1
|
Tan S, Li J, Chen J, Fu J. Context-dependent effects of thermal acclimation on physiological correlates of animal personality in Asiatic toads. Proc Biol Sci 2024; 291:20241012. [PMID: 39079664 PMCID: PMC11288686 DOI: 10.1098/rspb.2024.1012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 08/03/2024] Open
Abstract
Persistent individual variation in behaviour, or 'personality', is a widespread phenomenon in animals, and understanding the evolution of animal personality is a key task of current biology. Natural selection has been proposed to promote the integration of personality with animal 'intrinsic states', such as metabolic or endocrine traits, and this integration varies with ecological conditions. However, these external ecological modulatory effects have rarely been examined. Here, we investigate the effects of thermal acclimation on between-individual covariations between physiology and behaviour in Asiatic toads (Bufo gargarizans) along an altitudinal gradient. Our results reveal that the thermal modulatory effects on the covariations depend on the altitudinal population. Specifically, at low altitudes, between-individual covariations are highly plastic, with risk-taking behaviour covarying with baseline glucocorticoids (GCs) under warm acclimation, but risk-taking and exploration behaviour covarying with resting metabolic rate (RMR) under cold acclimation. In contrast, between-individual covariations are relatively fixed at high altitudes, with risk-taking behaviour consistently covarying with baseline GCs. Furthermore, at low altitudes, changes in covariations between RMR and personality are associated with adjustment of energy management models. Evidently, animal physiological states that determine or covary with personality can adapt according to the seasonal thermal environment and the thermal evolutionary background of populations. Our findings highlight the importance of a multi-system physiological approach to understand the evolution of animal personality.
Collapse
Affiliation(s)
- Song Tan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu610041, People’s Republic of China
- College of Life Sciences, Sichuan University, Chengdu610064, People’s Republic of China
- University of the Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, Beijing100049, People’s Republic of China
| | - Juan Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu610041, People’s Republic of China
| | - Jingfeng Chen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu610041, People’s Republic of China
- University of the Chinese Academy of Sciences, No.19 (A) Yuquan Road, Shijingshan District, Beijing100049, People’s Republic of China
| | - Jinzhong Fu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu610041, People’s Republic of China
- Department of Integrative Biology, University of Guelph, Guelph, OntarioN1G 2W1, Canada
| |
Collapse
|
2
|
Biro PA. Testing personality-pace-of-life associations via artificial selection: insights from selected lines of rainbow trout on the context-dependence of correlations. Biol Lett 2024; 20:20240181. [PMID: 38949039 DOI: 10.1098/rsbl.2024.0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/16/2024] [Indexed: 07/02/2024] Open
Abstract
More than a decade of study since the personality pace-of-life syndrome (POLS) hypotheses were first proposed, there is little support for it within species. Lack of experimental control, insufficient sampling in the face of highly labile behavioural and metabolic traits, and context dependency of trait correlations are suggested as reasons. Here, I argue that artificial selection and/or use of existing selected lines represents a powerful but under-used approach to furthering our understanding of the POLS. To illustrate this potential, I conducted a focussed review of studies that compared the behaviour, metabolism, growth and survival of an artificially selected fast-growing rainbow trout relative to wild unselected strains, under varying food and risk conditions in the laboratory and field. Resting metabolic rate, food intake, and behaviours that enhance feeding but increase energy expenditure (activity, aggression, boldness), were all higher in the fast strain in paired contrasts, under all food and risk conditions, both in the laboratory and the field. Fast-strain fish grew faster in almost every food and risk situation except where food was highly limited (or absent), had higher survival under low or zero predation risk, but had lower survival under high risk. Several other traits rarely considered in POLS studies were also higher in the fast strain, including maximum swimming speed, and hormones (growth hormone (GH), thyroid hormone (T3) and insulin-like growth factor (IGF-1)). I conclude: (i) assumptions and predictions of the POLS hypothesis are well supported, and (ii) context-dependency was largely absent, but when present revealed trade-offs between food acquisition and predation risk. This focused review highlights the potential of artificial selection in testing POLS ideas, and will hopefully motivate further studies using other animals.
Collapse
Affiliation(s)
- Peter A Biro
- School of Life and Environmental Science, Deakin University, Geelong 3216, Australia
| |
Collapse
|
3
|
Shokri M, Marrocco V, Cozzoli F, Vignes F, Basset A. The relative importance of metabolic rate and body size to space use behavior in aquatic invertebrates. Ecol Evol 2024; 14:e11253. [PMID: 38770126 PMCID: PMC11103644 DOI: 10.1002/ece3.11253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 05/22/2024] Open
Abstract
Elucidating the underlying mechanisms behind variations of animal space and resource use is crucial to pinpoint relevant ecological phenomena. Organism's traits related to its energy requirements might be central in explaining behavioral variation, as the ultimate goal of a forager is to fulfill its energy requirements. However, it has remained poorly understood how energy requirements and behavioral patterns are functionally connected. Here we aimed to assess how body mass and standard metabolic rate (SMR) influence behavioral patterns in terms of cumulative space use and time spent in an experimental patchy environment, both within species and among individuals irrespective of species identity. We measured the behavioral patterns and SMR of two invertebrate species, that is, amphipod Gammarus insensibilis, and isopod Lekanesphaera monodi, individually across a range of body masses. We found that species of G. insensibilis have higher SMR level, in addition to cumulatively exploring a larger space than L. monodi. Cumulative space use scaled allometrically with body mass, and it scaled isometrically with SMR in both species. While time spent similarly in both species was characterized by negative body mass and SMR dependence, it was observed that L. monodi individuals tended to stay longer in resource patches compared to G. insensibilis individuals. Our results further showed that within species, body mass and metabolic rate explained a similar amount of variation in behavior modes. However, among individuals, regardless of species identity, SMR had stronger predictive power for behavioral modes compared to body mass. This suggests that SMR might offer a more generalized and holistic description of behavioral patterns that extend beyond species identity. Our study on the metabolic and body mass scaling of space and resource use behavior sheds light on higher-order ecological processes such as species' competitive coexistence along the spatial and trophic dimensions.
Collapse
Affiliation(s)
- Milad Shokri
- Laboratory of Ecology, Department of Biological and Environmental Sciences and TechnologiesUniversity of SalentoLecceItaly
- National Biodiversity Future Center (NBFC)PalermoItaly
| | - Vanessa Marrocco
- Laboratory of Ecology, Department of Biological and Environmental Sciences and TechnologiesUniversity of SalentoLecceItaly
- LifeWatch ERIC, Service Centre, Campus EcotekneLecceItaly
| | - Francesco Cozzoli
- Laboratory of Ecology, Department of Biological and Environmental Sciences and TechnologiesUniversity of SalentoLecceItaly
- National Biodiversity Future Center (NBFC)PalermoItaly
- Research Institute on Terrestrial Ecosystems (IRET) – National Research Council of Italy (CNR) via SalariaMonterotondo Scalo (Rome)Italy
| | - Fabio Vignes
- Laboratory of Ecology, Department of Biological and Environmental Sciences and TechnologiesUniversity of SalentoLecceItaly
| | - Alberto Basset
- Laboratory of Ecology, Department of Biological and Environmental Sciences and TechnologiesUniversity of SalentoLecceItaly
- National Biodiversity Future Center (NBFC)PalermoItaly
- LifeWatch ERIC, Service Centre, Campus EcotekneLecceItaly
- Research Institute on Terrestrial Ecosystems (IRET) – National Research Council of Italy (CNR) via SalariaMonterotondo Scalo (Rome)Italy
| |
Collapse
|
4
|
Brand JA, Garcia-Gonzalez F, Dowling DK, Wong BBM. Mitochondrial genetic variation as a potential mediator of intraspecific behavioural diversity. Trends Ecol Evol 2024; 39:199-212. [PMID: 37839905 DOI: 10.1016/j.tree.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023]
Abstract
Mitochondrial genes play an essential role in energy metabolism. Variation in the mitochondrial DNA (mtDNA) sequence often exists within species, and this variation can have consequences for energy production and organismal life history. Yet, despite potential links between energy metabolism and the expression of animal behaviour, mtDNA variation has been largely neglected to date in studies investigating intraspecific behavioural diversity. We outline how mtDNA variation and interactions between mitochondrial and nuclear genotypes may contribute to the expression of individual-to-individual behavioural differences within populations, and why such effects may lead to sex differences in behaviour. We contend that integration of the mitochondrial genome into behavioural ecology research may be key to fully understanding the evolutionary genetics of animal behaviour.
Collapse
Affiliation(s)
- Jack A Brand
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia; Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden.
| | - Francisco Garcia-Gonzalez
- Doñana Biological Station-CSIC, Seville, Spain; Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Wu Q, Rutschmann A, Miles DB, Richard M, Clobert J. Sex- and state-dependent covariation of risk-averse and escape behavior in a widespread lizard. Ecol Evol 2023; 13:e10723. [PMID: 38089898 PMCID: PMC10711521 DOI: 10.1002/ece3.10723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 10/15/2023] [Accepted: 10/27/2023] [Indexed: 10/16/2024] Open
Abstract
Mounting evidence has shown that personality and behavioral syndromes have a substantial influence on interspecific interactions and individual fitness. However, the stability of covariation among multiple behavioral traits involved in antipredator responses has seldom been tested. Here, we investigate whether sex, gravidity, and parasite infestations influence the covariation between risk aversion (hiding time within a refuge) and escape response (immobility, escape distance) using a viviparous lizard, Zootoca vivipara, as a model system. Our results demonstrated a correlation between risk-averse and escape behavior at the among-individual level, but only in gravid females. We found no significant correlations in either males or neonates. A striking result was the loss of association in postparturition females. This suggests that the "risk-averse - escape" syndrome is ephemeral and only emerges in response to constraints on locomotion driven by reproductive burden. Moreover, parasites have the potential to dissociate the correlations between risk aversion and escape response in gravid females, yet the causal chain requires further examination. Overall, our findings provide evidence of differences in the association between behaviors within the lifetime of an individual and indicate that individual states, sex, and life stages can together influence the stability of behavioral syndromes.
Collapse
Affiliation(s)
- Qiang Wu
- Station d'Ecologie Théorique et Expérimentale, UAR 2029, CNRSMoulisFrance
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life SciencesZhejiang UniversityHangzhouChina
| | - Alexis Rutschmann
- Station d'Ecologie Théorique et Expérimentale, UAR 2029, CNRSMoulisFrance
- School of Biological SciencesUniversity of AucklandAucklandNew Zealand
| | - Donald B. Miles
- Station d'Ecologie Théorique et Expérimentale, UAR 2029, CNRSMoulisFrance
- Department of Biological SciencesOhio UniversityAthensOhioUSA
| | - Murielle Richard
- Station d'Ecologie Théorique et Expérimentale, UAR 2029, CNRSMoulisFrance
| | - Jean Clobert
- Station d'Ecologie Théorique et Expérimentale, UAR 2029, CNRSMoulisFrance
| |
Collapse
|
6
|
Fanjul MS, Cutrera AP, Luna F, Zenuto RR. Individual differences in behaviour are related to metabolism, stress response, testosterone, and immunity in the subterranean rodent Ctenomys talarum. Behav Processes 2023; 212:104945. [PMID: 37775063 DOI: 10.1016/j.beproc.2023.104945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 06/09/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
The growth of personality research has led to the integration of consistent variation of individual behaviour in multidimensional approaches including physiological variables, which are required to continue building a more comprehensive theory about coping strategies. In this study, we used wild-caught males of Ctenomys talarum (tuco-tucos), a solitary subterranean rodent, to assess the relationships among personality traits and several physiological variables, namely stress response, testosterone, immunity, and energy metabolism. Subjects (n = 21) were used in experimental tests assessing behaviour, energy metabolism, testosterone levels, inflammatory cell-mediated and humoral immunity, and stress response to a simulated predator attack. The structural equation model explained a moderate portion of the variance of personality behaviours related to activity (52%), boldness (35%), and socioaversion (30%). More active and bold individuals showed higher oxygen consumption. While those subjects had lower baseline cortisol levels, there was no relationship between cortisol levels of the stress-induced response. Cell-mediated immune response was related to activity levels. Finally, testosterone only affected boldness. Despite some of these relationships diverge in direction to predicted ones, overall they support the existence of coping styles in male C. talarum; and are discussed in the light of current hypotheses and particular behavioural and ecological traits of tuco-tucos.
Collapse
Affiliation(s)
- María Sol Fanjul
- Grupo "Ecología Fisiológica y del Comportamiento", Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata, Argentina
| | - Ana Paula Cutrera
- Grupo "Ecología Fisiológica y del Comportamiento", Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata, Argentina
| | - Facundo Luna
- Grupo "Ecología Fisiológica y del Comportamiento", Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata, Argentina
| | - Roxana Rita Zenuto
- Grupo "Ecología Fisiológica y del Comportamiento", Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata, Argentina.
| |
Collapse
|
7
|
Horváth G, Garamszegi LZ, Herczeg G. Phylogenetic meta-analysis reveals system-specific behavioural type-behavioural predictability correlations. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230303. [PMID: 37680498 PMCID: PMC10480700 DOI: 10.1098/rsos.230303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/24/2023] [Indexed: 09/09/2023]
Abstract
The biological significance of behavioural predictability (environment-independent within-individual behavioural variation) became accepted recently as an important part of an individual's behavioural strategy besides behavioural type (individual mean behaviour). However, we do not know how behavioural type and predictability evolve. Here, we tested different evolutionary scenarios: (i) the two traits evolve independently (lack of correlations) and (ii) the two traits' evolution is constrained (abundant correlations) due to either (ii/a) proximate constraints (direction of correlations is similar) or (ii/b) local adaptations (direction of correlations is variable). We applied a set of phylogenetic meta-analyses based on 93 effect sizes across 44 vertebrate and invertebrate species, focusing on activity and risk-taking. The general correlation between behavioural type and predictability did not differ from zero. Effect sizes for correlations showed considerable heterogeneity, with both negative and positive correlations occurring. The overall absolute (unsigned) effect size was high (Zr = 0.58), and significantly exceeded the null expectation based on randomized data. Our results support the adaptive scenario: correlations between behavioural type and predictability are abundant in nature, but their direction is variable. We suggest that the evolution of these behavioural components might be constrained in a system-specific way.
Collapse
Affiliation(s)
- Gergely Horváth
- Department of Systematic Zoology and Ecology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
- ELKH-ELTE-MTM Integrative Ecology Research Group, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
| | - László Zsolt Garamszegi
- Centre for Ecological Research, Institute of Ecology and Botany, Alkotmány u. 2-4, 2163 Vácrátót, Hungary
- National Laboratory for Health Security, Centre for Ecological Research, Budapest, Hungary
| | - Gábor Herczeg
- Department of Systematic Zoology and Ecology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
- ELKH-ELTE-MTM Integrative Ecology Research Group, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
| |
Collapse
|
8
|
Mutwill AM, Schielzeth H, Richter SH, Kaiser S, Sachser N. Conditional on the social environment? Roots of repeatability in hormone concentrations of male guinea pigs. Horm Behav 2023; 155:105423. [PMID: 37713739 DOI: 10.1016/j.yhbeh.2023.105423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/17/2023]
Abstract
Individual differences in behavioral and physiological traits among members of the same species are increasingly being recognized as important in animal research. On the group level, shaping of behavioral and hormonal phenotypes by environmental factors has been reported in different taxa. The extent to which the environment impacts behavior and hormones on the individual level, however, is rather unexplored. Hormonal phenotypes of guinea pigs can be shaped by the social environment on the group level: pair-housed and colony-housed males differ systematically in average testosterone and stressor-induced cortisol levels (i.e. cortisol responsiveness). The aim of the present study was to evaluate whether repeatability and individual variance components (i.e. between- and within-individual variation) of hormonal phenotypes also differ in different social environments. To test this, we determined baseline testosterone, baseline cortisol, and cortisol responsiveness after challenge in same-aged pair-housed and colony-housed guinea pig males over a period of four months. We found comparable repeatability for baseline cortisol and cortisol responsiveness in males from both social conditions. In contrast, baseline testosterone was repeatable only in males from colonies. Interestingly, this result was brought about by significantly larger between-individual variation of testosterone, that was not explained by differences in dominance rank. Individualized social niches differentiated under complex colony, but not pair housing, could be an explanation for this finding.
Collapse
Affiliation(s)
- Alexandra M Mutwill
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149 Münster, Germany.
| | - Holger Schielzeth
- Population Ecology Group, Institute of Ecology, Friedrich Schiller University, Dornburgerstr. 159, 07743 Jena, Germany
| | - S Helene Richter
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149 Münster, Germany
| | - Sylvia Kaiser
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149 Münster, Germany
| | - Norbert Sachser
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149 Münster, Germany
| |
Collapse
|
9
|
Rands SA, Ioannou CC. Personality variation is eroded by simple social behaviours in collective foragers. PLoS Comput Biol 2023; 19:e1010908. [PMID: 36862622 PMCID: PMC9980820 DOI: 10.1371/journal.pcbi.1010908] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 01/31/2023] [Indexed: 03/03/2023] Open
Abstract
The movement of groups can be heavily influenced by 'leader' individuals who differ from the others in some way. A major source of differences between individuals is the repeatability and consistency of their behaviour, commonly considered as their 'personality', which can influence both position within a group as well as the tendency to lead. However, links between personality and behaviour may also depend upon the immediate social environment of the individual; individuals who behave consistently in one way when alone may not express the same behaviour socially, when they may be conforming with the behaviour of others. Experimental evidence shows that personality differences can be eroded in social situations, but there is currently a lack of theory to identify the conditions where we would expect personality to be suppressed. Here, we develop a simple individual-based framework considering a small group of individuals with differing tendencies to perform risky behaviours when travelling away from a safe home site towards a foraging site, and compare the group behaviours when the individuals follow differing rules for aggregation behaviour determining how much attention they pay to the actions of their fellow group-members. We find that if individuals pay attention to the other members of the group, the group will tend to remain at the safe site for longer, but then travel faster towards the foraging site. This demonstrates that simple social behaviours can result in the repression of consistent inter-individual differences in behaviour, giving the first theoretical consideration of the social mechanisms behind personality suppression.
Collapse
Affiliation(s)
- Sean A. Rands
- School of Biological Sciences, University of Bristol, United Kingdom
| | | |
Collapse
|
10
|
Toscano BJ, Allegue H, Gownaris NJ, Drausnik M, Yung Z, Bauloye D, Gorman F, Ver Pault M. Among‐individual behavioral responses to predation risk are invariant within two species of freshwater snails. Ethology 2023. [DOI: 10.1111/eth.13363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
| | - Hassen Allegue
- Département des Sciences Biologiques Université du Québec à Montréal Montréal Quebec Canada
| | - Natasha J. Gownaris
- Department of Environmental Studies, Gettysburg College Gettysburg Pennsylvania USA
| | - Marta Drausnik
- Department of Biology Trinity College Hartford Connecticut USA
| | - Zach Yung
- Department of Biology Trinity College Hartford Connecticut USA
| | - Daniel Bauloye
- Department of Biology Trinity College Hartford Connecticut USA
| | - Flynn Gorman
- Department of Biology Trinity College Hartford Connecticut USA
| | - Mia Ver Pault
- Department of Biology Trinity College Hartford Connecticut USA
| |
Collapse
|
11
|
Abstract
BACKGROUND A number of recent investigations have focused on the neurobiology of obsessive-compulsive personality disorder (OCPD). However, there have been few reviews of this literature with no detailed model proposed. We therefore undertook a systematic review of these investigations, aiming to map the available evidence and investigate whether it is possible to formulate a detailed model of the neurobiology of OCPD. METHODS OCPD can be considered from both categorical and dimensional perspectives. An electronic search was therefore conducted using terms that would address not only OCPD as a category, but also related constructs, such as perfectionism, that would capture research on neuropsychology, neuroimaging, neurochemistry, and neurogenetics. RESULTS A total of 1059 articles were retrieved, with 87 ultimately selected for abstract screening, resulting in a final selection of 49 articles focusing on neurobiological investigations relevant to OCPD. Impaired executive function and cognitive inflexibility are common neuropsychological traits in this condition, and suggest that obsessive-compulsive disorder (OCD) and OCPD may lie on a continuum. However, neuroimaging studies in OCPD indicate the involvement of specific neurocircuitry, including the precuneus and amygdala, and so suggest that OCD and OCPD may have important differences. Although OCPD has a heritable component, we found no well-powered genetic studies of OCPD. CONCLUSION Although knowledge in this area has advanced, there are insufficient data on which to base a comprehensive model of the neurobiology of OCPD. Given the clinical importance of OCPD, further work to understand the mechanisms that underpin this condition is warranted.
Collapse
|
12
|
Ehlman SM, Scherer U, Wolf M. Developmental feedbacks and the emergence of individuality. ROYAL SOCIETY OPEN SCIENCE 2022; 9:221189. [PMID: 36465682 DOI: 10.6084/m9.figshare.c.6315476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/07/2022] [Indexed: 05/24/2023]
Abstract
Behavioural individuality is a hallmark of animal life, with major consequences for fitness, ecology, and evolution. One of the most widely invoked explanations for this variation is that feedback loops between an animal's behaviour and its state (e.g. physiology, informational state, social rank, etc.) trigger and shape the development of individuality. Despite their often-cited importance, however, little is known about the ultimate causes of such feedbacks. Expanding on a previously employed model of adaptive behavioural development under uncertainty, we find that (i) behaviour-state feedbacks emerge as a direct consequence of adaptive behavioural development in particular selective environments and (ii) that the sign of these feedbacks, and thus the consequences for the development of behavioural individuality, can be directly predicted by the shape of the fitness function, with increasing fitness benefits giving rise to positive feedbacks and trait divergence and decreasing fitness benefits leading to negative feedbacks and trait convergence. Our findings provide a testable explanatory framework for the emergence of developmental feedbacks driving individuality and suggest that such feedbacks and their associated patterns of behavioural diversity are a direct consequence of adaptive behavioural development in particular selective environments.
Collapse
Affiliation(s)
- Sean M Ehlman
- SCIoI Excellence Cluster, Berlin, Germany
- Humboldt University, Berlin, Germany
- IGB - Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Ulrike Scherer
- SCIoI Excellence Cluster, Berlin, Germany
- Humboldt University, Berlin, Germany
- IGB - Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Max Wolf
- SCIoI Excellence Cluster, Berlin, Germany
- IGB - Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| |
Collapse
|
13
|
Ehlman SM, Scherer U, Wolf M. Developmental feedbacks and the emergence of individuality. ROYAL SOCIETY OPEN SCIENCE 2022; 9:221189. [PMID: 36465682 PMCID: PMC9709565 DOI: 10.1098/rsos.221189] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/07/2022] [Indexed: 05/08/2023]
Abstract
Behavioural individuality is a hallmark of animal life, with major consequences for fitness, ecology, and evolution. One of the most widely invoked explanations for this variation is that feedback loops between an animal's behaviour and its state (e.g. physiology, informational state, social rank, etc.) trigger and shape the development of individuality. Despite their often-cited importance, however, little is known about the ultimate causes of such feedbacks. Expanding on a previously employed model of adaptive behavioural development under uncertainty, we find that (i) behaviour-state feedbacks emerge as a direct consequence of adaptive behavioural development in particular selective environments and (ii) that the sign of these feedbacks, and thus the consequences for the development of behavioural individuality, can be directly predicted by the shape of the fitness function, with increasing fitness benefits giving rise to positive feedbacks and trait divergence and decreasing fitness benefits leading to negative feedbacks and trait convergence. Our findings provide a testable explanatory framework for the emergence of developmental feedbacks driving individuality and suggest that such feedbacks and their associated patterns of behavioural diversity are a direct consequence of adaptive behavioural development in particular selective environments.
Collapse
Affiliation(s)
- Sean M. Ehlman
- SCIoI Excellence Cluster, Berlin, Germany
- Humboldt University, Berlin, Germany
- IGB – Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Ulrike Scherer
- SCIoI Excellence Cluster, Berlin, Germany
- Humboldt University, Berlin, Germany
- IGB – Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Max Wolf
- SCIoI Excellence Cluster, Berlin, Germany
- IGB – Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| |
Collapse
|
14
|
State and physiology behind personality in arthropods: a review. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03259-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractIn the endeavour to understand the causes and consequences of the variation in animal personality, a wide range of studies were carried out, utilising various aspects to make sense of this biological phenomenon. One such aspect integrated the study of physiological traits, investigating hypothesised physiological correlates of personality. Although many of such studies were carried out on vertebrates (predominantly on birds and mammals), studies using arthropods (mainly insects) as model organisms were also at the forefront of this area of research. In order to review the current state of knowledge on the relationship between personality and the most frequently studied physiological parameters in arthropods, we searched for scientific articles that investigated this relationship. In our review, we only included papers utilising a repeated-measures methodology to be conceptually and formally concordant with the study of animal personality. Based on our literature survey, metabolic rate, thermal physiology, immunophysiology, and endocrine regulation, as well as exogenous agents (such as toxins) were often identified as significant affectors shaping animal personality in arthropods. We found only weak support for state-dependence of personality when the state is approximated by singular elements (or effectors) of condition. We conclude that a more comprehensive integration of physiological parameters with condition may be required for a better understanding of state’s importance in animal personality. Also, a notable knowledge gap persists in arthropods regarding the association between metabolic rate and hormonal regulation, and their combined effects on personality. We discuss the findings published on the physiological correlates of animal personality in arthropods with the aim to summarise current knowledge, putting it into the context of current theory on the origin of animal personality.
Collapse
|
15
|
Ehlman SM, Scherer U, Wolf M. Developmental feedbacks and the emergence of individuality. ROYAL SOCIETY OPEN SCIENCE 2022; 9:221189. [PMID: 36465682 DOI: 10.5281/zenodo.7299681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/07/2022] [Indexed: 05/24/2023]
Abstract
Behavioural individuality is a hallmark of animal life, with major consequences for fitness, ecology, and evolution. One of the most widely invoked explanations for this variation is that feedback loops between an animal's behaviour and its state (e.g. physiology, informational state, social rank, etc.) trigger and shape the development of individuality. Despite their often-cited importance, however, little is known about the ultimate causes of such feedbacks. Expanding on a previously employed model of adaptive behavioural development under uncertainty, we find that (i) behaviour-state feedbacks emerge as a direct consequence of adaptive behavioural development in particular selective environments and (ii) that the sign of these feedbacks, and thus the consequences for the development of behavioural individuality, can be directly predicted by the shape of the fitness function, with increasing fitness benefits giving rise to positive feedbacks and trait divergence and decreasing fitness benefits leading to negative feedbacks and trait convergence. Our findings provide a testable explanatory framework for the emergence of developmental feedbacks driving individuality and suggest that such feedbacks and their associated patterns of behavioural diversity are a direct consequence of adaptive behavioural development in particular selective environments.
Collapse
Affiliation(s)
- Sean M Ehlman
- SCIoI Excellence Cluster, Berlin, Germany
- Humboldt University, Berlin, Germany
- IGB - Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Ulrike Scherer
- SCIoI Excellence Cluster, Berlin, Germany
- Humboldt University, Berlin, Germany
- IGB - Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Max Wolf
- SCIoI Excellence Cluster, Berlin, Germany
- IGB - Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| |
Collapse
|
16
|
Amin B, Verbeek L, Haigh A, Griffin LL, Ciuti S. Risk-taking neonates do not pay a survival cost in a free-ranging large mammal, the fallow deer ( Dama dama). ROYAL SOCIETY OPEN SCIENCE 2022; 9:220578. [PMID: 36147938 PMCID: PMC9490327 DOI: 10.1098/rsos.220578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/05/2022] [Indexed: 05/10/2023]
Abstract
Recent debate has focused on whether variation in personality primarily reflects variation in resource allocation or resource acquisition of individuals. These two mechanisms predict different relationships between personality and survival. If personality mainly reflects variation in resource allocation, then bold (i.e. risk-taking) individuals are expected to live shorter lives, whereas the opposite pattern is expected with resource acquisition. Here we studied the relationship between neonate personality and early-life survival in 269 juveniles of a population of fallow deer (Dama dama). We found that bolder individuals paid no apparent survival cost. Interestingly, among-individual differences in the physiological response at capture (heart rates, which covary with the behavioural response, i.e. latency to leave) were linked to survival, where individuals with lower heart rates when handled by humans had a higher probability of early-life survival. This suggests that bolder individuals may be of higher state than their shyer counterparts. As the first study linking neonate personality to survival in a free-ranging mammal, we provide novel insights into drivers behind early-life individual variation.
Collapse
Affiliation(s)
- Bawan Amin
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Laura Verbeek
- Mathematical Institute, Leiden University, Leiden, The Netherlands
| | - Amy Haigh
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Laura L. Griffin
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Simone Ciuti
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
17
|
Amin B, Verbeek L, Haigh A, Griffin LL, Ciuti S. Risk-taking neonates do not pay a survival cost in a free-ranging large mammal, the fallow deer ( Dama dama). ROYAL SOCIETY OPEN SCIENCE 2022; 9:220578. [PMID: 36147938 DOI: 10.6084/m9.figshare.c.6189637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/05/2022] [Indexed: 05/25/2023]
Abstract
Recent debate has focused on whether variation in personality primarily reflects variation in resource allocation or resource acquisition of individuals. These two mechanisms predict different relationships between personality and survival. If personality mainly reflects variation in resource allocation, then bold (i.e. risk-taking) individuals are expected to live shorter lives, whereas the opposite pattern is expected with resource acquisition. Here we studied the relationship between neonate personality and early-life survival in 269 juveniles of a population of fallow deer (Dama dama). We found that bolder individuals paid no apparent survival cost. Interestingly, among-individual differences in the physiological response at capture (heart rates, which covary with the behavioural response, i.e. latency to leave) were linked to survival, where individuals with lower heart rates when handled by humans had a higher probability of early-life survival. This suggests that bolder individuals may be of higher state than their shyer counterparts. As the first study linking neonate personality to survival in a free-ranging mammal, we provide novel insights into drivers behind early-life individual variation.
Collapse
Affiliation(s)
- Bawan Amin
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Laura Verbeek
- Mathematical Institute, Leiden University, Leiden, The Netherlands
| | - Amy Haigh
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Laura L Griffin
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Simone Ciuti
- Laboratory of Wildlife Ecology and Behaviour, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
18
|
Beveridge D, Mitchell DJ, Beckmann C, Biro PA. Weak evidence that asset protection underlies temporal or contextual consistency in boldness of a terrestrial crustacean. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03198-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abstract
In recent years, many studies have investigated the potential state dependence of individual differences in behaviour, with the aim to understand the proximate and ultimate causes and consequences of animal personality. Among the potential state variables that could affect behavioural expression is size and mass, but few studies have found associations at the among-individual levels. Insufficient sampling and incorrect analysis of data are cited as impediments to detecting correlations, if they exist. Here, we conducted a study using 100 pillbugs (Armadillidium vulgare) and assayed their defensive behaviour 24 times each over time and across familiarity contexts, to test the asset protection hypothesis that predicts a negative correlation between boldness and mass, and with increases in mass over time. Multivariate mixed models revealed that despite mostly consistent individual behavioural differences over time (modest slope variance) and across contexts (near-parallel reaction norms), and 18-fold range in starting mass, there was no correlation between individual mean mass and boldness. However, individuals that gained more mass over time may have been more ‘shy’ compared to those gaining less mass, but the correlation was weak and observed variation in mass gain was small. There was also a mean level trend of increasing shyness over time that was coincident with mean level mass increases over time. Together, our study provides weak evidence for the asset protection hypothesis, whereby individuals that accumulate more resources are thought to protect them through risk averse behaviour.
Significance statement
Individual variation in ‘state’, such as mass or energy reserves, is thought to be a predictor of individual differences in behaviour that are consistent over time. However, few studies reveal such links, and several studies suggest insufficient sampling may explain null results in most studies. We studied 100 animals sampled 24 times each in a controlled setting to reveal stable individual differences in mean behaviour over time and across contexts; however, individual behaviour was unrelated to large differences in individual mass but weakly related to increases in mass through time whereby individuals became more shy and those growing faster were somewhat more shy. Our results provide little evidence for the asset protection hypothesis.
Collapse
|
19
|
Moffett ER, Fryxell DC, Simon KS. Multigenerational exposure to increased temperature reduces metabolic rate but increases boldness in
Gambusia affinis. Ecol Evol 2022; 12:e8853. [PMID: 35462979 PMCID: PMC9019145 DOI: 10.1002/ece3.8853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 11/08/2022] Open
Abstract
Acute exposure to warming temperatures increases minimum energetic requirements in ectotherms. However, over and within multiple generations, increased temperatures may cause plastic and evolved changes that modify the temperature sensitivity of energy demand and alter individual behaviors. Here, we aimed to test whether populations recently exposed to geothermally elevated temperatures express an altered temperature sensitivity of metabolism and behavior. We expected that long‐term exposure to warming would moderate metabolic rate, reducing the temperature sensitivity of metabolism, with concomitant reductions in boldness and activity. We compared the temperature sensitivity of metabolic rate (acclimation at 20 vs. 30°C) and allometric slopes of routine, standard, and maximum metabolic rates, in addition to boldness and activity behaviors, across eight recently divergent populations of a widespread fish species (Gambusia affinis). Our data reveal that warm‐source populations express a reduced temperature sensitivity of metabolism, with relatively high metabolic rates at cool acclimation temperatures and relatively low metabolic rates at warm acclimation temperatures compared to ambient‐source populations. Allometric scaling of metabolism did not differ with thermal history. Across individuals from all populations combined, higher metabolic rates were associated with higher activity rates at 20°C and bolder behavior at 30°C. However, warm‐source populations displayed relatively bolder behavior at both acclimation temperatures compared to ambient‐source populations, despite their relatively low metabolic rates at warm acclimation temperatures. Overall, our data suggest that in response to warming, multigenerational exposure (e.g., plasticity, adaptation) may not result in trait change directed along a simple “pace‐of‐life syndrome” axis, instead causing relative decreases in metabolism and increases in boldness. Ultimately, our data suggest that multigenerational warming may produce a novel combination of physiological and behavioral traits, with consequences for animal performance in a warming world.
Collapse
Affiliation(s)
- Emma R. Moffett
- School of Environment The University of Auckland Auckland New Zealand
| | - David C. Fryxell
- School of Environment The University of Auckland Auckland New Zealand
| | - Kevin S. Simon
- School of Environment The University of Auckland Auckland New Zealand
| |
Collapse
|
20
|
Bednarz PA, Zwolak R. Body mass and sex, but not breeding condition and season, influence open-field exploration in the yellow-necked mouse. Ecol Evol 2022; 12:e8771. [PMID: 35356564 PMCID: PMC8958246 DOI: 10.1002/ece3.8771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/28/2022] [Accepted: 03/13/2022] [Indexed: 01/05/2023] Open
Abstract
Theory predicts that risk taking should be influenced by external (e.g., season) and internal (e.g., breeding condition, sex, and body mass) conditions. We investigated whether these factors are associated with a potentially risky behavior: exploration of a novel environment. We conducted repeated open-field tests of exploration in a common forest rodent, the yellow-necked mouse Apodemus flavicollis. Contrary to expectations, the exploration did not vary with the season (spring vs. fall) or the reproductive status of the tested animals. Also unexpectedly, there was an inverted U-shaped relationship between body mass and exploration: animals with intermediate body mass tended to have the highest exploration tendencies. Males were more exploratory than females. Finally, even after adjusting for the effects of body mass and sex, individuals exhibited consistent, repeatable differences in exploration tendencies ("behavioral types" or "personalities"). The discrepancies between certain broad generalizations and our results suggest that risk taking depends on details of species-specific biology.
Collapse
Affiliation(s)
- Paula A. Bednarz
- Department of Systematic ZoologyAdam Mickiewicz University in PoznańPoznańPoland
| | - Rafał Zwolak
- Department of Systematic ZoologyAdam Mickiewicz University in PoznańPoznańPoland
| |
Collapse
|
21
|
Sánchez-Tójar A, Moiron M, Niemelä PT. Terminology use in animal personality research: a self-report questionnaire and a systematic review. Proc Biol Sci 2022; 289:20212259. [PMID: 35105238 PMCID: PMC8808088 DOI: 10.1098/rspb.2021.2259] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Whether animal personality studies provide insights of broader evolutionary and ecological relevance to the field of behavioural ecology is frequently questioned. One of the sources of controversy is the vast, but often vague terminology present in the field. From a statistical perspective, animal personality is defined as among-individual variance in behaviour. However, numerous conceptual definitions of animal personality are available in the literature. Here, we performed (i) a self-report questionnaire and (ii) a systematic literature review to quantify how researchers interpreted conceptual and statistical definitions commonly used in animal personality research. We also compared whether data obtained from the questionnaire matched with data from the literature review. Among the 430 self-reported researchers that participated in our questionnaire, we observed discrepancies in key questions such as the conceptual definition of animal personality or the interpretation of repeatability. Furthermore, our literature review generally confirmed the global patterns revealed by the questionnaire. Overall, we identified common disagreements within the field of animal personality and discussed potential solutions. We advocate for adopting a terminology that avoids ambiguous interpretations and helps to make more explicit the widespread connotations implicit in the label 'animal personality'.
Collapse
Affiliation(s)
| | - Maria Moiron
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France,Life History Biology, Institute of Avian Research, Wilhelmshaven, Germany
| | - Petri T. Niemelä
- Behavioral Ecology, Department of Biology, Ludwig-Maximillians University of Munich, Planegg-Martinsried, Germany,Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| |
Collapse
|
22
|
Kim S, Álvarez‐Quintero N, Metcalfe NB. Does the match between individual and group behavior matter in shoaling sticklebacks? Ecol Evol 2022; 12:e8581. [PMID: 35222959 PMCID: PMC8844133 DOI: 10.1002/ece3.8581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/04/2021] [Accepted: 01/12/2022] [Indexed: 11/15/2022] Open
Abstract
In animals living in groups, the social environment is fundamental to shaping the behaviors and life histories of an individual. A mismatch between individual and group behavior patterns may have disadvantages if the individual is incapable of flexibly changing its state in response to the social environment that influences its energy gain and expenditure. We used different social groups of juvenile three-spined sticklebacks (Gasterosteus aculeatus) with experimentally manipulated compositions of individual sociability to study the feedback between individual and group behaviors and to test how the social environment shapes behavior, metabolic rate, and growth. Experimentally created unsociable groups, containing a high proportion of less sociable fish, showed bolder collective behaviors during feeding than did corresponding sociable groups. Fish within groups where the majority of members had a level of sociability similar to their own gained more mass than did those within mismatched groups. Less sociable individuals within sociable groups tended to have a relatively low mass but a high standard metabolic rate. A mismatch between the sociability of an individual and that of the majority of the group in which it is living confers a growth disadvantage probably due to the expression of nonadaptive behaviors that increase energetic costs.
Collapse
Affiliation(s)
- Sin‐Yeon Kim
- Grupo Ecoloxía AnimalTorre CACTICentro de Investigación MariñaUniversidade de VigoVigoSpain
| | | | - Neil B. Metcalfe
- Institute of Biodiversity, Animal Health and Comparative MedicineUniversity of GlasgowGlasgowUK
| |
Collapse
|
23
|
Prokkola JM, Åsheim ER, Morozov S, Bangura P, Erkinaro J, Ruokolainen A, Primmer CR, Aykanat T. Genetic coupling of life-history and aerobic performance in Atlantic salmon. Proc Biol Sci 2022; 289:20212500. [PMID: 35078367 PMCID: PMC8790367 DOI: 10.1098/rspb.2021.2500] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/24/2021] [Indexed: 11/12/2022] Open
Abstract
A better understanding of the genetic and phenotypic architecture underlying life-history variation is a longstanding aim in biology. Theories suggest energy metabolism determines life-history variation by modulating resource acquisition and allocation trade-offs, but the genetic underpinnings of the relationship and its dependence on ecological conditions have rarely been demonstrated. The strong genetic determination of age-at-maturity by two unlinked genomic regions (vgll3 and six6) makes Atlantic salmon (Salmo salar) an ideal model to address these questions. Using more than 250 juveniles in common garden conditions, we quantified the covariation between metabolic phenotypes-standard and maximum metabolic rates (SMR and MMR), and aerobic scope (AS)-and the life-history genomic regions, and tested if food availability modulates the relationships. We found that the early maturation genotype in vgll3 was associated with higher MMR and consequently AS. Additionally, MMR exhibited physiological epistasis; it was decreased when late maturation genotypes co-occurred in both genomic regions. Contrary to our expectation, the life-history genotypes had no effects on SMR. Furthermore, food availability had no effect on the genetic covariation, suggesting a lack of genotype-by-environment interactions. Our results provide insights on the key organismal processes that link energy use at the juvenile stage to age-at-maturity, indicating potential mechanisms by which metabolism and life-history can coevolve.
Collapse
Affiliation(s)
- Jenni M. Prokkola
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Eirik R. Åsheim
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Sergey Morozov
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Paul Bangura
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | | | - Annukka Ruokolainen
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Craig R. Primmer
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Tutku Aykanat
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| |
Collapse
|
24
|
Haave-Audet E, Besson AA, Nakagawa S, Mathot KJ. Differences in resource acquisition, not allocation, mediate the relationship between behaviour and fitness: a systematic review and meta-analysis. Biol Rev Camb Philos Soc 2021; 97:708-731. [PMID: 34859575 DOI: 10.1111/brv.12819] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 11/29/2022]
Abstract
Within populations, individuals often show repeatable variation in behaviour, called 'animal personality'. In the last few decades, numerous empirical studies have attempted to elucidate the mechanisms maintaining this variation, such as life-history trade-offs. Theory predicts that among-individual variation in behavioural traits could be maintained if traits that are positively associated with reproduction are simultaneously associated with decreased survival, such that different levels of behavioural expression lead to the same net fitness outcome. However, variation in resource acquisition may also be important in mediating the relationship between individual behaviour and fitness components (survival and reproduction). For example, if certain phenotypes (e.g. dominance or aggressiveness) are associated with higher resource acquisition, those individuals may have both higher reproduction and higher survival, relative to others in the population. When individuals differ in their ability to acquire resources, trade-offs are only expected to be observed at the within-individual level (i.e. for a given amount of resource, if an individual increases its allocation to reproduction, it comes at the cost of allocation to survival, and vice versa), while among individuals traits that are associated with increased survival may also be associated with increased reproduction. We performed a systematic review and meta-analysis, asking: (i) do among-individual differences in behaviour reflect among-individual differences in resource acquisition and/or allocation, and (ii) is the relationship between behaviour and fitness affected by the type of behaviour and the testing environment? Our meta-analysis consisted of 759 estimates from 193 studies. Our meta-analysis revealed a positive correlation between pairs of estimates using both survival and reproduction as fitness proxies. That is, for a given study, behaviours that were associated with increased reproduction were also associated with increased survival, suggesting that variation in behaviour at the among-individual level largely reflects differences among individuals in resource acquisition. Furthermore, we found the same positive correlation between pairs of estimates using both survival and reproduction as fitness proxies at the phenotypic level. This is significant because we also demonstrated that these phenotypic correlations primarily reflect within-individual correlations. Thus, even when accounting for among-individual differences in resource acquisition, we did not find evidence of trade-offs at the within-individual level. Overall, the relationship between behaviour and fitness proxies was not statistically different from zero at the among-individual, phenotypic, and within-individual levels; this relationship was not affected by behavioural category nor by the testing condition. Our meta-analysis highlights that variation in resource acquisition may be more important in driving the relationship between behaviour and fitness than previously thought, including at the within-individual level. We suggest that this may come about via heterogeneity in resource availability or age-related effects, with higher resource availability and/or age leading to state-dependent shifts in behaviour that simultaneously increase both survival and reproduction. We emphasize that future studies examining the mechanisms maintaining behavioural variation in populations should test the link between behavioural expression and resource acquisition - both within and among individuals. Such work will allow the field of animal personality to develop specific predictions regarding the mediating effect of resource acquisition on the fitness consequences of individual behaviour.
Collapse
Affiliation(s)
- Elène Haave-Audet
- Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Bldg, Edmonton, AB, T6G 2E9, Canada
| | - Anne A Besson
- Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Bldg, Edmonton, AB, T6G 2E9, Canada.,Department of Zoology, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Shinichi Nakagawa
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Kimberley J Mathot
- Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Bldg, Edmonton, AB, T6G 2E9, Canada.,Canada Research Chair, Integrative Ecology, Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| |
Collapse
|
25
|
Gangloff EJ, Leos-Barajas V, Demuth G, Zhang H, Kelly CD, Bronikowski AM. Movement modeling and patterns of within- and among-individual behavioral variation across time scales in neonate garter snakes (Thamnophis elegans). Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-03099-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Michelangeli M, Payne E, Spiegel O, Sinn DL, Leu ST, Gardner MG, Sih A. Personality, spatiotemporal ecological variation and resident/explorer movement syndromes in the sleepy lizard. J Anim Ecol 2021; 91:210-223. [PMID: 34679184 DOI: 10.1111/1365-2656.13616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 10/04/2021] [Indexed: 01/26/2023]
Abstract
Individual variation in movement is profoundly important for fitness and offers key insights into the spatial and temporal dynamics of populations and communities. Nonetheless, individual variation in fine-scale movement behaviours is rarely examined even though animal tracking devices offer the long-term, high-resolution, repeatable data in natural conditions that are ideal for studying this variation. Furthermore, of the few studies that consider individual variation in movement, even fewer also consider the internal traits and environmental factors that drive movement behaviour which are necessary for contextualising individual differences in movement patterns. In this study, we GPS tracked a free-ranging population of sleepy lizards Tiliqua rugosa, each Austral spring over 5 years to examine consistent among-individual variation in movement patterns, as well as how these differences were mediated by key internal and ecological factors. We found that individuals consistently differed in a suite of weekly movement traits, and that these traits strongly covaried among-individuals, forming movement syndromes. Lizards fell on a primary movement continuum, from 'residents' that spent extended periods of time residing within smaller core areas of their home range, to 'explorers' that moved greater distances and explored vaster areas of the environment. Importantly, we also found that these consistent differences in lizard movement were related to two ecologically important animal personality traits (boldness and aggression), their sex, key features of the environment (including food availability, and a key water resource), habitat type and seasonal variation (cool/moist vs. hot/drier) in environmental conditions. Broadly, these movement specialisations likely reflect variation in life-history tactics including foraging and mating tactics that ultimately underlie key differences in space use. Such information can be used to connect phenotypic population structure to key ecological and evolutionary processes, for example social networks and disease-transmission pathways, further highlighting the value of examining individual variation in movement behaviour.
Collapse
Affiliation(s)
- Marcus Michelangeli
- Department of Environmental Science and Policy, University of California, Davis, CA, USA.,School of Biological Sciences, Monash University, Melbourne, Vic., Australia.,Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Eric Payne
- Department of Environmental Science and Policy, University of California, Davis, CA, USA
| | - Orr Spiegel
- Department of Environmental Science and Policy, University of California, Davis, CA, USA.,The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - David L Sinn
- Department of Environmental Science and Policy, University of California, Davis, CA, USA
| | - Stephan T Leu
- School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Michael G Gardner
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia.,Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, SA, Australia
| | - Andrew Sih
- Department of Environmental Science and Policy, University of California, Davis, CA, USA
| |
Collapse
|
27
|
O'Dea RE, Lagisz M, Jennions MD, Koricheva J, Noble DW, Parker TH, Gurevitch J, Page MJ, Stewart G, Moher D, Nakagawa S. Preferred reporting items for systematic reviews and meta-analyses in ecology and evolutionary biology: a PRISMA extension. Biol Rev Camb Philos Soc 2021; 96:1695-1722. [PMID: 33960637 PMCID: PMC8518748 DOI: 10.1111/brv.12721] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 12/29/2022]
Abstract
Since the early 1990s, ecologists and evolutionary biologists have aggregated primary research using meta-analytic methods to understand ecological and evolutionary phenomena. Meta-analyses can resolve long-standing disputes, dispel spurious claims, and generate new research questions. At their worst, however, meta-analysis publications are wolves in sheep's clothing: subjective with biased conclusions, hidden under coats of objective authority. Conclusions can be rendered unreliable by inappropriate statistical methods, problems with the methods used to select primary research, or problems within the primary research itself. Because of these risks, meta-analyses are increasingly conducted as part of systematic reviews, which use structured, transparent, and reproducible methods to collate and summarise evidence. For readers to determine whether the conclusions from a systematic review or meta-analysis should be trusted - and to be able to build upon the review - authors need to report what they did, why they did it, and what they found. Complete, transparent, and reproducible reporting is measured by 'reporting quality'. To assess perceptions and standards of reporting quality of systematic reviews and meta-analyses published in ecology and evolutionary biology, we surveyed 208 researchers with relevant experience (as authors, reviewers, or editors), and conducted detailed evaluations of 102 systematic review and meta-analysis papers published between 2010 and 2019. Reporting quality was far below optimal and approximately normally distributed. Measured reporting quality was lower than what the community perceived, particularly for the systematic review methods required to measure trustworthiness. The minority of assessed papers that referenced a guideline (~16%) showed substantially higher reporting quality than average, and surveyed researchers showed interest in using a reporting guideline to improve reporting quality. The leading guideline for improving reporting quality of systematic reviews is the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement. Here we unveil an extension of PRISMA to serve the meta-analysis community in ecology and evolutionary biology: PRISMA-EcoEvo (version 1.0). PRISMA-EcoEvo is a checklist of 27 main items that, when applicable, should be reported in systematic review and meta-analysis publications summarising primary research in ecology and evolutionary biology. In this explanation and elaboration document, we provide guidance for authors, reviewers, and editors, with explanations for each item on the checklist, including supplementary examples from published papers. Authors can consult this PRISMA-EcoEvo guideline both in the planning and writing stages of a systematic review and meta-analysis, to increase reporting quality of submitted manuscripts. Reviewers and editors can use the checklist to assess reporting quality in the manuscripts they review. Overall, PRISMA-EcoEvo is a resource for the ecology and evolutionary biology community to facilitate transparent and comprehensively reported systematic reviews and meta-analyses.
Collapse
Affiliation(s)
- Rose E. O'Dea
- Evolution & Ecology Research Centre and School of Biological and Environmental SciencesUniversity of New South WalesSydneyNSW2052Australia
| | - Malgorzata Lagisz
- Evolution & Ecology Research Centre and School of Biological and Environmental SciencesUniversity of New South WalesSydneyNSW2052Australia
| | - Michael D. Jennions
- Research School of BiologyAustralian National University46 Sullivans Creek RoadCanberra2600Australia
| | - Julia Koricheva
- Department of Biological SciencesRoyal Holloway University of LondonEghamSurreyTW20 0EXU.K.
| | - Daniel W.A. Noble
- Evolution & Ecology Research Centre and School of Biological and Environmental SciencesUniversity of New South WalesSydneyNSW2052Australia
- Research School of BiologyAustralian National University46 Sullivans Creek RoadCanberra2600Australia
| | | | - Jessica Gurevitch
- Department of Ecology and EvolutionStony Brook UniversityStony BrookNY11794‐5245U.S.A.
| | - Matthew J. Page
- School of Public Health and Preventative MedicineMonash UniversityMelbourneVIC3004Australia
| | - Gavin Stewart
- School of Natural and Environmental SciencesNewcastle UniversityNewcastle upon TyneNE1 7RUU.K.
| | - David Moher
- Centre for Journalology, Clinical Epidemiology ProgramOttawa Hospital Research InstituteGeneral Campus, 501 Smyth Road, Room L1288OttawaONK1H 8L6Canada
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre and School of Biological and Environmental SciencesUniversity of New South WalesSydneyNSW2052Australia
| |
Collapse
|
28
|
Dalos J, Royauté R, Hedrick AV, Dochtermann NA. Phylogenetic conservation of behavioural variation and behavioural syndromes. J Evol Biol 2021; 35:311-321. [PMID: 34536964 DOI: 10.1111/jeb.13935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 11/28/2022]
Abstract
Individuals frequently differ consistently from one another in their average behaviours (i.e. 'animal personality') and in correlated suites of consistent behavioural responses (i.e. 'behavioural syndromes'). However, understanding the evolutionary basis of this (co)variation has lagged behind demonstrations of its presence. This lag partially stems from comparative methods rarely being used in the field. Consequently, much of the research on animal personality has relied on 'adaptive stories' focused on single species and populations. Here, we used a comparative approach to examine the role of phylogeny in shaping patterns of average behaviours, behavioural variation and behavioural correlations. In comparing the behaviours and behavioural variation for five species of Gryllid crickets, we found that phylogeny shaped average behaviours and behavioural (co)variation. Despite differences among species, behavioural responses and variation were most similar among more closely related species. These results suggest that phylogenetic constraints play an important role in the expression of animal personalities and behavioural syndromes and emphasize the importance of examining evolutionary explanations within a comparative framework.
Collapse
Affiliation(s)
- Jeremy Dalos
- Department of Biological Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Raphaël Royauté
- Movement Ecology Group, Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt, Germany
| | - Ann V Hedrick
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, California, USA
| | - Ned A Dochtermann
- Department of Biological Sciences, North Dakota State University, Fargo, North Dakota, USA
| |
Collapse
|
29
|
Clapp N, Reichert MS. Arginine vasotocin affects motivation to call, but not calling plasticity, in Cope's gray treefrog Hyla chrysoscelis. J Comp Physiol B 2021; 192:115-125. [PMID: 34401940 DOI: 10.1007/s00360-021-01399-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/24/2021] [Accepted: 08/07/2021] [Indexed: 10/20/2022]
Abstract
The ability to respond to competition is critical for social behaviors involved in mating, territoriality and foraging. Physiological mechanisms of competitive social behaviors may determine not only baseline behavior, but possibly also the plasticity of the response to competition. We examined the effects of the neuropeptide arginine vasotocin (AVT), which is implicated in social behavior in non-mammalian vertebrates, on both spontaneous acoustic advertisement calling behavior and the plastic response to a simulated competitive challenge in Cope's gray treefrogs, Hyla chrysoscelis. We injected males either with AVT or a saline control and then analyzed recordings of spontaneous calling prior to playback, playback of average advertisement calls, playback of highly competitive advertisement calls, and spontaneous calling after playback. We found a tendency for AVT-treated males to be more likely to resume calling, and AVT males had higher call rates than control males, although they did not differ in pulse number or call effort. There were no differences between the AVT and control treatments in the plasticity of calling behavior in response to simulated competitors. Our results generally align with other studies on how AVT affects anuran vocalizations, and suggest that its primary effect is on motivation to call, with less of an effect on plasticity in response to competition. Nevertheless, these effects on call motivation are significant, because mating success is often determined more by participation in the chorus than by the values of specific call characteristics.
Collapse
Affiliation(s)
- Nicole Clapp
- Department of Integrative Biology, Oklahoma State University, 501 Life Sciences West, Stillwater, 74078, USA.,Health Sciences Center, University of Oklahoma, Oklahoma City, USA
| | - Michael S Reichert
- Department of Integrative Biology, Oklahoma State University, 501 Life Sciences West, Stillwater, 74078, USA.
| |
Collapse
|
30
|
|
31
|
Suppression of personality variation in boldness during foraging in three-spined sticklebacks. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-03007-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Abstract
Consistent inter-individual variation in behaviour within a population, widely referred to as personality variation, can be affected by environmental context. Feedbacks between an individual’s behaviour and state can strengthen (positive feedback) or weaken (negative feedback) individual differences when experiences such as predator encounters or winning contests are dependent on behavioural type. We examined the influence of foraging on individual-level consistency in refuge use (a measure of risk-taking, i.e. boldness) in three-spined sticklebacks, Gasterosteus aculeatus, and particularly whether changes in refuge use depended on boldness measured under control conditions. In the control treatment trials with no food, individuals were repeatable in refuge use across repeated trials, and this behavioural consistency did not differ between the start and end of these trials. In contrast, when food was available, individuals showed a higher degree of consistency in refuge use at the start of the trials versus controls but this consistency significantly reduced by the end of the trials. The effect of the opportunity to forage was dependent on behavioural type, with bolder fish varying more in their refuge use between the start and the end of the feeding trials than shyer fish, and boldness positively predicted the likelihood of feeding at the start but not at the end of the trials. This suggests a state-behaviour feedback, but there was no overall trend in how bolder individuals changed their behaviour. Our study shows that personality variation can be suppressed in foraging contexts and a potential but unpredictable role of feedbacks between state and behaviour.
Significance statement
In this experimental study, we examined how foraging influences consistency in risk-taking in individual three-spined sticklebacks. We show that bolder individuals become less consistent in their risk-taking behaviour than shyer individuals during foraging. Some bolder individuals reinforce their risk-taking behaviour, suggesting a positive feedback between state and behaviour, while others converge on the behaviour of shyer individuals, suggesting a negative feedback. In support of a role of satiation in driving negative feedback effects, we found that bolder individuals were more likely to feed at the start but not at the end of the trials. Overall, our findings suggest that foraging can influence personality variation in risk-taking behaviour; however, the role of feedbacks may be unpredictable.
Collapse
|
32
|
Dingemanse NJ, Araya-Ajoy YG, Westneat DF. Most published selection gradients are underestimated: Why this is and how to fix it. Evolution 2021; 75:806-818. [PMID: 33621355 DOI: 10.1111/evo.14198] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 01/29/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023]
Abstract
Ecologists and evolutionary biologists routinely estimate selection gradients. Most researchers seek to quantify selection on individual phenotypes, regardless of whether fixed or repeatedly expressed traits are studied. Selection gradients estimated to address such questions are attenuated unless analyses account for measurement error and biological sources of within-individual variation. Estimates of standardized selection gradients published in Evolution between 2010 and 2019 were primarily based on traits measured once (59% of 325 estimates). We show that those are attenuated: bias increases with decreasing repeatability but differently for linear versus nonlinear gradients. Others derived individual-mean trait values prior to analyses (41%), typically using few repeats per individual, which does not remove bias. We evaluated three solutions, all requiring repeated measures: (i) correcting gradients derived from classic models using estimates of trait correlations and repeatabilities, (ii) multivariate mixed-effects models, previously used for estimating linear gradients (seven estimates, 2%), which we expand to nonlinear analyses, and (iii) errors-in-variables models that account for within-individual variance, and are rarely used in selection studies. All approaches produced accurate estimates regardless of repeatability and type of gradient, however, errors-in-variables models produced more precise estimates and may thus be preferable.
Collapse
Affiliation(s)
- Niels Jeroen Dingemanse
- Department of Biology, Ludwig-Maximilians-Universitat Munchen Department Biologie II, Planegg-Martinsried, Germany
| | - Yimen G Araya-Ajoy
- Center for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, 7012, Norway
| | - David F Westneat
- Department of Biology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
33
|
Golobinek R, Gregorič M, Kralj-Fišer S. Body Size, Not Personality, Explains Both Male Mating Success and Sexual Cannibalism in a Widow Spider. BIOLOGY 2021; 10:189. [PMID: 33802370 PMCID: PMC7998861 DOI: 10.3390/biology10030189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/09/2021] [Accepted: 02/24/2021] [Indexed: 11/16/2022]
Abstract
Theory suggests that consistent individual variation in behavior relates to fitness, but few studies have empirically examined the role of personalities in mate choice, male-male competition and reproductive success. We observed the Mediterranean black widow, Latrodectus tredecimguttatus, in the individual and mating context, to test how body size measures and two functionally important aggressive behaviors, i.e., male aggression towards rivals and female voracity towards prey, affect mating behaviors, mating success and sexual cannibalism. We specifically selected voracity towards prey in females to test the "aggressive spillover hypothesis", suggesting that more voracious females are more sexually cannibalistic. Both females and males exhibit consistent individual differences in the examined aggressive behaviors. While larger males win contests more often and achieve more copulations, neither male nor female size measures correlate to aggression. Female voracity does not correlate with aggression towards mates and sexual cannibalism, rejecting the "spillover hypothesis". However, occurrence of sexual cannibalism positively relates to longer insertion duration. Furthermore, the smaller the ratio between male and female body length the more likely a female attacked and cannibalized a mate. We show that individual variation in aggression levels plays no direct role in the mating behavior of the Mediterranean black widow. Instead, body size affects male mating success and occurrences of sexual cannibalism in females.
Collapse
Affiliation(s)
| | | | - Simona Kralj-Fišer
- Jovan Hadži Institute of Biology, Research Centre of the Slovenian Academy of Sciences and Arts, Novi trg 2, 1000 Ljubljana, Slovenia; (R.G.); (M.G.)
| |
Collapse
|
34
|
Polverino G, Martin JM, Bertram MG, Soman VR, Tan H, Brand JA, Mason RT, Wong BBM. Psychoactive pollution suppresses individual differences in fish behaviour. Proc Biol Sci 2021; 288:20202294. [PMID: 33563120 DOI: 10.1098/rspb.2020.2294] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Environmental contamination by pharmaceuticals is global, substantially altering crucial behaviours in animals and impacting on their reproduction and survival. A key question is whether the consequences of these pollutants extend beyond mean behavioural changes, restraining differences in behaviour between individuals. In a controlled, two-year, multigenerational experiment with independent mesocosm populations, we exposed guppies (Poecilia reticulata) to environmentally realistic levels of the ubiquitous pollutant fluoxetine (Prozac). Fish (unexposed: n = 59, low fluoxetine: n = 57, high fluoxetine: n = 58) were repeatedly assayed on four separate occasions for activity and risk-taking behaviour. Fluoxetine homogenized individuals' activity, with individual variation in populations exposed to even low concentrations falling to less than half that in unexposed populations. To understand the proximate mechanism underlying these changes, we tested the relative contribution of variation within and between individuals to the overall decline in individual variation. We found strong evidence that fluoxetine erodes variation in activity between but not within individuals, revealing the hidden consequences of a ubiquitous contaminant on phenotypic variation in fish-likely to impair adaptive potential to environmental change.
Collapse
Affiliation(s)
- Giovanni Polverino
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia (M092), 35 Stirling Highway, 6009 Perth, WA, Australia
| | - Jake M Martin
- School of Biological Sciences, Monash University, Australia
| | - Michael G Bertram
- School of Biological Sciences, Monash University, Australia.,Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Sweden
| | - Vrishin R Soman
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia (M092), 35 Stirling Highway, 6009 Perth, WA, Australia.,Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, USA
| | - Hung Tan
- School of Biological Sciences, Monash University, Australia
| | - Jack A Brand
- School of Biological Sciences, Monash University, Australia
| | - Rachel T Mason
- School of Biological Sciences, Monash University, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Australia
| |
Collapse
|
35
|
Dingemanse NJ. Personality and pace-of-life: Ecological lessons learnt from free-ranging lemon sharks. J Anim Ecol 2021; 90:314-316. [PMID: 33538347 DOI: 10.1111/1365-2656.13401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/16/2020] [Indexed: 11/29/2022]
Abstract
In Focus: Dhellemmes, F., Finger J.S., Smukall M.J., Gruber S.H., Guttridge T.L., Laskowski K.L., & J. Krause. (2020) Personality-driven life-history trade-offs differ in two subpopulations of free-ranging predators. Journal of Animal Ecology, 90, 260-272. Life-history theory predicts that explorative individuals live-fast-but-die-young as they take risks to rapidly accumulate resources. Dhellemmes et al. (2020) show that fast-exploring sharks forage in risky habitats, where they grow-fast-but-die-young. In higher risk environments, however, this personality-related pace-of-life-syndrome does not exist because neither fast- nor slow-exploring types venture out into risky areas. The study thereby reveals the key role of ecology as a mediator of personality-related pace-of-life-syndromes in the wild.
Collapse
Affiliation(s)
- Niels J Dingemanse
- Behavioural Ecology, Department of Biology, Ludwig Maximilians University of Munich, Planegg-Martinsried, Germany
| |
Collapse
|
36
|
Personality and behavioral syndromes in two Peromyscus species: presence, lack of state dependence, and lack of association with home range size. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-020-02951-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
37
|
Developmental conditions promote individual differentiation of endocrine axes and behavior in a tropical pinniped. Oecologia 2020; 195:25-35. [PMID: 33340345 PMCID: PMC7882553 DOI: 10.1007/s00442-020-04815-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/03/2020] [Indexed: 12/25/2022]
Abstract
Between-individual variation in behavior can emerge through complex interactions between state-related mechanisms, which include internal physiological constraints or feedback derived from the external environment. State-related conditions can be especially influential during early life, when parental effort and exposure to social stress may canalize consistent differences in offspring hormonal profiles and foster specific behavioral strategies. Here, we unravel how relevant state variables, including sex, somatic condition, local population density, and maternal traits, contribute to within-cohort differences in stress, sex, and thyroid hormone axes in dependent Galapagos sea lions with the primary goal of understanding downstream effects on boldness, docility, habitat use, and activity. Pups within denser natal sites had higher levels of cortisol and thyroid T4, a prohormone and proxy for metabolic reserves, likely as an adaptive physiological response after exposure to increased numbers of conspecific interactions. Furthermore, considering maternal effects, mothers in better body condition produced pups with higher testosterone yet downregulated basal cortisol and thyroid T4. This hormonal profile was correlated with increased boldness toward novel objects and attenuated stress responsiveness during capture. Intriguingly, pups with increased thyroid T3, the biologically active form, maintained faster somatic growth and were observed to have increased activity and extensively explored surrounding habitats. Collectively, these findings provide comprehensive evidence for several links to hormone-mediated behavioral strategies, highlighted by variation in socio-environmental and maternally derived input during a foundational life stage.
Collapse
|
38
|
Poirier MA, Kozlovsky DY, Morand-Ferron J, Careau V. How general is cognitive ability in non-human animals? A meta-analytical and multi-level reanalysis approach. Proc Biol Sci 2020; 287:20201853. [PMID: 33290683 PMCID: PMC7739923 DOI: 10.1098/rspb.2020.1853] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022] Open
Abstract
General intelligence has been a topic of high interest for over a century. Traditionally, research on general intelligence was based on principal component analyses and other dimensionality reduction approaches. The advent of high-speed computing has provided alternative statistical tools that have been used to test predictions of human general intelligence. In comparison, research on general intelligence in non-human animals is in its infancy and still relies mostly on factor-analytical procedures. Here, we argue that dimensionality reduction, when incorrectly applied, can lead to spurious results and limit our understanding of ecological and evolutionary causes of variation in animal cognition. Using a meta-analytical approach, we show, based on 555 bivariate correlations, that the average correlation among cognitive abilities is low (r = 0.185; 95% CI: 0.087-0.287), suggesting relatively weak support for general intelligence in animals. We then use a case study with relatedness (genetic) data to demonstrate how analysing traits using mixed models, without dimensionality reduction, provides new insights into the structure of phenotypic variance among cognitive traits, and uncovers genetic associations that would be hidden otherwise. We hope this article will stimulate the use of alternative tools in the study of cognition and its evolution in animals.
Collapse
Affiliation(s)
| | - Dovid Y. Kozlovsky
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biology, Villanova University, Villanova, Pennsylvania, USA
| | | | - Vincent Careau
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
39
|
Tüzün N, Savaşçı BB, Stoks R. Seasonal time constraints shape life history, physiology and behaviour independently, and decouple a behavioural syndrome in a damselfly. OIKOS 2020. [DOI: 10.1111/oik.07800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nedim Tüzün
- Evolutionary Stress Ecology and Ecotoxicology, Univ. of Leuven Leuven Belgium
| | | | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, Univ. of Leuven Leuven Belgium
| |
Collapse
|
40
|
Moran NP, Sánchez‐Tójar A, Schielzeth H, Reinhold K. Poor nutritional condition promotes high‐risk behaviours: a systematic review and meta‐analysis. Biol Rev Camb Philos Soc 2020; 96:269-288. [DOI: 10.1111/brv.12655] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Nicholas P. Moran
- Evolutionary Biology Bielefeld University Morgenbreede 45 Bielefeld 33615 Germany
- Centre for Ocean Life DTU‐Aqua Technical University of Denmark Building 201, Kemitorvet Kgs. Lyngby 2800 Denmark
| | | | - Holger Schielzeth
- Institute of Ecology and Evolution Friedrich Schiller University Jena Dornburger Straße 159 Jena 07743 Germany
| | - Klaus Reinhold
- Evolutionary Biology Bielefeld University Morgenbreede 45 Bielefeld 33615 Germany
| |
Collapse
|
41
|
Class B, Brommer J. Contrasting multilevel relationships between behavior and body mass in blue tit nestlings. Behav Ecol 2020. [DOI: 10.1093/beheco/araa014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Abstract
Repeatable behaviors (i.e., animal personality) are pervasive in the animal kingdom and various mechanisms have been proposed to explain their existence. Genetic and nongenetic mechanisms, which can be equally important, predict correlations between behavior and body mass on different levels (e.g., genetic and environmental) of variation. We investigated multilevel relationships between body mass measured on weeks 1, 2, and 3 and three behavioral responses to handling, measured on week 3, which form a behavioral syndrome in wild blue tit nestlings. Using 7 years of data and quantitative genetic models, we find that all behaviors and body mass on week 3 are heritable (h2 = 0.18–0.23) and genetically correlated, whereas earlier body masses are not heritable. We also find evidence for environmental correlations between body masses and behaviors. Interestingly, these environmental correlations have different signs for early and late body masses. Altogether, these findings indicate genetic integration between body mass and behavior and illustrate the impacts of early environmental factors and environmentally mediated growth trajectory on behaviors expressed later in life. This study, therefore, suggests that the relationship between personality and body mass in developing individuals is due to various underlying mechanisms, which can have opposing effects. Future research on the link between behavior and body mass would benefit from considering these multiple mechanisms simultaneously.
Collapse
Affiliation(s)
- Barbara Class
- Department of Biology, University of Turku, University Hill, Turku, Finland
| | - Jon Brommer
- Department of Biology, University of Turku, University Hill, Turku, Finland
| |
Collapse
|
42
|
Pettersen AK, Hall MD, White CR, Marshall DJ. Metabolic rate, context-dependent selection, and the competition-colonization trade-off. Evol Lett 2020; 4:333-344. [PMID: 32774882 PMCID: PMC7403701 DOI: 10.1002/evl3.174] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/08/2020] [Accepted: 04/20/2020] [Indexed: 01/24/2023] Open
Abstract
Metabolism is linked with the pace‐of‐life, co‐varying with survival, growth, and reproduction. Metabolic rates should therefore be under strong selection and, if heritable, become less variable over time. Yet intraspecific variation in metabolic rates is ubiquitous, even after accounting for body mass and temperature. Theory predicts variable selection maintains trait variation, but field estimates of how selection on metabolism varies are rare. We use a model marine invertebrate to estimate selection on metabolic rates in the wild under different competitive environments. Fitness landscapes varied among environments separated by a few centimeters: interspecific competition selected for higher metabolism, and a faster pace‐of‐life, relative to competition‐free environments. Populations experience a mosaic of competitive regimes; we find metabolism mediates a competition‐colonization trade‐off across these regimes. Although high metabolic phenotypes possess greater competitive ability, in the absence of competitors, low metabolic phenotypes are better colonizers. Spatial heterogeneity and the variable selection on metabolic rates that it generates is likely to maintain variation in metabolic rate, despite strong selection in any single environment.
Collapse
Affiliation(s)
- Amanda K Pettersen
- School of Biological Sciences/Centre for Geometric Biology Monash University Melbourne VIC 3800 Australia.,Department of Biology Lund University Lund 221 00 Sweden
| | - Matthew D Hall
- School of Biological Sciences/Centre for Geometric Biology Monash University Melbourne VIC 3800 Australia
| | - Craig R White
- School of Biological Sciences/Centre for Geometric Biology Monash University Melbourne VIC 3800 Australia
| | - Dustin J Marshall
- School of Biological Sciences/Centre for Geometric Biology Monash University Melbourne VIC 3800 Australia
| |
Collapse
|
43
|
Affiliation(s)
- Rafał Zwolak
- Department of Systematic Zoology Faculty of Biology Adam Mickiewicz University Poznań Poland
| | - Andrew Sih
- Department of Environmental Science and Policy University of California at Davis Davis CA USA
| |
Collapse
|
44
|
Cornwell TO, McCarthy ID, Biro PA. Integration of physiology, behaviour and life history traits: personality and pace of life in a marine gastropod. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Do different food amounts gradually promote personality variation throughout the life stage in a clonal gecko species? Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.01.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Vernasco BJ, Moore IT. Testosterone as a mediator of the tradeoff between cooperation and competition in the context of cooperative reproductive behaviors. Gen Comp Endocrinol 2020; 288:113369. [PMID: 31857075 DOI: 10.1016/j.ygcen.2019.113369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/18/2019] [Accepted: 12/13/2019] [Indexed: 11/20/2022]
Abstract
Behavioral tradeoffs occur when the expression of one behavior detracts from the expression of another. Understanding the proximate mediators of behavioral tradeoffs is important as these tradeoffs can act as potential constraints on evolutionary responses to selection. Here, we describe the tradeoff between cooperation and competition faced by species that exhibit cooperative reproductive behaviors and propose that testosterone is a key hormonal mediator of the tradeoff. Cooperative reproductive behaviors occur when multiple individuals coordinate their efforts to gain a reproductive advantage over other individuals and/or those individuals attempting to reproduce in absence of cooperation. We propose that testosterone, a sex steroid known to mediate a number of physiological and behavioral actions associated with reproductive competition, is involved in mediating the tradeoff between cooperation and competition. To support this proposition, we first describe the importance of individual variation in behavior to the evolution of cooperative behaviors. We then describe how proximate mechanisms represent a prominent source of individual variation in social behaviors and highlight evidence suggesting testosterone mediates variation in cooperative behaviors. Two case studies in which the relationship between testosterone and cooperative behaviors have been investigated in detail are then summarized. Throughout we highlight the importance of studying individual variation to understand the mechanistic basis of behaviors, behavioral tradeoffs, and the evolution of cooperative reproductive behaviors more broadly.
Collapse
Affiliation(s)
- Ben J Vernasco
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA; School of Biological Sciences, Washington State University, Pullman, WA, USA.
| | - Ignacio T Moore
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
47
|
Proactive common waxbills make fewer mistakes in a cognitive assay, the detour-reaching task. Behav Ecol Sociobiol 2020. [DOI: 10.1007/s00265-020-2809-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Neave HW, Costa JHC, Weary DM, von Keyserlingk MAG. Long-term consistency of personality traits of cattle. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191849. [PMID: 32257341 PMCID: PMC7062087 DOI: 10.1098/rsos.191849] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/15/2020] [Indexed: 05/10/2023]
Abstract
Personality is often defined as the behaviour of individual animals that is consistent across contexts and over time. Personality traits may become unstable during stages of ontogeny from infancy to adulthood, especially during major periods of development such as around the time of sexual maturation. The personality of domesticated farm animals has links with productivity, health and welfare, but to our knowledge, no studies have investigated the development and stability of personality traits across developmental life stages in a mammalian farm animal species. Here, we describe the consistency of personality traits across ontogeny in dairy cattle from neonate to first lactation as an adult. The personality traits 'bold' and 'exploratory', as measured by behavioural responses to novelty, were highly consistent during the earlier (before and after weaning from milk) and later (after puberty to first lactation) rearing periods, but were not consistent across these rearing periods when puberty occurred. These findings indicate that personality changes in cattle around sexual maturation are probably owing to major physiological changes that are accelerated under typical management conditions at this time. This work contributes to the understanding of the ontogeny of behaviour in farm animals, especially how and why individuals differ in their behaviour.
Collapse
|
49
|
Ryder TB, Dakin R, Vernasco BJ, Evans BS, Horton BM, Moore IT. Testosterone Modulates Status-Specific Patterns of Cooperation in a Social Network. Am Nat 2020; 195:82-94. [DOI: 10.1086/706236] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
50
|
Liedtke J, Fromhage L. Modelling the evolution of cognitive styles. BMC Evol Biol 2019; 19:234. [PMID: 31881934 PMCID: PMC6935132 DOI: 10.1186/s12862-019-1565-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/16/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Individuals consistently differ in behaviour, exhibiting so-called personalities. In many species, individuals differ also in their cognitive abilities. When personalities and cognitive abilities occur in distinct combinations, they can be described as 'cognitive styles'. Both empirical and theoretical investigations produced contradicting or mixed results regarding the complex interplay between cognitive styles and environmental conditions. RESULTS Here we use individual-based simulations to show that, under just slightly different environmental conditions, different cognitive styles exist and under a variety of conditions, can also co-exist. Co-existences are based on individual specialization on different resources, or, more generally speaking, on individuals adopting different niches or microhabitats. CONCLUSIONS The results presented here suggest that in many species, individuals of the same population may adopt different cognitive styles. Thereby the present study may help to explain the variety of styles described in previous studies and why different, sometimes contradicting, results have been found under similar conditions.
Collapse
Affiliation(s)
- Jannis Liedtke
- Department of Biological and Environmental Science, University of Jyvaskyla, Box 35, 40014, Jyvaskyla, PO, Finland.
| | - Lutz Fromhage
- Department of Biological and Environmental Science, University of Jyvaskyla, Box 35, 40014, Jyvaskyla, PO, Finland
| |
Collapse
|