1
|
Driessen EP, Walker KE, Hallman T, Casper A, Eddy SL, Schneider JR, Lane AK. "It's been a Process": A Multiple Case Study of Biology Instructor Efforts to Reform their Sex and Gender Curriculum to be More Inclusive of Students with Queer Genders and Intersex Students. CBE LIFE SCIENCES EDUCATION 2024; 23:ar51. [PMID: 39423039 DOI: 10.1187/cbe.24-01-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Inaccurate sex and gender narratives have saturated the political landscape, resulting in legal restrictions for people with queer genders. Biology educators can correct these false narratives by teaching scientifically accurate and queer gender and intersex inclusive sex and gender curriculum. Here, we interviewed four undergraduate biology instructors who were working to reform their sex and gender curriculum. Using their reformed curriculum to promote conversation in the interviews, we asked participants about their curriculum, their reform process, and the obstacles they faced in implementing their reformed curriculum. We noticed the instructors' journeys to reforming involved intense personal work and education, both at the beginning and iteratively throughout implementation. We found instructors focused on changing language and using a variety of inclusive activities in their undergraduate biology classroom, ranging from highlighting scientists with queer genders to assigning students to research the experiences of people with queer genders with adolescent hormone therapy. Instructors mentioned obstacles to implementing reformed curriculum, including fear of potentially isolating students and concern about the instructor's own positionality. Removing obstacles and supporting the process of unlearning exclusive ways of teaching sex and gender topics may bolster instructor efforts to provide more accurate and inclusive biology education.
Collapse
Affiliation(s)
- Emily P Driessen
- Department of Biology Teaching and Learning, University of Minnesota, Minneapolis, MN 55455
| | - Keenan E Walker
- Department of Biology Teaching and Learning, University of Minnesota, Minneapolis, MN 55455
| | - Tess Hallman
- Department of Biology Teaching and Learning, University of Minnesota, Minneapolis, MN 55455
| | - Aramati Casper
- Department of Biology, Colorado State University, Fort Collins, CO 80521
| | - Sarah L Eddy
- Department of Biology Teaching and Learning, University of Minnesota, Minneapolis, MN 55455
- Department of Biological Sciences, Florida International University, Miami, FL 33199
| | - Joel R Schneider
- Department of Biology Teaching and Learning, University of Minnesota, Minneapolis, MN 55455
| | - A Kelly Lane
- Department of Biology Teaching and Learning, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
2
|
Rohlfing K, Grewoldt M, Cordellier M, Dobler S. Evidence for feminized genetic males in a flea beetle using newly identified X-linked markers. Ecol Evol 2024; 14:e70123. [PMID: 39135725 PMCID: PMC11318108 DOI: 10.1002/ece3.70123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/17/2024] [Accepted: 07/21/2024] [Indexed: 08/15/2024] Open
Abstract
The equilibrium of sex ratios in sexually reproducing species is often disrupted by various environmental and genetic factors, including endosymbionts like Wolbachia. In this study, we explore the highly female-biased sex ratio observed in the flea beetle, Altica lythri, and its underlying mechanisms. Ancient hybridization events between Altica species have led to mitochondrial DNA introgression, resulting in distinct mitochondrial haplotypes that go along with different Wolbachia infections (HT1-wLytA1, HT1*- uninfected, HT2-wLytA2, and HT3-wLytB). Notably, beetles with some haplotypes exclusively produce female offspring, suggesting potential Wolbachia-induced phenomena such as feminization of genetic males. However, the observed female bias could also be a consequence of the ancient hybridization resulting in nuclear-cytoplasmic conflicts between introgressed mtDNA and nuclear genes. Through transcriptomic analysis and the program SEX-DETector, we established markers for genotypic sex differentiation for A. lythri, enabling genetic sexing via qPCR. Our findings suggest that feminization of genetic males is contributing to the skewed sex ratios, highlighting the intricate dynamics of sex determination and reproductive strategies in this flea beetle. This study provides valuable insights into the dynamics of genetic conflicts, endosymbionts, and sex ratios, revealing the novel phenomenon of genetic male feminization in the flea beetle A. lythri.
Collapse
Affiliation(s)
- Kim Rohlfing
- Institute of Animal Cell and Systems Biology, Universität HamburgHamburgGermany
| | - Malte Grewoldt
- Institute of Animal Cell and Systems Biology, Universität HamburgHamburgGermany
- Present address:
Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Mathilde Cordellier
- Institute of Animal Cell and Systems Biology, Universität HamburgHamburgGermany
- Present address:
Institut für Biowissenschaften, Genetik – Populationsgenetik, Universität RostockRostockGermany
| | - Susanne Dobler
- Institute of Animal Cell and Systems Biology, Universität HamburgHamburgGermany
| |
Collapse
|
3
|
Hörandl E. Apomixis and the paradox of sex in plants. ANNALS OF BOTANY 2024; 134:1-18. [PMID: 38497809 PMCID: PMC11161571 DOI: 10.1093/aob/mcae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND The predominance of sex in eukaryotes, despite the high costs of meiosis and mating, remains an evolutionary enigma. Many theories have been proposed, none of them being conclusive on its own, and they are, in part, not well applicable to land plants. Sexual reproduction is obligate in embryophytes for the great majority of species. SCOPE This review compares the main forms of sexual and asexual reproduction in ferns and angiosperms, based on the generation cycling of sporophyte and gametophyte (leaving vegetative propagation aside). The benefits of sexual reproduction for maintenance of genomic integrity in comparison to asexuality are discussed in the light of developmental, evolutionary, genetic and phylogenetic studies. CONCLUSIONS Asexual reproduction represents modifications of the sexual pathway, with various forms of facultative sexuality. For sexual land plants, meiosis provides direct DNA repair mechanisms for oxidative damage in reproductive tissues. The ploidy alternations of meiosis-syngamy cycles and prolonged multicellular stages in the haploid phase in the gametophytes provide a high efficiency of purifying selection against recessive deleterious mutations. Asexual lineages might buffer effects of such mutations via polyploidy and can purge the mutational load via facultative sexuality. The role of organelle-nuclear genome compatibility for maintenance of genome integrity is not well understood. In plants in general, the costs of mating are low because of predominant hermaphroditism. Phylogenetic patterns in the archaeplastid clade suggest that high frequencies of sexuality in land plants are concomitant with a stepwise increase of intrinsic and extrinsic stress factors. Furthermore, expansion of genome size in land plants would increase the potential mutational load. Sexual reproduction appears to be essential for keeping long-term genomic integrity, and only rare combinations of extrinsic and intrinsic factors allow for shifts to asexuality.
Collapse
Affiliation(s)
- Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with herbarium), University of Göttingen, Göttingen, Germany
| |
Collapse
|
4
|
Subramaniam B, Bartlett M. Re-imagining Reproduction: The Queer Possibilities of Plants. Integr Comp Biol 2023; 63:946-959. [PMID: 37024265 PMCID: PMC10563651 DOI: 10.1093/icb/icad012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 04/08/2023] Open
Abstract
How did plant sexuality come to so hauntingly resemble human sexual formations? How did plant biology come to theorize plant sexuality with binary formulations of male/female, sex/gender, sperm/egg, active males and passive females-all of which resemble western categories of sex, gender, and sexuality? Tracing the extant language of sex and sexuality in plant reproductive biology, we examine the histories of science to explore how plant reproductive biology emerged historically from formations of colonial racial and sexual politics and how evolutionary biology was premised on the imaginations of racialized heterosexual romance. Drawing on key examples, the paper aims to (un)read plant sexuality and sexual anatomy and bodies to imagine new possibilities for plant sex, sexualities, and their relationalities. In short, plant sex and sexuality are not two different objects of inquiry but are intimately related-it is their inter-relation that is the focus of this essay. One of the key impulses from the humanities that we bring to this essay is a careful consideration of how terms and terminologies are related to each other historically and culturally. In anthropomorphizing plants, if plant sexuality were modeled on human sexual formations, might a re-imagination of plant sexuality open new vistas for the biological sciences? While our definitions of plant sexuality will always be informed by contemporary society and culture, interrogating the histories of our theories and terminologies can help us reimagine a biology that allows for new and more accurate understandings of plants, plant biology, and the evolution of reproduction.
Collapse
Affiliation(s)
- Banu Subramaniam
- Department of Women, Gender, Sexuality Studies, UMass Amherst, 130 Hicks Way, Amherst, MA 01003, USA
| | - Madelaine Bartlett
- Department of Biology, UMass Amherst, 611 N Pleasant St, Amherst, MA 01003, USA
| |
Collapse
|
5
|
Terwagne M, Nicolas E, Hespeels B, Herter L, Virgo J, Demazy C, Heuskin AC, Hallet B, Van Doninck K. DNA repair during nonreductional meiosis in the asexual rotifer Adineta vaga. SCIENCE ADVANCES 2022; 8:eadc8829. [PMID: 36449626 PMCID: PMC9710870 DOI: 10.1126/sciadv.adc8829] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/13/2022] [Indexed: 06/17/2023]
Abstract
Rotifers of the class Bdelloidea are microscopic animals notorious for their long-term persistence in the apparent absence of sexual reproduction and meiotic recombination. This evolutionary paradox is often counterbalanced by invoking their ability to repair environmentally induced genome breakage. By studying the dynamics of DNA damage response in the bdelloid species Adineta vaga, we found that it occurs rapidly in the soma, producing a partially reassembled genome. By contrast, germline DNA repair is delayed to a specific time window of oogenesis during which homologous chromosomes adopt a meiotic-like juxtaposed configuration, resulting in accurate reconstitution of the genome in the offspring. Our finding that a noncanonical meiosis is the mechanism of germline DNA repair in bdelloid rotifers gives previously unidentified insights on their enigmatic long-term evolution.
Collapse
Affiliation(s)
- Matthieu Terwagne
- Research Unit in Environmental and Evolutionary Biology (URBE), Laboratory of Evolutionary Genetics and Ecology (LEGE), NAmur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur 5000, Belgium
- Institute of Biomolecular Science and Technology (LIBST), Université Catholique de Louvain (UCLouvain), Louvain-la-Neuve 1348, Belgium
| | - Emilien Nicolas
- Research Unit in Environmental and Evolutionary Biology (URBE), Laboratory of Evolutionary Genetics and Ecology (LEGE), NAmur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur 5000, Belgium
- Institute of Biomolecular Science and Technology (LIBST), Université Catholique de Louvain (UCLouvain), Louvain-la-Neuve 1348, Belgium
- Research Unit of Molecular Biology and Evolution (MBE), Université Libre de Bruxelles (ULB), Brussels, 1050, Belgium
| | - Boris Hespeels
- Research Unit in Environmental and Evolutionary Biology (URBE), Laboratory of Evolutionary Genetics and Ecology (LEGE), NAmur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur 5000, Belgium
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur (UNamur), Namur 5000, Belgium
| | - Ludovic Herter
- Research Unit in Environmental and Evolutionary Biology (URBE), Laboratory of Evolutionary Genetics and Ecology (LEGE), NAmur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur 5000, Belgium
| | - Julie Virgo
- Research Unit in Environmental and Evolutionary Biology (URBE), Laboratory of Evolutionary Genetics and Ecology (LEGE), NAmur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur 5000, Belgium
| | - Catherine Demazy
- Research Unit in Environmental and Evolutionary Biology (URBE), Laboratory of Evolutionary Genetics and Ecology (LEGE), NAmur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur 5000, Belgium
- Cellular Biology Research Unit (URBC), University of Namur (UNamur), Namur 5000, Belgium
| | - Anne-Catherine Heuskin
- Laboratory of Analysis by Nuclear Reaction (LARN), NAmur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur 5000, Belgium
| | - Bernard Hallet
- Institute of Biomolecular Science and Technology (LIBST), Université Catholique de Louvain (UCLouvain), Louvain-la-Neuve 1348, Belgium
| | - Karine Van Doninck
- Research Unit in Environmental and Evolutionary Biology (URBE), Laboratory of Evolutionary Genetics and Ecology (LEGE), NAmur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur 5000, Belgium
- Research Unit of Molecular Biology and Evolution (MBE), Université Libre de Bruxelles (ULB), Brussels, 1050, Belgium
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur (UNamur), Namur 5000, Belgium
| |
Collapse
|
6
|
Vainshelbaum NM, Giuliani A, Salmina K, Pjanova D, Erenpreisa J. The Transcriptome and Proteome Networks of Malignant Tumours Reveal Atavistic Attractors of Polyploidy-Related Asexual Reproduction. Int J Mol Sci 2022; 23:ijms232314930. [PMID: 36499258 PMCID: PMC9736112 DOI: 10.3390/ijms232314930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/18/2022] [Accepted: 11/26/2022] [Indexed: 12/02/2022] Open
Abstract
The expression of gametogenesis-related (GG) genes and proteins, as well as whole genome duplications (WGD), are the hallmarks of cancer related to poor prognosis. Currently, it is not clear if these hallmarks are random processes associated only with genome instability or are programmatically linked. Our goal was to elucidate this via a thorough bioinformatics analysis of 1474 GG genes in the context of WGD. We examined their association in protein-protein interaction and coexpression networks, and their phylostratigraphic profiles from publicly available patient tumour data. The results show that GG genes are upregulated in most WGD-enriched somatic cancers at the transcriptome level and reveal robust GG gene expression at the protein level, as well as the ability to associate into correlation networks and enrich the reproductive modules. GG gene phylostratigraphy displayed in WGD+ cancers an attractor of early eukaryotic origin for DNA recombination and meiosis, and one relative to oocyte maturation and embryogenesis from early multicellular organisms. The upregulation of cancer-testis genes emerging with mammalian placentation was also associated with WGD. In general, the results suggest the role of polyploidy for soma-germ transition accessing latent cancer attractors in the human genome network, which appear as pre-formed along the whole Evolution of Life.
Collapse
Affiliation(s)
- Ninel M. Vainshelbaum
- Cancer Research Division, Latvian Biomedicine Research and Study Centre, LV-1067 Riga, Latvia
- Faculty of Biology, The University of Latvia, LV-1586 Riga, Latvia
- Correspondence: (N.M.V.); (J.E.)
| | - Alessandro Giuliani
- Environmen and Health Department, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Kristine Salmina
- Cancer Research Division, Latvian Biomedicine Research and Study Centre, LV-1067 Riga, Latvia
| | - Dace Pjanova
- Cancer Research Division, Latvian Biomedicine Research and Study Centre, LV-1067 Riga, Latvia
| | - Jekaterina Erenpreisa
- Cancer Research Division, Latvian Biomedicine Research and Study Centre, LV-1067 Riga, Latvia
- Correspondence: (N.M.V.); (J.E.)
| |
Collapse
|
7
|
Forni G, Mikheyev AS, Luchetti A, Mantovani B. Gene transcriptional profiles in gonads of Bacillus taxa (Phasmida) with different cytological mechanisms of automictic parthenogenesis. ZOOLOGICAL LETTERS 2022; 8:14. [PMID: 36435814 PMCID: PMC9701443 DOI: 10.1186/s40851-022-00197-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The evolution of automixis - i.e., meiotic parthenogenesis - requires several features, including ploidy restoration after meiosis and maintenance of fertility. Characterizing the relative contribution of novel versus pre-existing genes and the similarities in their expression and sequence evolution is fundamental to understand the evolution of reproductive novelties. Here we identify gonads-biased genes in two Bacillus automictic stick-insects and compare their expression profile and sequence evolution with a bisexual congeneric species. The two parthenogens restore ploidy through different cytological mechanisms: in Bacillus atticus, nuclei derived from the first meiotic division fuse to restore a diploid egg nucleus, while in Bacillus rossius, diploidization occurs in some cells of the haploid blastula through anaphase restitution. Parthenogens' gonads transcriptional program is found to be largely assembled from genes that were already present before the establishment of automixis. The three species transcriptional profiles largely reflect their phyletic relationships, yet we identify a shared core of genes with gonad-biased patterns of expression in parthenogens which are either male gonads-biased in the sexual species or are not differentially expressed there. At the sequence level, just a handful of gonads-biased genes were inferred to have undergone instances of positive selection exclusively in the parthenogen species. This work is the first to explore the molecular underpinnings of automixis in a comparative framework: it delineates how reproductive novelties can be sustained by genes whose origin precedes the establishment of the novelty itself and shows that different meiotic mechanisms of reproduction can be associated with a shared molecular ground plan.
Collapse
Affiliation(s)
- Giobbe Forni
- Dip. Scienze Biologiche, Geologiche e Ambientali (BiGeA), University of Bologna, 40126, Bologna, Italy
- Dip. Scienze Agrarie e Ambientali, University of Milano, Milano, Italy
| | - Alexander S Mikheyev
- Australian National University, ACT, Canberra, 2600, Australia
- Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Andrea Luchetti
- Dip. Scienze Biologiche, Geologiche e Ambientali (BiGeA), University of Bologna, 40126, Bologna, Italy.
| | - Barbara Mantovani
- Dip. Scienze Biologiche, Geologiche e Ambientali (BiGeA), University of Bologna, 40126, Bologna, Italy
| |
Collapse
|
8
|
Repeat sequences limit the effectiveness of lateral gene transfer and favored the evolution of meiotic sex in early eukaryotes. Proc Natl Acad Sci U S A 2022; 119:e2205041119. [PMID: 35994648 PMCID: PMC9436333 DOI: 10.1073/pnas.2205041119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The transition from prokaryotic lateral gene transfer to eukaryotic meiotic sex is poorly understood. Phylogenetic evidence suggests that it was tightly linked to eukaryogenesis, which involved an unprecedented rise in both genome size and the density of genetic repeats. Expansion of genome size raised the severity of Muller's ratchet, while limiting the effectiveness of lateral gene transfer (LGT) at purging deleterious mutations. In principle, an increase in recombination length combined with higher rates of LGT could solve this problem. Here, we show using a computational model that this solution fails in the presence of genetic repeats prevalent in early eukaryotes. The model demonstrates that dispersed repeat sequences allow ectopic recombination, which leads to the loss of genetic information and curtails the capacity of LGT to prevent mutation accumulation. Increasing recombination length in the presence of repeat sequences exacerbates the problem. Mutational decay can only be resisted with homology along extended sequences of DNA. We conclude that the transition to homologous pairing along linear chromosomes was a key innovation in meiotic sex, which was instrumental in the expansion of eukaryotic genomes and morphological complexity.
Collapse
|
9
|
Kikuchi M, Tanaka M. Functional Modules in Gametogenesis. Front Cell Dev Biol 2022; 10:914570. [PMID: 35693939 PMCID: PMC9178102 DOI: 10.3389/fcell.2022.914570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Gametogenesis, the production of eggs and sperm, is a fundamental process in sexually reproducing animals. Following gametogenesis commitment and sexual fate decision, germ cells undergo several developmental processes to halve their genomic size and acquire sex-specific characteristics of gametes, including cellular size, motility, and cell polarity. However, it remains unclear how different gametogenesis processes are initially integrated. With the advantages of the teleost fish medaka (Oryzias latipes), in which germline stem cells continuously produce eggs and sperm in mature gonads and a sexual switch gene in germ cells is identified, we found that distinct pathways initiate gametogenesis cooperatively after commitment to gametogenesis. This evokes the concept of functional modules, in which functionally interlocked genes are grouped to yield distinct gamete characteristics. The various combinations of modules may allow us to explain the evolution of diverse reproductive systems, such as parthenogenesis and hermaphroditism.
Collapse
|
10
|
Hörandl E. Novel Approaches for Species Concepts and Delimitation in Polyploids and Hybrids. PLANTS (BASEL, SWITZERLAND) 2022; 11:204. [PMID: 35050093 PMCID: PMC8781807 DOI: 10.3390/plants11020204] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 05/08/2023]
Abstract
Hybridization and polyploidization are important processes for plant evolution. However, classification of hybrid or polyploid species has been notoriously difficult because of the complexity of processes and different evolutionary scenarios that do not fit with classical species concepts. Polyploid complexes are formed via combinations of allopolyploidy, autopolyploidy and homoploid hybridization with persisting sexual reproduction, resulting in many discrete lineages that have been classified as species. Polyploid complexes with facultative apomixis result in complicated net-work like clusters, or rarely in agamospecies. Various case studies illustrate the problems that apply to traditional species concepts to hybrids and polyploids. Conceptual progress can be made if lineage formation is accepted as an inevitable consequence of meiotic sex, which is established already in the first eukaryotes as a DNA restoration tool. The turnaround of the viewpoint that sex forms species as lineages helps to overcome traditional thinking of species as "units". Lineage formation and self-sustainability is the prerequisite for speciation and can also be applied to hybrids and polyploids. Species delimitation is aided by the improved recognition of lineages via various novel -omics methods, by understanding meiosis functions, and by recognizing functional phenotypes by considering morphological-physiological-ecological adaptations.
Collapse
Affiliation(s)
- Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, 37073 Göttingen, Germany
| |
Collapse
|
11
|
A CENH3 mutation promotes meiotic exit and restores fertility in SMG7-deficient Arabidopsis. PLoS Genet 2021; 17:e1009779. [PMID: 34591845 PMCID: PMC8509889 DOI: 10.1371/journal.pgen.1009779] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/12/2021] [Accepted: 08/16/2021] [Indexed: 01/21/2023] Open
Abstract
Meiosis in angiosperm plants is followed by mitotic divisions to form multicellular haploid gametophytes. Termination of meiosis and transition to gametophytic development is, in Arabidopsis, governed by a dedicated mechanism that involves SMG7 and TDM1 proteins. Mutants carrying the smg7-6 allele are semi-fertile due to reduced pollen production. We found that instead of forming tetrads, smg7-6 pollen mother cells undergo multiple rounds of chromosome condensation and spindle assembly at the end of meiosis, resembling aberrant attempts to undergo additional meiotic divisions. A suppressor screen uncovered a mutation in centromeric histone H3 (CENH3) that increased fertility and promoted meiotic exit in smg7-6 plants. The mutation led to inefficient splicing of the CENH3 mRNA and a substantial decrease of CENH3, resulting in smaller centromeres. The reduced level of CENH3 delayed formation of the mitotic spindle but did not have an apparent effect on plant growth and development. We suggest that impaired spindle re-assembly at the end of meiosis limits aberrant divisions in smg7-6 plants and promotes formation of tetrads and viable pollen. Furthermore, the mutant with reduced level of CENH3 was very inefficient haploid inducer indicating that differences in centromere size is not the key determinant of centromere-mediated genome elimination. Meiosis is a reductional cell division that halves number of chromosomes during two successive rounds of chromosome segregation without intervening DNA replication. Such mode of chromosome segregation requires extensive reprogramming of the cell division machinery at the entry to meiosis, and inactivation of the meiotic program upon the formation of haploid spores. Here we showed that Arabidopsis partially deficient in the RNA decay factor SMG7 fail to exit meiosis and continue with attempts to undergo additional cycles of post-meiotic chromosome segregations without genome replication. This results in a reduced number of viable pollen and diminished fertility. To find genes involved in meiotic exit, we performed a suppressor screen for the SMG7-deicient plants that re-gain fertility. We found that reducing the amount of centromeric histone partially restores pollen formation and fertility in smg7 mutants. This is likely due to inefficient formation of centromere-microtubule interactions that impairs spindle reassembly and re-entry into aberrant rounds of post-meiotic chromosome segregation.
Collapse
|
12
|
Fan X, Moustakas I, Torrens-Juaneda V, Lei Q, Hamer G, Louwe LA, Pilgram GSK, Szuhai K, Matorras R, Eguizabal C, van der Westerlaken L, Mei H, Chuva de Sousa Lopes SM. Transcriptional progression during meiotic prophase I reveals sex-specific features and X chromosome dynamics in human fetal female germline. PLoS Genet 2021; 17:e1009773. [PMID: 34499650 PMCID: PMC8428764 DOI: 10.1371/journal.pgen.1009773] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 08/10/2021] [Indexed: 12/26/2022] Open
Abstract
During gametogenesis in mammals, meiosis ensures the production of haploid gametes. The timing and length of meiosis to produce female and male gametes differ considerably. In contrast to males, meiotic prophase I in females initiates during development. Hence, the knowledge regarding progression through meiotic prophase I is mainly focused on human male spermatogenesis and female oocyte maturation during adulthood. Therefore, it remains unclear how the different stages of meiotic prophase I between human oogenesis and spermatogenesis compare. Analysis of single-cell transcriptomics data from human fetal germ cells (FGC) allowed us to identify the molecular signatures of female meiotic prophase I stages leptotene, zygotene, pachytene and diplotene. We have compared those between male and female germ cells in similar stages of meiotic prophase I and revealed conserved and specific features between sexes. We identified not only key players involved in the process of meiosis, but also highlighted the molecular components that could be responsible for changes in cellular morphology that occur during this developmental period, when the female FGC acquire their typical (sex-specific) oocyte shape as well as sex-differences in the regulation of DNA methylation. Analysis of X-linked expression between sexes during meiotic prophase I suggested a transient X-linked enrichment during female pachytene, that contrasts with the meiotic sex chromosome inactivation in males. Our study of the events that take place during meiotic prophase I provide a better understanding not only of female meiosis during development, but also highlights biomarkers that can be used to study infertility and offers insights in germline sex dimorphism in humans.
Collapse
Affiliation(s)
- Xueying Fan
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ioannis Moustakas
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Vanessa Torrens-Juaneda
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Qijing Lei
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Geert Hamer
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Leoni A. Louwe
- Department of Gynaecology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gonneke S. K. Pilgram
- Department of Gynaecology, Leiden University Medical Center, Leiden, The Netherlands
| | - Karoly Szuhai
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Roberto Matorras
- IVIRMA, IVI Bilbao, Bilbao, Spain; Human Reproduction Unit, Cruces University Hospital, Bilbao, Spain; Department of Obstetrics and Gynecology, Basque Country University, Spain; Biocruces Bizkaia Health Research Institute, Bilbao, Spain
| | - Cristina Eguizabal
- Cell Therapy, Stem Cells and Tissues Group, Basque Centre for Blood Transfusion and Human Tissues, Galdakao, Spain
- Biocruces Bizkaia Health Research Institute, Cell Therapy, Stem Cells and Tissues Group, Barakaldo, Spain
| | | | - Hailiang Mei
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Susana M. Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
- Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
- * E-mail:
| |
Collapse
|
13
|
Yadav V, Sun S, Heitman J. Uniparental nuclear inheritance following bisexual mating in fungi. eLife 2021; 10:66234. [PMID: 34338631 PMCID: PMC8412948 DOI: 10.7554/elife.66234] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 07/27/2021] [Indexed: 01/11/2023] Open
Abstract
Some remarkable animal species require an opposite-sex partner for their sexual development but discard the partner’s genome before gamete formation, generating hemi-clonal progeny in a process called hybridogenesis. Here, we discovered a similar phenomenon, termed pseudosexual reproduction, in a basidiomycete human fungal pathogen, Cryptococcus neoformans, where exclusive uniparental inheritance of nuclear genetic material was observed during bisexual reproduction. Analysis of strains expressing fluorescent reporter proteins revealed instances where only one of the parental nuclei was present in the terminal sporulating basidium. Whole-genome sequencing revealed that the nuclear genome of the progeny was identical with one or the other parental genome. Pseudosexual reproduction was also detected in natural isolate crosses where it resulted in mainly MATα progeny, a bias observed in Cryptococcus ecological distribution as well. The mitochondria in these progeny were inherited from the MATa parent, resulting in nuclear-mitochondrial genome exchange. The meiotic recombinase Dmc1 was found to be critical for pseudosexual reproduction. These findings reveal a novel, and potentially ecologically significant, mode of eukaryotic microbial reproduction that shares features with hybridogenesis in animals. Sexual reproduction enables organisms to recombine their genes to generate progeny that have higher levels of evolutionary fitness. This process requires reproductive cells – like the sperm and egg – to fuse together and mix their two genomes, resulting in offspring that are genetically distinct from their parents. In a disease-causing fungus called Cryptococcus neoformans, sexual reproduction occurs when two compatible mating types (MATa and MATα) merge together to form long branched filaments called hyphae. Cells in the hyphae contain two nuclei – one from each parent – which fuse in specialized cells at the end of the branches called basidia. The fused nucleus is then divided into four daughter nuclei, which generate spores that can develop into new organisms. In nature, the mating types of C. neoformans exhibit a peculiar distribution where MATα represents 95% or more of the population. However, it is not clear how this fungus successfully reproduces with such an unusually skewed distribution of mating types. To investigate this further, Yadav et al. tracked the reproductive cycle of C. neoformans applying genetic techniques, fluorescence microscopy, and whole-genome sequencing. This revealed that during hyphal branching some cells lose the nucleus of one of the two mating types. As a result, the nuclei of the generated spores only contain genetic information from one parent. Yadav et al. named this process pseudosexual reproduction as it defies the central benefit of sex, which is to produce offspring with a new combination of genetic information. Further experiments showed that this unconventional mode of reproduction can be conducted by fungi isolated from both environmental samples and clinical patient samples. This suggests that pseudosexual reproduction is a widespread and conserved process that may provide significant evolutionary benefits. C. neoformans represents a flexible and adaptable model organism to explore the impact and evolutionary advantages of sex. Further studies of the unique reproductive strategies employed by this fungus may improve the understanding of similar processes in other eukaryotes, including animals and plants. This research may also have important implications for understanding and controlling the growth of other disease-causing microbes.
Collapse
Affiliation(s)
- Vikas Yadav
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
| |
Collapse
|
14
|
Peacock L, Kay C, Farren C, Bailey M, Carrington M, Gibson W. Sequential production of gametes during meiosis in trypanosomes. Commun Biol 2021; 4:555. [PMID: 33976359 PMCID: PMC8113336 DOI: 10.1038/s42003-021-02058-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 03/24/2021] [Indexed: 02/03/2023] Open
Abstract
Meiosis is a core feature of eukaryotes that occurs in all major groups, including the early diverging excavates. In this group, meiosis and production of haploid gametes have been described in the pathogenic protist, Trypanosoma brucei, and mating occurs in the salivary glands of the insect vector, the tsetse fly. Here, we searched for intermediate meiotic stages among trypanosomes from tsetse salivary glands. Many different cell types were recovered, including trypanosomes in Meiosis I and gametes. Significantly, we found trypanosomes containing three nuclei with a 1:2:1 ratio of DNA contents. Some of these cells were undergoing cytokinesis, yielding a mononucleate gamete and a binucleate cell with a nuclear DNA content ratio of 1:2. This cell subsequently produced three more gametes in two further rounds of division. Expression of the cell fusion protein HAP2 (GCS1) was not confined to gametes, but also extended to meiotic intermediates. We propose a model whereby the two nuclei resulting from Meiosis I undergo asynchronous Meiosis II divisions with sequential production of haploid gametes.
Collapse
Affiliation(s)
- Lori Peacock
- School of Biological Sciences University of Bristol, Bristol, UK
- Bristol Veterinary School, University of Bristol, Bristol, UK
| | - Chris Kay
- School of Biological Sciences University of Bristol, Bristol, UK
| | - Chloe Farren
- School of Biological Sciences University of Bristol, Bristol, UK
| | - Mick Bailey
- Bristol Veterinary School, University of Bristol, Bristol, UK
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Wendy Gibson
- School of Biological Sciences University of Bristol, Bristol, UK.
| |
Collapse
|
15
|
Capture and return of sexual genomes by hybridogenetic frogs provide clonal genome enrichment in a sexual species. Sci Rep 2021; 11:1633. [PMID: 33452404 PMCID: PMC7810977 DOI: 10.1038/s41598-021-81240-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 01/04/2021] [Indexed: 01/29/2023] Open
Abstract
Hybridogenesis is a reproductive tool for sexual parasitism. Hybridogenetic hybrids use gametes from their sexual host for their own reproduction, but sexual species gain no benefit from such matings as their genome is later eliminated. Here, we examine the presence of sexual parasitism in water frogs through crossing experiments and genome-wide data. We specifically focus on the famous Central-European populations where Pelophylax esculentus males (hybrids of P. ridibundus and P. lessonae) live with P. ridibundus. We identified a system where the hybrids commonly produce two types of clonal gametes (hybrid amphispermy). The haploid lessonae genome is clonally inherited from generation to generation and assures the maintenance of hybrids through a process, in which lessonae sperm fertilize P. ridibundus eggs. The haploid ridibundus genome in hybrids received from P. ridibundus a generation ago, is perpetuated as clonal ridibundus sperm and used to fertilize P. ridibundus eggs, yielding female P. ridibundus progeny. These results imply animal reproduction in which hybridogenetic taxa are not only sexual parasites, but also participate in the formation of a sexual taxon in a remarkable way. This occurs through a process by which sexual gametes are being captured, converted to clones, and returned to sexual populations in one generation.
Collapse
|
16
|
Mateo de Arias M, Gao L, Sherwood DA, Dwivedi KK, Price BJ, Jamison M, Kowallis BM, Carman JG. Whether Gametophytes are Reduced or Unreduced in Angiosperms Might Be Determined Metabolically. Genes (Basel) 2020; 11:genes11121449. [PMID: 33276690 PMCID: PMC7761559 DOI: 10.3390/genes11121449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
In angiosperms, meiotic failure coupled with the formation of genetically unreduced gametophytes in ovules (apomeiosis) constitute major components of gametophytic apomixis. These aberrant developmental events are generally thought to be caused by mutation. However, efforts to locate the responsible mutations have failed. Herein, we tested a fundamentally different hypothesis: apomeiosis is a polyphenism of meiosis, with meiosis and apomeiosis being maintained by different states of metabolic homeostasis. Microarray analyses of ovules and pistils were used to differentiate meiotic from apomeiotic processes in Boechera (Brassicaceae). Genes associated with translation, cell division, epigenetic silencing, flowering, and meiosis characterized sexual Boechera (meiotic). In contrast, genes associated with stress responses, abscisic acid signaling, reactive oxygen species production, and stress attenuation mechanisms characterized apomictic Boechera (apomeiotic). We next tested whether these metabolic differences regulate reproductive mode. Apomeiosis switched to meiosis when premeiotic ovules of apomicts were cultured on media that increased oxidative stress. These treatments included drought, starvation, and H2O2 applications. In contrast, meiosis switched to apomeiosis when premeiotic pistils of sexual plants were cultured on media that relieved oxidative stress. These treatments included antioxidants, glucose, abscisic acid, fluridone, and 5-azacytidine. High-frequency apomeiosis was initiated in all sexual species tested: Brassicaceae, Boechera stricta, Boechera exilis, and Arabidopsis thaliana; Fabaceae, Vigna unguiculata; Asteraceae, Antennaria dioica. Unreduced gametophytes formed from ameiotic female and male sporocytes, first division restitution dyads, and nucellar cells. These results are consistent with modes of reproduction and types of apomixis, in natural apomicts, being regulated metabolically.
Collapse
Affiliation(s)
- Mayelyn Mateo de Arias
- Plants, Soils, and Climate Department, Utah State University, Logan, UT 84322-4820, USA; (M.M.d.A.); (L.G.); (D.A.S.); (B.J.P.)
- Instituto Tecnológico de Santo Domingo, 10103 Santo Domingo, Dominican Republic
| | - Lei Gao
- Plants, Soils, and Climate Department, Utah State University, Logan, UT 84322-4820, USA; (M.M.d.A.); (L.G.); (D.A.S.); (B.J.P.)
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang 332000, China
| | - David A. Sherwood
- Plants, Soils, and Climate Department, Utah State University, Logan, UT 84322-4820, USA; (M.M.d.A.); (L.G.); (D.A.S.); (B.J.P.)
- Sherwood Pet Health, Logan, UT 84321, USA
| | - Krishna K. Dwivedi
- Caisson Laboratories, Inc., Smithfield, UT 84335, USA; (K.K.D.); (M.J.); (B.M.K.)
- Crop Improvement Division, Indian Grassland and Fodder Research Institute, 284003 Jhansi, India
| | - Bo J. Price
- Plants, Soils, and Climate Department, Utah State University, Logan, UT 84322-4820, USA; (M.M.d.A.); (L.G.); (D.A.S.); (B.J.P.)
- Molecular Biology Program, University of Utah, Salt Lake City, UT 84112-5750, USA
| | - Michelle Jamison
- Caisson Laboratories, Inc., Smithfield, UT 84335, USA; (K.K.D.); (M.J.); (B.M.K.)
- Wescor, Inc. An Elitech Company, Logan, UT 84321, USA
| | - Becky M. Kowallis
- Caisson Laboratories, Inc., Smithfield, UT 84335, USA; (K.K.D.); (M.J.); (B.M.K.)
- Cytiva, Inc., Logan, UT 84321, USA
| | - John G. Carman
- Plants, Soils, and Climate Department, Utah State University, Logan, UT 84322-4820, USA; (M.M.d.A.); (L.G.); (D.A.S.); (B.J.P.)
- Correspondence: ; Tel.: +1-435-512-4913
| |
Collapse
|
17
|
Xu XR, Li NN, Bao XY, Douglas AE, Luan JB. Patterns of host cell inheritance in the bacterial symbiosis of whiteflies. INSECT SCIENCE 2020; 27:938-946. [PMID: 31268231 PMCID: PMC7198116 DOI: 10.1111/1744-7917.12708] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 05/30/2023]
Abstract
Whiteflies possess bacterial symbionts Candidatus Portiera aleyrodidium that are housed in specialized cells called bacteriocytes and are faithfully transmitted via the ovary to insect offspring. In one whitefly species studied previously, Bemisia tabaci MEAM1, transmission is mediated by somatic inheritance of bacteriocytes, with a single bacteriocyte transferred to each oocyte and persisting through embryogenesis to the next generation. Here, we investigate the mode of bacteriocyte transmission in two whitefly species, B. tabaci MED, the sister species of MEAM1, and the phylogenetically distant species Trialeurodes vaporariorum. Microsatellite analysis supported by microscopical studies demonstrates that B. tabaci MED bacteriocytes are genetically different from other somatic cells and persist through embryogenesis, as for MEAM1, but T. vaporariorum bacteriocytes are genetically identical to other somatic cells of the insect, likely mediated by the degradation of maternal bacteriocytes in the embryo. These two alternative modes of transmission provide a first demonstration among insect symbioses that the cellular processes underlying vertical transmission of bacterial symbionts can diversify among related host species associated with a single lineage of symbiotic bacteria.
Collapse
Affiliation(s)
- Xiao-Rui Xu
- Liaoning Key Laboratory of Economic and Applied
Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang,
China;
| | - Na-Na Li
- Liaoning Key Laboratory of Economic and Applied
Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang,
China;
| | - Xi-Yu Bao
- Liaoning Key Laboratory of Economic and Applied
Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang,
China;
| | - Angela E. Douglas
- Department of Entomology, Cornell University,
Ithaca, NY, USA and
- Department of Molecular Biology and Genetics,
Cornell University, Ithaca, NY, USA
| | - Jun-Bo Luan
- Liaoning Key Laboratory of Economic and Applied
Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang,
China;
- Department of Entomology, Cornell University,
Ithaca, NY, USA and
| |
Collapse
|
18
|
Colnaghi M, Lane N, Pomiankowski A. Genome expansion in early eukaryotes drove the transition from lateral gene transfer to meiotic sex. eLife 2020; 9:58873. [PMID: 32990598 PMCID: PMC7524546 DOI: 10.7554/elife.58873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022] Open
Abstract
Prokaryotes acquire genes from the environment via lateral gene transfer (LGT). Recombination of environmental DNA can prevent the accumulation of deleterious mutations, but LGT was abandoned by the first eukaryotes in favour of sexual reproduction. Here we develop a theoretical model of a haploid population undergoing LGT which includes two new parameters, genome size and recombination length, neglected by previous theoretical models. The greater complexity of eukaryotes is linked with larger genomes and we demonstrate that the benefit of LGT declines rapidly with genome size. The degeneration of larger genomes can only be resisted by increases in recombination length, to the same order as genome size - as occurs in meiosis. Our results can explain the strong selective pressure towards the evolution of sexual cell fusion and reciprocal recombination during early eukaryotic evolution - the origin of meiotic sex.
Collapse
Affiliation(s)
- Marco Colnaghi
- CoMPLEX, University College London, London, United Kingdom.,Department of Genetics, Evolution and Environment University College London, London, United Kingdom
| | - Nick Lane
- CoMPLEX, University College London, London, United Kingdom.,Department of Genetics, Evolution and Environment University College London, London, United Kingdom
| | - Andrew Pomiankowski
- CoMPLEX, University College London, London, United Kingdom.,Department of Genetics, Evolution and Environment University College London, London, United Kingdom
| |
Collapse
|
19
|
Ortiz JPA, Pupilli F, Acuña CA, Leblanc O, Pessino SC. How to Become an Apomixis Model: The Multifaceted Case of Paspalum. Genes (Basel) 2020; 11:E974. [PMID: 32839398 PMCID: PMC7564465 DOI: 10.3390/genes11090974] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
In the past decades, the grasses of the Paspalum genus have emerged as a versatile model allowing evolutionary, genetic, molecular, and developmental studies on apomixis as well as successful breeding applications. The rise of such an archetypal system progressed through integrative phases, which were essential to draw conclusions based on solid standards. Here, we review the steps adopted in Paspalum to establish the current body of knowledge on apomixis and provide model breeding programs for other agronomically important apomictic crops. In particular, we discuss the need for previous detailed cytoembryological and cytogenetic germplasm characterization; the establishment of sexual and apomictic materials of identical ploidy level; the development of segregating populations useful for inheritance analysis, positional mapping, and epigenetic control studies; the development of omics data resources; the identification of key molecular pathways via comparative gene expression studies; the accurate molecular characterization of genomic loci governing apomixis; the in-depth functional analysis of selected candidate genes in apomictic and model species; the successful building of a sexual/apomictic combined breeding scheme.
Collapse
Affiliation(s)
- Juan Pablo A. Ortiz
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), CONICET, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, S2125ZAA Zavalla, Argentina;
| | - Fulvio Pupilli
- Institute of Biosciences and Bioresources (IBBR-CNR), 06128 Perugia, Italy;
| | - Carlos A. Acuña
- Instituto de Botánica del Nordeste (IBONE), CONICET, Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, 3400 Corrientes, Argentina;
| | - Olivier Leblanc
- UMR DIADE, IRD, Univ. Montpellier, 34090 Montpellier, France;
| | - Silvina C. Pessino
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), CONICET, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, S2125ZAA Zavalla, Argentina;
| |
Collapse
|
20
|
Hörandl E, Hadacek F. Oxygen, life forms, and the evolution of sexes in multicellular eukaryotes. Heredity (Edinb) 2020; 125:1-14. [PMID: 32415185 PMCID: PMC7413252 DOI: 10.1038/s41437-020-0317-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 04/26/2020] [Accepted: 04/26/2020] [Indexed: 12/27/2022] Open
Abstract
The evolutionary advantage of different sexual systems in multicellular eukaryotes is still not well understood, because the differentiation into male and female individuals halves offspring production compared with asexuality. Here we propose that various physiological adaptations to oxidative stress could have forged sessility versus motility, and consequently the evolution of sexual systems in multicellular animals, plants, and fungi. Photosynthesis causes substantial amounts of oxidative stress in photoautotrophic plants and, likewise, oxidative chemistry of polymer breakdown, cellulose and lignin, for saprotrophic fungi. In both cases, its extent precludes motility, an additional source of oxidative stress. Sessile life form and the lack of neuronal systems, however, limit options for mate recognition and adult sexual selection, resulting in inefficient mate-searching systems. Hence, sessility requires that all individuals can produce offspring, which is achieved by hermaphroditism in plants and/or by multiple mating types in fungi. In animals, motility requires neuronal systems, and muscle activity, both of which are highly sensitive to oxidative damage. As a consequence, motility has evolved in animals as heterotrophic organisms that (1) are not photosynthetically active, and (2) are not primary decomposers. Adaptations to motility provide prerequisites for an active mating behavior and efficient mate-searching systems. These benefits compensate for the "cost of males", and may explain the early evolution of sex chromosomes in metazoans. We conclude that different sexual systems evolved under the indirect physiological constraints of lifestyles.
Collapse
Affiliation(s)
- Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants, University of Goettingen, Göttingen, Germany.
| | - Franz Hadacek
- Department of Plant Biochemistry, University of Goettingen, Göttingen, Germany
| |
Collapse
|
21
|
Controlling Apomixis: Shared Features and Distinct Characteristics of Gene Regulation. Genes (Basel) 2020; 11:genes11030329. [PMID: 32245021 PMCID: PMC7140868 DOI: 10.3390/genes11030329] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 02/06/2023] Open
Abstract
In higher plants, sexual and asexual reproduction through seeds (apomixis) have evolved as alternative strategies. As apomixis leads to the formation of clonal offspring, its great potential for agricultural applications has long been recognized. However, the genetic basis and the molecular control underlying apomixis and its evolutionary origin are to date not fully understood. Both in sexual and apomictic plants, reproduction is tightly controlled by versatile mechanisms regulating gene expression, translation, and protein abundance and activity. Increasing evidence suggests that interrelated pathways including epigenetic regulation, cell-cycle control, hormonal pathways, and signal transduction processes are relevant for apomixis. Additional molecular mechanisms are being identified that involve the activity of DNA- and RNA-binding proteins, such as RNA helicases which are increasingly recognized as important regulators of reproduction. Together with other factors including non-coding RNAs, their association with ribosomes is likely to be relevant for the formation and specification of the apomictic reproductive lineage. Subsequent seed formation appears to involve an interplay of transcriptional activation and repression of developmental programs by epigenetic regulatory mechanisms. In this review, insights into the genetic basis and molecular control of apomixis are presented, also taking into account potential relations to environmental stress, and considering aspects of evolution.
Collapse
|
22
|
Lamelza P, Young JM, Noble LM, Caro L, Isakharov A, Palanisamy M, Rockman MV, Malik HS, Ailion M. Hybridization promotes asexual reproduction in Caenorhabditis nematodes. PLoS Genet 2019; 15:e1008520. [PMID: 31841515 PMCID: PMC6946170 DOI: 10.1371/journal.pgen.1008520] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 01/07/2020] [Accepted: 11/15/2019] [Indexed: 02/04/2023] Open
Abstract
Although most unicellular organisms reproduce asexually, most multicellular eukaryotes are obligately sexual. This implies that there are strong barriers that prevent the origin or maintenance of asexuality arising from an obligately sexual ancestor. By studying rare asexual animal species we can gain a better understanding of the circumstances that facilitate their evolution from a sexual ancestor. Of the known asexual animal species, many originated by hybridization between two ancestral sexual species. The balance hypothesis predicts that genetic incompatibilities between the divergent genomes in hybrids can modify meiosis and facilitate asexual reproduction, but there are few instances where this has been shown. Here we report that hybridizing two sexual Caenorhabditis nematode species (C. nouraguensis females and C. becei males) alters the normal inheritance of the maternal and paternal genomes during the formation of hybrid zygotes. Most offspring of this interspecies cross die during embryogenesis, exhibiting inheritance of a diploid C. nouraguensis maternal genome and incomplete inheritance of C. becei paternal DNA. However, a small fraction of offspring develop into viable adults that can be either fertile or sterile. Fertile offspring are produced asexually by sperm-dependent parthenogenesis (also called gynogenesis or pseudogamy); these progeny inherit a diploid maternal genome but fail to inherit a paternal genome. Sterile offspring are hybrids that inherit both a diploid maternal genome and a haploid paternal genome. Whole-genome sequencing of individual viable worms shows that diploid maternal inheritance in both fertile and sterile offspring results from an altered meiosis in C. nouraguensis oocytes and the inheritance of two randomly selected homologous chromatids. We hypothesize that hybrid incompatibility between C. nouraguensis and C. becei modifies maternal and paternal genome inheritance and indirectly induces gynogenetic reproduction. This system can be used to dissect the molecular mechanisms by which hybrid incompatibilities can facilitate the emergence of asexual reproduction.
Collapse
Affiliation(s)
- Piero Lamelza
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, United States of America
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Janet M. Young
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Luke M. Noble
- Department of Biology and Center for Genomics & Systems Biology, New York University, New York, New York, United States of America
| | - Lews Caro
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, United States of America
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Arielle Isakharov
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Meenakshi Palanisamy
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Matthew V. Rockman
- Department of Biology and Center for Genomics & Systems Biology, New York University, New York, New York, United States of America
| | - Harmit S. Malik
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, United States of America
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Michael Ailion
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, United States of America
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
23
|
Affiliation(s)
- Matthias Galipaud
- Department of evolutionary biology and environmental studies University of Zurich Zurich Switzerland
| | - Hanna Kokko
- Department of evolutionary biology and environmental studies University of Zurich Zurich Switzerland
| |
Collapse
|
24
|
Edgar JA. L-ascorbic acid and the evolution of multicellular eukaryotes. J Theor Biol 2019; 476:62-73. [DOI: 10.1016/j.jtbi.2019.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/10/2019] [Accepted: 06/02/2019] [Indexed: 12/26/2022]
|
25
|
Morgan-Richards M, Langton-Myers SS, Trewick SA. Loss and gain of sexual reproduction in the same stick insect. Mol Ecol 2019; 28:3929-3941. [PMID: 31386772 PMCID: PMC6852293 DOI: 10.1111/mec.15203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 06/17/2019] [Accepted: 07/30/2019] [Indexed: 01/10/2023]
Abstract
The outcome of competition between different reproductive strategies within a single species can be used to infer selective advantage of the winning strategy. Where multiple populations have independently lost or gained sexual reproduction it is possible to investigate whether the advantage is contingent on local conditions. In the New Zealand stick insect Clitarchus hookeri, three populations are distinguished by recent change in reproductive strategy and we determine their likely origins. One parthenogenetic population has established in the United Kingdom and we provide evidence that sexual reproduction has been lost in this population. We identify the sexual population from which the parthenogenetic population was derived, but show that the UK females have a post‐mating barrier to fertilisation. We also demonstrate that two sexual populations have recently arisen in New Zealand within the natural range of the mtDNA lineage that otherwise characterizes parthenogenesis in this species. We infer independent origins of males at these two locations using microsatellite genotypes. In one population, a mixture of local and nonlocal alleles suggested males were the result of invasion. Males in another population were most probably the result of loss of an X chromosome that produced a male phenotype in situ. Two successful switches in reproductive strategy suggest local competitive advantage for outcrossing over parthenogenetic reproduction. Clitarchus hookeri provides remarkable evidence of repeated and rapid changes in reproductive strategy, with competitive outcomes dependent on local conditions.
Collapse
Affiliation(s)
| | | | - Steven A Trewick
- Wildlife & Ecology, Massey University, Palmerston North, New Zealand
| |
Collapse
|
26
|
Hodač L, Klatt S, Hojsgaard D, Sharbel TF, Hörandl E. A little bit of sex prevents mutation accumulation even in apomictic polyploid plants. BMC Evol Biol 2019; 19:170. [PMID: 31412772 PMCID: PMC6694583 DOI: 10.1186/s12862-019-1495-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 08/08/2019] [Indexed: 01/30/2023] Open
Abstract
Background In the absence of sex and recombination, genomes are expected to accumulate deleterious mutations via an irreversible process known as Muller’s ratchet, especially in the case of polyploidy. In contrast, no genome-wide mutation accumulation was detected in a transcriptome of facultative apomictic, hexaploid plants of the Ranunculus auricomus complex. We hypothesize that mutations cannot accumulate in flowering plants with facultative sexuality because sexual and asexual development concurrently occurs within the same generation. We assume a strong effect of purging selection on reduced gametophytes in the sexual developmental pathway because previously masked recessive deleterious mutations would be exposed to selection. Results We test this hypothesis by modeling mutation elimination using apomictic hexaploid plants of the R. auricomus complex. To estimate mean recombination rates, the mean number of recombinants per generation was calculated by genotyping three F1 progeny arrays with six microsatellite markers and character incompatibility analyses. We estimated the strength of purging selection in gametophytes by calculating abortion rates of sexual versus apomictic development at the female gametophyte, seed and offspring stage. Accordingly, we applied three selection coefficients by considering effects of purging selection against mutations on (1) male and female gametophytes in the sexual pathway (additive, s = 1.000), (2) female gametophytes only (s = 0.520), and (3) on adult plants only (sporophytes, s = 0.212). We implemented recombination rates into a mathematical model considering the three different selection coefficients, and a genomic mutation rate calculated from genome size of our plants and plant-specific mutation rates. We revealed a mean of 6.05% recombinants per generation. This recombination rate eliminates mutations after 138, 204 or 246 generations, depending on the respective selection coefficients (s = 1.000, 0.520, and 0.212). Conclusions Our results confirm that the empirically observed frequencies of facultative recombination suffice to prevent accumulation of deleterious mutations via Muller’s ratchet even in a polyploid genome. The efficiency of selection is in flowering plants strongly increased by acting on the haplontic (reduced) gametophyte stage. Electronic supplementary material The online version of this article (10.1186/s12862-019-1495-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ladislav Hodač
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Goettingen, Germany
| | - Simone Klatt
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Goettingen, Germany
| | - Diego Hojsgaard
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Goettingen, Germany
| | - Timothy F Sharbel
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, Canada
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Goettingen, Germany.
| |
Collapse
|
27
|
Morgan AP, Bell TA, Crowley JJ, Pardo-Manuel de Villena F. Instability of the Pseudoautosomal Boundary in House Mice. Genetics 2019; 212:469-487. [PMID: 31028113 PMCID: PMC6553833 DOI: 10.1534/genetics.119.302232] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 04/23/2019] [Indexed: 12/14/2022] Open
Abstract
Faithful segregation of homologous chromosomes at meiosis requires pairing and recombination. In taxa with dimorphic sex chromosomes, pairing between them in the heterogametic sex is limited to a narrow interval of residual sequence homology known as the pseudoautosomal region (PAR). Failure to form the obligate crossover in the PAR is associated with male infertility in house mice (Mus musculus) and humans. Yet despite this apparent functional constraint, the boundary and organization of the PAR is highly variable in mammals, and even between subspecies of mice. Here, we estimate the genetic map in a previously documented expansion of the PAR in the M. musculus castaneus subspecies and show that the local recombination rate is 100-fold higher than the autosomal background. We identify an independent shift in the PAR boundary in the M. musculus musculus subspecies and show that it involves a complex rearrangement, but still recombines in heterozygous males. Finally, we demonstrate pervasive copy-number variation at the PAR boundary in wild populations of M. m. domesticus, M. m. musculus, and M. m. castaneus Our results suggest that the intensity of recombination activity in the PAR, coupled with relatively weak constraints on its sequence, permit the generation and maintenance of unusual levels of polymorphism in the population of unknown functional significance.
Collapse
Affiliation(s)
- Andrew P Morgan
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27514
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27514
| | - Timothy A Bell
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27514
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27514
| | - James J Crowley
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27514
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27514
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina 27514
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27514
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27514
| |
Collapse
|
28
|
Maraun M, Caruso T, Hense J, Lehmitz R, Mumladze L, Murvanidze M, Nae I, Schulz J, Seniczak A, Scheu S. Parthenogenetic vs. sexual reproduction in oribatid mite communities. Ecol Evol 2019; 9:7324-7332. [PMID: 31380053 PMCID: PMC6662391 DOI: 10.1002/ece3.5303] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 11/26/2022] Open
Abstract
The dominance of sex in Metazoa is enigmatic. Sexual species allocate resources to the production of males, while potentially facing negative effects such as the loss of well-adapted genotypes due to recombination, and exposure to diseases and predators during mating. Two major hypotheses have been put forward to explain the advantages of parthenogenetic versus sexual reproduction in animals, that is, the Red Queen hypothesis and the Tangled Bank/Structured Resource Theory of Sex. The Red Queen hypothesis assumes that antagonistic predator-prey/ parasite-host interactions favor sex. The Structured Resource Theory of Sex predicts sexual reproduction to be favored if resources are in short supply and aggregated in space. In soil, a remarkable number of invertebrates reproduce by parthenogenesis, and this pattern is most pronounced in oribatid mites (Oribatida, Acari). Oribatid mites are abundant in virtually any soil across very different habitats, and include many sexual and parthenogenetic (thelytokous) species. Thereby, they represent an ideal model group to investigate the role of sexual versus parthenogenetic reproduction across different ecosystems and habitats. Here, we compiled data on oribatid mite communities from different ecosystems and habitats across biomes, including tropical rainforests, temperate forests, grasslands, arable fields, salt marshes, bogs, caves, and deadwood. Based on the compiled dataset, we analyzed if the percentage of parthenogenetic species and the percentage of individuals of parthenogenetic species are related to total oribatid mite density, species number, and other potential driving factors of the reproductive mode including altitude and latitude. We then interpret the results in support of either the Red Queen hypothesis or the Structured Resource Theory of Sex. Overall, the data showed that low density of oribatid mites due to harsh environmental conditions is associated with high frequency of parthenogenesis supporting predictions of the Structured Resource Theory of Sex rather than the Red Queen hypothesis.
Collapse
Affiliation(s)
- Mark Maraun
- JFB Institute of Zoology and AnthropologyGeorg August University GöttingenGöttingenGermany
| | - Tancredi Caruso
- School of Biological Sciences and Institute for Global Food SecurityQueen's University of BelfastBelfastNorthern Ireland
| | - Jonathan Hense
- Fachdidaktik Biologie, Nees‐InstitutRheinische Friedrich‐Wilhelms Universität BonnBonnGermany
| | | | - Levan Mumladze
- Institute of Ecology and Institute of ZoologyIlia State UniversityTbilisiGeorgia
| | - Maka Murvanidze
- Institute of Entomology of AgriculturalUniversity of GeorgiaTbilisiGeorgia
| | - Ioana Nae
- Emil Racovita Institute of Speleology of Romanian AcademyBucharestRomania
| | - Julia Schulz
- JFB Institute of Zoology and AnthropologyGeorg August University GöttingenGöttingenGermany
| | - Anna Seniczak
- RealfagbyggetUniversity Museum of Bergen, University of BergenBergenNorway
| | - Stefan Scheu
- JFB Institute of Zoology and AnthropologyGeorg August University GöttingenGöttingenGermany
| |
Collapse
|
29
|
Hojsgaard D, Hörandl E. The Rise of Apomixis in Natural Plant Populations. FRONTIERS IN PLANT SCIENCE 2019; 10:358. [PMID: 31001296 PMCID: PMC6454013 DOI: 10.3389/fpls.2019.00358] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/07/2019] [Indexed: 05/04/2023]
Abstract
Apomixis, the asexual reproduction via seed, has many potential applications for plant breeding by maintaining desirable genotypes over generations. Since most major crops do not express natural apomixis, it is useful to understand the origin and maintenance of apomixis in natural plant systems. Here, we review the state of knowledge on origin, establishment and maintenance of natural apomixis. Many studies suggest that hybridization, either on diploid or polyploid cytotypes, is a major trigger for the formation of unreduced female gametophytes, which represents the first step toward apomixis, and must be combined to parthenogenesis, the development of an unfertilized egg cell. Nevertheless, fertilization of endosperm is still needed for most apomictic plants. Coupling of these three steps appears to be a major constraint for shifts to natural apomixis. Adventitious embryony is another developmental pathway toward apomixis. Establishment of a newly arisen apomictic lineage is often fostered by side-effects of polyploidy. Polyploidy creates an immediate reproductive barrier against the diploid parental and progenitor populations; it can cause a breakdown of genetic self-incompatibility (SI) systems which is needed to establish self-fertility of pseudogamous apomictic lineages; and finally, polyploidy could indirectly help to establish an apomictic cytotype in a novel ecological niche by increasing adaptive potentials of the plants. This step may be followed by a phase of diversification and range expansion, mostly described as geographical parthenogenesis. The utilization of apomixis in crops must consider the potential risks of pollen transfer and introgression into sexual crop fields, which might be overcome by using pollen-sterile or cleistogamous variants. Another risk is the escape into natural vegetation and potential invasiveness of apomictic plants which needs careful management and consideration of ecological conditions.
Collapse
|
30
|
Unmack PJ, Adams M, Bylemans J, Hardy CM, Hammer MP, Georges A. Perspectives on the clonal persistence of presumed 'ghost' genomes in unisexual or allopolyploid taxa arising via hybridization. Sci Rep 2019; 9:4730. [PMID: 30894575 PMCID: PMC6426837 DOI: 10.1038/s41598-019-40865-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/20/2019] [Indexed: 01/19/2023] Open
Abstract
Although hybridization between non-sibling species rarely results in viable or fertile offspring, it occasionally produces self-perpetuating or sexually-parasitic lineages in which ancestral genomes are inherited clonally and thus may persist as ‘ghost species’ after ancestor extinction. Ghost species have been detected in animals and plants, for polyploid and diploid organisms, and across clonal, semi-clonal, and even sexual reproductive modes. Here we use a detailed investigation of the evolutionary and taxonomic status of a newly-discovered, putative ghost lineage (HX) in the fish genus Hypseleotris to provide perspectives on several important issues not previously explored by other studies on ghost species, but relevant to ongoing discussions about their detection, conservation, and artificial re-creation. Our comprehensive genetic (allozymes, mtDNA) and genomic (SNPs) datasets successfully identified a threatened sexual population of HX in one tiny portion of the extensive distribution displayed by two hemi-clonal HX-containing lineages. We also discuss what confidence should be placed on any assertion that an ancestral species is actually extinct, and how to assess whether any putative sexual ancestor represents a pure remnant, as shown here, or a naturally-occurring resurrection via the crossing of compatible clones or hemi-clones.
Collapse
Affiliation(s)
- P J Unmack
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, 2601, Australia.
| | - M Adams
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, 2601, Australia.,Department of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - J Bylemans
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, 2601, Australia
| | - C M Hardy
- CSIRO Land and Water, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - M P Hammer
- Museum & Art Gallery of the Northern Territory, Darwin, Northern Territory, 0810, Australia
| | - A Georges
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, 2601, Australia
| |
Collapse
|
31
|
Kaushal P, Dwivedi KK, Radhakrishna A, Srivastava MK, Kumar V, Roy AK, Malaviya DR. Partitioning Apomixis Components to Understand and Utilize Gametophytic Apomixis. FRONTIERS IN PLANT SCIENCE 2019; 10:256. [PMID: 30906306 PMCID: PMC6418048 DOI: 10.3389/fpls.2019.00256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/18/2019] [Indexed: 05/07/2023]
Abstract
Apomixis is a method of reproduction to generate clonal seeds and offers tremendous potential to fix heterozygosity and hybrid vigor. The process of apomictic seed development is complex and comprises three distinct components, viz., apomeiosis (leading to formation of unreduced egg cell), parthenogenesis (development of embryo without fertilization) and functional endosperm development. Recently, in many crops, these three components are reported to be uncoupled leading to their partitioning. This review provides insight into the recent status of our understanding surrounding partitioning apomixis components in gametophytic apomictic plants and research avenues that it offers to help understand the biology of apomixis. Possible consequences leading to diversity in seed developmental pathways, resources to understand apomixis, inheritance and identification of candidate gene(s) for partitioned components, as well as contribution towards creation of variability are all discussed. The potential of Panicum maximum, an aposporous crop, is also discussed as a model crop to study partitioning principle and effects. Modifications in cytogenetic status, as well as endosperm imprinting effects arising due to partitioning effects, opens up new opportunities to understand and utilize apomixis components, especially towards synthesizing apomixis in crops.
Collapse
Affiliation(s)
- Pankaj Kaushal
- ICAR-National Institute of Biotic Stress Management, Raipur, India
| | | | | | | | - Vinay Kumar
- ICAR-National Institute of Biotic Stress Management, Raipur, India
| | - Ajoy Kumar Roy
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, India
| | | |
Collapse
|
32
|
Hörandl E, Speijer D. How oxygen gave rise to eukaryotic sex. Proc Biol Sci 2019; 285:rspb.2017.2706. [PMID: 29436502 PMCID: PMC5829205 DOI: 10.1098/rspb.2017.2706] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/15/2018] [Indexed: 12/13/2022] Open
Abstract
How did full meiotic eukaryotic sex evolve and what was the immediate advantage allowing it to develop? We propose that the crucial determinant can be found in internal reactive oxygen species (ROS) formation at the start of eukaryotic evolution approximately 2 × 109 years ago. The large amount of ROS coming from a bacterial endosymbiont gave rise to DNA damage and vast increases in host genome mutation rates. Eukaryogenesis and chromosome evolution represent adaptations to oxidative stress. The host, an archaeon, most probably already had repair mechanisms based on DNA pairing and recombination, and possibly some kind of primitive cell fusion mechanism. The detrimental effects of internal ROS formation on host genome integrity set the stage allowing evolution of meiotic sex from these humble beginnings. Basic meiotic mechanisms thus probably evolved in response to endogenous ROS production by the ‘pre-mitochondrion’. This alternative to mitosis is crucial under novel, ROS-producing stress situations, like extensive motility or phagotrophy in heterotrophs and endosymbiontic photosynthesis in autotrophs. In multicellular eukaryotes with a germline–soma differentiation, meiotic sex with diploid–haploid cycles improved efficient purging of deleterious mutations. Constant pressure of endogenous ROS explains the ubiquitous maintenance of meiotic sex in practically all eukaryotic kingdoms. Here, we discuss the relevant observations underpinning this model.
Collapse
Affiliation(s)
- Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants, University of Goettingen, Göttingen, Germany
| | - Dave Speijer
- Department of Medical Biochemistry, Academic Medical Centre (AMC), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
33
|
Sanders IR. Sex, plasticity, and biologically significant variation in one Glomeromycotina species. THE NEW PHYTOLOGIST 2018; 220:968-970. [PMID: 29480929 DOI: 10.1111/nph.15049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- Ian R Sanders
- Department of Ecology & Evolution, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| |
Collapse
|
34
|
Klatt S, Schinkel CCF, Kirchheimer B, Dullinger S, Hörandl E. Effects of cold treatments on fitness and mode of reproduction in the diploid and polyploid alpine plant Ranunculus kuepferi (Ranunculaceae). ANNALS OF BOTANY 2018; 121:1287-1298. [PMID: 29462249 PMCID: PMC6007502 DOI: 10.1093/aob/mcy017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 01/25/2017] [Indexed: 05/20/2023]
Abstract
Background and Aims Alpine plants grow in harsh environments and are thought to face occasional frost during the sensitive reproductive phase. Apomixis (asexual reproduction via seed) can be advantageous when sexual reproduction is disturbed by cold stress. Apomictic polyploids tend to grow in colder climates than their sexual diploid relatives. Whether cold temperatures actually induce apomixis was unknown to date. Methods We tested experimentally in climate cabinets for effects of low temperatures and repeated frost on phenology, fitness and mode of reproduction in diploid and tetraploid cytotypes of the alpine species Ranunculus kuepferi. The reproduction mode was determined via flow cytometric seed screening (FCSS). Key Results Diploids produced the first flowers earlier than the tetraploids in all treatments. Cold treatments significantly reduced the fitness of both cytotypes regarding seed set, and increased the frequency of apomictic seed formation in diploids, but not in tetraploids. Over consecutive years, the degree of facultative apomixis showed individual phenotypic plasticity. Conclusions Cold stress is correlated to expression of apomixis in warm-adapted, diploid R. kuepferi, while temperature-tolerant tetraploids just maintain facultative apomixis as a possible adaptation to colder climates. However, expression of apomixis may not depend on polyploidy, but rather on failure of the sexual pathway.
Collapse
Affiliation(s)
- Simone Klatt
- Department of Systematics, Biodiversity and Evolution of Plants, University of Goettingen, Goettingen, Germany
| | - Christoph C F Schinkel
- Department of Systematics, Biodiversity and Evolution of Plants, University of Goettingen, Goettingen, Germany
| | - Bernhard Kirchheimer
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Stefan Dullinger
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants, University of Goettingen, Goettingen, Germany
| |
Collapse
|
35
|
Kirchheimer B, Wessely J, Gattringer A, Hülber K, Moser D, Schinkel CCF, Appelhans M, Klatt S, Caccianiga M, Dellinger A, Guisan A, Kuttner M, Lenoir J, Maiorano L, Nieto‐Lugilde D, Plutzar C, Svenning J, Willner W, Hörandl E, Dullinger S, Thrall P. Reconstructing geographical parthenogenesis: effects of niche differentiation and reproductive mode on Holocene range expansion of an alpine plant. Ecol Lett 2018; 21:392-401. [PMID: 29349850 PMCID: PMC5888191 DOI: 10.1111/ele.12908] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/23/2017] [Accepted: 11/27/2017] [Indexed: 12/25/2022]
Abstract
Asexual taxa often have larger ranges than their sexual progenitors, particularly in areas affected by Pleistocene glaciations. The reasons given for this 'geographical parthenogenesis' are contentious, with expansion of the ecological niche or colonisation advantages of uniparental reproduction assumed most important in case of plants. Here, we parameterized a spread model for the alpine buttercup Ranunculus kuepferi and reconstructed the joint Holocene range expansion of its sexual and apomictic cytotype across the European Alps under different simulation settings. We found that, rather than niche broadening or a higher migration rate, a shift of the apomict's niche towards colder conditions per se was crucial as it facilitated overcoming of topographical barriers, a factor likely relevant for many alpine apomicts. More generally, our simulations suggest potentially strong interacting effects of niche differentiation and reproductive modes on range formation of related sexual and asexual taxa arising from their differential sensitivity to minority cytotype disadvantage.
Collapse
Affiliation(s)
- Bernhard Kirchheimer
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 141030ViennaAustria
| | - Johannes Wessely
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 141030ViennaAustria
| | - Andreas Gattringer
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 141030ViennaAustria
| | - Karl Hülber
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 141030ViennaAustria
| | - Dietmar Moser
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 141030ViennaAustria
| | - Christoph C. F. Schinkel
- Department of Systematics, Biodiversity and Evolution of Plants (with herbarium)University of GoettingenUntere Karspüle 237073Göttingen
| | - Marc Appelhans
- Department of Systematics, Biodiversity and Evolution of Plants (with herbarium)University of GoettingenUntere Karspüle 237073Göttingen
| | - Simone Klatt
- Department of Systematics, Biodiversity and Evolution of Plants (with herbarium)University of GoettingenUntere Karspüle 237073Göttingen
| | - Marco Caccianiga
- Department of BiosciencesUniversity of MilanVia Giovanni Celoria 2620133MilanItaly
| | - Agnes Dellinger
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 141030ViennaAustria
| | - Antoine Guisan
- Department of Ecology & EvolutionBiophoreUniversity of Lausanne1015LausanneSwitzerland
- Institute of Earth Surface DynamicsGeopolisUniversity of Lausanne1015LausanneSwitzerland
| | - Michael Kuttner
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 141030ViennaAustria
| | - Jonathan Lenoir
- UR «Ecologie et Dynamique des Systèmes Anthropisés» (EDYSAN, FRE 3498 CNRS)Jules Verne University of Picardie1 Rue des LouvelsF‐80037Amiens Cedex 1France
| | - Luigi Maiorano
- Department of Biology and BiotechnologiesSapienza University of RomeViale dell'Università 32RomeItaly
| | - Diego Nieto‐Lugilde
- Departamento de BotánicaEcología y Fisiología VegetalUniversidad de Córdoba14071CórdobaSpain
| | - Christoph Plutzar
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 141030ViennaAustria
| | - Jens‐Christian Svenning
- Section for Ecoinformatics & BiodiversityDepartment of BioscienceAarhus UniversityNy Munkegade 114‐1168000Aarhus CDenmark
| | - Wolfgang Willner
- Vienna Institute for Nature Conservation and AnalysesGießergasse 6/71090ViennaAustria
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with herbarium)University of GoettingenUntere Karspüle 237073Göttingen
| | - Stefan Dullinger
- Department of Botany and Biodiversity ResearchUniversity of ViennaRennweg 141030ViennaAustria
| | | |
Collapse
|
36
|
Nalepa CA. What Kills the Hindgut Flagellates of Lower Termites during the Host Molting Cycle? Microorganisms 2017; 5:E82. [PMID: 29258251 PMCID: PMC5748591 DOI: 10.3390/microorganisms5040082] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/07/2017] [Accepted: 12/09/2017] [Indexed: 11/17/2022] Open
Abstract
Subsocial wood feeding cockroaches in the genus Cryptocercus, the sister group of termites, retain their symbiotic gut flagellates during the host molting cycle, but in lower termites, closely related flagellates die prior to host ecdysis. Although the prevalent view is that termite flagellates die because of conditions of starvation and desiccation in the gut during the host molting cycle, the work of L.R. Cleveland in the 1930s through the 1960s provides a strong alternate hypothesis: it was the changed hormonal environment associated with the origin of eusociality and its concomitant shift in termite developmental ontogeny that instigates the death of the flagellates in termites. Although the research on termite gut microbial communities has exploded since the advent of modern molecular techniques, the role of the host hormonal environment on the life cycle of its gut flagellates has been neglected. Here Cleveland's studies are revisited to provide a basis for re-examination of the problem, and the results framed in the context of two alternate hypotheses: the flagellate symbionts are victims of the change in host social status, or the flagellates have become incorporated into the life cycle of the eusocial termite colony. Recent work on parasitic protists suggests clear paths for exploring these hypotheses and for resolving long standing issues regarding sexual-encystment cycles in flagellates of the Cryptocercus-termite lineage using molecular methodologies, bringing the problem into the modern era.
Collapse
Affiliation(s)
- Christine A Nalepa
- Department of Entomology, North Carolina State University, Raleigh, NC 27695-7613, USA.
| |
Collapse
|
37
|
Fradin H, Kiontke K, Zegar C, Gutwein M, Lucas J, Kovtun M, Corcoran DL, Baugh LR, Fitch DHA, Piano F, Gunsalus KC. Genome Architecture and Evolution of a Unichromosomal Asexual Nematode. Curr Biol 2017; 27:2928-2939.e6. [PMID: 28943090 PMCID: PMC5659720 DOI: 10.1016/j.cub.2017.08.038] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 10/24/2022]
Abstract
Asexual reproduction in animals, though rare, is the main or exclusive mode of reproduction in some long-lived lineages. The longevity of asexual clades may be correlated with the maintenance of heterozygosity by mechanisms that rearrange genomes and reduce recombination. Asexual species thus provide an opportunity to gain insight into the relationship between molecular changes, genome architecture, and cellular processes. Here we report the genome sequence of the parthenogenetic nematode Diploscapter pachys with only one chromosome pair. We show that this unichromosomal architecture is shared by a long-lived clade of asexual nematodes closely related to the genetic model organism Caenorhabditis elegans. Analysis of the genome assembly reveals that the unitary chromosome arose through fusion of six ancestral chromosomes, with extensive rearrangement among neighboring regions. Typical nematode telomeres and telomeric protection-encoding genes are lacking. Most regions show significant heterozygosity; homozygosity is largely concentrated to one region and attributed to gene conversion. Cell-biological and molecular evidence is consistent with the absence of key features of meiosis I, including synapsis and recombination. We propose that D. pachys preserves heterozygosity and produces diploid embryos without fertilization through a truncated meiosis. As a prelude to functional studies, we demonstrate that D. pachys is amenable to experimental manipulation by RNA interference.
Collapse
Affiliation(s)
- Hélène Fradin
- Department of Biology, New York University, New York, NY 10003, USA; Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Karin Kiontke
- Department of Biology, New York University, New York, NY 10003, USA
| | - Charles Zegar
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Michelle Gutwein
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Jessica Lucas
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Mikhail Kovtun
- Duke Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| | - David L Corcoran
- Duke Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| | - L Ryan Baugh
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - David H A Fitch
- Department of Biology, New York University, New York, NY 10003, USA.
| | - Fabio Piano
- Department of Biology, New York University, New York, NY 10003, USA; Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA; Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Kristin C Gunsalus
- Department of Biology, New York University, New York, NY 10003, USA; Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA; Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
38
|
Brandeis M. New-age ideas about age-old sex: separating meiosis from mating could solve a century-old conundrum. Biol Rev Camb Philos Soc 2017; 93:801-810. [PMID: 28913952 DOI: 10.1111/brv.12367] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 12/01/2022]
Abstract
Ever since Darwin first addressed it, sexual reproduction reigns as the 'queen' of evolutionary questions. Multiple theories tried to explain how this apparently costly and cumbersome method has become the universal mode of eukaryote reproduction. Most theories stress the adaptive advantages of sex by generating variation, they fail however to explain the ubiquitous persistence of sexual reproduction also where adaptation is not an issue. I argue that the obstacle for comprehending the role of sex stems from the conceptual entanglement of two distinct processes - gamete production by meiosis and gamete fusion by mating (mixis). Meiosis is an ancient, highly rigid and evolutionary conserved process identical and ubiquitous in all eukaryotes. Mating, by contrast, shows tremendous evolutionary variability even in closely related clades and exhibits wonderful ecological adaptability. To appreciate the respective roles of these two processes, which are normally linked and alternating, we require cases where one takes place without the other. Such cases are rather common. The heteromorphic sex chromosomes Y and W, that do not undergo meiotic recombination are an evolutionary test case for demonstrating the role of meiosis. Substantial recent genomic evidence highlights the accelerated rates of change and attrition these chromosomes undergo in comparison to those of recombining autosomes. I thus propose that the most basic role of meiosis is conserving integrity of the genome. A reciprocal case of meiosis without bi-parental mating, is presented by self-fertilization, which is fairly common in flowering plants, as well as most types of apomixis. I argue that deconstructing sex into these two distinct processes - meiosis and mating - will greatly facilitate their analysis and promote our understanding of sexual reproduction.
Collapse
Affiliation(s)
- Michael Brandeis
- The Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
| |
Collapse
|
39
|
Schinkel CCF, Kirchheimer B, Dullinger S, Geelen D, De Storme N, Hörandl E. Pathways to polyploidy: indications of a female triploid bridge in the alpine species Ranunculus kuepferi (Ranunculaceae). PLANT SYSTEMATICS AND EVOLUTION = ENTWICKLUNGSGESCHICHTE UND SYSTEMATIK DER PFLANZEN 2017; 303:1093-1108. [PMID: 29081576 PMCID: PMC5640749 DOI: 10.1007/s00606-017-1435-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 06/14/2017] [Indexed: 05/05/2023]
Abstract
Polyploidy is one of the most important evolutionary processes in plants. In natural populations, polyploids usually emerge from unreduced gametes which either fuse with reduced ones, resulting in triploid offspring (triploid bridge), or with other unreduced gametes, resulting in tetraploid embryos. The frequencies of these two pathways, and male versus female gamete contributions, however, are largely unexplored. Ranunculus kuepferi occurs with diploid, triploid and autotetraploid cytotypes in the Alps, whereby diploids are mostly sexual, while tetraploids are facultative apomicts. To test for the occurrence of polyploidization events by triploid bridge, we investigated 551 plants of natural populations via flow cytometric seed screening. We assessed ploidy shifts in the embryo to reconstruct female versus male gamete contributions to polyploid embryo and/or endosperm formation. Seed formation via unreduced egg cells (BIII hybrids) occurred in all three cytotypes, while only in one case both gametes were unreduced. Polyploids further formed seeds with reduced, unfertilized egg cells (polyhaploids and aneuploids). Pollen was highly variable in diameter, but only pollen >27 μm was viable, whereby diploids produced higher proportions of well-developed pollen. Pollen size was not informative for the formation of unreduced pollen. These results suggest that a female triploid bridge via unreduced egg cells is the major pathway toward polyploidization in R. kuepferi, maybe as a consequence of constraints of endosperm development. Triploids resulting from unreduced male gametes were not observed, which explains the lack of obligate sexual tetraploid individuals and populations. Unreduced egg cell formation in diploids represents the first step toward apomixis.
Collapse
Affiliation(s)
- Christoph C. F. Schinkel
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Untere Karspüle 2, 37073 Göttingen, Germany
| | - Bernhard Kirchheimer
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Stefan Dullinger
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Danny Geelen
- Department of Plant Production, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Nico De Storme
- Department of Plant Production, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Untere Karspüle 2, 37073 Göttingen, Germany
| |
Collapse
|
40
|
Burke NW, Bonduriansky R. Sexual Conflict, Facultative Asexuality, and the True Paradox of Sex. Trends Ecol Evol 2017; 32:646-652. [PMID: 28651895 DOI: 10.1016/j.tree.2017.06.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/31/2017] [Accepted: 06/04/2017] [Indexed: 11/19/2022]
Abstract
Theory suggests that occasional or conditional sex involving facultative switching between sexual and asexual reproduction is the optimal reproductive strategy. Therefore, the true 'paradox of sex' is the prevalence of obligate sex. This points to the existence of powerful, general impediments to the invasion of obligately sexual populations by facultative mutants, and recent studies raise the intriguing possibility that a key impediment could be sexual conflict. Using Bateman gradients we show that facultative asexuality can amplify sexual conflict over mating, generating strong selection for both female resistance and male coercion. We hypothesize that invasions are most likely to succeed when mutants have negative Bateman gradients, can avoid mating, and achieve high fecundity through asexual reproduction - a combination unlikely to occur in natural populations.
Collapse
Affiliation(s)
- Nathan W Burke
- Evolution and Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, University of New South Wales Sydney, Sydney, Australia.
| | - Russell Bonduriansky
- Evolution and Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, University of New South Wales Sydney, Sydney, Australia
| |
Collapse
|
41
|
Schinkel CCF, Kirchheimer B, Dullinger S, Geelen D, De Storme N, Hörandl E. Pathways to polyploidy: indications of a female triploid bridge in the alpine species Ranunculus kuepferi (Ranunculaceae). PLANT SYSTEMATICS AND EVOLUTION = ENTWICKLUNGSGESCHICHTE UND SYSTEMATIK DER PFLANZEN 2017; 303:1093-1108. [PMID: 29081576 DOI: 10.1007/s00606-017-1435-1436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 06/14/2017] [Indexed: 05/20/2023]
Abstract
Polyploidy is one of the most important evolutionary processes in plants. In natural populations, polyploids usually emerge from unreduced gametes which either fuse with reduced ones, resulting in triploid offspring (triploid bridge), or with other unreduced gametes, resulting in tetraploid embryos. The frequencies of these two pathways, and male versus female gamete contributions, however, are largely unexplored. Ranunculus kuepferi occurs with diploid, triploid and autotetraploid cytotypes in the Alps, whereby diploids are mostly sexual, while tetraploids are facultative apomicts. To test for the occurrence of polyploidization events by triploid bridge, we investigated 551 plants of natural populations via flow cytometric seed screening. We assessed ploidy shifts in the embryo to reconstruct female versus male gamete contributions to polyploid embryo and/or endosperm formation. Seed formation via unreduced egg cells (BIII hybrids) occurred in all three cytotypes, while only in one case both gametes were unreduced. Polyploids further formed seeds with reduced, unfertilized egg cells (polyhaploids and aneuploids). Pollen was highly variable in diameter, but only pollen >27 μm was viable, whereby diploids produced higher proportions of well-developed pollen. Pollen size was not informative for the formation of unreduced pollen. These results suggest that a female triploid bridge via unreduced egg cells is the major pathway toward polyploidization in R. kuepferi, maybe as a consequence of constraints of endosperm development. Triploids resulting from unreduced male gametes were not observed, which explains the lack of obligate sexual tetraploid individuals and populations. Unreduced egg cell formation in diploids represents the first step toward apomixis.
Collapse
Affiliation(s)
- Christoph C F Schinkel
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Untere Karspüle 2, 37073 Göttingen, Germany
| | - Bernhard Kirchheimer
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Stefan Dullinger
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Danny Geelen
- Department of Plant Production, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Nico De Storme
- Department of Plant Production, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, Untere Karspüle 2, 37073 Göttingen, Germany
| |
Collapse
|
42
|
Riparbelli MG, Gottardo M, Callaini G. Parthenogenesis in Insects: The Centriole Renaissance. Results Probl Cell Differ 2017; 63:435-479. [PMID: 28779329 DOI: 10.1007/978-3-319-60855-6_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Building a new organism usually requires the contribution of two differently shaped haploid cells, the male and female gametes, each providing its genetic material to restore diploidy of the new born zygote. The successful execution of this process requires defined sequential steps that must be completed in space and time. Otherwise, development fails. Relevant among the earlier steps are pronuclear migration and formation of the first mitotic spindle that promote the mixing of parental chromosomes and the formation of the zygotic nucleus. A complex microtubule network ensures the proper execution of these processes. Instrumental to microtubule organization and bipolar spindle assembly is a distinct non-membranous organelle, the centrosome. Centrosome inheritance during fertilization is biparental, since both gametes provide essential components to build a functional centrosome. This model does not explain, however, centrosome formation during parthenogenetic development, a special mode of sexual reproduction in which the unfertilized egg develops without the contribution of the male gamete. Moreover, whereas fertilization is a relevant example in which the cells actively check the presence of only one centrosome, to avoid multipolar spindle formation, the development of parthenogenetic eggs is ensured, at least in insects, by the de novo assembly of multiple centrosomes.Here, we will focus our attention on the assembly of functional centrosomes following fertilization and during parthenogenetic development in insects. Parthenogenetic development in which unfertilized eggs are naturally depleted of centrosomes would provide a useful experimental system to investigate centriole assembly and duplication together with centrosome formation and maturation.
Collapse
Affiliation(s)
| | - Marco Gottardo
- Department of Life Sciences, University of Siena, Via A. Moro 2, 53100, Siena, Italy
| | - Giuliano Callaini
- Department of Life Sciences, University of Siena, Via A. Moro 2, 53100, Siena, Italy.
| |
Collapse
|