1
|
Chisholm RA, Dutta Gupta T. A critical assessment of the biodiversity-productivity relationship in forests and implications for conservation. Oecologia 2023; 201:887-900. [PMID: 36977811 DOI: 10.1007/s00442-023-05363-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/12/2023] [Indexed: 03/30/2023]
Abstract
The question of whether biodiversity conservation and carbon conservation can be synergistic hinges on the form of the biodiversity-productivity relationship (BPR), a fundamental ecological pattern. The stakes are particularly high when it comes to forests, which at a global level comprises a large fraction of both biodiversity and carbon. And yet, in forests, the BPR is relatively poorly understood. In this review, we critically evaluate research on forest BPRs, focussing on the experimental and observational studies of the last 2 decades. We find general support for a positive forest BPR, suggesting that biodiversity and carbon conservation are synergistic to a degree. However, we identify several major caveats: (i) although, on average, productivity may increase with biodiversity, the highest-yielding forests are often monocultures of very productive species; (ii) productivity typically saturates at fewer than ten species; (iii) positive BPRs can be driven by some third variable, in particular stem density, instead of a causal arrow from biodiversity to productivity; (iv) the BPR's sign and magnitude varies across spatial grains and extents, and it may be weak at scales relevant to conservation; and (v) most productivity estimates in forests are associated with large errors. We conclude by explaining the importance of these caveats for both conservation programmes focussed on protection of existing forests and conservation programmes focussed on restoring or replanting forests.
Collapse
Affiliation(s)
- Ryan A Chisholm
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.
| | - Tanvi Dutta Gupta
- Department of Biology, Stanford University, Bass Biology Building, 327 Campus Drive, Stanford, CA, 94305, USA
| |
Collapse
|
2
|
Marshall AR, Waite CE, Pfeifer M, Banin LF, Rakotonarivo S, Chomba S, Herbohn J, Gilmour DA, Brown M, Chazdon RL. Fifteen essential science advances needed for effective restoration of the world's forest landscapes. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210065. [PMID: 36373922 PMCID: PMC9661955 DOI: 10.1098/rstb.2021.0065] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
There has never been a more pressing and opportune time for science and practice to collaborate towards restoration of the world's forests. Multiple uncertainties remain for achieving successful, long-term forest landscape restoration (FLR). In this article, we use expert knowledge and literature review to identify knowledge gaps that need closing to advance restoration practice, as an introduction to a landmark theme issue on FLR and the UN Decade on Ecosystem Restoration. Aligned with an Adaptive Management Cycle for FLR, we identify 15 essential science advances required to facilitate FLR success for nature and people. They highlight that the greatest science challenges lie in the conceptualization, planning and assessment stages of restoration, which require an evidence base for why, where and how to restore, at realistic scales. FLR and underlying sciences are complex, requiring spatially explicit approaches across disciplines and sectors, considering multiple objectives, drivers and trade-offs critical for decision-making and financing. The developing tropics are a priority region, where scientists must work with stakeholders across the Adaptive Management Cycle. Clearly communicated scientific evidence for action at the outset of restoration planning will enable donors, decision makers and implementers to develop informed objectives, realistic targets and processes for accountability. This article paves the way for 19 further articles in this theme issue, with author contributions from across the world. This article is part of the theme issue 'Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration'.
Collapse
Affiliation(s)
- Andrew R. Marshall
- Forest Research Institute, University of the Sunshine Coast, QLD 4556, Australia
- Department of Environment and Geography, University of York, York YO10 5DD, UK
- Reforest Africa, Mang'ula, Tanzania
- Flamingo Land Ltd, Kirby Misperton, North Yorkshire YO17 6UX, UK
| | - Catherine E. Waite
- Forest Research Institute, University of the Sunshine Coast, QLD 4556, Australia
| | - Marion Pfeifer
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Lindsay F. Banin
- UK Centre for Ecology & Hydrology, Library Avenue, Bailrigg, Lancaster LA1 4AP, UK
| | - Sarobidy Rakotonarivo
- École Supérieure des Sciences Agronomiques, Université d'Antananarivo, BP 566 Antananarivo, Madagascar
| | | | - John Herbohn
- Forest Research Institute, University of the Sunshine Coast, QLD 4556, Australia
| | - Donald A. Gilmour
- Forest Research Institute, University of the Sunshine Coast, QLD 4556, Australia
| | - Mark Brown
- Forest Research Institute, University of the Sunshine Coast, QLD 4556, Australia
| | - Robin L. Chazdon
- Forest Research Institute, University of the Sunshine Coast, QLD 4556, Australia
| |
Collapse
|
3
|
Banin LF, Raine EH, Rowland LM, Chazdon RL, Smith SW, Rahman NEB, Butler A, Philipson C, Applegate GG, Axelsson EP, Budiharta S, Chua SC, Cutler MEJ, Elliott S, Gemita E, Godoong E, Graham LLB, Hayward RM, Hector A, Ilstedt U, Jensen J, Kasinathan S, Kettle CJ, Lussetti D, Manohan B, Maycock C, Ngo KM, O'Brien MJ, Osuri AM, Reynolds G, Sauwai Y, Scheu S, Silalahi M, Slade EM, Swinfield T, Wardle DA, Wheeler C, Yeong KL, Burslem DFRP. The road to recovery: a synthesis of outcomes from ecosystem restoration in tropical and sub-tropical Asian forests. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210090. [PMID: 36373930 PMCID: PMC9661948 DOI: 10.1098/rstb.2021.0090] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 08/28/2022] [Indexed: 11/16/2022] Open
Abstract
Current policy is driving renewed impetus to restore forests to return ecological function, protect species, sequester carbon and secure livelihoods. Here we assess the contribution of tree planting to ecosystem restoration in tropical and sub-tropical Asia; we synthesize evidence on mortality and growth of planted trees at 176 sites and assess structural and biodiversity recovery of co-located actively restored and naturally regenerating forest plots. Mean mortality of planted trees was 18% 1 year after planting, increasing to 44% after 5 years. Mortality varied strongly by site and was typically ca 20% higher in open areas than degraded forest, with height at planting positively affecting survival. Size-standardized growth rates were negatively related to species-level wood density in degraded forest and plantations enrichment settings. Based on community-level data from 11 landscapes, active restoration resulted in faster accumulation of tree basal area and structural properties were closer to old-growth reference sites, relative to natural regeneration, but tree species richness did not differ. High variability in outcomes across sites indicates that planting for restoration is potentially rewarding but risky and context-dependent. Restoration projects must prepare for and manage commonly occurring challenges and align with efforts to protect and reconnect remaining forest areas. The abstract of this article is available in Bahasa Indonesia in the electronic supplementary material. This article is part of the theme issue 'Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration'.
Collapse
Affiliation(s)
- Lindsay F. Banin
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, Midlothian EH26 0QB, UK
| | - Elizabeth H. Raine
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, Midlothian EH26 0QB, UK
| | - Lucy M. Rowland
- Department of Geography, University of Exeter, Laver Building, North Park Road, Exeter EX4 4QE, UK
| | - Robin L. Chazdon
- Tropical Forests and People Research Centre, Forest Research Institute, University of Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, 4556, Queensland, Australia
| | - Stuart W. Smith
- Asian School of Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Ecology, Conservation and Zoonosis Research and Enterprise Group, School of Applied Sciences, University of Brighton, Brighton, BN2 4GJ, UK
| | - Nur Estya Binte Rahman
- Asian School of Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Adam Butler
- Biomathematics and Statistics Scotland, JCMB, The King's Buildings, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Christopher Philipson
- Permian Global Research Limited, Savoy Hill House, 7–10 Savoy Hill, London WC2R 0BU, UK
| | - Grahame G. Applegate
- Tropical Forests and People Research Centre, Forest Research Institute, University of Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, 4556, Queensland, Australia
| | - E. Petter Axelsson
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Skogsmarksgränd, Umeå 907 36, Sweden
| | - Sugeng Budiharta
- Research Centre for Ecology and Ethnobiology, National Agency for Research and Innovation (BRIN), Jl. Raya Jakarta-Bogor KM. 46, Cibinong, Bogor, West Java 16911, Indonesia
| | - Siew Chin Chua
- Department of Biological Sciences, National University of Singapore, Block S3 #05-01 16 Science Drive 4, Singapore 117558, Singapore
| | | | - Stephen Elliott
- Environmental Science Research Centre, Science Faculty and Forest Restoration Research Unit, Biology Department, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Elva Gemita
- PT Restorasi Ekosistem Indonesia, Jl. Dadali No. 32, Bogor 16161, Indonesia
| | - Elia Godoong
- Faculty of Tropical Forestry, Universiti Malaysia Sabah, Kota Kinabalu, Sabah 88400, Malaysia
| | - Laura L. B. Graham
- Tropical Forests and People Research Centre, Forest Research Institute, University of Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, 4556, Queensland, Australia
- Borneo Orangutan Survival Foundation, BOSF Mawas Program, Palangka Raya, Central Kalimantan, 73111, Indonesia
| | - Robin M. Hayward
- Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Andy Hector
- Department of Biology, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Ulrik Ilstedt
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Skogsmarksgränd, Umeå 907 36, Sweden
| | - Joel Jensen
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Skogsmarksgränd, Umeå 907 36, Sweden
| | - Srinivasan Kasinathan
- Nature Conservation Foundation, 1311, ‘Amritha’, 12th Main, Vijayanagar 1st Stage, Mysuru, Karnataka 570 017, India
| | - Christopher J. Kettle
- Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 16, Zürich 8092, Switzerland
- Bioversity International, Via di San Domenico, 00153 Rome, Italy
| | - Daniel Lussetti
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Skogsmarksgränd, Umeå 907 36, Sweden
| | - Benjapan Manohan
- Environmental Science Research Centre, Science Faculty and Forest Restoration Research Unit, Biology Department, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Colin Maycock
- Forever Sabah, Jalan Penampang, Kota Kinabalu, Sabah 88300, Malaysia
| | - Kang Min Ngo
- Asian School of Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Michael J. O'Brien
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, c/Tulipán s/n., E-28933 Móstoles, Madrid, 28933, Spain
| | - Anand M. Osuri
- Nature Conservation Foundation, 1311, ‘Amritha’, 12th Main, Vijayanagar 1st Stage, Mysuru, Karnataka 570 017, India
| | - Glen Reynolds
- South East Asia Rainforest Research Partnership, Danum Valley Field Centre, PO Box 60282, Lahad Datu, Sabah 91112, Malaysia
| | - Yap Sauwai
- Conservation & Environmental Management Division, Yayasan Sabah Group, Kota Kinabalu, Sabah 88817, Malaysia
| | - Stefan Scheu
- J.F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Untere Karspüle 2, Göttingen 37073, Germany
- Centre of Biodiversity and Sustainable Land Use, University of Göttingen, 37073 Göttingen, Germany
| | - Mangarah Silalahi
- PT Restorasi Ekosistem Indonesia, Jl. Dadali No. 32, Bogor 16161, Indonesia
| | - Eleanor M. Slade
- Asian School of Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Tom Swinfield
- Department of Zoology, University of Cambridge, Downing St, Cambridge CB2 3EJ, UK
| | - David A. Wardle
- Asian School of Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Charlotte Wheeler
- Centre for International Forestry Research (CIFOR), Jalan CIFOR, Bogor 16115, Indonesia
| | - Kok Loong Yeong
- South East Asia Rainforest Research Partnership, Danum Valley Field Centre, PO Box 60282, Lahad Datu, Sabah 91112, Malaysia
- Leverhulme Centre for Climate Change Mitigation, School of Biosciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK
| | - David F. R. P. Burslem
- School of Biological Sciences, University of Aberdeen, St Machar Drive, Aberdeen, Scotland AB24 3UU, UK
| |
Collapse
|
4
|
Lemanski NJ, Williams NM, Winfree R. Greater bee diversity is needed to maintain crop pollination over time. Nat Ecol Evol 2022; 6:1516-1523. [PMID: 35995849 DOI: 10.1038/s41559-022-01847-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 07/13/2022] [Indexed: 11/08/2022]
Abstract
The current biodiversity crisis underscores the need to understand how biodiversity loss affects ecosystem function in real-world ecosystems. At any one place and time, a few highly abundant species often provide the majority of function, suggesting that function could be maintained with relatively little biodiversity. However, biodiversity may be critical to ecosystem function at longer timescales if different species are needed to provide function at different times. Here we show that the number of wild bee species needed to maintain a threshold level of crop pollination increased steeply with the timescale examined: two to three times as many bee species were needed over a growing season compared to on a single day and twice as many species were needed over six years compared to during a single year. Our results demonstrate the importance of pollinator biodiversity to maintaining pollination services across time and thus to stable agricultural output.
Collapse
Affiliation(s)
- Natalie J Lemanski
- Rutgers University, Department of Ecology, Evolution & Natural Resources, New Brunswick, NJ, USA.
| | - Neal M Williams
- University of California Davis, Department of Entomology & Nematology, Davis, CA, USA
| | - Rachael Winfree
- Rutgers University, Department of Ecology, Evolution & Natural Resources, New Brunswick, NJ, USA
| |
Collapse
|
5
|
Fast growth can counteract antibiotic susceptibility in shaping microbial community resilience to antibiotics. Proc Natl Acad Sci U S A 2022; 119:e2116954119. [PMID: 35394868 PMCID: PMC9169654 DOI: 10.1073/pnas.2116954119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceAntibiotic exposure stands among the most used interventions to drive microbial communities away from undesired states. How the ecology of microbial communities shapes their recovery-e.g., posttreatment shifts toward Clostridioides difficile infections in the gut-after antibiotic exposure is poorly understood. We study community response to antibiotics using a model community that can reach two alternative states. Guided by theory, our experiments show that microbial growth following antibiotic exposure can counteract antibiotic susceptibility in driving transitions between alternative community states. This makes it possible to reverse the outcome of antibiotic exposure through modifying growth dynamics, including cooperative growth, of community members. Our research highlights the relevance of simple ecological models to better understand the long-term effects of antibiotic treatment.
Collapse
|
6
|
Zhang S, Zang R, Sheil D. Rare and common species contribute disproportionately to the functional variation within tropical forests. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 304:114332. [PMID: 34933270 DOI: 10.1016/j.jenvman.2021.114332] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/28/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Understanding how functional traits and functional entities (FEs, i.e., unique combinations of functional traits) are distributed within plant communities can contribute to the understanding of vegetation properties and changes in species composition. We utilized investigation data on woody plants (including trees, shrubs and lianas) from 17 1-ha plots across six old-growth tropical forest types on Hainan island, China. Plant species were categorized as common (>1 individuals/ha) and rare species (≤1 individuals/ha) according to their abundance to determine how they contributed to different ecosystem functions. First, we assessed the differences in traits between common and rare species, and second, we examined functional redundancy, functional over-redundancy, and functional vulnerability for common and rare species of the forests. We found that both common species and rare species in each of the forest types were placed into just a few FEs, leading to functional over-redundancy and resulting in functional vulnerability. Rare species tended to have different trait values than those of common species, and were differently distributed among FEs, indicating different contributions to ecosystem functioning. Our results highlighted the disproportionate contribution of rare species in all of the studied forests. Rare species are more likely than common species to possess unique FEs, and thus, they have a disproportionately large contribution to community trait space. The loss of such species may impact the functioning, redundancy, and resilience of tropical forests.
Collapse
Affiliation(s)
- Shuzi Zhang
- Hebei Academy of Forestry and Grassland Sciences, Shijiazhuang, Hebei, 050061, China; Institute of Forest Ecology, Environment and Nature Conservation, Chinese Academy of Forestry, Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Beijing 100091, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Runguo Zang
- Institute of Forest Ecology, Environment and Nature Conservation, Chinese Academy of Forestry, Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Beijing 100091, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Douglas Sheil
- Forest Ecology and Forest Management Group, Wageningen University and Research, PO Box 47, 6700 AA Wageningen, The Netherlands; Center for International Forestry Research (CIFOR), Situ Gede, Bogor Barat, Jawa Barat 16115, Indonesia
| |
Collapse
|
7
|
Chazdon RL, Falk DA, Banin LF, Wagner M, Wilson S, Grabowski RC, Suding KN. The intervention continuum in restoration ecology: rethinking the active–passive dichotomy. Restor Ecol 2021. [DOI: 10.1111/rec.13535] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Robin L. Chazdon
- Tropical Forests and People Research Centre University of the Sunshine Coast Sippy Downs QLD 4556 Australia
| | - Donald A. Falk
- School of Natural Resources and the Environment University of Arizona Tucson AZ 85721 U.S.A
| | - Lindsay F. Banin
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik Midlothian EH26 0QB U.K
| | - Markus Wagner
- UK Centre for Ecology & Hydrology, Crowmarsh Gifford Wallingford Oxon OX10 8BB U.K
| | - Sarah Wilson
- School of Environment University of Victoria Canada
| | - Robert C. Grabowski
- School of Water, Energy and Environment Cranfield University, Cranfield Bedfordshire MK43 0AL U.K
| | - Katherine N. Suding
- Ecology and Evolutionary Biology and Institute of Arctic and Alpine Research University of Colorado Boulder Boulder CO 80309‐0450 U.S.A
| |
Collapse
|
8
|
Seddon N, Smith A, Smith P, Key I, Chausson A, Girardin C, House J, Srivastava S, Turner B. Getting the message right on nature-based solutions to climate change. GLOBAL CHANGE BIOLOGY 2021; 27:1518-1546. [PMID: 33522071 DOI: 10.1111/gcb.15513] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/24/2020] [Accepted: 12/27/2020] [Indexed: 06/12/2023]
Abstract
Nature-based solutions (NbS)-solutions to societal challenges that involve working with nature-have recently gained popularity as an integrated approach that can address climate change and biodiversity loss, while supporting sustainable development. Although well-designed NbS can deliver multiple benefits for people and nature, much of the recent limelight has been on tree planting for carbon sequestration. There are serious concerns that this is distracting from the need to rapidly phase out use of fossil fuels and protect existing intact ecosystems. There are also concerns that the expansion of forestry framed as a climate change mitigation solution is coming at the cost of carbon rich and biodiverse native ecosystems and local resource rights. Here, we discuss the promise and pitfalls of the NbS framing and its current political traction, and we present recommendations on how to get the message right. We urge policymakers, practitioners and researchers to consider the synergies and trade-offs associated with NbS and to follow four guiding principles to enable NbS to provide sustainable benefits to society: (1) NbS are not a substitute for the rapid phase out of fossil fuels; (2) NbS involve a wide range of ecosystems on land and in the sea, not just forests; (3) NbS are implemented with the full engagement and consent of Indigenous Peoples and local communities in a way that respects their cultural and ecological rights; and (4) NbS should be explicitly designed to provide measurable benefits for biodiversity. Only by following these guidelines will we design robust and resilient NbS that address the urgent challenges of climate change and biodiversity loss, sustaining nature and people together, now and into the future.
Collapse
Affiliation(s)
- Nathalie Seddon
- Nature-based Solutions Initiative, Department of Zoology, University of Oxford, Oxford, UK
| | - Alison Smith
- Nature-based Solutions Initiative, Department of Zoology, University of Oxford, Oxford, UK
- Environmental Change Institute, School of Geography and Environment, University of Oxford, Oxford, UK
| | - Pete Smith
- Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Isabel Key
- Nature-based Solutions Initiative, Department of Zoology, University of Oxford, Oxford, UK
| | - Alexandre Chausson
- Nature-based Solutions Initiative, Department of Zoology, University of Oxford, Oxford, UK
| | - Cécile Girardin
- Nature-based Solutions Initiative, Department of Zoology, University of Oxford, Oxford, UK
- Environmental Change Institute, School of Geography and Environment, University of Oxford, Oxford, UK
| | - Jo House
- Cabot Institute for the Environment, School of Geographical Sciences, University of Bristol, Bristol, UK
| | | | - Beth Turner
- Nature-based Solutions Initiative, Department of Zoology, University of Oxford, Oxford, UK
- Centre d'Étude de la Forêt, Département Des Sciences Biologiques, Université Du Québec à Montréal, Montréal, QC, Canada
| |
Collapse
|
9
|
Effects of climate change and land cover on the distributions of a critical tree family in the Philippines. Sci Rep 2021; 11:276. [PMID: 33432023 PMCID: PMC7801684 DOI: 10.1038/s41598-020-79491-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/04/2020] [Indexed: 11/11/2022] Open
Abstract
Southeast Asian forests are dominated by the tree family Dipterocarpaceae, whose abundance and diversity are key to maintaining the structure and function of tropical forests. Like most biodiversity, dipterocarps are threatened by deforestation and climate change, so it is crucial to understand the potential impacts of these threats on current and future dipterocarp distributions. We developed species distribution models (SDMs) for 19 species of dipterocarps in the Philippines, which were projected onto current and two 2070 representative concentration pathway (RCP) climate scenarios, RCP 4.5 and 8.5. Current land cover was incorporated as a post-hoc correction to restrict projections onto intact habitats. Land cover correction alone reduced current species distributions by a median 67%, and within protected areas by 37%. After land cover correction, climate change reduced distributions by a median 16% (RCP 4.5) and 27% (RCP 8.5) at the national level, with similar losses in protected areas. There was a detectable upward elevation shift of species distributions, consisting of suitable habitat losses below 300 m and gains above 600 m. Species-rich stable areas of continued habitat suitability (i.e., climate macrorefugia) fell largely outside current delineations of protected areas, indicating a need to improve protected area planning. This study highlights how SDMs can provide projections that can inform protected area planning in the tropics.
Collapse
|
10
|
Monitoring tropical forest degradation and restoration with satellite remote sensing: A test using Sabah Biodiversity Experiment. ADV ECOL RES 2020. [DOI: 10.1016/bs.aecr.2020.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Davidson G, Chua TH, Cook A, Speldewinde P, Weinstein P. The Role of Ecological Linkage Mechanisms in Plasmodium knowlesi Transmission and Spread. ECOHEALTH 2019; 16:594-610. [PMID: 30675676 DOI: 10.1007/s10393-019-01395-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 11/10/2018] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
Defining the linkages between landscape change, disease ecology and human health is essential to explain and predict the emergence of Plasmodium knowlesi malaria, a zoonotic parasite residing in Southeast Asian macaques, and transmitted by species of Anopheles mosquitos. Changing patterns of land use throughout Southeast Asia, particularly deforestation, are suggested to be the primary drivers behind the recent spread of this zoonotic parasite in humans. Local ecological changes at the landscape scale appear to be increasing the risk of disease in humans by altering the dynamics of transmission between the parasite and its primary hosts. This paper will focus on the emergence of P. knowlesi in humans in Malaysian Borneo and the ecological linkage mechanisms suggested to be playing an important role.
Collapse
Affiliation(s)
- Gael Davidson
- CENRM and School of Population and Global Health, University of Western Australia, Perth, Australia
| | - Tock H Chua
- Department of Pathobiology and Medical Diagnostics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia.
| | - Angus Cook
- School of Population and Global Health, University of Western Australia, Perth, Australia
| | | | - Philip Weinstein
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
12
|
Linking Soil Fungal Generality to Tree Richness in Young Subtropical Chinese Forests. Microorganisms 2019; 7:microorganisms7110547. [PMID: 31717669 PMCID: PMC6921041 DOI: 10.3390/microorganisms7110547] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/07/2019] [Accepted: 11/07/2019] [Indexed: 11/17/2022] Open
Abstract
Soil fungi are a highly diverse group of microorganisms that provide many ecosystem services. The mechanisms of soil fungal community assembly must therefore be understood to reliably predict how global changes such as climate warming and biodiversity loss will affect ecosystem functioning. To this end, we assessed fungal communities in experimental subtropical forests by pyrosequencing of the internal transcribed spacer 2 (ITS2) region, and constructed tree-fungal bipartite networks based on the co-occurrence of fungal operational taxonomic units (OTUs) and tree species. The characteristics of the networks and the observed degree of fungal specialization were then analyzed in relation to the level of tree species diversity. Unexpectedly, plots containing two tree species had higher network connectance and fungal generality values than those with higher tree diversity. Most of the frequent fungal OTUs were saprotrophs. The degree of fungal specialization was highest in tree monocultures. Ectomycorrhizal fungi had higher specialization coefficients than saprotrophic, arbuscular mycorrhizal, and plant pathogenic fungi. High tree species diversity plots with 4 to 16 different tree species sustained the greatest number of fungal species, which is assumed to be beneficial for ecosystem services because it leads to more effective resource exploitation and greater resilience due to functional redundancy.
Collapse
|
13
|
O'Brien MJ, Philipson CD, Reynolds G, Dzulkifli D, Snaddon JL, Ong R, Hector A. Positive effects of liana cutting on seedlings are reduced during El Niño‐induced drought. J Appl Ecol 2019. [DOI: 10.1111/1365-2664.13335] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Michael J. O'Brien
- Institute of Integrative BiologyETH Zürich (Swiss Federal Institute of Technology) Zürich Switzerland
- URPP Global Change and BiodiversityUniversity of Zurich Zurich Switzerland
- Southeast Asia Rainforest Research Partnership (SEARRP) Kota Kinabalu Malaysia
| | | | - Glen Reynolds
- Southeast Asia Rainforest Research Partnership (SEARRP) Kota Kinabalu Malaysia
| | - Dzaeman Dzulkifli
- Tropical Rainforest Conservation & Research Centre Kuala Lumpur Malaysia
| | - Jake L. Snaddon
- School of Geography and Environmental ScienceUniversity of Southampton Southampton UK
| | - Robert Ong
- Forest Research Centre Sandakan Sabah Malaysia
| | - Andy Hector
- Department of Plant SciencesUniversity of Oxford Oxford UK
| |
Collapse
|
14
|
Ammer C. Diversity and forest productivity in a changing climate. THE NEW PHYTOLOGIST 2019; 221:50-66. [PMID: 29905960 DOI: 10.1111/nph.15263] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/13/2018] [Indexed: 06/08/2023]
Abstract
Contents Summary 50 I. Introduction 50 II. Drivers of the diversity-productivity relationship 51 III. Patterns of the diversity-productivity relationship 55 IV. Responses of mixed stands to climate change 57 V. Conclusions 60 Acknowledgements 61 References 61 SUMMARY: Although the relationship between species diversity and biomass productivity has been extensively studied in grasslands, the impact of tree species diversity on forest productivity, as well as the main drivers of this relationship, are still under discussion. It is widely accepted that the magnitude of the relationship between tree diversity and forest stand productivity is context specific and depends on environmental conditions, but the underlying mechanisms of this relationship are still not fully understood. Competition reduction and facilitation have been identified as key mechanisms driving the diversity-productivity relationship. However, contrasting results have been reported with respect to the extent to which competition reduction and facilitation determine the diversity-productivity relationship. They appear to depend on regional climate, soil fertility, functional diversity of the tree species involved, and developmental stage of the forest. The purpose of this review is to summarize current knowledge and to suggest a conceptual framework to explain the various processes leading to higher productivity of species-rich forests compared with average yields of their respective monocultures. This framework provides three pathways for possible development of the diversity-productivity relationship under a changing climate.
Collapse
Affiliation(s)
- Christian Ammer
- Silviculture and Forest Ecology of the Temperate Zones, Faculty of Forest Sciences, University of Göttingen, Büsgenweg 1, D-37077, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land-use, University of Göttingen, Büsgenweg 1, D-37077, Göttingen, Germany
| |
Collapse
|
15
|
Hutchison C, Gravel D, Guichard F, Potvin C. Effect of diversity on growth, mortality, and loss of resilience to extreme climate events in a tropical planted forest experiment. Sci Rep 2018; 8:15443. [PMID: 30337582 PMCID: PMC6193960 DOI: 10.1038/s41598-018-33670-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/02/2018] [Indexed: 11/16/2022] Open
Abstract
A pressing question is whether biodiversity can buffer ecosystem functioning against extreme climate events. However, biodiversity loss is expected to occur due to climate change with severe impacts to tropical forests. Using data from a ca. 15 year-old tropical planted forest, we construct models based on a bootstrapping procedure to measure growth and mortality among different species richness treatments in response to extreme climate events. In contrast to higher richness mixtures, in one-species plots we find growth is strongly regulated by climate events and we also find increasingly higher mortality during a consecutive three year dry event. Based on these results together with indicators of loss of resilience, we infer an effect of diversity on critical slowing down. Our work generates new methods, concepts, and applications for global change ecology and emphasises the need for research in the area of biodiversity-ecosystem functioning along environmental stress gradients.
Collapse
Affiliation(s)
- Chantal Hutchison
- Department of Biology, McGill University, Montreal, H3A 1B1, Canada.
| | - Dominique Gravel
- Département de biologie, Université de Sherbrooke, Sherbrooke, J1K 2R1, Canada
| | | | - Catherine Potvin
- Department of Biology, McGill University, Montreal, H3A 1B1, Canada
| |
Collapse
|
16
|
Granados A, Bernard H, Brodie JF. The combined impacts of experimental defaunation and logging on seedling traits and diversity. Proc Biol Sci 2018; 285:rspb.2017.2882. [PMID: 29491176 DOI: 10.1098/rspb.2017.2882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 02/07/2018] [Indexed: 11/12/2022] Open
Abstract
Animals can have both positive (e.g. via seed dispersal) and negative (e.g. via herbivory) impacts on plants. The net effects of these interactions remain difficult to predict and may be affected by overhunting and habitat disturbance, two widespread threats to tropical forests. Recent studies have documented their separate effects on plant recruitment but our understanding of how defaunation and logging interact to influence tropical tree communities is limited. From 2013 to 2016, we followed the fate of marked tree seedlings (n = 1489) from 81 genera in and outside experimental plots. Our plots differentially excluded small, medium and large-bodied mammal herbivores in logged and unlogged forest in Malaysian Borneo. We assessed the effects of experimental defaunation and logging on taxonomic diversity and plant trait (wood density, specific leaf area, fruit size) composition of seedling communities. Although seedling mortality was highest in the presence of all mammal herbivores (44%), defaunation alone did not alter taxonomic diversity nor plant trait composition. However, herbivores (across all body sizes) significantly reduced mean fruit size across the seedling community over time (95% confidence interval (CI): -0.09 to -0.01), particularly in logged forest (95% CI: -0.12 to -0.003). Our findings suggest that impacts of mammal herbivores on plant communities may be greater in forests with a history of disturbance and could subsequently affect plant functional traits and ecological processes associated with forest regeneration.
Collapse
Affiliation(s)
- Alys Granados
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Henry Bernard
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Jedediah F Brodie
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada.,Division of Biological Sciences and Wildlife Biology Program, University of Montana, Missoula, MT, USA
| |
Collapse
|
17
|
Isbell F, Cowles J, Dee LE, Loreau M, Reich PB, Gonzalez A, Hector A, Schmid B. Quantifying effects of biodiversity on ecosystem functioning across times and places. Ecol Lett 2018; 21:763-778. [PMID: 29493062 DOI: 10.1111/ele.12928] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/08/2017] [Accepted: 01/25/2018] [Indexed: 11/30/2022]
Abstract
Biodiversity loss decreases ecosystem functioning at the local scales at which species interact, but it remains unclear how biodiversity loss affects ecosystem functioning at the larger scales of space and time that are most relevant to biodiversity conservation and policy. Theory predicts that additional insurance effects of biodiversity on ecosystem functioning could emerge across time and space if species respond asynchronously to environmental variation and if species become increasingly dominant when and where they are most productive. Even if only a few dominant species maintain ecosystem functioning within a particular time and place, ecosystem functioning may be enhanced by many different species across many times and places (β-diversity). Here, we develop and apply a new approach to estimate these previously unquantified insurance effects of biodiversity on ecosystem functioning that arise due to species turnover across times and places. In a long-term (18-year) grassland plant diversity experiment, we find that total insurance effects are positive in sign and substantial in magnitude, amounting to 19% of the net biodiversity effect, mostly due to temporal insurance effects. Species loss can therefore reduce ecosystem functioning both locally and by eliminating species that would otherwise enhance ecosystem functioning across temporally fluctuating and spatially heterogeneous environments.
Collapse
Affiliation(s)
- Forest Isbell
- Department of Ecology, Evolution, and Behavior, University of Minnesota Twin Cities, Saint Paul, MN, 55108, USA
| | - Jane Cowles
- Department of Ecology, Evolution, and Behavior, University of Minnesota Twin Cities, Saint Paul, MN, 55108, USA
| | - Laura E Dee
- Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota Twin Cities, Saint Paul, MN, 55108, USA
| | - Michel Loreau
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS and Paul Sabatier University, 09200, Moulis, France
| | - Peter B Reich
- Department of Forest Resources, University of Minnesota Twin Cities, Saint Paul, MN, 55108, USA.,Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2753, Australia
| | - Andrew Gonzalez
- Department of Biology, McGill University, Montreal, QC, H3A 1B1, Canada
| | - Andy Hector
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Bernhard Schmid
- URPP Global Change and Biodiversity, Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| |
Collapse
|
18
|
Seddon N, Mace GM, Naeem S, Tobias JA, Pigot AL, Cavanagh R, Mouillot D, Vause J, Walpole M. Biodiversity in the Anthropocene: prospects and policy. Proc Biol Sci 2017; 283:rspb.2016.2094. [PMID: 27928040 DOI: 10.1098/rspb.2016.2094] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/01/2016] [Indexed: 01/13/2023] Open
Abstract
Meeting the ever-increasing needs of the Earth's human population without excessively reducing biological diversity is one of the greatest challenges facing humanity, suggesting that new approaches to biodiversity conservation are required. One idea rapidly gaining momentum-as well as opposition-is to incorporate the values of biodiversity into decision-making using economic methods. Here, we develop several lines of argument for how biodiversity might be valued, building on recent developments in natural science, economics and science-policy processes. Then we provide a synoptic guide to the papers in this special feature, summarizing recent research advances relevant to biodiversity valuation and management. Current evidence suggests that more biodiverse systems have greater stability and resilience, and that by maximizing key components of biodiversity we maximize an ecosystem's long-term value. Moreover, many services and values arising from biodiversity are interdependent, and often poorly captured by standard economic models. We conclude that economic valuation approaches to biodiversity conservation should (i) account for interdependency and (ii) complement rather than replace traditional approaches. To identify possible solutions, we present a framework for understanding the foundational role of hard-to-quantify 'biodiversity services' in sustaining the value of ecosystems to humanity, and then use this framework to highlight new directions for pure and applied research. In most cases, clarifying the links between biodiversity and ecosystem services, and developing effective policy and practice for managing biodiversity, will require a genuinely interdisciplinary approach.
Collapse
Affiliation(s)
- Nathalie Seddon
- Biodiversity Institute, University of Oxford, Oxford, UK .,Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK.,International Institute for Environment and Development, 80-86 Gray's Inn Road, London WC1X 8NH, UK
| | - Georgina M Mace
- Centre for Biodiversity and Environment Research, University College London, London, UK
| | - Shahid Naeem
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Joseph A Tobias
- Department of Life Sciences, Imperial College London, Silwood Park, Buckhurst Road, Ascot, Berkshire SL5 7PY, UK
| | - Alex L Pigot
- Centre for Biodiversity and Environment Research, University College London, London, UK.,Groningen Institute for Evolutionary Life Sciences, University of Groningen, PO Box 11103, Groningen 9700 CC, The Netherlands
| | | | - David Mouillot
- MARBEC, UMR CNRS-UM2 9190, Université Montpellier, Montpellier, France.,Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
| | - James Vause
- UNEP, World Conservation Monitoring Centre, Cambridge, UK
| | - Matt Walpole
- UNEP, World Conservation Monitoring Centre, Cambridge, UK
| |
Collapse
|
19
|
Granados A, Brodie JF, Bernard H, O'Brien MJ. Defaunation and habitat disturbance interact synergistically to alter seedling recruitment. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2017; 27:2092-2101. [PMID: 28660670 DOI: 10.1002/eap.1592] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 05/31/2017] [Indexed: 06/07/2023]
Abstract
Vertebrate granivores destroy plant seeds, but whether animal-induced seed mortality alters plant recruitment varies with habitat context, seed traits, and among granivore species. An incomplete understanding of seed predation makes it difficult to predict how widespread extirpations of vertebrate granivores in tropical forests might affect tree communities, especially in the face of habitat disturbance. Many tropical forests are simultaneously affected by animal loss as well as habitat disturbance, but the consequences of each for forest regeneration are often studied separately or additively, and usually on a single plant demographic stage. The combined impacts of these threats could affect plant recruitment in ways that are not apparent when studied in isolation. We used wire cages to exclude large (elephants), medium, (sambar deer, bearded pigs, muntjac deer), and small (porcupines, chevrotains) ground-dwelling mammalian granivores and herbivores in logged and unlogged forests in Malaysian Borneo. We assessed the interaction between habitat disturbance (selective logging) and experimental defaunation on seed survival, germination, and seedling establishment in five dominant dipterocarp tree species spanning a 21-fold gradient in seed size. Granivore-induced seed mortality was consistently higher in logged forest. Germination of unpredated seeds was reduced in logged forest and in the absence of small to large-bodied mammals. Experimental defaunation increased germination and reduced seed removal but had little effect on seed survival. Seedling recruitment however, was more likely where logging and animal loss occurred together. The interacting effects of logging and hunting could therefore, actually increase seedling establishment, suggesting that the loss of mammals in disturbed forest could have important consequences for forest regeneration and composition.
Collapse
Affiliation(s)
- Alys Granados
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Jedediah F Brodie
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
- Division of Biological Sciences and Wildlife Biology Program, University of Montana, Missoula, Montana, 59812, USA
| | - Henry Bernard
- Institute for Tropical Biology and Conservation, University Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Michael J O'Brien
- Consejo Superior de Investigaciones Científicas, Estación Experimental de Zonas Áridas, Carretera de Sacramento s/n, E-04120, La Cañada, Almería, Spain
- The South East Asia Rainforest Research Partnership, Danum Valley Field Centre, P.O. Box 60282, 91112, Lahad Datu, Sabah, Malaysia
| |
Collapse
|
20
|
O'Brien MJ, Ong R, Reynolds G. Intra-annual plasticity of growth mediates drought resilience over multiple years in tropical seedling communities. GLOBAL CHANGE BIOLOGY 2017; 23:4235-4244. [PMID: 28192618 DOI: 10.1111/gcb.13658] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 01/28/2017] [Accepted: 02/06/2017] [Indexed: 06/06/2023]
Abstract
Precipitation patterns are changing across the globe causing more severe and frequent drought for many forest ecosystems. Although research has focused on the resistance of tree populations and communities to these novel precipitation regimes, resilience of forests is also contingent on recovery following drought, which remains poorly understood, especially in aseasonal tropical forests. We used rainfall exclusion shelters to manipulate the interannual frequency of drought for diverse seedling communities in a tropical forest and assessed resistance, recovery and resilience of seedling growth and mortality relative to everwet conditions. We found seedlings exposed to recurrent periods of drought altered their growth rates throughout the year relative to seedlings in everwet conditions. During drought periods, seedlings grew slower than seedlings in everwet conditions (i.e., resistance phase) while compensating with faster growth after drought (i.e., recovery phase). However, the response to frequent drought was species dependent as some species grew significantly slower with frequent drought relative to everwet conditions while others grew faster with frequent drought due to overcompensating growth during the recovery phase. In contrast, mortality was unrelated to rainfall conditions and instead correlated with differences in light. Intra-annual plasticity of growth and increased annual growth of some species led to an overall maintenance of growth rates of tropical seedling communities in response to more frequent drought. These results suggest these communities can potentially adapt to predicted climate change scenarios and that plasticity in the growth of species, and not solely changes in mortality rates among species, may contribute to shifts in community composition under drought.
Collapse
Affiliation(s)
- Michael J O'Brien
- Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas, La Cañada, Almería, Spain
- South East Asia Rainforest Research Partnership (SEARRP), Danum Valley Field Centre, Lahad Datu, Sabah, Malaysia
| | - Robert Ong
- Forest Research Centre, Sepilok, Sandakan, Sabah, Malaysia
| | - Glen Reynolds
- South East Asia Rainforest Research Partnership (SEARRP), Danum Valley Field Centre, Lahad Datu, Sabah, Malaysia
| |
Collapse
|
21
|
Tuck SL, O'Brien MJ, Philipson CD, Saner P, Tanadini M, Dzulkifli D, Godfray HCJ, Godoong E, Nilus R, Ong RC, Schmid B, Sinun W, Snaddon JL, Snoep M, Tangki H, Tay J, Ulok P, Wai YS, Weilenmann M, Reynolds G, Hector A. The value of biodiversity for the functioning of tropical forests: insurance effects during the first decade of the Sabah biodiversity experiment. Proc Biol Sci 2016; 283:20161451. [PMID: 27928046 PMCID: PMC5204142 DOI: 10.1098/rspb.2016.1451] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/10/2016] [Indexed: 01/11/2023] Open
Abstract
One of the main environmental threats in the tropics is selective logging, which has degraded large areas of forest. In southeast Asia, enrichment planting with seedlings of the dominant group of dipterocarp tree species aims to accelerate restoration of forest structure and functioning. The role of tree diversity in forest restoration is still unclear, but the 'insurance hypothesis' predicts that in temporally and spatially varying environments planting mixtures may stabilize functioning owing to differences in species traits and ecologies. To test for potential insurance effects, we analyse the patterns of seedling mortality and growth in monoculture and mixture plots over the first decade of the Sabah biodiversity experiment. Our results reveal the species differences required for potential insurance effects including a trade-off in which species with denser wood have lower growth rates but higher survival. This trade-off was consistent over time during the first decade, but growth and mortality varied spatially across our 500 ha experiment with species responding to changing conditions in different ways. Overall, average survival rates were extreme in monocultures than mixtures consistent with a potential insurance effect in which monocultures of poorly surviving species risk recruitment failure, whereas monocultures of species with high survival have rates of self-thinning that are potentially wasteful when seedling stocks are limited. Longer-term monitoring as species interactions strengthen will be needed to more comprehensively test to what degree mixtures of species spread risk and use limited seedling stocks more efficiently to increase diversity and restore ecosystem structure and functioning.
Collapse
Affiliation(s)
- Sean L Tuck
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Michael J O'Brien
- Consejo Superior de Investigaciones Científicas, Estación Experimental de Zonas Áridas, Carretera de Sacramento s/n, 04120 La Cañada, Almería, Spain
- Danum Valley Field Centre, The SE Asia Rainforest Research Partnership (SEARRP), PO Box 60282, 91112 Lahad Datu, Sabah, Malaysia
| | | | - Philippe Saner
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
| | - Matteo Tanadini
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Dzaeman Dzulkifli
- Tropical Rainforest Conservation and Research Centre, Lot 2900 and 2901, Jalan 7/71B Pinggiran Taman Tun, 60000 Kuala Lumpur, Malaysia
| | - H Charles J Godfray
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Elia Godoong
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, 88400 Sabah, Kota Kinabalu, Malaysia
| | - Reuben Nilus
- Sabah Forestry Department Forest Research Centre, Mile 14 Jalan Sepilok, 90000 Sandakan, Sabah, Malaysia
| | - Robert C Ong
- Sabah Forestry Department Forest Research Centre, Mile 14 Jalan Sepilok, 90000 Sandakan, Sabah, Malaysia
| | - Bernhard Schmid
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
| | - Waidi Sinun
- Yayasan Sabah (Conservation and Environmental Management Division), 12th Floor, Menara Tun Mustapha, Yayasan Sabah, Likas Bay, PO Box 11622, 88813 Kota Kinabalu, Sabah
| | - Jake L Snaddon
- Centre for Biological Sciences, University of Southampton, Southampton, UK
| | - Martijn Snoep
- Face the Future, Utrechtseweg 95, 3702 AA, Zeist, The Netherlands
| | - Hamzah Tangki
- Yayasan Sabah (Conservation and Environmental Management Division), 12th Floor, Menara Tun Mustapha, Yayasan Sabah, Likas Bay, PO Box 11622, 88813 Kota Kinabalu, Sabah
| | - John Tay
- School of International Tropical Forestry, Universiti Malaysia Sabah, Kota Kinabalu, 88400 Sabah, Malaysia
| | - Philip Ulok
- Danum Valley Field Centre, The SE Asia Rainforest Research Partnership (SEARRP), PO Box 60282, 91112 Lahad Datu, Sabah, Malaysia
| | - Yap Sau Wai
- Yayasan Sabah (Conservation and Environmental Management Division), 12th Floor, Menara Tun Mustapha, Yayasan Sabah, Likas Bay, PO Box 11622, 88813 Kota Kinabalu, Sabah
| | - Maja Weilenmann
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
| | - Glen Reynolds
- Danum Valley Field Centre, The SE Asia Rainforest Research Partnership (SEARRP), PO Box 60282, 91112 Lahad Datu, Sabah, Malaysia
| | - Andy Hector
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|