1
|
Veenhof RJ, Coleman MA, Champion C, Dworjanyn SA, Venhuizen R, Kearns L, Marzinelli EM, Pettersen AK. Novel high-throughput oxygen saturation measurements for quantifying the physiological performance of macroalgal early life stages. JOURNAL OF PHYCOLOGY 2024; 60:1161-1172. [PMID: 39105657 DOI: 10.1111/jpy.13489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/14/2024] [Accepted: 07/11/2024] [Indexed: 08/07/2024]
Abstract
Understanding how macroalgal forests will respond to environmental change is critical for predicting future impacts on coastal ecosystems. Although measures of adult macroalgae physiological responses to environmental stress are advancing, measures of early life-stage physiology are rare, in part due to the methodological difficulties associated with their small size. Here we tested a novel, high-throughput method (rate of oxygen consumption and production;V ̇ O 2 $$ \dot{V}{\mathrm{O}}_2 $$ ) via a sensor dish reader microplate system to rapidly measure physiological rates of the early life stages of three habitat-forming macroalgae, the kelp Ecklonia radiata and the fucoids Hormosira banksii and Phyllospora comosa. We measured the rate of O2 consumption (respiration) and O2 production (net primary production) to then calculate gross primary production (GPP) under temperatures representing their natural thermal range. TheV ̇ O 2 $$ \dot{V}{\mathrm{O}}_2 $$ microplate system was suitable for rapidly measuring physiological rates over a temperature gradient to establish thermal performance curves for all species. TheV ̇ O 2 $$ \dot{V}{\mathrm{O}}_2 $$ microplate system proved efficient for measures of early life stages of macroalgae ranging in size from approximately 50 μm up to 150 mm. This method has the potential for measuring responses of early life stages across a range of environmental factors, species, populations, and developmental stages, vastly increasing the speed, precision, and efficacy of macroalgal physiological measures under future ocean change scenarios.
Collapse
Affiliation(s)
- R J Veenhof
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - M A Coleman
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, New South Wales, Australia
- Fisheries Research, NSW Department of Primary Industries, National Marine Science Centre, Coffs Harbour, New South Wales, Australia
| | - C Champion
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, New South Wales, Australia
- Fisheries Research, NSW Department of Primary Industries, National Marine Science Centre, Coffs Harbour, New South Wales, Australia
| | - S A Dworjanyn
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - R Venhuizen
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - L Kearns
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - E M Marzinelli
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Sydney Institute of Marine Science, Mosman, New South Wales, Australia
| | - A K Pettersen
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- Sydney Institute of Marine Science, Mosman, New South Wales, Australia
| |
Collapse
|
2
|
Pettersen AK, Metcalfe NB, Seebacher F. Intergenerational plasticity aligns with temperature-dependent selection on offspring metabolic rates. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220496. [PMID: 38186279 PMCID: PMC10772613 DOI: 10.1098/rstb.2022.0496] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/19/2023] [Indexed: 01/09/2024] Open
Abstract
Metabolic rates are linked to key life-history traits that are thought to set the pace of life and affect fitness, yet the role that parents may have in shaping the metabolism of their offspring to enhance survival remains unclear. Here, we investigated the effect of temperature (24°C or 30°C) and feeding frequency experienced by parent zebrafish (Danio rerio) on offspring phenotypes and early survival at different developmental temperatures (24°C or 30°C). We found that embryo size was larger, but survival lower, in offspring from the parental low food treatment. Parents exposed to the warmer temperature and lower food treatment also produced offspring with lower standard metabolic rates-aligning with selection on embryo metabolic rates. Lower metabolic rates were correlated with reduced developmental and growth rates, suggesting selection for a slow pace of life. Our results show that intergenerational phenotypic plasticity on offspring size and metabolic rate can be adaptive when parent and offspring temperatures are matched: the direction of selection on embryo size and metabolism aligned with intergenerational plasticity towards lower metabolism at higher temperatures, particularly in offspring from low-condition parents. These findings provide evidence for adaptive parental effects, but only when parental and offspring environments match. This article is part of the theme issue 'The evolutionary significance of variation in metabolic rates'.
Collapse
Affiliation(s)
- Amanda K. Pettersen
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
- School of Biodiversity, One Health & Veterinary Medicine,, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Neil B. Metcalfe
- School of Biodiversity, One Health & Veterinary Medicine,, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Frank Seebacher
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
3
|
Badger JJ, Bowen WD, den Heyer CE, Breed GA. Large offspring have enhanced lifetime reproductive success: Long-term carry-over effects of weaning size in gray seals ( Halichoerus grypus). Ecol Evol 2023; 13:e10095. [PMID: 37293121 PMCID: PMC10244896 DOI: 10.1002/ece3.10095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 06/10/2023] Open
Abstract
An individual's size in early stages of life may be an important source of individual variation in lifetime reproductive performance, as size effects on ontogenetic development can have cascading physiological and behavioral consequences throughout life. Here, we explored how size-at-young influences subsequent reproductive performance in gray seals (Halichoerus grypus) using repeated encounter and reproductive data on a marked sample of 363 females that were measured for length after weaning, at ~4 weeks of age, and eventually recruited to the Sable Island breeding colony. Two reproductive traits were considered: provisioning performance (mass of weaned offspring), modeled using linear mixed effects models; and reproductive frequency (rate at which a female returns to breed), modeled using mixed effects multistate mark-recapture models. Mothers with the longest weaning lengths produced pups 8 kg heavier and were 20% more likely to breed in a given year than mothers with the shortest lengths. Correlation in body lengths between weaning and adult life stages, however, is weak: Longer pups do not grow to be longer than average adults. Thus, covariation between weaning length and future reproductive performance appears to be a carry-over effect, where the size advantages afforded in early juvenile stages may allow enhanced long-term performance in adulthood.
Collapse
Affiliation(s)
- Janelle J. Badger
- Department of Biology and WildlifeUniversity of Alaska FairbanksFairbanksAlaskaUSA
- Present address:
Pacific Islands Fisheries Science CenterNational Oceanic and Atmospheric AdministrationHonoluluHawaiiUSA
| | - W. Don Bowen
- Department of Fisheries and Oceans CanadaBedford Institute of OceanographyDartmouthNova ScotiaCanada
| | - Cornelia E. den Heyer
- Department of Fisheries and Oceans CanadaBedford Institute of OceanographyDartmouthNova ScotiaCanada
| | - Greg A. Breed
- Department of Biology and WildlifeUniversity of Alaska FairbanksFairbanksAlaskaUSA
- Institute of Arctic BiologyUniversity of Alaska FairbanksFairbanksAlaskaUSA
| |
Collapse
|
4
|
Baudet J, Xuereb B, Danger M, Felten V, Duflot A, Maniez E, Le Foll F, Coulaud R. Effects of temperature experienced during embryonic development on biomass and C and N composition at hatching in
Palaemon serratus
(Pennant, 1777). ACTA ZOOL-STOCKHOLM 2023. [DOI: 10.1111/azo.12461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Jean‐Baptiste Baudet
- Le Havre Normandie University (ULHN), FR CNRS 3730 SCALE UMR‐INERIS 02 Environmental Stresses and Biomonitoring of Aquatic Ecosystems (SEBIO) Le Havre France
| | - Benoit Xuereb
- Le Havre Normandie University (ULHN), FR CNRS 3730 SCALE UMR‐INERIS 02 Environmental Stresses and Biomonitoring of Aquatic Ecosystems (SEBIO) Le Havre France
| | | | | | - Aurélie Duflot
- Le Havre Normandie University (ULHN), FR CNRS 3730 SCALE UMR‐INERIS 02 Environmental Stresses and Biomonitoring of Aquatic Ecosystems (SEBIO) Le Havre France
| | - Emeline Maniez
- Le Havre Normandie University (ULHN), FR CNRS 3730 SCALE UMR‐INERIS 02 Environmental Stresses and Biomonitoring of Aquatic Ecosystems (SEBIO) Le Havre France
| | - Frank Le Foll
- Le Havre Normandie University (ULHN), FR CNRS 3730 SCALE UMR‐INERIS 02 Environmental Stresses and Biomonitoring of Aquatic Ecosystems (SEBIO) Le Havre France
| | - Romain Coulaud
- Le Havre Normandie University (ULHN), FR CNRS 3730 SCALE UMR‐INERIS 02 Environmental Stresses and Biomonitoring of Aquatic Ecosystems (SEBIO) Le Havre France
| |
Collapse
|
5
|
Pettersen AK, Schuster L, Metcalfe NB. The Evolution of Offspring Size: a Metabolic Scaling Perspective. Integr Comp Biol 2022; 62:icac076. [PMID: 35657724 PMCID: PMC9724151 DOI: 10.1093/icb/icac076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/17/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Size at the start of life reflects the initial per offspring parental investment - including both the embryo and the nutrients supplied to it. Initial offspring size can vary substantially both within and among species. Within species, increasing offspring size can enhance growth, reproduction, competitive ability, and reduce susceptibility to predation and starvation later in life, that can ultimately increase fitness. Previous work has suggested that the fitness benefits of larger offspring size may be driven by energy expenditure during development - or how offspring metabolic rate scales with offspring size. Despite the importance of early life energy expenditure in shaping later life fitness trajectories, consideration of among-species scaling of metabolic rate at the time of birth as a potential source of general metabolic scaling patterns has been overlooked by theory. Here we review the patterns and processes of energy expenditure at the start of life when mortality is often greatest. We compile existing data on metabolic rate and offspring size for 191 ectotherm species spanning eight phyla and use phylogenetically-controlled methods to quantify among-species scaling patterns. Across a 109-fold mass range, we find that offspring metabolic rate scales hypometrically with size, with an overall scaling exponent of 0.66. This exponent varies across ontogenetic stage and feeding activity, but is consistently hypometric, including across environmental temperatures. Despite differences in parental investment, life history and habitat, large-offspring species use relatively less energy as a proportion of size, compared with small-offspring species. Greater residual energy can be used to fuel the next stages of life, particularly in low resource environments. Based on available evidence, we conclude that, while large knowledge gaps remain, the evolution of offspring size is likely shaped by context-dependent selection acting on correlated traits, including metabolic rates maintaining hypometric scaling, that operates within broader physical constraints.
Collapse
Affiliation(s)
- Amanda K Pettersen
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G20 0TH, UK
| | - Lukas Schuster
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Neil B Metcalfe
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G20 0TH, UK
| |
Collapse
|
6
|
Muñoz D, Miller D, Schilder R, Campbell Grant EH. Geographic variation and thermal plasticity shape salamander metabolic rates under current and future climates. Ecol Evol 2022; 12:e8433. [PMID: 35136543 PMCID: PMC8809431 DOI: 10.1002/ece3.8433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/30/2021] [Accepted: 09/06/2021] [Indexed: 11/25/2022] Open
Abstract
Predicted changes in global temperature are expected to increase extinction risk for ectotherms, primarily through increased metabolic rates. Higher metabolic rates generate increased maintenance energy costs which are a major component of energy budgets. Organisms often employ plastic or evolutionary (e.g., local adaptation) mechanisms to optimize metabolic rate with respect to their environment. We examined relationships between temperature and standard metabolic rate across four populations of a widespread amphibian species to determine if populations vary in metabolic response and if their metabolic rates are plastic to seasonal thermal cues. Populations from warmer climates lowered metabolic rates when acclimating to summer temperatures as compared to spring temperatures. This may act as an energy saving mechanism during the warmest time of the year. No such plasticity was evident in populations from cooler climates. Both juvenile and adult salamanders exhibited metabolic plasticity. Although some populations responded to historic climate thermal cues, no populations showed plastic metabolic rate responses to future climate temperatures, indicating there are constraints on plastic responses. We postulate that impacts of warming will likely impact the energy budgets of salamanders, potentially affecting key demographic rates, such as individual growth and investment in reproduction.
Collapse
Affiliation(s)
- David Muñoz
- Department of Ecosystem Science and ManagementThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - David Miller
- Department of Ecosystem Science and ManagementThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Rudolf Schilder
- Department of EntomologyDepartment of BiologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Evan H. Campbell Grant
- US Geological SurveyPatuxent Wildlife Research CenterSO Conte Anadromous Fish Research LabTurners FallsMassachusettsUSA
| |
Collapse
|
7
|
Meta-analysis reveals that resting metabolic rate is not consistently related to fitness and performance in animals. J Comp Physiol B 2021; 191:1097-1110. [PMID: 33721034 DOI: 10.1007/s00360-021-01358-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 01/24/2021] [Accepted: 02/22/2021] [Indexed: 01/09/2023]
Abstract
Explaining variation in the fitness of organisms is a fundamental goal in evolutionary ecology. Maintenance energy metabolism is the minimum energy required to sustain biological processes at rest (resting metabolic rate: RMR) and is proposed to drive or constrain fitness of animals; however, this remains debated. Hypotheses have been proposed as to why fitness might increase with RMR (the 'increased intake' or 'performance' hypothesis), decrease with RMR (the 'compensation' or 'allocation' hypothesis), or vary among species and environmental contexts (the 'context dependent' hypothesis). Here, we conduct a systematic review and meta-analysis of the literature, finding 114 studies with 355 relationships between RMR and traits that may be related to fitness. We show that individuals with relatively high RMR generally have high fitness overall, which might be supported by an increased energy intake. However, fitness proxies are not interchangeable: the nature of the RMR-fitness relationship varied substantially depending on the specific trait in question, and we found no consistent relationship between RMR and those traits most closely linked with actual fitness (i.e., lifetime reproductive success). We hypothesise that maintaining high RMR is not costly when resources are unlimited, and we propose ideas for future studies to identify mechanisms underlying RMR-fitness relationships.
Collapse
|
8
|
Matich P, Plumlee JD, Fisher M. Grow fast, die young: Does compensatory growth reduce survival of juvenile blacktip sharks ( Carcharhinus limbatus) in the western Gulf of Mexico? Ecol Evol 2021; 11:16280-16295. [PMID: 34824827 PMCID: PMC8601900 DOI: 10.1002/ece3.8311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/01/2022] Open
Abstract
Effective conservation and management necessitate an understanding of the ecological mechanisms that shape species life histories in order to predict how variability in natural and anthropogenic impacts will alter growth rates, recruitment, and survival. Among these mechanisms, the interaction between parturition timing and prey availability frequently influences offspring success, particularly when postnatal care is absent. Here, we assess how parturition timing and nursery conditions, including prey abundance and environmental conditions, influence the growth and potential survival of blacktip sharks (Carcharhinus limbatus) in western Gulf of Mexico (GOM) estuaries over their first year. Catch data from long-term gillnet monitoring allowed for clear delineation of cohorts based on size frequency distribution plots, and showed that late parturition cohorts born in estuaries with fewer prey resources exhibited more rapid growth than early parturition cohorts that experienced more abundant prey. Compensatory behaviors that promoted accelerated growth led to reduced second year residency, likely due to reduced survival resultant from greater risk taking and potentially due to reduced site fidelity attributed to larger body size. Water temperatures influenced blacktip growth rates through physiological increases in metabolism and potential premigratory foraging cues associated with cooling temperatures. Gradual warming of the GOM (0.03°C year-1) was also correlated with earlier parturition across the study period (1982-2017), similar to other migratory species. Considering current trends in climate and associated phenological shifts in many animals, testing hypotheses assessing compensatory growth-risk trade-offs is important moving forward to predict changes in life histories and associated recruitment in concert with current and future conservation actions, like wildlife management.
Collapse
Affiliation(s)
- Philip Matich
- Marine Biology DepartmentTexas A & M University at GalvestonGalvestonTexasUSA
| | - Jeffrey D. Plumlee
- Institute of Marine SciencesUniversity of North Carolina at Chapel HillMorehead CityNorth CarolinaUSA
| | - Mark Fisher
- Rockport Marine Science LaboratoryCoastal Fisheries DivisionTexas Parks and Wildlife DepartmentRockportTexasUSA
| |
Collapse
|
9
|
Schuster L, Cameron H, White CR, Marshall DJ. Metabolism drives demography in an experimental field test. Proc Natl Acad Sci U S A 2021; 118:e2104942118. [PMID: 34417293 PMCID: PMC8403948 DOI: 10.1073/pnas.2104942118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 07/19/2021] [Indexed: 12/21/2022] Open
Abstract
Metabolism should drive demography by determining the rates of both biological work and resource demand. Long-standing "rules" for how metabolism should covary with demography permeate biology, from predicting the impacts of climate change to managing fisheries. Evidence for these rules is almost exclusively indirect and in the form of among-species comparisons, while direct evidence is exceptionally rare. In a manipulative field experiment on a sessile marine invertebrate, we created experimental populations that varied in population size (density) and metabolic rate, but not body size. We then tested key theoretical predictions regarding relationships between metabolism and demography by parameterizing population models with lifetime performance data from our field experiment. We found that populations with higher metabolisms had greater intrinsic rates of increase and lower carrying capacities, in qualitative accordance with classic theory. We also found important departures from theory-in particular, carrying capacity declined less steeply than predicted, such that energy use at equilibrium increased with metabolic rate, violating the long-standing axiom of energy equivalence. Theory holds that energy equivalence emerges because resource supply is assumed to be independent of metabolic rate. We find this assumption to be violated under real-world conditions, with potentially far-reaching consequences for the management of biological systems.
Collapse
Affiliation(s)
- Lukas Schuster
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Hayley Cameron
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Craig R White
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Dustin J Marshall
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
10
|
Avaca MS, Storero L, Martín P, Narvarte M. Influence of Maternal Size on Offspring Traits in a Marine Gastropod with Direct Development and without Sibling Interaction. THE BIOLOGICAL BULLETIN 2021; 240:95-104. [PMID: 33939943 DOI: 10.1086/713065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
AbstractIn most animal taxa, large mothers (or those with high nutritional status) produce large offspring, leading to a maternal size-offspring size correlation, that is, a positive correlation between maternal size and offspring size. Here, we used the natural variation in maternal size between three natural populations of Buccinanops deformis (a marine snail with direct development, nurse egg feeding, and a single embryo per egg capsule) to study maternal investment and offspring size. The main objectives were to compare offspring size and maternal investment traits within and between populations and to evaluate the relationship between maternal size and offspring size. Although not supported in every population, our results show that maternal size was positively correlated with offspring size, thus representing an example of the maternal size-offspring size correlation in a species in which there is no competition for food between capsule mates because only one embryo develops per capsule. These findings also suggest that in B. deformis larger mothers produce more offspring and provide their offspring with more resources, and that this between-population variation in offspring size is related to differences in the number of nurse eggs allocated per egg capsule and in egg capsule size. The ubiquity of the maternal size-offspring size correlation in B. deformis needs to be tested further across populations, because factors other than maternal size could influence offspring size variation in this marine gastropod.
Collapse
|
11
|
Pettersen AK, Hall MD, White CR, Marshall DJ. Metabolic rate, context-dependent selection, and the competition-colonization trade-off. Evol Lett 2020; 4:333-344. [PMID: 32774882 PMCID: PMC7403701 DOI: 10.1002/evl3.174] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/08/2020] [Accepted: 04/20/2020] [Indexed: 01/24/2023] Open
Abstract
Metabolism is linked with the pace‐of‐life, co‐varying with survival, growth, and reproduction. Metabolic rates should therefore be under strong selection and, if heritable, become less variable over time. Yet intraspecific variation in metabolic rates is ubiquitous, even after accounting for body mass and temperature. Theory predicts variable selection maintains trait variation, but field estimates of how selection on metabolism varies are rare. We use a model marine invertebrate to estimate selection on metabolic rates in the wild under different competitive environments. Fitness landscapes varied among environments separated by a few centimeters: interspecific competition selected for higher metabolism, and a faster pace‐of‐life, relative to competition‐free environments. Populations experience a mosaic of competitive regimes; we find metabolism mediates a competition‐colonization trade‐off across these regimes. Although high metabolic phenotypes possess greater competitive ability, in the absence of competitors, low metabolic phenotypes are better colonizers. Spatial heterogeneity and the variable selection on metabolic rates that it generates is likely to maintain variation in metabolic rate, despite strong selection in any single environment.
Collapse
Affiliation(s)
- Amanda K Pettersen
- School of Biological Sciences/Centre for Geometric Biology Monash University Melbourne VIC 3800 Australia.,Department of Biology Lund University Lund 221 00 Sweden
| | - Matthew D Hall
- School of Biological Sciences/Centre for Geometric Biology Monash University Melbourne VIC 3800 Australia
| | - Craig R White
- School of Biological Sciences/Centre for Geometric Biology Monash University Melbourne VIC 3800 Australia
| | - Dustin J Marshall
- School of Biological Sciences/Centre for Geometric Biology Monash University Melbourne VIC 3800 Australia
| |
Collapse
|
12
|
Erten EY, Kokko H. From zygote to a multicellular soma: Body size affects optimal growth strategies under cancer risk. Evol Appl 2020. [DOI: 10.1111/eva.12969] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- E. Yagmur Erten
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| | - Hanna Kokko
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
| |
Collapse
|
13
|
Tyler NJC, Gregorini P, Parker KL, Hazlerigg DG. Animal responses to environmental variation: physiological mechanisms in ecological models of performance in deer (Cervidae). ANIMAL PRODUCTION SCIENCE 2020. [DOI: 10.1071/an19418] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Context
Proper assessment of the consequences of environmental variation on animals depends on our ability to predict how they will perform under different circumstances. This requires two kinds of information. We need to know which environmental factors influence animal performance and their mode of action, i.e. whether a given factor acts alone or through interaction with other factors, directly or indirectly, instantaneously or after a delay and so on. This essentially correlative process falls within the domain of ecology. We also need to know what determines the direction, amplitude and limits of animal responses to environmental variation and change. This essentially experimental process falls within the domain of physiology. Physiological mechanisms are frequently poorly integrated within the correlative framework of ecological models. This is evident where programmed responses are attributed to environmental forcing and where the effect of environmental factors is evaluated without reference to the physiological state and regulatory capacity of the animal on which they act.
Aims
Here we examine ways in which the impacts of external (environmental) stimuli and constraints on performance are moderated by the animals (deer) on which they impinge.
Key results
The analysis shows (1) how trade-offs in foraging behaviour, illustrated by the timing of activity under the threat of predation, are modulated by integration of short-term metabolic feedback and animal emotions that influence the motivation to feed, (2) how the influence of thermal and nutritional challenges on performance, illustrated by the effect of weather conditions during gestation on the body mass of reindeer (Rangifer tarandus) calves at weaning, depends on the metabolic state of the female at the time the challenge occurs and (3) how annual cycles of growth, appetite and reproduction in seasonal species of deer are governed by innate circannual timers, such that their responses to seasonal changes in food supply are anticipatory and governed by rheostatic systems that adjust homeostatic set- points, rather than being purely reactive.
Conclusions
Concepts like ‘maintenance’ and ‘energy balance’, which were originally derived from non-seasonal domestic ruminants, are unable to account for annual cycles in metabolic and nutritional status in seasonal deer. Contrasting seasonal phenotypes (fat and anoestrous in summer, lean and oestrous in winter) represent adaptive solutions to the predictable challenges presented by contrasting seasonal environments, not failure of homeostasis in one season and its success in another.
Implications
The analysis and interpretation of responses to environment in terms of interaction between the external stimuli and the internal systems that govern them offer a more comprehensive, multifaceted understanding of the influence of environmental variation on performance in deer and open lines of ecological enquiry defined by non-intuitive aspects of animal function.
Collapse
|
14
|
Cameron H, Marshall DJ. Can competitive asymmetries maintain offspring size variation? A manipulative field test. Evolution 2019; 73:1663-1671. [PMID: 31313289 DOI: 10.1111/evo.13790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 01/10/2023]
Abstract
Offspring sizes vary within populations but the reasons are unclear. Game-theoretic models predict that selection will maintain offspring-size variation when large offspring are superior competitors (i.e., competition is asymmetric), but small offspring are superior colonizers. Empirical tests are equivocal, however, and typically rely on interspecific comparisons, whereas explicit intraspecific tests are rare. In a field study, we test whether offspring size affects competitive asymmetries using the sessile marine invertebrate, Bugula neritina. Surprisingly, we show that offspring size determines whether interactions are competitive or facilitative-large neighbors strongly facilitated small offspring, but also strongly competed with large offspring. These findings contradict the assumptions of classic theory-that is, large offspring were not superior competitors. Instead, smaller offspring actually benefit from interactions with large offspring-suggesting that asymmetric facilitation, rather than asymmetric competition, operates in our system. We argue that facilitation of small offspring may be more widespread than currently appreciated, and may maintain variation in offspring size via negative frequency-dependent selection. Offspring size theory has classically viewed offspring interactions through the lens of competition alone, yet our results and those of others suggest that theory should accommodate positive interactions in explorations of offspring-size variation.
Collapse
Affiliation(s)
- Hayley Cameron
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Melbourne, Victoria, 3800, Australia
| | - Dustin J Marshall
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Melbourne, Victoria, 3800, Australia
| |
Collapse
|
15
|
Lyons K, Bigman JS, Kacev D, Mull CG, Carlisle AB, Imhoff JL, Anderson JM, Weng KC, Galloway AS, Cave E, Gunn TR, Lowe CG, Brill RW, Bedore CN. Bridging disciplines to advance elasmobranch conservation: applications of physiological ecology. CONSERVATION PHYSIOLOGY 2019; 7:coz011. [PMID: 31110763 PMCID: PMC6519003 DOI: 10.1093/conphys/coz011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/02/2019] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
A strength of physiological ecology is its incorporation of aspects of both species' ecology and physiology; this holistic approach is needed to address current and future anthropogenic stressors affecting elasmobranch fishes that range from overexploitation to the effects of climate change. For example, physiology is one of several key determinants of an organism's ecological niche (along with evolutionary constraints and ecological interactions). The fundamental role of physiology in niche determination led to the development of the field of physiological ecology. This approach considers physiological mechanisms in the context of the environment to understand mechanistic variations that beget ecological trends. Physiological ecology, as an integrative discipline, has recently experienced a resurgence with respect to conservation applications, largely in conjunction with technological advances that extended physiological work from the lab into the natural world. This is of critical importance for species such as elasmobranchs (sharks, skates and rays), which are an especially understudied and threatened group of vertebrates. In 2017, at the American Elasmobranch Society meeting in Austin, Texas, the symposium entitled `Applications of Physiological Ecology in Elasmobranch Research' provided a platform for researchers to showcase work in which ecological questions were examined through a physiological lens. Here, we highlight the research presented at this symposium, which emphasized the strength of linking physiological tools with ecological questions. We also demonstrate the applicability of using physiological ecology research as a method to approach conservation issues, and advocate for a more available framework whereby results are more easily accessible for their implementation into management practices.
Collapse
Affiliation(s)
- K Lyons
- Georgia Aquarium, Atlanta, GA, USA
| | - J S Bigman
- Simon Fraser University, Burnaby, Canada
| | - D Kacev
- Southwest Fisheries Science Center, La Jolla, CA, USA
| | - C G Mull
- Simon Fraser University, Burnaby, Canada
| | | | - J L Imhoff
- Florida State University Coastal and Marine Laboratory, St. Teresa, FL, USA
| | - J M Anderson
- University of Hawai`i at Mānoa, Honolulu, HI, USA
| | - K C Weng
- Virginia Institute of Marine Science, Gloucester Point, VA, USA
| | - A S Galloway
- South Carolina Department of Natural Resources, SC, USA
| | - E Cave
- Florida Atlantic University, Boca Raton, FL, USA
| | - T R Gunn
- Georgia Southern University, Statesboro, GA USA
| | - C G Lowe
- California State University Long Beach, Long Beach, CA, USA
| | - R W Brill
- Virginia Institute of Marine Science, Gloucester Point, VA, USA
| | - C N Bedore
- Georgia Southern University, Statesboro, GA USA
| |
Collapse
|
16
|
Pettersen AK, White CR, Bryson-Richardson RJ, Marshall DJ. Linking life-history theory and metabolic theory explains the offspring size-temperature relationship. Ecol Lett 2019; 22:518-526. [PMID: 30618178 DOI: 10.1111/ele.13213] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/30/2018] [Accepted: 11/27/2018] [Indexed: 12/19/2022]
Abstract
Temperature often affects maternal investment in offspring. Across and within species, mothers in colder environments generally produce larger offspring than mothers in warmer environments, but the underlying drivers of this relationship remain unresolved. We formally evaluated the ubiquity of the temperature-offspring size relationship and found strong support for a negative relationship across a wide variety of ectotherms. We then tested an explanation for this relationship that formally links life-history and metabolic theories. We estimated the costs of development across temperatures using a series of laboratory experiments on model organisms, and a meta-analysis across 72 species of ectotherms spanning five phyla. We found that both metabolic and developmental rates increase with temperature, but developmental rate is more temperature sensitive than metabolic rate, such that the overall costs of development decrease with temperature. Hence, within a species' natural temperature range, development at relatively cooler temperatures requires mothers to produce larger, better provisioned offspring.
Collapse
Affiliation(s)
- Amanda K Pettersen
- School of Biological Sciences/Centre for Geometric Biology, Monash University, Melbourne, VIC, Australia
| | - Craig R White
- School of Biological Sciences/Centre for Geometric Biology, Monash University, Melbourne, VIC, Australia
| | | | - Dustin J Marshall
- School of Biological Sciences/Centre for Geometric Biology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
17
|
Hu MY, Lein E, Bleich M, Melzner F, Stumpp M. Trans-life cycle acclimation to experimental ocean acidification affects gastric pH homeostasis and larval recruitment in the sea star Asterias rubens. Acta Physiol (Oxf) 2018; 224:e13075. [PMID: 29660255 DOI: 10.1111/apha.13075] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 03/28/2018] [Accepted: 04/07/2018] [Indexed: 12/12/2022]
Abstract
AIM Experimental simulation of near-future ocean acidification (OA) has been demonstrated to affect growth and development of echinoderm larval stages through energy allocation towards ion and pH compensatory processes. To date, it remains largely unknown how major pH regulatory systems and their energetics are affected by trans-generational exposure to near-future acidification levels. METHODS Here, we used the common sea star Asterias rubens in a reciprocal transplant experiment comprising different combinations of OA scenarios, to study trans-generational plasticity using morphological and physiological endpoints. RESULTS Acclimation of adults to pHT 7.2 (pCO2 3500 μatm) led to reductions in feeding rates, gonad weight and fecundity. No effects were evident at moderate acidification levels (pHT 7.4; pCO2 2000 μatm). Parental pre-acclimation to pHT 7.2 for 85 days reduced developmental rates even when larvae were raised under moderate and high pH conditions, whereas pre-acclimation to pHT 7.4 did not alter offspring performance. Microelectrode measurements and pharmacological inhibitor studies carried out on larval stages demonstrated that maintenance of alkaline gastric pH represents a substantial energy sink under acidified conditions that may contribute up to 30% to the total energy budget. CONCLUSION Parental pre-acclimation to acidification levels that are beyond the pH that is encountered by this population in its natural habitat (eg, pHT 7.2) negatively affected larval size and development, potentially through reduced energy transfer. Maintenance of alkaline gastric pH and reductions in maternal energy reserves probably constitute the main factors for a reduced juvenile recruitment of this marine keystone species under simulated OA.
Collapse
Affiliation(s)
- M. Y. Hu
- Institute of Physiology; Christian-Albrechts-University Kiel; Kiel Germany
| | - E. Lein
- Department of Collective Behaviour; Max Planck Institute for Ornithology; Radolfzell Germany
- Helmholtz Centre for Ocean Research Kiel (GEOMAR); Kiel Germany
| | - M. Bleich
- Institute of Physiology; Christian-Albrechts-University Kiel; Kiel Germany
| | - F. Melzner
- Helmholtz Centre for Ocean Research Kiel (GEOMAR); Kiel Germany
| | - M. Stumpp
- Institute of Zoology; Comparative Immunobiology; Christian-Albrechts-University Kiel; Kiel Germany
| |
Collapse
|
18
|
Marshall DJ, Pettersen AK, Cameron H. A global synthesis of offspring size variation, its eco‐evolutionary causes and consequences. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13099] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
| | | | - Hayley Cameron
- Centre for Geometric BiologyMonash University Melbourne Vic. Australia
| |
Collapse
|
19
|
Donelan SC, Trussell GC. Synergistic effects of parental and embryonic exposure to predation risk on prey offspring size at emergence. Ecology 2017; 99:68-78. [PMID: 29083481 DOI: 10.1002/ecy.2067] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/20/2017] [Accepted: 10/16/2017] [Indexed: 12/22/2022]
Abstract
Cues signaling predation risk can strongly influence prey phenotypes both within and between generations. Parental and embryonic effects have been shown to operate independently in response to predation risk, but how they interact to shape offspring life history traits remains largely unknown. Here, we conducted experiments to examine the synergistic impacts of parental and embryonic experiences with predation risk on offspring size at emergence in the snail, Nucella lapillus, which is an ecologically important intermediate consumer on rocky intertidal shores. We found that when embryos were exposed to predation risk, the offspring of risk-experienced parents emerged larger than those of parents that had no risk experience. This response was not the result of increased development time, greater resource availability, or fewer emerging offspring, but may have occurred because both parental and embryonic experiences with risk increased growth efficiency, perhaps by reducing embryonic respiration rates under risk. Our results highlight the potential for organisms to be influenced by a complex history of environmental signals with important consequences for individual fitness and predator-prey interactions.
Collapse
Affiliation(s)
- Sarah C Donelan
- Marine Science Center and the Department of Marine and Environmental Sciences, Northeastern University, Nahant, Massachusetts, 01908, USA
| | - Geoffrey C Trussell
- Marine Science Center and the Department of Marine and Environmental Sciences, Northeastern University, Nahant, Massachusetts, 01908, USA
| |
Collapse
|
20
|
Pettersen AK, White CR, Bryson‐Richardson RJ, Marshall DJ. Does the cost of development scale allometrically with offspring size? Funct Ecol 2017. [DOI: 10.1111/1365-2435.13015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amanda K. Pettersen
- School of Biological Sciences/Centre for Geometric Biology Monash University Melbourne Victoria Australia
| | - Craig R. White
- School of Biological Sciences/Centre for Geometric Biology Monash University Melbourne Victoria Australia
| | | | - Dustin J. Marshall
- School of Biological Sciences/Centre for Geometric Biology Monash University Melbourne Victoria Australia
| |
Collapse
|
21
|
Muller D, Giron D, Desouhant E, Rey B, Casas J, Lefrique N, Visser B. Maternal age affects offspring nutrient dynamics. JOURNAL OF INSECT PHYSIOLOGY 2017; 101:123-131. [PMID: 28735010 DOI: 10.1016/j.jinsphys.2017.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/14/2017] [Accepted: 07/17/2017] [Indexed: 06/07/2023]
Abstract
The internal physiological state of a mother can have major effects on her fitness and that of her offspring. We show that maternal effects in the parasitic wasp Eupelmus vuilleti become apparent when old mothers provision their eggs with less protein, sugar and lipid. Feeding from a host after hatching allows the offspring of old mothers to overcome initial shortages in sugars and lipids, but adult offspring of old mothers still emerged with lower protein and glycogen quantities. Reduced egg provisioning by old mothers had adverse consequences for the nutrient composition of adult female offspring, despite larval feeding from a high-quality host. Lower resource availability in adult offspring of old mothers can affect behavioural decisions, life histories and performance. Maternal effects on egg nutrient provisioning may thus affect nutrient availability and fitness of future generations in oviparous animals.
Collapse
Affiliation(s)
- Doriane Muller
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261 CNRS/Université François-Rabelais de Tours, Avenue Monge, 37200 Tours, France
| | - David Giron
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261 CNRS/Université François-Rabelais de Tours, Avenue Monge, 37200 Tours, France
| | - Emmanuel Desouhant
- Université Lyon 1, Laboratoire de Biométrie et Biologie Evolutive, F-69000 Lyon, UMR CNRS 5558, F-69622 Villeurbanne, France
| | - Benjamin Rey
- Université Lyon 1, Laboratoire de Biométrie et Biologie Evolutive, F-69000 Lyon, UMR CNRS 5558, F-69622 Villeurbanne, France
| | - Jérôme Casas
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261 CNRS/Université François-Rabelais de Tours, Avenue Monge, 37200 Tours, France
| | - Nicolas Lefrique
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261 CNRS/Université François-Rabelais de Tours, Avenue Monge, 37200 Tours, France
| | - Bertanne Visser
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261 CNRS/Université François-Rabelais de Tours, Avenue Monge, 37200 Tours, France.
| |
Collapse
|
22
|
Cameron H, Monro K, Marshall DJ. Should mothers provision their offspring equally? A manipulative field test. Ecol Lett 2017; 20:1025-1033. [PMID: 28726317 DOI: 10.1111/ele.12800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/07/2017] [Accepted: 05/24/2017] [Indexed: 12/18/2022]
Abstract
Within-brood variation in offspring size is universal, but its causes are unclear. Theoretical explanations for within-brood variation commonly invoke bet-hedging, although alternatives consider the role of sibling competition. Despite abundant theory, empirical manipulations of within-brood variation in offspring size are rare. Using a field experiment, we investigate the consequences of unequal maternal provisioning for both maternal and offspring fitness in a marine invertebrate. We create experimental broods of siblings with identical mean, but different variance, in offspring size, and different sibling densities. Overall, more-variable broods had higher mean performance than less-variable broods, suggesting benefits of unequal provisioning that arise independently of bet-hedging. Complementarity effects drove these benefits, apparently because offspring-size variation promotes resource partitioning. We suggest that when siblings compete for the same resources, and offspring size affects niche usage, the production of more-variable broods can provide greater fitness returns given the same maternal investment; a process unanticipated by the current theory.
Collapse
Affiliation(s)
- Hayley Cameron
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Melbourne, Vic., 3800, Australia
| | - Keyne Monro
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Melbourne, Vic., 3800, Australia
| | - Dustin J Marshall
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Melbourne, Vic., 3800, Australia
| |
Collapse
|
23
|
Dial TR, Hernandez LP, Brainerd EL. Morphological and functional maturity of the oral jaws covary with offspring size in Trinidadian guppies. Sci Rep 2017; 7:5771. [PMID: 28720837 PMCID: PMC5515938 DOI: 10.1038/s41598-017-06414-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 06/14/2017] [Indexed: 11/20/2022] Open
Abstract
Large size of individual offspring is routinely selected for in highly competitive environments, such as in low-predation populations of the Trinidadian guppy (Poecilia reticulata). Large guppy offspring outcompete their smaller conspecifics, but the functional mechanisms underlying this advantage are unknown. We measured jaw kinematics during benthic feeding and cranial musculoskeletal morphologies in neonates and juveniles from five populations of Trinidadian guppy and found that both kinematics and morphologies vary substantially with neonatal size. Rotation at the intramandibular joint (IMJ), but not the quadratomandibular joint (QMJ), increases with size among guppy offspring, from 11.7° in the smallest neonates to 22.9° in the largest neonates. Ossification of the cranial skeleton varies from 20% in the smallest neonates to 90% in the largest. Relative to standard length (SL; jaw tip to caudal fin base distance), the surface area of jaw-closing musculature scales with positive allometry (SL2.72) indicating that muscle growth outpaces body growth. Maximum gape also scales with positive allometry (SL1.20), indicating that larger neonates are capable of greater jaw excursions. These findings indicate that size is not the sole adaptive benefit to producing larger offspring; maturation provides a potential functional mechanism underlying the competitive advantage of large offspring size among Trinidadian guppies.
Collapse
Affiliation(s)
- T R Dial
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA.
| | - L P Hernandez
- Department of Biological Sciences, The George Washington University, Washington, D.C., USA
| | - E L Brainerd
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| |
Collapse
|
24
|
Pettersen AK, White CR, Marshall DJ. Metabolic rate covaries with fitness and the pace of the life history in the field. Proc Biol Sci 2017; 283:rspb.2016.0323. [PMID: 27226476 DOI: 10.1098/rspb.2016.0323] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/03/2016] [Indexed: 11/12/2022] Open
Abstract
Metabolic rate reflects the 'pace of life' in every organism. Metabolic rate is related to an organism's capacity for essential maintenance, growth and reproduction-all of which interact to affect fitness. Although thousands of measurements of metabolic rate have been made, the microevolutionary forces that shape metabolic rate remain poorly resolved. The relationship between metabolic rate and components of fitness are often inconsistent, possibly because these fitness components incompletely map to actual fitness and often negatively covary with each other. Here we measure metabolic rate across ontogeny and monitor its effects on actual fitness (lifetime reproductive output) for a marine bryozoan in the field. We also measure key components of fitness throughout the entire life history including growth rate, longevity and age at the onset of reproduction. We found that correlational selection favours individuals with higher metabolic rates in one stage and lower metabolic rates in the other-individuals with similar metabolic rates in each developmental stage displayed the lowest fitness. Furthermore, individuals with the lowest metabolic rates lived for longer and reproduced more, but they also grew more slowly and took longer to reproduce initially. That metabolic rate is related to the pace of the life history in nature has long been suggested by macroevolutionary patterns but this study reveals the microevolutionary processes that probably generated these patterns.
Collapse
Affiliation(s)
- Amanda K Pettersen
- School of Biological Sciences/Centre for Geometric Biology, Monash University, Victoria 3800, Australia
| | - Craig R White
- School of Biological Sciences/Centre for Geometric Biology, Monash University, Victoria 3800, Australia
| | - Dustin J Marshall
- School of Biological Sciences/Centre for Geometric Biology, Monash University, Victoria 3800, Australia
| |
Collapse
|
25
|
Lagos ME, White CR, Marshall DJ. Do invasive species live faster? Mass‐specific metabolic rate depends on growth form and invasion status. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12913] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marcelo E. Lagos
- School of Biological Sciences/Centre for Geometric Biology Monash University Clayton VIC Australia
| | - Craig R. White
- School of Biological Sciences/Centre for Geometric Biology Monash University Clayton VIC Australia
- School of Biological Sciences The University of Queensland St Lucia QLD Australia
| | - Dustin J. Marshall
- School of Biological Sciences/Centre for Geometric Biology Monash University Clayton VIC Australia
| |
Collapse
|
26
|
Cameron H, Monro K, Malerba M, Munch S, Marshall D. Why do larger mothers produce larger offspring? A test of classic theory. Ecology 2017; 97:3452-3459. [PMID: 27912014 DOI: 10.1002/ecy.1590] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/29/2016] [Accepted: 09/12/2016] [Indexed: 11/08/2022]
Abstract
Across a wide range of taxa, larger mothers produce larger offspring. Theory assumes that larger, more fecund mothers create higher local densities of siblings, and so larger mothers produce larger offspring to offset sibling competition. This assumption has been debated for over 30 yr, but direct empirical tests are surprisingly rare. Here, we test two key assumptions of classic theories that predict sibling competition drives maternal-size-offspring-size (MSOS) correlations: (1) independent effects of offspring size and sibling density on offspring performance or (2) as a product of an interaction between these two factors. To simultaneously test these alternative assumptions, we manipulate offspring size and sibling density in the marine invertebrate, Bugula neritina, and monitor offspring performance in the field. We found that, depending on the fitness metric being considered, offspring size and sibling density can either independently or interactively affect offspring performance. Yet sibling density did not affect offspring performance in the ways that classic theories assume. Given our results, it is unlikely that sibling competition drives the positive MSOS correlation observed in this species. Empirical support for these classic theories remains lacking, suggesting alternative explanations are necessary.
Collapse
Affiliation(s)
- Hayley Cameron
- Centre of Geometric Biology, School of Biological Sciences, Monash University, Melbourne, Victoria, 3800, Australia
| | - Keyne Monro
- Centre of Geometric Biology, School of Biological Sciences, Monash University, Melbourne, Victoria, 3800, Australia
| | - Martino Malerba
- Centre of Geometric Biology, School of Biological Sciences, Monash University, Melbourne, Victoria, 3800, Australia
| | - Stephan Munch
- Fisheries Ecology Division, Southwest Fisheries Science Centre, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Santa Cruz, California, 95060, USA
| | - Dustin Marshall
- Centre of Geometric Biology, School of Biological Sciences, Monash University, Melbourne, Victoria, 3800, Australia
| |
Collapse
|
27
|
Lagos ME, Barneche DR, White CR, Marshall DJ. Do low oxygen environments facilitate marine invasions? Relative tolerance of native and invasive species to low oxygen conditions. GLOBAL CHANGE BIOLOGY 2017; 23:2321-2330. [PMID: 28212460 DOI: 10.1111/gcb.13668] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 06/06/2023]
Abstract
Biological invasions are one of the biggest threats to global biodiversity. Marine artificial structures are proliferating worldwide and provide a haven for marine invasive species. Such structures disrupt local hydrodynamics, which can lead to the formation of oxygen-depleted microsites. The extent to which native fauna can cope with such low oxygen conditions, and whether invasive species, long associated with artificial structures in flow-restricted habitats, have adapted to these conditions remains unclear. We measured water flow and oxygen availability in marinas and piers at the scales relevant to sessile marine invertebrates (mm). We then measured the capacity of invasive and native marine invertebrates to maintain metabolic rates under decreasing levels of oxygen using standard laboratory assays. We found that marinas reduce water flow relative to piers, and that local oxygen levels can be zero in low flow conditions. We also found that for species with erect growth forms, invasive species can tolerate much lower levels of oxygen relative to native species. Integrating the field and laboratory data showed that up to 30% of available microhabitats within low flow environments are physiologically stressful for native species, while only 18% of the same habitat is physiologically stressful for invasive species. These results suggest that invasive species have adapted to low oxygen habitats associated with manmade habitats, and artificial structures may be creating niche opportunities for invasive species.
Collapse
Affiliation(s)
- Marcelo E Lagos
- School of Biological Sciences/Centre for Geometric Biology, Monash University, Clayton, VIC, Australia
| | - Diego R Barneche
- School of Biological Sciences/Centre for Geometric Biology, Monash University, Clayton, VIC, Australia
| | - Craig R White
- School of Biological Sciences/Centre for Geometric Biology, Monash University, Clayton, VIC, Australia
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Dustin J Marshall
- School of Biological Sciences/Centre for Geometric Biology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
28
|
Guida L, Awruch C, Walker TI, Reina RD. Prenatal stress from trawl capture affects mothers and neonates: a case study using the southern fiddler ray (Trygonorrhina dumerilii). Sci Rep 2017; 7:46300. [PMID: 28401959 PMCID: PMC5388872 DOI: 10.1038/srep46300] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 03/14/2017] [Indexed: 12/14/2022] Open
Abstract
Assessing fishing effects on chondrichthyan populations has predominantly focused on quantifying mortality rates. Consequently, sub-lethal effects of capture stress on the reproductive capacity of chondrichthyans are largely unknown. We investigated the reproductive consequences of capture on pregnant southern fiddler rays (Trygonorrhina dumerilii) collected from Swan Bay, Australia, in response to laboratory-simulated trawl capture (8 h) followed immediately by air exposure (30 min). Immediately prior to, and for up to 28 days post trawling, all females were measured for body mass (BM), sex steroid concentrations (17-β estradiol, progesterone, testosterone) and granulocyte to lymphocyte (G:L) ratio. At parturition, neonates were measured for total length (TL), BM and G:L ratio. Trawling reduced maternal BM and elevated the G:L ratio for up to 28 days. Trawling did not significantly affect any sex steroid concentrations relative to controls. Neonates from trawled mothers were significantly lower in BM and TL than control animals, and had an elevated G:L ratio. Our results show that capture of pregnant T. dumerilii can influence their reproductive potential and affect the fitness of neonates. We suggest other viviparous species are likely to be similarly affected. Sub-lethal effects of capture, particularly on reproduction, require further study to improve fisheries management and conservation of chondrichthyans.
Collapse
Affiliation(s)
- L Guida
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - C Awruch
- CESIMAR (Centro Para el Estudio de Sistemas Marinos) - CENPAT- CONICET, Puerto Madryn, Chubut U9120ACD, Argentina.,School of Biological Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - T I Walker
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - R D Reina
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
29
|
Olito C, White CR, Marshall DJ, Barneche DR. Estimating monotonic rates from biological data using local linear regression. J Exp Biol 2017; 220:759-764. [DOI: 10.1242/jeb.148775] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 12/14/2016] [Indexed: 12/17/2022]
Abstract
Accessing many fundamental questions in biology begins with empirical estimation of simple monotonic rates of underlying biological processes. Across a variety of disciplines, ranging from physiology to biogeochemistry, these rates are routinely estimated from non-linear and noisy time series data using linear regression and ad hoc manual truncation of non-linearities. Here, we introduce the R package LoLinR, a flexible toolkit to implement local linear regression techniques to objectively and reproducibly estimate monotonic biological rates from non-linear time series data, and demonstrate possible applications using metabolic rate data. LoLinR provides methods to easily and reliably estimate monotonic rates from time series data in a way that is statistically robust, facilitates reproducible research, and is applicable to a wide variety of research disciplines in the biological sciences.
Collapse
Affiliation(s)
- Colin Olito
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Victoria 3800, Australia
| | - Craig R. White
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Victoria 3800, Australia
| | - Dustin J. Marshall
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Victoria 3800, Australia
| | - Diego R. Barneche
- Centre for Geometric Biology, School of Biological Sciences, Monash University, Victoria 3800, Australia
| |
Collapse
|
30
|
Rowe CL, Woodland RJ, Funck SA. Metabolic rates are elevated and influenced by maternal identity during the early, yolk-dependent, post-hatching period in an estuarine turtle, the diamondback terrapin (Malaclemys terrapin). Comp Biochem Physiol A Mol Integr Physiol 2016; 204:137-145. [PMID: 27894885 DOI: 10.1016/j.cbpa.2016.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 10/20/2022]
Abstract
Non-genetic maternal effects, operating through a female's physiology or behavior, can influence offspring traits and performance. Here we examined potential maternal influences on metabolic rates (MR) of offspring in an estuarine turtle, the diamondback terrapin (Malaclemys terrapin). Females and their eggs were collected from the field and the eggs incubated in the laboratory for subsequent measurement of MR of females, late-stage embryos, newly-hatched individuals that were nutritionally dependent on yolk, and older hatchlings that had depleted their yolk reserves and thus were independent of energetic contributions from the female. Female identity significantly affected MR of yolk-dependent hatchlings but, after yolk was depleted, MR of offspring converged and no longer reflected the maternal influence. Offspring from different females also differed in size, which influenced offspring MR and growth, but there was no correlation between female MR or size and offspring traits. MR of the older, yolk-independent hatchlings was lower overall than yolk-dependent hatchlings but correlated positively with growth rates and prior developmental rate (e.g. negatively correlated with time to hatching). Unlike another turtle species (snapping turtles), in which maternally-related differences in offspring MR were retained after yolk depletion, the maternal influence on offspring MR in diamondback terrapins is limited to early hatchling development and growth. The transient nature of the maternal effect, which was present only during the period that hatchlings were metabolizing yolk, suggests that variation among females in the composition of yolk deposited in eggs could be responsible for the differences observed in this study.
Collapse
Affiliation(s)
- Christopher L Rowe
- University of Maryland Center for Environmental Science, Chesapeake Biological Laboratory, PO Box 38, Solomons, 20659, MD, USA.
| | - Ryan J Woodland
- University of Maryland Center for Environmental Science, Chesapeake Biological Laboratory, PO Box 38, Solomons, 20659, MD, USA
| | - Sarah A Funck
- University of Maryland Center for Environmental Science, Chesapeake Biological Laboratory, PO Box 38, Solomons, 20659, MD, USA
| |
Collapse
|
31
|
Svanfeldt K, Monro K, Marshall DJ. Dispersal duration mediates selection on offspring size. OIKOS 2016. [DOI: 10.1111/oik.03604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Karin Svanfeldt
- Centre of Geometric Biology/School of Biological Sciences Monash University Victoria 3800 Australia
| | - Keyne Monro
- Centre of Geometric Biology/School of Biological Sciences Monash University Victoria 3800 Australia
| | - Dustin J. Marshall
- Centre of Geometric Biology/School of Biological Sciences Monash University Victoria 3800 Australia
| |
Collapse
|