modifying trophic interactions. We investigated how OA affects the impact of a cubozoan predator on their zooplankton prey, predominantly Copepoda, Pleocyemata, Dendrobranchiata, and Amphipoda. Experimental conditions were set at either current (pCO2 370 μatm) or end-of-the-century OA (pCO2 1,100 μatm) scenarios, crossed in an orthogonal experimental design with the presence/absence of the cubozoan predator Carybdea rastoni. The combined effects of exposure to OA and predation by C. rastoni caused greater shifts in community structure, and greater reductions in the abundance of key taxa than would be predicted from combining the effect of each stressor in isolation. Specifically, we show that in the combined presence of OA and a cubozoan predator, populations of the most abundant member of the zooplankton community (calanoid copepods) were reduced 27% more than it would be predicted based on the effects of these stressors in isolation, suggesting that OA increases the susceptibility of plankton to predation. Our results indicate that the ecological consequences of OA may be greater than predicted from single-species experiments, and highlight the need to understand future marine global change from a community perspective.
Collapse
Affiliation(s)
- Edd Hammill
- Department of Watershed Sciences and the Ecology Center, Utah State University, Logan, UT, USA
- School of Life Sciences, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Ellery Johnson
- School of Life Sciences, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Trisha B Atwood
- Department of Watershed Sciences and the Ecology Center, Utah State University, Logan, UT, USA
| | - Januar Harianto
- Schools of Medical and Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Charles Hinchliffe
- School of Life Sciences, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Piero Calosi
- Département de Biologie Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Québec, Canada
| | - Maria Byrne
- Schools of Medical and Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
36
|
Ordoñez A, Kennedy EV, Diaz-Pulido G. Reduced spore germination explains sensitivity of reef-building algae to climate change stressors. PLoS One 2017; 12:e0189122. [PMID: 29206887 PMCID: PMC5716602 DOI: 10.1371/journal.pone.0189122] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/20/2017] [Indexed: 11/18/2022] Open
Abstract
Reduced seawater pH and changes in carbonate chemistry associated with ocean acidification (OA) decrease the recruitment of crustose coralline algae (CCAcf.), an important coral-reef builder. However, it is unclear whether the observed decline in recruitment is driven by impairment of spore germination, or post-settlement processes (e.g. space competition). To address this, we conducted an experiment using a dominant CCA, Porolithon cf. onkodes to test the independent and combined effects of OA, warming, and irradiance on its germination success and early development. Elevated CO2 negatively affected several processes of spore germination, including formation of the germination disc, initial growth, and germling survival. The magnitude of these effects varied depending on the levels of temperature and irradiance. For example, the combination of high CO2 and high temperature reduced formation of the germination disc, but this effect was independent of irradiance levels, while spore abnormalities increased under high CO2 and high temperature particularly in combination with low irradiance intensity. This study demonstrates that spore germination of CCA is impacted by the independent and interactive effects of OA, increasing seawater temperature and irradiance intensity. For the first time, this provides a mechanism for how the sensitivity of critical early life history processes to global change may drive declines of adult populations of key marine calcifiers.
Collapse
Affiliation(s)
- Alexandra Ordoñez
- Griffith School of Environment and Australian Rivers Institute–Coast & Estuaries, Nathan Campus, Griffith University, Brisbane, Queensland, Australia
| | - Emma V. Kennedy
- Griffith School of Environment and Australian Rivers Institute–Coast & Estuaries, Nathan Campus, Griffith University, Brisbane, Queensland, Australia
| | - Guillermo Diaz-Pulido
- Griffith School of Environment and Australian Rivers Institute–Coast & Estuaries, Nathan Campus, Griffith University, Brisbane, Queensland, Australia
- ARC Centre of Excellence for Coral Reef Studies, Townsville, Queensland, Australia
- * E-mail:
| |
Collapse
|
37
|
O'Leary JK, Barry JP, Gabrielson PW, Rogers-Bennett L, Potts DC, Palumbi SR, Micheli F. Calcifying algae maintain settlement cues to larval abalone following algal exposure to extreme ocean acidification. Sci Rep 2017; 7:5774. [PMID: 28720836 PMCID: PMC5515930 DOI: 10.1038/s41598-017-05502-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/30/2017] [Indexed: 11/22/2022] Open
Abstract
Ocean acidification (OA) increasingly threatens marine systems, and is especially harmful to calcifying organisms. One important question is whether OA will alter species interactions. Crustose coralline algae (CCA) provide space and chemical cues for larval settlement. CCA have shown strongly negative responses to OA in previous studies, including disruption of settlement cues to corals. In California, CCA provide cues for seven species of harvested, threatened, and endangered abalone. We exposed four common CCA genera and a crustose calcifying red algae, Peyssonnelia (collectively CCRA) from California to three pCO2 levels ranging from 419–2,013 µatm for four months. We then evaluated abalone (Haliotis rufescens) settlement under ambient conditions among the CCRA and non-algal controls that had been previously exposed to the pCO2 treatments. Abalone settlement and metamorphosis increased from 11% in the absence of CCRA to 45–69% when CCRA were present, with minor variation among CCRA genera. Though all CCRA genera reduced growth during exposure to increased pCO2, abalone settlement was unaffected by prior CCRA exposure to increased pCO2. Thus, we find no impacts of OA exposure history on CCRA provision of settlement cues. Additionally, there appears to be functional redundancy in genera of CCRA providing cues to abalone, which may further buffer OA effects.
Collapse
Affiliation(s)
- Jennifer K O'Leary
- Hopkins Marine Station, Stanford University, Monterey, Pacific Grove, United States of America. .,California Sea Grant, Department of Biology, California Polytechnic State University, San Luis Obispo, United States of America.
| | - James P Barry
- Monterey Bay Aquarium Research Institute, Moss Landing, California, United States of America
| | - Paul W Gabrielson
- Biology Department, Herbarium, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Laura Rogers-Bennett
- Bodega Marine Laboratory, University of California, Davis, California, United States of America.,California Department of Fish and Wildlife, Marine Region, Bodega Bay, California, United States of America
| | - Donald C Potts
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California, United States of America
| | - Stephen R Palumbi
- Hopkins Marine Station, Stanford University, Monterey, Pacific Grove, United States of America
| | - Fiorenza Micheli
- Hopkins Marine Station, Stanford University, Monterey, Pacific Grove, United States of America
| |
Collapse
|
38
|
Bylenga CH, Cummings VJ, Ryan KG. High resolution microscopy reveals significant impacts of ocean acidification and warming on larval shell development in Laternula elliptica. PLoS One 2017; 12:e0175706. [PMID: 28423059 PMCID: PMC5396886 DOI: 10.1371/journal.pone.0175706] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 03/30/2017] [Indexed: 11/19/2022] Open
Abstract
Environmental stressors impact marine larval growth rates, quality and sizes. Larvae of the Antarctic bivalve, Laternula elliptica, were raised to the D-larvae stage under temperature and pH conditions representing ambient and end of century projections (-1.6°C to +0.4°C and pH 7.98 to 7.65). Previous observations using light microscopy suggested pH had no influence on larval abnormalities in this species. Detailed analysis of the shell using SEM showed that reduced pH is in fact a major stressor during development for this species, producing D-larvae with abnormal shapes, deformed shell edges and irregular hinges, cracked shell surfaces and even uncalcified larvae. Additionally, reduced pH increased pitting and cracking on shell surfaces. Thus, apparently normal larvae may be compromised at the ultrastructural level and these larvae would be in poor condition at settlement, reducing juvenile recruitment and overall survival. Elevated temperatures increased prodissoconch II sizes. However, the overall impacts on larval shell quality and integrity with concurrent ocean acidification would likely overshadow any beneficial results from warmer temperatures, limiting populations of this prevalent Antarctic species.
Collapse
Affiliation(s)
- Christine H. Bylenga
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- * E-mail:
| | - Vonda J. Cummings
- National Institute of Water and Atmospheric Research (NIWA), Wellington, New Zealand
| | - Ken G. Ryan
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
39
|
White CA, Dworjanyn SA, Nichols PD, Mos B, Dempster T. Future aquafeeds may compromise reproductive fitness in a marine invertebrate. MARINE ENVIRONMENTAL RESEARCH 2016; 122:67-75. [PMID: 27686389 DOI: 10.1016/j.marenvres.2016.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 09/15/2016] [Accepted: 09/17/2016] [Indexed: 06/06/2023]
Abstract
Aquaculture of higher trophic level species is increasingly dependent on the use of terrestrial oil products. The input of terrestrially derived n-6 polyunsaturated fatty acids (PUFA) into marine environments has subsequently increased, with unknown consequences for recipient species. We exposed a sea urchin, Heliocidaris erythrogramma to three experimental diets for 78 days: a high n-3 PUFA marine imitation treatment, a high n-6 PUFA "future aquafeed" treatment and an intermediate "current aquafeed" treatment. Female urchins fed the high n-6 PUFA diet produced larvae with lower survival rates than all other treatments. Males fed the high n-6 PUFA diet produced no viable sperm. Fatty acid composition in reproductive material revealed comprehensive biosynthetic and dietary sparing capabilities in H. erythrogramma. Despite this, the ratio of n-6 PUFA to n-3 PUFA in reproductive tissue increased significantly with diet. We suggest alterations to this ratio is the likely mechanism of negative impact on larval development.
Collapse
Affiliation(s)
- Camille A White
- Sustainable Aquaculture Laboratory - Temperate and Tropical, School of BioSciences, University of Melbourne, VIC, 3010, Australia; Oceans and Atmosphere, Food Nutrition and Bio-based Products, Commonwealth Scientific and Industrial Research Organization, Castray Esplanade, Hobart, TAS, 7000, Australia.
| | - Symon A Dworjanyn
- National Marine Science Centre, Southern Cross University, Coffs Harbour, NSW, 2450, Australia
| | - Peter D Nichols
- Oceans and Atmosphere, Food Nutrition and Bio-based Products, Commonwealth Scientific and Industrial Research Organization, Castray Esplanade, Hobart, TAS, 7000, Australia
| | - Benjamin Mos
- National Marine Science Centre, Southern Cross University, Coffs Harbour, NSW, 2450, Australia
| | - Tim Dempster
- Sustainable Aquaculture Laboratory - Temperate and Tropical, School of BioSciences, University of Melbourne, VIC, 3010, Australia
| |
Collapse
|
40
|
Yuan X, Shao S, Yang X, Yang D, Xu Q, Zong H, Liu S. Bioenergetic trade-offs in the sea cucumber Apostichopus japonicus (Echinodermata: Holothuroidea) in response to CO2-driven ocean acidification. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:8453-8461. [PMID: 26782325 DOI: 10.1007/s11356-016-6071-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 01/06/2016] [Indexed: 06/05/2023]
Abstract
Ocean acidification (OA) caused by excessive CO2 is a potential ecological threat to marine organisms. The impacts of OA on echinoderms are well-documented, but there has been a strong bias towards sea urchins, and limited information is available on sea cucumbers. This work examined the effect of medium-term (60 days) exposure to three pH levels (pH 8.06, 7.72, and 7.41, covering present and future pH variability) on the bioenergetic responses of the sea cucumber, Apostichopus japonicus, an ecologically and economically important holothurian in Asian coasts. Results showed that the measured specific growth rate linearly decreased with decreased pH, leading to a 0.42 %·day(-1) decrease at pH 7.41 compared with that at pH 8.06. The impacts of pH on physiological energetics were variable: measured energy consumption and defecation rates linearly decreased with decreased pH, whereas maintenance energy in calculated respiration and excretion were not significantly affected. No shift in energy allocation pattern was observed in A. japonicus upon exposure to pH 7.72 compared with pH 8.06. However, a significant shift in energy budget occurred upon exposure to pH 7.41, leading to decreased energy intake and increased percentage of energy that was lost in feces, thereby resulting in a significantly lowered allocation into somatic growth. These findings indicate that adult A. japonicus is resilient to the OA scenario at the end of the twenty-first century, but further acidification may negatively influence the grazing capability and growth, thereby influencing its ecological functioning as an "ecosystem engineer" and potentially harming its culture output.
Collapse
Affiliation(s)
- Xiutang Yuan
- National Marine Environmental Monitoring Center, State Oceanic Administration, Dalian, 116023, People's Republic of China.
| | - Senlin Shao
- National Marine Environmental Monitoring Center, State Oceanic Administration, Dalian, 116023, People's Republic of China
- Dalian Ocean University, Dalian, 116023, People's Republic of China
| | - Xiaolong Yang
- National Marine Environmental Monitoring Center, State Oceanic Administration, Dalian, 116023, People's Republic of China
- Dalian Ocean University, Dalian, 116023, People's Republic of China
| | - Dazuo Yang
- Dalian Ocean University, Dalian, 116023, People's Republic of China
| | - Qinzeng Xu
- Institute of Oceanology, Chinese Academy of Science, Qingdao, 266071, People's Republic of China
| | - Humin Zong
- National Marine Environmental Monitoring Center, State Oceanic Administration, Dalian, 116023, People's Republic of China
| | - Shilin Liu
- Institute of Oceanology, Chinese Academy of Science, Qingdao, 266071, People's Republic of China
| |
Collapse
|
41
|
Foster T, Falter JL, McCulloch MT, Clode PL. Ocean acidification causes structural deformities in juvenile coral skeletons. SCIENCE ADVANCES 2016; 2:e1501130. [PMID: 26989776 PMCID: PMC4788479 DOI: 10.1126/sciadv.1501130] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/07/2015] [Indexed: 05/06/2023]
Abstract
Rising atmospheric CO2 is causing the oceans to both warm and acidify, which could reduce the calcification rates of corals globally. Successful coral recruitment and high rates of juvenile calcification are critical to the replenishment and ultimate viability of coral reef ecosystems. Although elevated Pco2 (partial pressure of CO2) has been shown to reduce the skeletal weight of coral recruits, the structural changes caused by acidification during initial skeletal deposition are unknown. We show, using high-resolution three-dimensional x-ray microscopy, that ocean acidification (Pco2 ~900 μatm, pH ~7.7) not only causes reduced overall mineral deposition but also a deformed and porous skeletal structure in newly settled coral recruits. In contrast, elevated temperature (+3°C) had little effect on skeletal formation except to partially mitigate the effects of elevated Pco2. The striking structural deformities we observed show that new recruits are at significant risk, being unable to effectively build their skeletons in the Pco2 conditions predicted to occur for open ocean surface waters under a "business-as-usual" emissions scenario [RCP (representative concentration pathway) 8.5] by the year 2100.
Collapse
Affiliation(s)
- Taryn Foster
- UWA School of Earth and Environment, University of Western Australia, Crawley, Western Australia 6009, Australia
- UWA Oceans Institute, University of Western Australia, Crawley, Western Australia 6009, Australia
- ARC Centre of Excellence for Coral Reef Studies, University of Western Australia, Crawley, Western Australia 6009, Australia
- Corresponding author. E-mail:
| | - James L. Falter
- UWA School of Earth and Environment, University of Western Australia, Crawley, Western Australia 6009, Australia
- UWA Oceans Institute, University of Western Australia, Crawley, Western Australia 6009, Australia
- ARC Centre of Excellence for Coral Reef Studies, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Malcolm T. McCulloch
- UWA School of Earth and Environment, University of Western Australia, Crawley, Western Australia 6009, Australia
- UWA Oceans Institute, University of Western Australia, Crawley, Western Australia 6009, Australia
- ARC Centre of Excellence for Coral Reef Studies, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Peta L. Clode
- UWA Oceans Institute, University of Western Australia, Crawley, Western Australia 6009, Australia
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Crawley, Western Australia 6009, Australia
| |
Collapse
|
42
|
Li C, Meng Y, He C, Chan VBS, Yao H, Thiyagarajan V. Mechanical robustness of the calcareous tubeworm Hydroides elegans: warming mitigates the adverse effects of ocean acidification. BIOFOULING 2016; 32:191-204. [PMID: 26820060 DOI: 10.1080/08927014.2015.1129532] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 12/01/2015] [Indexed: 06/05/2023]
Abstract
Development of antifouling strategies requires knowledge of how fouling organisms would respond to climate change associated environmental stressors. Here, a calcareous tube built by the tubeworm, Hydroides elegans, was used as an example to evaluate the individual and interactive effects of ocean acidification (OA), warming and reduced salinity on the mechanical properties of a tube. Tubeworms produce a mechanically weaker tube with less resistance to simulated predator attack under OA (pH 7.8). Warming (29°C) increased tube volume, tube mineral density and the tube's resistance to a simulated predatory attack. A weakening effect by OA did not make the removal of tubeworms easier except for the earliest stage, in which warming had the least effect. Reduced salinity (27 psu) did not affect tubes. This study showed that both mechanical analysis and computational modeling can be integrated with biofouling research to provide insights into how fouling communities might develop in future ocean conditions.
Collapse
Affiliation(s)
- Chaoyi Li
- a The Swire Institute of Marine Sciences and School of Biological Sciences , The University of Hong Kong , Hong Kong SAR , China
| | - Yuan Meng
- a The Swire Institute of Marine Sciences and School of Biological Sciences , The University of Hong Kong , Hong Kong SAR , China
| | - Chong He
- b Department of Mechanical Engineering , The Hong Kong Polytechnic University , Hong Kong SAR , China
| | - Vera B S Chan
- c Department of Biological Sciences , University of Clemson , Clemson , SC , USA
| | - Haimin Yao
- b Department of Mechanical Engineering , The Hong Kong Polytechnic University , Hong Kong SAR , China
| | - V Thiyagarajan
- a The Swire Institute of Marine Sciences and School of Biological Sciences , The University of Hong Kong , Hong Kong SAR , China
| |
Collapse
|
43
|
Harney E, Artigaud S, Le Souchu P, Miner P, Corporeau C, Essid H, Pichereau V, Nunes FLD. Non-additive effects of ocean acidification in combination with warming on the larval proteome of the Pacific oyster, Crassostrea gigas. J Proteomics 2015; 135:151-161. [PMID: 26657130 DOI: 10.1016/j.jprot.2015.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/26/2015] [Accepted: 12/01/2015] [Indexed: 11/17/2022]
Abstract
UNLABELLED Increasing atmospheric carbon dioxide results in ocean acidification and warming, significantly impacting marine invertebrate larvae development. We investigated how ocean acidification in combination with warming affected D-veliger larvae of the Pacific oyster Crassostrea gigas. Larvae were reared for 40h under either control (pH8.1, 20 °C), acidified (pH7.9, 20 °C), warm (pH8.1, 22 °C) or warm acidified (pH7.9, 22 °C) conditions. Larvae in acidified conditions were significantly smaller than in the control, but warm acidified conditions mitigated negative effects on size, and increased calcification. A proteomic approach employing two-dimensional electrophoresis (2-DE) was used to quantify proteins and relate their abundance to phenotypic traits. In total 12 differentially abundant spots were identified by nano-liquid chromatography-tandem mass spectrometry. These proteins had roles in metabolism, intra- and extra-cellular matrix formations, stress response, and as molecular chaperones. Seven spots responded to reduced pH, four to increased temperature, and six to acidification and warming. Reduced abundance of proteins such as ATP synthase and GAPDH, and increased abundance of superoxide dismutase, occurred when both pH and temperature changes were imposed, suggesting altered metabolism and enhanced oxidative stress. These results identify key proteins that may be involved in the acclimation of C. gigas larvae to ocean acidification and warming. SIGNIFICANCE Increasing atmospheric CO2 raises sea surface temperatures and results in ocean acidification, two climatic variables known to impact marine organisms. Larvae of calcifying species may be particularly at risk to such changing environmental conditions. The Pacific oyster Crassostrea gigas is ecologically and commercially important, and understanding its ability to acclimate to climate change will help to predict how aquaculture of this species is likely to be impacted. Modest, yet realistic changes in pH and/or temperature may be more informative of how populations will respond to contemporary climate change. We showed that concurrent acidification and warming mitigates the negative effects of pH alone on size of larvae, but proteomic analysis reveals altered patterns of metabolism and an increase in oxidative stress suggesting non-additive effects of the interaction between pH and temperature on protein abundance. Thus, even small changes in climate may influence development, with potential consequences later in life.
Collapse
Affiliation(s)
- Ewan Harney
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/Ifremer, Institut Universitaire Européen de la Mer, University of Brest (UBO), Université Européenne de Bretagne (UEB), Place Nicolas Copernic, 29280 Plouzané, France.
| | - Sébastien Artigaud
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/Ifremer, Institut Universitaire Européen de la Mer, University of Brest (UBO), Université Européenne de Bretagne (UEB), Place Nicolas Copernic, 29280 Plouzané, France
| | - Pierrick Le Souchu
- Ifremer, Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/Ifremer, Centre Bretagne Z.I. Pointe du Diable, 29280 Plouzané, France
| | - Philippe Miner
- Ifremer, Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/Ifremer, Centre Bretagne Z.I. Pointe du Diable, 29280 Plouzané, France
| | - Charlotte Corporeau
- Ifremer, Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/Ifremer, Centre Bretagne Z.I. Pointe du Diable, 29280 Plouzané, France
| | - Hafida Essid
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/Ifremer, Institut Universitaire Européen de la Mer, University of Brest (UBO), Université Européenne de Bretagne (UEB), Place Nicolas Copernic, 29280 Plouzané, France
| | - Vianney Pichereau
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/Ifremer, Institut Universitaire Européen de la Mer, University of Brest (UBO), Université Européenne de Bretagne (UEB), Place Nicolas Copernic, 29280 Plouzané, France
| | - Flavia L D Nunes
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/Ifremer, Institut Universitaire Européen de la Mer, University of Brest (UBO), Université Européenne de Bretagne (UEB), Place Nicolas Copernic, 29280 Plouzané, France
| |
Collapse
|
44
|
Evans TG, Padilla-Gamiño JL, Kelly MW, Pespeni MH, Chan F, Menge BA, Gaylord B, Hill TM, Russell AD, Palumbi SR, Sanford E, Hofmann GE. Ocean acidification research in the 'post-genomic' era: Roadmaps from the purple sea urchin Strongylocentrotus purpuratus. Comp Biochem Physiol A Mol Integr Physiol 2015; 185:33-42. [PMID: 25773301 DOI: 10.1016/j.cbpa.2015.03.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/07/2015] [Accepted: 03/08/2015] [Indexed: 01/26/2023]
Abstract
Advances in nucleic acid sequencing technology are removing obstacles that historically prevented use of genomics within ocean change biology. As one of the first marine calcifiers to have its genome sequenced, purple sea urchins (Strongylocentrotus purpuratus) have been the subject of early research exploring genomic responses to ocean acidification, work that points to future experiments and illustrates the value of expanding genomic resources to other marine organisms in this new 'post-genomic' era. This review presents case studies of S. purpuratus demonstrating the ability of genomic experiments to address major knowledge gaps within ocean acidification. Ocean acidification research has focused largely on species vulnerability, and studies exploring mechanistic bases of tolerance toward low pH seawater are comparatively few. Transcriptomic responses to high pCO₂ seawater in a population of urchins already encountering low pH conditions have cast light on traits required for success in future oceans. Secondly, there is relatively little information on whether marine organisms possess the capacity to adapt to oceans progressively decreasing in pH. Genomics offers powerful methods to investigate evolutionary responses to ocean acidification and recent work in S. purpuratus has identified genes under selection in acidified seawater. Finally, relatively few ocean acidification experiments investigate how shifts in seawater pH combine with other environmental factors to influence organism performance. In S. purpuratus, transcriptomics has provided insight into physiological responses of urchins exposed simultaneously to warmer and more acidic seawater. Collectively, these data support that similar breakthroughs will occur as genomic resources are developed for other marine species.
Collapse
Affiliation(s)
- Tyler G Evans
- Department of Biological Sciences, California State University East Bay, Hayward, CA 94542, USA.
| | | | - Morgan W Kelly
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Melissa H Pespeni
- Department of Biology, University of Vermont, Burlington, VT 05405, USA
| | - Francis Chan
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331-2914, USA
| | - Bruce A Menge
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331-2914, USA
| | - Brian Gaylord
- Department of Evolution and Ecology and Bodega Marine Laboratory, University of California Davis, Bodega Bay, CA 94923, USA
| | - Tessa M Hill
- Department of Geology and Bodega Marine Laboratory, University of California Davis, Bodega Bay, CA 94923, USA
| | - Ann D Russell
- Department of Geology, University of California Davis, Davis, CA 95616, USA
| | - Stephen R Palumbi
- Department of Biology, Stanford University, Hopkins Marine Station, Pacific Grove, CA 93950, USA
| | - Eric Sanford
- Department of Evolution and Ecology and Bodega Marine Laboratory, University of California Davis, Bodega Bay, CA 94923, USA
| | - Gretchen E Hofmann
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106-9620, USA
| |
Collapse
|
45
|
Hardy NA, Byrne M. Early development of congeneric sea urchins (Heliocidaris) with contrasting life history modes in a warming and high CO2 ocean. MARINE ENVIRONMENTAL RESEARCH 2014; 102:78-87. [PMID: 25115741 DOI: 10.1016/j.marenvres.2014.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 07/09/2014] [Accepted: 07/10/2014] [Indexed: 06/03/2023]
Abstract
The impacts of ocean change stressors - warming and acidification - on marine invertebrate development have emerged as a significant impact of global change. We investigated the response of early development to the larval stage in sympatric, congeneric sea urchins, Heliocidaris tuberculata and Heliocidaris erythrogramma with contrasting modes of development to ocean warming and acidification. Effects of these stressors were assessed by quantifying the percentage of normal development during the first 24 h post fertilization, in cross-factorial experiments that included three temperature treatments (control: 20 °C; +4: 24 °C; +6: 26 °C) and four pHNIST levels (control: 8.2; -0.4: 7.8; -0.6: 7.6; -0.8: 0.4). The experimental treatments were designed in context with present day and near-future (∼2100) conditions for the southeast Australia global warming hotspot. Temperature was the most important factor affecting development of both species causing faster progression through developmental stages as well as a decrease in the percentage of normal development. H. erythrogramma embryos were less tolerant of increased temperature than those of H. tuberculata. Acidification impaired development to the larval stage in H. tuberculata, but this was not the case for H. erythrogramma. Thus, outcomes for the planktonic life phase of the two Heliocidaris species in response to ocean warming and acidification will differ. As shown for these species, single-stressor temperature or acidification studies can be misleading with respect to determining species' vulnerability and responses to global change.
Collapse
Affiliation(s)
- Natasha A Hardy
- School of Medical Sciences, University of Sydney, NSW 2006, Australia.
| | - Maria Byrne
- School of Medical Sciences, University of Sydney, NSW 2006, Australia; School of Biological Sciences, University of Sydney, NSW 2006, Australia
| |
Collapse
|
46
|
Cripps G, Lindeque P, Flynn KJ. Have we been underestimating the effects of ocean acidification in zooplankton? GLOBAL CHANGE BIOLOGY 2014; 20:3377-85. [PMID: 24782283 DOI: 10.1111/gcb.12582] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 03/16/2014] [Indexed: 05/26/2023]
Abstract
Understanding how copepods may respond to ocean acidification (OA) is critical for risk assessments of ocean ecology and biogeochemistry. The perception that copepods are insensitive to OA is largely based on experiments with adult females. Their apparent resilience to increased carbon dioxide (pCO2 ) concentrations has supported the view that copepods are 'winners' under OA. Here, we show that this conclusion is not robust, that sensitivity across different life stages is significantly misrepresented by studies solely using adult females. Stage-specific responses to pCO2 (385-6000 μatm) were studied across different life stages of a calanoid copepod, monitoring for lethal and sublethal responses. Mortality rates varied significantly across the different life stages, with nauplii showing the highest lethal effects; nauplii mortality rates increased threefold when pCO2 concentrations reached 1000 μatm (year 2100 scenario) with LC50 at 1084 μatm pCO2 . In comparison, eggs, early copepodite stages, and adult males and females were not affected lethally until pCO2 concentrations ≥3000 μatm. Adverse effects on reproduction were found, with >35% decline in nauplii recruitment at 1000 μatm pCO2 . This suppression of reproductive scope, coupled with the decreased survival of early stage progeny at this pCO2 concentration, has clear potential to damage population growth dynamics in this species. The disparity in responses seen across the different developmental stages emphasizes the need for a holistic life-cycle approach to make species-level projections to climate change. Significant misrepresentation and error propagation can develop from studies which attempt to project outcomes to future OA conditions solely based on single life history stage exposures.
Collapse
Affiliation(s)
- Gemma Cripps
- Centre of Sustainable Aquatic Research (CSAR), Swansea University, Swansea, SA2 8PP, UK; Plymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth, PL1 3DH, UK
| | | | | |
Collapse
|
47
|
Evans TG, Watson-Wynn P. Effects of seawater acidification on gene expression: resolving broader-scale trends in sea urchins. THE BIOLOGICAL BULLETIN 2014; 226:237-254. [PMID: 25070868 DOI: 10.1086/bblv226n3p237] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Sea urchins are ecologically and economically important calcifying organisms threatened by acidification of the global ocean caused by anthropogenic CO2 emissions. Propelled by the sequencing of the purple sea urchin (Strongylocentrotus purpuratus) genome, profiling changes in gene expression during exposure to high pCO2 seawater has emerged as a powerful and increasingly common method to infer the response of urchins to ocean change. However, analyses of gene expression are sensitive to experimental methodology, and comparisons between studies of genes regulated by ocean acidification are most often made in the context of major caveats. Here we perform meta-analyses as a means of minimizing experimental discrepancies and resolving broader-scale trends regarding the effects of ocean acidification on gene expression in urchins. Analyses across eight studies and four urchin species largely support prevailing hypotheses about the impact of ocean acidification on marine calcifiers. The predominant expression pattern involved the down-regulation of genes within energy-producing pathways, a clear indication of metabolic depression. Genes with functions in ion transport were significantly over-represented and are most plausibly contributing to intracellular pH regulation. Expression profiles provided extensive evidence for an impact on biomineralization, epitomized by the down-regulation of seven spicule matrix proteins. In contrast, expression profiles provided limited evidence for CO2-mediated developmental delay or induction of a cellular stress response. Congruence between studies of gene expression and the ocean acidification literature in general validates the accuracy of gene expression in predicting the consequences of ocean change and justifies its continued use in future studies.
Collapse
Affiliation(s)
- Tyler G Evans
- Department of Biological Sciences, California State University East Bay, Hayward, California 94542
| | - Priscilla Watson-Wynn
- Department of Biological Sciences, California State University East Bay, Hayward, California 94542
| |
Collapse
|
48
|
Scanes E, Parker LM, O’Connor WA, Ross PM. Mixed effects of elevated pCO2 on fertilisation, larval and juvenile development and adult responses in the mobile subtidal scallop Mimachlamys asperrima (Lamarck, 1819). PLoS One 2014; 9:e93649. [PMID: 24733125 PMCID: PMC3986052 DOI: 10.1371/journal.pone.0093649] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 03/08/2014] [Indexed: 11/19/2022] Open
Abstract
Ocean acidification is predicted to have severe consequences for calcifying marine organisms especially molluscs. Recent studies, however, have found that molluscs in marine environments with naturally elevated or fluctuating CO2 or with an active, high metabolic rate lifestyle may have a capacity to acclimate and be resilient to exposures of elevated environmental pCO2. The aim of this study was to determine the effects of near future concentrations of elevated pCO2 on the larval and adult stages of the mobile doughboy scallop, Mimachlamys asperrima from a subtidal and stable physio-chemical environment. It was found that fertilisation and the shell length of early larval stages of M. asperrima decreased as pCO2 increased, however, there were less pronounced effects of elevated pCO2 on the shell length of later larval stages, with high pCO2 enhancing growth in some instances. Byssal attachment and condition index of adult M. asperrima decreased with elevated pCO2, while in contrast there was no effect on standard metabolic rate or pHe. The responses of larval and adult M. asperrima to elevated pCO2 measured in this study were more moderate than responses previously reported for intertidal oysters and mussels. Even this more moderate set of responses are still likely to reduce the abundance of M. asperrima and potentially other scallop species in the world's oceans at predicted future pCO2 levels.
Collapse
Affiliation(s)
- Elliot Scanes
- School of Science and Health, University of Western Sydney, Sydney, New South Wales, Australia
| | - Laura M. Parker
- School of Science and Health, University of Western Sydney, Sydney, New South Wales, Australia
| | - Wayne A. O’Connor
- Industry and Investment NSW, Port Stephens Fisheries Institute, Taylors Beach, New South Wales, Australia
| | - Pauline M. Ross
- School of Science and Health, University of Western Sydney, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
49
|
Kapsenberg L, Hofmann GE. Signals of resilience to ocean change: high thermal tolerance of early stage Antarctic sea urchins (Sterechinus neumayeri) reared under present-day and future pCO2 and temperature. Polar Biol 2014. [DOI: 10.1007/s00300-014-1494-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Does encapsulation protect embryos from the effects of ocean acidification? The example of Crepidula fornicata. PLoS One 2014; 9:e93021. [PMID: 24671195 PMCID: PMC3966861 DOI: 10.1371/journal.pone.0093021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 02/27/2014] [Indexed: 11/20/2022] Open
Abstract
Early life history stages of marine organisms are generally thought to be more sensitive to environmental stress than adults. Although most marine invertebrates are broadcast spawners, some species are brooders and/or protect their embryos in egg or capsules. Brooding and encapsulation strategies are typically assumed to confer greater safety and protection to embryos, although little is known about the physico-chemical conditions within egg capsules. In the context of ocean acidification, the protective role of encapsulation remains to be investigated. To address this issue, we conducted experiments on the gastropod Crepidula fornicata. This species broods its embryos within capsules located under the female and veliger larvae are released directly into the water column. C. fornicata adults were reared at the current level of CO2 partial pressure (pCO2) (390 μatm) and at elevated levels (750 and 1400 μatm) before and after fertilization and until larval release, such that larval development occurred entirely at a given pCO2. The pCO2 effects on shell morphology, the frequency of abnormalities and mineralization level were investigated on released larvae. Shell length decreased by 6% and shell surface area by 11% at elevated pCO2 (1400 μatm). The percentage of abnormalities was 1.5- to 4-fold higher at 750 μatm and 1400 μatm pCO2, respectively, than at 390 μatm. The intensity of birefringence, used as a proxy for the mineralization level of the larval shell, also decreased with increasing pCO2. These negative results are likely explained by increased intracapsular acidosis due to elevated pCO2 in extracapsular seawater. The encapsulation of C. fornicata embryos did not protect them against the deleterious effects of a predicted pCO2 increase. Nevertheless, C. fornicata larvae seemed less affected than other mollusk species. Further studies are needed to identify the critical points of the life cycle in this species in light of future ocean acidification.
Collapse
|