1
|
Delclos PJ, Adhikari K, Mai AB, Hassan O, Oderhowho AA, Sriskantharajah V, Trinh T, Meisel R. Trans regulation of an odorant binding protein by a proto-Y chromosome affects male courtship in house fly. eLife 2024; 13:e90349. [PMID: 39422654 PMCID: PMC11488852 DOI: 10.7554/elife.90349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/20/2024] [Indexed: 10/19/2024] Open
Abstract
The male-limited inheritance of Y chromosomes favors alleles that increase male fitness, often at the expense of female fitness. Determining the mechanisms underlying these sexually antagonistic effects is challenging because it can require studying Y-linked alleles while they still segregate as polymorphisms. We used a Y chromosome polymorphism in the house fly, Musca domestica, to address this challenge. Two male determining Y chromosomes (YM and IIIM) segregate as stable polymorphisms in natural populations, and they differentially affect multiple traits, including male courtship performance. We identified differentially expressed genes encoding odorant binding proteins (in the Obp56h family) as candidate agents for the courtship differences. Through network analysis and allele-specific expression measurements, we identified multiple genes on the house fly IIIM chromosome that could serve as trans regulators of Obp56h gene expression. One of those genes is homologous to Drosophila melanogaster CG2120, which encodes a transcription factor that binds near Obp56h. Upregulation of CG2120 in D. melanogaster nervous tissues reduces copulation latency, consistent with this transcription factor acting as a negative regulator of Obp56h expression. The transcription factor gene, which we name speed date, demonstrates a molecular mechanism by which a Y-linked gene can evolve male-beneficial effects.
Collapse
Affiliation(s)
- Pablo J Delclos
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| | - Kiran Adhikari
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| | - Alexander B Mai
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| | - Oluwatomi Hassan
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| | | | | | - Tammie Trinh
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| | - Richard Meisel
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| |
Collapse
|
2
|
Mezzasalma M, Odierna G, Macirella R, Brunelli E. New Insights on Chromosome Diversification in Malagasy Chameleons. Animals (Basel) 2024; 14:2818. [PMID: 39409767 PMCID: PMC11476409 DOI: 10.3390/ani14192818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
In this work, we performed a preliminary molecular analysis and a comparative cytogenetic study on 5 different species of Malagasy chameleons of the genus Brookesia (B. superciliaris) and Furcifer (F. balteautus, F. petteri, F. major and F. minor). A DNA barcoding analysis was first carried out on the study samples using a fragment of the mitochondrial gene coding for the cytochrome oxidase subunit 1 (COI) in order to assess the taxonomic identity of the available biological material. Subsequently, we performed on the studied individuals a chromosome analysis with standard karyotyping (5% Giemsa solution at pH 7) and sequential C-banding + Giemsa, + CMA3, and + DAPI. The results obtained indicate that the studied species are characterized by a different chromosome number and a variable heterochromatin content and distribution, with or without differentiated sex chromosomes. In particular, B. superciliaris (2n = 36) and F. balteatus (2n = 34) showed a similar karyotype with 6 macro- and 12-11 microchromosome pairs, without differentiated sex chromosomes. In turn, F. petteri, F. major, and F. minor showed a karyotype with a reduced chromosome number (2n = 22-24) and a differentiated sex chromosome system with female heterogamety (ZZ/ZW). Adding our newly generated data to those available from the literature, we highlight that the remarkable chromosomal diversification of the genus Furcifer was likely driven by non-homologous chromosome fusions, including autosome-autosome, Z-autosome, and W-autosome fusions. The results of this process resulted in a progressive reduction in the chromosome number and partially homologous sex chromosomes of different shapes and sizes.
Collapse
Affiliation(s)
- Marcello Mezzasalma
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036 Rende, Italy; (R.M.); (E.B.)
| | - Gaetano Odierna
- Independent Researcher, Via Michelangelo 123, 81031 Aversa, Italy;
| | - Rachele Macirella
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036 Rende, Italy; (R.M.); (E.B.)
| | - Elvira Brunelli
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, 87036 Rende, Italy; (R.M.); (E.B.)
| |
Collapse
|
3
|
Wang T, Gong G, Li Z, Niu JS, Du WX, Wang ZW, Wang Y, Zhou L, Zhang XJ, Lian ZQ, Mei J, Gui JF, Li XY. Genomic Anatomy of Homozygous XX Females and YY Males Reveals Early Evolutionary Trajectory of Sex-determining Gene and Sex Chromosomes in Silurus Fishes. Mol Biol Evol 2024; 41:msae169. [PMID: 39136558 DOI: 10.1093/molbev/msae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/04/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Sex chromosomes display remarkable diversity and variability among vertebrates. Compared with research on the X/Y and Z/W chromosomes, which have long evolutionary histories in mammals and birds, studies on the sex chromosomes at early evolutionary stages are limited. Here, we precisely assembled the genomes of homozygous XX female and YY male Lanzhou catfish (Silurus lanzhouensis) derived from an artificial gynogenetic family and a self-fertilized family, respectively. Chromosome 24 (Chr24) was identified as the sex chromosome based on resequencing data. Comparative analysis of the X and Y chromosomes showed an approximate 320 kb Y-specific region with a Y-specific duplicate of anti-Mullerian hormone type II receptor (amhr2y), which is consistent with findings in 2 other Silurus species but on different chromosomes (Chr24 of Silurus meridionalis and Chr5 of Silurus asotus). Deficiency of amhr2y resulted in male-to-female sex reversal, indicating that amhr2y plays a male-determining role in S. lanzhouensis. Phylogenetic analysis and comparative genomics revealed that the common sex-determining gene amhr2y was initially translocated to Chr24 of the Silurus ancestor along with the expansion of transposable elements. Chr24 was maintained as the sex chromosome in S. meridionalis and S. lanzhouensis, whereas a sex-determining region transition triggered sex chromosome turnover from Chr24 to Chr5 in S. asotus. Additionally, gene duplication, translocation, and degeneration were observed in the Y-specific regions of Silurus species. These findings present a clear case for the early evolutionary trajectory of sex chromosomes, including sex-determining gene origin, repeat sequence expansion, gene gathering and degeneration in sex-determining region, and sex chromosome turnover.
Collapse
Affiliation(s)
- Tao Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gaorui Gong
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun-Sheng Niu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wen-Xuan Du
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong-Wei Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Zhou
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Juan Zhang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zong-Qiang Lian
- Department of Fish Genetic Breeding, Ningxia Fisheries Research Institute, Yinchuan 750001, China
| | - Jie Mei
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian-Fang Gui
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi-Yin Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Rueda-M N, Pardo-Diaz C, Montejo-Kovacevich G, McMillan WO, Kozak KM, Arias CF, Ready J, McCarthy S, Durbin R, Jiggins CD, Meier JI, Salazar C. Genomic evidence reveals three W-autosome fusions in Heliconius butterflies. PLoS Genet 2024; 20:e1011318. [PMID: 39024186 PMCID: PMC11257349 DOI: 10.1371/journal.pgen.1011318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/24/2024] [Indexed: 07/20/2024] Open
Abstract
Sex chromosomes are evolutionarily labile in many animals and sometimes fuse with autosomes, creating so-called neo-sex chromosomes. Fusions between sex chromosomes and autosomes have been proposed to reduce sexual conflict and to promote adaptation and reproductive isolation among species. Recently, advances in genomics have fuelled the discovery of such fusions across the tree of life. Here, we discovered multiple fusions leading to neo-sex chromosomes in the sapho subclade of the classical adaptive radiation of Heliconius butterflies. Heliconius butterflies generally have 21 chromosomes with very high synteny. However, the five Heliconius species in the sapho subclade show large variation in chromosome number ranging from 21 to 60. We find that the W chromosome is fused with chromosome 4 in all of them. Two sister species pairs show subsequent fusions between the W and chromosomes 9 or 14, respectively. These fusions between autosomes and sex chromosomes make Heliconius butterflies an ideal system for studying the role of neo-sex chromosomes in adaptive radiations and the degeneration of sex chromosomes over time. Our findings emphasize the capability of short-read resequencing to detect genomic signatures of fusion events between sex chromosomes and autosomes even when sex chromosomes are not explicitly assembled.
Collapse
Affiliation(s)
- Nicol Rueda-M
- Biology Program, Faculty of Natural Sciences, Universidad del Rosario, Bogotá, Colombia
- Tree of Life Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Carolina Pardo-Diaz
- Biology Program, Faculty of Natural Sciences, Universidad del Rosario, Bogotá, Colombia
| | | | | | - Krzysztof M. Kozak
- Smithsonian Tropical Research Institute, Panama City, Panama
- Museum of Vertebrate Zoology, Berkeley, California, United States of America
| | - Carlos F. Arias
- Smithsonian Tropical Research Institute, Panama City, Panama
- Data Science Lab, Office of the Chief Information Officer, Smithsonian Institution, Washington, Washington DC, United States of America
| | - Jonathan Ready
- Institute for Biological Sciences, Federal University of Pará - UFPA, Belém, Brazil
- Centre for Advanced Studies of Biodiversity - CEABIO, Belém, Brazil
| | - Shane McCarthy
- Tree of Life Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Richard Durbin
- Tree of Life Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Chris D. Jiggins
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Joana I. Meier
- Tree of Life Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Camilo Salazar
- Biology Program, Faculty of Natural Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
5
|
Sacchi B, Humphries Z, Kružlicová J, Bodláková M, Pyne C, Choudhury BI, Gong Y, Bačovský V, Hobza R, Barrett SCH, Wright SI. Phased Assembly of Neo-Sex Chromosomes Reveals Extensive Y Degeneration and Rapid Genome Evolution in Rumex hastatulus. Mol Biol Evol 2024; 41:msae074. [PMID: 38606901 PMCID: PMC11057207 DOI: 10.1093/molbev/msae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/31/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024] Open
Abstract
Y chromosomes are thought to undergo progressive degeneration due to stepwise loss of recombination and subsequent reduction in selection efficiency. However, the timescales and evolutionary forces driving degeneration remain unclear. To investigate the evolution of sex chromosomes on multiple timescales, we generated a high-quality phased genome assembly of the massive older (<10 MYA) and neo (<200,000 yr) sex chromosomes in the XYY cytotype of the dioecious plant Rumex hastatulus and a hermaphroditic outgroup Rumex salicifolius. Our assemblies, supported by fluorescence in situ hybridization, confirmed that the neo-sex chromosomes were formed by two key events: an X-autosome fusion and a reciprocal translocation between the homologous autosome and the Y chromosome. The enormous sex-linked regions of the X (296 Mb) and two Y chromosomes (503 Mb) both evolved from large repeat-rich genomic regions with low recombination; however, the complete loss of recombination on the Y still led to over 30% gene loss and major rearrangements. In the older sex-linked region, there has been a significant increase in transposable element abundance, even into and near genes. In the neo-sex-linked regions, we observed evidence of extensive rearrangements without gene degeneration and loss. Overall, we inferred significant degeneration during the first 10 million years of Y chromosome evolution but not on very short timescales. Our results indicate that even when sex chromosomes emerge from repetitive regions of already-low recombination, the complete loss of recombination on the Y chromosome still leads to a substantial increase in repetitive element content and gene degeneration.
Collapse
Affiliation(s)
- Bianca Sacchi
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Zoë Humphries
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Jana Kružlicová
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Markéta Bodláková
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Cassandre Pyne
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Baharul I Choudhury
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
- Department of Biology, Queen’s University, Kingston, Canada
| | - Yunchen Gong
- Centre for Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada
| | - Václav Bačovský
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Spencer C H Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Stephen I Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
- Centre for Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada
| |
Collapse
|
6
|
Jay P, Aubier TG, Joron M. The interplay of local adaptation and gene flow may lead to the formation of supergenes. Mol Ecol 2024:e17297. [PMID: 38415327 DOI: 10.1111/mec.17297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 02/29/2024]
Abstract
Supergenes are genetic architectures resulting in the segregation of alternative combinations of alleles underlying complex phenotypes. The co-segregation of alleles at linked loci is often facilitated by polymorphic chromosomal rearrangements suppressing recombination locally. Supergenes are involved in many complex polymorphisms, including sexual, colour or behavioural polymorphisms in numerous plants, fungi, mammals, fish, and insects. Despite a long history of empirical and theoretical research, the formation of supergenes remains poorly understood. Here, using a two-island population genetic model, we explore how gene flow and the evolution of overdominant chromosomal inversions may jointly lead to the formation of supergenes. We show that the evolution of inversions in differentiated populations, both under disruptive selection, leads to an increase in frequency of poorly adapted, immigrant haplotypes. Indeed, rare allelic combinations, such as immigrant haplotypes, are more frequently reshuffled by recombination than common allelic combinations, and therefore benefit from the recombination suppression generated by inversions. When an inversion capturing a locally adapted haplotype spreads but is associated with a fitness cost hampering its fixation (e.g. a recessive mutation load), the maintenance of a non-inverted haplotype in the population is enhanced; under certain conditions, the immigrant haplotype persists alongside the inverted local haplotype, while the standard local haplotype disappears. This establishes a stable, local polymorphism with two non-recombining haplotypes encoding alternative adaptive strategies, that is, a supergene. These results bring new light to the importance of local adaptation, overdominance, and gene flow in the formation of supergenes and inversion polymorphisms in general.
Collapse
Affiliation(s)
- Paul Jay
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
- Center for GeoGenetics, University of Copenhagen, Copenhagen, Denmark
| | - Thomas G Aubier
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France
| | - Mathieu Joron
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
7
|
Rovatsos M, Mazzoleni S, Augstenová B, Altmanová M, Velenský P, Glaw F, Sanchez A, Kratochvíl L. Heteromorphic ZZ/ZW sex chromosomes sharing gene content with mammalian XX/XY are conserved in Madagascan chameleons of the genus Furcifer. Sci Rep 2024; 14:4898. [PMID: 38418601 PMCID: PMC10901801 DOI: 10.1038/s41598-024-55431-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/23/2024] [Indexed: 03/01/2024] Open
Abstract
Chameleons are well-known lizards with unique morphology and physiology, but their sex determination has remained poorly studied. Madagascan chameleons of the genus Furcifer have cytogenetically distinct Z and W sex chromosomes and occasionally Z1Z1Z2Z2/Z1Z2W multiple neo-sex chromosomes. To identify the gene content of their sex chromosomes, we microdissected and sequenced the sex chromosomes of F. oustaleti (ZZ/ZW) and F. pardalis (Z1Z1Z2Z2/Z1Z2W). In addition, we sequenced the genomes of a male and a female of F. lateralis (ZZ/ZW) and F. pardalis and performed a comparative coverage analysis between the sexes. Despite the notable heteromorphy and distinctiveness in heterochromatin content, the Z and W sex chromosomes share approximately 90% of their gene content. This finding demonstrates poor correlation of the degree of differentiation of sex chromosomes at the cytogenetic and gene level. The test of homology based on the comparison of gene copy number variation revealed that female heterogamety with differentiated sex chromosomes remained stable in the genus Furcifer for at least 20 million years. These chameleons co-opted for the role of sex chromosomes the same genomic region as viviparous mammals, lacertids and geckos of the genus Paroedura, which makes these groups excellent model for studies of convergent and divergent evolution of sex chromosomes.
Collapse
Affiliation(s)
- Michail Rovatsos
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Sofia Mazzoleni
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Barbora Augstenová
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Marie Altmanová
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | | | - Frank Glaw
- Zoologische Staatssammlung München (ZSM-SNSB), Munich, Germany
| | - Antonio Sanchez
- Department of Experimental Biology, University of Jaén, Jaén, Spain
| | - Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
8
|
Bentz PC, Liu Z, Yang JB, Zhang L, Burrows S, Burrows J, Kanno A, Mao Z, Leebens-Mack J. Young evolutionary origins of dioecy in the genus Asparagus. AMERICAN JOURNAL OF BOTANY 2024; 111:e16276. [PMID: 38297448 DOI: 10.1002/ajb2.16276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/31/2023] [Accepted: 11/17/2023] [Indexed: 02/02/2024]
Abstract
PREMISE Dioecy (separate sexes) has independently evolved numerous times across the angiosperm phylogeny and is recently derived in many lineages. However, our understanding is limited regarding the evolutionary mechanisms that drive the origins of dioecy in plants. The recent and repeated evolution of dioecy across angiosperms offers an opportunity to make strong inferences about the ecological, developmental, and molecular factors influencing the evolution of dioecy, and thus sex chromosomes. The genus Asparagus (Asparagaceae) is an emerging model taxon for studying dioecy and sex chromosome evolution, yet estimates for the age and origin of dioecy in the genus are lacking. METHODS We use plastome sequences and fossil time calibrations in phylogenetic analyses to investigate the age and origin of dioecy in the genus Asparagus. We also review the diversity of sexual systems present across the genus to address contradicting reports in the literature. RESULTS We estimate that dioecy evolved once or twice approximately 2.78-3.78 million years ago in Asparagus, of which roughly 27% of the species are dioecious and the remaining are hermaphroditic with monoclinous flowers. CONCLUSIONS Our findings support previous work implicating a young age and the possibility of two origins of dioecy in Asparagus, which appear to be associated with rapid radiations and range expansion out of Africa. Lastly, we speculate that paleoclimatic oscillations throughout northern Africa may have helped set the stage for the origin(s) of dioecy in Asparagus approximately 2.78-3.78 million years ago.
Collapse
Affiliation(s)
- Philip C Bentz
- Department of Plant Biology, University of Georgia, Athens, GA, 30605, USA
| | - Zhengjie Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Jun-Bo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Le Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | | | | | - Akira Kanno
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Zichao Mao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Jim Leebens-Mack
- Department of Plant Biology, University of Georgia, Athens, GA, 30605, USA
| |
Collapse
|
9
|
Yadav V, Sun S, Heitman J. On the evolution of variation in sexual reproduction through the prism of eukaryotic microbes. Proc Natl Acad Sci U S A 2023; 120:e2219120120. [PMID: 36867686 PMCID: PMC10013875 DOI: 10.1073/pnas.2219120120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/23/2023] [Indexed: 03/05/2023] Open
Abstract
Almost all eukaryotes undergo sexual reproduction to generate diversity and select for fitness in their population pools. Interestingly, the systems by which sex is defined are highly diverse and can even differ between evolutionarily closely related species. While the most commonly known form of sex determination involves males and females in animals, eukaryotic microbes can have as many as thousands of different mating types for the same species. Furthermore, some species have found alternatives to sexual reproduction and prefer to grow clonally and yet undergo infrequent facultative sexual reproduction. These organisms are mainly invertebrates and microbes, but several examples are also present among vertebrates suggesting that alternative modes of sexual reproduction evolved multiple times throughout evolution. In this review, we summarize the sex-determination modes and variants of sexual reproduction found across the eukaryotic tree of life and suggest that eukaryotic microbes provide unique opportunities to study these processes in detail. We propose that understanding variations in modes of sexual reproduction can serve as a foundation to study the evolution of sex and why and how it evolved in the first place.
Collapse
Affiliation(s)
- Vikas Yadav
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| |
Collapse
|
10
|
Sekimoto H, Komiya A, Tsuyuki N, Kawai J, Kanda N, Ootsuki R, Suzuki Y, Toyoda A, Fujiyama A, Kasahara M, Abe J, Tsuchikane Y, Nishiyama T. A divergent RWP-RK transcription factor determines mating type in heterothallic Closterium. THE NEW PHYTOLOGIST 2023; 237:1636-1651. [PMID: 36533897 DOI: 10.1111/nph.18662] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The Closterium peracerosum-strigosum-littorale complex (Closterium, Zygnematophyceae) has an isogamous mating system. Members of the Zygnematophyceae are the closest relatives to extant land plants and are distantly related to chlorophytic models, for which a genetic basis of mating type (MT) determination has been reported. We thus investigated MT determination in Closterium. We sequenced genomes representing the two MTs, mt+ and mt-, in Closterium and identified CpMinus1, a gene linked to the mt- phenotype. We analyzed its function using reverse genetics methods. CpMinus1 encodes a divergent RWP-RK domain-containing-like transcription factor and is specifically expressed during gamete differentiation. Introduction of CpMinus1 into an mt+ strain was sufficient to convert it to a phenotypically mt- strain, while CpMinus1-knockout mt- strains were phenotypically mt+. We propose that CpMinus1 is the major MT determinant that acts by evoking the mt- phenotype and suppressing the mt+ phenotype in heterothallic Closterium. CpMinus1 likely evolved independently in the Zygnematophyceae lineage, which lost an egg-sperm anisogamous mating system. mt- specific regions possibly constitute an MT locus flanked by common sequences that undergo some recombination.
Collapse
Affiliation(s)
- Hiroyuki Sekimoto
- Division of Material and Biological Sciences, Graduate School of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Ayumi Komiya
- Division of Material and Biological Sciences, Graduate School of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Natsumi Tsuyuki
- Division of Material and Biological Sciences, Graduate School of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Junko Kawai
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Naho Kanda
- Division of Material and Biological Sciences, Graduate School of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Ryo Ootsuki
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Yutaka Suzuki
- Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8568, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Asao Fujiyama
- Comparative Genomics Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Masahiro Kasahara
- Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8568, Japan
| | - Jun Abe
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Yuki Tsuchikane
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
- Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tomoaki Nishiyama
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kakumacho, Kanazawa, Ishikawa, 920-1192, Japan
| |
Collapse
|
11
|
Genome Evolution and the Future of Phylogenomics of Non-Avian Reptiles. Animals (Basel) 2023; 13:ani13030471. [PMID: 36766360 PMCID: PMC9913427 DOI: 10.3390/ani13030471] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 02/01/2023] Open
Abstract
Non-avian reptiles comprise a large proportion of amniote vertebrate diversity, with squamate reptiles-lizards and snakes-recently overtaking birds as the most species-rich tetrapod radiation. Despite displaying an extraordinary diversity of phenotypic and genomic traits, genomic resources in non-avian reptiles have accumulated more slowly than they have in mammals and birds, the remaining amniotes. Here we review the remarkable natural history of non-avian reptiles, with a focus on the physical traits, genomic characteristics, and sequence compositional patterns that comprise key axes of variation across amniotes. We argue that the high evolutionary diversity of non-avian reptiles can fuel a new generation of whole-genome phylogenomic analyses. A survey of phylogenetic investigations in non-avian reptiles shows that sequence capture-based approaches are the most commonly used, with studies of markers known as ultraconserved elements (UCEs) especially well represented. However, many other types of markers exist and are increasingly being mined from genome assemblies in silico, including some with greater information potential than UCEs for certain investigations. We discuss the importance of high-quality genomic resources and methods for bioinformatically extracting a range of marker sets from genome assemblies. Finally, we encourage herpetologists working in genomics, genetics, evolutionary biology, and other fields to work collectively towards building genomic resources for non-avian reptiles, especially squamates, that rival those already in place for mammals and birds. Overall, the development of this cross-amniote phylogenomic tree of life will contribute to illuminate interesting dimensions of biodiversity across non-avian reptiles and broader amniotes.
Collapse
|
12
|
Hejníčková M, Dalíková M, Zrzavá M, Marec F, Lorite P, Montiel EE. Accumulation of retrotransposons contributes to W chromosome differentiation in the willow beauty Peribatodes rhomboidaria (Lepidoptera: Geometridae). Sci Rep 2023; 13:534. [PMID: 36631492 PMCID: PMC9834309 DOI: 10.1038/s41598-023-27757-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
The W chromosome of Lepidoptera is typically gene-poor, repeat-rich and composed of heterochromatin. Pioneering studies investigating this chromosome reported an abundance of mobile elements. However, the actual composition of the W chromosome varies greatly between species, as repeatedly demonstrated by comparative genomic hybridization (CGH) or fluorescence in situ hybridization (FISH). Here we present an analysis of repeats on the W chromosome in the willow beauty, Peribatodes rhomboidaria (Geometridae), a species in which CGH predicted an abundance of W-enriched or W-specific sequences. Indeed, comparative analysis of male and female genomes using RepeatExplorer identified ten putative W chromosome-enriched repeats, most of which are LTR or LINE mobile elements. We analysed the two most abundant: PRW LINE-like and PRW Bel-Pao. The results of FISH mapping and bioinformatic analysis confirmed their enrichment on the W chromosome, supporting the hypothesis that mobile elements are the driving force of W chromosome differentiation in Lepidoptera. As the W chromosome is highly underrepresented in chromosome-level genome assemblies of Lepidoptera, this recently introduced approach, combining bioinformatic comparative genome analysis with molecular cytogenetics, provides an elegant tool for studying this elusive and rapidly evolving part of the genome.
Collapse
Affiliation(s)
- Martina Hejníčková
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
- Institute of Entomology, Biology Centre CAS, České Budějovice, Czech Republic.
| | - Martina Dalíková
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Magda Zrzavá
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Entomology, Biology Centre CAS, České Budějovice, Czech Republic
| | - František Marec
- Institute of Entomology, Biology Centre CAS, České Budějovice, Czech Republic
| | - Pedro Lorite
- Department of Experimental Biology, Genetics Area, University of Jaén, Jaén, Spain
| | - Eugenia E Montiel
- Department of Experimental Biology, Genetics Area, University of Jaén, Jaén, Spain
| |
Collapse
|
13
|
Han W, Liu L, Wang J, Wei H, Li Y, Zhang L, Guo Z, Li Y, Liu T, Zeng Q, Xing Q, Shu Y, Wang T, Yang Y, Zhang M, Li R, Yu J, Pu Z, Lv J, Lian S, Hu J, Hu X, Bao Z, Bao L, Zhang L, Wang S. Ancient homomorphy of molluscan sex chromosomes sustained by reversible sex-biased genes and sex determiner translocation. Nat Ecol Evol 2022; 6:1891-1906. [PMID: 36280781 DOI: 10.1038/s41559-022-01898-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/05/2022] [Indexed: 12/15/2022]
Abstract
Contrary to classic theory prediction, sex-chromosome homomorphy is prevalent in the animal kingdom but it is unclear how ancient homomorphic sex chromosomes avoid chromosome-scale degeneration. Molluscs constitute the second largest, Precambrian-originated animal phylum and have ancient, uncharacterized homomorphic sex chromosomes. Here, we profile eight genomes of the bivalve mollusc family of Pectinidae in a phylogenetic context and show 350 million years sex-chromosome homomorphy, which is the oldest known sex-chromosome homomorphy in the animal kingdom, far exceeding the ages of well-known heteromorphic sex chromosomes such as 130-200 million years in mammals, birds and flies. The long-term undifferentiation of molluscan sex chromosomes is potentially sustained by the unexpected intertwined regulation of reversible sex-biased genes, together with the lack of sexual dimorphism and occasional sex chromosome turnover. The pleiotropic constraint of regulation of reversible sex-biased genes is widely present in ancient homomorphic sex chromosomes and might be resolved in heteromorphic sex chromosomes through gene duplication followed by subfunctionalization. The evolutionary dynamics of sex chromosomes suggest a mechanism for 'inheritance' turnover of sex-determining genes that is mediated by translocation of a sex-determining enhancer. On the basis of these findings, we propose an evolutionary model for the long-term preservation of homomorphic sex chromosomes.
Collapse
Affiliation(s)
- Wentao Han
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Liangjie Liu
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jing Wang
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Huilan Wei
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yuli Li
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lijing Zhang
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhenyi Guo
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yajuan Li
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Tian Liu
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Qifan Zeng
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Qiang Xing
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ya Shu
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Tong Wang
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yaxin Yang
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Meiwei Zhang
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Ruojiao Li
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jiachen Yu
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhongqi Pu
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jia Lv
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Shanshan Lian
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jingjie Hu
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Xiaoli Hu
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhenmin Bao
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Lisui Bao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China.
| | - Lingling Zhang
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Shi Wang
- Sars-Fang Centre & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China.
| |
Collapse
|
14
|
Li X, Gao R, Chen G, Price AL, Øksnebjerg DB, Hosner PA, Zhou Y, Zhang G, Feng S. Draft genome assemblies of four manakins. Sci Data 2022; 9:564. [PMID: 36100590 PMCID: PMC9470731 DOI: 10.1038/s41597-022-01680-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/04/2022] [Indexed: 11/23/2022] Open
Abstract
Manakins are a family of small suboscine passerine birds characterized by their elaborate courtship displays, non-monogamous mating system, and sexual dimorphism. This family has served as a good model for the study of sexual selection. Here we present genome assemblies of four manakin species, including Cryptopipo holochlora, Dixiphia pipra (also known as Pseudopipra pipra), Machaeropterus deliciosus and Masius chrysopterus, generated by Single-tube Long Fragment Read (stLFR) technology. The assembled genome sizes ranged from 1.10 Gb to 1.19 Gb, with average scaffold N50 of 29 Mb and contig N50 of 169 Kb. On average, 12,055 protein-coding genes were annotated in the genomes, and 9.79% of the genomes were annotated as repetitive elements. We further identified 75 Mb of Z-linked sequences in manakins, containing 585 to 751 genes and an ~600 Kb pseudoautosomal region (PAR). One notable finding from these Z-linked sequences is that a possible Z-to-autosome/PAR reversal could have occurred in M. chrysopterus. These de novo genomes will contribute to a deeper understanding of evolutionary history and sexual selection in manakins.
Collapse
Affiliation(s)
- Xuemei Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Rongsheng Gao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Guangji Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Alivia Lee Price
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
| | - Daniel Bilyeli Øksnebjerg
- GLOBE Institute, Section for Evolutionary Genomics, University of Copenhagen, Copenhagen, Øster Farimagsgade 5, 1014, Copenhagen, Denmark
| | - Peter Andrew Hosner
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
- Villum Center for Global Mountain Biodiversity, Biodiversity Section, GLOBE Institute, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| | - Yang Zhou
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Guojie Zhang
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
- Evolutionary & Organismal Biology Research Center, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, 314102, China
| | - Shaohong Feng
- Evolutionary & Organismal Biology Research Center, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China.
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, 314102, China.
| |
Collapse
|
15
|
Schield DR, Perry BW, Card DC, Pasquesi GIM, Westfall AK, Mackessy SP, Castoe TA. The Rattlesnake W Chromosome: A GC-Rich Retroelement Refugium with Retained Gene Function Across Ancient Evolutionary Strata. Genome Biol Evol 2022; 14:evac116. [PMID: 35867356 PMCID: PMC9447483 DOI: 10.1093/gbe/evac116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2022] [Indexed: 11/18/2022] Open
Abstract
Sex chromosomes diverge after the establishment of recombination suppression, resulting in differential sex-linkage of genes involved in genetic sex determination and dimorphic traits. This process produces systems of male or female heterogamety wherein the Y and W chromosomes are only present in one sex and are often highly degenerated. Sex-limited Y and W chromosomes contain valuable information about the evolutionary transition from autosomes to sex chromosomes, yet detailed characterizations of the structure, composition, and gene content of sex-limited chromosomes are lacking for many species. In this study, we characterize the female-specific W chromosome of the prairie rattlesnake (Crotalus viridis) and evaluate how recombination suppression and other processes have shaped sex chromosome evolution in ZW snakes. Our analyses indicate that the rattlesnake W chromosome is over 80% repetitive and that an abundance of GC-rich mdg4 elements has driven an overall high degree of GC-richness despite a lack of recombination. The W chromosome is also highly enriched for repeat sequences derived from endogenous retroviruses and likely acts as a "refugium" for these and other retroelements. We annotated 219 putatively functional W-linked genes across at least two evolutionary strata identified based on estimates of sequence divergence between Z and W gametologs. The youngest of these strata is relatively gene-rich, however gene expression across strata suggests retained gene function amidst a greater degree of degeneration following ancient recombination suppression. Functional annotation of W-linked genes indicates a specialization of the W chromosome for reproductive and developmental function since recombination suppression from the Z chromosome.
Collapse
Affiliation(s)
- Drew R Schield
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, USA
| | - Blair W Perry
- Department of Biology, University of Texas at Arlington, Arlington, Texas, USA
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | - Daren C Card
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Giulia I M Pasquesi
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | - Aundrea K Westfall
- Department of Biology, University of Texas at Arlington, Arlington, Texas, USA
| | - Stephen P Mackessy
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado, USA
| | - Todd A Castoe
- Department of Biology, University of Texas at Arlington, Arlington, Texas, USA
| |
Collapse
|
16
|
Hearn KE, Koch EL, Stankowski S, Butlin RK, Faria R, Johannesson K, Westram AM. Differing associations between sex determination and sex‐linked inversions in two ecotypes of
Littorina saxatilis. Evol Lett 2022; 6:358-374. [PMID: 36254259 PMCID: PMC9554762 DOI: 10.1002/evl3.295] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 07/07/2022] [Accepted: 07/20/2022] [Indexed: 12/14/2022] Open
Abstract
Sexual antagonism is a common hypothesis for driving the evolution of sex chromosomes, whereby recombination suppression is favored between sexually antagonistic loci and the sex‐determining locus to maintain beneficial combinations of alleles. This results in the formation of a sex‐determining region. Chromosomal inversions may contribute to recombination suppression but their precise role in sex chromosome evolution remains unclear. Because local adaptation is frequently facilitated through the suppression of recombination between adaptive loci by chromosomal inversions, there is potential for inversions that cover sex‐determining regions to be involved in local adaptation as well, particularly if habitat variation creates environment‐dependent sexual antagonism. With these processes in mind, we investigated sex determination in a well‐studied example of local adaptation within a species: the intertidal snail, Littorina saxatilis. Using SNP data from a Swedish hybrid zone, we find novel evidence for a female‐heterogametic sex determination system that is restricted to one ecotype. Our results suggest that four putative chromosomal inversions, two previously described and two newly discovered, span the putative sex chromosome pair. We determine their differing associations with sex, which suggest distinct strata of differing ages. The same inversions are found in the second ecotype but do not show any sex association. The striking disparity in inversion‐sex associations between ecotypes that are connected by gene flow across a habitat transition that is just a few meters wide indicates a difference in selective regime that has produced a distinct barrier to the spread of the newly discovered sex‐determining region between ecotypes. Such sex chromosome‐environment interactions have not previously been uncovered in L. saxatilis and are known in few other organisms. A combination of both sex‐specific selection and divergent natural selection is required to explain these highly unusual patterns.
Collapse
Affiliation(s)
- Katherine E. Hearn
- Ecology and Evolutionary Biology, School of Biosciences University of Sheffield Sheffield S10 2TN United Kingdom
| | - Eva L. Koch
- Ecology and Evolutionary Biology, School of Biosciences University of Sheffield Sheffield S10 2TN United Kingdom
- Department of Zoology University of Cambridge Cambridge CB2 3EJ United Kingdom
| | - Sean Stankowski
- Ecology and Evolutionary Biology, School of Biosciences University of Sheffield Sheffield S10 2TN United Kingdom
- ISTA (Institute of Science and Technology Austria) Klosterneuburg 3400 Austria
| | - Roger K. Butlin
- Ecology and Evolutionary Biology, School of Biosciences University of Sheffield Sheffield S10 2TN United Kingdom
- Department of Marine Sciences University of Gothenburg Strömstad SE‐45296 Sweden
| | - Rui Faria
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado Campus de Vairão, Universidade do Porto Vairão 4485‐661 Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO Campus de Vairão, Universidade do Porto Vairão 4485‐661 Portugal
| | - Kerstin Johannesson
- Department of Marine Sciences University of Gothenburg Strömstad SE‐45296 Sweden
| | - Anja M. Westram
- ISTA (Institute of Science and Technology Austria) Klosterneuburg 3400 Austria
- Faculty of Biosciences and Aquaculture Nord University Bodø 8026 Norway
| |
Collapse
|
17
|
Meisel RP. Ecology and the evolution of sex chromosomes. J Evol Biol 2022; 35:1601-1618. [PMID: 35950939 DOI: 10.1111/jeb.14074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022]
Abstract
Sex chromosomes are common features of animal genomes, often carrying a sex determination gene responsible for initiating the development of sexually dimorphic traits. The specific chromosome that serves as the sex chromosome differs across taxa as a result of fusions between sex chromosomes and autosomes, along with sex chromosome turnover-autosomes becoming sex chromosomes and sex chromosomes 'reverting' back to autosomes. In addition, the types of genes on sex chromosomes frequently differ from the autosomes, and genes on sex chromosomes often evolve faster than autosomal genes. Sex-specific selection pressures, such as sexual antagonism and sexual selection, are hypothesized to be responsible for sex chromosome turnovers, the unique gene content of sex chromosomes and the accelerated evolutionary rates of genes on sex chromosomes. Sex-specific selection has pronounced effects on sex chromosomes because their sex-biased inheritance can tilt the balance of selection in favour of one sex. Despite the general consensus that sex-specific selection affects sex chromosome evolution, most population genetic models are agnostic as to the specific sources of these sex-specific selection pressures, and many of the details about the effects of sex-specific selection remain unresolved. Here, I review the evidence that ecological factors, including variable selection across heterogeneous environments and conflicts between sexual and natural selection, can be important determinants of sex-specific selection pressures that shape sex chromosome evolution. I also explain how studying the ecology of sex chromosome evolution can help us understand important and unresolved aspects of both sex chromosome evolution and sex-specific selection.
Collapse
Affiliation(s)
- Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| |
Collapse
|
18
|
Zhang H, Sigeman H, Hansson B. Assessment of phylogenetic approaches to study the timing of recombination cessation on sex chromosomes. J Evol Biol 2022; 35:1721-1733. [PMID: 35895083 PMCID: PMC10086819 DOI: 10.1111/jeb.14068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/18/2022] [Accepted: 06/26/2022] [Indexed: 12/01/2022]
Abstract
The evolution of sex chromosomes is hypothesized to be punctuated by consecutive recombination cessation events, forming "evolutionary strata" that ceased to recombine at different time points. The demarcation of evolutionary strata is often assessed by estimates of the timing of recombination cessation (tRC ) along the sex chromosomes, commonly inferred from the level of synonymous divergence or with species phylogenies at gametologous (X-Y or Z-W) sequence data. However, drift and selection affect sequences unpredictably and introduce uncertainty when inferring tRC . Here, we assess two alternative phylogenetic approaches to estimate tRC ; (i) the expected likelihood weight (ELW) approach that finds the most likely topology among a set of hypothetical topologies and (ii) the BEAST approach that estimates tRC with specified calibration priors on a reference species topology. By using Z and W gametologs of an old and a young evolutionary stratum on the neo-sex chromosome of Sylvioidea songbirds, we show that the ELW and BEAST approaches yield similar tRC estimates, and that both outperform two frequently applied approaches utilizing synonymous substitution rates (dS) and maximum likelihood (ML) trees, respectively. Moreover, we demonstrate that both ELW and BEAST provide more precise tRC estimates when sequences of multiple species are included in the analyses.
Collapse
Affiliation(s)
- Hongkai Zhang
- Department of Biology, Lund University, Lund, Sweden
| | - Hanna Sigeman
- Department of Biology, Lund University, Lund, Sweden
| | - Bengt Hansson
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
19
|
Cīrulis A, Hansson B, Abbott JK. Sex-limited chromosomes and non-reproductive traits. BMC Biol 2022; 20:156. [PMID: 35794589 PMCID: PMC9261002 DOI: 10.1186/s12915-022-01357-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 06/22/2022] [Indexed: 12/03/2022] Open
Abstract
Sex chromosomes are typically viewed as having originated from a pair of autosomes, and differentiated as the sex-limited chromosome (e.g. Y) has degenerated by losing most genes through cessation of recombination. While often thought that degenerated sex-limited chromosomes primarily affect traits involved in sex determination and sex cell production, accumulating evidence suggests they also influence traits not sex-limited or directly involved in reproduction. Here, we provide an overview of the effects of sex-limited chromosomes on non-reproductive traits in XY, ZW or UV sex determination systems, and discuss evolutionary processes maintaining variation at sex-limited chromosomes and molecular mechanisms affecting non-reproductive traits.
Collapse
Affiliation(s)
- Aivars Cīrulis
- Department of Biology, Lund University, 223 62, Lund, Sweden.
| | - Bengt Hansson
- Department of Biology, Lund University, 223 62, Lund, Sweden
| | | |
Collapse
|
20
|
Jay P, Tezenas E, Véber A, Giraud T. Sheltering of deleterious mutations explains the stepwise extension of recombination suppression on sex chromosomes and other supergenes. PLoS Biol 2022; 20:e3001698. [PMID: 35853091 PMCID: PMC9295944 DOI: 10.1371/journal.pbio.3001698] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/03/2022] [Indexed: 12/19/2022] Open
Abstract
Many organisms have sex chromosomes with large nonrecombining regions that have expanded stepwise, generating "evolutionary strata" of differentiation. The reasons for this remain poorly understood, but the principal hypotheses proposed to date are based on antagonistic selection due to differences between sexes. However, it has proved difficult to obtain empirical evidence of a role for sexually antagonistic selection in extending recombination suppression, and antagonistic selection has been shown to be unlikely to account for the evolutionary strata observed on fungal mating-type chromosomes. We show here, by mathematical modeling and stochastic simulation, that recombination suppression on sex chromosomes and around supergenes can expand under a wide range of parameter values simply because it shelters recessive deleterious mutations, which are ubiquitous in genomes. Permanently heterozygous alleles, such as the male-determining allele in XY systems, protect linked chromosomal inversions against the expression of their recessive mutation load, leading to the successive accumulation of inversions around these alleles without antagonistic selection. Similar results were obtained with models assuming recombination-suppressing mechanisms other than chromosomal inversions and for supergenes other than sex chromosomes, including those without XY-like asymmetry, such as fungal mating-type chromosomes. However, inversions capturing a permanently heterozygous allele were found to be less likely to spread when the mutation load segregating in populations was lower (e.g., under large effective population sizes or low mutation rates). This may explain why sex chromosomes remain homomorphic in some organisms but are highly divergent in others. Here, we model a simple and testable hypothesis explaining the stepwise extensions of recombination suppression on sex chromosomes, mating-type chromosomes, and supergenes in general.
Collapse
Affiliation(s)
- Paul Jay
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, 91190, Gif-sur-Yvette, France
| | - Emilie Tezenas
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, 91190, Gif-sur-Yvette, France
- Univ. Lille, CNRS, UMR 8198 –Evo-Eco-Paleo, F-59000 Lille, France
- Université Paris Cité, CNRS, MAP 5, F-75006 Paris, France
| | - Amandine Véber
- Université Paris Cité, CNRS, MAP 5, F-75006 Paris, France
| | - Tatiana Giraud
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, 91190, Gif-sur-Yvette, France
| |
Collapse
|
21
|
Steinberg ER, Bressa MJ, Mudry MD. Sex chromosome systems in Neotropical Primates: What have we learnt so far from cytogenetics and genomics? J Evol Biol 2022; 35:1589-1600. [PMID: 35731796 DOI: 10.1111/jeb.14039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/10/2022] [Accepted: 05/26/2022] [Indexed: 11/29/2022]
Abstract
Neotropical Primates (Platyrrhini) show great diversity in their life histories, ecology, behaviour and genetics. This diversity extends to their chromosome complements, both to autosomes and to sex chromosomes. In this contribution, we will review what is currently known about sex chromosomes in this group, both from cytogenetic and from genomic evidence. The X and Y chromosomes in Neotropical Primates, also known as New World Monkeys, have striking structural differences compared with Old World Monkeys when Catarrhini sex chromosomes are considered. The XY bivalent displays a different meiotic behaviour in prophase I, and their Y chromosome shows extensive genomic differences. Even though the most widespread sex chromosome system is the XX/XY and thus considered the ancestral one for Platyrrhini, modifications of this sexual system are observed within this group. Multiple sex chromosome systems originated from Y-autosome translocations were described in several genera (Aotus, Callimico and Alouatta). In the howler monkeys, genus Alouatta, an independent origin of the sexual systems in South American and Mesoamerican species was postulated. All the above-mentioned evidence suggests that the Y chromosome of Platyrrhini has a different evolutionary history compared with the Catarrhini Y. There is still much to understand regarding their sex chromosome systems.
Collapse
Affiliation(s)
- Eliana Ruth Steinberg
- Grupo de Investigación en Biología Evolutiva (GIBE). Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Departamento de Ecología, Genética y Evolución (EGE), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), CONICET, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - María José Bressa
- Grupo de Citogenética de Insectos. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Departamento de Ecología, Genética y Evolución (EGE), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), CONICET, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Marta Dolores Mudry
- Grupo de Investigación en Biología Evolutiva (GIBE). Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Departamento de Ecología, Genética y Evolución (EGE), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), CONICET, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
22
|
Triay C, Courcelle M, Caminade P, Bezault E, Baroiller JF, Kocher TD, D'Cotta H. Polymorphism of Sex Determination Amongst Wild Populations Suggests its Rapid Turnover Within the Nile Tilapia Species. Front Genet 2022; 13:820772. [PMID: 35656328 PMCID: PMC9152217 DOI: 10.3389/fgene.2022.820772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Sex-determining regions have been identified in the Nile tilapia on linkage groups (LG) 1, 20 and 23, depending on the domesticated strains used. Sex determining studies on wild populations of this species are scarce. Previous work on two wild populations, from Lake Volta (Ghana) and from Lake Koka (Ethiopia), found the sex-determining region on LG23. These populations have a Y-specific tandem duplication containing two copies of the Anti-Müllerian Hormone amh gene (named amhY and amhΔY). Here, we performed a whole-genome short-reads analysis using male and female pools on a third wild population from Lake Hora (Ethiopia). We found no association of sex with LG23, and no duplication of the amh gene. Furthermore, we found no evidence of sex linkage on LG1 or on any other LGs. Long read whole genome sequencing of a male from each population confirmed the absence of a duplicated region on LG23 in the Lake Hora male. In contrast, long reads established the structure of the Y haplotype in Koka and Kpandu males and the order of the genes in the duplicated region. Phylogenies constructed on the nuclear and mitochondrial genomes, showed a closer relationship between the two Ethiopian populations compared to the Ghanaian population, implying an absence of the LG23Y sex-determination region in Lake Hora males. Our study supports the hypothesis that the amh region is not the sex-determining region in Hora males. The absence of the Y amh duplication in the Lake Hora population reflects a rapid change in sex determination within Nile tilapia populations. The genetic basis of sex determination in the Lake Hora population remains unknown.
Collapse
Affiliation(s)
- Cécile Triay
- UMR116-Institut des Sciences de l'Evolution de Montpellier, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Campus International Baillarguet, Montpellier, France.,UMR-Institut des Sciences de l'Evolution de Montpellier, Centre National de la Recherche Scientifique, Institut de Recherche Pour le Développement, Ecole Pratique des Hautes Etudes, University of Montpellier, Montpellier, France
| | - Maxime Courcelle
- UMR-Institut des Sciences de l'Evolution de Montpellier, Centre National de la Recherche Scientifique, Institut de Recherche Pour le Développement, Ecole Pratique des Hautes Etudes, University of Montpellier, Montpellier, France
| | - Pierre Caminade
- UMR-Institut des Sciences de l'Evolution de Montpellier, Centre National de la Recherche Scientifique, Institut de Recherche Pour le Développement, Ecole Pratique des Hautes Etudes, University of Montpellier, Montpellier, France
| | - Etienne Bezault
- UMR BOREA, CNRS-7208/MNHN/UPMC/IRD-207/UCN/UA, Université des Antilles, Guadeloupe, France
| | - Jean-François Baroiller
- UMR116-Institut des Sciences de l'Evolution de Montpellier, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Campus International Baillarguet, Montpellier, France.,UMR-Institut des Sciences de l'Evolution de Montpellier, Centre National de la Recherche Scientifique, Institut de Recherche Pour le Développement, Ecole Pratique des Hautes Etudes, University of Montpellier, Montpellier, France
| | - Thomas D Kocher
- Department of Biology, University of Maryland, College Park, MD, United States
| | - Helena D'Cotta
- UMR116-Institut des Sciences de l'Evolution de Montpellier, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Campus International Baillarguet, Montpellier, France.,UMR-Institut des Sciences de l'Evolution de Montpellier, Centre National de la Recherche Scientifique, Institut de Recherche Pour le Développement, Ecole Pratique des Hautes Etudes, University of Montpellier, Montpellier, France
| |
Collapse
|
23
|
Gatto KP, Timoshevskaya N, Smith JJ, Lourenço LB. Sequencing of laser captured Z and W chromosomes of the tocantins paradoxical frog (Pseudis tocantins) provides insights on repeatome and chromosomal homology. J Evol Biol 2022; 35:1659-1674. [PMID: 35642451 DOI: 10.1111/jeb.14027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/06/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022]
Abstract
Pseudis tocantins is the only frog species of the hylid genus Pseudis that possesses highly heteromorphic sex chromosomes. Z and W chromosomes of Ps. tocantins differ in size, morphology, position of the nucleolar organizer region (NOR) and the amount and distribution of heterochromatin. A chromosomal inversion and heterochromatin amplification on the W chromosome were previously inferred to be involved in the evolution of this sex chromosome pair. Despite these findings, knowledge related to the molecular composition of the large heterochromatic band of this W chromosome is restricted to the PcP190 satellite DNA, and no data are available regarding the gene content of either the W or the Z chromosome of Ps. tocantins. Here, we sequenced microdissected Z and W chromosomes of this species to further resolve their molecular composition. Comparative genomic analysis suggests that Ps. tocantins sex chromosomes are likely homologous to chromosomes 4 and 10 of Xenopus tropicalis. Analyses of the repetitive DNA landscape in the Z and W assemblies allowed for the identification of several transposable elements and putative satellite DNA sequences. Finally, some transposable elements from the W assembly were found to be highly diverse and divergent from elements found elsewhere in the genome, suggesting a rapid amplification of these elements on the W chromosome.
Collapse
Affiliation(s)
- Kaleb Pretto Gatto
- Laboratory of Chromosome Studies, Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil.,Laboratory of Herpetology and Aquaculture Center, Department of Zoology, Institute of Biosciences, São Paulo State University, Rio Claro, Brazil
| | - Nataliya Timoshevskaya
- Department of Biology, College of Arts and Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Jeramiah J Smith
- Department of Biology, College of Arts and Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Luciana Bolsoni Lourenço
- Laboratory of Chromosome Studies, Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| |
Collapse
|
24
|
Li M, Xu X, Liu S, Fan G, Zhou Q, Chen S. The chromosome-level genome assembly of the Japanese yellowtail jack Seriola aureovittata provides insights into genome evolution and efficient oxygen transport. Mol Ecol Resour 2022; 22:2701-2712. [PMID: 35593537 DOI: 10.1111/1755-0998.13648] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 04/16/2022] [Accepted: 05/11/2022] [Indexed: 11/27/2022]
Abstract
Fishes of the genus Seriola are widely farmed and highly valued in global aquaculture production. To further understand their economically important traits and help improve aquaculture product quality and sustainability, we performed a chromosome-level genome construction for Seriola aureovittata. Combining two technologies, PacBio and BGISEQ-500, we assembled 649.86 Mb S. aureovittata genome sequences with a contig N50 of 22.21 Mb, and 98% of BUSCO genes were detected in total. The initial assembly was then further scaffolded into 24 pseudochromosomes using Hi-C data, indicating the high quality of the genome. Genome evolution analysis showed that many genes related to fatty acid metabolism and oxygen binding, or transport were expanded, which provided insights into the metabolic characteristics of fatty acids and efficient oxygen transport. Based on the genome data, we confirmed the evolutionary relationship of S. aureovittata, S. dorsalis and S. lalandi and identified chr12 as the putative sex chromosome of S. aureovittata. Our chromosome-level genome assembly provides a genetic foundation for the phylogenetic and taxonomic investigation of different Seriola species. Moreover, the genome will provide an important genomic resource for further biological and aquaculture studies of S. aureovittata.
Collapse
Affiliation(s)
- Ming Li
- Yellow Sea Fisheries Research Institute, CAFS, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Shandong Provincial Key Laboratory of Marine Fishery Biotechnology and Genetic Breeding, Qingdao, China
| | - Xiwen Xu
- Yellow Sea Fisheries Research Institute, CAFS, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Shandong Provincial Key Laboratory of Marine Fishery Biotechnology and Genetic Breeding, Qingdao, China
| | | | | | - Qian Zhou
- Yellow Sea Fisheries Research Institute, CAFS, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Shandong Provincial Key Laboratory of Marine Fishery Biotechnology and Genetic Breeding, Qingdao, China
| | - Songlin Chen
- Yellow Sea Fisheries Research Institute, CAFS, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.,Shandong Provincial Key Laboratory of Marine Fishery Biotechnology and Genetic Breeding, Qingdao, China
| |
Collapse
|
25
|
Bačovský V, Čegan R, Tihlaříková E, Neděla V, Hudzieczek V, Smrža L, Janíček T, Beneš V, Hobza R. Chemical genetics in Silene latifolia elucidate regulatory pathways involved in gynoecium development. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2354-2368. [PMID: 35045170 DOI: 10.1093/jxb/erab538] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Dioecious plants possess diverse sex determination systems and unique mechanisms of reproductive organ development; however, little is known about how sex-linked genes shape the expression of regulatory cascades that lead to developmental differences between sexes. In Silene latifolia, a dioecious plant with stable dimorphism in floral traits, early experiments suggested that female-regulator genes act on the factors that determine the boundaries of the flower whorls. To identify these regulators, we sequenced the transcriptome of male flowers with fully developed gynoecia, induced by rapid demethylation in the parental generation. Eight candidates were found to have a positive role in gynoecium promotion, floral organ size, and whorl boundary, and affect the expression of class B MADS-box flower genes. To complement our transcriptome analysis, we closely examined the floral organs in their native state using field emission environmental scanning electron microscopy, and examined the differences between females and androhermaphrodites in their placenta and ovule organization. Our results reveal the regulatory pathways potentially involved in sex-specific flower development in the classical model of dioecy, S. latifolia. These pathways include previously hypothesized and unknown female-regulator genes that act on the factors that determine the flower boundaries, and a negative regulator of anther development, SUPERMAN-like (SlSUP).
Collapse
Affiliation(s)
- Václav Bačovský
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Radim Čegan
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Eva Tihlaříková
- Environmental Electron Microscopy Group, Institute of Scientific Instruments of the Czech Academy of Sciences, Kralovopolska 147, 612 64 Brno, Czech Republic
| | - Vilém Neděla
- Environmental Electron Microscopy Group, Institute of Scientific Instruments of the Czech Academy of Sciences, Kralovopolska 147, 612 64 Brno, Czech Republic
| | - Vojtěch Hudzieczek
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Lubomír Smrža
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Tomáš Janíček
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Vladimír Beneš
- EMBL Genomics Core Facility, EMBL Heidelberg, Meyerhofstraße 1, D-69117 Heidelberg, Germany
| | - Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65 Brno, Czech Republic
| |
Collapse
|
26
|
Do Ty3/Gypsy Transposable Elements Play Preferential Roles in Sex Chromosome Differentiation? Life (Basel) 2022; 12:life12040522. [PMID: 35455013 PMCID: PMC9025612 DOI: 10.3390/life12040522] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/13/2022] [Accepted: 03/30/2022] [Indexed: 12/16/2022] Open
Abstract
Transposable elements (TEs) comprise a substantial portion of eukaryotic genomes. They have the unique ability to integrate into new locations and serve as the main source of genomic novelties by mediating chromosomal rearrangements and regulating portions of functional genes. Recent studies have revealed that TEs are abundant in sex chromosomes. In this review, we propose evolutionary relationships between specific TEs, such as Ty3/Gypsy, and sex chromosomes in different lineages based on the hypothesis that these elements contributed to sex chromosome differentiation processes. We highlight how TEs can drive the dynamics of sex-determining regions via suppression recombination under a selective force to affect the organization and structural evolution of sex chromosomes. The abundance of TEs in the sex-determining regions originates from TE-poor genomic regions, suggesting a link between TE accumulation and the emergence of the sex-determining regions. TEs are generally considered to be a hallmark of chromosome degeneration. Finally, we outline recent approaches to identify TEs and study their sex-related roles and effects in the differentiation and evolution of sex chromosomes.
Collapse
|
27
|
Lenormand T, Roze D. Y recombination arrest and degeneration in the absence of sexual dimorphism. Science 2022; 375:663-666. [PMID: 35143289 DOI: 10.1126/science.abj1813] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Current theory proposes that degenerated sex chromosomes-such as the mammalian Y-evolve through three steps: (i) recombination arrest, linking male-beneficial alleles to the Y chromosome; (ii) Y degeneration, resulting from the inefficacy of selection in the absence of recombination; and (iii) dosage compensation, correcting the resulting low expression of X-linked genes in males. We investigate a model of sex chromosome evolution that incorporates the coevolution of cis and trans regulators of gene expression. We show that the early emergence of dosage compensation favors the maintenance of Y-linked inversions by creating sex-antagonistic regulatory effects. This is followed by degeneration of these nonrecombining inversions caused by regulatory divergence between the X and Y chromosomes. In contrast to current theory, the whole process occurs without any selective pressure related to sexual dimorphism.
Collapse
Affiliation(s)
| | - Denis Roze
- CNRS, IRL 3614, Roscoff, France.,Sorbonne Université, Station Biologique de Roscoff, Roscoff, France
| |
Collapse
|
28
|
Ramos L, Antunes A. Decoding sex: Elucidating sex determination and how high-quality genome assemblies are untangling the evolutionary dynamics of sex chromosomes. Genomics 2022; 114:110277. [PMID: 35104609 DOI: 10.1016/j.ygeno.2022.110277] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 12/22/2021] [Accepted: 01/26/2022] [Indexed: 11/28/2022]
Abstract
Sexual reproduction is a diverse and widespread process. In gonochoristic species, the differentiation of sexes occurs through diverse mechanisms, influenced by environmental and genetic factors. In most vertebrates, a master-switch gene is responsible for triggering a sex determination network. However, only a few genes have acquired master-switch functions, and this process is associated with the evolution of sex-chromosomes, which have a significant influence in evolution. Additionally, their highly repetitive regions impose challenges for high-quality sequencing, even using high-throughput, state-of-the-art techniques. Here, we review the mechanisms involved in sex determination and their role in the evolution of species, particularly vertebrates, focusing on sex chromosomes and the challenges involved in sequencing these genomic elements. We also address the improvements provided by the growth of sequencing projects, by generating a massive number of near-gapless, telomere-to-telomere, chromosome-level, phased assemblies, increasing the number and quality of sex-chromosome sequences available for further studies.
Collapse
Affiliation(s)
- Luana Ramos
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| |
Collapse
|
29
|
Ruzicka F, Connallon T. An unbiased test reveals no enrichment of sexually antagonistic polymorphisms on the human X chromosome. Proc Biol Sci 2022; 289:20212314. [PMID: 35078366 PMCID: PMC8790371 DOI: 10.1098/rspb.2021.2314] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/21/2021] [Indexed: 01/07/2023] Open
Abstract
Mutations with beneficial effects in one sex can have deleterious effects in the other. Such 'sexually antagonistic' (SA) variants contribute to variation in life-history traits and overall fitness, yet their genomic distribution is poorly resolved. Theory predicts that SA variants could be enriched on the X chromosome or autosomes, yet current empirical tests face two formidable challenges: (i) identifying SA selection in genomic data is difficult; and (ii) metrics of SA variation show persistent biases towards the X, even when SA variants are randomly distributed across the genome. Here, we present an unbiased test of the theory that SA variants are enriched on the X. We first develop models for reproductive FST-a metric for quantifying sex-differential (including SA) effects of genetic variants on lifetime reproductive success-that control for X-linked biases. Comparing data from approximately 250 000 UK Biobank individuals to our models, we find FST elevations consistent with both X-linked and autosomal SA polymorphisms affecting reproductive success in humans. However, the extent of FST elevations does not differ from a model in which SA polymorphisms are randomly distributed across the genome. We argue that the polygenic nature of SA variation, along with sex asymmetries in SA effects, might render X-linked enrichment of SA polymorphisms unlikely.
Collapse
Affiliation(s)
- Filip Ruzicka
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Tim Connallon
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
30
|
Kratochvíl L, Stöck M, Rovatsos M, Bullejos M, Herpin A, Jeffries DL, Peichel CL, Perrin N, Valenzuela N, Pokorná MJ. Expanding the classical paradigm: what we have learnt from vertebrates about sex chromosome evolution. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200097. [PMID: 34304593 PMCID: PMC8310716 DOI: 10.1098/rstb.2020.0097] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2021] [Indexed: 12/15/2022] Open
Abstract
Until recently, the field of sex chromosome evolution has been dominated by the canonical unidirectional scenario, first developed by Muller in 1918. This model postulates that sex chromosomes emerge from autosomes by acquiring a sex-determining locus. Recombination reduction then expands outwards from this locus, to maintain its linkage with sexually antagonistic/advantageous alleles, resulting in Y or W degeneration and potentially culminating in their disappearance. Based mostly on empirical vertebrate research, we challenge and expand each conceptual step of this canonical model and present observations by numerous experts in two parts of a theme issue of Phil. Trans. R. Soc. B. We suggest that greater theoretical and empirical insights into the events at the origins of sex-determining genes (rewiring of the gonadal differentiation networks), and a better understanding of the evolutionary forces responsible for recombination suppression are required. Among others, crucial questions are: Why do sex chromosome differentiation rates and the evolution of gene dose regulatory mechanisms between male versus female heterogametic systems not follow earlier theory? Why do several lineages not have sex chromosomes? And: What are the consequences of the presence of (differentiated) sex chromosomes for individual fitness, evolvability, hybridization and diversification? We conclude that the classical scenario appears too reductionistic. Instead of being unidirectional, we show that sex chromosome evolution is more complex than previously anticipated and principally forms networks, interconnected to potentially endless outcomes with restarts, deletions and additions of new genomic material. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)'.
Collapse
Affiliation(s)
- Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague, Czech Republic
| | - Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries - IGB (Forschungsverbund Berlin), Müggelseedamm 301, 12587 Berlin, Germany
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Michail Rovatsos
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague, Czech Republic
| | - Mónica Bullejos
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Las Lagunillas Campus S/N, 23071 Jaén, Spain
| | - Amaury Herpin
- INRAE, LPGP, 35000 Rennes, France
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, People's Republic of China
| | - Daniel L. Jeffries
- Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Catherine L. Peichel
- Institute of Ecology and Evolution, University of Bern, CH-3012 Bern, Switzerland
| | - Nicolas Perrin
- Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Nicole Valenzuela
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Martina Johnson Pokorná
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, Liběchov, Czech Republic
| |
Collapse
|
31
|
Li SF, Lv CC, Lan LN, Jiang KL, Zhang YL, Li N, Deng CL, Gao WJ. DNA methylation is involved in sexual differentiation and sex chromosome evolution in the dioecious plant garden asparagus. HORTICULTURE RESEARCH 2021; 8:198. [PMID: 34465747 PMCID: PMC8408194 DOI: 10.1038/s41438-021-00633-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/25/2021] [Accepted: 06/01/2021] [Indexed: 05/04/2023]
Abstract
DNA methylation is a crucial regulatory mechanism in many biological processes. However, limited studies have dissected the contribution of DNA methylation to sexual differentiation in dioecious plants. In this study, we investigated the variances in methylation and transcriptional patterns of male and female flowers of garden asparagus. Compared with male flowers, female flowers at the same stages showed higher levels of DNA methylation. Both male and female flowers gained DNA methylation globally from the premeiotic to meiotic stages. Detailed analysis revealed that the increased DNA methylation was largely due to increased CHH methylation. Correlation analysis of differentially expressed genes and differentially methylated regions suggested that DNA methylation might not have contributed to the expression variation of the sex-determining genes SOFF and TDF1 but probably played important roles in sexual differentiation and flower development of garden asparagus. The upregulated genes AoMS1, AoLAP3, AoAMS, and AoLAP5 with varied methylated CHH regions might have been involved in sexual differentiation and flower development of garden asparagus. Plant hormone signaling genes and transcription factor genes also participated in sexual differentiation and flower development with potential epigenetic regulation. In addition, the CG and CHG methylation levels in the Y chromosome were notably higher than those in the X chromosome, implying that DNA methylation might have been involved in Y chromosome evolution. These data provide insights into the epigenetic modification of sexual differentiation and flower development and improve our understanding of sex chromosome evolution in garden asparagus.
Collapse
Affiliation(s)
- Shu-Fen Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Can-Can Lv
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Li-Na Lan
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Kai-Lu Jiang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Yu-Lan Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Ning Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Chuan-Liang Deng
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Wu-Jun Gao
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
32
|
Hejníčková M, Dalíková M, Potocký P, Tammaru T, Trehubenko M, Kubíčková S, Marec F, Zrzavá M. Degenerated, Undifferentiated, Rearranged, Lost: High Variability of Sex Chromosomes in Geometridae (Lepidoptera) Identified by Sex Chromatin. Cells 2021; 10:cells10092230. [PMID: 34571879 PMCID: PMC8468057 DOI: 10.3390/cells10092230] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 02/04/2023] Open
Abstract
Sex chromatin is a conspicuous body that occurs in polyploid nuclei of most lepidopteran females and consists of numerous copies of the W sex chromosome. It is also a cytogenetic tool used to rapidly assess the W chromosome presence in Lepidoptera. However, certain chromosomal features could disrupt the formation of sex chromatin and lead to the false conclusion that the W chromosome is absent in the respective species. Here we tested the sex chromatin presence in 50 species of Geometridae. In eight selected species with either missing, atypical, or normal sex chromatin patterns, we performed a detailed karyotype analysis by means of comparative genomic hybridization (CGH) and fluorescence in situ hybridization (FISH). The results showed a high diversity of W chromosomes and clarified the reasons for atypical sex chromatin, including the absence or poor differentiation of W, rearrangements leading to the neo-W emergence, possible association with the nucleolus, and the existence of multiple W chromosomes. In two species, we detected intraspecific variability in the sex chromatin status and sex chromosome constitution. We show that the sex chromatin is not a sufficient marker of the W chromosome presence, but it may be an excellent tool to pinpoint species with atypical sex chromosomes.
Collapse
Affiliation(s)
- Martina Hejníčková
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic; (M.H.); (M.D.); (M.T.)
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (P.P.); (F.M.)
| | - Martina Dalíková
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic; (M.H.); (M.D.); (M.T.)
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (P.P.); (F.M.)
| | - Pavel Potocký
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (P.P.); (F.M.)
| | - Toomas Tammaru
- Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia;
| | - Marharyta Trehubenko
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic; (M.H.); (M.D.); (M.T.)
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (P.P.); (F.M.)
| | - Svatava Kubíčková
- Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic;
| | - František Marec
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (P.P.); (F.M.)
| | - Magda Zrzavá
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic; (M.H.); (M.D.); (M.T.)
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (P.P.); (F.M.)
- Correspondence:
| |
Collapse
|
33
|
Pajpach F, Wu T, Shearwin-Whyatt L, Jones K, Grützner F. Flavors of Non-Random Meiotic Segregation of Autosomes and Sex Chromosomes. Genes (Basel) 2021; 12:genes12091338. [PMID: 34573322 PMCID: PMC8471020 DOI: 10.3390/genes12091338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022] Open
Abstract
Segregation of chromosomes is a multistep process occurring both at mitosis and meiosis to ensure that daughter cells receive a complete set of genetic information. Critical components in the chromosome segregation include centromeres, kinetochores, components of sister chromatid and homologous chromosomes cohesion, microtubule organizing centres, and spindles. Based on the cytological work in the grasshopper Brachystola, it has been accepted for decades that segregation of homologs at meiosis is fundamentally random. This ensures that alleles on chromosomes have equal chance to be transmitted to progeny. At the same time mechanisms of meiotic drive and an increasing number of other examples of non-random segregation of autosomes and sex chromosomes provide insights into the underlying mechanisms of chromosome segregation but also question the textbook dogma of random chromosome segregation. Recent advances provide a better understanding of meiotic drive as a prominent force where cellular and chromosomal changes allow autosomes to bias their segregation. Less understood are mechanisms explaining observations that autosomal heteromorphism may cause biased segregation and regulate alternating segregation of multiple sex chromosome systems or translocation heterozygotes as an extreme case of non-random segregation. We speculate that molecular and cytological mechanisms of non-random segregation might be common in these cases and that there might be a continuous transition between random and non-random segregation which may play a role in the evolution of sexually antagonistic genes and sex chromosome evolution.
Collapse
Affiliation(s)
- Filip Pajpach
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; (F.P.); (L.S.-W.)
| | - Tianyu Wu
- Department of Central Laboratory, Clinical Laboratory, Jing’an District Centre Hospital of Shanghai and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China;
| | - Linda Shearwin-Whyatt
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; (F.P.); (L.S.-W.)
| | - Keith Jones
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RH, UK;
| | - Frank Grützner
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; (F.P.); (L.S.-W.)
- Correspondence:
| |
Collapse
|
34
|
Li M, Zhang R, Fan G, Xu W, Zhou Q, Wang L, Li W, Pang Z, Yu M, Liu Q, Liu X, Schartl M, Chen S. Reconstruction of the Origin of a Neo-Y Sex Chromosome and Its Evolution in the Spotted Knifejaw, Oplegnathus punctatus. Mol Biol Evol 2021; 38:2615-2626. [PMID: 33693787 PMCID: PMC8136494 DOI: 10.1093/molbev/msab056] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Sex chromosomes are a peculiar constituent of the genome because the evolutionary forces that fix the primary sex-determining gene cause genic degeneration and accumulation of junk DNA in the heterogametic partner. One of the most spectacular phenomena in sex chromosome evolution is the occurrence of neo-Y chromosomes, which lead to X1X2Y sex-determining systems. Such neo-sex chromosomes are critical for understanding the processes of sex chromosome evolution because they rejuvenate their total gene content. We assembled the male and female genomes at the chromosome level of the spotted knifejaw (Oplegnathus punctatus), which has a cytogenetically recognized neo-Y chromosome. The full assembly and annotation of all three sex chromosomes allowed us to reconstruct their evolutionary history. Contrary to other neo-Y chromosomes, the fusion to X2 is quite ancient, estimated at 48 Ma. Despite its old age and being even older in the X1 homologous region which carries a huge inversion that occurred as early as 55-48 Ma, genetic degeneration of the neo-Y appears to be only moderate. Transcriptomic analysis showed that sex chromosomes harbor 87 genes, which may serve important functions in the testis. The accumulation of such male-beneficial genes, a large inversion on the X1 homologous region and fusion to X2 appear to be the main drivers of neo-Y evolution in the spotted knifejaw. The availability of high-quality assemblies of the neo-Y and both X chromosomes make this fish an ideal model for a better understanding of the variability of sex determination mechanisms and of sex chromosome evolution.
Collapse
Affiliation(s)
- Ming Li
- Yellow Sea Fisheries Research Institute, CAFS; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, China
| | - Rui Zhang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | | | - Wenteng Xu
- Yellow Sea Fisheries Research Institute, CAFS; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, China
| | - Qian Zhou
- Yellow Sea Fisheries Research Institute, CAFS; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, China
| | - Lei Wang
- Yellow Sea Fisheries Research Institute, CAFS; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, China
| | - Wensheng Li
- Laizhou Mingbo Aquatic Product Co. Ltd., Laizhou, Shandong, China
| | - Zunfang Pang
- Laizhou Mingbo Aquatic Product Co. Ltd., Laizhou, Shandong, China
| | - Mengjun Yu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Qun Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Xin Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- Corresponding authors: E-mails: ; ;
| | - Manfred Schartl
- Entwicklungsbiochemie, University of Würzburg, Biozentrum, Würzburg, Germany
- Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, USA
- Corresponding authors: E-mails: ; ;
| | - Songlin Chen
- Yellow Sea Fisheries Research Institute, CAFS; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, China
- Corresponding authors: E-mails: ; ;
| |
Collapse
|
35
|
Vigoder FM, Araripe LO, Carvalho AB. Identification of the sex chromosome system in a sand fly species, Lutzomyia longipalpis s.l. G3 GENES|GENOMES|GENETICS 2021; 11:6310017. [PMID: 34849827 PMCID: PMC8496290 DOI: 10.1093/g3journal/jkab217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/10/2021] [Indexed: 11/13/2022]
Abstract
Abstract
In many animal species, sex determination is accomplished by heterogamety i.e., one of the sexes produces two types of gametes, which upon fertilization will direct the development toward males or females. Both male (“XY”) and female (“ZW”) heterogamety are known to occur and can be easily distinguished when the sex-chromosomes are morphologically different. However, this approach fails in cases of homomorphic sex chromosomes, such as the sand fly Lutzomyia longipalpis s.l. (Psychodidae, Diptera), which is the main vector of visceral leishmaniosis in Brazil. In order to identify the heterogametic sex in L. longipalpis s.l., we did a whole-genome sequencing of males and females separately and used the “Y chromosome Genome Scan” (YGS) method to find sex-specific sequences. Our results, which were confirmed by PCR, show that L. longipalpis s.l. has XY system. The YGS method can be especially useful in situations in which no morphological difference is observed in the sex-chromosomes or when fresh specimens are not readily available.
Collapse
Affiliation(s)
- Felipe M Vigoder
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, CCS, Rio de Janeiro sl A2-075 21941-971, Brazil
| | - Luciana O Araripe
- Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Antonio Bernardo Carvalho
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, CCS, Rio de Janeiro sl A2-075 21941-971, Brazil
| |
Collapse
|
36
|
Cornetti L, Ebert D. No evidence for genetic sex determination in Daphnia magna. ROYAL SOCIETY OPEN SCIENCE 2021; 8:202292. [PMID: 34150315 PMCID: PMC8206689 DOI: 10.1098/rsos.202292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
Mechanisms of sex determination (SD) differ widely across the tree of life. In genotypic sex determination (GSD), genetic elements determine whether individuals are male or female, while in environmental sex determination (ESD), external cues control the sex of the offspring. In cyclical parthenogens, females produce mostly asexual daughters, but environmental stimuli such as crowding, temperature or photoperiod may cause them to produce sons. In aphids, sons are induced by ESD, even though GSD is present, with females carrying two X chromosomes and males only one (X0 SD system). By contrast, although ESD exists in Daphnia, the two sexes were suggested to be genetically identical, based on a 1972 study on Daphnia magna (2n=20) that used three allozyme markers. This study cannot, however, rule out an X0 system, as all three markers may be located on autosomes. Motivated by the life cycle similarities of Daphnia and aphids, and the absence of karyotype information for Daphnia males, we tested for GSD (homomorphic sex chromosomes and X0) systems in D. magna using a whole-genome approach by comparing males and females of three genotypes. Our results confirm the absence of haploid chromosomes or haploid genomic regions in D. magna males as well as the absence of sex-linked genomic regions and sex-specific single-nucleotide polymorphisms. Within the limitations of the three studied populations here and the methods used, we suggest that our results make the possibility of genetic differences among sexes in the widely used Daphnia model system very unlikely.
Collapse
Affiliation(s)
- Luca Cornetti
- Department of Environmental Sciences, Zoology, University of Basel, 4051, Basel, Switzerland
| | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, 4051, Basel, Switzerland
| |
Collapse
|
37
|
Wiberg RAW, Tyukmaeva V, Hoikkala A, Ritchie MG, Kankare M. Cold adaptation drives population genomic divergence in the ecological specialist, Drosophila montana. Mol Ecol 2021; 30:3783-3796. [PMID: 34047417 DOI: 10.1111/mec.16003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/10/2021] [Accepted: 05/20/2021] [Indexed: 12/18/2022]
Abstract
Detecting signatures of ecological adaptation in comparative genomics is challenging, but analysing population samples with characterised geographic distributions, such as clinal variation, can help identify genes showing covariation with important ecological variation. Here, we analysed patterns of geographic variation in the cold-adapted species Drosophila montana across phenotypes, genotypes and environmental conditions and tested for signatures of cold adaptation in population genomic divergence. We first derived the climatic variables associated with the geographic distribution of 24 populations across two continents to trace the scale of environmental variation experienced by the species, and measured variation in the cold tolerance of the flies of six populations from different geographic contexts. We then performed pooled whole genome sequencing of these six populations, and used Bayesian methods to identify SNPs where genetic differentiation is associated with both climatic variables and the population phenotypic measurements, while controlling for effects of demography and population structure. The top candidate SNPs were enriched on the X and fourth chromosomes, and they also lay near genes implicated in other studies of cold tolerance and population divergence in this species and its close relatives. We conclude that ecological adaptation has contributed to the divergence of D. montana populations throughout the genome and in particular on the X and fourth chromosomes, which also showed highest interpopulation FST . This study demonstrates that ecological selection can drive genomic divergence at different scales, from candidate genes to chromosome-wide effects.
Collapse
Affiliation(s)
- R A W Wiberg
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
| | - V Tyukmaeva
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - A Hoikkala
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - M G Ritchie
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
| | - M Kankare
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
38
|
Meisel RP. The maintenance of polygenic sex determination depends on the dominance of fitness effects which are predictive of the role of sexual antagonism. G3 (BETHESDA, MD.) 2021; 11:6261074. [PMID: 33930135 PMCID: PMC8496315 DOI: 10.1093/g3journal/jkab149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/23/2021] [Indexed: 12/18/2022]
Abstract
In species with polygenic sex determination (PSD), multiple male- and female-determining loci on different proto-sex chromosomes segregate as polymorphisms within populations. The extent to which these polymorphisms are at stable equilibria is not yet resolved. Previous work demonstrated that PSD is most likely to be maintained as a stable polymorphism when the proto-sex chromosomes have opposite (sexually antagonistic) fitness effects in males and females. However, these models usually consider PSD systems with only two proto-sex chromosomes, or they do not broadly consider the dominance of the alleles under selection. To address these shortcomings, I used forward population genetic simulations to identify selection pressures that can maintain PSD under different dominance scenarios in a system with more than two proto-sex chromosomes (modeled after the house fly). I found that overdominant fitness effects of male-determining proto-Y chromosomes are more likely to maintain PSD than dominant, recessive, or additive fitness effects. The overdominant fitness effects that maintain PSD tend to have proto-Y chromosomes with sexually antagonistic effects (male-beneficial and female-detrimental). In contrast, dominant fitness effects that maintain PSD tend to have sexually antagonistic multi-chromosomal genotypes, but the individual proto-sex chromosomes do not have sexually antagonistic effects. These results demonstrate that sexual antagonism can be an emergent property of the multi-chromosome genotype without individual sexually antagonistic chromosomes. My results further illustrate how the dominance of fitness effects has consequences for both the likelihood that PSD will be maintained as well as the role sexually antagonistic selection is expected to play in maintaining the polymorphism.
Collapse
Affiliation(s)
- Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
39
|
Zhou J, Wang S, Yu L, Li N, Li S, Zhang Y, Qin R, Gao W, Deng C. Cloning and physical localization of male-biased repetitive DNA sequences in Spinacia oleracea (Amaranthaceae). COMPARATIVE CYTOGENETICS 2021; 15:101-118. [PMID: 33959234 PMCID: PMC8087614 DOI: 10.3897/compcytogen.v15i2.63061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
Spinach (Spinacia oleracea Linnaeus, 1753) is an ideal material for studying molecular mechanisms of early-stage sex chromosome evolution in dioecious plants. Degenerate oligonucleotide-primed polymerase chain reaction (DOP-PCR) technique facilitates the retrotransposon-relevant studies by enriching specific repetitive DNA sequences from a micro-dissected single chromosome. We conducted genomic subtractive hybridization to screen sex-biased DNA sequences by using the DOP-PCR amplification products of micro-dissected spinach Y chromosome. The screening yielded 55 male-biased DNA sequences with 30 576 bp in length, of which, 32 DNA sequences (12 049 bp) contained repeat DNA sequences, including LTR/Copia, LTR/Gypsy, simple repeats, and DNA/CMC-EnSpm. Among these repetitive DNA sequences, four DNA sequences that contained a fragment of Ty3-gypsy retrotransposons (SP73, SP75, SP76, and SP77) were selected as fluorescence probes to hybridization on male and female spinach karyotypes. Fluorescence in situ hybridization (FISH) signals of SP73 and SP75 were captured mostly on the centromeres and their surrounding area for each homolog. Hybridization signals primarily appeared near the putative centromeres for each homologous chromosome pair by using SP76 and SP77 probes for FISH, and sporadic signals existed on the long arms. Results can be served as a basis to study the function of repetitive DNA sequences in sex chromosome evolution in spinach.
Collapse
Affiliation(s)
- Jian Zhou
- College of Life Sciences, Henan Normal University, Xinxiang 453007, ChinaHenan Normal UniversityXinxiangChina
| | - Shaojing Wang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, ChinaHenan Normal UniversityXinxiangChina
| | - Li’ang Yu
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USAUniversity of Illinois at Urbana-ChampaignUrbanaUnited States of America
| | - Ning Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, ChinaHenan Normal UniversityXinxiangChina
| | - Shufen Li
- College of Life Sciences, Henan Normal University, Xinxiang 453007, ChinaHenan Normal UniversityXinxiangChina
| | - Yulan Zhang
- College of Life Sciences, Henan Normal University, Xinxiang 453007, ChinaHenan Normal UniversityXinxiangChina
| | - Ruiyun Qin
- College of Life Sciences, Henan Normal University, Xinxiang 453007, ChinaHenan Normal UniversityXinxiangChina
| | - Wujun Gao
- College of Life Sciences, Henan Normal University, Xinxiang 453007, ChinaHenan Normal UniversityXinxiangChina
| | - Chuanliang Deng
- College of Life Sciences, Henan Normal University, Xinxiang 453007, ChinaHenan Normal UniversityXinxiangChina
| |
Collapse
|
40
|
Cabral-de-Mello DC, Zrzavá M, Kubíčková S, Rendón P, Marec F. The Role of Satellite DNAs in Genome Architecture and Sex Chromosome Evolution in Crambidae Moths. Front Genet 2021; 12:661417. [PMID: 33859676 PMCID: PMC8042265 DOI: 10.3389/fgene.2021.661417] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/04/2021] [Indexed: 12/21/2022] Open
Abstract
Tandem repeats are important parts of eukaryotic genomes being crucial e.g., for centromere and telomere function and chromatin modulation. In Lepidoptera, knowledge of tandem repeats is very limited despite the growing number of sequenced genomes. Here we introduce seven new satellite DNAs (satDNAs), which more than doubles the number of currently known lepidopteran satDNAs. The satDNAs were identified in genomes of three species of Crambidae moths, namely Ostrinia nubilalis, Cydalima perspectalis, and Diatraea postlineella, using graph-based computational pipeline RepeatExplorer. These repeats varied in their abundance and showed high variability within and between species, although some degree of conservation was noted. The satDNAs showed a scattered distribution, often on both autosomes and sex chromosomes, with the exception of both satellites in D. postlineella, in which the satDNAs were located at a single autosomal locus. Three satDNAs were abundant on the W chromosomes of O. nubilalis and C. perspectalis, thus contributing to their differentiation from the Z chromosomes. To provide background for the in situ localization of the satDNAs, we performed a detailed cytogenetic analysis of the karyotypes of all three species. This comparative analysis revealed differences in chromosome number, number and location of rDNA clusters, and molecular differentiation of sex chromosomes.
Collapse
Affiliation(s)
- Diogo C Cabral-de-Mello
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências/IB, UNESP-Univ Estadual Paulista, Rio Claro, Brazil.,Biology Centre, Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czechia
| | - Magda Zrzavá
- Biology Centre, Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czechia.,Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | | | - Pedro Rendón
- IAEA-TCLA-Consultant-USDA-APHIS-Moscamed Program Guatemala, Guatemala City, Guatemala
| | - František Marec
- Biology Centre, Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czechia
| |
Collapse
|
41
|
Mutation load at a mimicry supergene sheds new light on the evolution of inversion polymorphisms. Nat Genet 2021; 53:288-293. [PMID: 33495598 DOI: 10.1038/s41588-020-00771-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 12/21/2020] [Indexed: 01/30/2023]
Abstract
Chromosomal inversions are ubiquitous in genomes and often coordinate complex phenotypes, such as the covariation of behavior and morphology in many birds, fishes, insects or mammals1-11. However, why and how inversions become associated with polymorphic traits remains obscure. Here we show that despite a strong selective advantage when they form, inversions accumulate recessive deleterious mutations that generate frequency-dependent selection and promote their maintenance at intermediate frequency. Combining genomics and in vivo fitness analyses in a model butterfly for wing-pattern polymorphism, Heliconius numata, we reveal that three ecologically advantageous inversions have built up a heavy mutational load from the sequential accumulation of deleterious mutations and transposable elements. Inversions associate with sharply reduced viability when homozygous, which prevents them from replacing ancestral chromosome arrangements. Our results suggest that other complex polymorphisms, rather than representing adaptations to competing ecological optima, could evolve because chromosomal rearrangements are intrinsically prone to carrying recessive harmful mutations.
Collapse
|
42
|
Kostmann A, Kratochvíl L, Rovatsos M. Poorly differentiated XX/XY sex chromosomes are widely shared across skink radiation. Proc Biol Sci 2021; 288:20202139. [PMID: 33468012 PMCID: PMC7893288 DOI: 10.1098/rspb.2020.2139] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/23/2020] [Indexed: 11/12/2022] Open
Abstract
Differentiated sex chromosomes are believed to be evolutionarily stable, while poorly differentiated sex chromosomes are considered to be prone to turnovers. With around 1700 currently known species forming ca 15% of reptile species diversity, skinks (family Scincidae) are a very diverse group of squamates known for their large ecological and morphological variability. Skinks generally have poorly differentiated and cytogenetically indistinguishable sex chromosomes, and their sex determination was suggested to be highly variable. Here, we determined X-linked genes in the common sandfish (Scincus scincus) and demonstrate that skinks have shared the same homologous XX/XY sex chromosomes across their wide phylogenetic spectrum for at least 85 million years, approaching the age of the highly differentiated ZZ/ZW sex chromosomes of birds and advanced snakes. Skinks thus demonstrate that even poorly differentiated sex chromosomes can be evolutionarily stable. The conservation of sex chromosomes across skinks allows us to introduce the first molecular sexing method widely applicable in this group.
Collapse
Affiliation(s)
| | | | - Michail Rovatsos
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
43
|
Abstract
Drosophila melanogaster, a small dipteran of African origin, represents one of the best-studied model organisms. Early work in this system has uniquely shed light on the basic principles of genetics and resulted in a versatile collection of genetic tools that allow to uncover mechanistic links between genotype and phenotype. Moreover, given its worldwide distribution in diverse habitats and its moderate genome-size, Drosophila has proven very powerful for population genetics inference and was one of the first eukaryotes whose genome was fully sequenced. In this book chapter, we provide a brief historical overview of research in Drosophila and then focus on recent advances during the genomic era. After describing different types and sources of genomic data, we discuss mechanisms of neutral evolution including the demographic history of Drosophila and the effects of recombination and biased gene conversion. Then, we review recent advances in detecting genome-wide signals of selection, such as soft and hard selective sweeps. We further provide a brief introduction to background selection, selection of noncoding DNA and codon usage and focus on the role of structural variants, such as transposable elements and chromosomal inversions, during the adaptive process. Finally, we discuss how genomic data helps to dissect neutral and adaptive evolutionary mechanisms that shape genetic and phenotypic variation in natural populations along environmental gradients. In summary, this book chapter serves as a starting point to Drosophila population genomics and provides an introduction to the system and an overview to data sources, important population genetic concepts and recent advances in the field.
Collapse
|
44
|
Aslam ML, Carraro R, Sonesson AK, Meuwissen T, Tsigenopoulos CS, Rigos G, Bargelloni L, Tzokas K. Genetic Variation, GWAS and Accuracy of Prediction for Host Resistance to Sparicotyle chrysophrii in Farmed Gilthead Sea Bream ( Sparus aurata). Front Genet 2021; 11:594770. [PMID: 33424925 PMCID: PMC7793675 DOI: 10.3389/fgene.2020.594770] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/27/2020] [Indexed: 11/26/2022] Open
Abstract
Gilthead sea bream (Sparus aurata) belongs to a group of teleost which has high importance in Mediterranean aquaculture industry. However, industrial production is increasingly compromised by an elevated outbreak of diseases in sea cages, especially a disease caused by monogeneans parasite Sparicotyle chrysophrii. This parasite mainly colonizes gill tissues of host and causes considerable economical losses with mortality and reduction in growth. The aim of current study was to explore the genetics of host resistance against S. chrysophrii and investigate the potential for genomic selection to possibly accelerate genetic progress. To achieve the desired goals, a test population derived from the breeding nucleus of Andromeda Group was produced. This experimental population was established by crossing of parents mated in partial factorial crosses of ∼8 × 8 using 58 sires and 62 dams. The progeny obtained from this mating design was challenged with S. chrysophrii using a controllable cohabitation infection model. At the end of the challenge, fish were recorded for parasite count, and all the recorded fish were tissue sampled for genotyping by sequencing using 2b-RAD methodology. The initial (before challenge test) and the final body weight (after challenge test) of the fish were also recorded. The results obtained through the analysis of phenotypic records (n = 615) and the genotypic data (n = 841, 724 offspring and 117 parents) revealed that the resistance against this parasite is lowly heritable (h2 = 0.147 with pedigree and 0.137 with genomic information). We observed moderately favorable genetic correlation (Rg = −0.549 to −0.807) between production traits (i.e., body weight and specific growth rate) and parasite count, which signals a possibility of indirect selection. A locus at linkage group 17 was identified that surpassed chromosome-wide Bonferroni threshold which explained 22.68% of the total genetic variance, and might be playing role in producing genetic variation. The accuracy of prediction was improved by 8% with genomic information compared to pedigree.
Collapse
Affiliation(s)
| | | | | | | | | | - George Rigos
- Hellenic Centre for Marine Research, Heraklion, Greece
| | | | | |
Collapse
|
45
|
Repeat Sequence Mapping Shows Different W Chromosome Evolutionary Pathways in Two Caprimulgiformes Families. BIRDS 2020. [DOI: 10.3390/birds1010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Although birds belonging to order Caprimulgiformes show extensive karyotype variation, data concerning their genomic organization is still scarce, as most studies have presented only results obtained from conventional staining analyses. Nevertheless, some interesting findings have been observed, such as the W chromosome of the Common Potoo, Nyctibius griseus (2n = 86), which has the same morphology and size of the Z chromosome, a rare feature in Neognathae birds. Hence, we aimed to investigate the process by which the W chromosome of this species was enlarged. For that, we analyzed comparatively the chromosome organization of the Common Potoo and the Scissor-tailed Nightjar, Hydropsalis torquata (2n = 74), which presents the regular differentiated sex chromosomes, by applying C-banding, G-banding and mapping of repetitive DNAs (microsatellite repeats and 18S rDNA). Our results showed an accumulation of constitutive heterochromatin in the W chromosome of both species. However, 9 out of 11 microsatellite sequences hybridized in the large W chromosome in the Common Potoo, while none of them hybridized in the W chromosome of the Scissor-tailed Nightjar. Therefore, we can conclude that the accumulation of microsatellite sequences, and consequent increase in constitutive heterochromatin, was responsible for the enlargement of the W chromosome in the Common Potoo. Based on these results, we conclude that even though these two species belong to the same order, their W chromosomes have gone through different evolutionary histories, with an extra step of accumulation of repetitive sequences in the Common Potoo.
Collapse
|
46
|
Gammerdinger WJ, Toups MA, Vicoso B. Disagreement in F ST estimators: A case study from sex chromosomes. Mol Ecol Resour 2020; 20:1517-1525. [PMID: 32543001 PMCID: PMC7689734 DOI: 10.1111/1755-0998.13210] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 05/27/2020] [Indexed: 12/25/2022]
Abstract
Sewall Wright developed FST for describing population differentiation and it has since been extended to many novel applications, including the detection of homomorphic sex chromosomes. However, there has been confusion regarding the expected estimate of FST for a fixed difference between the X- and Y-chromosome when comparing males and females. Here, we attempt to resolve this confusion by contrasting two common FST estimators and explain why they yield different estimates when applied to the case of sex chromosomes. We show that this difference is true for many allele frequencies, but the situation characterized by fixed differences between the X- and Y-chromosome is among the most extreme. To avoid additional confusion, we recommend that all authors using FST clearly state which estimator of FST their work uses.
Collapse
Affiliation(s)
| | - Melissa A. Toups
- Institute of Science and Technology AustriaKlosterneuburgAustria
| | - Beatriz Vicoso
- Institute of Science and Technology AustriaKlosterneuburgAustria
| |
Collapse
|
47
|
Ruzicka F, Connallon T. Is the X chromosome a hot spot for sexually antagonistic polymorphisms? Biases in current empirical tests of classical theory. Proc Biol Sci 2020; 287:20201869. [PMID: 33081608 PMCID: PMC7661300 DOI: 10.1098/rspb.2020.1869] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022] Open
Abstract
Females and males carry nearly identical genomes, which can constrain the evolution of sexual dimorphism and generate conditions that are favourable for maintaining sexually antagonistic (SA) polymorphisms, in which alleles beneficial for one sex are deleterious for the other. An influential theoretical prediction, by Rice (Rice 1984 Evolution38, 735-742), is that the X chromosome should be a 'hot spot' (i.e. enriched) for SA polymorphisms. While important caveats to Rice's theoretical prediction have since been highlighted (e.g. by Fry (2010) Evolution64, 1510-1516), several empirical studies appear to support it. Here, we show that current tests of Rice's theory-most of which are based on quantitative genetic measures of fitness (co)variance-are frequently biased towards detecting X-linked effects. We show that X-linked genes tend to contribute disproportionately to quantitative genetic patterns of SA fitness variation whether or not the X is enriched for SA polymorphisms. Population genomic approaches for detecting SA loci, including genome-wide association study of fitness and analyses of intersexual FST, are similarly biased towards detecting X-linked effects. In the light of our models, we critically re-evaluate empirical evidence for Rice's theory and discuss prospects for empirically testing it.
Collapse
|
48
|
Meiotic analyses show adaptations to maintenance of fertility in X1Y1X2Y2X3Y3X4Y4X5Y5 system of amazon frog Leptodactylus pentadactylus (Laurenti, 1768). Sci Rep 2020; 10:16327. [PMID: 33004883 PMCID: PMC7529792 DOI: 10.1038/s41598-020-72867-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023] Open
Abstract
Heterozygous chromosomal rearrangements can result in failures during the meiotic cycle and the apoptosis of germline, making carrier individuals infertile. The Amazon frog Leptodactylus pentadactylus has a meiotic multivalent, composed of 12 sex chromosomes. The mechanisms by which this multi-chromosome system maintains fertility in males of this species remain undetermined. In this study we investigated the meiotic behavior of this multivalent to understand how synapse, recombination and epigenetic modifications contribute to maintaining fertility and chromosomal sexual determination in this species. Our sample had 2n = 22, with a ring formed by ten chromosomes in meiosis, indicating a new system of sex determination for this species (X1Y1X2Y2X3Y3X4Y4X5Y5). Synapsis occurs in the homologous terminal portion of the chromosomes, while part of the heterologous interstitial regions performed synaptic adjustment. The multivalent center remains asynaptic until the end of pachytene, with interlocks, gaps and rich-chromatin in histone H2A phosphorylation at serine 139 (γH2AX), suggesting transcriptional silence. In late pachytene, paired regions show repair of double strand-breaks (DSBs) with RAD51 homolog 1 (Rad51). These findings suggest that Rad51 persistence creates positive feedback at the pachytene checkpoint, allowing meiosis I to progress normally. Additionally, histone H3 trimethylation at lysine 27 in the pericentromeric heterochromatin of this anuran can suppress recombination in this region, preventing failed chromosomal segregation. Taken together, these results indicate that these meiotic adaptations are required for maintenance of fertility in L. pentadactylus.
Collapse
|
49
|
Dissanayake DSB, Holleley CE, Hill LK, O'Meally D, Deakin JE, Georges A. Identification of Y chromosome markers in the eastern three-lined skink (Bassiana duperreyi) using in silico whole genome subtraction. BMC Genomics 2020; 21:667. [PMID: 32993477 PMCID: PMC7526180 DOI: 10.1186/s12864-020-07071-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022] Open
Abstract
Background Homologous sex chromosomes can differentiate over time because recombination is suppressed in the region of the sex determining locus, leading to the accumulation of repeats, progressive loss of genes that lack differential influence on the sexes and sequence divergence on the hemizygous homolog. Divergence in the non-recombining regions leads to the accumulation of Y or W specific sequence useful for developing sex-linked markers. Here we use in silico whole-genome subtraction to identify putative sex-linked sequences in the scincid lizard Bassiana duperreyi which has heteromorphic XY sex chromosomes. Results We generated 96.7 × 109 150 bp paired-end genomic sequence reads from a XY male and 81.4 × 109 paired-end reads from an XX female for in silico whole genome subtraction to yield Y enriched contigs. We identified 7 reliable markers which were validated as Y chromosome specific by polymerase chain reaction (PCR) against a panel of 20 males and 20 females. Conclusions The sex of B. duperreyi can be reversed by low temperatures (XX genotype reversed to a male phenotype). We have developed sex-specific markers to identify the underlying genotypic sex and its concordance or discordance with phenotypic sex in wild populations of B. duperreyi. Our pipeline can be applied to isolate Y or W chromosome-specific sequences of any organism and is not restricted to sequence residing within single-copy genes. This study greatly improves our knowledge of the Y chromosome in B. duperreyi and will enhance future studies of reptile sex determination and sex chromosome evolution.
Collapse
Affiliation(s)
- Duminda Sampath Bandara Dissanayake
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, 2601, Australia.,Australian National Wildlife Collection, CSIRO, Canberra, ACT, 2911, Australia
| | - Clare Ellen Holleley
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, 2601, Australia.,Australian National Wildlife Collection, CSIRO, Canberra, ACT, 2911, Australia
| | - Laura Kate Hill
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, 2601, Australia
| | - Denis O'Meally
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, 2601, Australia.,Present Address: Centre for Gene Therapy, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Janine Eileen Deakin
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, 2601, Australia
| | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, 2601, Australia.
| |
Collapse
|
50
|
Andere AA, Pimsler ML, Tarone AM, Picard CJ. The genomes of a monogenic fly: views of primitive sex chromosomes. Sci Rep 2020; 10:15728. [PMID: 32978490 PMCID: PMC7519133 DOI: 10.1038/s41598-020-72880-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/07/2020] [Indexed: 11/10/2022] Open
Abstract
The production of male and female offspring is often determined by the presence of specific sex chromosomes which control sex-specific expression, and sex chromosomes evolve through reduced recombination and specialized gene content. Here we present the genomes of Chrysomya rufifacies, a monogenic blow fly (females produce female or male offspring, exclusively) by separately sequencing and assembling each type of female and the male. The genomes (> 25X coverage) do not appear to have any sex-linked Muller F elements (typical for many Diptera) and exhibit little differentiation between groups supporting the morphological assessments of C. rufifacies homomorphic chromosomes. Males in this species are associated with a unimodal coverage distribution while females exhibit bimodal coverage distributions, suggesting a potential difference in genomic architecture. The presence of the individual-sex draft genomes herein provides new clues regarding the origination and evolution of the diverse sex-determining mechanisms observed within Diptera. Additional genomic analysis of sex chromosomes and sex-determining genes of other blow flies will allow a refined evolutionary understanding of how flies with a typical X/Y heterogametic amphogeny (male and female offspring in similar ratios) sex determination systems evolved into one with a dominant factor that results in single sex progeny in a chromosomally monomorphic system.
Collapse
Affiliation(s)
- Anne A. Andere
- Department of Biology, Indiana University- Purdue University Indianapolis, Indianapolis, IN USA
| | - Meaghan L. Pimsler
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL USA
| | - Aaron M. Tarone
- Department of Entomology, Texas A&M University, College Station, TX USA
| | - Christine J. Picard
- Department of Biology, Indiana University- Purdue University Indianapolis, Indianapolis, IN USA
| |
Collapse
|