1
|
Kharouba HM, Wolkovich EM. Lack of evidence for the match-mismatch hypothesis across terrestrial trophic interactions. Ecol Lett 2023; 26:955-964. [PMID: 36888547 DOI: 10.1111/ele.14185] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/13/2022] [Accepted: 01/14/2023] [Indexed: 03/09/2023]
Abstract
Climate change has led to widespread shifts in the timing of key life history events between interacting species (phenological asynchrony) with hypothesized cascading negative fitness impacts on one or more of the interacting species-often termed 'mismatch'. Yet, predicting the types of systems prone to mismatch remains a major hurdle. Recent reviews have argued that many studies do not provide strong evidence of the underlying match-mismatch hypothesis, but none have quantitatively analysed support for it. Here, we test the hypothesis by estimating the prevalence of mismatch across antagonistic trophic interactions in terrestrial systems and then examine whether studies that meet the assumptions of the hypothesis are more likely to find a mismatch. Despite a large range of synchrony to asynchrony, we did not find general support for the hypothesis. Our results thus question the general applicability of this hypothesis in terrestrial systems, but they also suggest specific types of data missing to robustly refute it. We highlight the critical need to define resource seasonality and the window of 'match' for the most rigorous tests of the hypothesis. Such efforts are necessary if we want to predict systems where mismatches are likely to occur.
Collapse
Affiliation(s)
| | - E M Wolkovich
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, Canada
| |
Collapse
|
2
|
Mi C, Ma L, Wang Y, Wu D, Du W, Sun B. Temperate and tropical lizards are vulnerable to climate warming due to increased water loss and heat stress. Proc Biol Sci 2022; 289:20221074. [PMID: 35946157 PMCID: PMC9363995 DOI: 10.1098/rspb.2022.1074] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Climate warming has imposed profound impacts on species globally. Understanding the vulnerabilities of species from different latitudinal regions to warming climates is critical for biological conservation. Using five species of Takydromus lizards as a study system, we quantified physiological and life-history responses and geography range change across latitudes under climate warming. Using integrated biophysical models and hybrid species distribution models, we found: (i) thermal safety margin is larger at high latitudes and is predicted to decrease under climate warming for lizards at all latitudes; (ii) climate warming will speed up embryonic development and increase annual activity time of adult lizards, but will exacerbate water loss of adults across all latitudes; and (iii) species across latitudes are predicted to experience habitat contraction under climate warming due to different limitations-tropical and subtropical species are vulnerable due to increased extremely high temperatures, whereas temperate species are vulnerable due to both extremely high temperatures and increased water loss. This study provides a comprehensive understanding of the vulnerability of species from different latitudinal regions to climate warming in ectotherms, and also highlights the importance of integrating environmental factors, behaviour, physiology and life-history responses in predicting the risk of species to climate warming.
Collapse
Affiliation(s)
- Chunrong Mi
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Liang Ma
- Princeton School of Public and International Affairs, Princeton University, Princeton, NJ 08544, USA
| | - Yang Wang
- School of Biological Sciences, Hebei Normal University, Shijiazhuang, People's Republic of China
| | - Danyang Wu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Weiguo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Baojun Sun
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| |
Collapse
|
3
|
Engelhardt EK, Biber MF, Dolek M, Fartmann T, Hochkirch A, Leidinger J, Löffler F, Pinkert S, Poniatowski D, Voith J, Winterholler M, Zeuss D, Bowler DE, Hof C. Consistent signals of a warming climate in occupancy changes of three insect taxa over 40 years in central Europe. GLOBAL CHANGE BIOLOGY 2022; 28:3998-4012. [PMID: 35535680 DOI: 10.1111/gcb.16200] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/22/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Recent climate and land-use changes are having substantial impacts on biodiversity, including population declines, range shifts, and changes in community composition. However, few studies have compared these impacts among multiple taxa, particularly because of a lack of standardized time series data over long periods. Existing data sets are typically of low resolution or poor coverage, both spatially and temporally, thereby limiting the inferences that can be drawn from such studies. Here, we compare climate and land-use driven occupancy changes in butterflies, grasshoppers, and dragonflies using an extensive data set of highly heterogeneous observation data collected in the central European region of Bavaria (Germany) over a 40-year period. Using occupancy models, we find occupancies (the proportion of sites occupied by a species in each year) of 37% of species have decreased, 30% have increased and 33% showed no significant trend. Butterflies and grasshoppers show strongest declines with 41% of species each. By contrast, 52% of dragonfly species increased. Temperature preference and habitat specificity appear as significant drivers of species trends. We show that cold-adapted species across all taxa have declined, whereas warm-adapted species have increased. In butterflies, habitat specialists have decreased, while generalists increased or remained stable. The trends of habitat generalists and specialists both in grasshoppers and semi-aquatic dragonflies, however did not differ. Our findings indicate strong and consistent effects of climate warming across insect taxa. The decrease of butterfly specialists could hint towards a threat from land-use change, as especially butterfly specialists' occurrence depends mostly on habitat quality and area. Our study not only illustrates how these taxa showed differing trends in the past but also provides hints on how we might mitigate the detrimental effects of human development on their diversity in the future.
Collapse
Affiliation(s)
- Eva Katharina Engelhardt
- Terrestrial Ecology Research Group, Department for Life Science Systems, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Matthias F Biber
- Terrestrial Ecology Research Group, Department for Life Science Systems, School of Life Sciences, Technical University of Munich, Freising, Germany
| | | | - Thomas Fartmann
- Department of Biodiversity and Landscape Ecology, Osnabrück University, Osnabrück, Germany
| | - Axel Hochkirch
- Department of Biogeography, Trier University, Trier, Germany
| | - Jan Leidinger
- Terrestrial Ecology Research Group, Department for Life Science Systems, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Franz Löffler
- Department of Biodiversity and Landscape Ecology, Osnabrück University, Osnabrück, Germany
| | - Stefan Pinkert
- Department of Ecology and Evolution, Yale University, New Haven, Connecticut, USA
- Center for Biodiversity and Global Change, Yale University, New Haven, Connecticut, USA
- Department of Conservation Ecology, Philipps Universität Marburg, Marburg, Germany
| | - Dominik Poniatowski
- Department of Biodiversity and Landscape Ecology, Osnabrück University, Osnabrück, Germany
| | - Johannes Voith
- Bayerisches Landesamt für Umwelt/Bavarian Environment Agency, Augsburg, Germany
| | - Michael Winterholler
- Bavarian State Ministry of the Environment and Consumer Protection, München, Germany
| | - Dirk Zeuss
- Department of Environmental Informatics, Philipps Universität Marburg, Marburg, Germany
| | - Diana E Bowler
- German Centre for Integrative Biodiversity Research-iDiv-Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
- Helmholtz-Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Christian Hof
- Terrestrial Ecology Research Group, Department for Life Science Systems, School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
4
|
Abstract
The integration of life-history, behavioural and physiological traits into a ‘pace-of-life syndrome’ is a powerful concept in understanding trait variation in nature. Yet, mechanisms maintaining variation in ‘pace-of-life’ are not well understood. We tested whether decreased thermal performance is an energetic cost of a faster pace-of-life. We characterized the pace-of-life of larvae of the damselfly Ischnura elegans from high-latitude and low-latitude regions when reared at 20°C or 24°C in a common-garden experiment, and estimated thermal performance curves for a set of behavioural, physiological and performance traits. Our results confirm a faster pace-of-life (i.e. faster growth and metabolic rate, more active and bold behaviour) in the low-latitude and in warm-reared larvae, and reveal increased maximum performance, Rmax, but not thermal optimum Topt, in low-latitude larvae. Besides a clear pace-of-life syndrome integration at the individual level, larvae also aligned along a ‘cold–hot’ axis. Importantly, a faster pace-of-life correlated negatively with a high thermal performance (i.e. higher Topt for swimming speed, metabolic rate, activity and boldness), which was consistent across latitudes and rearing temperatures. This trade-off, potentially driven by the energetically costly maintenance of a fast pace-of-life, may be an alternative mechanism contributing to the maintenance of variation in pace-of-life within populations.
Collapse
Affiliation(s)
- Nedim Tüzün
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, KU Leuven, Charles Deberiotstraat 32, 3000 Leuven, Belgium
| | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, KU Leuven, Charles Deberiotstraat 32, 3000 Leuven, Belgium
| |
Collapse
|
5
|
Finn DS, Johnson SL, Gerth WJ, Arismendi I, Li JL. Spatiotemporal patterns of emergence phenology reveal complex species‐specific responses to temperature in aquatic insects. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13472] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Debra S. Finn
- Department of Biology Missouri State University Springfield Missouri USA
| | - Sherri L. Johnson
- U.S. Forest Service Pacific Northwest Research Station Corvallis Oregon USA
| | - William J. Gerth
- Department of Fisheries, Wildlife, and Conservation Sciences Oregon State University Corvallis Oregon USA
| | - Ivan Arismendi
- Department of Fisheries, Wildlife, and Conservation Sciences Oregon State University Corvallis Oregon USA
| | - Judith L. Li
- Department of Fisheries, Wildlife, and Conservation Sciences Oregon State University Corvallis Oregon USA
| |
Collapse
|
6
|
Kaspari M, Joern A, Welti EAR. How and why grasshopper community maturation rates are slowing on a North American tall grass prairie. Biol Lett 2022; 18:20210510. [PMID: 35078328 PMCID: PMC8790374 DOI: 10.1098/rsbl.2021.0510] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/13/2021] [Indexed: 01/28/2023] Open
Abstract
Invertebrate growth rates have been changing in the Anthropocene. We examine rates of seasonal maturation in a grasshopper community that has been declining annually greater than 2% a year over 34 years. As this grassland has experienced a 1°C increase in temperature, higher plant biomass and lower nutrient densities, the community is maturing more slowly. Community maturation had a nutritional component: declining in years/watersheds with lower plant nitrogen. The effects of fire frequency were consistent with effects of plant nitrogen. Principal components analysis also suggests associated changes in species composition-declines in the densities of grass feeders were associated with declines in community maturation rates. We conclude that slowed maturation rates-a trend counteracted by frequent burning-likely contribute to long-term decline of this dominant herbivore.
Collapse
Affiliation(s)
- Michael Kaspari
- Geographical Ecology Group, University of Oklahoma, Norman, OK, USA
| | - Anthony Joern
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Ellen A. R. Welti
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
| |
Collapse
|
7
|
Hao S, Liu C, Ma C, Guo W, Kang L. Embryonic Development of Grasshopper Populations Along Latitudinal Gradients Reveal Differential Thermoaccumulation for Adaptation to Climate Warming. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.736456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Climate warming has a remarkable effect on the distribution, phenology, and development of insects. Although the embryonic development and phenology of non-diapause grasshopper species are more susceptible to warming than those of diapause species, the responses of developmental traits in conspecifically different populations to climate warming remain unknown. Here, we compared the mtDNA sequences and embryonic development of eight populations of grasshopper species (Chorthippus dubius) in field-based manipulated warming and laboratory experiments. The mtDNA sequences showed a significant genetic differentiation of the southernmost population from the other seven populations on the Mongolian Plateau. The embryonic development of the southernmost population was significantly slower than those of the northern populations at the same incubation temperatures. Interestingly, laboratory experiments showed that a significant difference exists in the effective accumulated degree days (EADD) but not in the lower development threshold temperatures (LDTT) among the different populations. The high-latitude populations required less EADD than the low-latitude populations. The warming treatments significantly accelerated the embryonic development in the field and decreased duration from embryos to hatchlings of all eight populations in the incubation. In addition, warming treatments in field significantly increased EADD requirement per stage in the incubation. Linear regression model confirmed that the embryonic development characteristics of eight populations were correlated with the annual mean temperature and total precipitation of embryonic development duration. The results indicated that grasshopper species have evolved a strategy of adjusting their EADD but not their LDTT to adapt to temperature changes. The variations in the EADD among the different populations enabled the grasshopper eggs to buffer the influences of higher temperatures on development and preserve their univoltine nature in temperate regions while encountering warmer climatic conditions. Thus, the findings of this study is valuable for our understanding species variation and evolution, and as such has direct implication for modeling biological response to climate warming.
Collapse
|
8
|
Smith JM, Telemeco RS, Briones Ortiz BA, Nufio CR, Buckley LB. High-Elevation Populations of Montane Grasshoppers Exhibit Greater Developmental Plasticity in Response to Seasonal Cues. Front Physiol 2021; 12:738992. [PMID: 34803731 PMCID: PMC8600268 DOI: 10.3389/fphys.2021.738992] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/05/2021] [Indexed: 12/02/2022] Open
Abstract
Populations of insects can differ in how sensitive their development, growth, and performance are to environmental conditions such as temperature and daylength. The environmental sensitivity of development can alter phenology (seasonal timing) and ecology. Warming accelerates development of most populations. However, high-elevation and season-limited populations can exhibit developmental plasticity to either advance or prolong development depending on conditions. We examine how diurnal temperature variation and daylength interact to shape growth, development, and performance of several populations of the montane grasshopper, Melanoplus boulderensis, along an elevation gradient. We then compare these experimental results to observed patterns of development in the field. Although populations exhibited similar thermal sensitivities of development under long-day conditions, development of high-elevation populations was more sensitive to temperature under short-day conditions. This developmental plasticity resulted in rapid development of high elevation populations in short-day conditions with high temperature variability, consistent with their observed capacity for rapid development in the field when conditions are permissive early in the season. Notably, accelerated development generally did not decrease body size or alter body shape. Developmental conditions did not strongly influence thermal tolerance but altered the temperature dependence of performance in difficult-to-predict ways. In sum, the high-elevation and season-limited populations exhibited developmental plasticity that enables advancing or prolonging development consistent with field phenology. Our results suggest these patterns are driven by the thermal sensitivity of development increasing when days are short early in the season compared to when days are long later in the season. Developmental plasticity will shape phenological responses to climate change with potential implications for community and ecosystem structure.
Collapse
Affiliation(s)
- Julia M Smith
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Rory S Telemeco
- Department of Biology, University of Washington, Seattle, WA, United States.,Department of Biology, California State University, Fresno, Fresno, CA, United States
| | - Bryan A Briones Ortiz
- Department of Biology, University of Washington, Seattle, WA, United States.,School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, United States
| | - César R Nufio
- Howard Hughes Medical Institute, Chevy Chase, VA, United States.,University of Colorado Museum of Natural History, University of Colorado, Boulder, Boulder, CO, United States
| | - Lauren B Buckley
- Department of Biology, University of Washington, Seattle, WA, United States
| |
Collapse
|
9
|
Morphological variability of Argynnis paphia (Lepidoptera: Nymphalidae) across different environmental conditions in eastern Slovakia. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00771-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Thermal and Oxygen Flight Sensitivity in Ageing Drosophila melanogaster Flies: Links to Rapamycin-Induced Cell Size Changes. BIOLOGY 2021; 10:biology10090861. [PMID: 34571738 PMCID: PMC8464818 DOI: 10.3390/biology10090861] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 12/03/2022]
Abstract
Simple Summary Cold-blooded organisms can become physiologically challenged when performing highly oxygen-demanding activities (e.g., flight) across different thermal and oxygen environmental conditions. We explored whether this challenge decreases if an organism is built of smaller cells. This is because small cells create a large cell surface, which is costly, but can ease the delivery of oxygen to cells’ power plants, called mitochondria. We developed fruit flies in either standard food or food with rapamycin (a human drug altering the cell cycle and ageing), which produced flies with either large cells (no supplementation) or small cells (rapamycin supplementation). We measured the maximum speed at which flies were flapping their wings in warm and hot conditions, combined with either normal or reduced air oxygen concentrations. Flight intensity increased with temperature, and it was reduced by poor oxygen conditions, indicating limitations of flying insects by oxygen supply. Nevertheless, flies with small cells showed lower limitations, only slowing down their wing flapping in low oxygen in the hot environment. Our study suggests that small cells in a body can help cold-blooded organisms maintain demanding activities (e.g., flight), even in poor oxygen conditions, but this advantage can depend on body temperature. Abstract Ectotherms can become physiologically challenged when performing oxygen-demanding activities (e.g., flight) across differing environmental conditions, specifically temperature and oxygen levels. Achieving a balance between oxygen supply and demand can also depend on the cellular composition of organs, which either evolves or changes plastically in nature; however, this hypothesis has rarely been examined, especially in tracheated flying insects. The relatively large cell membrane area of small cells should increase the rates of oxygen and nutrient fluxes in cells; however, it does also increase the costs of cell membrane maintenance. To address the effects of cell size on flying insects, we measured the wing-beat frequency in two cell-size phenotypes of Drosophila melanogaster when flies were exposed to two temperatures (warm/hot) combined with two oxygen conditions (normoxia/hypoxia). The cell-size phenotypes were induced by rearing 15 isolines on either standard food (large cells) or rapamycin-enriched food (small cells). Rapamycin supplementation (downregulation of TOR activity) produced smaller flies with smaller wing epidermal cells. Flies generally flapped their wings at a slower rate in cooler (warm treatment) and less-oxygenated (hypoxia) conditions, but the small-cell-phenotype flies were less prone to oxygen limitation than the large-cell-phenotype flies and did not respond to the different oxygen conditions under the warm treatment. We suggest that ectotherms with small-cell life strategies can maintain physiologically demanding activities (e.g., flight) when challenged by oxygen-poor conditions, but this advantage may depend on the correspondence among body temperatures, acclimation temperatures and physiological thermal limits.
Collapse
|
11
|
Zettlemoyer MA, Peterson ML. Does Phenological Plasticity Help or Hinder Range Shifts Under Climate Change? Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.689192] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Climate warming is predicted to shift species’ ranges as previously uninhabitable environments just beyond the leading range edges become suitable habitat and trailing range edges become increasingly unsuitable. Understanding which aspects of the environment and species traits mediate these range shifts is critical for understanding species’ possible redistributions under global change, yet we have a limited understanding of the ecological and evolutionary responses underlying population spread or extinction at species’ range edges. Within plant populations, shifts in flowering phenology have been one of the strongest and most consistent responses to climate change, and are likely to play an important role in mediating population dynamics within and beyond species’ ranges. However, the role of phenological shifts, and particularly phenological plasticity, in species’ range shifts remains relatively unstudied. Here, we synthesize literature on phenology, plasticity, and adaptation to suggest ways in which phenological responses to climate may vary across species’ ranges and review the empirical evidence for and against these hypotheses. We then outline how phenological plasticity could facilitate or hinder persistence and potential consequences of phenological plasticity in range expansions, including phenological cues, shifts in correlated traits, altered species interactions, and effects on gene flow. Finally, we suggest future avenues for research, such as characterizing reaction norms for phenology across a species’ range and in beyond-the-range transplant experiments. Given the prevalence and magnitude of phenological shifts, future work should carefully dissect its costs and benefits for population persistence, and incorporate phenological plasticity into models predicting species’ persistence and geographic range shifts under climate change.
Collapse
|
12
|
Wong LH, Forrest JRK. The earlier the better? Nesting timing and reproductive success in subalpine cavity-nesting bees. J Anim Ecol 2021; 90:1353-1366. [PMID: 33656748 DOI: 10.1111/1365-2656.13460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 02/16/2021] [Indexed: 11/27/2022]
Abstract
Reproductive timing can affect an organism's production of offspring and its offspring's success, both of which contribute to its overall fitness. In seasonal environments, the timing of reproductive activity may be restricted to short periods of the year owing to numerous potential selective pressures such as variation in daylength, weather, food availability, predation or competition. We documented the relationships between reproductive timing and individual reproductive success (total reproductive output and offspring success) in subalpine populations of five cavity-nesting solitary bee species. We also examined the relationships between bee reproductive success and environmental variables that are likely ultimate drivers of bee phenology in subalpine environments (i.e. seasonality of floral resource abundance and temperature). Over 6 years, we recorded solitary bee nesting timing, egg production and offspring success using artificial nesting structures ('trap-nests') established at multiple study sites. We also quantified floral resources and recorded temperature throughout growing seasons. Bees nesting earlier in the season exhibited greater reproductive success. Reproductive output generally increased with floral abundance, although this relationship was weak and only significant for some bee species. Elevated temperatures were associated with increased nest construction rate, but not with greater reproductive output. These contrasting effects of temperature may have been driven by the negative relationship between temperature and bee longevity. Bees who nested for shorter durations of time (a proxy for longevity) produced fewer offspring, and individuals exhibiting the shortest nesting durations were also those that began nesting late in the season. Overall, bees who initiated nesting early and sustained activity for a long duration had the highest reproductive output. This work documents the relationship between reproductive phenology and fitness in wild insect populations and highlights the ways in which organisms can cope with the challenges of living in seasonal and highly variable environments.
Collapse
Affiliation(s)
- Lydia H Wong
- Department of Biology, University of Ottawa, Ottawa, ON, Canada.,Rocky Mountain Biological Laboratory, Crested Butte, CO, USA
| | - Jessica R K Forrest
- Department of Biology, University of Ottawa, Ottawa, ON, Canada.,Rocky Mountain Biological Laboratory, Crested Butte, CO, USA
| |
Collapse
|
13
|
Buckley LB, Graham SI, Nufio CR. Grasshopper species' seasonal timing underlies shifts in phenological overlap in response to climate gradients, variability and change. J Anim Ecol 2021; 90:1252-1263. [PMID: 33630307 DOI: 10.1111/1365-2656.13451] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 12/22/2020] [Indexed: 12/01/2022]
Abstract
Species with different life histories and communities that vary in their seasonal constraints tend to shift their phenology (seasonal timing) differentially in response to climate warming. We investigate how these variable phenological shifts aggregate to influence phenological overlap within communities. Phenological advancements of later season species and extended durations of early season species may increase phenological overlap, with implications for species' interactions such as resource competition. We leverage extensive historic (1958-1960) and recent (2006-2015) weekly survey data for communities of grasshoppers along a montane elevation gradient to assess the impact of climate on shifts in the phenology and abundance distributions of species. We then examine how these responses are influenced by the seasonal timing of species and elevation, and how in aggregate they influence degrees of phenological overlap within communities. In warmer years, abundance distributions shift earlier in the season and become broader. Total abundance responds variably among species and we do not detect a significant response across species. Shifts in abundance distributions are not strongly shaped by species' seasonal timing or sites of variable elevations. The area of phenological overlap increases in warmer years due to shifts in the relative seasonal timing of compared species. Species that overwinter as nymphs increasingly overlap with later season species that advance their phenology. The days of phenological overlap also increase in warm years but the response varies across sites of variable elevation. Our phenological overlap metric based on comparing single events-the dates of peak abundance-does not shift significantly with warming. Phenological shifts are more complex than shifts in single dates such as first occurrence. As abundance distributions shift earlier and become broader in warm years, phenological overlap increases. Our analysis suggests that overall grasshopper abundance is relatively robust to climate and associated phenological shifts but we find that increased overlap can decrease abundance, potentially by strengthening species interactions such as resource competition.
Collapse
Affiliation(s)
- Lauren B Buckley
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Stuart I Graham
- Department of Biology, University of Washington, Seattle, WA, USA
| | - César R Nufio
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA.,University of Colorado Natural History Museum, University of Colorado, Boulder, CO, USA
| |
Collapse
|
14
|
Buckley LB, Schoville SD, Williams CM. Shifts in the relative fitness contributions of fecundity and survival in variable and changing environments. J Exp Biol 2021; 224:224/Suppl_1/jeb228031. [DOI: 10.1242/jeb.228031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
ABSTRACT
Organisms respond to shifts in climate means and variability via distinct mechanisms. Accounting for these differential responses and appropriately aggregating them is central to understanding and predicting responses to climate variability and change. Separately considering fitness components can clarify organismal responses: fecundity is primarily an integrated, additive response to chronic environmental conditions over time via mechanisms such as energy use and acquisition, whereas survival can be strongly influenced by short-term, extreme environmental conditions. In many systems, the relative importance of fecundity and survival constraints changes systematically along climate gradients, with fecundity constraints dominating at high latitudes or altitudes (i.e. leading range edges as climate warms), and survival constraints dominating at trailing range edges. Incorporating these systematic differences in models may improve predictions of responses to recent climate change over models that assume similar processes along environmental gradients. We explore how detecting and predicting shifts in fitness constraints can improve our ability to forecast responses to climate gradients and change.
Collapse
Affiliation(s)
- Lauren B. Buckley
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | - Sean D. Schoville
- Department of Entomology, University of Wisconsin, Madison, WI 53715-1218, USA
| | - Caroline M. Williams
- Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA
| |
Collapse
|
15
|
Verberk WC, Atkinson D, Hoefnagel KN, Hirst AG, Horne CR, Siepel H. Shrinking body sizes in response to warming: explanations for the temperature-size rule with special emphasis on the role of oxygen. Biol Rev Camb Philos Soc 2021; 96:247-268. [PMID: 32959989 PMCID: PMC7821163 DOI: 10.1111/brv.12653] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 01/04/2023]
Abstract
Body size is central to ecology at levels ranging from organismal fecundity to the functioning of communities and ecosystems. Understanding temperature-induced variations in body size is therefore of fundamental and applied interest, yet thermal responses of body size remain poorly understood. Temperature-size (T-S) responses tend to be negative (e.g. smaller body size at maturity when reared under warmer conditions), which has been termed the temperature-size rule (TSR). Explanations emphasize either physiological mechanisms (e.g. limitation of oxygen or other resources and temperature-dependent resource allocation) or the adaptive value of either a large body size (e.g. to increase fecundity) or a short development time (e.g. in response to increased mortality in warm conditions). Oxygen limitation could act as a proximate factor, but we suggest it more likely constitutes a selective pressure to reduce body size in the warm: risks of oxygen limitation will be reduced as a consequence of evolution eliminating genotypes more prone to oxygen limitation. Thus, T-S responses can be explained by the 'Ghost of Oxygen-limitation Past', whereby the resulting (evolved) T-S responses safeguard sufficient oxygen provisioning under warmer conditions, reflecting the balance between oxygen supply and demands experienced by ancestors. T-S responses vary considerably across species, but some of this variation is predictable. Body-size reductions with warming are stronger in aquatic taxa than in terrestrial taxa. We discuss whether larger aquatic taxa may especially face greater risks of oxygen limitation as they grow, which may be manifested at the cellular level, the level of the gills and the whole-organism level. In contrast to aquatic species, terrestrial ectotherms may be less prone to oxygen limitation and prioritize early maturity over large size, likely because overwintering is more challenging, with concomitant stronger end-of season time constraints. Mechanisms related to time constraints and oxygen limitation are not mutually exclusive explanations for the TSR. Rather, these and other mechanisms may operate in tandem. But their relative importance may vary depending on the ecology and physiology of the species in question, explaining not only the general tendency of negative T-S responses but also variation in T-S responses among animals differing in mode of respiration (e.g. water breathers versus air breathers), genome size, voltinism and thermally associated behaviour (e.g. heliotherms).
Collapse
Affiliation(s)
- Wilco C.E.P. Verberk
- Department of Animal Ecology and Physiology, Institute for Water and Wetland ResearchRadboud UniversityHeyendaalseweg 1356525 AJNijmegenThe Netherlands
| | - David Atkinson
- Department of Evolution, Ecology and BehaviourUniversity of LiverpoolLiverpoolL69 7ZBU.K.
| | - K. Natan Hoefnagel
- Department of Animal Ecology and Physiology, Institute for Water and Wetland ResearchRadboud UniversityHeyendaalseweg 1356525 AJNijmegenThe Netherlands
- Faculty of Science and Engineering, Ocean Ecosystems — Energy and Sustainability Research Institute GroningenUniversity of GroningenNijenborgh 79747 AGGroningenThe Netherlands
| | - Andrew G. Hirst
- School of Environmental SciencesUniversity of LiverpoolLiverpoolL69 3GPU.K.
- Centre for Ocean Life, DTU AquaTechnical University of DenmarkLyngbyDenmark
| | - Curtis R. Horne
- School of Environmental SciencesUniversity of LiverpoolLiverpoolL69 3GPU.K.
| | - Henk Siepel
- Department of Animal Ecology and Physiology, Institute for Water and Wetland ResearchRadboud UniversityHeyendaalseweg 1356525 AJNijmegenThe Netherlands
| |
Collapse
|
16
|
Soderberg DN, Mock KE, Hofstetter RW, Bentz BJ. Translocation experiment reveals capacity for mountain pine beetle persistence under climate warming. ECOL MONOGR 2020. [DOI: 10.1002/ecm.1437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- David N. Soderberg
- Wildland Resources Department Utah State University 5230 Old Main Hill Logan Utah84322USA
- Ecology Center Utah State University 5205 Old Main Hill Logan Utah84322USA
| | - Karen E. Mock
- Wildland Resources Department Utah State University 5230 Old Main Hill Logan Utah84322USA
- Ecology Center Utah State University 5205 Old Main Hill Logan Utah84322USA
| | - Richard W. Hofstetter
- School of Forestry College of Engineering, Forestry and Natural Sciences Northern Arizona University Flagstaff Arizona86011USA
| | - Barbara J. Bentz
- Wildland Resources Department Utah State University 5230 Old Main Hill Logan Utah84322USA
- U.S. Forest Service Rocky Mountain Research Station 860 N. 1200 E Logan Utah84321USA
| |
Collapse
|
17
|
Gade MR, Connette GM, Crawford JA, Hocking DJ, Maerz JC, Milanovich JR, Peterman WE. Predicted alteration of surface activity as a consequence of climate change. Ecology 2020; 101:e03154. [PMID: 32740923 DOI: 10.1002/ecy.3154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/29/2020] [Accepted: 06/18/2020] [Indexed: 12/25/2022]
Abstract
Wildlife are faced with numerous threats to survival, none more pressing than that of climate change. Understanding how species will respond behaviorally, physiologically, and demographically to a changing climate is a cornerstone of many contemporary ecological studies, especially for organisms, such as amphibians, whose persistence is closely tied to abiotic conditions. Activity is a useful parameter for understanding the effects of climate change because activity is directly linked to fitness as it dictates foraging times, energy budgets, and mating opportunities. However, activity can be challenging to measure directly, especially for secretive organisms like plethodontid salamanders, which only become surface active when conditions are cool and moist because of their anatomical and physiological restrictions. We estimated abiotic predictors of surface activity for the seven species of the Plethodon jordani complex. Five independent data sets collected from 2004 to 2017 were used to determine the parameters driving salamander surface activity in the present day, which were then used to predict potential activity changes over the next 80 yrs. Average active seasonal temperature and vapor pressure deficit were the strongest predictors of salamander surface activity and, without physiological or behavioral modifications, salamanders were predicted to exhibit a higher probability of surface activity during peak active season under future climate conditions. Temperatures during the active season likely do not exceed salamander thermal maxima to cause activity suppression and, until physiological limits are reached, future conditions may continue to increase activity. Our model is the first comprehensive field-based study to assess current and future surface activity probability. Our study provides insights into how a key behavior driving fitness may be affected by climate change.
Collapse
Affiliation(s)
- Meaghan R Gade
- School of Environment and Natural Resources, The Ohio State University, 2021 Coffey Road, Columbus, Ohio, 43201, USA
| | - Grant M Connette
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, Front Royal, Virginia, USA
| | - John A Crawford
- National Great Rivers Research and Education Center, One Confluence Way, East Alton, Illinois, 62024, USA
| | - Daniel J Hocking
- Department of Biology, Frostburg State University, 101 Braddock Rd, Frostburg, Maryland, 21532, USA
| | - John C Maerz
- Warnell School of Forestry and Natural Resources, University of Georgia, 180 E Green St, Athens, Georgia, 30602, USA
| | - Joseph R Milanovich
- Department of Biology, Loyola University Chicago, 1032 Sheridan Rd, Chicago, Illinois, 60660, USA
| | - William E Peterman
- School of Environment and Natural Resources, The Ohio State University, 2021 Coffey Road, Columbus, Ohio, 43201, USA
| |
Collapse
|
18
|
Büntgen U, González‐Rouco JF, Luterbacher J, Stenseth NC, Johnson DM. Extending the climatological concept of
‘
Detection and Attribution’ to global change ecology in the Anthropocene. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ulf Büntgen
- Department of Geography University of Cambridge Cambridge UK
- Swiss Federal Research Institute (WSL) Birmensdorf Switzerland
- Global Change Research Institute of the Czech Academy of Sciences (CzechGlobe) Brno Czech Republic
- Department of Geography, Faculty of Science Masaryk University Brno Czech Republic
| | - J. Fidel González‐Rouco
- Department of Physics of the Earth & Astrophysics University Complutense Madrid Spain
- Institute of Geosciences IGEO (UCM‐CSIC) Madrid Spain
| | - Jürg Luterbacher
- Science and Innovation Department World Meteorological Organization (WMO) Geneva Switzerland
- Geography Department & Centre for International Development & Environmental Research Giessen Germany
| | | | - Derek M. Johnson
- Department of Biology Virginia Commonwealth University Richmond VA USA
| |
Collapse
|
19
|
Slatyer RA, Schoville SD, Nufio CR, Buckley LB. Do different rates of gene flow underlie variation in phenotypic and phenological clines in a montane grasshopper community? Ecol Evol 2020; 10:980-997. [PMID: 32015859 PMCID: PMC6988534 DOI: 10.1002/ece3.5961] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 01/13/2023] Open
Abstract
Species responses to environmental change are likely to depend on existing genetic and phenotypic variation, as well as evolutionary potential. A key challenge is to determine whether gene flow might facilitate or impede genomic divergence among populations responding to environmental change, and if emergent phenotypic variation is dependent on gene flow rates. A general expectation is that patterns of genetic differentiation in a set of codistributed species reflect differences in dispersal ability. In less dispersive species, we predict greater genetic divergence and reduced gene flow. This could lead to covariation in life-history traits due to local adaptation, although plasticity or drift could mirror these patterns. We compare genome-wide patterns of genetic structure in four phenotypically variable grasshopper species along a steep elevation gradient near Boulder, Colorado, and test the hypothesis that genomic differentiation is greater in short-winged grasshopper species, and statistically associated with variation in growth, reproductive, and physiological traits along this gradient. In addition, we estimate rates of gene flow under competing demographic models, as well as potential gene flow through surveys of phenological overlap among populations within a species. All species exhibit genetic structure along the elevation gradient and limited gene flow. The most pronounced genetic divergence appears in short-winged (less dispersive) species, which also exhibit less phenological overlap among populations. A high-elevation population of the most widespread species, Melanoplus sanguinipes, appears to be a sink population derived from low elevation populations. While dispersal ability has a clear connection to the genetic structure in different species, genetic distance does not predict growth, reproductive, or physiological trait variation in any species, requiring further investigation to clearly link phenotypic divergence to local adaptation.
Collapse
Affiliation(s)
| | | | - César R. Nufio
- University of Colorado Natural History MuseumUniversity of ColoradoBoulderCOUSA
- National Science FoundationAlexandriaVAUSA
| | | |
Collapse
|
20
|
Verheyen J, Tüzün N, Stoks R. Using natural laboratories to study evolution to global warming: contrasting altitudinal, latitudinal, and urbanization gradients. CURRENT OPINION IN INSECT SCIENCE 2019; 35:10-19. [PMID: 31301449 DOI: 10.1016/j.cois.2019.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/24/2019] [Accepted: 06/03/2019] [Indexed: 06/10/2023]
Abstract
Demonstrating the likelihood of evolution in response to global warming is important, yet challenging. We discuss how three spatial thermal gradients (latitudinal, altitudinal, and urbanization) can be used as natural laboratories to inform about the gradual thermal evolution of populations by applying a space-for-time substitution (SFTS) approach. We compare thermal variables and confounding non-thermal abiotic variables, methodological approaches and evolutionary aspects associated with each type of gradient. On the basis of an overview of recent insect studies, we show that a key assumption of SFTS, local thermal adaptation along these gradients, is often but not always met, requiring explicit validation. To increase realism when applying SFTS, we highlight the importance of integrating daily temperature fluctuations, multiple stressors and multiple interacting species. Finally, comparative studies, especially across gradient types, are important to provide more robust inferences of evolution under gradual global warming. Integrating these research directions will further strengthen the still underused, yet powerful SFTS approach to infer gradual evolution under global warming.
Collapse
Affiliation(s)
- Julie Verheyen
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Deberiotstraat 32, 3000 Leuven, Belgium.
| | - Nedim Tüzün
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Deberiotstraat 32, 3000 Leuven, Belgium
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Deberiotstraat 32, 3000 Leuven, Belgium
| |
Collapse
|
21
|
Nufio CR, Buckley LB. Grasshopper phenological responses to climate gradients, variability, and change. Ecosphere 2019. [DOI: 10.1002/ecs2.2866] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- César R. Nufio
- Department of Ecology and Evolutionary Biology University of Colorado Boulder Colorado 80309 USA
- University of Colorado Natural History Museum University of Colorado Boulder Colorado 80309 USA
- National Science Foundation Alexandria Virginia 22314 USA
| | - Lauren B. Buckley
- Department of Biology University of Washington Seattle Washington 98195‐1800 USA
| |
Collapse
|
22
|
|
23
|
Lafuente E, Beldade P. Genomics of Developmental Plasticity in Animals. Front Genet 2019; 10:720. [PMID: 31481970 PMCID: PMC6709652 DOI: 10.3389/fgene.2019.00720] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022] Open
Abstract
Developmental plasticity refers to the property by which the same genotype produces distinct phenotypes depending on the environmental conditions under which development takes place. By allowing organisms to produce phenotypes adjusted to the conditions that adults will experience, developmental plasticity can provide the means to cope with environmental heterogeneity. Developmental plasticity can be adaptive and its evolution can be shaped by natural selection. It has also been suggested that developmental plasticity can facilitate adaptation and promote diversification. Here, we summarize current knowledge on the evolution of plasticity and on the impact of plasticity on adaptive evolution, and we identify recent advances and important open questions about the genomics of developmental plasticity in animals. We give special attention to studies using transcriptomics to identify genes whose expression changes across developmental environments and studies using genetic mapping to identify loci that contribute to variation in plasticity and can fuel its evolution.
Collapse
Affiliation(s)
| | - Patrícia Beldade
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- CNRS-UMR5174, Université Paul Sabatier, Toulouse, France
- Centre for Ecology, Evolution, and Environmental Changes, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
24
|
Forrest JRK, Cross R, CaraDonna PJ. Two-Year Bee, or Not Two-Year Bee? How Voltinism Is Affected by Temperature and Season Length in a High-Elevation Solitary Bee. Am Nat 2019; 193:560-574. [PMID: 30912966 DOI: 10.1086/701826] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Organisms must often make developmental decisions without complete information about future conditions. This uncertainty-for example, about the duration of conditions favorable for growth-can favor bet-hedging strategies. Here, we investigated the causes of life cycle variation in Osmia iridis, a bee exhibiting a possible bet-hedging strategy with co-occurring 1- and 2-year life cycles. One-year bees reach adulthood quickly but die if they fail to complete pupation before winter; 2-year bees adopt a low-risk, low-reward strategy of postponing pupation until the second summer. We reared larval bees in incubators in various experimental conditions and found that warmer-but not longer-summers and early birthdates increased the frequency of 1-year life cycles. Using in situ temperature measurements and developmental trajectories of laboratory- and field-reared bees, we estimated degree-days required to reach adulthood in a single year. Local long-term (1950-2015) climate records reveal that this heat requirement is met in only ∼7% of summers, suggesting that the observed distribution of life cycles is adaptive. Warming summers will likely decrease average generation times in these populations. Nevertheless, survival of bees attempting 1-year life cycles-particularly those developing from late-laid eggs-will be <100%; consequently, we expect the life cycle polymorphism to persist.
Collapse
|
25
|
Dahlhoff EP, Dahlhoff VC, Grainger CA, Zavala NA, Otepola‐Bello D, Sargent BA, Roberts KT, Heidl SJ, Smiley JT, Rank NE. Getting chased up the mountain: High elevation may limit performance and fitness characters in a montane insect. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13286] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Elizabeth P. Dahlhoff
- Department of Biology Santa Clara University Santa Clara California
- White Mountain Research Center University of California Bishop California
| | - Victoria C. Dahlhoff
- White Mountain Research Center University of California Bishop California
- Department of Biology Sonoma State University Rohnert Park California
| | - Corrine A. Grainger
- Department of Biology Santa Clara University Santa Clara California
- White Mountain Research Center University of California Bishop California
| | - Nicolas A. Zavala
- Department of Biology Santa Clara University Santa Clara California
- White Mountain Research Center University of California Bishop California
| | | | - Brynn A. Sargent
- Department of Biology Santa Clara University Santa Clara California
- White Mountain Research Center University of California Bishop California
| | - Kevin T. Roberts
- White Mountain Research Center University of California Bishop California
- Department of Biology Sonoma State University Rohnert Park California
| | - Sarah J. Heidl
- White Mountain Research Center University of California Bishop California
- Department of Biology Sonoma State University Rohnert Park California
| | - John T. Smiley
- White Mountain Research Center University of California Bishop California
| | - Nathan E. Rank
- White Mountain Research Center University of California Bishop California
- Department of Biology Sonoma State University Rohnert Park California
| |
Collapse
|
26
|
Kight SL, Coffey GL, Tanner AW, Dmytriw MP, Tedesco SL, Hoang J, Aboagye AK. Recent changes in reproductive phenology of a K-selected aquatic insect predator, Belostoma flumineum Say (Heteroptera, Belostomatidae). BULLETIN OF ENTOMOLOGICAL RESEARCH 2019; 109:84-89. [PMID: 29665878 DOI: 10.1017/s0007485318000202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The timing of critical events like mating, migration, and development has noticeably and recently shifted in many populations of diverse organisms. Here, we report a change in the breeding phenology of giant waterbugs, Belostoma flumineum Say (Heteroptera, Belostomatidae), in the northeastern United States. Waterbugs collected in 2005 and 2006 exhibited previously typical patterns of mating and reproduction: two annual reproductive peaks in which overwintered adults mated in the spring and young adults from a new generation mated in the fall. In 2012 and 2015, despite similar sampling effort, we detected no fall breeding activity in the study area. Reproductive behaviour under controlled laboratory conditions was also different between the earlier (2005 and 2006) and recent (2012 and 2015) years: waterbugs collected in recent years exhibited significant delays in reproduction (>30 days) under similar photoperiod and thermal conditions. We discuss potential causes of this dramatic change in reproductive behaviour, such as climate change, as well as possible negative impacts of the absence of fall reproduction on populations of B. flumineum in the study region.
Collapse
Affiliation(s)
- S L Kight
- Department of Biology,Montclair State University,Montclair, NJ 07043,USA
| | - G L Coffey
- Department of Biology,Montclair State University,Montclair, NJ 07043,USA
| | - A W Tanner
- Department of Biology,Montclair State University,Montclair, NJ 07043,USA
| | - M P Dmytriw
- Department of Biology,Montclair State University,Montclair, NJ 07043,USA
| | - S L Tedesco
- Department of Biology,Montclair State University,Montclair, NJ 07043,USA
| | - J Hoang
- Department of Biology,Montclair State University,Montclair, NJ 07043,USA
| | - A K Aboagye
- Department of Biology,Montclair State University,Montclair, NJ 07043,USA
| |
Collapse
|
27
|
Hassall M, Moss A, Dixie B, Gilroy JJ. Interspecific variation in responses to microclimate by terrestrial isopods: implications in relation to climate change. Zookeys 2018:5-24. [PMID: 30564030 PMCID: PMC6288266 DOI: 10.3897/zookeys.801.24934] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 10/28/2018] [Indexed: 11/24/2022] Open
Abstract
The importance of considering species-specific biotic interactions when predicting feedbacks between the effects of climate change and ecosystem functions is becoming widely recognised. The responses of soil animals to predicted changes in global climate could potentially have far-reaching consequences for fluxes of soil carbon, including climatic feedbacks resulting from increased emissions of carbon dioxide from soils. The responses of soil animals to different microclimates can be summarised as norms of reaction, in order to compare phenotypic differences in traits along environmental gradients. Thermal and moisture reaction norms for physiological, behavioural and life history traits of species of terrestrial isopods differing in their morphological adaptations for reducing water loss are presented. Gradients of moisture reaction norms for respiratory rates and thermal reaction norms for water loss, for a species from the littoral zone were steeper than those for species from mesic environments. Those for mesic species were steeper than for those from xeric habitats. Within mesic species, gradients of thermal reaction norms for aggregation were steeper for Oniscusasellus than for Porcellioscaber or Armadilliumvulgare, and moisture reaction norms for sheltering and feeding behaviours were steeper for Philosciamuscorum than for either P.scaber or A.vulgare. These differences reflect differences in body shape, permeability of the cuticle, and development of pleopodal lungs. The implications of differences between different species of soil animals in response to microclimate on the possible influence of the soil fauna on soil carbon dynamics under future climates are discussed. In conclusion a modelling approach to bridging the inter-disciplinary gap between carbon cycling and the biology of soil animals is recommended.
Collapse
Affiliation(s)
- Mark Hassall
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK University of East Anglia Norwich United Kingdom
| | - Anna Moss
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK University of East Anglia Norwich United Kingdom.,School of Social Sciences, University of Dundee, Dundee, DD1 4HN, UK University of Dundee Dundee United Kingdom
| | - Bernice Dixie
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK University of East Anglia Norwich United Kingdom
| | - James J Gilroy
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK University of East Anglia Norwich United Kingdom
| |
Collapse
|
28
|
Kharouba HM, Lewthwaite JMM, Guralnick R, Kerr JT, Vellend M. Using insect natural history collections to study global change impacts: challenges and opportunities. Philos Trans R Soc Lond B Biol Sci 2018; 374:20170405. [PMID: 30455219 PMCID: PMC6282079 DOI: 10.1098/rstb.2017.0405] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2018] [Indexed: 11/12/2022] Open
Abstract
Over the past two decades, natural history collections (NHCs) have played an increasingly prominent role in global change research, but they have still greater potential, especially for the most diverse group of animals on Earth: insects. Here, we review the role of NHCs in advancing our understanding of the ecological and evolutionary responses of insects to recent global changes. Insect NHCs have helped document changes in insects' geographical distributions, phenology, phenotypic and genotypic traits over time periods up to a century. Recent work demonstrates the enormous potential of NHCs data for examining insect responses at multiple temporal, spatial and phylogenetic scales. Moving forward, insect NHCs offer unique opportunities to examine the morphological, chemical and genomic information in each specimen, thus advancing our understanding of the processes underlying species' ecological and evolutionary responses to rapid, widespread global changes.This article is part of the theme issue 'Biological collections for understanding biodiversity in the anthropocene'.
Collapse
Affiliation(s)
- Heather M Kharouba
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 9B4
| | - Jayme M M Lewthwaite
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Rob Guralnick
- Department of Natural History and the Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Jeremy T Kerr
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 9B4
| | - Mark Vellend
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1 K 2R1
| |
Collapse
|
29
|
Chmura HE, Kharouba HM, Ashander J, Ehlman SM, Rivest EB, Yang LH. The mechanisms of phenology: the patterns and processes of phenological shifts. ECOL MONOGR 2018. [DOI: 10.1002/ecm.1337] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Helen E. Chmura
- Department of Neurobiology, Physiology and Behavior; University of California, Davis; Davis California 95616 USA
- Animal Behavior Graduate Group; University of California, Davis; Davis California 95616 USA
- Institute of Arctic Biology; University of Alaska, Fairbanks; Fairbanks Alaska 99775 USA
| | - Heather M. Kharouba
- Department of Biology; University of Ottawa; Ottawa Ontario K1N 9B4 Canada
- Department of Entomology and Nematology; University of California, Davis; Davis California 95616 USA
| | - Jaime Ashander
- Center for Population Biology; University of California, Davis; Davis California 95616 USA
| | - Sean M. Ehlman
- Animal Behavior Graduate Group; University of California, Davis; Davis California 95616 USA
- Department of Environmental Science and Policy; University of California, Davis; Davis California 95616 USA
- Center for Population Biology; University of California, Davis; Davis California 95616 USA
| | - Emily B. Rivest
- Bodega Marine Laboratory; University of California, Davis; Bodega Bay California 94923 USA
- Department of Biological Sciences; Virginia Institute of Marine Science; College of William & Mary; Gloucester Point Virginia 23062 USA
| | - Louie H. Yang
- Department of Entomology and Nematology; University of California, Davis; Davis California 95616 USA
| |
Collapse
|
30
|
Tüzün N, Stoks R. Evolution of geographic variation in thermal performance curves in the face of climate change and implications for biotic interactions. CURRENT OPINION IN INSECT SCIENCE 2018; 29:78-84. [PMID: 30551830 DOI: 10.1016/j.cois.2018.07.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 06/09/2023]
Abstract
We review the recent literature on geographic variation in insect thermal performance curves (TPCs). Despite strong thermal differences, there is often no change in TPCs across geographic gradients. When shifts occur, these are mostly vertical (indicating an overall shift in performance across temperatures, that is, countergradient or cogradient variation) and less horizontal (reflecting thermal adaptation). Based on this, using a space-for-time substitution approach, we generated likely evolutionary scenarios of TPC evolution to simulate the outcome of biotic interactions under future warming. We illustrate how taking evolution of the TPCs into account may strongly impact the predicted outcome of biotic interactions under climate warming. Importantly, both the type and the magnitude of the TPC shift was identified to be crucial to determine who will be winners and losers of biotic interactions.
Collapse
Affiliation(s)
- Nedim Tüzün
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Deberiotstraat 32, 3000 Leuven, Belgium
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Deberiotstraat 32, 3000 Leuven, Belgium.
| |
Collapse
|
31
|
Buckley LB, Arakaki AJ, Cannistra AF, Kharouba HM, Kingsolver JG. Insect Development, Thermal Plasticity and Fitness Implications in Changing, Seasonal Environments. Integr Comp Biol 2018; 57:988-998. [PMID: 28662575 DOI: 10.1093/icb/icx032] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Historical data show that recent climate change has caused advances in seasonal timing (phenology) in many animals and plants, particularly in temperate and higher latitude regions. The population and fitness consequences of these phenological shifts for insects and other ectotherms have been heterogeneous: warming can increase development rates and the number of generations per year (increasing fitness), but can also lead to seasonal mismatches between animals and their resources and increase exposure to environmental variability (decreasing fitness). Insect populations exhibit local adaptation in their developmental responses to temperature, including lower developmental thresholds and the thermal requirements to complete development, but climate change can potentially disrupt seasonal timing of juvenile and adult stages and alter population fitness. We investigate these issues using a global dataset describing how insect developmental responds to temperature via two traits: lower temperature thresholds for development (T0) and the cumulative degree-days required to complete development (G). As suggested by previous analyses, T0 decreases and G increases with increasing (absolute) latitude; however, these traits and the relationship between G and latitude varies significantly among taxonomic orders. The mean number of generations per year (a metric of fitness) increases with both decreasing T0 and G, but the effects of these traits on fitness vary strongly with latitude, with stronger selection on both traits at higher (absolute) latitudes. We then use the traits to predict developmental timing and temperatures for multiple generations within seasons and across years (1970-2010). Seasonality drives developmental temperatures to peak mid-season and for generation lengths to decline across seasons, particularly in temperate regions. We predict that climate warming has advanced phenology and increased the number of generations, particularly at high latitudes. The magnitude of increases in developmental temperature varies little across latitude. Increases in the number of seasonal generations have been greatest for populations experiencing the greatest phenological advancements and warming. Shifts in developmental rate and timing due to climate change will have complex implications for selection and fitness in seasonal environments.
Collapse
Affiliation(s)
- Lauren B Buckley
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | - Andrew J Arakaki
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | - Anthony F Cannistra
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | | | - Joel G Kingsolver
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
32
|
Burggren W. Developmental phenotypic plasticity helps bridge stochastic weather events associated with climate change. ACTA ACUST UNITED AC 2018; 221:221/9/jeb161984. [PMID: 29748332 DOI: 10.1242/jeb.161984] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The slow, inexorable rise in annual average global temperatures and acidification of the oceans are often advanced as consequences of global change. However, many environmental changes, especially those involving weather (as opposed to climate), are often stochastic, variable and extreme, particularly in temperate terrestrial or freshwater habitats. Moreover, few studies of animal and plant phenotypic plasticity employ realistic (i.e. short-term, stochastic) environmental change in their protocols. Here, I posit that the frequently abrupt environmental changes (days, weeks, months) accompanying much longer-term general climate change (e.g. global warming over decades or centuries) require consideration of the true nature of environmental change (as opposed to statistical means) coupled with an expansion of focus to consider developmental phenotypic plasticity. Such plasticity can be in multiple forms - obligatory/facultative, beneficial/deleterious - depending upon the degree and rate of environmental variability at specific points in organismal development. Essentially, adult phenotypic plasticity, as important as it is, will be irrelevant if developing offspring lack sufficient plasticity to create modified phenotypes necessary for survival.
Collapse
Affiliation(s)
- Warren Burggren
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| |
Collapse
|
33
|
Differential Plasticity in Response to Simulated Climate Warming in a High-Elevation Amphibian Assemblage. J HERPETOL 2017. [DOI: 10.1670/16-502] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Allen JL, Chown SL, Janion-Scheepers C, Clusella-Trullas S. Interactions between rates of temperature change and acclimation affect latitudinal patterns of warming tolerance. CONSERVATION PHYSIOLOGY 2016; 4:cow053. [PMID: 27933165 PMCID: PMC5142048 DOI: 10.1093/conphys/cow053] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 10/11/2016] [Accepted: 10/17/2016] [Indexed: 05/26/2023]
Abstract
Critical thermal limits form an increasing component of the estimation of impacts of global change on ectotherms. Whether any consistent patterns exist in the interactive effects of rates of temperature change (or experimental ramping rates) and acclimation on critical thermal limits and warming tolerance (one way of assessing sensitivity to climate change) is, however, far from clear. Here, we examine the interacting effects of ramping rate and acclimation on the critical thermal maxima (CTmax) and minima (CTmin) and warming tolerance of six species of springtails from sub-tropical, temperate and polar regions. We also provide microhabitat temperatures from 26 sites spanning 5 years in order to benchmark environmentally relevant rates of temperature change. Ramping rate has larger effects than acclimation on CTmax, but the converse is true for CTmin. Responses to rate and acclimation effects are more consistent among species for CTmax than for CTmin. In the latter case, interactions among ramping rate and acclimation are typical of polar species, less marked for temperate ones, and reduced in species from the sub-tropics. Ramping rate and acclimation have substantial effects on estimates of warming tolerance, with the former being more marked. At the fastest ramping rates (>1.0°C/min), tropical species have estimated warming tolerances similar to their temperate counterparts, whereas at slow ramping rates (<0.4°C/min) the warming tolerance is much reduced in tropical species. Rates of temperate change in microhabitats relevant to the springtails are typically <0.05°C/min, with rare maxima of 0.3-0.5°C/min depending on the site. These findings emphasize the need to consider the environmental setting and experimental conditions when assessing species' vulnerability to climate change using a warming tolerance approach.
Collapse
Affiliation(s)
- Jessica L Allen
- Centre for Invasion Biology, Department of Botany and Zoology,
Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Steven L Chown
- School of Biological Sciences, Monash University, Clayton, VIC 3800,
Australia
| | | | - Susana Clusella-Trullas
- Centre for Invasion Biology, Department of Botany and Zoology,
Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
35
|
Boggs CL. The fingerprints of global climate change on insect populations. CURRENT OPINION IN INSECT SCIENCE 2016; 17:69-73. [PMID: 27720076 DOI: 10.1016/j.cois.2016.07.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 06/06/2023]
Abstract
Synthesizing papers from the last two years, I examined generalizations about the fingerprints of climate change on insects' population dynamics and phenology. Recent work shows that populations can differ in response to changes in climate means and variances. The part of the thermal niche occupied by an insect population, voltinism, plasticity and adaptation to weather perturbations, and interactions with other species can all exacerbate or mitigate responses to climate change. Likewise, land use change or agricultural practices can affect responses to climate change. Nonetheless, our knowledge of effects of climate change is still biased by organism and geographic region, and to some extent by scale of climate parameter.
Collapse
Affiliation(s)
- Carol L Boggs
- School of the Earth, Ocean & Environment, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
36
|
Forrest JR. Complex responses of insect phenology to climate change. CURRENT OPINION IN INSECT SCIENCE 2016; 17:49-54. [PMID: 27720073 DOI: 10.1016/j.cois.2016.07.002] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 07/07/2016] [Indexed: 05/08/2023]
Abstract
Insect phenologies are changing in response to climate warming. Shifts toward earlier seasonal activity are widespread; however, responses of insect phenology to warming are often more complex. Many species have prolonged their activity periods; others have shown delays. Furthermore, because of interspecific differences in temperature sensitivity, warming can increase or decrease synchronization between insects and their food plants and natural enemies. Here, I review recent findings in three areas-shifts in phenology, changes in voltinism, and altered species interactions-and highlight counterintuitive responses to warming caused by the particularities of insect life cycles. Throughout, I emphasize how an appreciation of the evolutionary processes shaping insect life histories is necessary to forecast changes in insect phenology and their demographic consequences.
Collapse
Affiliation(s)
- Jessica Rk Forrest
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|
37
|
Fenberg PB, Self A, Stewart JR, Wilson RJ, Brooks SJ. Exploring the universal ecological responses to climate change in a univoltine butterfly. J Anim Ecol 2016; 85:739-48. [DOI: 10.1111/1365-2656.12492] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 12/22/2015] [Indexed: 11/27/2022]
Affiliation(s)
- Phillip B. Fenberg
- Ocean and Earth Science National Oceanography Centre Southampton University of Southampton Waterfront Campus Southampton SO14 3ZH UK
| | - Angela Self
- Department of Life Sciences Natural History Museum Cromwell Road London SW7 5BD UK
| | - John R. Stewart
- School of Applied Sciences Bournemouth University Talbot Campus Poole Dorset BH12 5BB UK
| | - Rebecca J. Wilson
- Ocean and Earth Science National Oceanography Centre Southampton University of Southampton Waterfront Campus Southampton SO14 3ZH UK
| | - Stephen J. Brooks
- Department of Life Sciences Natural History Museum Cromwell Road London SW7 5BD UK
| |
Collapse
|
38
|
Plasticity of thermal tolerance and metabolism but not water loss in an invasive reed frog. Comp Biochem Physiol A Mol Integr Physiol 2015; 189:11-20. [DOI: 10.1016/j.cbpa.2015.06.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 06/29/2015] [Accepted: 06/30/2015] [Indexed: 11/19/2022]
|