1
|
Sniegula S, Stoks R, Golab MJ. Insect responses to seasonal time constraints under global change are facilitated by warming and counteracted by invasive alien predators. Sci Rep 2024; 14:24565. [PMID: 39427019 PMCID: PMC11490650 DOI: 10.1038/s41598-024-76057-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
In seasonal environments, organisms with complex life cycles not only contend with seasonal time constraints (TC) but also increasingly face global change stressors that may interfere with responses to TC. Here, we tested how warming and predator stress imposed during the egg and larval stages shaped life history and behavioural responses to TC in the temperate damselfly Ischnura elegans. Eggs from early and late clutches in the season were subjected to ambient and 4 °C warming temperature and the presence or absence of predator cues from perch and signal crayfish. After hatching, larvae were retained at the same thermal regime, and the predator treatment was continued or not up to emergence. The late eggs decreased their development time, especially under warming and when not exposed to predator cues. However, the late eggs increased their development time when exposed to predator cues, especially to crayfish cues. The TC decreased survival of late larvae that were as eggs exposed to crayfish cues, indicating a carry-over effect. The TC and warming additively reduced late larvae development time to emergence. Independent of the TC, predator cue effects on development time were stronger during the egg than during the larval stage. The late individuals expressed lower mass at emergence, which mirrored the size difference between field-collected mothers. Warming caused a higher mass at emergence. The late individuals increased their boldness and showed a higher number of moves, whereas warming caused a decreased boldness. There was no predator cue effect on larval behaviour. The results indicate that late individuals compensate for late season egg laying, which is facilitated under warming but counteracted under predation risk, especially when imposed by the crayfish.
Collapse
Affiliation(s)
- Szymon Sniegula
- Institute of Nature Conservation Polish Academy of Sciences, al. Adama Mickiewicza 33, 31-120, Kraków, Poland.
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| | - Maria J Golab
- Institute of Nature Conservation Polish Academy of Sciences, al. Adama Mickiewicza 33, 31-120, Kraków, Poland.
| |
Collapse
|
2
|
Ferzoco IMC, McCauley SJ. Novel habitats for biodiversity? A systematic review and meta-analysis of freshwater biodiversity in stormwater management ponds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173467. [PMID: 38802007 DOI: 10.1016/j.scitotenv.2024.173467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Stormwater ponds are increasingly becoming a dominant pond type in cities experiencing urban sprawl. These human-made ponds are designed primarily to control flooding issues associated with increased impervious surface in cities and serve to retain sediment and contaminants before flowing to urban downstream waterways. Along with these important functions, constructed ponds including stormwater ponds may be critical in urban freshwater conservation because they often represent some of the few remaining lentic environments (still water; e.g. ponds, wetlands, lakes) in many cities. We currently lack a clear understanding of the role that stormwater ponds play in serving as habitat for freshwater biodiversity. Here, we examined whether stormwater ponds support freshwater biodiversity in cities by reviewing the empirical literature on biotic community responses in urban stormwater ponds across a range of taxonomic groups. We conducted a meta-analysis on empirical papers that quantitatively examined differences in taxonomic richness between stormwater ponds and reference ponds (n = 11 papers, 22 effects). We also examined a broader set of 58 papers to qualitatively synthesize studies on stormwater pond communities and assess various indicators of habitat quality in stormwater ponds. In the studies examined, heterogeneity exists in the habitat quality of stormwater ponds and increased pollutant loads are often reported. However, the results highlight that stormwater ponds tend to contain alpha diversity comparable to reference ponds, and that overall, a range of ecologically important wildlife make use of and inhabit urban stormwater ponds. We find that stormwater ponds can often support communities with broad compositions of taxa, including those that are sensitive or vulnerable to environmental change. We compile recommendations provided within the studies in order to improve our understanding of the management of urban stormwater ponds for biodiversity conservation.
Collapse
Affiliation(s)
- Ilia Maria C Ferzoco
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada; Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St., Toronto, ON M5S 3B2, Canada.
| | - Shannon J McCauley
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada; Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St., Toronto, ON M5S 3B2, Canada
| |
Collapse
|
3
|
Wos G, Palomar G, Marszałek M, Sniegula S. Comparative Transcriptomic Reveals Greater Similarities in Response to Temperature Than to Invasive Alien Predator in the Damselfly Ischnura elegans Across Different Geographic Scales. Evol Appl 2024; 17:e70002. [PMID: 39247089 PMCID: PMC11377989 DOI: 10.1111/eva.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/04/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024] Open
Abstract
The impact of global changes on populations may not be necessarily uniform across a species' range. Here, we aim at comparing the phenotypic and transcriptomic response to warming and an invasive predator cue in populations across different geographic scales in the damselfly Ischnura elegans. We collected adult females in two ponds in southern Poland (central latitude) and two ponds in southern Sweden (high latitude). We raised their larvae in growth chambers and exposed them to combination of temperature and a predator cue released by the crayfish Orconectes limosus. When larvae reached the prefinal larval stage, they were phenotyped for traits related to growth and size and collected for a gene expression analysis. High-latitude populations exhibited greater phenotypic and transcriptomic variation than central-latitude populations. Across latitudes and ponds, temperature generally increased growth rate and the predator cue decreased mass, but the effects of temperature were also pond-specific. Comparison of the transcriptomic profiles revealed a greater overlap in the response to temperature across latitudes and ponds, especially for pathway-related oxidative stress and sugar and lipid metabolism. The transcriptomic response to a predator cue and to the interaction temperature × predator cue was more pond-specific and overlapped only for few genes and pathways related to cuticle, development and signal transduction. We demonstrated that central- and high-latitude populations may partially respond through similar mechanisms to warming and, to a lower extent to a predator cue and to the interaction temperature × predator cue. For the predator cue and the interaction, the large fraction of ponds-specific genes suggests local adaptation. We show that high-latitude populations were generally more plastic at the phenotypic and transcriptomic level and may be more capable to cope with environmental changes than their central-latitude counterparts.
Collapse
Affiliation(s)
- Guillaume Wos
- Institute of Nature Conservation Polish Academy of Sciences Krakow Poland
| | - Gemma Palomar
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences Complutense University of Madrid Madrid Spain
- Institute of Environmental Sciences Jagiellonian University Kraków Poland
| | - Marzena Marszałek
- Institute of Environmental Sciences Jagiellonian University Kraków Poland
| | - Szymon Sniegula
- Institute of Nature Conservation Polish Academy of Sciences Krakow Poland
| |
Collapse
|
4
|
Carneiro L, Miiller NOR, Cuthbert RN, Vitule JRS. Biological invasions negatively impact global protected areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174823. [PMID: 39019276 DOI: 10.1016/j.scitotenv.2024.174823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/24/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Protected areas underpin global biodiversity conservation and sustainability agendas. Biological invasions increasingly threaten the ecological functioning and long-term conservation value of protected areas, while a lack of information on impact impedes management decisions. We collated data from effects of biological invasions in protected areas to provide the first quantitative analysis of their global impacts. Based on 300 reported effects from 44 invasive species, we show that there are overall negative impacts from invasive species on both biotic and abiotic characteristics of protected areas globally. Impacts were pervasive across population, community, and ecosystem scales, and for the vast majority of invasive taxa with sufficient data. Negative impacts have been incurred around the world, with National Parks and World Heritage Sites in the Neartic and Neotropical regions the most studied. Notwithstanding context-dependencies and uneven research efforts, the recurrent negative impacts of invasive species indicate that current efforts are insufficient to curb current stressors and meet conservation and sustainability targets on land and in water. To address the risk of biological invasions in protected areas, it is imperative to prioritise fundamental research on ecological interactions, establish robust monitoring and prevention programs, and raise awareness through global initiatives.
Collapse
Affiliation(s)
- Laís Carneiro
- Laboratório de Ecologia e Conservação, Departamento de Engenharia Ambiental, Universidade Federal do Paraná, Brazil; Programa de Pós-graduação em Ecologia e Conservação, Universidade Federal do Paraná, Brazil.
| | - Natali O R Miiller
- Laboratório de Ecologia e Conservação, Departamento de Engenharia Ambiental, Universidade Federal do Paraná, Brazil; Programa de Pós-graduação em Ecologia e Conservação, Universidade Federal do Paraná, Brazil
| | - Ross N Cuthbert
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, United Kingdom
| | - Jean R S Vitule
- Laboratório de Ecologia e Conservação, Departamento de Engenharia Ambiental, Universidade Federal do Paraná, Brazil; Programa de Pós-graduação em Ecologia e Conservação, Universidade Federal do Paraná, Brazil
| |
Collapse
|
5
|
Dunn RE, Benkwitt CE, Maury O, Barrier N, Carr P, Graham NAJ. Island restoration to rebuild seabird populations and amplify coral reef functioning. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024:e14313. [PMID: 38887868 DOI: 10.1111/cobi.14313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/19/2024] [Accepted: 04/15/2024] [Indexed: 06/20/2024]
Abstract
Mobile organisms like seabirds can provide important nutrient flows between ecosystems, but this connectivity has been interrupted by the degradation of island ecosystems. Island restoration (via invasive species eradications and the restoration of native vegetation) can reestablish seabird populations and their nutrient transfers between their foraging areas, breeding colonies, and adjacent nearshore habitats. Its diverse benefits are making island restoration increasingly common and scalable to larger islands and whole archipelagos. We identified the factors that influence breeding seabird abundances throughout the Chagos Archipelago in the Indian Ocean and conducted predictive modeling to estimate the abundances of seabirds that the archipelago could support under invasive predator eradication and native vegetation restoration scenarios. We explored whether the prey base exists to support restored seabird populations across the archipelago, calculated the nitrogen that restored populations of seabirds might produce via their guano, and modeled the cascading conservation gains that island restoration could provide. Restoration was predicted to increase breeding pairs of seabirds to over 280,000, and prey was predicted to be ample to support the revived seabird populations. Restored nutrient fluxes were predicted to result in increases in coral growth rates, reef fish biomasses, and parrotfish grazing and bioerosion rates. Given these potential cross-ecosystem benefits, our results support island restoration as a conservation priority that could enhance resilience to climatic change effects, such as sea-level rise and coral bleaching. We encourage the incorporation of our estimates of cross-ecosystem benefits in prioritization exercises for island restoration.
Collapse
Affiliation(s)
- Ruth E Dunn
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
- The Lyell Centre, Heriot-Watt University, Edinburgh, UK
| | | | - Olivier Maury
- Institut de Recherche pour le Développement, Université de Montpellier, Sète, France
| | - Nicolas Barrier
- Institut de Recherche pour le Développement, Université de Montpellier, Sète, France
| | - Peter Carr
- Institute of Zoology, Zoological Society of London, London, UK
| | | |
Collapse
|
6
|
Rivera-Estay V, Córdova-Lepe F, Moreno-Gómez FN, Benitez H, Gutiérrez R. Exploring the effects of competition and predation on the success of biological invasion through mathematical modeling. Sci Rep 2024; 14:4416. [PMID: 38388475 PMCID: PMC10883959 DOI: 10.1038/s41598-024-53344-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
Biological invasions are a major cause of species extinction and biodiversity loss. Exotic predators are the type of introduced species that have the greatest negative impact, causing the extinction of hundreds of native species. Despite this, they continue to be intentionally introduced by humans. Understanding the causes that determine the success of these invasions is a challenge within the field of invasion biology. Mathematical models play a crucial role in understanding and predicting the behavior of exotic species in different ecosystems. This study examines the effect of predation and competition on the invasion success of an exotic generalist predator in a native predator-prey system. Considering that the exotic predator both consumes the native prey and competes with the native predator, it is necessary to study the interplay between predation and competition, as one of these interspecific interactions may either counteract or contribute to the impact of the other on the success of a biological invasion. Through a mathematical model, represented by a system of ordinary differential equations, it is possible to describe four different scenarios upon the arrival of the exotic predator in a native predator-prey system. The conditions for each of these scenarios are described analytically and numerically. The numerical simulations are performed considering the American mink (Mustela vison), an invasive generalist predator. The results highlight the importance of considering the interplay between interspecific interactions for understanding biological invasion success.
Collapse
Affiliation(s)
- Viviana Rivera-Estay
- Doctorado en Modelamiento Matemático Aplicado, Facultad de Ciencias Básicas, Universidad Católica del Maule, 3466706, Talca, Chile.
| | - Fernando Córdova-Lepe
- Departamento de Matemática, Física y Estadística, Facultad de Ciencias Básicas, Universidad Católica del Maule, 3466706, Talca, Chile
| | - Felipe N Moreno-Gómez
- Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, 3466706, Talca, Chile
| | - Hugo Benitez
- Laboratorio de Ecología y Morfometría Evolutiva, Centro de Investigación de Estudios Avanzados del Maule, Instituto Milenio Biodiversidad de Ecosistemas Antárticos y Subantárticos (BASE), Universidad Católica del Maule, 3466706, Talca, Chile
- Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS), Universidad Bernardo O'Higgins, Avenida Viel 1497, 8370993, Santiago, Chile
| | - Rodrigo Gutiérrez
- Departamento de Matemática, Física y Estadística, Facultad de Ciencias Básicas, Universidad Católica del Maule, 3466706, Talca, Chile
| |
Collapse
|
7
|
Cooke R, Sayol F, Andermann T, Blackburn TM, Steinbauer MJ, Antonelli A, Faurby S. Undiscovered bird extinctions obscure the true magnitude of human-driven extinction waves. Nat Commun 2023; 14:8116. [PMID: 38114469 PMCID: PMC10730700 DOI: 10.1038/s41467-023-43445-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/09/2023] [Indexed: 12/21/2023] Open
Abstract
Birds are among the best-studied animal groups, but their prehistoric diversity is poorly known due to low fossilization potential. Hence, while many human-driven bird extinctions (i.e., extinctions caused directly by human activities such as hunting, as well as indirectly through human-associated impacts such as land use change, fire, and the introduction of invasive species) have been recorded, the true number is likely much larger. Here, by combining recorded extinctions with model estimates based on the completeness of the fossil record, we suggest that at least ~1300-1500 bird species (~12% of the total) have gone extinct since the Late Pleistocene, with 55% of these extinctions undiscovered (not yet discovered or left no trace). We estimate that the Pacific accounts for 61% of total bird extinctions. Bird extinction rate varied through time with an intense episode ~1300 CE, which likely represents the largest human-driven vertebrate extinction wave ever, and a rate 80 (60-95) times the background extinction rate. Thus, humans have already driven more than one in nine bird species to extinction, with likely severe, and potentially irreversible, ecological and evolutionary consequences.
Collapse
Affiliation(s)
- Rob Cooke
- UK Centre for Ecology & Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK.
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30, Göteborg, Sweden.
- Gothenburg Global Biodiversity Centre, Box 461, SE-405 30, Göteborg, Sweden.
| | - Ferran Sayol
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30, Göteborg, Sweden
- Gothenburg Global Biodiversity Centre, Box 461, SE-405 30, Göteborg, Sweden
- CREAF, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain
| | - Tobias Andermann
- Department of Organismal Biology, SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Tim M Blackburn
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
| | - Manuel J Steinbauer
- Bayreuth Center of Ecology and Environmental Research (BayCEER) & Bayreuth Center of Sport Science (BaySpo), University of Bayreuth, 95447, Bayreuth, Germany
| | - Alexandre Antonelli
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30, Göteborg, Sweden
- Gothenburg Global Biodiversity Centre, Box 461, SE-405 30, Göteborg, Sweden
- Royal Botanic Gardens Kew, Richmond, Surrey, TW9 3AE, UK
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - Søren Faurby
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30, Göteborg, Sweden
- Gothenburg Global Biodiversity Centre, Box 461, SE-405 30, Göteborg, Sweden
| |
Collapse
|
8
|
Wisenden BD, Anderson CM, Hanson KA, Johnson MIM, Stockwell CA. Acquired predator recognition via epidermal alarm cues but not dietary alarm cues by isolated pupfish. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230444. [PMID: 37711143 PMCID: PMC10498034 DOI: 10.1098/rsos.230444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023]
Abstract
We tested whether Shoshone pupfish Cyprinodon nevadensis shoshone and Amargosa River pupfish C. n. amargosae respond behaviourally to conspecific chemical alarm cues released when epidermal tissue is damaged by a predator. We found that both subspecies reduced activity and vertical position in the water column in response to alarm cues. We then tested if pupfish can use alarm cue to acquire recognition of a novel predator. We trained pupfish with (1) water + odour of largemouth bass fed a diet of earthworms, (2) alarm cues from skin extract (epidermal alarm cues) + odour of bass fed a diet of earthworms, or (3) water + odour of bass fed a diet of pupfish (dietary alarm cues). Pupfish responded to epidermal alarm cues but not to dietary alarm cues. Pupfish were retested with the odour of bass that were fed an earthworm diet. Pupfish that had previously received epidermal alarm cues reduced vertical position and activity relative to the other two treatments. This is the first demonstration of acquired recognition of a novel predator by a pupfish, the first report of partial predator naiveté, and opens the possibility of predator-recognition training as a tool for management and conservation of endangered desert fishes.
Collapse
Affiliation(s)
- Brian D. Wisenden
- Biosciences Department, Minnesota State University Moorhead, Moorhead, MN 56563, USA
| | - Cody M. Anderson
- Environmental & Conservation Sciences Graduate Program, North Dakota State University, Fargo, ND 58108, USA
| | - Kathryn A. Hanson
- Biosciences Department, Minnesota State University Moorhead, Moorhead, MN 56563, USA
| | - Molly I. M. Johnson
- Biosciences Department, Minnesota State University Moorhead, Moorhead, MN 56563, USA
- Environmental & Conservation Sciences Graduate Program, North Dakota State University, Fargo, ND 58108, USA
| | - Craig A. Stockwell
- Biological Sciences Department, North Dakota State University, Fargo, ND 58108, USA
| |
Collapse
|
9
|
Palomar G, Wos G, Stoks R, Sniegula S. Latitude-specific urbanization effects on life history traits in the damselfly Ischnura elegans. Evol Appl 2023; 16:1503-1515. [PMID: 37622092 PMCID: PMC10445092 DOI: 10.1111/eva.13583] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 08/26/2023] Open
Abstract
Many species are currently adapting to cities at different latitudes. Adaptation to urbanization may require eco-evolutionary changes in response to temperature and invasive species that may differ between latitudes. Here, we studied single and combined effects of increased temperatures and an invasive alien predator on the phenotypic response of replicated urban and rural populations of the damselfly Ischnura elegans and contrasted these between central and high latitudes. Adult females were collected in rural and urban ponds at central and high latitudes. Their larvae were exposed to temperature treatments (current [20°C], mild warming [24°C], and heat wave [28°C; for high latitude only]) crossed with the presence or absence of chemical cues released by the spiny-cheek crayfish (Faxonius limosus), only present at the central latitude. We measured treatment effects on larval development time, mass, and growth rate. Urbanization type affected all life history traits, yet these responses were often dependent on latitude, temperature, and sex. Mild warming decreased mass in rural and increased growth rate in urban populations. The effects of urbanization type on mass were latitude-dependent, with central-latitude populations having a greater phenotypic difference. Urbanization type effects were sex-specific with urban males being lighter and having a lower growth rate than rural males. At the current temperature and mild warming, the predator cue reduced the growth rate, and this independently of urbanization type and latitude of origin. This pattern was reversed during a heat wave in high-latitude damselflies. Our results highlight the context-dependency of evolutionary and plastic responses to urbanization, and caution for generalizing how populations respond to cities based on populations at a single latitude.
Collapse
Affiliation(s)
- Gemma Palomar
- Institute of Nature Conservation Polish Academy of SciencesKrakowPoland
- Department of Genetics, Physiology, and MicrobiologyComplutense University of MadridMadridSpain
| | - Guillaume Wos
- Institute of Nature Conservation Polish Academy of SciencesKrakowPoland
| | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and EcotoxicologyKU LeuvenLeuvenBelgium
| | - Szymon Sniegula
- Institute of Nature Conservation Polish Academy of SciencesKrakowPoland
| |
Collapse
|
10
|
Michel A, Johnson JR, Szeligowski R, Ritchie EG, Sih A. Integrating sensory ecology and predator-prey theory to understand animal responses to fire. Ecol Lett 2023; 26:1050-1070. [PMID: 37349260 DOI: 10.1111/ele.14231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 01/11/2023] [Accepted: 02/10/2023] [Indexed: 06/24/2023]
Abstract
Fire regimes are changing dramatically worldwide due to climate change, habitat conversion, and the suppression of Indigenous landscape management. Although there has been extensive work on plant responses to fire, including their adaptations to withstand fire and long-term effects of fire on plant communities, less is known about animal responses to fire. Ecologists lack a conceptual framework for understanding behavioural responses to fire, which can hinder wildlife conservation and management. Here, we integrate cue-response sensory ecology and predator-prey theory to predict and explain variation in if, when and how animals react to approaching fire. Inspired by the literature on prey responses to predation risk, this framework considers both fire-naïve and fire-adapted animals and follows three key steps: vigilance, cue detection and response. We draw from theory on vigilance tradeoffs, signal detection, speed-accuracy tradeoffs, fear generalization, neophobia and adaptive dispersal. We discuss how evolutionary history with fire, but also other selective pressures, such as predation risk, should influence animal behavioural responses to fire. We conclude by providing guidance for empiricists and outlining potential conservation applications.
Collapse
Affiliation(s)
- Alice Michel
- Animal Behavior Graduate Group, University of California, Davis, California, USA
| | - Jacob R Johnson
- Animal Behavior Graduate Group, University of California, Davis, California, USA
| | - Richard Szeligowski
- Department of Environmental Science & Policy, University of California, Davis, California, USA
| | - Euan G Ritchie
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Burwood, Victoria, Australia
| | - Andrew Sih
- Department of Environmental Science & Policy, University of California, Davis, California, USA
| |
Collapse
|
11
|
Wallach AD, Ramp D, Benítez-López A, Wooster EIF, Carroll S, Carthey AJR, Rogers EIE, Middleton O, Zawada KJA, Svenning JC, Avidor E, Lundgren E. Savviness of prey to introduced predators. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2023; 37:e14012. [PMID: 36178043 DOI: 10.1111/cobi.14012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
The prey naivety hypothesis posits that prey are vulnerable to introduced predators because many generations in slow gradual coevolution are needed for appropriate avoidance responses to develop. It predicts that prey will be more responsive to native than introduced predators and less responsive to introduced predators that differ substantially from native predators and from those newly established. To test these predictions, we conducted a global meta-analysis of studies that measured the wariness responses of small mammals to the scent of sympatric mammalian mesopredators. We identified 26 studies that met our selection criteria. These studies comprised 134 experiments reporting on the responses of 36 small mammal species to the scent of six introduced mesopredators and 12 native mesopredators. For each introduced mesopredator, we measured their phylogenetic and functional distance to local native mesopredators and the number of years sympatric with their prey. We used predator and prey body mass as a measure of predation risk. Globally, small mammals were similarly wary of the scent of native and introduced mesopredators; phylogenetic and functional distance between introduced mesopredators and closest native mesopredators had no effect on wariness; and wariness was unrelated to the number of prey generations, or years, since first contact with introduced mesopredators. Small mammal wariness was associated with predator-prey body mass ratio, regardless of the nativity. The one thing animals do not seem to recognize is whether their predators are native.
Collapse
Affiliation(s)
- Arian D Wallach
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Daniel Ramp
- Centre for Compassionate Conservation, TD School, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Ana Benítez-López
- Department of Zoology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Eamonn I F Wooster
- Centre for Compassionate Conservation, TD School, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Scott Carroll
- Department of Entomology and Nematology, University of California Davis, Berkeley, California, USA
| | - Alexandra J R Carthey
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Erin I E Rogers
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Owen Middleton
- School of Life Sciences, University of Sussex, Brighton, UK
| | - Kyle J A Zawada
- Centre for Compassionate Conservation, TD School, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Jens-Christian Svenning
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Ella Avidor
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Erick Lundgren
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
12
|
Beckermann AJ, Medley KA, Adalsteinsson SA, Westby KM. The final countdown: presence of an invasive mosquito extends time to predation for a native mosquito. Biol Invasions 2023. [DOI: 10.1007/s10530-023-03051-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
13
|
Wijewardhana UA, Jayawardana M, Meyer D. Modelling the recovery of resident shorebirds following a fox eradication program using citizen science data. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Wood ZT, Shepard ID. Commentary: using prey naïveté to inform ecological management. Proc Biol Sci 2022; 289:20221710. [PMID: 36448282 PMCID: PMC9709559 DOI: 10.1098/rspb.2022.1710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022] Open
Affiliation(s)
- Zachary T. Wood
- Colby College Department of Biology, Waterville ME 04901, USA
| | - Isaac D. Shepard
- Rensselaer Polytechnic Institute, Darrin Freshwater Institute, Troy NY 12180, USA
| |
Collapse
|
15
|
Twining JP, Lawton C, White A, Sheehy E, Hobson K, Montgomery WI, Lambin X. Restoring vertebrate predator populations can provide landscape-scale biological control of established invasive vertebrates: Insights from pine marten recovery in Europe. GLOBAL CHANGE BIOLOGY 2022; 28:5368-5384. [PMID: 35706099 PMCID: PMC9542606 DOI: 10.1111/gcb.16236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/01/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Invasive species pose one of the greatest global threats to biodiversity. There has been a long history of importing coevolved natural enemies to act as biological control agents to try to suppress densities of invasive species, with historically limited success and frequent adverse impacts on native biodiversity. Our understanding of the processes and drivers of successful biological control has been focussed on invertebrates and is evidently limited and potentially ill-suited with respect to biological control of vertebrate populations. The restoration of native vertebrate predator populations provides a promising nature-based solution for slowing, halting, or even reversing the spread of some invasive vertebrates over spatial scales relevant to the management of wildlife populations. Here, we first review the growing literature and data from the pine marten-red and grey squirrel system in Europe. We synthesise a multi-decadal dataset to show that the recovery of a native predator has resulted in rapid, landscape-scale declines of an established invasive species. We then use the model system, predator-prey interaction theory, and examples from the literature to develop ecological theory relating to natural biological control in vertebrates and evolutionary processes in native-invasive predator-prey interactions. We find support for the hypotheses that evolutionary naivety of invasive species to native predators and lack of local refuges results in higher predation of naive compared to coevolved prey. We apply lessons learnt from the marten-squirrel model system to examine the plausibility of specific native predator solutions to some of the Earth's most devastating invasive vertebrates. Given the evidence, we conclude that depletion of vertebrate predator populations has increased ecosystem vulnerability to invasions and thus facilitated the spread of invasive species. Therefore, restoration of vertebrate predator populations is an underappreciated, fundamental, nature-based solution to the crisis of invasive species and should be a priority for vertebrate invasive species management globally.
Collapse
Affiliation(s)
- Joshua P. Twining
- Department of Natural ResourcesCornell UniversityIthacaNew YorkUSA
- School of Biological SciencesQueen's UniversityBelfastUK
| | - Colin Lawton
- School of Natural Sciences, Ryan InstituteNational University of Ireland GalwayGalwayIreland
| | - Andy White
- Maxwell Institute for Mathematical Sciences, Department of MathematicsHeriot‐Watt UniversityEdinburghUK
| | - Emma Sheehy
- School of Natural Sciences, Ryan InstituteNational University of Ireland GalwayGalwayIreland
| | - Keziah Hobson
- School of Biological SciencesUniversity of AberdeenAberdeenUK
| | | | - Xavier Lambin
- School of Biological SciencesUniversity of AberdeenAberdeenUK
| |
Collapse
|
16
|
Stockwell CA, Schmelzer MR, Gillis BE, Anderson CM, Wisenden BD. Ignorance is not bliss: evolutionary naiveté in an endangered desert fish and implications for conservation. Proc Biol Sci 2022; 289:20220752. [PMID: 35975438 PMCID: PMC9386569 DOI: 10.1098/rspb.2022.0752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/20/2022] [Indexed: 12/27/2022] Open
Abstract
Predator naiveté has been invoked to explain the impacts of non-native predators on isolated populations that evolved with limited predation. Such impacts have been repeatedly observed for the endangered Pahrump poolfish, Empetrichthys latos, a desert fish species that evolved in isolation since the end of the Pleistocene. We tested Pahrump poolfish anti-predator responses to conspecific chemical alarm cues released from damaged epidermal tissue in terms of fish activity and water column position. Pahrump poolfish behavioural responses to conspecific alarm cues did not differ from responses to a dechlorinated tap water control. As a positive control, the well-studied fathead minnow, Pimephales promelas, showed significant alarm cue responses in terms of reduced activity and lowered water column position. The density of epidermal club cells, the presumptive source of alarm cues, was significantly lower in Pahrump poolfish relative to fathead minnows. Therefore, anti-predator competence mediated by conspecific alarm cues does not seem to be a component of the ecology of Pahrump poolfish. These findings provide a proximate mechanism for the vulnerability of Pahrump poolfish to non-native predators, with implications for the conservation and management of insular species.
Collapse
Affiliation(s)
- Craig A. Stockwell
- Department of Biological Sciences, Environmental and Conservation Sciences Program, North Dakota State University, PO Box 6050, Fargo, ND 58108, USA
| | - Madison R. Schmelzer
- Department of Biological Sciences, Environmental and Conservation Sciences Program, North Dakota State University, PO Box 6050, Fargo, ND 58108, USA
| | - Bailey E. Gillis
- Department of Biological Sciences, Environmental and Conservation Sciences Program, North Dakota State University, PO Box 6050, Fargo, ND 58108, USA
| | - Cody M. Anderson
- Department of Biological Sciences, Environmental and Conservation Sciences Program, North Dakota State University, PO Box 6050, Fargo, ND 58108, USA
| | - Brian D. Wisenden
- Biosciences Department, Minnesota State University Moorhead, 1104 7th Avenue South, Moorhead, MN 56563, USA
| |
Collapse
|
17
|
Bodey TW, Carter ZT, Haubrock PJ, Cuthbert RN, Welsh MJ, Diagne C, Courchamp F. Building a synthesis of economic costs of biological invasions in New Zealand. PeerJ 2022; 10:e13580. [PMID: 35990909 PMCID: PMC9387519 DOI: 10.7717/peerj.13580] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/22/2022] [Indexed: 01/17/2023] Open
Abstract
Biological invasions are a major component of anthropogenic environmental change, incurring substantial economic costs across all sectors of society and ecosystems. There have been recent syntheses of costs for a number of countries using the newly compiled InvaCost database, but New Zealand-a country renowned for its approach to invasive species management-has so far not been examined. Here we analyse reported economic damage and management costs incurred by biological invasions in New Zealand from 1968 to 2020. In total, US$69 billion (NZ$97 billion) is currently reported over this ∼50-year period, with approximately US$9 billion of this considered highly reliable, observed (c.f. projected) costs. Most (82%) of these observed economic costs are associated with damage, with comparatively little invested in management (18%). Reported costs are increasing over time, with damage averaging US$120 million per year and exceeding management expenditure in all decades. Where specified, most reported costs are from terrestrial plants and animals, with damages principally borne by primary industries such as agriculture and forestry. Management costs are more often associated with interventions by authorities and stakeholders. Relative to other countries present in the InvaCost database, New Zealand was found to spend considerably more than expected from its Gross Domestic Product on pre- and post-invasion management costs. However, some known ecologically (c.f. economically) impactful invasive species are notably absent from estimated damage costs, and management costs are not reported for a number of game animals and agricultural pathogens. Given these gaps for known and potentially damaging invaders, we urge improved cost reporting at the national scale, including improving public accessibility through increased access and digitisation of records, particularly in overlooked socioeconomic sectors and habitats. This also further highlights the importance of investment in management to curtail future damages across all sectors.
Collapse
Affiliation(s)
- Thomas W. Bodey
- School of Biological Sciences, University of Auckland, Auckland, New Zealand,School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Zachary T. Carter
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Phillip J. Haubrock
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany,Faculty of Fisheries and Protection of Waters, University of South Bohemia, České Budějovice, Czech Republic
| | - Ross N. Cuthbert
- GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Kiel, Germany,School of Biological Sciences, The Queen’s University Belfast, Belfast, United Kingdom
| | | | - Christophe Diagne
- CNRS, AgroParisTech, Ecologie Systématique Evolution, Université Paris-Saclay, Orsay, France
| | - Franck Courchamp
- CNRS, AgroParisTech, Ecologie Systématique Evolution, Université Paris-Saclay, Orsay, France
| |
Collapse
|
18
|
Renault D, Hess MCM, Braschi J, Cuthbert RN, Sperandii MG, Bazzichetto M, Chabrerie O, Thiébaut G, Buisson E, Grandjean F, Bittebiere AK, Mouchet M, Massol F. Advancing biological invasion hypothesis testing using functional diversity indices. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155102. [PMID: 35398434 DOI: 10.1016/j.scitotenv.2022.155102] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Pioneering investigations on the effects of introduced populations on community structure, ecosystem functioning and services have focused on the effects of invaders on taxonomic diversity. However, taxonomic-based diversity metrics overlook the heterogeneity of species roles within and among communities. As the homogenizing effects of biological invasions on community and ecosystem processes can be subtle, they may require the use of functional diversity indices to be properly evidenced. Starting from the listing of major functional diversity indices, alongside the presentation of their strengths and limitations, we focus on studies pertaining to the effects of invasive species on native communities and recipient ecosystems using functional diversity indices. By doing so, we reveal that functional diversity of the recipient community may strongly vary at the onset of the invasion process, while it stabilizes at intermediate and high levels of invasion. As functional changes occurring during the lag phase of an invasion have been poorly investigated, we show that it is still unknown whether there are consistent changes in functional diversity metrics that could indicate the end of the lag phase. Thus, we recommend providing information on the invasion stage under consideration when computing functional diversity metrics. For the existing literature, it is also surprising that very few studies explored the functional difference between organisms from the recipient communities and invaders of the same trophic levels, or assessed the effects of non-native organism establishment into a non-analogue versus an analogue community. By providing valuable tools for obtaining in-depth diagnostics of community structure and functioning, functional diversity indices can be applied for timely implementation of restoration plans and improved conservation strategies. To conclude, our work provides a first synthetic guide for their use in hypothesis testing in invasion biology.
Collapse
Affiliation(s)
- David Renault
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, Rennes, France; Institut Universitaire de France, 1 rue Descartes, 75231 Paris Cedex 05, France.
| | - Manon C M Hess
- Institut Méditerranéen de Biodiversité et d'Écologie marine et continentale (IMBE), UMR Aix Marseille Université, Avignon Université, CNRS, IRD, France; Institut de recherche pour la conservation des zones humides méditerranéennes Tour du Valat, Le Sambuc, 13200 Arles, France; NGE-GUINTOLI, Saint-Etienne du Grès, Parc d'activités de Laurade - BP22, 13156 Tarascon Cedex, France
| | - Julie Braschi
- Institut Méditerranéen de Biodiversité et d'Écologie marine et continentale (IMBE), UMR Aix Marseille Université, Avignon Université, CNRS, IRD, France; Naturalia-Environnement, Ingénierie en écologie, 20 Rue Lawrence Durrell, 84140 Avignon, France
| | - Ross N Cuthbert
- GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, 24105 Kiel, Germany; School of Biological Sciences, Queen's University Belfast, BT9 5DL Belfast, United Kingdom
| | - Marta G Sperandii
- Dipartimento di Scienze, Università degli Studi Roma Tre, Viale G. Marconi 446, 00146 Roma, Italy
| | - Manuele Bazzichetto
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, Rennes, France
| | - Olivier Chabrerie
- Université de Picardie Jules Verne, UMR 7058 CNRS EDYSAN, 1 rue des Louvels, 80037 Amiens Cedex 1, France
| | - Gabrielle Thiébaut
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, Rennes, France
| | - Elise Buisson
- Institut Méditerranéen de Biodiversité et d'Écologie marine et continentale (IMBE), UMR Aix Marseille Université, Avignon Université, CNRS, IRD, France
| | - Frédéric Grandjean
- Université de Poitiers, UMR CNRS 7267 EBI- Ecologie et Biologie des Interactions, équipe EES, 5 rue Albert Turpin, Bat B8-B35, TSA 51106, 86073 Poitiers Cedex 09, France
| | - Anne-Kristel Bittebiere
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622 Villeurbanne, France
| | - Maud Mouchet
- UMR 7204 MNHN-SU-CNRS CESCO, CP135, 57 rue Cuvier, 75005 Paris, France
| | - François Massol
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| |
Collapse
|
19
|
Soto I, Cuthbert RN, Kouba A, Capinha C, Turbelin A, Hudgins EJ, Diagne C, Courchamp F, Haubrock PJ. Global economic costs of herpetofauna invasions. Sci Rep 2022; 12:10829. [PMID: 35902706 PMCID: PMC9334389 DOI: 10.1038/s41598-022-15079-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 06/17/2022] [Indexed: 11/24/2022] Open
Abstract
Biological invasions by amphibian and reptile species (i.e. herpetofauna) are numerous and widespread, having caused severe impacts on ecosystems, the economy and human health. However, there remains no synthesised assessment of the economic costs of these invasions. Therefore, using the most comprehensive database on the economic costs of invasive alien species worldwide (InvaCost), we analyse the costs caused by invasive alien herpetofauna according to taxonomic, geographic, sectoral and temporal dimensions, as well as the types of these costs. The cost of invasive herpetofauna totaled at 17.0 billion US$ between 1986 and 2020, divided split into 6.3 billion US$ for amphibians, 10.4 billion US$ for reptiles and 334 million US$ for mixed classes. However, these costs were associated predominantly with only two species (brown tree snake Boiga irregularis and American bullfrog Lithobates catesbeianus), with 10.3 and 6.0 billion US$ in costs, respectively. Costs for the remaining 19 reported species were relatively minor (< 0.6 billion US$), and they were entirely unavailable for over 94% of known invasive herpetofauna worldwide. Also, costs were positively correlated with research effort, suggesting research biases towards well-known taxa. So far, costs have been dominated by predictions and extrapolations (79%), and thus empirical observations for impact were relatively scarce. The activity sector most affected by amphibians was authorities-stakeholders through management (> 99%), while for reptiles, impacts were reported mostly through damages to mixed sectors (65%). Geographically, Oceania and Pacific Islands recorded 63% of total costs, followed by Europe (35%) and North America (2%). Cost reports have generally increased over time but peaked between 2011 and 2015 for amphibians and 2006 to 2010 for reptiles. A greater effort in studying the costs of invasive herpetofauna is necessary for a more complete understanding of invasion impacts of these species. We emphasise the need for greater control and prevention policies concerning the spread of current and future invasive herpetofauna.
Collapse
Affiliation(s)
- Ismael Soto
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Ross N Cuthbert
- School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Antonín Kouba
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - César Capinha
- Centro de Estudos Geográficos, Instituto de Geografia e Ordenamento do Território-IGOT, Universidade de Lisboa, Rua Branca Edmée Marques, 1600-276, Lisbon, Portugal
- Laboratório Associado Terra, Lisbon, Portugal
| | - Anna Turbelin
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, 91405, Orsay, France
| | - Emma J Hudgins
- Department of Biology, Carleton University, Ottawa, Canada
| | - Christophe Diagne
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, 91405, Orsay, France
| | - Franck Courchamp
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, 91405, Orsay, France
| | - Phillip J Haubrock
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.
| |
Collapse
|
20
|
Lim G, Burns K. Avian translocations restore dual interaction networks in an island ecosystem. Restor Ecol 2022. [DOI: 10.1111/rec.13768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ganges Lim
- School of Biological Sciences, Te Toki a Rata Building University of Wellington, PO Box 600 Wellington New Zealand 6015
| | - K.C. Burns
- School of Biological Sciences, Te Toki a Rata Building University of Wellington, PO Box 600 Wellington New Zealand 6015
| |
Collapse
|
21
|
Yli-Renko M, Pettay JE, Rothäusler E, Vesakoski O. Lack of anti-predator recognition in a marine isopod under the threat of an invasive predatory crab. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02839-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractThe prey naïveté hypothesis suggests that the failure of prey to recognize novel predators as a threat is caused by a lack of anti-predator adaptations. We tested this hypothesis in a unique natural setting, where the isopod Idotea balthica encountered the rapidly spreading invasive crab, Rhithropanopeus harrissii. Earlier research had indicated high mortality of the isopods during exposure to R. harrissii. The isopod exerted no co-evolutionary history with any littoral crabs and thus the strong impact could be caused by lack of pre-adaptations towards the new predator species. We tested this hypothesis by studying the anti-predator responses of the isopods with water-born cues of R. harrissii and of the native predatory fish Perca fluviatilis. Compared to control water, the isopods lowered their activity when exposed to the fish cue. Instead crab cue did not induce anti-predator behaviour. We also tested the hypothesis that mortality caused by novel predator, similar to predation by P. fluviatilis, would result in differential selection for the two sexes and contribute to the evolution of personalities. However, we found no differences in anti-predator behaviour nor in mortality between the sexes or personalities of the isopods. The outcomes reveal an interesting evolutionary scenario, where predation by a local predator induce soft selection on prey characteristics, but an invasive species cause hard selection without differentiating between prey individuals. Our study—conducted in the dawn of the population outbreak of R. harrissii—provides an excellent reference point for studies resolving the evolutionary impacts of invasive predators on naïve prey.
Collapse
|
22
|
Haubrock PJ, Bernery C, Cuthbert RN, Liu C, Kourantidou M, Leroy B, Turbelin AJ, Kramer AM, Verbrugge LNH, Diagne C, Courchamp F, Gozlan RE. Knowledge gaps in economic costs of invasive alien fish worldwide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149875. [PMID: 34478901 DOI: 10.1016/j.scitotenv.2021.149875] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Invasive alien fishes have had pernicious ecological and economic impacts on both aquatic ecosystems and human societies. However, a comprehensive and collective assessment of their monetary costs is still lacking. In this study, we collected and reviewed reported data on the economic impacts of invasive alien fishes using InvaCost, the most comprehensive global database of invasion costs. We analysed how total (i.e. both observed and potential/predicted) and observed (i.e. empirically incurred only) costs of fish invasions are distributed geographically and temporally and assessed which socioeconomic sectors are most affected. Fish invasions have potentially caused the economic loss of at least US$37.08 billion (US2017 value) globally, from just 27 reported species. North America reported the highest costs (>85% of the total economic loss), followed by Europe, Oceania and Asia, with no costs yet reported from Africa or South America. Only 6.6% of the total reported costs were from invasive alien marine fish. The costs that were observed amounted to US$2.28 billion (6.1% of total costs), indicating that the costs of damage caused by invasive alien fishes are often extrapolated and/or difficult to quantify. Most of the observed costs were related to damage and resource losses (89%). Observed costs mainly affected public and social welfare (63%), with the remainder borne by fisheries, authorities and stakeholders through management actions, environmental, and mixed sectors. Total costs related to fish invasions have increased significantly over time, from <US$0.01 million/year in the 1960s to over US$1 billion/year in the 2000s, while observed costs have followed a similar trajectory. Despite the growing body of work on fish invasions, information on costs has been much less than expected, given the overall number of invasive alien fish species documented and the high costs of the few cases reported. Both invasions and their economic costs are increasing, exacerbating the need for improved cost reporting across socioeconomic sectors and geographic regions, for more effective invasive alien fish management.
Collapse
Affiliation(s)
- Phillip J Haubrock
- Senckenberg Research Institute and Natural History Museum Frankfurt, Department of River Ecology and Conservation, 63571 Gelnhausen, Germany; University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic.
| | - Camille Bernery
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, 91405 Orsay, France; Unité Biologie des Organismes et Ecosystèmes Aquatiques (BOREA UMR 7208), Muséum National d'Histoire Naturelle, Sorbonne Universités, Université de Caen Normandie, Université des Antilles, CNRS, IRD, Paris, France
| | - Ross N Cuthbert
- GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, 24105 Kiel, Germany; School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom of Great Britain and Northern Ireland
| | - Chunlong Liu
- Institute of Biology, Freie Universität Berlin, 14195 Berlin, Germany; Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 12587 Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany
| | - Melina Kourantidou
- Woods Hole Oceanographic Institution, Marine Policy Center, Woods Hole, MA 02543, United States; University of Southern Denmark, Department of Sociology, Environmental and Business Economics, Esbjerg 6700, Denmark; Institute of Marine Biological Resources and Inland Waters, Hellenic Center for Marine Research, Athens 164 52, Greece
| | - Boris Leroy
- Unité Biologie des Organismes et Ecosystèmes Aquatiques (BOREA UMR 7208), Muséum National d'Histoire Naturelle, Sorbonne Universités, Université de Caen Normandie, Université des Antilles, CNRS, IRD, Paris, France
| | - Anna J Turbelin
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, 91405 Orsay, France
| | - Andrew M Kramer
- Department of Integrative Biology, University of South Florida, Tampa, USA
| | - Laura N H Verbrugge
- University of Helsinki, Faculty of Agriculture and Forestry, Department of Forest Sciences, P. O. Box 27, 00014 Helsinki, Finland; Aalto University, Department of Built Environment, Water & Development Research Group, Tietotie 1E, FI-00076 Aalto, Finland
| | - Christophe Diagne
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, 91405 Orsay, France
| | - Franck Courchamp
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, 91405 Orsay, France
| | | |
Collapse
|
23
|
Simulated encounters with a novel competitor reveal the potential for maladaptive behavioural responses to invasive species. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02690-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractDuring the early stage of biological invasions, interactions occur between native and non-native species that do not share an evolutionary history. This can result in ecological naïveté, causing native species to exhibit maladaptive behavioural responses to novel enemies, leading to negative consequences for individual fitness and ecosystem function. The behavioural response of native to non-native species during novel encounters can determine the impact of non-native species, and restrict or facilitate their establishment. In this study we simulated novel encounters between a widespread invasive fish species, the Nile tilapia (Oreochromis niloticus), and a threatened native Manyara tilapia (Oreochromis amphimelas). In the first experiment single adult O. niloticus were presented with a stimulus chamber (a transparent plastic cylinder) which was empty during control trials and contained a pair of juvenile O. amphimelas in stimulus trials. In the second experiment, the reciprocal set up was used, with pairs of juvenile O. amphimelas as the focal species and adult O. niloticus as the stimulus. Both species approached the stimulus chamber more readily during stimulus trials, a behavioural response which would increase the prevalence of interspecific interactions in situ. This included physical aggression, observed from the competitively dominant O. niloticus towards O. amphimelas. Despite an initial lack of fear shown by O. amphimelas, close inspection of the stimulus chamber often resulted in an energetically costly dart response. Under field conditions we predict that naïve native individuals may readily approach O. niloticus, increasing the likelihood of interactions and exacerbating widely reported negative outcomes.
Collapse
|
24
|
Ricciardi A, Cassey P, Leuko S, Woolnough AP. Planetary Biosecurity: Applying Invasion Science to Prevent Biological Contamination from Space Travel. Bioscience 2021. [DOI: 10.1093/biosci/biab115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
As plans for space exploration and commercial use expand rapidly, biosecurity measures and risk assessments that inform them must adapt. Sophisticated protocols are required to prevent biological contamination of extraterrestrial environments from Earth and vice versa. Such protocols should be informed by research on biological invasions—human-assisted spread of organisms into novel environments—which has revealed, inter alia, that (1) invasion risk is driven by the timing and frequency of introduction events, whose control requires addressing the least secure human activities associated with organismal transport; (2) invasions and their impacts are difficult to predict, because these phenomena are governed by context dependencies involving traits of the organism and the receiving environment; and (3) early detection and rapid response are crucial for prevention but undermined by taxonomic methods that fail to recognize what is “alien” versus what is native. Collaboration among astrobiologists, invasion biologists, and policymakers could greatly enhance planetary biosecurity protocols.
Collapse
Affiliation(s)
| | | | | | - Andrew P Woolnough
- University of Melbourne, Melbourne, and the University of Adelaide, Adelaide, both in Australia
| |
Collapse
|
25
|
Nimmo DG, Carthey AJR, Jolly CJ, Blumstein DT. Welcome to the Pyrocene: Animal survival in the age of megafire. GLOBAL CHANGE BIOLOGY 2021; 27:5684-5693. [PMID: 34404117 DOI: 10.1111/gcb.15834] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/11/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Planet Earth is entering the age of megafire, pushing ecosystems to their limits and beyond. While fire causes mortality of animals across vast portions of the globe, scientists are only beginning to consider fire as an evolutionary force in animal ecology. Here, we generate a series of hypotheses regarding animal responses to fire by adopting insights from the predator-prey literature. Fire is a lethal threat; thus, there is likely strong selection for animals to recognize the olfactory, auditory, and visual cues of fire, and deploy fire avoidance behaviours that maximize survival probability. If fire defences are costly, it follows that intraspecific variation in fire avoidance behaviours should correspond with variation in fire behaviour and regimes. Species and populations inhabiting ecosystems that rarely experience fire may lack these traits, placing 'fire naive' populations and species at enhanced extinction risk as the distribution of fire extends into new ecosystem types. We outline a research agenda to understand behavioural responses to fire and to identify conservation interventions that could be used to overcome fire naivety.
Collapse
Affiliation(s)
- Dale G Nimmo
- Institute of Land, Water and Society, School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Albury, New South Wales, Australia
| | - Alexandra J R Carthey
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Chris J Jolly
- Institute of Land, Water and Society, School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Albury, New South Wales, Australia
| | - Daniel T Blumstein
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| |
Collapse
|
26
|
Moore EM, Alexander ME, Sloman KA, Pereira MG, Thacker SA, Orton F. Laboratory-Based Comparison for the Effects of Environmental Stressors Supports Field Evidence for the Relative Importance of Pollution on Life History and Behavior of the Pond Snail, Lymnaea stagnalis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8806-8816. [PMID: 34167293 DOI: 10.1021/acs.est.1c01640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biodiversity is declining at an alarming rate globally, with freshwater ecosystems particularly threatened. Field-based correlational studies have "ranked" stressors according to their relative effects on freshwater biota, however, supporting cause-effect data from laboratory exposures are lacking. Here, we designed exposures to elicit chronic effects over equivalent exposure ranges for three ubiquitous stressors (temperature: 22-28 °C; pollution [14 component mixture]: 0.05-50 μg/L; invasive predator cue [signal crayfish, Pacifasticus leniusculus]: 25-100% cue) and investigated effects on physiological end points in the pond snail (Lymnaeastagnalis). All stressors reduced posthatch survival at their highest exposure levels, however, highly divergent effects were observed at lower test levels. Temperature stimulated hatching, growth, and reproduction, whereas pollution delayed hatching, decreased growth, reduced egg number/embryo viability, and induced avoidance behavior. The invasive predator cue stimulated growth and reduced embryo viability. In agreement with field-based ranking of stressors, pollution was identified as having the most severe effects in our test system. We demonstrate here the utility of laboratory studies to effectively determine hierarchy of stressors according to their likelihood of causing harm in the field, which has importance for conservation. Finally, we report negative impacts on life-history traits central to population stability (survival/reproduction) at the lowest pollution level tested (0.05 μg/L).
Collapse
Affiliation(s)
- Emily M Moore
- School of Health and Life Sciences, University of the West of Scotland, Paisley, PA1 2BE Scotland
| | - Mhairi E Alexander
- School of Health and Life Sciences, University of the West of Scotland, Paisley, PA1 2BE Scotland
| | - Katherine A Sloman
- School of Health and Life Sciences, University of the West of Scotland, Paisley, PA1 2BE Scotland
| | - M Glória Pereira
- UK Centre for Ecology and Hydrology, Lancaster Environment Centre, Bailrigg, Lancaster LA1 4AP, United Kingdom
| | - Sarah A Thacker
- UK Centre for Ecology and Hydrology, Lancaster Environment Centre, Bailrigg, Lancaster LA1 4AP, United Kingdom
| | - Frances Orton
- School of Health and Life Sciences, University of the West of Scotland, Paisley, PA1 2BE Scotland
| |
Collapse
|
27
|
Antoł A, Sniegula S. Damselfly eggs alter their development rate in the presence of an invasive alien cue but not a native predator cue. Ecol Evol 2021; 11:9361-9369. [PMID: 34306627 PMCID: PMC8293780 DOI: 10.1002/ece3.7729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/19/2021] [Accepted: 05/12/2021] [Indexed: 11/10/2022] Open
Abstract
Biological invasions are a serious problem in natural ecosystems. Local species that are potential prey of invasive alien predators can be threatened by their inability to recognize invasive predator cues. Such an inability of prey to recognize the presence of the predator supports the naïve prey hypothesis. We exposed eggs of a damselfly, Ischnura elegans, to four treatments: water with no predator cue (control), water with a native predator cue (perch), water with an invasive alien predator cue (spinycheek crayfish) that is present in the damselfly sampling site, and water with an invasive alien predator cue (signal crayfish) that is absent in the damselfly sampling site but is expected to invade it. We measured egg development time, mortality between ovipositing and hatching, and hatching synchrony. Eggs took longer to develop in the signal crayfish group (however, in this group, we also observed high green algae growth), and there was a trend of shorter egg development time in the spinycheek crayfish group than in the control group. There was no difference in egg development time between the perch and the control group. Neither egg mortality nor hatching synchrony differed between groups. We suggest that egg response to signal crayfish could be a general stress reaction to an unfamiliar cue or an artifact due to algae development in this group. The egg response to the spinycheek crayfish cue could be caused by the predation of crayfish on damselfly eggs in nature. The lack of egg response to the perch cue could be caused by perch predation on damselfly larvae rather than on eggs. Such differences in egg responses to alternative predator cues can have important implications for understanding how this group of insects responds to biological invasions, starting from the egg stage.
Collapse
Affiliation(s)
- Andrzej Antoł
- Institute of Nature ConservationPolish Academy of SciencesKrakówPoland
| | - Szymon Sniegula
- Institute of Nature ConservationPolish Academy of SciencesKrakówPoland
| |
Collapse
|
28
|
Wilson JC, White DP, Detmer TM, Wahl DH. Behavioral response of juvenile silver and bighead carp to conspecific and heterospecific alarm cues. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02502-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Haubrock PJ, Balzani P, Hundertmark I, Cuthbert RN. Spatial and Size Variation in Dietary Niche of a Non-native Freshwater Fish. ICHTHYOLOGY & HERPETOLOGY 2021. [DOI: 10.1643/i2020099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Phillip J. Haubrock
- Senckenberg Research Institute and Natural History Museum Frankfurt, Department of River Ecology and Conservation, Gelnhausen, Germany; . Send reprint requests to this address
| | - Paride Balzani
- University of Florence, Department of Biology, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Inga Hundertmark
- Hessische Gesellschaft für Ornithologie und Naturschutz e.V., Lindenstrae 5, 61209 Echzell, Germany
| | - Ross N. Cuthbert
- GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, 24105 Kiel, Germany
| |
Collapse
|
30
|
Cuthbert RN, Dalu T, Wasserman RJ, Sentis A, Weyl OLF, Froneman PW, Callaghan A, Dick JTA. Prey and predator density-dependent interactions under different water volumes. Ecol Evol 2021; 11:6504-6512. [PMID: 34141235 PMCID: PMC8207356 DOI: 10.1002/ece3.7503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 01/28/2023] Open
Abstract
Predation is a critical ecological process that directly and indirectly mediates population stabilities, as well as ecosystem structure and function. The strength of interactions between predators and prey may be mediated by multiple density dependences concerning numbers of predators and prey. In temporary wetland ecosystems in particular, fluctuating water volumes may alter predation rates through differing search space and prey encounter rates. Using a functional response approach, we examined the influence of predator and prey densities on interaction strengths of the temporary pond specialist copepod Lovenula raynerae preying on cladoceran prey, Daphnia pulex, under contrasting water volumes. Further, using a population dynamic modeling approach, we quantified multiple predator effects across differences in prey density and water volume. Predators exhibited type II functional responses under both water volumes, with significant antagonistic multiple predator effects (i.e., antagonisms) exhibited overall. The strengths of antagonistic interactions were, however, enhanced under reduced water volumes and at intermediate prey densities. These findings indicate important biotic and abiotic contexts that mediate predator-prey dynamics, whereby multiple predator effects are contingent on both prey density and search area characteristics. In particular, reduced search areas (i.e., water volumes) under intermediate prey densities could enhance antagonisms by heightening predator-predator interference effects.
Collapse
Affiliation(s)
- Ross N. Cuthbert
- GEOMAR Helmholtz‐Zentrum für Ozeanforschung KielKielGermany
- Institute for Global Food Security, School of Biological SciencesQueen's University BelfastBelfastUK
- South African Institute for Aquatic BiodiversityMakhandaSouth Africa
| | - Tatenda Dalu
- South African Institute for Aquatic BiodiversityMakhandaSouth Africa
- School of Biology and Environmental SciencesUniversity of MpumalangaNelspruitSouth Africa
| | - Ryan J. Wasserman
- South African Institute for Aquatic BiodiversityMakhandaSouth Africa
- Department of Zoology and EntomologyRhodes UniversityMakhandaSouth Africa
| | - Arnaud Sentis
- INRAEAix Marseille University, UMR RECOVERAix‐en‐ProvenceFrance
| | - Olaf L. F. Weyl
- DSI/NRF Research Chair in Inland Fisheries and Freshwater EcologySouth African Institute for Aquatic BiodiversityMakhandaSouth Africa
| | | | - Amanda Callaghan
- Ecology and Evolutionary Biology, School of Biological SciencesUniversity of ReadingReadingUK
| | - Jaimie T. A. Dick
- Institute for Global Food Security, School of Biological SciencesQueen's University BelfastBelfastUK
| |
Collapse
|
31
|
VilÀ M, Dunn AM, Essl F, GÓmez-DÍaz E, Hulme PE, Jeschke JM, NÚÑez MA, Ostfeld RS, Pauchard A, Ricciardi A, Gallardo B. Viewing Emerging Human Infectious Epidemics through the Lens of Invasion Biology. Bioscience 2021. [DOI: 10.1093/biosci/biab047] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Invasion biology examines species originated elsewhere and moved with the help of humans, and those species’ impacts on biodiversity, ecosystem services, and human well-being. In a globalized world, the emergence and spread of many human infectious pathogens are quintessential biological invasion events. Some macroscopic invasive species themselves contribute to the emergence and transmission of human infectious agents. We review conceptual parallels and differences between human epidemics and biological invasions by animals and plants. Fundamental concepts in invasion biology regarding the interplay of propagule pressure, species traits, biotic interactions, eco-evolutionary experience, and ecosystem disturbances can help to explain transitions between stages of epidemic spread. As a result, many forecasting and management tools used to address epidemics could be applied to biological invasions and vice versa. Therefore, we advocate for increasing cross-fertilization between the two disciplines to improve prediction, prevention, treatment, and mitigation of invasive species and infectious disease outbreaks, including pandemics.
Collapse
Affiliation(s)
- Montserrat VilÀ
- Department of Plant Biology and Ecology, University of Sevilla, Sevilla, Spain
| | | | - Franz Essl
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Elena GÓmez-DÍaz
- Institute of Parasitology and Biomedicine Lopez-Neyra, Granada, Spain
| | - Philip E Hulme
- Bio-Protection Research Centre, Lincoln University, Canterbury, New Zealand
| | - Jonathan M Jeschke
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, with the Institute of Biology, Freie Universität Berlin, and with the Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| | - MartÍn A NÚÑez
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States
| | - Richard S Ostfeld
- Cary Institute of Ecosystem Studies, Millbrook, New York, United States
| | - AnÍbal Pauchard
- Laboratorio de Invasiones Biológicas, Facultad de Ciencias Forestales, Universidad de Concepción, Concepción, Chile, and with the Institute of Ecology and Biodiversity, Santiago, Chile
| | | | - Belinda Gallardo
- Pyrenean Institute of Ecology, Zaragoza, Spain, and with the BioRISC (Biosecurity Research Initiative at St Catharine's), at St Catharine's College, Cambridge, United Kingdom
| |
Collapse
|
32
|
Palmer R, Anderson H, Richards B, Craig MD, Gibson L. Does aerial baiting for controlling feral cats in a heterogeneous landscape confer benefits to a threatened native meso-predator? PLoS One 2021; 16:e0251304. [PMID: 33961676 PMCID: PMC8104397 DOI: 10.1371/journal.pone.0251304] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/24/2021] [Indexed: 11/19/2022] Open
Abstract
Introduced mammalian predators can have devastating impacts on recipient ecosystems and disrupt native predator–prey relationships. Feral cats (Felis catus) have been implicated in the decline and extinction of many Australian native species and developing effective and affordable methods to control them is a national priority. While there has been considerable progress in the lethal control of feral cats, effective management at landscape scales has proved challenging. Justification of the allocation of resources to feral cat control programs requires demonstration of the conservation benefit baiting provides to native species susceptible to cat predation. Here, we examined the effectiveness of a landscape-scale Eradicat® baiting program to protect threatened northern quolls (Dasyurus hallucatus) from feral cat predation in a heterogeneous rocky landscape in the Pilbara region of Western Australia. We used camera traps and GPS collars fitted to feral cats to monitor changes in activity patterns of feral cats and northern quolls at a baited treatment site and unbaited reference site over four years. Feral cat populations appeared to be naturally sparse in our study area, and camera trap monitoring showed no significant effect of baiting on cat detections. However, mortality rates of collared feral cats ranged from 18–33% after baiting, indicating that the program was reducing cat numbers. Our study demonstrated that feral cat baiting had a positive effect on northern quoll populations, with evidence of range expansion at the treatment site. We suggest that the rugged rocky habitat preferred by northern quolls in the Pilbara buffered them to some extent from feral cat predation, and baiting was sufficient to demonstrate a positive effect in this relatively short-term project. A more strategic approach to feral cat management is likely to be required in the longer-term to maximise the efficacy of control programs and thereby improve the conservation outlook for susceptible threatened fauna.
Collapse
Affiliation(s)
- Russell Palmer
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Western Australia, Australia
| | - Hannah Anderson
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Western Australia, Australia
| | - Brooke Richards
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Western Australia, Australia
| | - Michael D. Craig
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Western Australia, Australia
- School of Biological Sciences, University of Western Australia, Western Australia, Australia
- Environmental and Conservation Sciences, Murdoch University, Western Australia, Australia
| | - Lesley Gibson
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Western Australia, Australia
- School of Biological Sciences, University of Western Australia, Western Australia, Australia
- * E-mail:
| |
Collapse
|
33
|
Effect of the Human Utilization of Northern Snakehead (Channa argus Cantor, 1842) on the Settlement of Exotic Fish and Cladoceran Community Structure. SUSTAINABILITY 2021. [DOI: 10.3390/su13052486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Empirical studies suggest that changes in the density of top predators, such as carnivorous fish, in freshwater food webs, strongly affect not only fish communities but also various primary and secondary consumers. Based on these findings, we explored how differences in the utilization of carnivorous fish (i.e., Northern Snakehead, Channa argus) by humans affected the fish and cladoceran community structure as well as the settlement of exotic fish species (i.e., Lepomis macrochirus and Micropterus salmoides) in 30 wetlands located in the upper and lower reaches of the Nakdong River. Our results show that in the mid–lower reaches of the Nakdong River, the density of C. argus was low, while high densities of L. macrochirus and M. salmoides were observed. Exotic fish species are frequently consumed by C. argus, leading to a low density of L. macrochirus and M. salmoides in the upper reaches, which supported a high density of C. argus. However, in the mid–lower reaches, the density of L. macrochirus was high because of the frequent collection of C. argus by fishing activities. The dominance of L. macrochirus significantly changed the structure of cladoceran communities. L. macrochirus mainly feeds on pelagic species, increasing the density of epiphytic species in the mid–lower reaches. The continued utilization of C. argus by humans induced a stable settlement of exotic fish species and strongly affected the community structures of primary consumers in the 30 wetlands. The frequency of C. argus collection has to be reduced to secure biodiversity in the mid–lower reaches of the Nakdong River, which will reduce the proportion of exotic fish species and increase the conservation of native fish.
Collapse
|
34
|
García-Díaz P, Binny RN, Anderson DP. How important is individual foraging specialisation in invasive predators for native-prey population viability? Oecologia 2021; 195:261-272. [PMID: 33416960 DOI: 10.1007/s00442-020-04814-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022]
Abstract
Predation by invasive species is a major threat to the persistence of naïve prey. Typically, this negative effect is addressed by suppressing the population size of the invasive predator to a point where the predation pressure does not hinder the viability of the prey. However, this type of intervention may not be effective whenever a few specialised predators are the cause of the decline. We investigated the effects of varying levels of specialised invasive stoats (Mustela erminea) abundance on the long-term viability of simulated kiwi (Apteryx spp.) populations. We explored four scenarios with different proportions of highly specialised stoats, which were those that had a ≥ 0.75 probability of predating kiwi eggs and chicks if they were within their home range: (i) a stoat population composed mostly of generalists (mean: 0.5 probability of predation across the population); (ii) 5% of highly specialised stoats and the remaining being generalists; (iii) 10% of highly specialised stoats and the remaining being generalists; and, (iv) half highly specialised stoats and half generalists. We found that stoat home range sizes, rather than stoat density or the density of highly specialised stoats, was the main driver of kiwi population trends. Stoats with large home ranges were more likely to predate kiwi eggs and chicks as these were more likely to fall within a large home range. More broadly, our findings show how the daily individual ranging and foraging behaviour of an invasive predator can scale-up to shape population trends of naïve prey.
Collapse
Affiliation(s)
- Pablo García-Díaz
- Manaaki Whenua - Landcare Research, P.O. Box 69040, Lincoln, 7640, New Zealand. .,School of Biological Sciences, Zoology Building, University of Aberdeen, Aberdeen, AB24 2TZ, UK.
| | - Rachelle N Binny
- Manaaki Whenua - Landcare Research, P.O. Box 69040, Lincoln, 7640, New Zealand.,Te Pūnaha Matatini, Auckland, New Zealand
| | - Dean P Anderson
- Manaaki Whenua - Landcare Research, P.O. Box 69040, Lincoln, 7640, New Zealand
| |
Collapse
|
35
|
Steindler L, Letnic M. Not so naïve: endangered mammal responds to olfactory cues of an introduced predator after less than 150 years of coexistence. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-020-02952-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
36
|
Ünlü AG, Obrycki JJ, Bucher R. Comparison of native and non-native predator consumption rates and prey avoidance behavior in North America and Europe. Ecol Evol 2020; 10:13334-13344. [PMID: 33304541 PMCID: PMC7713951 DOI: 10.1002/ece3.6932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/30/2020] [Accepted: 09/08/2020] [Indexed: 11/16/2022] Open
Abstract
Novel predator-prey interactions can contribute to the invasion success of non-native predators. For example, native prey can fail to recognize and avoid non-native predators due to a lack of co-evolutionary history and cue dissimilarity with native predators. This might result in a competitive advantage for non-native predators. Numerous lady beetle species were globally redistributed as biological control agents against aphids, resulting in novel predator-prey interactions. Here, we investigated the strength of avoidance behavior of the pea aphid (Acyrthosiphon pisum) toward chemical cues of native lady beetles and non-native Asian Harmonia axyridis and European Coccinella septempunctata and Hippodamia variegata in North America, hypothesizing that cues of non-native lady beetles induce weaker avoidance behavior than cues of co-evolved native lady beetles. Additionally, we compared aphid consumption of lady beetles, examining potential predation advantages of non-native lady beetles. Finally, we compared cue avoidance behavior between North American and European pea aphid populations and aphid consumption of native and non-native lady beetles in North America and Europe. In North America, pea aphids avoided chemical cues of all ladybeetle species tested, regardless of their origin. In contrast to pea aphids in North America, European pea aphids did not avoid cues of the non-native H. axyridis. The non-native H. axyridis and C. septempunctata were among the largest and most voracious lady beetle species tested, on both continents. Consequently, in North America non-native lady beetle species might have a competitive advantage on shared food resources due to their relatively large body size, compared to several native American lady beetle species. In Europe, however, non-native H. axyridis might benefit from missing aphid cue avoidance as well as a large body size. The co-evolutionary time gap between the European and North American invasion of H. axyridis likely explains the intercontinental differences in cue avoidance behavior and might indicate evolution in aphids toward non-native predators.
Collapse
Affiliation(s)
- Ayse Gül Ünlü
- Conservation EcologyPhilipps‐Universität MarburgMarburgGermany
| | - John J. Obrycki
- Department of EntomologyCollege of Agriculture, Food and EnvironmentUniversity of KentuckyLexingtonKentuckyUSA
| | - Roman Bucher
- Conservation EcologyPhilipps‐Universität MarburgMarburgGermany
| |
Collapse
|
37
|
Testing the prey naiveté hypothesis: Can native prey (Astyanax ruberrimus) recognize an introduced top predator, Cichla monoculus? Biol Invasions 2020. [DOI: 10.1007/s10530-020-02369-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Ruland F, Jeschke JM. How biological invasions affect animal behaviour: A global, cross-taxonomic analysis. J Anim Ecol 2020; 89:2531-2541. [PMID: 32745238 DOI: 10.1111/1365-2656.13306] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 06/29/2020] [Indexed: 12/20/2022]
Abstract
In the Anthropocene, species are faced with drastic challenges due to rapid, human-induced changes, such as habitat destruction, pollution and biological invasions. In the case of invasions, native species may change their behaviour to minimize the impacts they sustain from invasive species, and invaders may also adapt to the conditions in their new environment in order to survive and establish self-sustaining populations. We aimed at giving an overview of which changes in behaviour are studied in invasions, and what is known about the types of behaviour that change, the underlying mechanisms and the speed of behavioural changes. Based on a review of the literature, we identified 191 studies and 360 records (some studies reported multiple records) documenting behavioural changes caused by biological invasions in native (236 records from 148 species) or invasive (124 records from 50 species) animal species. This global dataset, which we make openly available, is not restricted to particular taxonomic groups. We found a mild taxonomic bias in the literature towards mammals, birds and insects. In line with the enemy release hypothesis, native species changed their anti-predator behaviour more frequently than invasive species. Rates of behavioural change were evenly distributed across taxa, but not across the types of behaviour. Our findings may help to better understand the role of behaviour in biological invasions as well as temporal changes in both population densities and traits of invasive species, and of native species affected by them.
Collapse
Affiliation(s)
- Florian Ruland
- Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin, Berlin, Germany.,Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Jonathan M Jeschke
- Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin, Berlin, Germany.,Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
39
|
Anton A, Geraldi NR, Ricciardi A, Dick JTA. Global determinants of prey naiveté to exotic predators. Proc Biol Sci 2020; 287:20192978. [PMID: 32486977 DOI: 10.1098/rspb.2019.2978] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Prey naiveté-the failure of prey to recognize novel predators as threats-is thought to exacerbate the impact that exotic predators exert on prey populations. Prey naiveté varies under the influence of eco-evolutionary mediating factors, such as biogeographic isolation and prey adaptation, although an overall quantification of their influence is lacking. We conducted a global meta-analysis to test the effects of several hypothesized mediating factors on the expression of prey naiveté. Prey were overall naive towards exotic predators in marine and freshwater systems but not in terrestrial systems. Prey naiveté was most pronounced towards exotic predators that did not have native congeneric relatives in the recipient community. Time since introduction was relevant, as prey naiveté declined with the number of generations since introduction; on average, around 200 generations may be required to erode naiveté sufficiently for prey to display antipredator behaviour towards exotic predators. Given that exotic predators are a major cause of extinction, the global predictors and trends of prey naiveté presented here can inform efforts to meet conservation targets.
Collapse
Affiliation(s)
- Andrea Anton
- School of Biological Sciences, Queen's University Belfast, Northern Ireland, UK.,Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Nathan R Geraldi
- School of Biological Sciences, Queen's University Belfast, Northern Ireland, UK.,Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | - Jaimie T A Dick
- School of Biological Sciences, Queen's University Belfast, Northern Ireland, UK.,Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland, UK
| |
Collapse
|