1
|
Bellows E, Heatley M, Shah N, Archer N, Giles T, Fray R. Comparative transcriptome reprogramming in oak galls containing asexual or sexual generations of gall wasps. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:798-810. [PMID: 38864838 DOI: 10.1111/plb.13670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/07/2024] [Indexed: 06/13/2024]
Abstract
Oak gall wasps have evolved strategies to manipulate the developmental pathways of their host to induce gall formation. This provides shelter and nutrients for the developing larva. Galls are entirely host tissue; however, the initiation, development, and physical appearance are controlled by the inducer. The underlying molecular mechanisms of gall formation, by which one or a small number of cells are reprogrammed and commit to a novel developmental path, are poorly understood. In this study, we sought a deeper insight into the molecular underpinnings of this process. Oak gall wasps have two generations each year, one sexual, and one asexual. Galls formed by these two generations exhibit a markedly different appearance. We sequenced transcriptomes of both the asexual and sexual generations of Neuroterus quercusbaccarum and Neuroterus numismalis. We then deployed Nanopore sequencing to generate long-read sequences to test the hypothesis that gall wasps introduce DNA insertions to determine gall development. We detected potential genome rearrangements but did not uncover any non-host DNA insertions. Transcriptome analysis revealed that transcriptomes of the sexual generations of distinct species of wasp are more similar than inter-generational comparisons from the same species of wasp. Our results highlight the intricate interplay between the host leaves and gall development, suggesting that season and requirements of the gall structure play a larger role than species in controlling gall development and structure.
Collapse
Affiliation(s)
- E Bellows
- School of Biosciences, The University of Nottingham, Nottingham, UK
| | - M Heatley
- Advanced Data Analysis Centre, The University of Nottingham, Nottingham, UK
| | - N Shah
- Advanced Data Analysis Centre, The University of Nottingham, Nottingham, UK
| | - N Archer
- School of Veterinary Medicine and Science, The University of Nottingham, Nottingham, UK
| | - T Giles
- Advanced Data Analysis Centre, The University of Nottingham, Nottingham, UK
| | - R Fray
- School of Biosciences, The University of Nottingham, Nottingham, UK
| |
Collapse
|
2
|
Hookabe N, Ueshima R, Miura T. Postembryonic development and lifestyle shift in the commensal ribbon worm. Front Zool 2024; 21:13. [PMID: 38711088 DOI: 10.1186/s12983-024-00533-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/09/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Various morphological adaptations are associated with symbiotic relationships between organisms. One such adaptation is seen in the nemertean genus Malacobdella. All species in the genus are commensals of molluscan hosts, attaching to the surface of host mantles with a terminal sucker. Malacobdella possesses several unique characteristics within the order Monostilifera, exhibiting the terminal sucker and the absence of eyes and apical/cerebral organs, which are related to their adaptation to a commensal lifestyle. Nevertheless, the developmental processes that give rise to these morphological characteristics during their transition from free-living larvae to commensal adults remain uncertain. RESULTS In the present study, therefore, we visualized the developmental processes of the internal morphologies during postembryonic larval stages using fluorescent molecular markers. We demonstrated the developmental processes, including the formation of the sucker primordium and the functional sucker. Furthermore, our data revealed that sensory organs, including apical/cerebral organs, formed in embryonic and early postembryonic stages but degenerated in the late postembryonic stage prior to settlement within their host using a terminal sucker. CONCLUSIONS This study reveals the formation of the terminal sucker through tissue invagination, shedding light on its adhesion mechanism. Sucker muscle development likely originates from body wall muscles. Notably, M. japonica exhibits negative phototaxis despite lacking larval ocelli. This observation suggests a potential role for other sensory mechanisms, such as the apical and cerebral organs identified in the larvae, in facilitating settlement and adhesive behaviors. The loss of sensory organs during larval development might reflect a transition from planktonic feeding to a stable, host-associated lifestyle. This study also emphasizes the need for further studies to explore the phylogenetic relationships within the infraorder Amphiporiina and investigate the postembryonic development of neuromuscular systems in closely related taxa to gain a more comprehensive understanding of ecological adaptations in Nemertea.
Collapse
Affiliation(s)
- Natsumi Hookabe
- Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, 237-0061, Japan.
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan.
| | - Rei Ueshima
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Toru Miura
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Miura, Kanagawa, 238-0225, Japan
| |
Collapse
|
3
|
Guo W, Song Y, Chen H, Li X. Dietary potential of the symbiotic fungus Penicillium herquei for the larvae of a nonsocial fungus-cultivating weevil Euops chinensis. Appl Environ Microbiol 2024; 90:e0153723. [PMID: 38445862 PMCID: PMC11022562 DOI: 10.1128/aem.01537-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/06/2024] [Indexed: 03/07/2024] Open
Abstract
Many insect taxa cultivate fungi for food. Compared to well-known fungus cultivation in social insects, our knowledge on fungus cultivation in nonsocial insects is still limited. Here, we studied the nutritional potentials of the fungal cultivar, Penicillium herquei, for the larvae of its nonsocial insect farmer, Euops chinensis, a specialist on Japanese knotweed Reynoutria japonica. Overall, fungal hyphae and leaf rolls contained significantly higher carbon (C), stable isotopes of C (δ13C), and nitrogen (δ15N) but significantly lower C/N ratios compared to unrolled leaves, whereas insect bodies contained significantly higher N contents but lower C and C/N ratios compared to other types of samples. The MixSIAR model indicated that fungal hyphae contributed a larger proportion (0.626-0.797) to the diet of E. chinensis larvae than leaf materials. The levels of ergosterol, six essential amino acids, seven nonessential amino acids, and three B vitamins tested in fungal hyphae and/or leaf rolls were significantly higher than in unrolled leaves and/or larvae. The P. herquei genome contains the complete set of genes required for the biosynthesis of ergosterol, the essential amino acids valine and threonine, nine nonessential amino acids, and vitamins B2 and B3, whereas some genes associated with five essential and one nonessential amino acid were lost in the P. herquei genome. These suggest that P. herquei is capable of providing the E. chinensis larvae food with ergosterol, amino acids, and B vitamins. P. herquei appears to be able to synthesize or concentrate these nutrients considering that they were specifically concentrated in fungal hyphae. IMPORTANCE The cultivation of fungi for food has occurred across divergent insect lineages such as social ants, termites, and ambrosia beetles, as well as some seldom-reported solitary insects. Although the fungal cultivars of these insects have been studied for decades, the dietary potential of fungal cultivars for their hosts (especially for those nonsocial insects) is largely unknown. Our research on the mutualistic system Euops chinensis-Penicillium herquei represents an example of the diverse nutritional potentials of the fungal cultivar P. herquei in the diet of the larvae of its solitary host, E. chinensis. These results demonstrate that P. herquei has the potential to synthesize or concentrate ergosterol, amino acids, and B vitamins and benefits the larvae of E. chinensis. Our findings would shed light on poorly understood fungal cultivation mutualisms in nonsocial insects and underscore the nutritional importance of fungal cultivars in fungal cultivation mutualisms.
Collapse
Affiliation(s)
- Wenfeng Guo
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, China
- Guangxi Crop Genetic Improvement and Biotechnology Lab, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Yu Song
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, China
| | - Hu Chen
- Wuhan Benagen Technology Co., Ltd, Wuhan, Hubei, China
| | - Xiaoqiong Li
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
4
|
de Gier W, Helleman P, van den Oever J, Fransen CHJM. Ecomorphological convergence in the walking leg dactyli of two clades of ascidian- and mollusc-associated shrimps (Decapoda: Caridea: Palaemonidae). Ecol Evol 2023; 13:e10768. [PMID: 38125954 PMCID: PMC10731117 DOI: 10.1002/ece3.10768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/03/2023] [Accepted: 11/10/2023] [Indexed: 12/23/2023] Open
Abstract
Symbiotic species, living within or on the surface of host organisms, may evolve a wide range of adaptations as a result of various selection pressures, host specificity of the symbiont and the nature of the symbiosis. In tropical marine coral reef ecosystems, palaemonid shrimps (Crustacea: Decapoda: Caridea) live in association with at least five different invertebrate phyla. Host switches between (distantly) related host groups, and the thereby associated selection pressures were found to play a major role in the diversification of these shrimp lineages, giving rise to various host-specific adaptations. Two lineages of palaemonid shrimp, which have switched from an ectosymbiotic association towards endosymbiosis, are studied for their morphological diversification and possible convergence. Special attention is given to the between-phyla host switches involving ascidian and bivalve hosts, which are characteristic for these lineages. Using landmark-based (phylo)morphospace analyses and Scanning Electron Microscopy, the walking leg dactylus shape and the microstructures on these dactyli are studied. No specific bivalve- or ascidian-associated morphotypes were found, but morphological convergence in dactylus morphology was found in various species within the two studied clades with similar host groups. In addition, multiple lineages of bivalve-associated species appear to be morphologically diverging more than their ascidian-associated relatives, with 'intermediate' morphotypes found near host-switching events.
Collapse
Affiliation(s)
- Werner de Gier
- Naturalis Biodiversity CenterLeidenThe Netherlands
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Pepijn Helleman
- Naturalis Biodiversity CenterLeidenThe Netherlands
- Institute of Biology LeidenLeiden UniversityLeidenThe Netherlands
| | - Jurriaan van den Oever
- Naturalis Biodiversity CenterLeidenThe Netherlands
- Institute of Biology LeidenLeiden UniversityLeidenThe Netherlands
| | | |
Collapse
|
5
|
Sun Y, Chen J, Ye Y, Xu K, Li J. Comparison of Mitochondrial Genome Sequences between Two Palaemon Species of the Family Palaemonidae (Decapoda: Caridea): Gene Rearrangement and Phylogenetic Implications. Genes (Basel) 2023; 14:1499. [PMID: 37510403 PMCID: PMC10379425 DOI: 10.3390/genes14071499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
To further understand the origin and evolution of Palaemonidae (Decapoda: Caridea), we determined the mitochondrial genome sequence of Palaemon macrodactylus and Palaemon tenuidactylus. The entire mitochondrial genome sequences of these two Palaemon species encompassed 37 typical genes, including 13 protein-coding genes (PCGs), 2 ribosomal RNA genes (rRNAs), and 22 transfer RNA genes (tRNAs), and a control region (CR). The lengths of their mitochondrial genomes were 15,744 bp (P. macrodactylus) and 15,735 bp (P. tenuidactylus), respectively. We analyzed their genomic features and structural functions. In comparison with the ancestral Decapoda, these two newly sequenced Palaemon species exhibited a translocation event, where the gene order was trnK-trnD instead of trnD-trnK. Based on phylogenetic analysis constructed from 13 PCGs, the 12 families from Caridea can be divided into four major clades. Furthermore, it was revealed that Alpheidae and Palaemonidae formed sister groups, supporting the monophyly of various families within Caridea. These findings highlight the significant gene rearrangements within Palaemonidae and provide valuable evidence for the phylogenetic relationships within Caridea.
Collapse
Affiliation(s)
- Yuman Sun
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jian Chen
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yingying Ye
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Kaida Xu
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Scientific Observing and Experimental Station of Fishery Resources for Key Fishing Grounds, Ministry of Agriculture and Rural Affairs of China, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China
| | - Jiji Li
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
6
|
Koide RT. On Holobionts, Holospecies, and Holoniches: the Role of Microbial Symbioses in Ecology and Evolution. MICROBIAL ECOLOGY 2023; 85:1143-1149. [PMID: 35396623 PMCID: PMC10167095 DOI: 10.1007/s00248-022-02005-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/29/2022] [Indexed: 05/10/2023]
Abstract
My goal in writing this is to increase awareness of the roles played by microbial symbionts in eukaryote ecology and evolution. Most eukaryotes host one or more species of symbiotic microorganisms, including prokaryotes and fungi. Many of these have profound impacts on the biology of their hosts. For example, microbial symbionts may expand the niches of their hosts, cause rapid adaptation of the host to the environment and re-adaptation to novel conditions via symbiont swapping, facilitate speciation, and fundamentally alter our concept of the species. In some cases, microbial symbionts and multicellular eukaryote hosts have a mutual dependency, which has obvious conservation implications. Hopefully, this contribution will stimulate a reevaluation of important ecological and evolutionary concepts including niche, adaptation, the species, speciation, and conservation of multicellular eukaryotes.
Collapse
Affiliation(s)
- Roger T Koide
- Department of Biology, Brigham Young University, Provo, UT, 84602, USA.
| |
Collapse
|
7
|
Miyokawa R, Hanada M, Togawa Y, Itoh TQ, Kobayakawa Y, Kusumi J. Symbiont specificity differs among green hydra strains. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220789. [PMID: 36312570 PMCID: PMC9554523 DOI: 10.1098/rsos.220789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
The symbiotic hydra Hydra viridissima has a stable symbiotic relationship with the green alga Chlorella. This hydra appears to cospeciate with the symbiotic alga, and some strains are known to have strain-specific host/symbiont combinations. To investigate the mechanism of the specificity between host and symbiont, we explored the effect of the removal or exchange of symbionts in two distantly related H. viridissima strains (K10 and M9). In the K10 strain, severe morphological and behavioural changes were found in symbiont-removed and symbiont-exchanged polyps. Interestingly, both polyps showed a similar gene expression pattern. The gene ontology (GO) enrichment analysis revealed that the removal or exchange of symbionts caused the downregulation of genes involved in the electron transport chain and the upregulation of genes involved in translation in the K10 strain. On the other hand, symbiont-removed and symbiont-exchanged M9 polyps showed modest changes in their morphology and behaviour compared with the K10 strain. Furthermore, the patterns of the gene expression changes in the M9 strain were quite different between the symbiont-removed and symbiont-exchanged polyps. Our results suggested that the regulation of energy balance is one of the crucial mechanisms for maintaining symbiotic relationships in green hydra, and this mechanism differs between the strains.
Collapse
Affiliation(s)
- Ryo Miyokawa
- Graduate School of Integrated Science for Global Society, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Maki Hanada
- Graduate School of Systems Life Science, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yumiko Togawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Ten-noudai, Tsukuba, Ibaraki 305-8572, Japan
| | - Taichi Q. Itoh
- Faculty of Arts and Science, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshitaka Kobayakawa
- Faculty of Arts and Science, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Junko Kusumi
- Department of Environmental Changes, Faculty of Social and Cultural Studies, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
8
|
Chakraborty A, Mori B, Rehermann G, Garcia AH, Lemmen‐Lechelt J, Hagman A, Khalil S, Håkansson S, Witzgall P, Becher PG. Yeast and fruit fly mutual niche construction and antagonism against mould. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amrita Chakraborty
- Department of Plant Protection Biology Swedish University of Agricultural Sciences Box 102 23053 Alnarp Sweden
- EVA 4.0 Unit, Faculty of Forestry and Wood Sciences Czech University of Life Sciences Kamýcka 129 16500 Prague Czech Republic
| | - Boyd Mori
- Department of Plant Protection Biology Swedish University of Agricultural Sciences Box 102 23053 Alnarp Sweden
- Department of Agricultural, Food and Nutritional Science University of Alberta Agriculture/Forestry Centre 4‐10 Edmonton Alberta Canada T6G 2P5
| | - Guillermo Rehermann
- Department of Plant Protection Biology Swedish University of Agricultural Sciences Box 102 23053 Alnarp Sweden
| | - Armando Hernández Garcia
- Department of Molecular Sciences Swedish University of Agricultural Sciences Box 7015 75007 Uppsala Sweden
- Division of Biotechnology Department of Chemistry Faculty of Engineering Lund University Box 124 221 00 Lund Sweden
| | - Joelle Lemmen‐Lechelt
- Department of Plant Protection Biology Swedish University of Agricultural Sciences Box 102 23053 Alnarp Sweden
| | - Arne Hagman
- Division of Biotechnology Department of Chemistry Faculty of Engineering Lund University Box 124 221 00 Lund Sweden
| | - Sammar Khalil
- Department of Biosystems and Technology Swedish University of Agricultural Sciences Box 102 23053 Alnarp Sweden
| | - Sebastian Håkansson
- Department of Molecular Sciences Swedish University of Agricultural Sciences Box 7015 75007 Uppsala Sweden
- Division of Applied Microbiology Department of Chemistry Faculty of Engineering Lund University Lund Sweden
| | - Peter Witzgall
- Department of Plant Protection Biology Swedish University of Agricultural Sciences Box 102 23053 Alnarp Sweden
| | - Paul G Becher
- Department of Plant Protection Biology Swedish University of Agricultural Sciences Box 102 23053 Alnarp Sweden
| |
Collapse
|
9
|
Gan SR, Du W, Wang XF. Functional Differentiation of Floral Color and Scent in Gall Midge Pollination: A Study of a Schisandraceae Plant. PLANTS 2022; 11:plants11070974. [PMID: 35406954 PMCID: PMC9002483 DOI: 10.3390/plants11070974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022]
Abstract
Gall midges are among the most host-specific insects. Their interactions with plants likely date back to the Cretaceous period. Plants from at least seven families are involved in gall midge pollination; however, little is known about the pollination signals of gall midges. In this study, we used a Resseliella–Schisandra model to investigate the roles of floral scent and color in attracting gall midges. Field observations, behavioral bioassays via Y-tubes, and “flight box” experiments were performed. The results demonstrated that gall midges may be attracted by both floral scent and color and that two flower signals are more effective in promoting insect flower-landing than either alone. In the field, gall midges visited male flowers effectively at night but almost always visited female flowers during the day. Thus, during the Resseliella–Schisandra interactions, female flowers predominantly employed visual cues over scent to attract midges during the day; in contrast, olfactory cues were more functional for male flowers to export pollen in the dark. In this study, we first identified the roles of floral color and the functional differentiation of visual and olfactory cues during gall midge pollination.
Collapse
Affiliation(s)
| | - Wei Du
- Correspondence: (W.D.); (X.-F.W.)
| | | |
Collapse
|
10
|
Herrán N, Narayan GR, Doo SS, Klicpera A, Freiwald A, Westphal H. High-resolution imaging sheds new light on a multi-tier symbiotic partnership between a "walking" solitary coral, a sipunculan, and a bivalve from East Africa. Ecol Evol 2022; 12:e8633. [PMID: 35342582 PMCID: PMC8928893 DOI: 10.1002/ece3.8633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 01/19/2023] Open
Abstract
Marine symbioses are integral to the persistence of ecosystem functioning in coral reefs. Solitary corals of the species Heteropsammia cochlea and Heterocyathus aequicostatus have been observed to live in symbiosis with the sipunculan worm Aspidosiphon muelleri muelleri, which inhabits a cavity within the coral, in Zanzibar (Tanzania). The symbiosis of these photosymbiotic corals enables the coral holobiont to move, in fine to coarse unconsolidated substrata, a process termed as "walking." This allows the coral to escape sediment cover in turbid conditions which is crucial for these light-dependent species. An additional commensalistic symbiosis of this coral-worm holobiont is found between the Aspidosiphon worm and the cryptoendolithic bivalve Jousseaumiella sp., which resides within the cavity of the coral skeleton. To understand the morphological alterations caused by these symbioses, interspecific relationships, with respect to the carbonate structures between these three organisms, are documented using high-resolution imaging techniques (scanning electron microscopy and µCT scanning). Documenting multi-layered symbioses can shed light on how morphological plasticity interacts with environmental conditions to contribute to species persistence.
Collapse
Affiliation(s)
- Natalia Herrán
- Leibniz Centre for Tropical Marine Ecology (ZMT)BremenGermany
- Department of Geosciences (FB5)University of BremenBremenGermany
- Leibniz Institute for Baltic Sea Research WarnemündeWarnemündeGermany
| | - Gita R. Narayan
- Leibniz Centre for Tropical Marine Ecology (ZMT)BremenGermany
| | - Steve S. Doo
- Leibniz Centre for Tropical Marine Ecology (ZMT)BremenGermany
- King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - André Klicpera
- Leibniz Centre for Tropical Marine Ecology (ZMT)BremenGermany
- Microtrac Retsch GmbHBitterfeldGermany
| | - André Freiwald
- Department of Geosciences (FB5)University of BremenBremenGermany
- Senckenberg am Meer (SaM)WilhelmshavenGermany
| | - Hildegard Westphal
- Leibniz Centre for Tropical Marine Ecology (ZMT)BremenGermany
- Department of Geosciences (FB5)University of BremenBremenGermany
- King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| |
Collapse
|
11
|
Franco MEE, Wisecaver JH, Arnold AE, Ju YM, Slot JC, Ahrendt S, Moore LP, Eastman KE, Scott K, Konkel Z, Mondo SJ, Kuo A, Hayes RD, Haridas S, Andreopoulos B, Riley R, LaButti K, Pangilinan J, Lipzen A, Amirebrahimi M, Yan J, Adam C, Keymanesh K, Ng V, Louie K, Northen T, Drula E, Henrissat B, Hsieh HM, Youens-Clark K, Lutzoni F, Miadlikowska J, Eastwood DC, Hamelin RC, Grigoriev IV, U'Ren JM. Ecological generalism drives hyperdiversity of secondary metabolite gene clusters in xylarialean endophytes. THE NEW PHYTOLOGIST 2022; 233:1317-1330. [PMID: 34797921 DOI: 10.1111/nph.17873] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Although secondary metabolites are typically associated with competitive or pathogenic interactions, the high bioactivity of endophytic fungi in the Xylariales, coupled with their abundance and broad host ranges spanning all lineages of land plants and lichens, suggests that enhanced secondary metabolism might facilitate symbioses with phylogenetically diverse hosts. Here, we examined secondary metabolite gene clusters (SMGCs) across 96 Xylariales genomes in two clades (Xylariaceae s.l. and Hypoxylaceae), including 88 newly sequenced genomes of endophytes and closely related saprotrophs and pathogens. We paired genomic data with extensive metadata on endophyte hosts and substrates, enabling us to examine genomic factors related to the breadth of symbiotic interactions and ecological roles. All genomes contain hyperabundant SMGCs; however, Xylariaceae have increased numbers of gene duplications, horizontal gene transfers (HGTs) and SMGCs. Enhanced metabolic diversity of endophytes is associated with a greater diversity of hosts and increased capacity for lignocellulose decomposition. Our results suggest that, as host and substrate generalists, Xylariaceae endophytes experience greater selection to diversify SMGCs compared with more ecologically specialised Hypoxylaceae species. Overall, our results provide new evidence that SMGCs may facilitate symbiosis with phylogenetically diverse hosts, highlighting the importance of microbial symbioses to drive fungal metabolic diversity.
Collapse
Affiliation(s)
- Mario E E Franco
- BIO5 Institute and Department of Biosystems Engineering, The University of Arizona, Tucson, AZ, 85721, USA
| | - Jennifer H Wisecaver
- Center for Plant Biology and Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - A Elizabeth Arnold
- School of Plant Sciences and Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ, 85721, USA
| | - Yu-Ming Ju
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Jason C Slot
- Department of Plant Pathology, The Ohio State University, Columbus, OH, 43210, USA
| | - Steven Ahrendt
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Lillian P Moore
- BIO5 Institute and Department of Biosystems Engineering, The University of Arizona, Tucson, AZ, 85721, USA
| | - Katharine E Eastman
- Center for Plant Biology and Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Kelsey Scott
- Department of Plant Pathology, The Ohio State University, Columbus, OH, 43210, USA
| | - Zachary Konkel
- Department of Plant Pathology, The Ohio State University, Columbus, OH, 43210, USA
| | - Stephen J Mondo
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Alan Kuo
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Richard D Hayes
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Sajeet Haridas
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Bill Andreopoulos
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Robert Riley
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kurt LaButti
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jasmyn Pangilinan
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Anna Lipzen
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Mojgan Amirebrahimi
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Juying Yan
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Catherine Adam
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Keykhosrow Keymanesh
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Vivian Ng
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Katherine Louie
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Trent Northen
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Elodie Drula
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, 13288, France
- INRAE, Marseille, 13288, France
| | - Bernard Henrissat
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, DK-2800, Denmark
- Department of Biological Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Huei-Mei Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Ken Youens-Clark
- BIO5 Institute and Department of Biosystems Engineering, The University of Arizona, Tucson, AZ, 85721, USA
| | | | | | | | - Richard C Hamelin
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Igor V Grigoriev
- Department of Energy, The Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Jana M U'Ren
- BIO5 Institute and Department of Biosystems Engineering, The University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
12
|
Pauli B, Oña L, Hermann M, Kost C. Obligate mutualistic cooperation limits evolvability. Nat Commun 2022; 13:337. [PMID: 35039522 PMCID: PMC8764027 DOI: 10.1038/s41467-021-27630-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/30/2021] [Indexed: 11/26/2022] Open
Abstract
Cooperative mutualisms are widespread and play fundamental roles in many ecosystems. Given that these interactions are often obligate, the Darwinian fitness of the participating individuals is not only determined by the information encoded in their own genomes, but also the traits and capabilities of their corresponding interaction partners. Thus, a major outstanding question is how obligate cooperative mutualisms affect the ability of organisms to adapt evolutionarily to changing environmental conditions. Here we address this issue using a mutualistic cooperation between two auxotrophic genotypes of Escherichia coli that reciprocally exchanged costly amino acids. Amino acid-supplemented monocultures and unsupplemented cocultures were exposed to stepwise increasing concentrations of different antibiotics. This selection experiment reveals that metabolically interdependent bacteria are generally less able to adapt to environmental stress than autonomously growing strains. Moreover, obligate cooperative mutualists frequently regain metabolic autonomy, resulting in a collapse of the mutualistic interaction. Together, our results identify a limited evolvability as a significant evolutionary cost that individuals have to pay when entering into an obligate mutualistic cooperation.
Collapse
Affiliation(s)
- Benedikt Pauli
- Department of Ecology, Osnabrück University, Barbarastraße 13, 49076, Osnabrück, Germany
| | - Leonardo Oña
- Department of Ecology, Osnabrück University, Barbarastraße 13, 49076, Osnabrück, Germany
| | - Marita Hermann
- Department of Ecology, Osnabrück University, Barbarastraße 13, 49076, Osnabrück, Germany
- Department of Plant Physiology, Osnabrück University, Barbarastr. 11, 49076, Osnabrück, Germany
| | - Christian Kost
- Department of Ecology, Osnabrück University, Barbarastraße 13, 49076, Osnabrück, Germany.
| |
Collapse
|
13
|
Hu Y, Jiang X, Shao K, Tang X, Qin B, Gao G. Convergency and Stability Responses of Bacterial Communities to Salinization in Arid and Semiarid Areas: Implications for Global Climate Change in Lake Ecosystems. Front Microbiol 2022; 12:741645. [PMID: 35058891 PMCID: PMC8764409 DOI: 10.3389/fmicb.2021.741645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Climate change has given rise to salinization and nutrient enrichment in lake ecosystems of arid and semiarid areas, which have posed the bacterial communities not only into an ecotone in lake ecosystems but also into an assemblage of its own unique biomes. However, responses of bacterial communities to climate-related salinization and nutrient enrichment remain unclear. In September 2019, this study scrutinized the turnover of bacterial communities along gradients of increasing salinity and nutrient by a space-for-time substitution in Xinjiang Uyghur Autonomous Region, China. We find that salinization rather than nutrient enrichment primarily alters bacterial communities. The homogenous selection of salinization leads to convergent response of bacterial communities, which is revealed by the combination of a decreasing β-nearest taxon index (βNTI) and a pronounced negative correlation between niche breadth and salinity. Furthermore, interspecific interactions within bacterial communities significantly differed among distinct salinity levels. Specifically, mutualistic interactions showed an increase along the salinization. In contrast, topological parameters show hump-shaped curves (average degree and density) and sunken curves (modularity, density, and average path distance), the extremums of which all appear in the high-brackish environment, hinting that bacterial communities are comparatively stable at freshwater and brine environments but are unstable in moderately high-brackish lake.
Collapse
Affiliation(s)
| | | | | | | | | | - Guang Gao
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
14
|
Travers Cook TJ, Skirgaila C, Martin OY, Buser CC. Infection by dsRNA viruses is associated with enhanced sporulation efficiency in Saccharomyces cerevisiae. Ecol Evol 2022; 12:e8558. [PMID: 35127053 PMCID: PMC8794758 DOI: 10.1002/ece3.8558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/23/2021] [Accepted: 12/31/2021] [Indexed: 01/07/2023] Open
Abstract
Upon starvation diploid cells of the facultative sexual yeast Saccharomyces cerevisiae undergo sporulation, forming four metabolically quiescent and robust haploid spores encased in a degradable ascus. All endosymbionts, whether they provide net benefits or costs, utilize host resources; in yeast, this should induce an earlier onset of sporulation. Here, we tested whether the presence of endosymbiotic dsRNA viruses (M satellite and L-A helper) correspond with higher sporulation rate of their host, S. cerevisiae. We find that S. cerevisiae hosting both the M and L-A viruses (so-called "killer yeasts") have significantly higher sporulation efficiency than those without. We also found that the removal of the M virus did not reduce sporulation frequency, possibly because the L-A virus still utilizes host resources with and without the M virus. Our findings indicate that either virulent resource use by endosymbionts induces sporulation, or that viruses are spread more frequently to sporulating strains. Further exploration is required to distinguish cause from effect.
Collapse
Affiliation(s)
- Thomas J. Travers Cook
- Institute of Integrative BiologyETH ZürichZürichSwitzerland
- Department of Aquatic EcologyEawagDübendorfSwitzerland
| | | | - Oliver Y. Martin
- Institute of Integrative BiologyETH ZürichZürichSwitzerland
- Department of BiologyETH ZürichZürichSwitzerland
| | - Claudia C. Buser
- Institute of Integrative BiologyETH ZürichZürichSwitzerland
- Department of Aquatic EcologyEawagDübendorfSwitzerland
| |
Collapse
|
15
|
Evolution of protective symbiosis in palaemonid shrimps (Decapoda: Caridea) with emphases on host spectrum and morphological adaptations. Mol Phylogenet Evol 2021; 162:107201. [PMID: 33984469 DOI: 10.1016/j.ympev.2021.107201] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/27/2021] [Accepted: 05/03/2021] [Indexed: 11/21/2022]
Abstract
Palaemonidae is the most speciose caridean shrimp family, with its huge biodiversity partially generated via symbiosis with various marine invertebrates. Previous studies have provided insights into the evolution of protective symbiosis in this family with evidence for frequent inter-phyla host switches, but the comprehensiveness of evolutionary pathways is hampered by the resolution of the previous phylogenetic trees as well as the taxon coverage. Furthermore, several critical issues related to the evolution of a symbiotic lifestyle, including the change in host spectrum and corresponding morphological adaptations, remain largely unresolved. We therefore performed a much extended phylogenetic comparative study on Palaemonidae, rooted in a comprehensive phylogeny reconstructed by a supermatrix-supertree approach based on a total of three mitochondrial and five nuclear markers. Ancestral state reconstruction of host associations revealed at least three independent evolutions into symbiosis, with potentially a drive to seek protection fuelling incipient symbiosis. Yet, most of the observed symbiotic species diversity was radiated from a single cnidarian associate. The evolution of mandibles and ambulatory dactyli suggests a general lack of correlation with host affiliation (except sponge endosymbionts), implying limited morphological adaptations following host switching, despite being putatively a major adaptive consequence of symbiosis. Our analyses of host spectrum, in terms of basic and taxonomic specificity, revealed no apparent phylogenetic signal but instead resolved a dynamic pattern attributable to frequent host switching. Uncoupling between host spectrum and the degree of morphological specialisation is the norm in palaemonids, suggesting that morphological characters are not fully in tune with host spectrum, in addition to host affiliation. This study demonstrates the complexity in the evolution of symbiosis, pointing to the presence of cryptic adaptations determining host spectrum and governing host switch diversification, and provides a clear direction for the evolutionary study of symbiosis in other marine symbiotic groups involving host switching.
Collapse
|
16
|
Symbiogenesis is driven through hierarchical reorganization of an ecosystem under closed or semi-closed conditions. Biosystems 2021; 205:104427. [PMID: 33857536 DOI: 10.1016/j.biosystems.2021.104427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/05/2021] [Accepted: 04/05/2021] [Indexed: 11/21/2022]
Abstract
Ecosystems generate selective environments and function as sources of various metabolic systems for symbiogenesis. In this study, we have explored how symbiogenesis occurs in the living world, from a holistic perspective, by observing a long-term experimental culture of an ecosystem model (CET microcosm) and using related findings in laboratory and field studies of endosymbiosis between auto- (photo-) and heterotrophic organisms. The results obtained suggest that symbiogenesis can occur in the mature stages of semi-closed ecosystems and lead to a new ecosystem-oriented perspective of symbiogenesis. Symbiogenesis is an aspect of ecosystem evolution in which whole ecosystem dynamics generate selective conditions operating on the component species, favoring symbiotic associations among some of them. The development of symbiotic associations then modifies the organization and material/energy flow structure of the ecosystem, which, in turn, modifies their selective environments.
Collapse
|
17
|
Lin L, Chen Y, Xu G, Zhang Y, Zhang S, Ma K. Impacts of Urbanization Undermine Nestedness of the Plant-Arbuscular Mycorrhizal Fungal Network. Front Microbiol 2021; 12:626671. [PMID: 33767678 PMCID: PMC7985257 DOI: 10.3389/fmicb.2021.626671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/26/2021] [Indexed: 11/13/2022] Open
Abstract
Cities are prone to ecological problems, yet the impacts of rapid global urbanization on the feedback between above- and belowground subsystems remain largely unknown. We sampled the roots of 8 common herbaceous plants within the Fifth Ring (urban areas) and in Jiufeng National Forest Park (rural areas) in Beijing (China) to assess the impacts of urbanization on the network of plant-arbuscular mycorrhizal (AM) fungal associations. Using Illumina MiSeq sequencing, 81 AM fungal OTUs were identified in 78 herb root samples. The Shannon, Simpson, and Pielou indices of root AM fungi in urban areas were significantly higher than those in rural areas. In this study, a significantly nested mycorrhizal association network was observed in rural areas (NODF = 64.68), whereas a non-nested pattern was observed in urban areas (NODF = 55.50). The competition index C-score (0.0769) of AM fungi in urban areas was slightly lower than that in rural areas (0.1431), and the species specialization (d’) of 8 host plants and fungal dissimilarity among 8 host plants in urban areas were significantly lower than those in rural areas. Convergent associations among hosts may be an important factor influencing this non-nested pattern of the plant-AM fungi network in urban areas. Generalists, rather than specialists, were enhanced during the establishment of mycorrhizal associations in urban areas. Our results suggest that reduced selectivity of host plants, and generalist promotion and specialist reduction of AM fungi during urbanization may contribute to the non-nested network of plant-AM fungal associations.
Collapse
Affiliation(s)
- Litao Lin
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yun Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guorui Xu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla County, China
| | - Yuxin Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Shuang Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Keming Ma
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Gould AL, Fritts-Penniman A, Gaisiner A. Museum Genomics Illuminate the High Specificity of a Bioluminescent Symbiosis for a Genus of Reef Fish. Front Ecol Evol 2021; 9:630207. [PMID: 34485316 PMCID: PMC8412414 DOI: 10.3389/fevo.2021.630207] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Symbiotic relationships between bioluminescent bacteria and fishes have evolved multiple times across hundreds of fish taxa, but relatively little is known about the specificity of these associations and how stable they are over host generations. This study describes the degree of specificity of a bioluminescent symbiosis between cardinalfishes in the genus Siphamia and luminous bacteria in the Vibrio family. Primarily using museum specimens, we investigated the codivergence of host and symbiont and test for patterns of divergence that correlate with both biogeography and time. Contrary to expectations, we determined that the light organ symbionts of all 14 Siphamia species examined belong to one genetic clade of Photobacterium mandapamensis (Clade II), indicating that the association is highly specific and conserved throughout the host genus. Thus, we did not find evidence of codivergence among hosts and symbionts. We did observe that symbionts hosted by individuals sampled from colder water regions were more divergent, containing more than three times as many single nucleotide polymorphisms than the rest of the symbionts examined. Overall, our findings indicate that the symbiosis between Siphamia fishes and P. mandapamensis Clade II has been highly conserved across host taxa and over a broad geographic range despite the facultative nature of the bacterial symbiont. We also present a new approach to simultaneously recover genetic information from a bacterial symbiont and its vertebrate host from formalin-fixed specimens, enhancing the utility of museum collections.
Collapse
Affiliation(s)
- Alison L. Gould
- California Academy of Sciences, San Francisco, CA, United States
| | | | - Ana Gaisiner
- California Academy of Sciences, San Francisco, CA, United States
| |
Collapse
|
19
|
Zeng Y, Wiens JJ. Species interactions have predictable impacts on diversification. Ecol Lett 2020; 24:239-248. [PMID: 33146947 DOI: 10.1111/ele.13635] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/28/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023]
Abstract
A fundamental goal of ecology is to reveal generalities in the myriad types of interactions among species, such as competition, mutualism and predation. Another goal is to explain the enormous differences in species richness among groups of organisms. Here, we show how these two goals are intertwined: we find that different types of species interactions have predictable impacts on rates of species diversification, which underlie richness patterns. On the basis of a systematic review, we show that interactions with positive fitness effects for individuals of a clade (e.g. insect pollination for plants) generally increase that clade's diversification rates. Conversely, we find that interactions with negative fitness effects (e.g. predation for prey, competition) generally decrease diversification rates. The sampled clades incorporate all animals and land plants, encompassing 90% of all described species across life. Overall, we show that different types of local-scale species interactions can predictably impact large-scale patterns of diversification and richness.
Collapse
Affiliation(s)
- Yichao Zeng
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, 85721-0088, USA
| | - John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, 85721-0088, USA
| |
Collapse
|
20
|
Maliet O, Loeuille N, Morlon H. An individual-based model for the eco-evolutionary emergence of bipartite interaction networks. Ecol Lett 2020; 23:1623-1634. [PMID: 32885919 DOI: 10.1111/ele.13592] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/31/2020] [Accepted: 07/22/2020] [Indexed: 02/04/2023]
Abstract
How ecological interaction networks emerge on evolutionary time scales remains unclear. Here we build an individual-based eco-evolutionary model for the emergence of mutualistic, antagonistic and neutral bipartite interaction networks. Exploring networks evolved under these scenarios, we find three main results. First, antagonistic interactions tend to foster species and trait diversity, while mutualistic interactions reduce diversity. Second, antagonistic interactors evolve higher specialisation, which results in networks that are often more modular than neutral ones; resource species in these networks often display phylogenetic conservatism in interaction partners. Third, mutualistic interactions lead to networks that are more nested than neutral ones, with low phylogenetic conservatism in interaction partners. These results tend to match overall empirical trends, demonstrating that structures of empirical networks that have most often been explained by ecological processes can result from an evolutionary emergence. Our model contributes to the ongoing effort of better integrating ecological interactions and macroevolution.
Collapse
Affiliation(s)
- Odile Maliet
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, Paris, 75005, France
| | - Nicolas Loeuille
- Sorbonne Université, UPEC, CNRS, IRD, INRA, Institut d'Ecologie et des Sciences de l'Environnement, IEES, Paris, F-75005, France
| | - Hélène Morlon
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, Paris, 75005, France
| |
Collapse
|
21
|
Carscadden KA, Emery NC, Arnillas CA, Cadotte MW, Afkhami ME, Gravel D, Livingstone SW, Wiens JJ. Niche Breadth: Causes and Consequences for Ecology, Evolution, and Conservation. QUARTERLY REVIEW OF BIOLOGY 2020. [DOI: 10.1086/710388] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
Breusing C, Mitchell J, Delaney J, Sylva SP, Seewald JS, Girguis PR, Beinart RA. Physiological dynamics of chemosynthetic symbionts in hydrothermal vent snails. ISME JOURNAL 2020; 14:2568-2579. [PMID: 32616905 PMCID: PMC7490688 DOI: 10.1038/s41396-020-0707-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 06/15/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022]
Abstract
Symbioses between invertebrate animals and chemosynthetic bacteria form the basis of hydrothermal vent ecosystems worldwide. In the Lau Basin, deep-sea vent snails of the genus Alviniconcha associate with either Gammaproteobacteria (A. kojimai, A. strummeri) or Campylobacteria (A. boucheti) that use sulfide and/or hydrogen as energy sources. While the A. boucheti host-symbiont combination (holobiont) dominates at vents with higher concentrations of sulfide and hydrogen, the A. kojimai and A. strummeri holobionts are more abundant at sites with lower concentrations of these reductants. We posit that adaptive differences in symbiont physiology and gene regulation might influence the observed niche partitioning between host taxa. To test this hypothesis, we used high-pressure respirometers to measure symbiont metabolic rates and examine changes in gene expression among holobionts exposed to in situ concentrations of hydrogen (H2: ~25 µM) or hydrogen sulfide (H2S: ~120 µM). The campylobacterial symbiont exhibited the lowest rate of H2S oxidation but the highest rate of H2 oxidation, with fewer transcriptional changes and less carbon fixation relative to the gammaproteobacterial symbionts under each experimental condition. These data reveal potential physiological adaptations among symbiont types, which may account for the observed net differences in metabolic activity and contribute to the observed niche segregation among holobionts.
Collapse
Affiliation(s)
- Corinna Breusing
- University of Rhode Island, Graduate School of Oceanography, Narragansett, RI, USA.
| | - Jessica Mitchell
- Harvard University, Department of Organismic and Evolutionary Biology, Cambridge, MA, USA
| | - Jennifer Delaney
- Harvard University, Department of Organismic and Evolutionary Biology, Cambridge, MA, USA
| | - Sean P Sylva
- Woods Hole Oceanographic Institution, Department of Marine Chemistry and Geochemistry, Woods Hole, MA, USA
| | - Jeffrey S Seewald
- Woods Hole Oceanographic Institution, Department of Marine Chemistry and Geochemistry, Woods Hole, MA, USA
| | - Peter R Girguis
- Harvard University, Department of Organismic and Evolutionary Biology, Cambridge, MA, USA
| | - Roxanne A Beinart
- University of Rhode Island, Graduate School of Oceanography, Narragansett, RI, USA
| |
Collapse
|
23
|
Freeman CJ, Easson CG, Matterson KO, Thacker RW, Baker DM, Paul VJ. Microbial symbionts and ecological divergence of Caribbean sponges: A new perspective on an ancient association. THE ISME JOURNAL 2020; 14:1571-1583. [PMID: 32203120 PMCID: PMC7242429 DOI: 10.1038/s41396-020-0625-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 02/17/2020] [Accepted: 02/25/2020] [Indexed: 12/26/2022]
Abstract
Marine sponges host diverse communities of microbial symbionts that expand the metabolic capabilities of their host, but the abundance and structure of these communities is highly variable across sponge species. Specificity in these interactions may fuel host niche partitioning on crowded coral reefs by allowing individual sponge species to exploit unique sources of carbon and nitrogen, but this hypothesis is yet to be tested. Given the presence of high sponge biomass and the coexistence of diverse sponge species, the Caribbean Sea provides a unique system in which to investigate this hypothesis. To test for ecological divergence among sympatric Caribbean sponges and investigate whether these trends are mediated by microbial symbionts, we measured stable isotope (δ13C and δ15N) ratios and characterized the microbial community structure of sponge species at sites within four regions spanning a 1700 km latitudinal gradient. There was a low (median of 8.2 %) overlap in the isotopic niches of sympatric species; in addition, host identity accounted for over 75% of the dissimilarity in both δ13C and δ15N values and microbiome community structure among individual samples within a site. There was also a strong phylogenetic signal in both δ15N values and microbial community diversity across host phylogeny, as well as a correlation between microbial community structure and variation in δ13C and δ15N values across samples. Together, this evidence supports a hypothesis of strong evolutionary selection for ecological divergence across sponge lineages and suggests that this divergence is at least partially mediated by associations with microbial symbionts.
Collapse
Affiliation(s)
- Christopher J Freeman
- Smithsonian Marine Station, Fort Pierce, FL, USA.
- Department of Biology, College of Charleston, Charleston, SC, USA.
| | - Cole G Easson
- Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Dania Beach, FL, USA
- Biology Department, Middle Tennessee State University, Murfreesboro, TN, USA
| | - Kenan O Matterson
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
- Smithsonian Institution, National Museum of Natural History, Washington, DC, USA
| | - Robert W Thacker
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA
- Smithsonian Tropical Research Institute, Box 0843-03092, Balboa, Republic of Panama
| | - David M Baker
- The Swire Institute of Marine Science, School of Biological Sciences, University of Hong Kong, Hong Kong, PR China
| | | |
Collapse
|
24
|
Harris MO, Pitzschke A. Plants make galls to accommodate foreigners: some are friends, most are foes. THE NEW PHYTOLOGIST 2020; 225:1852-1872. [PMID: 31774564 DOI: 10.1111/nph.16340] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
At the colonization site of a foreign entity, plant cells alter their trajectory of growth and development. The resulting structure - a plant gall - accommodates various needs of the foreigner, which are phylogenetically diverse: viruses, bacteria, protozoa, oomycetes, true fungi, parasitic plants, and many types of animals, including rotifers, nematodes, insects, and mites. The plant species that make galls also are diverse. We assume gall production costs the plant. All is well if the foreigner provides a gift that makes up for the cost. Nitrogen-fixing nodule-inducing bacteria provide nutritional services. Gall wasps pollinate fig trees. Unfortunately for plants, most galls are made for foes, some of which are deeply studied pathogens and pests: Agrobacterium tumefaciens, Rhodococcus fascians, Xanthomonas citri, Pseudomonas savastanoi, Pantoea agglomerans, 'Candidatus' phytoplasma, rust fungi, Ustilago smuts, root knot and cyst nematodes, and gall midges. Galls are an understudied phenomenon in plant developmental biology. We propose gall inception for discovering unifying features of the galls that plants make for friends and foes, talk about molecules that plants and gall-inducers use to get what they want from each other, raise the question of whether plants colonized by arbuscular mycorrhizal fungi respond in a gall-like manner, and present a research agenda.
Collapse
Affiliation(s)
- Marion O Harris
- Department of Entomology, North Dakota State University, Fargo, ND, 58014, USA
| | - Andrea Pitzschke
- Department of Biosciences, Salzburg University, Hellbrunner Strasse 34, A-5020, Salzburg, Austria
| |
Collapse
|
25
|
Dupin SE, Geurts R, Kiers ET. The Non-Legume Parasponia andersonii Mediates the Fitness of Nitrogen-Fixing Rhizobial Symbionts Under High Nitrogen Conditions. FRONTIERS IN PLANT SCIENCE 2020; 10:1779. [PMID: 32117343 PMCID: PMC7019102 DOI: 10.3389/fpls.2019.01779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 12/20/2019] [Indexed: 05/13/2023]
Abstract
Organisms rely on symbiotic associations for metabolism, protection, and energy. However, these intimate partnerships can be vulnerable to exploitation. What prevents microbial mutualists from parasitizing their hosts? In legumes, there is evidence that hosts have evolved sophisticated mechanisms to manage their symbiotic rhizobia, but the generality and evolutionary origins of these control mechanisms are under debate. Here, we focused on the symbiosis between Parasponia hosts and N2-fixing rhizobium bacteria. Parasponia is the only non-legume lineage to have evolved a rhizobial symbiosis and thus provides an evolutionary replicate to test how rhizobial exploitation is controlled. A key question is whether Parasponia hosts can prevent colonization of rhizobia under high nitrogen conditions, when the contribution of the symbiont becomes nonessential. We grew Parasponia andersonii inoculated with Bradyrhizobium elkanii under four ammonium nitrate concentrations in a controlled growth chamber. We measured shoot and root dry weight, nodule number, nodule fresh weight, nodule volume. To quantify viable rhizobial populations in planta, we crushed nodules and determined colony forming units (CFU), as a rhizobia fitness proxy. We show that, like legumes and actinorhizal plants, P. andersonii is able to control nodule symbiosis in response to exogenous nitrogen. While the relative host growth benefits of inoculation decreased with nitrogen fertilization, our highest ammonium nitrate concentration (3.75 mM) was sufficient to prevent nodule formation on inoculated roots. Rhizobial populations were highest in nitrogen free medium. While we do not yet know the mechanism, our results suggest that control mechanisms over rhizobia are not exclusive to the legume clade.
Collapse
Affiliation(s)
- Simon E. Dupin
- Department of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
| | - René Geurts
- Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
| | - E. Toby Kiers
- Department of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
26
|
Mestre A, Poulin R, Hortal J. A niche perspective on the range expansion of symbionts. Biol Rev Camb Philos Soc 2019; 95:491-516. [DOI: 10.1111/brv.12574] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Alexandre Mestre
- Cavanilles Institute of Biodiversity and Evolutionary BiologyUniversity of Valencia Av. Dr. Moliner 50, 46100 Burjassot Spain
- Department of BiologyUniversity of Concordia Richard J. Renaud Science Complex, 7141 Sherbrooke W., H4B 1R6 Montreal Canada
| | - Robert Poulin
- Department of ZoologyUniversity of Otago 340 Great King Street, 9054 Dunedin New Zealand
| | - Joaquín Hortal
- Department of Biogeography and Global ChangeMuseo Nacional de Ciencias Naturales (MNCN‐CSIC) C/José Gutiérrez Abascal 2, 28006 Madrid Spain
- Departamento de EcologiaICB, Universidade Federal de Goiás (UFG), Rodovia Goiânia‐Nerópolis Km 5, Campus II, Setor Itatiaia, Goiânia GO 74001‐970 Brazil
- cE3c–Centre for EcologyEvolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Edifício C2 Piso 5, 1749‐016 Lisboa Portugal
| |
Collapse
|
27
|
Hearn J, Blaxter M, Schönrogge K, Nieves-Aldrey JL, Pujade-Villar J, Huguet E, Drezen JM, Shorthouse JD, Stone GN. Genomic dissection of an extended phenotype: Oak galling by a cynipid gall wasp. PLoS Genet 2019; 15:e1008398. [PMID: 31682601 PMCID: PMC6855507 DOI: 10.1371/journal.pgen.1008398] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/14/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022] Open
Abstract
Galls are plant tissues whose development is induced by another organism for the inducer's benefit. 30,000 arthropod species induce galls, and in most cases the inducing effectors and target plant systems are unknown. Cynipid gall wasps are a speciose monophyletic radiation that induce structurally complex galls on oaks and other plants. We used a model system comprising the gall wasp Biorhiza pallida and the oak Quercus robur to characterise inducer and host plant gene expression at defined stages through the development of galled and ungalled plant tissues, and tested alternative hypotheses for the origin and type of galling effectors and plant metabolic pathways involved. Oak gene expression patterns diverged markedly during development of galled and normal buds. Young galls showed elevated expression of oak genes similar to legume root nodule Nod factor-induced early nodulin (ENOD) genes and developmental parallels with oak buds. In contrast, mature galls showed substantially different patterns of gene expression to mature leaves. While most oak transcripts could be functionally annotated, many gall wasp transcripts of interest were novel. We found no evidence in the gall wasp for involvement of third-party symbionts in gall induction, for effector delivery using virus-like-particles, or for gallwasp expression of genes coding for plant hormones. Many differentially and highly expressed genes in young larvae encoded secretory peptides, which we hypothesise are effector proteins exported to plant tissues. Specifically, we propose that host arabinogalactan proteins and gall wasp chitinases interact in young galls to generate a somatic embryogenesis-like process in oak tissues surrounding the gall wasp larvae. Gall wasp larvae also expressed genes encoding multiple plant cell wall degrading enzymes (PCWDEs). These have functional orthologues in other gall inducing cynipids but not in figitid parasitoid sister groups, suggesting that they may be evolutionary innovations associated with cynipid gall induction. Plant galls are induced by organisms that manipulate host plant development to produce novel structures. The organisms involved range from mutualistic (such as nitrogen fixing bacteria) to parasitic. In the case of parasites, the gall benefits only the gall-inducing partner. A wide range of organisms can induce galls, but the processes involved are understood only for some bacterial and fungal galls. Cynipid gall wasps induce diverse and structurally complex galls, particularly on oaks (Quercus). We used transcriptome and genome sequencing for one gall wasp and its host oak to identify genes active in gall development. On the plant side, when compared to normally developing bud tissues, young gall tissues showed elevated expression of loci similar to those found in nitrogen-fixing root nodules of leguminous plants. On the wasp side, we found no evidence for involvement of viruses or microorganisms carried by the insects in gall induction or delivery of inducing stimuli. We found that gall wasps express many genes whose products may be secreted to the host, including enzymes that degrade plant cell walls. Genome comparisons between galling and non-galling relatives showed cell wall-degrading enzymes are restricted to gall inducers, and hence potentially key components of a gall inducing lifestyle.
Collapse
Affiliation(s)
- Jack Hearn
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Institute of Evolutionary Biology, University of Edinburgh, King’s Buildings, Edinburgh, United Kingdom
- * E-mail: (JH); (GNS)
| | - Mark Blaxter
- Institute of Evolutionary Biology, University of Edinburgh, King’s Buildings, Edinburgh, United Kingdom
| | | | - José-Luis Nieves-Aldrey
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| | | | - Elisabeth Huguet
- UMR 7261 CNRS, Institut de Recherche sur la Biologie de l’Insecte, Faculté des Sciences et Techniques, Université de Tours, France
| | - Jean-Michel Drezen
- UMR 7261 CNRS, Institut de Recherche sur la Biologie de l’Insecte, Faculté des Sciences et Techniques, Université de Tours, France
| | | | - Graham N. Stone
- Institute of Evolutionary Biology, University of Edinburgh, King’s Buildings, Edinburgh, United Kingdom
- * E-mail: (JH); (GNS)
| |
Collapse
|
28
|
Kaur KM, Malé PJG, Spence E, Gomez C, Frederickson ME. Using text-mined trait data to test for cooperate-and-radiate co-evolution between ants and plants. PLoS Comput Biol 2019; 15:e1007323. [PMID: 31581264 PMCID: PMC6776258 DOI: 10.1371/journal.pcbi.1007323] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 08/05/2019] [Indexed: 01/14/2023] Open
Abstract
Mutualisms may be “key innovations” that spur lineage diversification by augmenting niche breadth, geographic range, or population size, thereby increasing speciation rates or decreasing extinction rates. Whether mutualism accelerates diversification in both interacting lineages is an open question. Research suggests that plants that attract ant mutualists have higher diversification rates than non-ant associated lineages. We ask whether the reciprocal is true: does the interaction between ants and plants also accelerate diversification in ants, i.e. do ants and plants cooperate-and-radiate? We used a novel text-mining approach to determine which ant species associate with plants in defensive or seed dispersal mutualisms. We investigated patterns of lineage diversification across a recent ant phylogeny using BiSSE, BAMM, and HiSSE models. Ants that associate mutualistically with plants had elevated diversification rates compared to non-mutualistic ants in the BiSSE model, with a similar trend in BAMM, suggesting ants and plants cooperate-and-radiate. However, the best-fitting model was a HiSSE model with a hidden state, meaning that diversification models that do not account for unmeasured traits are inappropriate to assess the relationship between mutualism and ant diversification. Against a backdrop of diversification rate heterogeneity, the best-fitting HiSSE model found that mutualism actually decreases diversification: mutualism evolved much more frequently in rapidly diversifying ant lineages, but then subsequently slowed diversification. Thus, it appears that ant lineages first radiated, then cooperated with plants. Many plants and animals depend on other species for nutrition, protection, or dispersal, a type of ecological interaction known as mutualism. Mutualisms often help organisms thrive in new or harsh environments, thereby increasing their ecological success. We studied whether mutualism also increases evolutionary success by affecting lineage diversification, or the net result of the formation and loss of species over evolutionary time (i.e., speciation minus extinction). We focused on the widespread mutualism between ants and plants, in which ants act as protective ‘bodyguards’ or seed dispersers for plants and gain food or shelter in return. Previous research has found that the evolution of ant-plant mutualisms increased plant diversification. Here, we asked whether the same is true for ant diversification. We used a novel, automated approach to gather trait data from the abstracts of over 89,000 scientific articles about ants, and identified 432 mutualistic ant species and 2,909 non-mutualistic ant species. We then used this trait information to model how mutualism has evolved and influenced diversification across a recent ant phylogeny. Our analysis suggests that instead of causally enhancing diversification, mutualism evolves more often in lineages that are already diversifying quickly and then slows ant diversification.
Collapse
Affiliation(s)
- Katrina M. Kaur
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| | - Pierre-Jean G. Malé
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Erik Spence
- SciNet Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Crisanto Gomez
- Departament Ciències Ambientals, Universitat de Girona, Girona, Spain
| | - Megan E. Frederickson
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
29
|
Dorchin N, Harris KM, Stireman JO. Phylogeny of the gall midges (Diptera, Cecidomyiidae, Cecidomyiinae): Systematics, evolution of feeding modes and diversification rates. Mol Phylogenet Evol 2019; 140:106602. [PMID: 31449853 DOI: 10.1016/j.ympev.2019.106602] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/22/2019] [Accepted: 08/22/2019] [Indexed: 10/26/2022]
Abstract
Gall midges (Cecidomyiidae) constitute one of the largest and most diverse families of Diptera, with close to 6600 described species and thousands of undescribed species worldwide. The family is divided into six subfamilies, the five basal ones comprising only fungivorous taxa, whereas the largest, youngest and most diverse subfamily Cecidomyiinae includes fungivorous as well as herbivorous and predatory species. The currently accepted classification of the Cecidomyiinae is morphology-based, and the few phylogenetic inferences that have previously been suggested for it were based on fragmentary or limited datasets. In a first comprehensive phylogenetic analysis of the Cecidomyiinae we sampled 142 species representing 88 genera of 13 tribes from all feeding guilds and zoogeographic regions in order to test the validity of the systematic division of the subfamily and gain insight into patterns of diversification and the evolution of feeding modes. We used sequences from five mitochondrial and nuclear genes to reconstruct maximum likelihood and Bayesian, time-calibrated phylogenies and conducted ancestral state reconstruction of feeding modes. Our results corroborate to a great extent the morphology-based classification of the Cecidomyiinae, with strong support for all supertribes and tribes, all were apparently established in the Upper Cretaceous concordant with the major radiation of angiosperms. We infer that transitions from fungus-feeding to plant-feeding occurred only once or twice in the evolution of the subfamily and that predation evolved only once, contrary to previous hypotheses. All herbivorous clades in the subfamily are very species rich and have diversified at a significantly greater rate than expected, but we found no support for the assertion that herbivorous clades associated with symbiotic fungi in their galls diversify faster than clades that do not have such associations. Currently available data also do not support the hypothesis that symbiotic clades have broader host ranges than non-symbiotic clades.
Collapse
Affiliation(s)
- Netta Dorchin
- School of Zoology, Tel Aviv University, Tel Aviv 6997801, Israel.
| | | | - John O Stireman
- Department of Biological Sciences, Wright State University, 3640 Colonel Glenn Hwy., Dayton, OH 45435, USA.
| |
Collapse
|
30
|
Chomicki G, Weber M, Antonelli A, Bascompte J, Kiers ET. The Impact of Mutualisms on Species Richness. Trends Ecol Evol 2019; 34:698-711. [DOI: 10.1016/j.tree.2019.03.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/11/2019] [Accepted: 03/18/2019] [Indexed: 11/28/2022]
|
31
|
Sato H, Toju H. Timing of evolutionary innovation: scenarios of evolutionary diversification in a species-rich fungal clade, Boletales. THE NEW PHYTOLOGIST 2019; 222:1924-1935. [PMID: 30664238 DOI: 10.1111/nph.15698] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/14/2019] [Indexed: 06/09/2023]
Abstract
Acquisition of mutualistic symbiosis could provide hosts and/or symbionts with novel ecological opportunities for evolutionary diversification. Such a mechanism is one of the major components of coevolutionary diversification. However, whether the origin of mycorrhizal symbiosis promotes diversification in fungi still requires clarification. Here, we aimed to reveal evolutionary diversification in a clade comprising ectomycorrhizal (ECM) fungi. Based on a phylogenic tree inferred from the sequences of 87 single-copy genes, we reconstructed the origins of ECM symbiosis in a species-rich basidiomycetous order, Boletales. High-resolution phylogeny of Boletales revealed that ECM symbiosis independently evolved from non-ECM states at least four times in the group. Among them, only the second most recent event, occurring in the clade of Boletaceae, was inferred to involve an almost synchronous rapid diversification and rapid transition from non-ECM to ECM symbiosis. Our results contradict the hypothesis of evolutionary priority effect, which postulates the greatest ecological opportunities in the oldest lineages. Therefore, the novel resources that had not been pre-empted by the old ECM fungal lineages - supposedly the coevolving angiosperm hosts - could be available for the young ECM fungal lineages, which resulted in evolutionary diversification occurring only in the young ECM fungal lineages.
Collapse
Affiliation(s)
- Hirotoshi Sato
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo, Kyoto, 606-8501, Japan
| | - Hirokazu Toju
- Center for Ecological Research, Kyoto University, 509-3, 2-chome, Hirano, Otsu, Shiga, 520-2113, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
32
|
Bell-Roberts L, Douglas AE, Werner GDA. Match and mismatch between dietary switches and microbial partners in plant sap-feeding insects. Proc Biol Sci 2019; 286:20190065. [PMID: 31088273 PMCID: PMC6532509 DOI: 10.1098/rspb.2019.0065] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/18/2019] [Indexed: 01/07/2023] Open
Abstract
Some animal groups associate with the same vertically transmitted microbial symbionts over extended periods of evolutionary time, punctuated by occasional symbiont switches to different microbial taxa. Here we test the oft-repeated suggestion that symbiont switches are linked with host diet changes, focusing on hemipteran insects of the suborder Auchenorrhyncha. These insects include the only animals that feed on plant xylem sap through the life cycle, as well as taxa that feed on phloem sap and plant parenchyma cells. Ancestral state reconstruction provides strong statistical support for a xylem feeding auchenorrhynchan ancestor bearing the dual symbiosis with the primary symbiont Sulcia (Bacteroidetes) and companion symbiont 'β-Sym' (β-proteobacteria). We identified seven dietary transitions from xylem feeding (six to phloem feeding, one to parenchyma feeding), but no reversions to xylem feeding; five evolutionary losses of Sulcia, including replacements by yeast symbionts, exclusively in phloem/parenchyma-feeding lineages; and 14-15 losses of β-Sym, including nine transitions to a different bacterial companion symbiont. Our analysis indicates that, although companion symbiont switching is not associated with shifts in host diet, Sulcia is probably required for xylem-feeding. Furthermore, the ancestral auchenorrhynchan bearing Sulcia and β-Sym probably represents the sole evolutionary origin of xylem feeding in the animal kingdom.
Collapse
Affiliation(s)
| | - Angela E. Douglas
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Gijsbert D. A. Werner
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
- Balliol College, University of Oxford, Oxford OX1 3BJ, UK
| |
Collapse
|
33
|
Guillermo Bueno C, Gerz M, Zobel M, Moora M. Conceptual differences lead to divergent trait estimates in empirical and taxonomic approaches to plant mycorrhizal trait assignment. MYCORRHIZA 2019; 29:1-11. [PMID: 30324505 DOI: 10.1007/s00572-018-0869-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/09/2018] [Indexed: 06/08/2023]
Abstract
Empirical and taxonomic approaches are the two main methods used to assign plant mycorrhizal traits to species lists. While the empirical approach uses only available empirical information, the taxonomic approach extrapolates certain core information about plant mycorrhizal types and statuses to related species. Despite recent claims that the taxonomic approach is now almost definitive, with little benefit to be gained from further empirical data collection, it has not been thoroughly compared with the empirical approach. Using the most complete available plant mycorrhizal trait information for Europe and both assignment approaches, we calculate the proportion of species for each trait, and model environmental drivers of trait distribution across the continent. We found large degrees of mismatch between approaches, with consequences for biogeographical interpretation, among facultatively mycorrhizal (FM; 91% of species mismatched), non-mycorrhizal (NM; 45%), and to a lesser extent arbuscular mycorrhizal (AM; 16%) plant species. This can partly be attributed to the taxonomic precision of the taxonomic approach and the use of different AM, NM, and FM concepts. Our results showed that the extrapolations of the taxonomic approach do not consistently match with empirical information and indicate that more empirical data are needed, in particular for FM, NM, and AM plant species. Clarifying certain concepts underlying mycorrhizal traits and empirically describing NM, AM, and FM species within plant families can greatly improve our understanding of the biogeography of mycorrhizal symbiosis.
Collapse
Affiliation(s)
- C Guillermo Bueno
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St, 51005, Tartu, Estonia.
| | - Maret Gerz
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St, 51005, Tartu, Estonia
| | - Martin Zobel
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St, 51005, Tartu, Estonia
| | - Mari Moora
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St, 51005, Tartu, Estonia
| |
Collapse
|
34
|
Gut bacterial and fungal communities in ground-dwelling beetles are associated with host food habit and habitat. ISME JOURNAL 2018; 13:676-685. [PMID: 30333525 DOI: 10.1038/s41396-018-0298-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 08/23/2018] [Accepted: 09/08/2018] [Indexed: 01/08/2023]
Abstract
Beetles (Coleoptera) have the highest species diversity among all orders, and they have diverse food habits. Gut microbes may have contributed to this diversification of food habits. Here, we identified the pattern of the relationship between ground-dwelling beetles and their gut microbial communities (bacteria and fungi) in the field. We collected 46 beetle species of five families from secondary deciduous forests and grasslands in Japan and extracted microbial DNA from whole guts for amplicon sequencing. The gut bacterial and fungal communities differed among all habitats and all food habits of their hosts (carnivores, herbivores, omnivores, and scavengers) except for the fungal communities between carnivores and scavengers. Specifically, the abundant bacterial group varied among food habits: Xanthomonadaceae were abundant in scavengers, whereas Enterobacteriaceae were abundant in carnivores and herbivores. Phylogenetically closely related beetles had phylogenetically similar communities of Enterobacteriaceae, suggesting that the community structure of this family is related to the evolutionary change in beetle ecology. One of the fungal groups, Yarrowia species, which has been reported to have a symbiotic relationship with silphid beetles, was also detected from various carnivorous beetles. Our results suggest that the symbiotic relationships between ground-dwelling beetles and these microbes are widespread.
Collapse
|
35
|
Convergent evolution of complex structures for ant-bacterial defensive symbiosis in fungus-farming ants. Proc Natl Acad Sci U S A 2018; 115:10720-10725. [PMID: 30282739 DOI: 10.1073/pnas.1809332115] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Evolutionary adaptations for maintaining beneficial microbes are hallmarks of mutualistic evolution. Fungus-farming "attine" ant species have complex cuticular modifications and specialized glands that house and nourish antibiotic-producing Actinobacteria symbionts, which in turn protect their hosts' fungus gardens from pathogens. Here we reconstruct ant-Actinobacteria evolutionary history across the full range of variation within subtribe Attina by combining dated phylogenomic and ultramorphological analyses. Ancestral-state analyses indicate the ant-Actinobacteria symbiosis arose early in attine-ant evolution, a conclusion consistent with direct observations of Actinobacteria on fossil ants in Oligo-Miocene amber. qPCR indicates that the dominant ant-associated Actinobacteria belong to the genus Pseudonocardia Tracing the evolutionary trajectories of Pseudonocardia-maintaining mechanisms across attine ants reveals a continuum of adaptations. In Myrmicocrypta species, which retain many ancestral morphological and behavioral traits, Pseudonocardia occur in specific locations on the legs and antennae, unassociated with any specialized structures. In contrast, specialized cuticular structures, including crypts and tubercles, evolved at least three times in derived attine-ant lineages. Conspicuous caste differences in Pseudonocardia-maintaining structures, in which specialized structures are present in worker ants and queens but reduced or lost in males, are consistent with vertical Pseudonocardia transmission. Although the majority of attine ants are associated with Pseudonocardia, there have been multiple losses of bacterial symbionts and bacteria-maintaining structures in different lineages over evolutionary time. The early origin of ant-Pseudonocardia mutualism and the multiple evolutionary convergences on strikingly similar anatomical adaptations for maintaining bacterial symbionts indicate that Pseudonocardia have played a critical role in the evolution of ant fungiculture.
Collapse
|
36
|
Borges RM. The Galling Truth: Limited Knowledge of Gall-Associated Volatiles in Multitrophic Interactions. FRONTIERS IN PLANT SCIENCE 2018; 9:1139. [PMID: 30140272 PMCID: PMC6094090 DOI: 10.3389/fpls.2018.01139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/13/2018] [Indexed: 05/18/2023]
Abstract
Galls are the product of enclosed internal herbivory where the gall maker induces a plant structure within which the herbivores complete their development. For successful sustained herbivory, gall makers must (1) suppress the induction of plant defenses in response to herbivory that is usually mediated through the jasmonic acid pathway and involves volatile organic compound (VOC) production, or (2) have mechanisms to cope with herbivory-induced VOCs, or (3) manipulate production of VOCs to their own advantage. Similarly, plants may have mechanisms (1) to avoid VOC suppression or (2) to attract galler enemies such as parasitoids. While research on VOCs involved in plant-herbivore-parasitoid/predator interactions is extensive, this has largely focussed on the impact of piercing, sucking, and chewing external herbivores or their eggs on VOC emissions. Despite the importance of gallers, owing to their damage to many economically valuable plants, the role of volatiles in gall-associated herbivory has been neglected; exceptions include studies on beneficial gallers and their enemies such as those that occur in brood-site pollination mutualisms. This is possibly the consequence of the difficulties inherent with studying internally occurring herbivory. This review examines the evidence for VOCs in galler attraction to host plants, potential VOC suppression by gallers, increased emission from galls and neighboring tissues, attraction of galler enemies, and the role of galler symbionts in VOC production. It suggests a research focus and ways in which studies on galler-associated VOCs can progress from a philatelic approach involving VOC listing toward a more predictive and evolutionary perspective.
Collapse
Affiliation(s)
- Renee M. Borges
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
37
|
Hamada M, Schröder K, Bathia J, Kürn U, Fraune S, Khalturina M, Khalturin K, Shinzato C, Satoh N, Bosch TC. Metabolic co-dependence drives the evolutionarily ancient Hydra-Chlorella symbiosis. eLife 2018; 7:35122. [PMID: 29848439 PMCID: PMC6019070 DOI: 10.7554/elife.35122] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/26/2018] [Indexed: 11/13/2022] Open
Abstract
Many multicellular organisms rely on symbiotic associations for support of metabolic activity, protection, or energy. Understanding the mechanisms involved in controlling such interactions remains a major challenge. In an unbiased approach we identified key players that control the symbiosis between Hydra viridissima and its photosynthetic symbiont Chlorella sp. A99. We discovered significant up-regulation of Hydra genes encoding a phosphate transporter and glutamine synthetase suggesting regulated nutrition supply between host and symbionts. Interestingly, supplementing the medium with glutamine temporarily supports in vitro growth of the otherwise obligate symbiotic Chlorella, indicating loss of autonomy and dependence on the host. Genome sequencing of Chlorella sp. A99 revealed a large number of amino acid transporters and a degenerated nitrate assimilation pathway, presumably as consequence of the adaptation to the host environment. Our observations portray ancient symbiotic interactions as a codependent partnership in which exchange of nutrients appears to be the primary driving force.
Collapse
Affiliation(s)
- Mayuko Hamada
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.,Ushimado Marine Institute, Okayama University, Okayama, Japan
| | - Katja Schröder
- Interdisciplinary Research Center, Kiel Life Science, Kiel University, Kiel, Germany.,Zoological Institute, Kiel Life Science, Kiel University, Kiel, Germany
| | - Jay Bathia
- Interdisciplinary Research Center, Kiel Life Science, Kiel University, Kiel, Germany.,Zoological Institute, Kiel Life Science, Kiel University, Kiel, Germany
| | - Ulrich Kürn
- Interdisciplinary Research Center, Kiel Life Science, Kiel University, Kiel, Germany.,Zoological Institute, Kiel Life Science, Kiel University, Kiel, Germany
| | - Sebastian Fraune
- Interdisciplinary Research Center, Kiel Life Science, Kiel University, Kiel, Germany.,Zoological Institute, Kiel Life Science, Kiel University, Kiel, Germany
| | - Mariia Khalturina
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Konstantin Khalturin
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Chuya Shinzato
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.,Atmosphere and Ocean Research Institute, The University of Tokyo, Tokyo, Japan
| | - Nori Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Thomas Cg Bosch
- Interdisciplinary Research Center, Kiel Life Science, Kiel University, Kiel, Germany.,Zoological Institute, Kiel Life Science, Kiel University, Kiel, Germany
| |
Collapse
|
38
|
Abstract
Microbiome science is revealing that the phenotype and health of animals, including humans, depend on the sustained function of their resident microorganisms. In this essay, I argue for thoughtful choice of model systems for human microbiome science. A greater variety of experimental systems, including wider use of invertebrate models, would benefit biomedical research, while systems ill-suited to experimental and genetic manipulation can be used to address very limited sets of scientific questions. Microbiome science benefits from the coordinated use of multiple systems, which is facilitated by networks of researchers with expertise in different experimental systems.
Collapse
Affiliation(s)
- Angela E. Douglas
- Department of Entomology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
39
|
Ivens ABF, Gadau A, Kiers ET, Kronauer DJC. Can social partnerships influence the microbiome? Insights from ant farmers and their trophobiont mutualists. Mol Ecol 2018; 27:1898-1914. [PMID: 29411455 PMCID: PMC5935579 DOI: 10.1111/mec.14506] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/21/2017] [Accepted: 11/28/2017] [Indexed: 01/02/2023]
Abstract
Mutualistic interactions with microbes have played a crucial role in the evolution and ecology of animal hosts. However, it is unclear what factors are most important in influencing particular host–microbe associations. While closely related animal species may have more similar microbiota than distantly related species due to phylogenetic contingencies, social partnerships with other organisms, such as those in which one animal farms another, may also influence an organism's symbiotic microbiome. We studied a mutualistic network of Brachymyrmex and Lasius ants farming several honeydew‐producing Prociphilus aphids and Rhizoecus mealybugs to test whether the mutualistic microbiomes of these interacting insects are primarily correlated with their phylogeny or with their shared social partnerships. Our results confirm a phylogenetic signal in the microbiomes of aphid and mealybug trophobionts, with each species harbouring species‐specific endosymbiont strains of Buchnera (aphids), Tremblaya and Sodalis (mealybugs), and Serratia (both mealybugs and aphids) despite being farmed by the same ants. This is likely explained by strict vertical transmission of trophobiont endosymbionts between generations. In contrast, our results show the ants’ microbiome is possibly shaped by their social partnerships, with ants that farm the same trophobionts also sharing strains of sugar‐processing Acetobacteraceae bacteria, known from other honeydew‐feeding ants and which likely reside extracellularly in the ants’ guts. These ant–microbe associations are arguably more “open” and subject to horizontal transmission or social transmission within ant colonies. These findings suggest that the role of social partnerships in shaping a host's symbiotic microbiome can be variable and is likely dependent on how the microbes are transmitted across generations.
Collapse
Affiliation(s)
- Aniek B F Ivens
- Animal Ecology Section, Department of Ecological Science, Faculty of Science, Vrije Universiteit, Amsterdam, The Netherlands.,Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA
| | - Alice Gadau
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA
| | - E Toby Kiers
- Animal Ecology Section, Department of Ecological Science, Faculty of Science, Vrije Universiteit, Amsterdam, The Netherlands
| | - Daniel J C Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA
| |
Collapse
|
40
|
Dal Grande F, Rolshausen G, Divakar PK, Crespo A, Otte J, Schleuning M, Schmitt I. Environment and host identity structure communities of green algal symbionts in lichens. THE NEW PHYTOLOGIST 2018; 217:277-289. [PMID: 28892165 DOI: 10.1111/nph.14770] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/03/2017] [Indexed: 06/07/2023]
Abstract
An understanding of how biotic interactions shape species' distributions is central to predicting host-symbiont responses under climate change. Switches to locally adapted algae have been proposed to be an adaptive strategy of lichen-forming fungi to cope with environmental change. However, it is unclear how lichen photobionts respond to environmental gradients, and whether they play a role in determining the fungal host's upper and lower elevational limits. Deep-coverage Illumina DNA metabarcoding was used to track changes in the community composition of Trebouxia algae associated with two phylogenetically closely related, but ecologically divergent fungal hosts along a steep altitudinal gradient in the Mediterranean region. We detected the presence of multiple Trebouxia species in the majority of thalli. Both altitude and host genetic identity were strong predictors of photobiont community assembly in these two species. The predominantly clonally dispersing fungus showed stronger altitudinal structuring of photobiont communities than the sexually reproducing host. Elevation ranges of the host were not limited by the lack of compatible photobionts. Our study sheds light on the processes guiding the formation and distribution of specific fungal-algal combinations in the lichen symbiosis. The effect of environmental filtering acting on both symbiotic partners appears to shape the distribution of lichens.
Collapse
Affiliation(s)
- Francesco Dal Grande
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, Frankfurt am Main, 60325, Germany
| | - Gregor Rolshausen
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, Frankfurt am Main, 60325, Germany
| | - Pradeep K Divakar
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Ana Crespo
- Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Jürgen Otte
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, Frankfurt am Main, 60325, Germany
| | - Matthias Schleuning
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, Frankfurt am Main, 60325, Germany
| | - Imke Schmitt
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, Frankfurt am Main, 60325, Germany
- Institut für Ökologie, Evolution und Diversität, Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, Frankfurt am Main, 60438, Germany
| |
Collapse
|
41
|
Engl T, Eberl N, Gorse C, Krüger T, Schmidt THP, Plarre R, Adler C, Kaltenpoth M. Ancient symbiosis confers desiccation resistance to stored grain pest beetles. Mol Ecol 2017; 27:2095-2108. [PMID: 29117633 DOI: 10.1111/mec.14418] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 09/22/2017] [Indexed: 12/12/2022]
Abstract
Microbial symbionts of insects provide a range of ecological traits to their hosts that are beneficial in the context of biotic interactions. However, little is known about insect symbiont-mediated adaptation to the abiotic environment, for example, temperature and humidity. Here, we report on an ancient clade of intracellular, bacteriome-located Bacteroidetes symbionts that are associated with grain and wood pest beetles of the phylogenetically distant families Silvanidae and Bostrichidae. In the saw-toothed grain beetle Oryzaephilus surinamensis, we demonstrate that the symbionts affect cuticle thickness, melanization and hydrocarbon profile, enhancing desiccation resistance and thereby strongly improving fitness under dry conditions. Together with earlier observations on symbiont contributions to cuticle biosynthesis in weevils, our findings indicate that convergent acquisitions of bacterial mutualists represented key adaptations enabling diverse pest beetle groups to survive and proliferate under the low ambient humidity that characterizes dry grain storage facilities.
Collapse
Affiliation(s)
- Tobias Engl
- Research Group Insect Symbiosis, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| | - Nadia Eberl
- Research Group Insect Symbiosis, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| | - Carla Gorse
- Research Group Insect Symbiosis, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| | - Theresa Krüger
- Research Group Insect Symbiosis, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| | - Thorsten H P Schmidt
- Department for Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg-University, Mainz, Germany
| | - Rudy Plarre
- Federal Institute for Material Research and Testing, Berlin, Germany
| | - Cornel Adler
- Federal Research Centre for Cultivated Plants, Julius-Kühn-Institute, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Berlin, Germany
| | - Martin Kaltenpoth
- Research Group Insect Symbiosis, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
42
|
Luo SX, Liu TT, Cui F, Yang ZY, Hu XY, Renner SS. Coevolution with pollinating resin midges led to resin-filled nurseries in the androecia, gynoecia and tepals of Kadsura (Schisandraceae). ANNALS OF BOTANY 2017; 120:653-664. [PMID: 28444386 PMCID: PMC5714246 DOI: 10.1093/aob/mcx024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/09/2017] [Accepted: 02/23/2017] [Indexed: 05/04/2023]
Abstract
Background and Aims Resin is a defence against herbivores and a floral reward in a few African and South American species whose bee pollinators collect it for nest construction. Here we describe a new role for floral resin from the Asian genus Kadsura (Schisandraceae). Kadsura tepals tightly cover a globe formed by carpels (in females) or near-fused stamens with fleshy connectives (in male flowers of most, but not all species). Methods We carried out field observations at four sites in China and used pollinator behavioural assays, chemical analyses and time-calibrated insect and plant phylogenies to investigate the specificity of the interactions and their relationship to floral structure. Key Results Nocturnal resin midges ( Resseliella , Cecidomyiidae) walk around on the flowers' sexual organs to oviposit, thereby transferring pollen and wounding tissues. The larvae then develop in resin-filled chambers. Male and female floral scents are dominated by α-pinene, while the resinous exudate is dominated by caryophyllene. As revealed by barcoding of multiple midge larvae per flower species, the mutualisms are species specific and appear to have evolved over the past 6-9 million years. Conclusions Resin feeding, not pollen or ovule feeding, by midge larvae explains the abundant Kadsura exudates, highlighting the poorly known world of nocturnal flower-fly interactions.
Collapse
Affiliation(s)
- Shi-Xiao Luo
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou, China
| | - Ting-Ting Liu
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou, China
| | - Fei Cui
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou, China
| | - Zi-Yin Yang
- Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou, China
| | - Xiao-Ying Hu
- Public Laboratory, South China Botanical Garden, The Chinese Academy of Sciences, Guangzhou, China
| | - Susanne S Renner
- Systematic Botany and Mycology, Faculty of Biology, University of Munich (LMU), Munich, Germany
| |
Collapse
|
43
|
|
44
|
Pellissier L, Kostikova A, Litsios G, Salamin N, Alvarez N. High Rate of Protein Coding Sequence Evolution and Species Diversification in the Lycaenids. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
45
|
Mutualisms Are Not on the Verge of Breakdown. Trends Ecol Evol 2017; 32:727-734. [PMID: 28739078 DOI: 10.1016/j.tree.2017.07.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/28/2017] [Accepted: 07/03/2017] [Indexed: 11/21/2022]
Abstract
Mutualisms teeter on a knife-edge between conflict and cooperation, or so the conventional wisdom goes. The costs and benefits of mutualism often depend on the abiotic or biotic context in which an interaction occurs, and experimental manipulations can induce shifts in interaction outcomes from mutualism all the way to parasitism. Yet, research suggests that mutualisms rarely turn parasitic in nature. Similarly, despite the potential for 'cheating' to undermine mutualism evolution, empirical evidence for fitness conflicts between partners and, thus, selection for cheating in mutualisms is scant. Furthermore, mutualism seldom leads to parasitism at macroevolutionary timescales. Thus, I argue here that mutualisms do not deserve their reputation for ecological and evolutionary instability, and are not on the verge of breakdown.
Collapse
|
46
|
Sato H, Tanabe AS, Toju H. Host shifts enhance diversification of ectomycorrhizal fungi: diversification rate analysis of the ectomycorrhizal fungal genera Strobilomyces and Afroboletus with an 80-gene phylogeny. THE NEW PHYTOLOGIST 2017; 214:443-454. [PMID: 27918625 DOI: 10.1111/nph.14368] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/01/2016] [Indexed: 06/06/2023]
Abstract
Mutualisms with new host lineages can provide symbionts with novel ecological opportunities to expand their geographical distribution, thereby leading to evolutionary diversification. Because ectomycorrhizal (ECM) fungi provide ideal opportunities to test the relationship between host shifts and diversification, we tested whether mutualism with new host lineages could increase the diversification rates of ECM fungi. Using a Bayesian tree inferred from 23 027-base nucleotide sequences of 80 single-copy genes, we tested whether the diversification rate had changed through host-shift events in the monophyletic clade containing the ECM fungal genera Strobilomyces and Afroboletus. The results indicated that these fungi were initially associated with Caesalpinioideae/Monotoideae in Africa, acquired associations with Dipterocarpoideae in tropical Asia, and then switched to Fagaceae/Pinaceae and Nothofagaceae/Eucalyptus. Fungal lineages associated with Fagaceae/Pinaceae were inferred to have approximately four-fold and two-fold greater diversification rates than those associated with Caesalpinioideae/Monotoideae and Dipterocarpoideae or Nothofagaceae/Eucalyptus, respectively. Moreover, the diversification rate shift was inferred to follow the host shift to Fagaceae/Pinaceae. Our study suggests that host-shift events, particularly those occurring with respect to Fagaceae/Pinaceae, can provide ecological opportunities for the rapid diversification of Strobilomyces-Afroboletus. Although further studies are needed for generalization, we propose a possible diversification scenario of ECM fungi.
Collapse
Affiliation(s)
- Hirotoshi Sato
- Center for Ecological Research, Kyoto University, 509-3, 2-chome, Hirano, Otsu, Shiga, 520-2113, Japan
- Department of Environmental Solution Technology, Facility of Science & Technology, Ryukoku University, Seta-Oe, Otsu, 520-2194, Shiga, Japan
| | - Akifumi S Tanabe
- National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, 2-12-4, Fuku-ura, Kanazawa-ku, Yokohama, Kanagawa, 236-8648, Japan
| | - Hirokazu Toju
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyoku Kyoto, 606-8501, Japan
| |
Collapse
|
47
|
Aubier TG, Elias M, Llaurens V, Chazot N. Mutualistic mimicry enhances species diversification through spatial segregation and extension of the ecological niche space. Evolution 2017; 71:826-844. [DOI: 10.1111/evo.13182] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 01/06/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Thomas G. Aubier
- Centre d'Ecologie Fonctionnelle et Evolutive; CEFE - UMR 5175 - CNRS, Université de Montpellier, EPHE, Université Paul Valéry; 1919 route de Mende, F-34293 Montpellier 5 France
- Institut de Systématique, Evolution, Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, Muséum National d'Histoire Naturelle; Sorbonne Universités; 57 rue Cuvier, CP50 F-75005 Paris France
| | - Marianne Elias
- Institut de Systématique, Evolution, Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, Muséum National d'Histoire Naturelle; Sorbonne Universités; 57 rue Cuvier, CP50 F-75005 Paris France
| | - Violaine Llaurens
- Institut de Systématique, Evolution, Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, Muséum National d'Histoire Naturelle; Sorbonne Universités; 57 rue Cuvier, CP50 F-75005 Paris France
| | - Nicolas Chazot
- Institut de Systématique, Evolution, Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, Muséum National d'Histoire Naturelle; Sorbonne Universités; 57 rue Cuvier, CP50 F-75005 Paris France
- Department of Biology; Lund University; Lund Sweden
| |
Collapse
|
48
|
Barker JL, Bronstein JL, Friesen ML, Jones EI, Reeve HK, Zink AG, Frederickson ME. Synthesizing perspectives on the evolution of cooperation within and between species. Evolution 2017; 71:814-825. [PMID: 28071790 DOI: 10.1111/evo.13174] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 12/24/2016] [Accepted: 01/04/2017] [Indexed: 12/11/2022]
Abstract
Cooperation is widespread both within and between species, but are intraspecific and interspecific cooperation fundamentally similar or qualitatively different phenomena? This review evaluates this question, necessary for a general understanding of the evolution of cooperation. First, we outline three advantages of cooperation relative to noncooperation (acquisition of otherwise inaccessible goods and services, more efficient acquisition of resources, and buffering against variability), and predict when individuals should cooperate with a conspecific versus a heterospecific partner to obtain these advantages. Second, we highlight five axes along which heterospecific and conspecific partners may differ: relatedness and fitness feedbacks, competition and resource use, resource-generation abilities, relative evolutionary rates, and asymmetric strategy sets and outside options. Along all of these axes, certain asymmetries between partners are more common in, but not exclusive to, cooperation between species, especially complementary resource use and production. We conclude that cooperation within and between species share many fundamental qualities, and that differences between the two systems are explained by the various asymmetries between partners. Consideration of the parallels between intra- and interspecific cooperation facilitates application of well-studied topics in one system to the other, such as direct benefits within species and kin-selected cooperation between species, generating promising directions for future research.
Collapse
Affiliation(s)
- Jessica L Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, 85721.,Current Address: Aarhus Institute of Advanced Studies, Aarhus University, 8000, Aarhus C, Denmark
| | - Judith L Bronstein
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, 85721
| | - Maren L Friesen
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824
| | - Emily I Jones
- Department of BioSciences, Rice University, Houston, Texas, 77005
| | - H Kern Reeve
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, 14853
| | - Andrew G Zink
- Department of Biology, San Francisco State University, San Francisco, California, 94132
| | - Megan E Frederickson
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
| |
Collapse
|
49
|
|
50
|
Affiliation(s)
- John J. Wiens
- Department of Ecology and Evolutionary Biology; University of Arizona; Tucson AZ USA
| |
Collapse
|