1
|
Boccuni L, Roca-Ventura A, Buloz-Osorio E, Leno-Colorado D, Delgado-Gallén S, Cabello-Toscano M, Perellón-Alfonso R, Villalba-Martínez G, Martínez-Ricarte F, Martín-Fernández J, Buxeda-Rodriguez M, Conesa-Bertrán G, Illueca-Moreno M, Lladó-Carbó E, Perla Y Perla C, Garrido C, Pariente JC, Laredo C, Muñoz-Moreno E, Bargalló N, Trompetto C, Marinelli L, Bartrés-Faz D, Abellaneda-Pérez K, Pascual-Leone A, Tormos-Muñoz JM. Non-invasive prehabilitation to foster widespread fMRI cortical reorganization before brain tumor surgery: lessons from a case series. J Neurooncol 2024; 170:185-198. [PMID: 39044115 PMCID: PMC11447047 DOI: 10.1007/s11060-024-04774-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/08/2024] [Indexed: 07/25/2024]
Abstract
PURPOSE The objective of this prospective, single-centre case series was to investigate feasibility, clinical outcomes, and neural correlates of non-invasive Neuromodulation-Induced Cortical Prehabilitation (NICP) before brain tumor surgery. Previous studies have shown that gross total resection is paramount to increase life expectancy but is counterbalanced by the need of preserving critical functional areas. NICP aims at expanding functional margins for extensive tumor resection without functional sequelae. Invasive NICP (intracranial neuromodulation) was effective but characterized by elevated costs and high rate of adverse events. Non-invasive NICP (transcranial neuromodulation) may represent a more feasible alternative. Nonetheless, up to this point, non-invasive NICP has been examined in only two case reports, yielding inconclusive findings. METHODS Treatment sessions consisted of non-invasive neuromodulation, to transiently deactivate critical areas adjacent to the lesion, coupled with intensive functional training, to activate alternative nodes within the same functional network. Patients were evaluated pre-NICP, post-NICP, and at follow-up post-surgery. RESULTS Ten patients performed the intervention. Feasibility criteria were met (retention, adherence, safety, and patient's satisfaction). Clinical outcomes showed overall stability and improvements in motor and executive function from pre- to post-NICP, and at follow-up. Relevant plasticity changes (increase in the distance between tumor and critical area) were observed when the neuromodulation target was guided by functional neuroimaging data. CONCLUSION This is the first case series demonstrating feasibility of non-invasive NICP. Neural correlates indicate that neuroimaging-guided target selection may represent a valid strategy to leverage neuroplastic changes before neurosurgery. Further investigations are needed to confirm such preliminary findings.
Collapse
Affiliation(s)
- Leonardo Boccuni
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra, Spain
| | - Alba Roca-Ventura
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
- Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Edgar Buloz-Osorio
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra, Spain
- Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - David Leno-Colorado
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra, Spain
- Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Selma Delgado-Gallén
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra, Spain
- Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - María Cabello-Toscano
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ruben Perellón-Alfonso
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra, Spain
- Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Gloria Villalba-Martínez
- Department of Neurosurgery, Hospital del Mar, Barcelona, Spain
- Systems Neurologic and Neurotherapeutic Group at Research Institute Hospital del Mar, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Jesús Martín-Fernández
- Department of Neurosurgery, Hôpital Gui de Chauliac, Montpellier, France
- Department of Neurosurgery, Hospital Universitario Nuestra Señora de Candelaria, Tenerife, Spain
- Universidad de La Laguna, Tenerife, Spain
| | | | | | | | | | | | - César Garrido
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Magnetic Resonance Image Core Facility (IDIBAPS), Barcelona, Spain
- Neuroradiology Section, Radiology Department, Diagnostic Image Centre, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
| | - José Carlos Pariente
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Magnetic Resonance Image Core Facility (IDIBAPS), Barcelona, Spain
| | - Carlos Laredo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Magnetic Resonance Image Core Facility (IDIBAPS), Barcelona, Spain
| | - Emma Muñoz-Moreno
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Magnetic Resonance Image Core Facility (IDIBAPS), Barcelona, Spain
| | - Núria Bargalló
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Magnetic Resonance Image Core Facility (IDIBAPS), Barcelona, Spain
- Neuroradiology Section, Radiology Department, Diagnostic Image Centre, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
| | - Carlo Trompetto
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Lucio Marinelli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - David Bartrés-Faz
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Kilian Abellaneda-Pérez
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain.
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra, Spain.
- Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain.
| | - Alvaro Pascual-Leone
- Wolk Center for Memory Health and Marcus Institute for Aging Research, Hebrew Senior Life, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Josep María Tormos-Muñoz
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain.
- Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain.
| |
Collapse
|
2
|
Marchant JK, Ferris NG, Grass D, Allen MS, Gopalakrishnan V, Olchanyi M, Sehgal D, Sheft M, Strom A, Bilgic B, Edlow B, Hillman EMC, Juttukonda MR, Lewis L, Nasr S, Nummenmaa A, Polimeni JR, Tootell RBH, Wald LL, Wang H, Yendiki A, Huang SY, Rosen BR, Gollub RL. Mesoscale Brain Mapping: Bridging Scales and Modalities in Neuroimaging - A Symposium Review. Neuroinformatics 2024:10.1007/s12021-024-09686-2. [PMID: 39312131 DOI: 10.1007/s12021-024-09686-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 10/20/2024]
Abstract
Advances in the spatiotemporal resolution and field-of-view of neuroimaging tools are driving mesoscale studies for translational neuroscience. On October 10, 2023, the Center for Mesoscale Mapping (CMM) at the Massachusetts General Hospital (MGH) Athinoula A. Martinos Center for Biomedical Imaging and the Massachusetts Institute of Technology (MIT) Health Sciences Technology based Neuroimaging Training Program (NTP) hosted a symposium exploring the state-of-the-art in this rapidly growing area of research. "Mesoscale Brain Mapping: Bridging Scales and Modalities in Neuroimaging" brought together researchers who use a broad range of imaging techniques to study brain structure and function at the convergence of the microscopic and macroscopic scales. The day-long event centered on areas in which the CMM has established expertise, including the development of emerging technologies and their application to clinical translational needs and basic neuroscience questions. The in-person symposium welcomed more than 150 attendees, including 57 faculty members, 61 postdoctoral fellows, 35 students, and four industry professionals, who represented institutions at the local, regional, and international levels. The symposium also served the training goals of both the CMM and the NTP. The event content, organization, and format were planned collaboratively by the faculty and trainees. Many CMM faculty presented or participated in a panel discussion, thus contributing to the dissemination of both the technologies they have developed under the auspices of the CMM and the findings they have obtained using those technologies. NTP trainees who benefited from the symposium included those who helped to organize the symposium and/or presented posters and gave "flash" oral presentations. In addition to gaining experience from presenting their work, they had opportunities throughout the day to engage in one-on-one discussions with visiting scientists and other faculty, potentially opening the door to future collaborations. The symposium presentations provided a deep exploration of the many technological advances enabling progress in structural and functional mesoscale brain imaging. Finally, students worked closely with the presenting faculty to develop this report summarizing the content of the symposium and putting it in the broader context of the current state of the field to share with the scientific community. We note that the references cited here include conference abstracts corresponding to the symposium poster presentations.
Collapse
Affiliation(s)
- Joshua K Marchant
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA.
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA.
| | - Natalie G Ferris
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA.
- Harvard Biophysics Graduate Program, Cambridge, MA, USA.
| | - Diana Grass
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Magdelena S Allen
- Massachusetts Institute of Technology, Cambridge, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Vivek Gopalakrishnan
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mark Olchanyi
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Devang Sehgal
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Maxina Sheft
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Amelia Strom
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Berkin Bilgic
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Brian Edlow
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Elizabeth M C Hillman
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Radiology, Columbia University, New York, NY, USA
| | - Meher R Juttukonda
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Laura Lewis
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shahin Nasr
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Aapo Nummenmaa
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jonathan R Polimeni
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Roger B H Tootell
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Lawrence L Wald
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Hui Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Anastasia Yendiki
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Susie Y Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Bruce R Rosen
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Randy L Gollub
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Zorns S, Sierzputowski C, Ash S, Skowron M, Minervini A, LaVarco A, Pardillo M, Keenan JP. Attraction is altered via modulation of the medial prefrontal cortex without explicit knowledge. Front Hum Neurosci 2024; 18:1333733. [PMID: 39206424 PMCID: PMC11349520 DOI: 10.3389/fnhum.2024.1333733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 06/04/2024] [Indexed: 09/04/2024] Open
Abstract
Previous studies have demonstrated that brain stimulation can alter an individual's physical appearance via dysregulation of the medial prefrontal cortex (MPFC). In this study, we attempted to determine if individuals who receive repetitive transcranial magnetic stimulation (rTMS) delivered to the MPFC were rated as more attractive by others. It has been previously reported that 1 hertz (Hz) (inhibitory) TMS can alter one's facial expressions such that frontal cortex inhibition can increase expressiveness. These alterations, detected by external observation, remain below the level of awareness of the subject itself. In Phase I, subjects (N = 10) received MPFC rTMS and had their photographs taken after each of the five stimulation conditions, in addition to making self-ratings across a number of variables, including attractiveness. In Phase II, participants (N = 430) rated five pictures of each of the Phase 1 individuals on attractiveness. It was found that there were no significant differences in self-assessment following rTMS (Phase I). However, attractiveness ratings differed significantly in Phase II. There was a significant difference found between 10 Hz TMS delivered to the MPFC (p < 0.001), such that individuals were rated as less attractive. Furthermore, 1 Hz TMS to the MPFC increased the number of 'Most Attractive' ratings, while 10Hz TMS decreased the number of 'Most Attractive' ratings (p < 0.001). These results suggest that the MPFC plays a role in attractiveness ratings to others. These data also support research showing that one's appearance can be altered below the level of awareness via rTMS. To our knowledge, this is the first investigation to examine how brain stimulation influences one's attractiveness.
Collapse
Affiliation(s)
- Samantha Zorns
- Cognitive Neuroimaging Laboratory, Montclair State University, Montclair, NJ, United States
| | - Claudia Sierzputowski
- Cognitive Neuroimaging Laboratory, Montclair State University, Montclair, NJ, United States
| | - Sydney Ash
- Cognitive Neuroimaging Laboratory, Montclair State University, Montclair, NJ, United States
| | - Molly Skowron
- Cognitive Neuroimaging Laboratory, Montclair State University, Montclair, NJ, United States
| | - Anthony Minervini
- Cognitive Neuroimaging Laboratory, Montclair State University, Montclair, NJ, United States
| | - Adriana LaVarco
- Cognitive Neuroimaging Laboratory, Montclair State University, Montclair, NJ, United States
| | - Matthew Pardillo
- Cognitive Neuroimaging Laboratory, Montclair State University, Montclair, NJ, United States
| | - Julian Paul Keenan
- Cognitive Neuroimaging Laboratory, Montclair State University, Montclair, NJ, United States
| |
Collapse
|
4
|
Berlijn AM, Huvermann DM, Schneider S, Bellebaum C, Timmann D, Minnerop M, Peterburs J. The Role of the Human Cerebellum for Learning from and Processing of External Feedback in Non-Motor Learning: A Systematic Review. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1532-1551. [PMID: 38379034 PMCID: PMC11269477 DOI: 10.1007/s12311-024-01669-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/07/2024] [Indexed: 02/22/2024]
Abstract
This review aimed to systematically identify and comprehensively review the role of the cerebellum in performance monitoring, focusing on learning from and on processing of external feedback in non-motor learning. While 1078 articles were screened for eligibility, ultimately 36 studies were included in which external feedback was delivered in cognitive tasks and which referenced the cerebellum. These included studies in patient populations with cerebellar damage and studies in healthy subjects applying neuroimaging. Learning performance in patients with different cerebellar diseases was heterogeneous, with only about half of all patients showing alterations. One patient study using EEG demonstrated that damage to the cerebellum was associated with altered neural processing of external feedback. Studies assessing brain activity with task-based fMRI or PET and one resting-state functional imaging study that investigated connectivity changes following feedback-based learning in healthy participants revealed involvement particularly of lateral and posterior cerebellar regions in processing of and learning from external feedback. Cerebellar involvement was found at different stages, e.g., during feedback anticipation and following the onset of the feedback stimuli, substantiating the cerebellum's relevance for different aspects of performance monitoring such as feedback prediction. Future research will need to further elucidate precisely how, where, and when the cerebellum modulates the prediction and processing of external feedback information, which cerebellar subregions are particularly relevant, and to what extent cerebellar diseases alter these processes.
Collapse
Affiliation(s)
- Adam M Berlijn
- Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.
| | - Dana M Huvermann
- Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Neurology and Center for Translational and Behavioral Neurosciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Sandra Schneider
- Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christian Bellebaum
- Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Dagmar Timmann
- Department of Neurology and Center for Translational and Behavioral Neurosciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Martina Minnerop
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty & Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Jutta Peterburs
- Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
5
|
Dagnino PC, Escrichs A, López-González A, Gosseries O, Annen J, Sanz Perl Y, Kringelbach ML, Laureys S, Deco G. Re-awakening the brain: Forcing transitions in disorders of consciousness by external in silico perturbation. PLoS Comput Biol 2024; 20:e1011350. [PMID: 38701063 PMCID: PMC11068192 DOI: 10.1371/journal.pcbi.1011350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 03/31/2024] [Indexed: 05/05/2024] Open
Abstract
A fundamental challenge in neuroscience is accurately defining brain states and predicting how and where to perturb the brain to force a transition. Here, we investigated resting-state fMRI data of patients suffering from disorders of consciousness (DoC) after coma (minimally conscious and unresponsive wakefulness states) and healthy controls. We applied model-free and model-based approaches to help elucidate the underlying brain mechanisms of patients with DoC. The model-free approach allowed us to characterize brain states in DoC and healthy controls as a probabilistic metastable substate (PMS) space. The PMS of each group was defined by a repertoire of unique patterns (i.e., metastable substates) with different probabilities of occurrence. In the model-based approach, we adjusted the PMS of each DoC group to a causal whole-brain model. This allowed us to explore optimal strategies for promoting transitions by applying off-line in silico probing. Furthermore, this approach enabled us to evaluate the impact of local perturbations in terms of their global effects and sensitivity to stimulation, which is a model-based biomarker providing a deeper understanding of the mechanisms underlying DoC. Our results show that transitions were obtained in a synchronous protocol, in which the somatomotor network, thalamus, precuneus and insula were the most sensitive areas to perturbation. This motivates further work to continue understanding brain function and treatments of disorders of consciousness.
Collapse
Affiliation(s)
- Paulina Clara Dagnino
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Anira Escrichs
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Ane López-González
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Olivia Gosseries
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau 2, University Hospital of Liège, Liège, Belgium
| | - Jitka Annen
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau 2, University Hospital of Liège, Liège, Belgium
| | - Yonatan Sanz Perl
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Morten L. Kringelbach
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, United Kingdom
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Steven Laureys
- Joint International Research Unit on Consciousness, CERVO Brain Research Centre, University of Laval, Québec, Québec, Canada
| | - Gustavo Deco
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| |
Collapse
|
6
|
Wessel MJ, Beanato E, Popa T, Windel F, Vassiliadis P, Menoud P, Beliaeva V, Violante IR, Abderrahmane H, Dzialecka P, Park CH, Maceira-Elvira P, Morishita T, Cassara AM, Steiner M, Grossman N, Neufeld E, Hummel FC. Noninvasive theta-burst stimulation of the human striatum enhances striatal activity and motor skill learning. Nat Neurosci 2023; 26:2005-2016. [PMID: 37857774 PMCID: PMC10620076 DOI: 10.1038/s41593-023-01457-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 09/07/2023] [Indexed: 10/21/2023]
Abstract
The stimulation of deep brain structures has thus far only been possible with invasive methods. Transcranial electrical temporal interference stimulation (tTIS) is a novel, noninvasive technology that might overcome this limitation. The initial proof-of-concept was obtained through modeling, physics experiments and rodent models. Here we show successful noninvasive neuromodulation of the striatum via tTIS in humans using computational modeling, functional magnetic resonance imaging studies and behavioral evaluations. Theta-burst patterned striatal tTIS increased activity in the striatum and associated motor network. Furthermore, striatal tTIS enhanced motor performance, especially in healthy older participants as they have lower natural learning skills than younger subjects. These findings place tTIS as an exciting new method to target deep brain structures in humans noninvasively, thus enhancing our understanding of their functional role. Moreover, our results lay the groundwork for innovative, noninvasive treatment strategies for brain disorders in which deep striatal structures play key pathophysiological roles.
Collapse
Affiliation(s)
- Maximilian J Wessel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Elena Beanato
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Traian Popa
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Fabienne Windel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Pierre Vassiliadis
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Pauline Menoud
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Valeriia Beliaeva
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, Zurich, Switzerland
| | - Ines R Violante
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | | | - Patrycja Dzialecka
- Department of Brain Sciences, Imperial College London, London, UK
- United Kingdom Dementia Research Institute, Imperial College London, London, UK
| | - Chang-Hyun Park
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Pablo Maceira-Elvira
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Takuya Morishita
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Antonino M Cassara
- Foundation for Research on Information Technologies in Society, Zurich, Switzerland
| | - Melanie Steiner
- Foundation for Research on Information Technologies in Society, Zurich, Switzerland
| | - Nir Grossman
- Department of Brain Sciences, Imperial College London, London, UK
- United Kingdom Dementia Research Institute, Imperial College London, London, UK
| | - Esra Neufeld
- Foundation for Research on Information Technologies in Society, Zurich, Switzerland
| | - Friedhelm C Hummel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland.
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland.
- Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland.
| |
Collapse
|
7
|
Kram L, Neu B, Schröder A, Meyer B, Krieg SM, Ille S. Improving specificity of stimulation-based language mapping in stuttering glioma patients: A mixed methods serial case study. Heliyon 2023; 9:e21984. [PMID: 38045205 PMCID: PMC10692765 DOI: 10.1016/j.heliyon.2023.e21984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/29/2023] [Accepted: 11/01/2023] [Indexed: 12/05/2023] Open
Abstract
Objective Stimulation-based language mapping relies on identifying stimulation-induced language disruptions, which preexisting speech disorders affecting the laryngeal and orofacial speech system can confound. This study ascertained the effects of preexisting stuttering on pre- and intraoperative language mapping to improve the reliability and specificity of established language mapping protocols in the context of speech fluency disorders. Method Differentiation-ability of a speech therapist and two experienced nrTMS examiners between stuttering symptoms and stimulation-induced language errors during preoperative mappings were retrospectively compared (05/2018-01/2021). Subsequently, the impact of stuttering on intraoperative mappings was evaluated in all prospective patients (01/2021-12/2022). Results In the first part, 4.85 % of 103 glioma patients stuttered. While both examiners had a significant agreement for misclassifying pauses in speech flow and prolongations (Κ ≥ 0.50, p ≤ 0.02, respectively), less experience resulted in more misclassified stuttering symptoms. In one awake surgery case within the second part, stuttering decreased the reliability of intraoperative language mapping.Comparison with Existing Method(s): By thoroughly differentiating speech fluency symptoms from stimulation-induced disruptions, the reliability and proportion of stuttering symptoms falsely attributed to stimulation-induced language network disruptions can be improved. This may increase the consistency and specificity of language mapping results in stuttering glioma patients. Conclusions Preexisting stuttering negatively impacted language mapping specificity. Thus, surgical planning and the functional outcome may benefit substantially from thoroughly differentiating speech fluency symptoms from stimulation-induced disruptions by trained specialists.
Collapse
Affiliation(s)
- Leonie Kram
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Germany
- Department of Neurosurgery, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Germany
| | - Beate Neu
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Germany
| | - Axel Schröder
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Germany
| | - Sandro M. Krieg
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Germany
- Department of Neurosurgery, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Germany
| | - Sebastian Ille
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Germany
- Department of Neurosurgery, Heidelberg University Hospital, Ruprecht-Karls-University Heidelberg, Germany
| |
Collapse
|
8
|
Santambrogio J, Bertelli MO, Terrevazzi S, De Carolis L, Francia E, Boldoni C, Calascibetta M, Cudazzo E, Lucca C, Viganò V, Danese M, Minazzi GA, Santarone A, Bianco A, Hassiotis A, Clerici M. Cognitive dysfunction and psychopathology: a cohort study of adults with intellectual developmental disorder. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2023; 67:1029-1045. [PMID: 37690814 DOI: 10.1111/jir.13077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/17/2023] [Accepted: 07/26/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Cognitive impairment of intellectual developmental disorders (IDD) is determined by several different combinations of specific cognitive alterations. People with IDD present a rate of mental health problems that is up to 4 times higher than that of the general population. Despite this, the relationship between specific cognitive dysfunctions and co-occurring mental disorders has not been adequately studied. The aim of the present paper is to investigate the association between specific cognitive dysfunctions and specific psychiatric symptoms and syndromes in people with IDD. METHODS One hundred and twenty adults with mild to moderate IDD living in residential facilities underwent a clinical and instrumental assessment for specific cognitive and psychopathological features. RESULTS Participants with IDD and ASD have significantly lower scores compared to those without respect to who has not the diagnosis on the Processing Speed Index (PSI) and Perceptual Reasoning Index (PRI) on the WAIS-IV and higher time scores on the TMT A. Moreover, there is a significant association between years of hospitalisation and TMT B and TMT B A time scores; the longer a participant with IDD was hospitalised, the worse their performance on the TMT. Although not statistically significant, many psychopathological clusters showed substantial cognitive profiles. CONCLUSIONS Although further research is needed, neuropsychological and IQ tests scores seem to be differently associated to various psychopathological conditions co-occurring with IDD, and with ASD especially. Cognitive assessment seems to support diagnosis and treatment of psychopathological co-occurrences in persons with IDD, also in consideration of indirect implications including a better knowledge of the patient's characteristics beyond IQ deficit.
Collapse
Affiliation(s)
- J Santambrogio
- Adele Bonolis AS.FRA. Onlus Foundation, Vedano al Lambro (MB), Italy
- Presidio Corberi, Mental Health and Addiction Department, ASST Brianza, Limbiate (MB), Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - M O Bertelli
- Research and Clinical Center (CREA), San Sebastiano Foundation, Misericordia di Firenze, Firenze, Italy
| | - S Terrevazzi
- Presidio Corberi, Mental Health and Addiction Department, ASST Brianza, Limbiate (MB), Italy
- RSD Beato Papa Giovanni XXIII, Mental Health and Addiction Department, ASST Brianza, Limbiate (MB), Italy
| | - L De Carolis
- Department of Economics, Management and Statistics, University of Milano-Bicocca, Milan, Italy
| | - E Francia
- Adele Bonolis AS.FRA. Onlus Foundation, Vedano al Lambro (MB), Italy
| | - C Boldoni
- RSD Beato Papa Giovanni XXIII, Mental Health and Addiction Department, ASST Brianza, Limbiate (MB), Italy
| | - M Calascibetta
- RSD Beato Papa Giovanni XXIII, Mental Health and Addiction Department, ASST Brianza, Limbiate (MB), Italy
| | - E Cudazzo
- RSD Beato Papa Giovanni XXIII, Mental Health and Addiction Department, ASST Brianza, Limbiate (MB), Italy
| | - C Lucca
- RSD Beato Papa Giovanni XXIII, Mental Health and Addiction Department, ASST Brianza, Limbiate (MB), Italy
| | - V Viganò
- RSD Beato Papa Giovanni XXIII, Mental Health and Addiction Department, ASST Brianza, Limbiate (MB), Italy
| | - M Danese
- RSD Beato Papa Giovanni XXIII, Mental Health and Addiction Department, ASST Brianza, Limbiate (MB), Italy
| | - G A Minazzi
- Adele Bonolis AS.FRA. Onlus Foundation, Vedano al Lambro (MB), Italy
- Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | - A Santarone
- Adele Bonolis AS.FRA. Onlus Foundation, Vedano al Lambro (MB), Italy
| | - A Bianco
- Research and Clinical Center (CREA), San Sebastiano Foundation, Misericordia di Firenze, Firenze, Italy
| | - A Hassiotis
- Division of Psychiatry, University College of London, London, UK
| | - M Clerici
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- Mental Health and Addiction Department, IRCCS Ospedale San Gerardo dei Tintori, Monza, Italy
| |
Collapse
|
9
|
Minervini A, LaVarco A, Zorns S, Propper R, Suriano C, Keenan JP. Excitatory Dorsal Lateral Prefrontal Cortex Transcranial Magnetic Stimulation Increases Social Anxiety. Brain Sci 2023; 13:989. [PMID: 37508921 PMCID: PMC10377502 DOI: 10.3390/brainsci13070989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Social exclusion refers to the experience of rejection by one or more people during a social event and can induce pain-related sensations. Cyberball, a computer program, is one of the most common tools for analyzing social exclusion. Regions of the brain that underlie social pain include networks linked to the dorsal lateral prefrontal cortex (DLPFC). Specifically, self-directed negative socially induced exclusion is associated with changes in DLPFC activity. Direct manipulation of this area may provide a better understanding of how the DLPFC can influence the perception of social exclusion and determine a causal role of the DLPFC. Transcranial magnetic stimulation (TMS) was applied to both the left and right DLPFC to gauge different reactions to the Cyberball experience. It was found that there were elevated exclusion indices following right DLPFC rTMS; participants consistently felt more excluded when the right DLPFC was excited. This may relate to greater feelings of social pain when the right DLPFC is manipulated. These data demonstrate that direct manipulation of the DLPFC results in changes in responses to social exclusion.
Collapse
Affiliation(s)
- Anthony Minervini
- Cognitive Neuroimaging Laboratory, Montclair State University, Montclair, NJ 07043, USA
| | - Adriana LaVarco
- Cognitive Neuroimaging Laboratory, Montclair State University, Montclair, NJ 07043, USA
| | - Samantha Zorns
- Cognitive Neuroimaging Laboratory, Montclair State University, Montclair, NJ 07043, USA
| | - Ruth Propper
- Cognitive Neuroimaging Laboratory, Montclair State University, Montclair, NJ 07043, USA
| | - Christos Suriano
- Cognitive Neuroimaging Laboratory, Montclair State University, Montclair, NJ 07043, USA
| | - Julian Paul Keenan
- Cognitive Neuroimaging Laboratory, Montclair State University, Montclair, NJ 07043, USA
| |
Collapse
|
10
|
Markmann M, Lenz M, Höffken O, Steponavičiūtė A, Brüne M, Tegenthoff M, Dinse HR, Newen A. Hypnotic suggestions cognitively penetrate tactile perception through top-down modulation of semantic contents. Sci Rep 2023; 13:6578. [PMID: 37085590 PMCID: PMC10121590 DOI: 10.1038/s41598-023-33108-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/07/2023] [Indexed: 04/23/2023] Open
Abstract
Perception is subject to ongoing alterations by learning and top-down influences. Although abundant studies have shown modulation of perception by attention, motivation, content and context, there is an unresolved controversy whether these examples provide true evidence that perception is penetrable by cognition. Here we show that tactile perception assessed as spatial discrimination can be instantaneously and systematically altered merely by the semantic content during hypnotic suggestions. To study neurophysiological correlates, we recorded EEG and SEPs. We found that the suggestion "your index finger becomes bigger" led to improved tactile discrimination, while the suggestion "your index finger becomes smaller" led to impaired discrimination. A hypnosis without semantic suggestions had no effect but caused a reduction of phase-locking synchronization of the beta frequency band between medial frontal cortex and the finger representation in somatosensory cortex. Late SEP components (P80-N140 complex) implicated in attentional processes were altered by the semantic contents, but processing of afferent inputs in SI remained unaltered. These data provide evidence that the psychophysically observed modifiability of tactile perception by semantic contents is not simply due to altered perception-based judgments, but instead is a consequence of modified perceptual processes which change the perceptual experience.
Collapse
Affiliation(s)
- Marius Markmann
- Department of Neurology, BG-Universitätsklinikum Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Melanie Lenz
- Department of Neurology, BG-Universitätsklinikum Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Oliver Höffken
- Department of Neurology, BG-Universitätsklinikum Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Agnė Steponavičiūtė
- Faculty of Social Sciences and Humanities, Klaipėda University, Klaipeda, Lithuania
| | - Martin Brüne
- Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL Universitätsklinikum Bochum, Ruhr-University Bochum, Bochum, Germany
| | - Martin Tegenthoff
- Department of Neurology, BG-Universitätsklinikum Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Hubert R Dinse
- Department of Neurology, BG-Universitätsklinikum Bergmannsheil, Ruhr-University Bochum, Bochum, Germany.
| | - Albert Newen
- Institute of Philosophy II, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
11
|
Jose L, Martins LB, Cordeiro TM, Lee K, Diaz AP, Ahn H, Teixeira AL. Non-Invasive Neuromodulation Methods to Alleviate Symptoms of Huntington's Disease: A Systematic Review of the Literature. J Clin Med 2023; 12:2002. [PMID: 36902788 PMCID: PMC10004225 DOI: 10.3390/jcm12052002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Huntington's disease (HD) is a progressive and debilitating neurodegenerative disease. There is growing evidence for non-invasive neuromodulation tools as therapeutic strategies in neurodegenerative diseases. This systematic review aims to investigate the effectiveness of noninvasive neuromodulation in HD-associated motor, cognitive, and behavioral symptoms. A comprehensive literature search was conducted in Ovid MEDLINE, Cochrane Central Register of Clinical Trials, Embase, and PsycINFO from inception to 13 July 2021. Case reports, case series, and clinical trials were included while screening/diagnostic tests involving non-invasive neuromodulation, review papers, experimental studies on animal models, other systematic reviews, and meta-analyses were excluded. We have identified 19 studies in the literature investigating the use of ECT, TMS, and tDCS in the treatment of HD. Quality assessments were performed using Joanna Briggs Institute's (JBI's) critical appraisal tools. Eighteen studies showed improvement of HD symptoms, but the results were very heterogeneous considering different intervention techniques and protocols, and domains of symptoms. The most noticeable improvement involved depression and psychosis after ECT protocols. The impact on cognitive and motor symptoms is more controversial. Further investigations are required to determine the therapeutic role of distinct neuromodulation techniques for HD-related symptoms.
Collapse
Affiliation(s)
- Lijin Jose
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center, Houston, TX 77054, USA
| | - Lais Bhering Martins
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center, Houston, TX 77054, USA
| | - Thiago M. Cordeiro
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center, Houston, TX 77054, USA
| | - Keya Lee
- Texas Medical Center Library, Houston, TX 77030, USA
| | - Alexandre Paim Diaz
- Center for the Study and Prevention of Suicide, Department of Psychiatry, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hyochol Ahn
- College of Nursing, Florida State University, Tallahassee, FL 32306, USA
| | - Antonio L. Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center, Houston, TX 77054, USA
| |
Collapse
|
12
|
Li S, Mu Y, Rao Y, Sun C, Li X, Liu H, Yu X, Yan X, Ding Y, Wang Y, Fei Z. Preoperative individual-target transcranial magnetic stimulation demonstrates an effect comparable to intraoperative direct electrical stimulation in language-eloquent glioma mapping and improves postsurgical outcome: A retrospective fiber-tracking and electromagnetic simulation study. Front Oncol 2023; 13:1089787. [PMID: 36816968 PMCID: PMC9936080 DOI: 10.3389/fonc.2023.1089787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Background Efforts to resection of glioma lesions located in brain-eloquent areas must balance the extent of resection (EOR) and functional preservation. Currently, intraoperative direct electrical stimulation (DES) is the gold standard for achieving the maximum EOR while preserving as much functionality as possible. However, intraoperative DES inevitably involves risks of infection and epilepsy. The aim of this study was to verify the reliability of individual-target transcranial magnetic stimulation (IT-TMS) in preoperative mapping relative to DES and evaluate its effectiveness based on postsurgical outcomes. Methods Sixteen language-eloquent glioma patients were enrolled. Nine of them underwent preoperative nTMS mapping (n=9, nTMS group), and the other seven were assigned to the non-nTMS group and did not undergo preoperative nTMS mapping (n=7). Before surgery, online IT-TMS was performed during a language task in the nTMS group. Sites in the cortex at which this task was disturbed in three consecutive trials were recorded and regarded as positive and designated nTMS hotspots (HSnTMS). Both groups then underwent awake surgery and intraoperative DES mapping. DES hotspots (HSDES) were also determined in a manner analogous to HSnTMS. The spatial distribution of HSnTMS and HSDES in the nTMS group was recorded, registered in a single brain template, and compared. The center of gravity (CoG) of HSnTMS (HSnTMS-CoG)-based and HSDES-CoG-based diffusion tensor imaging-fiber tracking (DTI-FT) was performed. The electromagnetic simulation was conducted, and the values were then compared between the nTMS and DES groups, as were the Western Aphasia Battery (WAB) scale and fiber-tracking values. Results HSnTMS and HSDES showed similar distributions (mean distance 6.32 ± 2.6 mm, distance range 2.2-9.3 mm, 95% CI 3.9-8.7 mm). A higher fractional anisotropy (FA) value in nTMS mapping (P=0.0373) and an analogous fiber tract length (P=0.2290) were observed. A similar distribution of the electric field within the brain tissues induced by nTMS and DES was noted. Compared with the non-nTMS group, the integration of nTMS led to a significant improvement in language performance (WAB scores averaging 78.4 in the nTMS group compared with 59.5 in the non-nTMS group, P=0.0321 < 0.05) as well as in brain-structure preservation (FA value, P=0.0156; tract length, P=0.0166). Conclusion Preoperative IT-TMS provides data equally crucial to DES and thus facilitates precise brain mapping and the preservation of linguistic function.
Collapse
Affiliation(s)
- Sanzhong Li
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi’an, Shaanxi, China,*Correspondence: Sanzhong Li, ; Zhou Fei,
| | - Yunfeng Mu
- Department of Gynecological Oncology, Shaanxi Provincial Cancer Hospital, Xi’an, China
| | - Yang Rao
- Shaanxi Brain Modulation and Scientific Research Center, Xi'an, Shaanxi, China
| | - Chuanzhu Sun
- Shaanxi Brain Modulation and Scientific Research Center, Xi'an, Shaanxi, China
| | - Xiang Li
- Shaanxi Brain Modulation and Scientific Research Center, Xi'an, Shaanxi, China,The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Huan Liu
- School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xun Yu
- Product Department, Solide Brain Medical Technology, Ltd., Xi’an, Shaanxi, China
| | - Xiao Yan
- Shaanxi Brain Modulation and Scientific Research Center, Xi'an, Shaanxi, China
| | - Yunxia Ding
- Shaanxi Brain Modulation and Scientific Research Center, Xi'an, Shaanxi, China
| | - Yangtao Wang
- Shaanxi Brain Modulation and Scientific Research Center, Xi'an, Shaanxi, China
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi’an, Shaanxi, China,*Correspondence: Sanzhong Li, ; Zhou Fei,
| |
Collapse
|
13
|
Wessel MJ, Draaisma LR, Hummel FC. Mini-review: Transcranial Alternating Current Stimulation and the Cerebellum. CEREBELLUM (LONDON, ENGLAND) 2023; 22:120-128. [PMID: 35060078 DOI: 10.1007/s12311-021-01362-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/22/2021] [Indexed: 02/01/2023]
Abstract
Oscillatory activity in the cerebellum and linked networks is an important aspect of neuronal processing and functional implementation of behavior. So far, it was challenging to quantify and study cerebellar oscillatory signatures in human neuroscience due to the constraints of non-invasive cerebellar electrophysiological recording and interventional techniques. The emerging cerebellar transcranial alternating current stimulation technique (CB-tACS) is a promising tool, which may partially overcome this challenge and provides an exciting non-invasive opportunity to better understand cerebellar physiology.Several studies have successfully demonstrated that CB-tACS can modulate the cerebellar outflow and cerebellum-linked behavior. In the present narrative review, we summarize current studies employing the CB-tACS approach and discuss open research questions. Hereby, we aim to provide an overview on this emerging electrophysiological technique and strive to promote future research in the field. CB-tACS will contribute in the further deciphering of cerebellar oscillatory signatures and its role for motor, cognitive, or affective functions. In long term, CB-tACS could develop into a therapeutic tool for retuning disturbed oscillatory activity in cerebellar networks underlying brain disorders.
Collapse
Affiliation(s)
- Maximilian J Wessel
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Chemin des Mines 9, 1202, Geneva, Switzerland. .,Defitech Chair of Clinical Neuroengineering, Clinique Romande de Réadaptation, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École polytechnique fédérale de Lausanne (EPFL Valais), Sion, Switzerland. .,Department of Neurology, Julius-Maximilians-University Würzburg, Würzburg, Germany.
| | - Laurijn R Draaisma
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Chemin des Mines 9, 1202, Geneva, Switzerland.,Defitech Chair of Clinical Neuroengineering, Clinique Romande de Réadaptation, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École polytechnique fédérale de Lausanne (EPFL Valais), Sion, Switzerland
| | - Friedhelm C Hummel
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École polytechnique fédérale de Lausanne (EPFL), Campus Biotech, Chemin des Mines 9, 1202, Geneva, Switzerland.,Defitech Chair of Clinical Neuroengineering, Clinique Romande de Réadaptation, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École polytechnique fédérale de Lausanne (EPFL Valais), Sion, Switzerland.,Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
14
|
Seghier ML. Multiple functions of the angular gyrus at high temporal resolution. Brain Struct Funct 2023; 228:7-46. [PMID: 35674917 DOI: 10.1007/s00429-022-02512-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/22/2022] [Indexed: 02/07/2023]
Abstract
Here, the functions of the angular gyrus (AG) are evaluated in the light of current evidence from transcranial magnetic/electric stimulation (TMS/TES) and EEG/MEG studies. 65 TMS/TES and 52 EEG/MEG studies were examined in this review. TMS/TES literature points to a causal role in semantic processing, word and number processing, attention and visual search, self-guided movement, memory, and self-processing. EEG/MEG studies reported AG effects at latencies varying between 32 and 800 ms in a wide range of domains, with a high probability to detect an effect at 300-350 ms post-stimulus onset. A three-phase unifying model revolving around the process of sensemaking is then suggested: (1) early AG involvement in defining the current context, within the first 200 ms, with a bias toward the right hemisphere; (2) attention re-orientation and retrieval of relevant information within 200-500 ms; and (3) cross-modal integration at late latencies with a bias toward the left hemisphere. This sensemaking process can favour accuracy (e.g. for word and number processing) or plausibility (e.g. for comprehension and social cognition). Such functions of the AG depend on the status of other connected regions. The much-debated semantic role is also discussed as follows: (1) there is a strong TMS/TES evidence for a causal semantic role, (2) current EEG/MEG evidence is however weak, but (3) the existing arguments against a semantic role for the AG are not strong. Some outstanding questions for future research are proposed. This review recognizes that cracking the role(s) of the AG in cognition is possible only when its exact contributions within the default mode network are teased apart.
Collapse
Affiliation(s)
- Mohamed L Seghier
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE. .,Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi, UAE.
| |
Collapse
|
15
|
Jannati A, Oberman LM, Rotenberg A, Pascual-Leone A. Assessing the mechanisms of brain plasticity by transcranial magnetic stimulation. Neuropsychopharmacology 2023; 48:191-208. [PMID: 36198876 PMCID: PMC9700722 DOI: 10.1038/s41386-022-01453-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/10/2022]
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive technique for focal brain stimulation based on electromagnetic induction where a fluctuating magnetic field induces a small intracranial electric current in the brain. For more than 35 years, TMS has shown promise in the diagnosis and treatment of neurological and psychiatric disorders in adults. In this review, we provide a brief introduction to the TMS technique with a focus on repetitive TMS (rTMS) protocols, particularly theta-burst stimulation (TBS), and relevant rTMS-derived metrics of brain plasticity. We then discuss the TMS-EEG technique, the use of neuronavigation in TMS, the neural substrate of TBS measures of plasticity, the inter- and intraindividual variability of those measures, effects of age and genetic factors on TBS aftereffects, and then summarize alterations of TMS-TBS measures of plasticity in major neurological and psychiatric disorders including autism spectrum disorder, schizophrenia, depression, traumatic brain injury, Alzheimer's disease, and diabetes. Finally, we discuss the translational studies of TMS-TBS measures of plasticity and their therapeutic implications.
Collapse
Affiliation(s)
- Ali Jannati
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Lindsay M Oberman
- Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Alexander Rotenberg
- Neuromodulation Program, Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Department of Neurology, Harvard Medical School, Boston, MA, USA.
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA.
- Guttmann Brain Health Institute, Institut Guttmann, Barcelona, Spain.
| |
Collapse
|
16
|
Petit B, Dornier A, Meille V, Demina A, Trojak B. Non-invasive brain stimulation for smoking cessation: a systematic review and meta-analysis. Addiction 2022; 117:2768-2779. [PMID: 35470522 DOI: 10.1111/add.15889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 03/15/2022] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND AIMS Non-invasive brain stimulation (NIBS) methods have showed promising results for the treatment of tobacco use disorder, but little is known about the efficacy of NIBS on sustained tobacco abstinence. We aimed to assess its effectiveness for long-term smoking cessation. METHODS Systematic review and meta-analysis of randomized controlled trials (RCT). PubMed, Cochrane library, Embase, PsycINFO and clinical trials registries were systematically searched for relevant studies up to May 2021. Relevant studies included adult smokers seeking smoking cessation, included in an RCT using NIBS [specifically repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS)], and with follow-up of more than 4 weeks. There were no restrictions on location. Abstinence rates in the active NIBS groups were compared with abstinence rates in sham NIBS or in usual treatment groups, from 4 weeks to 12 months following the quit attempt. Smoking abstinence was measured on an intention-to-treat basis and we used risk ratios (RRs) as measures of effect size. RESULTS Seven studies were included (n = 699 patients). In all included studies, the control groups were receiving sham NIBS and only data from 3 to 6 months were analysable. By pooling the seven included studies, the RR of sustained abstinence of any form of NIBS relative to sham NIBS was 2.39 [95% confidence interval (CI) = 1.26-4.55; I2 = 40%]. Subgroup analyses found that the RR was even higher when excitatory rTMS was used on the left dorsolateral prefrontal cortex (RR = 4.34; 95% CI = 1.69-11.18; I2 = 0%) or when using deep rTMS targeting the lateral prefrontal cortex and insula bilaterally (RR = 4.64; 95% CI = 1.61-13.39; I2 = 0%). A high risk of bias was found in four included studies. We also determined, using grades of recommendation, assessment, development and evaluation, that overall there was a low level of confidence in the results. CONCLUSION Non-invasive brain stimulation (NIBS) may improve smoking abstinence rates from 3 to 6 months after quitting smoking, compared with sham NIBS or usual treatment.
Collapse
Affiliation(s)
- Benjamin Petit
- Department of Addictology, University Hospital of Dijon, Dijon, France
| | - Alexandre Dornier
- Department of Addictology, University Hospital of Dijon, Dijon, France
| | - Vincent Meille
- Department of Addictology, University Hospital of Dijon, Dijon, France
| | - Anastasia Demina
- Department of Addictology, University Hospital of Dijon, Dijon, France
| | - Benoit Trojak
- Department of Addictology, University Hospital of Dijon, Dijon, France.,University of Burgundy, Cognition, Action et Plasticité Sensorimotrice, Dijon, France
| |
Collapse
|
17
|
Maran M, Numssen O, Hartwigsen G, Zaccarella E. Online neurostimulation of Broca's area does not interfere with syntactic predictions: A combined TMS-EEG approach to basic linguistic combination. Front Psychol 2022; 13:968836. [PMID: 36619118 PMCID: PMC9815778 DOI: 10.3389/fpsyg.2022.968836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/13/2022] [Indexed: 01/11/2023] Open
Abstract
Categorical predictions have been proposed as the key mechanism supporting the fast pace of syntactic composition in language. Accordingly, grammar-based expectations are formed-e.g., the determiner "a" triggers the prediction for a noun-and facilitate the analysis of incoming syntactic information, which is then checked against a single or few other word categories. Previous functional neuroimaging studies point towards Broca's area in the left inferior frontal gyrus (IFG) as one fundamental cortical region involved in categorical prediction during incremental language processing. Causal evidence for this hypothesis is however still missing. In this study, we combined Electroencephalography (EEG) and Transcranial Magnetic Stimulation (TMS) to test whether Broca's area is functionally relevant in predictive mechanisms for language. We transiently perturbed Broca's area during the first word in a two-word construction, while simultaneously measuring the Event-Related Potential (ERP) correlates of syntactic composition. We reasoned that if Broca's area is involved in predictive mechanisms for syntax, disruptive TMS during the first word would mitigate the difference in the ERP responses for predicted and unpredicted categories in basic two-word constructions. Contrary to this hypothesis, perturbation of Broca's area at the predictive stage did not affect the ERP correlates of basic composition. The correlation strength between the electrical field induced by TMS and the ERP responses further confirmed this pattern. We discuss the present results considering an alternative account of the role of Broca's area in syntactic composition, namely the bottom-up integration of words into constituents, and of compensatory mechanisms within the language predictive network.
Collapse
Affiliation(s)
- Matteo Maran
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany,International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity, Leipzig, Germany,*Correspondence: Matteo Maran,
| | - Ole Numssen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Emiliano Zaccarella
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
18
|
Yue Q, Martin RC. Phonological Working Memory Representations in the Left Inferior Parietal Lobe in the Face of Distraction and Neural Stimulation. Front Hum Neurosci 2022; 16:890483. [PMID: 35814962 PMCID: PMC9259857 DOI: 10.3389/fnhum.2022.890483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/30/2022] [Indexed: 11/21/2022] Open
Abstract
The neural basis of phonological working memory (WM) was investigated through an examination of the effects of irrelevant speech distractors and disruptive neural stimulation from transcranial magnetic stimulation (TMS). Embedded processes models argue that the same regions involved in speech perception are used to support phonological WM whereas buffer models assume that a region separate from speech perception regions is used to support WM. Thus, according to the embedded processes approach but not the buffer approach, irrelevant speech and TMS to the speech perception region should disrupt the decoding of phonological WM representations. According to the buffer account, decoding of WM items should be possible in the buffer region despite distraction and should be disrupted with TMS to this region. Experiment 1 used fMRI and representational similarity analyses (RSA) with a delayed recognition memory paradigm using nonword stimuli. Results showed that decoding of memory items in the speech perception regions (superior temporal gyrus, STG) was possible in the absence of distractors. However, the decoding evidence in the left STG was susceptible to interference from distractors presented during the delay period whereas decoding in the proposed buffer region (supramarginal gyrus, SMG) persisted. Experiment 2 examined the causal roles of the speech processing region and the buffer region in phonological WM performance using TMS. TMS to the SMG during the early delay period caused a disruption in recognition performance for the memory nonwords, whereas stimulations at the STG and an occipital control region did not affect WM performance. Taken together, results from the two experiments are consistent with predictions of a buffer model of phonological WM, pointing to a critical role of the left SMG in maintaining phonological representations.
Collapse
Affiliation(s)
- Qiuhai Yue
- Department of Psychological Sciences, Rice University, Houston, TX, United States
- Department of Psychology, Vanderbilt University, Nashville, TN, United States
- *Correspondence: Qiuhai Yue Randi C. Martin
| | - Randi C. Martin
- Department of Psychological Sciences, Rice University, Houston, TX, United States
- *Correspondence: Qiuhai Yue Randi C. Martin
| |
Collapse
|
19
|
Stengel C, Sanches C, Toba MN, Valero-Cabré A. Things you wanted to know (but might have been afraid to ask) about how and why to explore and modulate brain plasticity with non-invasive neurostimulation technologies. Rev Neurol (Paris) 2022; 178:826-844. [PMID: 35623940 DOI: 10.1016/j.neurol.2021.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/15/2021] [Accepted: 12/28/2021] [Indexed: 11/30/2022]
Abstract
Brain plasticity can be defined as the ability of local and extended neural systems to organize either the structure and/or the function of their connectivity patterns to better adapt to changes of our inner/outer environment and optimally respond to new challenging behavioral demands. Plasticity has been traditionally conceived as a spontaneous phenomenon naturally occurring during pre and postnatal development, tied to learning and memory processes, or enabled following neural damage and their rehabilitation. Such effects can be easily observed and measured but remain hard to harness or to tame 'at will'. Non-invasive brain stimulation (NIBS) technologies offer the possibility to engage plastic phenomena, and use this ability to characterize the relationship between brain regions, networks and their functional connectivity patterns with cognitive process or disease symptoms, to estimate cortical malleability, and ultimately contribute to neuropsychiatric therapy and rehabilitation. NIBS technologies are unique tools in the field of fundamental and clinical research in humans. Nonetheless, their abilities (and also limitations) remain rather unknown and in the hands of a small community of experts, compared to widely established methods such as functional neuroimaging (fMRI) or electrophysiology (EEG, MEG). In the current review, we first introduce the features, mechanisms of action and operational principles of the two most widely used NIBS methods, Transcranial Magnetic Stimulation (TMS) and Transcranial Current Stimulation (tCS), for exploratory or therapeutic purposes, emphasizing their bearings on neural plasticity mechanisms. In a second step, we walk the reader through two examples of recent domains explored by our team to further emphasize the potential and limitations of NIBS to either explore or improve brain function in healthy individuals and neuropsychiatric populations. A final outlook will identify a series of future topics of interest that can foster progress in the field and achieve more effective manipulation of brain plasticity and interventions to explore and improve cognition and treat the symptoms of neuropsychiatric diseases.
Collapse
Affiliation(s)
- C Stengel
- Causal Dynamics, Plasticity and Rehabilitation Group, FRONTLAB team, office 3.028, Paris Brain Institute (Institut du Cerveau), CNRS UMR 7225, Inserm UMRS 1127 and Sorbonne Université, 47, boulevard de l'Hôpital, 75013 Paris, France
| | - C Sanches
- Causal Dynamics, Plasticity and Rehabilitation Group, FRONTLAB team, office 3.028, Paris Brain Institute (Institut du Cerveau), CNRS UMR 7225, Inserm UMRS 1127 and Sorbonne Université, 47, boulevard de l'Hôpital, 75013 Paris, France
| | - M N Toba
- Laboratory of Functional Neurosciences (UR UPJV 4559), University Hospital of Amiens and University of Picardie Jules Verne, Amiens, France
| | - A Valero-Cabré
- Causal Dynamics, Plasticity and Rehabilitation Group, FRONTLAB team, office 3.028, Paris Brain Institute (Institut du Cerveau), CNRS UMR 7225, Inserm UMRS 1127 and Sorbonne Université, 47, boulevard de l'Hôpital, 75013 Paris, France; Laboratory for Cerebral Dynamics Plasticity and Rehabilitation, Boston University School of Medicine, 700, Albany Street, Boston, MA W-702A, USA; Cognitive Neuroscience and Information Technology Research Program, Open University of Catalonia (UOC), Barcelona, Spain.
| |
Collapse
|
20
|
Verwey WB, Glinski B, Kuo MF, Salehinejad MA, Nitsche MA. Consolidation of motor sequence learning eliminates susceptibility of SMAproper to TMS: a combined rTMS and cTBS study. Exp Brain Res 2022; 240:1743-1755. [PMID: 35389072 PMCID: PMC8988106 DOI: 10.1007/s00221-022-06358-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/23/2022] [Indexed: 11/30/2022]
Abstract
Earlier research suggested that after 210 practice trials, the supplementary motor area (SMA) is involved in executing all responses of familiar 6-key sequences in a discrete sequence production (DSP) task (Verwey, Lammens, and van Honk, 2002). This was indicated by slowing of each response 20 and 25 min after the SMA had been stimulated for 20 min using repetitive transcranial magnetic stimulation (rTMS). The present study used a similar approach to assess the effects of TMS to the more posterior SMAproper at the end of practice and also 24 h later. As expected stimulation of SMAproper with 20 min of 1 Hz rTMS and 40 s of continuous theta burst stimulation (cTBS) immediately after practice slowed sequence execution relative to a sham TMS condition, but stimulation on the day following practice did not cause slowing. This indicates that offline consolidation makes learning robust against stimulation of SMAproper. Execution of all responses in the sequence was disrupted 0, 20, and 40 min after rTMS, but after cTBS, this occurred only after 40 min. The results suggest that it is implicit sequence knowledge that is processed by the SMAproper and that consolidates.
Collapse
Affiliation(s)
- Willem B Verwey
- Faculty of Behavioural, Management and Social Sciences, Department of Learning, Data-Analytics and Technology, Cognition, Data and Education Section, University of Twente, PO Box 217, 7500 AE, Enschede, The Netherlands.
- Department of Kinesiology, Non-Invasive Brain Stimulation Laboratory, Texas A&M University, College Station, TX, USA.
| | - Benedikt Glinski
- Faculty of Behavioural, Management and Social Sciences, Department of Learning, Data-Analytics and Technology, Cognition, Data and Education Section, University of Twente, PO Box 217, 7500 AE, Enschede, The Netherlands
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Min-Fang Kuo
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Mohammad Ali Salehinejad
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| |
Collapse
|
21
|
Cohen AL. Using causal methods to map symptoms to brain circuits in neurodevelopment disorders: moving from identifying correlates to developing treatments. J Neurodev Disord 2022; 14:19. [PMID: 35279095 PMCID: PMC8918299 DOI: 10.1186/s11689-022-09433-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/03/2022] [Indexed: 11/20/2022] Open
Abstract
A wide variety of model systems and experimental techniques can provide insight into the structure and function of the human brain in typical development and in neurodevelopmental disorders. Unfortunately, this work, whether based on manipulation of animal models or observational and correlational methods in humans, has a high attrition rate in translating scientific discovery into practicable treatments and therapies for neurodevelopmental disorders.With new computational and neuromodulatory approaches to interrogating brain networks, opportunities exist for "bedside-to bedside-translation" with a potentially shorter path to therapeutic options. Specifically, methods like lesion network mapping can identify brain networks involved in the generation of complex symptomatology, both from acute onset lesion-related symptoms and from focal developmental anomalies. Traditional neuroimaging can examine the generalizability of these findings to idiopathic populations, while non-invasive neuromodulation techniques such as transcranial magnetic stimulation provide the ability to do targeted activation or inhibition of these specific brain regions and networks. In parallel, real-time functional MRI neurofeedback also allow for endogenous neuromodulation of specific targets that may be out of reach for transcranial exogenous methods.Discovery of novel neuroanatomical circuits for transdiagnostic symptoms and neuroimaging-based endophenotypes may now be feasible for neurodevelopmental disorders using data from cohorts with focal brain anomalies. These novel circuits, after validation in large-scale highly characterized research cohorts and tested prospectively using noninvasive neuromodulation and neurofeedback techniques, may represent a new pathway for symptom-based targeted therapy.
Collapse
Affiliation(s)
- Alexander Li Cohen
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA. .,Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA. .,Laboratory for Brain Network Imaging and Modulation, Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
22
|
Muir M, Patel R, Traylor J, de Almeida Bastos DC, Prinsloo S, Liu HL, Noll K, Wefel J, Tummala S, Kumar V, Prabhu S. Validation of Non-invasive Language Mapping Modalities for Eloquent Tumor Resection: A Pilot Study. Front Neurosci 2022; 16:833073. [PMID: 35299624 PMCID: PMC8923233 DOI: 10.3389/fnins.2022.833073] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022] Open
Abstract
Many studies have established a link between extent of resection and survival in patients with gliomas. Surgeons must optimize the oncofunctional balance by maximizing the extent of resection and minimizing postoperative neurological morbidity. Preoperative functional imaging modalities are important tools for optimizing the oncofunctional balance. Transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) are non-invasive imaging modalities that can be used for preoperative functional language mapping. Scarce data exist evaluating the accuracy of these preoperative modalities for language mapping compared with gold standard intraoperative data in the same cohort. This study compares the accuracy of fMRI and TMS for language mapping compared with intraoperative direct cortical stimulation (DCS). We also identified significant predictors of preoperative functional imaging accuracy, as well as significant predictors of functional outcomes. Evidence from this study could inform clinical judgment as well as provide neuroscientific insight. We used geometric distances to determine copositivity between preoperative data and intraoperative data. Twenty-eight patients were included who underwent both preoperative fMRI and TMS procedures, as well as an awake craniotomy and intraoperative language mapping. We found that TMS shows significantly superior correlation to intraoperative DCS compared with fMRI. TMS also showed significantly higher sensitivity and negative predictive value than specificity and positive predictive value. Poor cognitive baseline was associated with decreased TMS accuracy as well as increased risk for worsened aphasia postoperatively. TMS has emerged as a promising preoperative language mapping tool. Future work should be done to identify the proper role of each imaging modality in a comprehensive, multimodal approach to optimize the oncofunctional balance.
Collapse
Affiliation(s)
- Matthew Muir
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rajan Patel
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Jeffrey Traylor
- Department of Neurological Surgery, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | | | - Sarah Prinsloo
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ho-Ling Liu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Kyle Noll
- Department of Neuropsychology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jeffrey Wefel
- Department of Neuropsychology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sudhakar Tummala
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Vinodh Kumar
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sujit Prabhu
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- *Correspondence: Sujit Prabhu,
| |
Collapse
|
23
|
Yue Q, Martin RC. Components of language processing and their long-term and working memory storage in the brain. HANDBOOK OF CLINICAL NEUROLOGY 2022; 187:109-126. [PMID: 35964966 DOI: 10.1016/b978-0-12-823493-8.00002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
There is a consensus that the temporal lobes are involved in representing various types of information critical for language processing, including phonological (i.e., speech sound), semantic (meaning), and orthographic (spelling) representations. An important question is whether the same regions that represent our long-term knowledge of phonology, semantics, and orthography are used to support the maintenance of these types of information in working memory (WM) (for instance, maintaining semantic information during sentence comprehension), or whether regions outside the temporal lobes provide the neural basis for WM maintenance in these domains. This review focuses on the issue of whether temporal lobe regions support WM for phonological information, with a brief discussion of related findings in the semantic and orthographic domains. Across all three domains, evidence from lesion-symptom mapping and functional neuroimaging indicates that parietal or frontal regions are critical for supporting WM, with different regions supporting WM in the three domains. The distinct regions in different domains argue against these regions as playing a general attentional role. The findings imply an interaction between the temporal lobe regions housing the long-term memory representations in these domains and the frontal and parietal regions needed to maintain these representations over time.
Collapse
Affiliation(s)
- Qiuhai Yue
- Department of Psychology, Vanderbilt University, Nashville, TN, United States
| | - Randi C Martin
- Department of Psychological Sciences, Rice University, Houston, TX, United States.
| |
Collapse
|
24
|
Are We Right about the Right TPJ? A Review of Brain Stimulation and Social Cognition in the Right Temporal Parietal Junction. Symmetry (Basel) 2021. [DOI: 10.3390/sym13112219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the past decade, the functional role of the TPJ (Temporal Parietal Junction) has become more evident in terms of its contribution to social cognition. Studies have revealed the TPJ as a ‘distinguisher’ of self and other with research focused on non-clinical populations as well as in individuals with Autism and Type I Schizophrenia. Further research has focused on the integration of self-other distinctions with proprioception. Much of what we now know about the causal role of the right TPJ derives from TMS (Transcranial Magnetic Stimulation), rTMS repetitive Transcranial Magnetic Stimulation), and tDCS (transcranial Direct Cortical Stimulation). In this review, we focus on the role of the right TPJ as a moderator of self, which is integrated and distinct from ‘other’ and how brain stimulation has established the causal relationship between the underlying cortex and agency.
Collapse
|
25
|
Bekkali S, Youssef GJ, Donaldson PH, Hyde C, Do M, He JL, Barhoun P, Enticott PG. Is there a relationship between EEG and sTMS neurophysiological markers of the putative human mirror neuron system? J Neurosci Res 2021; 99:3238-3249. [PMID: 34747052 DOI: 10.1002/jnr.24969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 11/08/2022]
Abstract
The mirror neuron system (MNS) has been theorized to play a neurobiological role in a number of social cognitive abilities and is commonly indexed putatively in humans via interpersonal motor resonance (IMR) and mu suppression. Although both indices are thought to measure similar neuronal populations (i.e., "mirror neurons"), it has been suggested that these methods are unrelated, and therefore, incompatible. However, prior studies reporting no relationships were typically conducted in small and underpowered samples. Thus, we aimed to investigate this potential association in a large sample of neurotypical adults (N = 116; 72 females). Participants underwent transcranial magnetic stimulation (TMS), electromyography (EMG), and electroencephalography (EEG) during the observation of videos of actors performing grasping actions in order to index IMR and mu suppression (in beta, lower alpha, and upper alpha bandwidths). A series of linear regressions revealed no associations between IMR and each of the mu suppression bandwidths. Supplementary Bayesian analyses provided further evidence in favor of the null (B01 = 8.85-8.93), providing further support for no association between the two indices of MNS activity. Our findings suggest that these two measures may indeed be unrelated indices that perhaps assess different neurophysiological aspects of the MNS. These results have important implications for future studies examining the MNS.
Collapse
Affiliation(s)
- Soukayna Bekkali
- Cognitive Neuroscience Unit (CNU), School of Psychology, Deakin University, Burwood, VIC, Australia
| | - George J Youssef
- Cognitive Neuroscience Unit (CNU), School of Psychology, Deakin University, Burwood, VIC, Australia.,Centre for Adolescent Health, Murdoch Children's Research Institute, Parkville, Melbourne, VIC, Australia
| | - Peter H Donaldson
- Cognitive Neuroscience Unit (CNU), School of Psychology, Deakin University, Burwood, VIC, Australia
| | - Christian Hyde
- Cognitive Neuroscience Unit (CNU), School of Psychology, Deakin University, Burwood, VIC, Australia
| | - Michael Do
- Cognitive Neuroscience Unit (CNU), School of Psychology, Deakin University, Burwood, VIC, Australia
| | - Jason L He
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Pamela Barhoun
- Cognitive Neuroscience Unit (CNU), School of Psychology, Deakin University, Burwood, VIC, Australia
| | - Peter G Enticott
- Cognitive Neuroscience Unit (CNU), School of Psychology, Deakin University, Burwood, VIC, Australia
| |
Collapse
|
26
|
Pavan A, Ghin F, Campana G. Visual Short-Term Memory for Coherent and Sequential Motion: A rTMS Investigation. Brain Sci 2021; 11:brainsci11111471. [PMID: 34827470 PMCID: PMC8615668 DOI: 10.3390/brainsci11111471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 01/10/2023] Open
Abstract
We investigated the role of the human medio-temporal complex (hMT+) in the memory encoding and storage of a sequence of four coherently moving random dot kinematograms (RDKs), by applying repetitive transcranial magnetic stimulation (rTMS) during an early or late phase of the retention interval. Moreover, in a second experiment, we also tested whether disrupting the functional integrity of hMT+ during the early phase impaired the precision of the encoded motion directions. Overall, results showed that both recognition accuracy and precision were worse in middle serial positions, suggesting the occurrence of primacy and recency effects. We found that rTMS delivered during the early (but not the late) phase of the retention interval was able to impair not only recognition of RDKs, but also the precision of the retained motion direction. However, such impairment occurred only for RDKs presented in middle positions along the presented sequence, where performance was already closer to chance level. Altogether these findings suggest an involvement of hMT+ in the memory encoding of visual motion direction. Given that both position sequence and rTMS modulated not only recognition but also the precision of the stored information, these findings are in support of a model of visual short-term memory with a variable resolution of each stored item, consistent with the assigned amount of memory resources, and that such item-specific memory resolution is supported by the functional integrity of area hMT+.
Collapse
Affiliation(s)
- Andrea Pavan
- Department of Psychology, University of Bologna, Viale Berti Pichat 5, 40127 Bologna, Italy
- School of Psychology, University of Lincoln, Brayford Wharf East, Lincoln LN5 7AY, UK;
- Correspondence:
| | - Filippo Ghin
- School of Psychology, University of Lincoln, Brayford Wharf East, Lincoln LN5 7AY, UK;
- Department of Child and Adolescent Psychiatry, Cognitive Neurophysiology, Faculty of Medicine of the TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Gianluca Campana
- Dipartimento di Psicologia Generale, University of Padova, Via Venezia 8, 35131 Padova, Italy;
- Human Inspired Technology Research Centre, University of Padova, Via Luzzati 4, 35121 Padova, Italy
| |
Collapse
|
27
|
Tang DL, McDaniel A, Watkins KE. Disruption of speech motor adaptation with repetitive transcranial magnetic stimulation of the articulatory representation in primary motor cortex. Cortex 2021; 145:115-130. [PMID: 34717269 PMCID: PMC8650828 DOI: 10.1016/j.cortex.2021.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 03/26/2021] [Accepted: 09/13/2021] [Indexed: 11/25/2022]
Abstract
When auditory feedback perturbation is introduced in a predictable way over a number of utterances, speakers learn to compensate by adjusting their own productions, a process known as sensorimotor adaptation. Despite multiple lines of evidence indicating the role of primary motor cortex (M1) in motor learning and memory, whether M1 causally contributes to sensorimotor adaptation in the speech domain remains unclear. Here, we aimed to assay whether temporary disruption of the articulatory representation in left M1 by repetitive transcranial magnetic stimulation (rTMS) impairs speech adaptation. To induce sensorimotor adaptation, the frequencies of first formants (F1) were shifted up and played back to participants when they produced “head”, “bed”, and “dead” repeatedly (the learning phase). A low-frequency rTMS train (.6 Hz, subthreshold, 12 min) over either the tongue or the hand representation of M1 (between-subjects design) was applied before participants experienced altered auditory feedback in the learning phase. We found that the group who received rTMS over the hand representation showed the expected compensatory response for the upwards shift in F1 by significantly reducing F1 and increasing the second formant (F2) frequencies in their productions. In contrast, these expected compensatory changes in both F1 and F2 did not occur in the group that received rTMS over the tongue representation. Critically, rTMS (subthreshold) over the tongue representation did not affect vowel production, which was unchanged from baseline. These results provide direct evidence that the articulatory representation in left M1 causally contributes to sensorimotor learning in speech. Furthermore, these results also suggest that M1 is critical to the network supporting a more global adaptation that aims to move the altered speech production closer to a learnt pattern of speech production used to produce another vowel.
Collapse
Affiliation(s)
- Ding-Lan Tang
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, UK.
| | - Alexander McDaniel
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, UK
| | - Kate E Watkins
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, UK
| |
Collapse
|
28
|
Predictive models for response to non-invasive brain stimulation in stroke: A critical review of opportunities and pitfalls. Brain Stimul 2021; 14:1456-1466. [PMID: 34560317 DOI: 10.1016/j.brs.2021.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/13/2021] [Accepted: 09/17/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Noninvasive brain stimulation has been successfully applied to improve stroke-related impairments in different behavioral domains. Yet, clinical translation is limited by heterogenous outcomes within and across studies. It has been proposed to develop and apply noninvasive brain stimulation in a patient-tailored, precision medicine-guided fashion to maximize response rates and effect magnitude. An important prerequisite for this task is the ability to accurately predict the expected response of the individual patient. OBJECTIVE This review aims to discuss current approaches studying noninvasive brain stimulation in stroke and challenges associated with the development of predictive models of responsiveness to noninvasive brain stimulation. METHODS Narrative review. RESULTS Currently, the field largely relies on in-sample associational studies to assess the impact of different influencing factors. However, the associational approach is not valid for making claims of prediction, which generalize out-of-sample. We will discuss crucial requirements for valid predictive modeling in particular the presence of sufficiently large sample sizes. CONCLUSION Modern predictive models are powerful tools that must be wielded with great care. Open science, including data sharing across research units to obtain sufficiently large and unbiased samples, could provide a solid framework for addressing the task of building robust predictive models for noninvasive brain stimulation responsiveness.
Collapse
|
29
|
Raffa G, Quattropani MC, Marzano G, Curcio A, Rizzo V, Sebestyén G, Tamás V, Büki A, Germanò A. Mapping and Preserving the Visuospatial Network by repetitive nTMS and DTI Tractography in Patients With Right Parietal Lobe Tumors. Front Oncol 2021; 11:677172. [PMID: 34249716 PMCID: PMC8268025 DOI: 10.3389/fonc.2021.677172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION The goal of brain tumor surgery is the maximal resection of neoplastic tissue, while preserving the adjacent functional brain tissues. The identification of functional networks involved in complex brain functions, including visuospatial abilities (VSAs), is usually difficult. We report our preliminary experience using a preoperative planning based on the combination of navigated transcranial magnetic stimulation (nTMS) and DTI tractography to provide the preoperative 3D reconstruction of the visuospatial (VS) cortico-subcortical network in patients with right parietal lobe tumors. MATERIAL AND METHODS Patients affected by right parietal lobe tumors underwent mapping of both hemispheres using an nTMS-implemented version of the Hooper Visual Organization Test (HVOT) to identify cortical areas involved in the VS network. DTI tractography was used to compute the subcortical component of the network, consisting of the three branches of the superior longitudinal fasciculus (SLF). The 3D reconstruction of the VS network was used to plan and guide the safest surgical approach to resect the tumor and avoid damage to the network. We retrospectively analyzed the cortical distribution of nTMS-induced errors, and assessed the impact of the planning on surgery by analyzing the extent of tumor resection (EOR) and the occurrence of postoperative VSAs deficits in comparison with a matched historical control group of patients operated without using the nTMS-based preoperative reconstruction of the VS network. RESULTS Twenty patients were enrolled in the study (Group A). The error rate (ER) induced by nTMS was higher in the right vs. the left hemisphere (p=0.02). In the right hemisphere, the ER was higher in the anterior supramarginal gyrus (aSMG) (1.7%), angular gyrus (1.4%) superior parietal lobule (SPL) (1.3%), and dorsal lateral occipital gyrus (dLoG) (1.2%). The reconstruction of the cortico-subcortical VS network was successfully used to plan and guide tumor resection. A gross total resection (GTR) was achieved in 85% of cases. After surgery no new VSAs deficits were observed and a slightly significant improvement of the HVOT score (p=0.02) was documented. The historical control group (Group B) included 20 patients matched for main clinical characteristics with patients in Group A, operated without the support of the nTMS-based planning. A GTR was achieved in 90% of cases, but the postoperative HVOT score resulted to be worsened as compared to the preoperative period (p=0.03). The comparison between groups showed a significantly improved postoperative HVOT score in Group A vs. Group B (p=0.03). CONCLUSIONS The nTMS-implemented HVOT is a feasible approach to map cortical areas involved in VSAs. It can be combined with DTI tractography, thus providing a reconstruction of the VS network that could guide neurosurgeons to preserve the VS network during tumor resection, thus reducing the occurrence of postoperative VSAs deficits as compared to standard asleep surgery.
Collapse
Affiliation(s)
- Giovanni Raffa
- Division of Neurosurgery, BIOMORF Department, University of Messina, Messina, Italy
| | | | - Giuseppina Marzano
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Antonello Curcio
- Division of Neurosurgery, BIOMORF Department, University of Messina, Messina, Italy
| | - Vincenzo Rizzo
- Division of Neurology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Gabriella Sebestyén
- Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary
| | - Viktória Tamás
- Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary
| | - András Büki
- Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary
| | - Antonino Germanò
- Division of Neurosurgery, BIOMORF Department, University of Messina, Messina, Italy
| |
Collapse
|
30
|
Fleischmann R, Triller P, Brandt SA, Schmidt SH. Human Premotor Corticospinal Projections Are Engaged in Motor Preparation at Discrete Time Intervals: A TMS-Induced Virtual Lesion Study. FRONTIERS IN NEUROERGONOMICS 2021; 2:678906. [PMID: 38235216 PMCID: PMC10790911 DOI: 10.3389/fnrgo.2021.678906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/26/2021] [Indexed: 01/19/2024]
Abstract
Objectives: The significance of pre-motor (PMC) corticospinal projections in a frontoparietal motor network remains elusive. Temporal activation patterns can provide valuable information about a region's engagement in a hierarchical network. Navigated transcranial magnetic stimulation (nTMS)-induced virtual lesions provide an excellent method to study cortical physiology by disrupting ongoing activity at high temporal resolution and anatomical precision. We use nTMS-induced virtual lesions applied during an established behavioral task demanding pre-motor activation to clarify the temporal activation pattern of pre-motor corticospinal projections. Materials and Methods: Ten healthy volunteers participated in the experiment (4 female, mean age 24 ± 2 years, 1 left-handed). NTMS was used to map Brodmann areae 4 and 6 for primary motor (M1) and PMC corticospinal projections. We then determined the stimulator output intensity required to elicit a 1 mV motor evoked potential (1 mV-MT) through M1 nTMS. TMS pulse were randomly delivered at distinct time intervals (40, 60, 80, 100, 120, and 140 ms) at 1 mV-MT intensity to M1, PMC and the DLPFC (dorsolateral pre-frontal cortex; control condition) before participants had to perform major changes of their trajectory of movement during a tracing task. Each participant performed six trials (20 runs per trial). Task performance and contribution of regions under investigation was quantified through calculating the tracing error induced by the stimulation. Results: A pre-motor stimulation hotspot could be identified in all participants (16.3 ± 1.7 mm medial, 18.6 ± 1.4 mm anterior to the M1 hotspot). NTMS over studied regions significantly affected task performance at discrete time intervals (F(10, 80) = 3.25, p = 0.001). NTMS applied over PMC 120 and 140 ms before changes in movement trajectory impaired task performance significantly more than when applied over M1 (p = 0.021 and p = 0.003) or DLPFC (p = 0.017 and p < 0.001). Stimulation intensity did not account for error size (β = -0.0074, p = 1). Conclusions: We provide novel evidence that the role of pre-motor corticospinal projections extends beyond that of simple corticospinal motor output. Their activation is crucial for task performance early in the stage of motor preparation suggesting a significant role in shaping voluntary movement. Temporal patterns of human pre-motor activation are similar to that observed in intracortical electrophysiological studies in primates.
Collapse
Affiliation(s)
- Robert Fleischmann
- Vision and Motor System Research Group, Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Paul Triller
- Vision and Motor System Research Group, Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Stephan A. Brandt
- Vision and Motor System Research Group, Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Sein H. Schmidt
- Vision and Motor System Research Group, Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
31
|
Haque ZZ, Samandra R, Mansouri FA. Neural substrate and underlying mechanisms of working memory: insights from brain stimulation studies. J Neurophysiol 2021; 125:2038-2053. [PMID: 33881914 DOI: 10.1152/jn.00041.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The concept of working memory refers to a collection of cognitive abilities and processes involved in the short-term storage of task-relevant information to guide the ongoing and upcoming behavior and therefore describes an important aspect of executive control of behavior for achieving goals. Deficits in working memory and related cognitive abilities have been observed in patients with brain damage or neuropsychological disorders and therefore it is important to better understand neural substrate and underlying mechanisms of working memory. Working memory relies on neural mechanisms that enable encoding, maintenance, and manipulation of stored information as well as integrating them with ongoing and future goals. Recently, a surge in brain stimulation studies have led to development of various noninvasive techniques for localized stimulation of prefrontal and other cortical regions in humans. These brain stimulation techniques can potentially be tailored to influence neural activities in particular brain regions and modulate cognitive functions and behavior. Combined use of brain stimulation with neuroimaging and electrophysiological recording have provided a great opportunity to monitor neural activity in various brain regions and noninvasively intervene and modulate cognitive functions in cognitive tasks. These studies have shed more light on the neural substrate and underlying mechanisms of working memory in humans. Here, we review findings and insight from these brain stimulation studies about the contribution of brain regions, and particularly prefrontal cortex, to working memory.
Collapse
Affiliation(s)
- Zakia Z Haque
- Cognitive Neuroscience Laboratory, Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Ranshikha Samandra
- Cognitive Neuroscience Laboratory, Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Farshad Alizadeh Mansouri
- Cognitive Neuroscience Laboratory, Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,ARC Centre for Integrative Brain Function, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
32
|
Corticospinal Excitability during a Perspective Taking Task as Measured by TMS-Induced Motor Evoked Potentials. Brain Sci 2021; 11:brainsci11040513. [PMID: 33919538 PMCID: PMC8073384 DOI: 10.3390/brainsci11040513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 11/16/2022] Open
Abstract
Only by understanding the ability to take a third-person perspective can we begin to elucidate the neural processes responsible for one’s inimitable conscious experience. The current study examined differences in hemispheric laterality during a first-person perspective (1PP) and third-person perspective (3PP) taking task, using transcranial magnetic stimulation (TMS). Participants were asked to take either the 1PP or 3PP when identifying the number of spheres in a virtual scene. During this task, single-pulse TMS was delivered to the motor cortex of both the left and right hemispheres of 10 healthy volunteers. Measures of TMS-induced motor-evoked potentials (MEPs) of the contralateral abductor pollicis brevis (APB) were employed as an indicator of lateralized cortical activation. The data suggest that the right hemisphere is more important in discriminating between 1PP and 3PP. These data add a novel method for determining perspective taking and add to the literature supporting the role of the right hemisphere in meta representation.
Collapse
|
33
|
Weiss Lucas C, Pieczewski J, Kochs S, Nettekoven C, Grefkes C, Goldbrunner R, Jonas K. The Cologne Picture Naming Test for Language Mapping and Monitoring (CoNaT): An Open Set of 100 Black and White Object Drawings. Front Neurol 2021; 12:633068. [PMID: 33746888 PMCID: PMC7966504 DOI: 10.3389/fneur.2021.633068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/12/2021] [Indexed: 01/10/2023] Open
Abstract
Language assessment using a picture naming task crucially relies on the interpretation of the given verbal response by the rater. To avoid misinterpretations, a language-specific and linguistically controlled set of unambiguous, clearly identifiable and common object-word pairs is mandatory. We, here, set out to provide an open-source set of black and white object drawings, particularly suited for language mapping and monitoring, e.g., during awake brain tumour surgery or transcranial magnetic stimulation, in German language. A refined set of 100 black and white drawings was tested in two consecutive runs of randomised picture order and was analysed in respect of correct, prompt, and reliable object recognition and naming in a series of 132 healthy subjects between 18 and 84 years (median 25 years, 64% females) and a clinical pilot cohort of 10 brain tumour patients (median age 47 years, 80% males). The influence of important word- and subject-related factors on task performance and reliability was investigated. Overall, across both healthy subjects and patients, excellent correct object naming rates (97 vs. 96%) as well as high reliability coefficients (Goodman-Kruskal's gamma = 0.95 vs. 0.86) were found. However, the analysis of variance revealed a significant, overall negative effect of low word frequency (p < 0.05) and high age (p < 0.0001) on task performance whereas the effect of a low educational level was only evident for the subgroup of 72 or more years of age (p < 0.05). Moreover, a small learning effect was observed across the two runs of the test (p < 0.001). In summary, this study provides an overall robust and reliable picture naming tool, optimised for the clinical use to map and monitor language functions in patients. However, individual familiarisation before the clinical use remains advisable, especially for subjects that are comparatively prone to spontaneous picture naming errors such as older subjects of low educational level and patients with clinically apparent word finding difficulties.
Collapse
Affiliation(s)
- Carolin Weiss Lucas
- Center for Neurosurgery, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| | - Julia Pieczewski
- Center for Neurosurgery, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| | - Sophia Kochs
- Center for Neurosurgery, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| | - Charlotte Nettekoven
- Center for Neurosurgery, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| | - Christian Grefkes
- Department of Neurology, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| | - Roland Goldbrunner
- Center for Neurosurgery, Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany
| | - Kristina Jonas
- Department of Special Education and Rehabilitation, Faculty of Human Sciences, University of Cologne, Cologne, Germany
| |
Collapse
|
34
|
Breveglieri R, Bosco A, Borgomaneri S, Tessari A, Galletti C, Avenanti A, Fattori P. Transcranial Magnetic Stimulation Over the Human Medial Posterior Parietal Cortex Disrupts Depth Encoding During Reach Planning. Cereb Cortex 2021; 31:267-280. [PMID: 32995831 DOI: 10.1093/cercor/bhaa224] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/01/2020] [Accepted: 07/23/2020] [Indexed: 11/12/2022] Open
Abstract
Accumulating evidence supports the view that the medial part of the posterior parietal cortex (mPPC) is involved in the planning of reaching, but while plenty of studies investigated reaching performed toward different directions, only a few studied different depths. Here, we investigated the causal role of mPPC (putatively, human area V6A-hV6A) in encoding depth and direction of reaching. Specifically, we applied single-pulse transcranial magnetic stimulation (TMS) over the left hV6A at different time points while 15 participants were planning immediate, visually guided reaching by using different eye-hand configurations. We found that TMS delivered over hV6A 200 ms after the Go signal affected the encoding of the depth of reaching by decreasing the accuracy of movements toward targets located farther with respect to the gazed position, but only when they were also far from the body. The effectiveness of both retinotopic (farther with respect to the gaze) and spatial position (far from the body) is in agreement with the presence in the monkey V6A of neurons employing either retinotopic, spatial, or mixed reference frames during reach plan. This work provides the first causal evidence of the critical role of hV6A in the planning of visually guided reaching movements in depth.
Collapse
Affiliation(s)
- Rossella Breveglieri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Annalisa Bosco
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Sara Borgomaneri
- Center for studies and research in Cognitive Neuroscience, University of Bologna, 47521 Cesena, Italy.,IRCCS, Santa Lucia Foundation, 00179 Rome, Italy
| | - Alessia Tessari
- Department of Psychology, University of Bologna, 40127 Bologna, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Alessio Avenanti
- Center for studies and research in Cognitive Neuroscience, University of Bologna, 47521 Cesena, Italy.,Center for research in Neuropsychology and Cognitive Neurosciences, Catholic University of Maule, 3460000 Talca, Chile
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
35
|
Supplementary motor area contributes to carrying previous movement information over to current movement. Neuroreport 2020; 32:223-227. [PMID: 33395190 DOI: 10.1097/wnr.0000000000001578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The purpose of the present study was to determine the cortical areas contributing to the influence of the previous movement on the current movement. Right-handed healthy human participants abducted and then adducted the left index finger in response to a start cue. Twenty consecutive trials with 10 s intertrial intervals were performed in each trial block. An odd-numbered trial was considered to be the previous trial, and a trial immediately after the previous trial (even-numbered trial) was the current trial. In each trial block, transcranial magnetic stimulation (TMS) was given over one of the seven TMS sites with the start cue in the previous trial. The TMS site was over the supplementary motor area (SMA), right dorsolateral prefrontal cortex, right dorsal premotor cortex, right or left posterior parietal cortex or right primary sensory cortex. Sham TMS, producing magnetic stimulation with the coil tilting 90 degrees off the scalp, was delivered over the Cz. In the current trial, TMS was not delivered. The correlation coefficient of the reaction time between the previous and current trials was positive and significant in the sham TMS trial block. This indicates that the current movement is partially dependent on the previous movement. The correlation coefficient of the reaction time between the previous and current movements in the SMA trial block was significantly different from that in the sham TMS trial block, indicating that the SMA contributes to the influence of the previous movement on the current movement. The SMA contributes to carrying the responsiveness level in the previous movement over to the current movement.
Collapse
|
36
|
Terruzzi S, Crivelli D, Pisoni A, Mattavelli G, Romero Lauro LJ, Bolognini N, Vallar G. The role of the right posterior parietal cortex in prism adaptation and its aftereffects. Neuropsychologia 2020; 150:107672. [PMID: 33188788 DOI: 10.1016/j.neuropsychologia.2020.107672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/26/2020] [Accepted: 11/04/2020] [Indexed: 11/28/2022]
Abstract
Adaptation to optical prisms (Prismatic Adaptation, PA) displacing the visual scene laterally, on one side of visual space, is both a procedure for investigating visuo-motor plasticity and a powerful tool for the rehabilitation of Unilateral Spatial Neglect (USN). Two processes are involved in PA: i) recalibration (the reduction of the error of manual pointings toward the direction of the prism-induced displacement of the visual scene); ii) the successive realignment after prisms' removal, indexed by the Aftereffects (AEs, in egocentric straight-ahead pointing tasks, the deviation in a direction opposite to the visual displacement previously induced by prisms). This study investigated the role of the posterior parietal cortex (PPC) of the right hemisphere in PA and AEs, by means of low frequency repetitive Transcranial Magnetic Stimulation (rTMS). Proprioceptive and Visuo-proprioceptive egocentric straight-ahead pointing tasks were used to assess the presence and magnitude of AEs. The primary right visual cortex (V1) was also stimulated, to assess the selectivity of the PPC effects on the two processes of PA (recalibration and realignment) in comparison with a cortical region involved in visual processing. Results showed a slower adaptation to prisms when rTMS was delivered before PA, regardless of target site (right PPC or V1). AEs were reduced only by PPC rTMS applied before or after PA, as compared to a sham stimulation. These findings suggest a functional and neural dissociation between realignment and recalibration. Indeed, PA interference was induced by rTMS to both the PPC and V1, indicating that recalibration is supported by a parieto-occipital network. Conversely, AEs were disrupted only by rTMS delivered to the PPC, thus unveiling a relevant role of this region in the development and maintenance of the realignment.
Collapse
Affiliation(s)
- Stefano Terruzzi
- Department of Psychology, University of Milano-Bicocca, Milan, Italy; CeRiN, Unversity of Trento, Rovereto, Italy.
| | - Damiano Crivelli
- Department of Psychology, University of Milano-Bicocca, Milan, Italy; Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Alberto Pisoni
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
| | | | | | - Nadia Bolognini
- Department of Psychology, University of Milano-Bicocca, Milan, Italy; Neuropsychological Laboratory, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Giuseppe Vallar
- Department of Psychology, University of Milano-Bicocca, Milan, Italy; Neuropsychological Laboratory, IRCCS Istituto Auxologico Italiano, Milan, Italy.
| |
Collapse
|
37
|
Hartwigsen G, Volz LJ. Probing rapid network reorganization of motor and language functions via neuromodulation and neuroimaging. Neuroimage 2020; 224:117449. [PMID: 33059054 DOI: 10.1016/j.neuroimage.2020.117449] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/17/2020] [Accepted: 10/07/2020] [Indexed: 12/22/2022] Open
Abstract
Motor and cognitive functions are organized in large-scale networks in the human brain that interact to enable flexible adaptation of information exchange to ever-changing environmental conditions. In this review, we discuss the unique potential of the consecutive combination of repetitive transcranial magnetic stimulation (rTMS) and functional neuroimaging to probe network organization and reorganization in the healthy and lesioned brain. First, we summarize findings highlighting the flexible (re-)distribution and short-term reorganization in motor and cognitive networks in the healthy brain. Plastic after-effects of rTMS result in large-scale changes on the network level affecting both local and remote activity within the stimulated network as well as interactions between the stimulated and distinct functional networks. While the number of combined rTMS-fMRI studies in patients with brain lesions remains scarce, preliminary evidence suggests that the lesioned brain flexibly (re-)distributes its computational capacities to functionally reorganize impaired brain functions, using a similar set of mechanisms to achieve adaptive network plasticity compared to short-term reorganization observed in the healthy brain after rTMS. In general, both short-term reorganization in the healthy brain and stroke-induced reorganization seem to rely on three general mechanisms of adaptive network plasticity that allow to maintain and recover function: i) interhemispheric changes, including increased contribution of homologous regions in the contralateral hemisphere and increased interhemispheric connectivity, ii) increased interactions between differentially specialized networks and iii) increased contributions of domain-general networks after disruption of more specific functions. These mechanisms may allow for computational flexibility of large-scale neural networks underlying motor and cognitive functions. Future studies should use complementary approaches to address the functional relevance of adaptive network plasticity and further delineate how these general mechanisms interact to enable network flexibility. Besides furthering our neurophysiological insights into brain network interactions, identifying approaches to support and enhance adaptive network plasticity may result in clinically relevant diagnostic and treatment approaches.
Collapse
Affiliation(s)
- Gesa Hartwigsen
- Lise Meitner Research Group "Cognition and Plasticity", Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1a, D-04103 Leipzig, Germany.
| | - Lukas J Volz
- Department of Neurology, University of Cologne, Kerpener Str. 62, D-50937 Cologne, Germany.
| |
Collapse
|
38
|
Ramos Nuñez AI, Yue Q, Pasalar S, Martin RC. The role of left vs. right superior temporal gyrus in speech perception: An fMRI-guided TMS study. BRAIN AND LANGUAGE 2020; 209:104838. [PMID: 32801090 DOI: 10.1016/j.bandl.2020.104838] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 05/27/2020] [Accepted: 07/13/2020] [Indexed: 05/15/2023]
Abstract
Debate continues regarding the necessary role of right superior temporal gyrus (STG) regions in sublexical speech perception given the bilateral STG activation often observed in fMRI studies. To evaluate the causal roles, TMS pulses were delivered to inhibit and disrupt neuronal activity at the left and right STG regions during a nonword discrimination task based on peak activations from a blocked fMRI paradigm assessing speech vs. nonspeech perception (N = 20). Relative to a control region located in the posterior occipital lobe, TMS to the left anterior STG (laSTG) led to significantly worse accuracy, whereas TMS to the left posterior STG (lpSTG) and right anterior STG (raSTG) did not. Although the disruption from TMS was significantly greater for the laSTG than for raSTG, the difference in accuracy between the laSTG and lpSTG did not reach significance. The results argue for a causal role of the laSTG but not raSTG in speech perception. Further research is needed to establish the source of the differences between the laSTG and lpSTG.
Collapse
Affiliation(s)
- Aurora I Ramos Nuñez
- Department of Social Sciences, College of Coastal Georgia, Brunswick, GA 31520, USA.
| | - Qiuhai Yue
- Department of Psychological Sciences, Rice University, Houston, TX 77005, USA; Department of Psychology, Vanderbilt University, Nashville, TN 37212, USA
| | - Siavash Pasalar
- Department of Psychological Sciences, Rice University, Houston, TX 77005, USA
| | - Randi C Martin
- Department of Psychological Sciences, Rice University, Houston, TX 77005, USA
| |
Collapse
|
39
|
Is the Putative Mirror Neuron System Associated with Empathy? A Systematic Review and Meta-Analysis. Neuropsychol Rev 2020; 31:14-57. [PMID: 32876854 DOI: 10.1007/s11065-020-09452-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/09/2020] [Indexed: 12/18/2022]
Abstract
Theoretical perspectives suggest that the mirror neuron system (MNS) is an important neurobiological contributor to empathy, yet empirical support is mixed. Here, we adopt a summary model for empathy, consisting of motor, emotional, and cognitive components of empathy. This review provides an overview of existing empirical studies investigating the relationship between putative MNS activity and empathy in healthy populations. 52 studies were identified that investigated the association between the MNS and at least one domain of empathy, representing data from 1044 participants. Our results suggest that emotional and cognitive empathy are moderately correlated with MNS activity, however, these domains were mixed and varied across techniques used to acquire MNS activity (TMS, EEG, and fMRI). Few studies investigated motor empathy, and of those, no significant relationships were revealed. Overall, results provide preliminary evidence for a relationship between MNS activity and empathy. However, our findings highlight methodological variability in study design as an important factor in understanding this relationship. We discuss limitations regarding these methodological variations and important implications for clinical and community translations, as well as suggestions for future research.
Collapse
|
40
|
Bekkali S, Youssef GJ, Donaldson PH, He J, Do M, Hyde C, Barhoun P, Enticott PG. Do Gaze Behaviours during Action Observation Predict Interpersonal Motor Resonance? Soc Cogn Affect Neurosci 2020; 17:61-71. [PMID: 32780868 PMCID: PMC8824634 DOI: 10.1093/scan/nsaa106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 06/16/2020] [Accepted: 07/21/2020] [Indexed: 12/01/2022] Open
Abstract
Interpersonal motor resonance (IMR) is a common putative index of the mirror neuron system (MNS), a network containing specialised cells that fire during both action execution and observation. Visual content inputs to the MNS, however, it is unclear whether visual behaviours mediate the putative MNS response. We aimed to examine gaze effects on IMR during action observation. Neurotypical adults (N = 99; 60 female) underwent transcranial magnetic stimulation, electromyography, and eye-tracking during the observation of videos of actors performing grasping actions. IMR was measured as a percentage change in motor evoked potentials (MEPs) of the first dorsal interosseous muscle during action observation relative to baseline. MEP facilitation was observed during action observation, indicating IMR (65.43%, SE = 11.26%, P < 0.001). Fixations occurring in biologically relevant areas (face/hand/arm) yielded significantly stronger IMR (81.03%, SE = 14.15%) than non-biological areas (63.92%, SE = 14.60, P = 0.012). This effect, however, was only evident in the first of four experimental blocks. Our results suggest that gaze fixation can modulate IMR, but this may be affected by the salience and novelty of the observed action. These findings have important methodological implications for future studies in both clinical and healthy populations.
Collapse
Affiliation(s)
- Soukayna Bekkali
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, 221 Burwood Hwy, Burwood, Victoria, 3125, Australia
| | - George J Youssef
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, 221 Burwood Hwy, Burwood, Victoria, 3125, Australia.,Centre for Adolescent Health, Murdoch Children's Research Institute, 50 Flemington Rd, Parkville, Melbourne, Victoria, 3052, Australia
| | - Peter H Donaldson
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, 221 Burwood Hwy, Burwood, Victoria, 3125, Australia
| | - Jason He
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, 221 Burwood Hwy, Burwood, Victoria, 3125, Australia.,Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, United Kingdom
| | - Michael Do
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, 221 Burwood Hwy, Burwood, Victoria, 3125, Australia
| | - Christian Hyde
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, 221 Burwood Hwy, Burwood, Victoria, 3125, Australia
| | - Pamela Barhoun
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, 221 Burwood Hwy, Burwood, Victoria, 3125, Australia
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, 221 Burwood Hwy, Burwood, Victoria, 3125, Australia
| |
Collapse
|
41
|
Gu J, Zhao Z, Zeng Z, Wang Y, Qiu Z, Veeravalli B, Poh Goh BK, Kunnath Bonney G, Madhavan K, Ying CW, Kheng Choon L, Hua TC, Chow PKH. Multi-Phase Cross-modal Learning for Noninvasive Gene Mutation Prediction in Hepatocellular Carcinoma. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:3549-3552. [PMID: 33019296 DOI: 10.1109/embc44109.2020.9176673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and the fourth most common cause of cancer-related death worldwide. Understanding the underlying gene mutations in HCC provides great prognostic value for treatment planning and targeted therapy. Radiogenomics has revealed an association between non-invasive imaging features and molecular genomics. However, imaging feature identification is laborious and error-prone. In this paper, we propose an end-to-end deep learning framework for mutation prediction in APOB, COL11A1 and ATRX genes using multiphasic CT scans. Considering intra-tumour heterogeneity (ITH) in HCC, multi-region sampling technology is implemented to generate the dataset for experiments. Experimental results demonstrate the effectiveness of the proposed model.
Collapse
|
42
|
Qiu S, Wang S, Yi W, Zhang C, He H. The lasting effects of 1Hz repetitive transcranial magnetic stimulation on resting state EEG in healthy subjects. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:5918-5922. [PMID: 31947196 DOI: 10.1109/embc.2019.8857184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Repetitive Transcranial magnetic stimulation (rTMS) is a noninvasive brain stimulation technique that able to influence cortical excitability. Low-frequency rTMS (stimulation frequency ≤1Hz) induces long-lasting inhibitory effects on cortical excitability. In order to study the effects of 1Hz rTMS of the motor cortex on neuronal activity, 20 healthy subjects were recruited to receive rTMS, and electroencephalography (EEG) in resting condition with eye open were recorded before rTMS, at 0min, 20min, 40min, 60min after rTMS. In multiple frequency bands, power values on each channel were calculated, and functional connectivity between two channels was assessed using phase synchronization. We found an increase in power of theta-band oscillations in the frontal and the central brain areas immediately after rTMS. And alpha resting power in the central-parietal brain area did not change immediately after rTMS, but increased at 20min after rTMS. Moreover, there is a widespread increase in functional connectivity after rTMS in the theta band, whereas widespread decreases in the functional connectivity were found in the alpha band after rTMS. At the same time, there was no significant recovery on power and functional connectivity at 60min after rTMS. These results provide an evidence for a transient reorganization of neuronal activity after 1Hz rTMS over the motor cortex. In addition, low-frequency rTMS produces widespread long-lasting alterations in cortical functional connectivity.
Collapse
|
43
|
Israely S, Leisman G. Can neuromodulation techniques optimally exploit cerebello-thalamo-cortical circuit properties to enhance motor learning post-stroke? Rev Neurosci 2020; 30:821-837. [PMID: 31194694 DOI: 10.1515/revneuro-2019-0008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/11/2019] [Indexed: 02/07/2023]
Abstract
Individuals post-stroke sustain motor deficits years after the stroke. Despite recent advancements in the applications of non-invasive brain stimulation techniques and Deep Brain Stimulation in humans, there is a lack of evidence supporting their use for rehabilitation after brain lesions. Non-invasive brain stimulation is already in use for treating motor deficits in individuals with Parkinson's disease and post-stroke. Deep Brain Stimulation has become an established treatment for individuals with movement disorders, such as Parkinson's disease, essential tremor, epilepsy, cerebral palsy and dystonia. It has also been utilized for the treatment of Tourette's syndrome, Alzheimer's disease and neuropsychiatric conditions such as obsessive-compulsive disorder, major depression and anorexia nervosa. There exists growing scientific knowledge from animal studies supporting the use of Deep Brain Stimulation to enhance motor recovery after brain damage. Nevertheless, these results are currently not applicable to humans. This review details the current literature supporting the use of these techniques to enhance motor recovery, both from human and animal studies, aiming to encourage development in this domain.
Collapse
Affiliation(s)
- Sharon Israely
- Department of Medical Neurobiology, IMRIC and ELSC, The Hebrew University, Hadassah Medical School, Jerusalem 9112102, Israel
| | - Gerry Leisman
- Department of Physiotherapy, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel.,Universidad de Ciencias Médicas Instituto de Neurología y Neurocirugía, Neurofisiología Clinica, Havana, Cuba
| |
Collapse
|
44
|
Sliwinska MW, Elson R, Pitcher D. Dual-site TMS demonstrates causal functional connectivity between the left and right posterior temporal sulci during facial expression recognition. Brain Stimul 2020; 13:1008-1013. [PMID: 32335230 PMCID: PMC7301156 DOI: 10.1016/j.brs.2020.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/24/2020] [Accepted: 04/17/2020] [Indexed: 01/16/2023] Open
Abstract
Background Neuroimaging studies suggest that facial expression recognition is processed in the bilateral posterior superior temporal sulcus (pSTS). Our recent repetitive transcranial magnetic stimulation (rTMS) study demonstrates that the bilateral pSTS is causally involved in expression recognition, although involvement of the right pSTS is greater than involvement of the left pSTS. Objective /Hypothesis: In this study, we used a dual-site TMS to investigate whether the left pSTS is functionally connected to the right pSTS during expression recognition. We predicted that if this connection exists, simultaneous TMS disruption of the bilateral pSTS would impair expression recognition to a greater extent than unilateral stimulation of the right pSTS alone. Methods Participants attended two TMS sessions. In Session 1, participants performed an expression recognition task while rTMS was delivered to the face-sensitive right pSTS (experimental site), object-sensitive right lateral occipital complex (control site) or no rTMS was delivered (behavioural control). In Session 2, the same experimental design was used, except that continuous theta-burst stimulation (cTBS) was delivered to the left pSTS immediately before behavioural testing commenced. Session order was counter-balanced across participants. Results In Session 1, rTMS to the rpSTS impaired performance accuracy compared to the control conditions. Crucially in Session 2, the size of this impairment effect doubled after cTBS was delivered to the left pSTS. Conclusions Our results provide evidence for a causal functional connection between the left and right pSTS during expression recognition. In addition, this study further demonstrates the utility of the dual-site TMS for investigating causal functional links between brain regions. Dual-site TMS was used to test causal functional connectivity between left and right pSTS during expression recognition. rTMS impaired facial expression recognition when delivered to the right pSTS during a facial expression recognition task. cTBS delivered to the left pSTS prior to the task doubled the impairment effect of rTMS to the right pSTS during the task. The results demonstrate causal functional connectivity between the left and right pSTS during expression recognition. The results also demonstrate the utility of dual-site TMS for investigating interregional causal functional connectivity.
Collapse
Affiliation(s)
| | - Ryan Elson
- Department of Psychology, University of York, Heslington, York, YO10 5DD, UK
| | - David Pitcher
- Department of Psychology, University of York, Heslington, York, YO10 5DD, UK
| |
Collapse
|
45
|
Interhemispheric compensation: A hypothesis of TMS-induced effects on language-related areas. Eur Psychiatry 2020; 23:281-8. [DOI: 10.1016/j.eurpsy.2007.10.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 10/01/2007] [Accepted: 10/07/2007] [Indexed: 11/22/2022] Open
Abstract
AbstractRepetitive transcranial magnetic stimulation (rTMS) applied over brain regions responsible for language processing is used to curtail potentially auditory hallucinations in schizophrenia patients and to investigate the functional organisation of language-related areas. Variability of effects is, however, marked across studies and between subjects. Furthermore, the mechanisms of action of rTMS are poorly understood.Here, we reviewed different factors related to the structural and functional organisation of the brain that might influence rTMS-induced effects. Then, by analogy with aphasia studies, and the plastic-adaptive changes in both the left and right hemispheres following aphasia recovery, a hypothesis is proposed about rTMS mechanisms over language-related areas (e.g. Wernicke, Broca). We proposed that the local interference induced by rTMS in language-related areas might be analogous to aphasic stroke and might lead to a functional reorganisation in areas connected to the virtual lesion for language recovery.
Collapse
|
46
|
Qiu S, Yi W, Wang S, Zhang C, He H. The Lasting Effects of Low-Frequency Repetitive Transcranial Magnetic Stimulation on Resting State EEG in Healthy Subjects. IEEE Trans Neural Syst Rehabil Eng 2020; 28:832-841. [DOI: 10.1109/tnsre.2020.2977883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
47
|
Caffo M, Cardali SM, Raffa G, Caruso G, Barresi V, Ricciardo G, Gorgoglione N, Granata F, Germanò A. The Value of Preoperative Planning Based on Navigated Transcranical Magnetic Stimulation for Surgical Treatment of Brain Metastases Located in the Perisylvian Area. World Neurosurg 2020; 134:e442-e452. [DOI: 10.1016/j.wneu.2019.10.090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023]
|
48
|
Dadashi F, Shahroki A, Nourian R, Irani A, Molavi M, Rafieenazari Z, Mirbagheri MM, Mirbagheri A. The Effects of Repetitive Transcranial Magnetic Stimulation (rTMS) on Balance Control in Children with Cerebral Palsy. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:5241-5244. [PMID: 31947040 DOI: 10.1109/embc.2019.8857361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cerebral palsy (CP) is a neurological disorder which can result in balance and mobility impairments. Four children with spastic CP participated and randomly assigned to experimental and control groups. The experimental group received 1-Hz repetitive Transcranial Magnetic Stimulation (rTMS) four times a week for 3 weeks, and the control group received sham rTMS using the similar experimental protocol. Each rTMS session lasted for 20 minutes. Postural balance was quantified by analyzing the center of pressure (COP) signal of a force plate according to the Romberg test. The balance was also evaluated using the Berg Balance Scale (BBS). The evaluations were done before and after the treatment. COP signal features showed up to 70% improvement following rTMS treatment, whereas there was no notable improvements in the control group. Similarly the BBS assessment presented balance enhancement only in the experimental group. These results, particularly under closed eye foam condition may imply an improvement in proprioception system.Our findings suggested that rTMS has a potential to be used as a therapeutic method to improve postural balance in children with CP.
Collapse
|
49
|
Kennedy-Higgins D, Devlin JT, Nuttall HE, Adank P. The Causal Role of Left and Right Superior Temporal Gyri in Speech Perception in Noise: A Transcranial Magnetic Stimulation Study. J Cogn Neurosci 2020; 32:1092-1103. [PMID: 31933438 DOI: 10.1162/jocn_a_01521] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Successful perception of speech in everyday listening conditions requires effective listening strategies to overcome common acoustic distortions, such as background noise. Convergent evidence from neuroimaging and clinical studies identify activation within the temporal lobes as key to successful speech perception. However, current neurobiological models disagree on whether the left temporal lobe is sufficient for successful speech perception or whether bilateral processing is required. We addressed this issue using TMS to selectively disrupt processing in either the left or right superior temporal gyrus (STG) of healthy participants to test whether the left temporal lobe is sufficient or whether both left and right STG are essential. Participants repeated keywords from sentences presented in background noise in a speech reception threshold task while receiving online repetitive TMS separately to the left STG, right STG, or vertex or while receiving no TMS. Results show an equal drop in performance following application of TMS to either left or right STG during the task. A separate group of participants performed a visual discrimination threshold task to control for the confounding side effects of TMS. Results show no effect of TMS on the control task, supporting the notion that the results of Experiment 1 can be attributed to modulation of cortical functioning in STG rather than to side effects associated with online TMS. These results indicate that successful speech perception in everyday listening conditions requires both left and right STG and thus have ramifications for our understanding of the neural organization of spoken language processing.
Collapse
|
50
|
The Effects of Repetitive Transcranial Magnetic Stimulation in Reducing Cocaine Craving and Use. ADDICTIVE DISORDERS & THEIR TREATMENT 2019. [DOI: 10.1097/adt.0000000000000169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|