1
|
Drs M, Krupař P, Škrabálková E, Haluška S, Müller K, Potocká A, Brejšková L, Serrano N, Voxeur A, Vernhettes S, Ortmannová J, Caldarescu G, Fendrych M, Potocký M, Žárský V, Pečenková T. Chitosan stimulates root hair callose deposition, endomembrane dynamics, and inhibits root hair growth. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39267452 DOI: 10.1111/pce.15111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 08/03/2024] [Accepted: 08/10/2024] [Indexed: 09/17/2024]
Abstract
Although angiosperm plants generally react to immunity elicitors like chitin or chitosan by the cell wall callose deposition, this response in particular cell types, especially upon chitosan treatment, is not fully understood. Here we show that the growing root hairs (RHs) of Arabidopsis can respond to a mild (0.001%) chitosan treatment by the callose deposition and by a deceleration of the RH growth. We demonstrate that the glucan synthase-like 5/PMR4 is vital for chitosan-induced callose deposition but not for RH growth inhibition. Upon the higher chitosan concentration (0.01%) treatment, RHs do not deposit callose, while growth inhibition is prominent. To understand the molecular and cellular mechanisms underpinning the responses to two chitosan treatments, we analysed early Ca2+ and defence-related signalling, gene expression, cell wall and RH cellular endomembrane modifications. Chitosan-induced callose deposition is also present in the several other plant species, including functionally analogous and evolutionarily only distantly related RH-like structures such as rhizoids of bryophytes. Our results point to the RH callose deposition as a conserved strategy of soil-anchoring plant cells to cope with mild biotic stress. However, high chitosan concentration prominently disturbs RH intracellular dynamics, tip-localised endomembrane compartments, growth and viability, precluding callose deposition.
Collapse
Affiliation(s)
- Matěj Drs
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague 2, Czech Republic
| | - Pavel Krupař
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague 2, Czech Republic
| | - Eliška Škrabálková
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague 2, Czech Republic
| | - Samuel Haluška
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague 2, Czech Republic
| | - Karel Müller
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague 6, Czech Republic
| | - Andrea Potocká
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague 6, Czech Republic
| | - Lucie Brejšková
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague 6, Czech Republic
| | - Natalia Serrano
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague 6, Czech Republic
| | - Aline Voxeur
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Samantha Vernhettes
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Jitka Ortmannová
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague 6, Czech Republic
| | - George Caldarescu
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague 2, Czech Republic
| | - Matyáš Fendrych
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague 2, Czech Republic
| | - Martin Potocký
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague 2, Czech Republic
| | - Viktor Žárský
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague 2, Czech Republic
| | - Tamara Pečenková
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague 6, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague 2, Czech Republic
| |
Collapse
|
2
|
Boutillon A, Banavar SP, Campàs O. Conserved physical mechanisms of cell and tissue elongation. Development 2024; 151:dev202687. [PMID: 38767601 PMCID: PMC11190436 DOI: 10.1242/dev.202687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Living organisms have the ability to self-shape into complex structures appropriate for their function. The genetic and molecular mechanisms that enable cells to do this have been extensively studied in several model and non-model organisms. In contrast, the physical mechanisms that shape cells and tissues have only recently started to emerge, in part thanks to new quantitative in vivo measurements of the physical quantities guiding morphogenesis. These data, combined with indirect inferences of physical characteristics, are starting to reveal similarities in the physical mechanisms underlying morphogenesis across different organisms. Here, we review how physics contributes to shape cells and tissues in a simple, yet ubiquitous, morphogenetic transformation: elongation. Drawing from observed similarities across species, we propose the existence of conserved physical mechanisms of morphogenesis.
Collapse
Affiliation(s)
- Arthur Boutillon
- Cluster of Excellence Physics of Life, TU Dresden, 01062 Dresden, Germany
| | - Samhita P. Banavar
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08540, USA
| | - Otger Campàs
- Cluster of Excellence Physics of Life, TU Dresden, 01062 Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| |
Collapse
|
3
|
Delmer D, Dixon RA, Keegstra K, Mohnen D. The plant cell wall-dynamic, strong, and adaptable-is a natural shapeshifter. THE PLANT CELL 2024; 36:1257-1311. [PMID: 38301734 PMCID: PMC11062476 DOI: 10.1093/plcell/koad325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/19/2023] [Indexed: 02/03/2024]
Abstract
Mythology is replete with good and evil shapeshifters, who, by definition, display great adaptability and assume many different forms-with several even turning themselves into trees. Cell walls certainly fit this definition as they can undergo subtle or dramatic changes in structure, assume many shapes, and perform many functions. In this review, we cover the evolution of knowledge of the structures, biosynthesis, and functions of the 5 major cell wall polymer types that range from deceptively simple to fiendishly complex. Along the way, we recognize some of the colorful historical figures who shaped cell wall research over the past 100 years. The shapeshifter analogy emerges more clearly as we examine the evolving proposals for how cell walls are constructed to allow growth while remaining strong, the complex signaling involved in maintaining cell wall integrity and defense against disease, and the ways cell walls adapt as they progress from birth, through growth to maturation, and in the end, often function long after cell death. We predict the next century of progress will include deciphering cell type-specific wall polymers; regulation at all levels of polymer production, crosslinks, and architecture; and how walls respond to developmental and environmental signals to drive plant success in diverse environments.
Collapse
Affiliation(s)
- Deborah Delmer
- Section of Plant Biology, University of California Davis, Davis, CA 95616, USA
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Kenneth Keegstra
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48823, USA
| | - Debra Mohnen
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
4
|
Qian D, Li T, Zheng C, Niu Y, Niu Y, Li C, Wang M, Yang Y, An L, Xiang Y. Actin-depolymerizing factors 8 and 11 promote root hair elongation at high pH. PLANT COMMUNICATIONS 2024; 5:100787. [PMID: 38158655 PMCID: PMC10943588 DOI: 10.1016/j.xplc.2023.100787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/26/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
A root hair is a polarly elongated single-celled structure that derives from a root epidermal cell and functions in uptake of water and nutrients from the surrounding environment. Previous reports have demonstrated that short periods of high pH inhibit root hair extension; but the effects of long-term high-pH treatment on root hair growth are still unclear. Here, we report that the duration of root hair elongation is significantly prolonged with increasing external pH, which counteracts the effect of decreasing root hair elongation rate and ultimately produces longer root hairs, whereas loss of actin-depolymerizing factor 8 and 11 (ADF8/11) function causes shortening of root hair length at high pH (pH 7.4). Accumulation of ADF8/11 at the tips of root hairs is inhibited by high pH, and increasing environmental pH affects the actin filament (F-actin) meshwork at the root hair tip. At high pH, the tip-focused F-actin meshwork is absent in root hairs of the adf8/11 mutant, actin filaments are disordered at the adf8/11 root hair tips, and actin turnover is attenuated. Secretory and recycling vesicles do not aggregate in the apical region of adf8/11 root hairs at high pH. Together, our results suggest that, under long-term exposure to high extracellular pH, ADF8/11 may establish and maintain the tip-focused F-actin meshwork to regulate polar trafficking of secretory/recycling vesicles at the root hair tips, thereby promoting root hair elongation.
Collapse
Affiliation(s)
- Dong Qian
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tian Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chen Zheng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yue Niu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yingzhi Niu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chengying Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Muxuan Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yang Yang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lizhe An
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yun Xiang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
5
|
Liu X, Yu X, Shi Y, Ma L, Fu Y, Guo Y. Phosphorylation of RhoGDI1, a Rho GDP dissociation inhibitor, regulates root hair development in Arabidopsis under salt stress. Proc Natl Acad Sci U S A 2023; 120:e2217957120. [PMID: 37590409 PMCID: PMC10450838 DOI: 10.1073/pnas.2217957120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 07/07/2023] [Indexed: 08/19/2023] Open
Abstract
To ensure optimal growth, plants actively regulate their growth and development based on environmental changes. Among these, salt stress significantly influences growth and yield. In this study, we demonstrate that the growth of root hairs of salt-stressed Arabidopsis thaliana seedlings is regulated by the SALT OVERLY SENSITIVE 2 (SOS2)-GUANOSINE NUCLEOTIDE DIPHOSPHATE DISSOCIATION INHIBITOR 1 (RhoGDI1)-Rho GTPASE OF PLANTS 2 (ROP2) module. We show here that the kinase SOS2 is activated by salt stress and subsequently phosphorylates RhoGDI1, a root hair regulator, thereby decreasing its stability. This change in RhoGDI1 abundance resulted in a fine-tuning of polar localization of ROP2 and root hair initiation followed by polar growth, demonstrating how SOS2-regulated root hair development is critical for plant growth under salt stress. Our results reveal how a tissue-specific response to salt stress balances the relationship of salt resistance and basic growth.
Collapse
Affiliation(s)
- Xiangning Liu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing100193, China
| | - Xiang Yu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing100193, China
| | - Yue Shi
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing100193, China
| | - Liang Ma
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing100193, China
| | - Ying Fu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing100193, China
| | - Yan Guo
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing100193, China
| |
Collapse
|
6
|
Herburger K, Schoenaers S, Vissenberg K, Mravec J. Shank-localized cell wall growth contributes to Arabidopsis root hair elongation. NATURE PLANTS 2022; 8:1222-1232. [PMID: 36303011 DOI: 10.1038/s41477-022-01259-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Root hairs are highly elongated tubular extensions of root epidermal cells with a plethora of physiological functions, particularly in establishing the root-rhizosphere interface. Anisotropic expansion of root hairs is generally thought to be exclusively mediated by tip growth-a highly controlled apically localized secretion of cell wall material-enriched vesicles that drives the extension of the apical dome. Here we show that tip growth is not the only mode of root hair elongation. We identified events of substantial shank-localized cell wall expansion along the polar growth axis of Arabidopsis root hairs using morphometric analysis with quantum dots. These regions expanded after in vivo immunolocalization using cell wall-directed antibodies and appeared as distinct bands that were devoid of cell wall labelling. Application of a novel click chemistry-enabled galactose analogue for pulse chase and real-time imaging allowed us to label xyloglucan, a major root hair glycan, and demonstrate its de novo deposition and enzymatic remodelling in these shank regions. Our data reveal a previously unknown aspect of root hair growth in which both tip- and shank-localized dynamic cell wall deposition and remodelling contribute to root hair elongation.
Collapse
Affiliation(s)
- Klaus Herburger
- Section for Plant Glycobiology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark.
- Institute of Biological Sciences, University of Rostock, Rostock, Germany.
| | - Sébastjen Schoenaers
- Integrated Molecular Plant Physiology Research, Biology Department, University of Antwerp, Antwerp, Belgium
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Kris Vissenberg
- Integrated Molecular Plant Physiology Research, Biology Department, University of Antwerp, Antwerp, Belgium
- Plant Biochemistry and Biotechnology Lab, Department of Agriculture, Hellenic Mediterranean University, Heraklion, Greece
| | - Jozef Mravec
- Section for Plant Glycobiology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
7
|
Taya K, Takeuchi S, Takahashi M, Hayashi KI, Mikami K. Auxin Regulates Apical Stem Cell Regeneration and Tip Growth in the Marine Red Alga Neopyropia yezoensis. Cells 2022; 11:cells11172652. [PMID: 36078060 PMCID: PMC9454478 DOI: 10.3390/cells11172652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
The red alga Neopyropia yezoensis undergoes polarized elongation and asymmetrical cell division of the apical stem cell during tip growth in filamentous generations of its life cycle: the conchocelis and conchosporangium. Side branches are also produced via tip growth, a process involving the regeneration and asymmetrical division of the apical stem cell. Here, we demonstrate that auxin plays a crucial role in these processes by using the auxin antagonist 2-(1H-Indol-3-yl)-4-oxo-4-phenyl-butyric acid (PEO-IAA), which specifically blocks the activity of the auxin receptor TRANSPORT INHIBITOR RESPONSE1 (TIR1) in land plants. PEO-IAA repressed both the regeneration and polarized tip growth of the apical stem cell in single-celled conchocelis; this phenomenon was reversed by treatment with the auxin indole-3-acetic acid (IAA). In addition, tip growth of the conchosporangium was accelerated by IAA treatment but repressed by PEO-IAA treatment. These findings indicate that auxin regulates polarized tip cell growth and that an auxin receptor-like protein is present in N. yezoensis. The sensitivity to different 5-alkoxy-IAA analogs differs considerably between N. yezoensis and Arabidopsis thaliana. N. yezoensis lacks a gene encoding TIR1, indicating that its auxin receptor-like protein differs from the auxin receptor of terrestrial plants. These findings shed light on auxin-induced mechanisms and the regulation of tip growth in plants.
Collapse
Affiliation(s)
- Kensuke Taya
- Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan
| | - Shunzei Takeuchi
- School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan
| | - Megumu Takahashi
- Faculty of Bio-Industry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493, Japan
| | - Ken-ichiro Hayashi
- Department of Bioscience, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama 700-0005, Japan
| | - Koji Mikami
- School of Food Industrial Sciences, Miyagi University, 2-2-1 Hatatate, Taihaku-ku, Sendai 982-0215, Japan
- Correspondence: ; Tel.: +81-22-245-1411
| |
Collapse
|
8
|
Synthetic growth by self-lubricated photopolymerization and extrusion inspired by plants and fungi. Proc Natl Acad Sci U S A 2022; 119:e2201776119. [PMID: 35943987 PMCID: PMC9388119 DOI: 10.1073/pnas.2201776119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Growth in nature often couples material generation and actuation, offering an intriguing paradigm for the marriage of materials science and robotics. Inspired by the growth of plants and fungi, a new approach for synthetic materials growth was developed based on simultaneous self-lubricated photopolymerization and extrusion. This strategy enables a new continuous method for light-based fabrication of profiled parts not possible with state-of-the-art three-dimensional (3D) printing or other methods. We exploit this materials growth paradigm to produce a soft robot capable of rapid continuous growth, thereby addressing major limitations of growing soft robots that stem from limited extensibility, lack of permanent structure, and inability to negotiate torturous paths, demonstrating the potential of growth to provide new capabilities in manufacturing and soft robotics. Many natural organisms, such as fungal hyphae and plant roots, grow at their tips, enabling the generation of complex bodies composed of natural materials as well as dexterous movement and exploration. Tip growth presents an exemplary process by which materials synthesis and actuation are coupled, providing a blueprint for how growth could be realized in a synthetic system. Herein, we identify three underlying principles essential to tip-based growth of biological organisms: a fluid pressure driving force, localized polymerization for generating structure, and fluid-mediated transport of constituent materials. In this work, these evolved features inspire a synthetic materials growth process called extrusion by self-lubricated interface photopolymerization (E-SLIP), which can continuously fabricate solid profiled polymer parts with tunable mechanical properties from liquid precursors. To demonstrate the utility of E-SLIP, we create a tip-growing soft robot, outline its fundamental governing principles, and highlight its capabilities for growth at speeds up to 12 cm/min and lengths up to 1.5 m. This growing soft robot is capable of executing a range of tasks, including exploration, burrowing, and traversing tortuous paths, which highlight the potential for synthetic growth as a platform for on-demand manufacturing of infrastructure, exploration, and sensing in a variety of environments.
Collapse
|
9
|
Kuběnová L, Tichá M, Šamaj J, Ovečka M. ROOT HAIR DEFECTIVE 2 vesicular delivery to the apical plasma membrane domain during Arabidopsis root hair development. PLANT PHYSIOLOGY 2022; 188:1563-1585. [PMID: 34986267 PMCID: PMC8896599 DOI: 10.1093/plphys/kiab595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) root hairs develop as long tubular extensions from the rootward pole of trichoblasts and exert polarized tip growth. The establishment and maintenance of root hair polarity is a complex process involving the local apical production of reactive oxygen species generated by A. thaliana nicotinamide adenine dinucleotide phosphate (NADPH) oxidase respiratory burst oxidase homolog protein C/ROOT HAIR-DEFECTIVE 2 (AtRBOHC/RHD2). Loss-of-function root hair defective 2 (rhd2) mutants have short root hairs that are unable to elongate by tip growth, and this phenotype is fully complemented by GREEN FLUORESCENT PROTEIN (GFP)-RHD2 expressed under the RHD2 promoter. However, the spatiotemporal mechanism of AtRBOHC/RHD2 subcellular redistribution and delivery to the plasma membrane (PM) during root hair initiation and tip growth are still unclear. Here, we used advanced microscopy for detailed qualitative and quantitative analysis of vesicular compartments containing GFP-RHD2 and characterization of their movements in developing bulges and growing root hairs. These compartments, identified by an independent molecular marker mCherry-VTI12 as the trans-Golgi network (TGN), deliver GFP-RHD2 to the apical PM domain, the extent of which corresponds with the stage of root hair formation. Movements of TGN/early endosomes, but not late endosomes, were affected in the bulging domains of the rhd2-1 mutant. Finally, we revealed that structural sterols might be involved in the accumulation, docking, and incorporation of TGN compartments containing GFP-RHD2 to the apical PM of root hairs. These results help in clarifying the mechanism of polarized AtRBOHC/RHD2 targeting, maintenance, and recycling at the apical PM domain, coordinated with different developmental stages of root hair initiation and growth.
Collapse
Affiliation(s)
- Lenka Kuběnová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Michaela Tichá
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Miroslav Ovečka
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
10
|
Kohli PS, Maurya K, Thakur JK, Bhosale R, Giri J. Significance of root hairs in developing stress-resilient plants for sustainable crop production. PLANT, CELL & ENVIRONMENT 2022; 45:677-694. [PMID: 34854103 DOI: 10.1111/pce.14237] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/15/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
Root hairs represent a beneficial agronomic trait to potentially reduce fertilizer and irrigation inputs. Over the past decades, research in the plant model Arabidopsis thaliana has provided insights into root hair development, the underlying genetic framework and the integration of environmental cues within this framework. Recent years have seen a paradigm shift, where studies are now highlighting conservation and diversification of root hair developmental programs in other plant species and the agronomic relevance of root hairs in a wider ecological context. In this review, we specifically discuss the molecular evolution of the RSL (RHD Six-Like) pathway that controls root hair development and growth in land plants. We also discuss how root hairs contribute to plant performance as an active physiological rooting structure by performing resource acquisition, providing anchorage and constructing the rhizosphere with desirable physical, chemical and biological properties. Finally, we outline future research directions that can help achieve the potential of root hairs in developing sustainable agroecosystems.
Collapse
Affiliation(s)
| | - Kanika Maurya
- National Institute of Plant Genome Research, New Delhi, India
| | - Jitendra K Thakur
- National Institute of Plant Genome Research, New Delhi, India
- International Centre of Genetic Engineering and Biotechnology, New Delhi, India
| | - Rahul Bhosale
- Future Food Beacon of Excellence and School of Biosciences, University of Nottingham, Nottingham, UK
| | - Jitender Giri
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
11
|
Gajek K, Janiak A, Korotko U, Chmielewska B, Marzec M, Szarejko I. Whole Exome Sequencing-Based Identification of a Novel Gene Involved in Root Hair Development in Barley ( Hordeum vulgare L.). Int J Mol Sci 2021; 22:ijms222413411. [PMID: 34948205 PMCID: PMC8709170 DOI: 10.3390/ijms222413411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/26/2021] [Accepted: 12/09/2021] [Indexed: 12/30/2022] Open
Abstract
Root hairs play a crucial role in anchoring plants in soil, interaction with microorganisms and nutrient uptake from the rhizosphere. In contrast to Arabidopsis, there is a limited knowledge of root hair morphogenesis in monocots, including barley (Hordeum vulgare L.). We have isolated barley mutant rhp1.e with an abnormal root hair phenotype after chemical mutagenesis of spring cultivar ‘Sebastian’. The development of root hairs was initiated in the mutant but inhibited at the very early stage of tip growth. The length of root hairs reached only 3% of the length of parent cultivar. Using a whole exome sequencing (WES) approach, we identified G1674A mutation in the HORVU1Hr1G077230 gene, located on chromosome 1HL and encoding a cellulose synthase-like C1 protein (HvCSLC1) that might be involved in the xyloglucan (XyG) synthesis in root hairs. The identified mutation led to the retention of the second intron and premature termination of the HvCSLC1 protein. The mutation co-segregated with the abnormal root hair phenotype in the F2 progeny of rhp1.e mutant and its wild-type parent. Additionally, different substitutions in HORVU1Hr1G077230 were found in four other allelic mutants with the same root hair phenotype. Here, we discuss the putative role of HvCSLC1 protein in root hair tube elongation in barley.
Collapse
Affiliation(s)
- Katarzyna Gajek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, 40-032 Katowice, Poland; (K.G.); (A.J.); (B.C.); (M.M.)
| | - Agnieszka Janiak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, 40-032 Katowice, Poland; (K.G.); (A.J.); (B.C.); (M.M.)
| | - Urszula Korotko
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, 15-089 Bialystok, Poland;
| | - Beata Chmielewska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, 40-032 Katowice, Poland; (K.G.); (A.J.); (B.C.); (M.M.)
| | - Marek Marzec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, 40-032 Katowice, Poland; (K.G.); (A.J.); (B.C.); (M.M.)
| | - Iwona Szarejko
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, 40-032 Katowice, Poland; (K.G.); (A.J.); (B.C.); (M.M.)
- Correspondence:
| |
Collapse
|
12
|
Zhao H, Wang Y, Zhao S, Fu Y, Zhu L. HOMEOBOX PROTEIN 24 mediates the conversion of indole-3-butyric acid to indole-3-acetic acid to promote root hair elongation. THE NEW PHYTOLOGIST 2021; 232:2057-2070. [PMID: 34480752 DOI: 10.1111/nph.17719] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Indole-3-acetic acid (IAA) is a predominant form of active auxin in plants. In addition to de novo biosynthesis and release from its conjugate forms, IAA can be converted from its precursor indole-3-butyric acid (IBA). The IBA-derived IAA may help drive root hair elongation in Arabidopsis thaliana seedlings, but how the IBA-to-IAA conversion is regulated and affects IAA function requires further investigation. In this study, HOMEOBOX PROTEIN 24 (HB24), a transcription factor in the zinc finger-homeodomain family (ZF-HD family) of proteins, was identified. With loss of HB24 function, defective growth occurred in root hairs. INDOLE-3-BUTYRIC ACID RESPONSE 1 (IBR1), which encodes an enzyme involved in the IBA-to-IAA conversion, was identified as a direct target of HB24 for the control of root hair elongation. The exogenous IAA or auxin analogue 1-naphthalene acetic acid (NAA) both rescued the root hair growth phenotype of hb24 mutants, but IBA did not, suggesting a role for HB24 in the IBA-to-IAA conversion. Therefore, HB24 participates in root hair elongation by upregulating the expression of IBR1 and subsequently promoting the IBA-to-IAA conversion. Moreover, IAA also elevated the expression of HB24, suggesting a feedback loop is involved in IBA-to-IAA conversion-mediated root hair elongation.
Collapse
Affiliation(s)
- Huan Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yutao Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shuai Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ying Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lei Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
13
|
Liu D, Luo Y, Zheng X, Wang X, Chou M, Wei G. TRAPPC13 Is a Novel Target of Mesorhizobium amorphae Type III Secretion System Effector NopP. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:511-523. [PMID: 33630651 DOI: 10.1094/mpmi-12-20-0354-fi] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Similar to pathogenic bacteria, rhizobia can inject effector proteins into host cells directly to promote infection via the type III secretion system (T3SS). Nodulation outer protein P (NopP), a specific T3SS effector of rhizobia, plays different roles in the establishment of multiple rhizobia-legume symbiotic systems. Mesorhizobium amorphae CCNWGS0123 (GS0123), which infects Robinia pseudoacacia specifically, secretes several T3SS effectors, including NopP. Here, we demonstrate that NopP is secreted through T3SS-I of GS0123 during the early stages of infection, and its deficiency decreases nodule nitrogenase activity of R. pseudoacacia nodules. A trafficking protein particle complex subunit 13-like protein (TRAPPC13) has been identified as a NopP target protein in R. pseudoacacia roots by screening a yeast two-hybrid library. The physical interaction between NopP and TRAPPC13 is verified by bimolecular fluorescence complementation and coimmunoprecipitation assays. In addition, subcellular localization analysis reveals that both NopP and its target, TRAPPC13, are colocalized on the plasma membrane. Compared with GS0123-inoculated R. pseudoacacia roots, some genes associated with cell wall remodeling and plant innate immunity down-regulated in ΔnopP-inoculated roots at 36 h postinoculation. The results suggest that NopP in M. amorphae CCNWGS0123 acts in multiple processes in R. pseudoacacia during the early stages of infection, and TRAPPC13 could participate in the process as a NopP target.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Dongying Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yantao Luo
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaofeng Zheng
- Shaanxi Hydrogeology Engineering Geology and Environmental Geology Survey Center, Shaanxi Institute of Geological Survey, Xi'an, Shaanxi 710054, China
| | - Xinye Wang
- Moutai Institute, Renhuai, Guizhou 564500, China
| | - Minxia Chou
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
14
|
Structure and Development of the Legume-Rhizobial Symbiotic Interface in Infection Threads. Cells 2021; 10:cells10051050. [PMID: 33946779 PMCID: PMC8146911 DOI: 10.3390/cells10051050] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
The intracellular infection thread initiated in a root hair cell is a unique structure associated with Rhizobium-legume symbiosis. It is characterized by inverted tip growth of the plant cell wall, resulting in a tunnel that allows invasion of host cells by bacteria during the formation of the nitrogen-fixing root nodule. Regulation of the plant-microbial interface is essential for infection thread growth. This involves targeted deposition of the cell wall and extracellular matrix and tight control of cell wall remodeling. This review describes the potential role of different actors such as transcription factors, receptors, and enzymes in the rearrangement of the plant-microbial interface and control of polar infection thread growth. It also focuses on the composition of the main polymers of the infection thread wall and matrix and the participation of reactive oxygen species (ROS) in the development of the infection thread. Mutant analysis has helped to gain insight into the development of host defense reactions. The available data raise many new questions about the structure, function, and development of infection threads.
Collapse
|
15
|
Zluhan-Martínez E, López-Ruíz BA, García-Gómez ML, García-Ponce B, de la Paz Sánchez M, Álvarez-Buylla ER, Garay-Arroyo A. Integrative Roles of Phytohormones on Cell Proliferation, Elongation and Differentiation in the Arabidopsis thaliana Primary Root. FRONTIERS IN PLANT SCIENCE 2021; 12:659155. [PMID: 33981325 PMCID: PMC8107238 DOI: 10.3389/fpls.2021.659155] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/24/2021] [Indexed: 05/17/2023]
Abstract
The growth of multicellular organisms relies on cell proliferation, elongation and differentiation that are tightly regulated throughout development by internal and external stimuli. The plasticity of a growth response largely depends on the capacity of the organism to adjust the ratio between cell proliferation and cell differentiation. The primary root of Arabidopsis thaliana offers many advantages toward understanding growth homeostasis as root cells are continuously produced and move from cell proliferation to elongation and differentiation that are processes spatially separated and could be studied along the longitudinal axis. Hormones fine tune plant growth responses and a huge amount of information has been recently generated on the role of these compounds in Arabidopsis primary root development. In this review, we summarized the participation of nine hormones in the regulation of the different zones and domains of the Arabidopsis primary root. In some cases, we found synergism between hormones that function either positively or negatively in proliferation, elongation or differentiation. Intriguingly, there are other cases where the interaction between hormones exhibits unexpected results. Future analysis on the molecular mechanisms underlying crosstalk hormone action in specific zones and domains will unravel their coordination over PR development.
Collapse
Affiliation(s)
- Estephania Zluhan-Martínez
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Brenda Anabel López-Ruíz
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Mónica L. García-Gómez
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - María de la Paz Sánchez
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Elena R. Álvarez-Buylla
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- *Correspondence: Adriana Garay-Arroyo,
| |
Collapse
|
16
|
Pulukkunadu Thekkeveedu R, Hegde S. In vitro spore germination and phytoremediation of Hg and Pb using gametophytes of Pityrogramma calomelanos. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 23:307-315. [PMID: 32898427 DOI: 10.1080/15226514.2020.1813075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Few pteridophytes have proven the capacity to accumulate and remediate heavy metals from contaminated soils. Pityrogramma calomelanos, a non-seasonal fast-growing, a cosmopolitan fern, is a good indicator of environmental conditions, was used in the present study. The life cycle of ferns alternates with haploid gametophyte and diploid sporophyte. The present study was undertaken to access the effect of mercury, in form of mercury (II) chloride [(HgCl2)] and lead as lead nitrate [Pb(NO3)2] in developmental studies using in vitro spore germination. Periodic recording of the germination, protonemal growth, rhizoid formation and differentiation of sex organs in different concentrations of heavy metals were conducted for a period of 6 weeks. It was found that the percentage of spore germination and the number of protonemal cells reduced significantly causing developmental defects in the presence of HgCl2 as compared to Pb(NO3)2 (p < 0.0001). A significant decrease in the number of archegonial count and chlorophyll content was observed in different concentrations of the heavy metals tested. Gametophytes of P. calomelanos recorded lead uptake of 646.51 ± 0.93 mg/kg in treatments of 25 ppm of lead and high mercury accumulation up to 1,885 ± 1.98 mg/kg at 10 ppm of mercury, indicating successful uptake of heavy metals. Novelty statement: Pityrogramma calomelanos is gaining interest amongst pteridologists upon proving its exclusive capacity of phytoremediation. It is superior in comparison to the most popular, patented fern Pteris vittata. Our study demonstrates the effective use of the promising fern in its simplest, nonvascular form of gametophytes as a phytoremediation agent in controlled conditions.
Collapse
Affiliation(s)
| | - Smitha Hegde
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Mangalore, Karnataka, India
| |
Collapse
|
17
|
Wang X, Bi S, Wang L, Li H, Gao BA, Huang S, Qu X, Cheng J, Wang S, Liu C, Jiang Y, Zhang B, Liu X, Zhang S, Fu Y, Zhang Z, Wang C. GLABRA2 Regulates Actin Bundling Protein VILLIN1 in Root Hair Growth in Response to Osmotic Stress. PLANT PHYSIOLOGY 2020; 184:176-193. [PMID: 32636342 PMCID: PMC7479883 DOI: 10.1104/pp.20.00480] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/28/2020] [Indexed: 05/04/2023]
Abstract
Actin binding proteins and transcription factors are essential in regulating plant root hair growth in response to various environmental stresses; however, the interaction between these two factors in regulating root hair growth remains poorly understood. Apical and subapical thick actin bundles are necessary for terminating rapid elongation of root hair cells. Here, we show that Arabidopsis (Arabidopsis thaliana) actin-bundling protein Villin1 (VLN1) decorates filaments in shank, subapical, and apical hairs. vln1 mutants displayed significantly longer hairs with longer hair growing time and defects in the thick actin bundles and bundling activities in the subapical and apical regions, whereas seedlings overexpressing VLN1 showed different results. Genetic analysis showed that the transcription factor GLABRA2 (Gl2) played a regulatory role similar to that of VLN1 in hair growth and actin dynamics. Moreover, further analyses demonstrated that VLN1 overexpression suppresses the gl2 mutant phenotypes regarding hair growth and actin dynamics; GL2 directly recognizes the promoter of VLN1 and positively regulates VLN1 expression in root hairs; and the GL2-mediated VLN1 pathway is involved in the root hair growth response to osmotic stress. Our results demonstrate that the GL2-mediated VLN1 pathway plays an important role in the root hair growth response to osmotic stress, and they describe a transcriptional mechanism that regulates actin dynamics and thereby modulates cell tip growth in response to environmental signals.
Collapse
Affiliation(s)
- Xianling Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Shuangtian Bi
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Lu Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Hongpeng Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Bi-ao Gao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaolu Qu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- College of Horticulture and Forestry, Huazhong Agricultural University, WuHan 430072, China
| | - Jianing Cheng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Shucai Wang
- College of Life Science, Linyi University, Linyi 276000, China
| | - Caiyuan Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Yikuo Jiang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Bing Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaoyu Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Shaobin Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Ying Fu
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100083, China
| | - Zhihong Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Che Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
18
|
BIDHENDI A, CHEBLI Y, GEITMANN A. Fluorescence visualization of cellulose and pectin in the primary plant cell wall. J Microsc 2020; 278:164-181. [DOI: 10.1111/jmi.12895] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/07/2020] [Accepted: 04/06/2020] [Indexed: 12/12/2022]
Affiliation(s)
- A.J. BIDHENDI
- Department of Plant ScienceMcGill UniversityMacdonald Campus Ste‐Anne‐de‐Bellevue Québec Canada
| | - Y. CHEBLI
- Department of Plant ScienceMcGill UniversityMacdonald Campus Ste‐Anne‐de‐Bellevue Québec Canada
| | - A. GEITMANN
- Department of Plant ScienceMcGill UniversityMacdonald Campus Ste‐Anne‐de‐Bellevue Québec Canada
| |
Collapse
|
19
|
Westermann J, Streubel S, Franck CM, Lentz R, Dolan L, Boisson-Dernier A. An Evolutionarily Conserved Receptor-like Kinases Signaling Module Controls Cell Wall Integrity During Tip Growth. Curr Biol 2019; 29:3899-3908.e3. [PMID: 31679933 DOI: 10.1016/j.cub.2019.09.069] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/29/2019] [Accepted: 09/26/2019] [Indexed: 02/02/2023]
Abstract
Rooting cells and pollen tubes-key adaptative innovations that evolved during the colonization and subsequent radiation of plants on land-expand by tip growth. Tip growth relies on a tight coordination between the protoplast growth and the synthesis/remodeling of the external cell wall. In root hairs and pollen tubes of the seed plant Arabidopsis thaliana, cell wall integrity (CWI) mechanisms monitor this coordination through the Malectin-like receptor kinases (MLRs), such as AtANXUR1 and AtFERONIA, that act upstream of the AtMARIS PTI1-like kinase. Here, we show that rhizoid growth in the early diverging plant, Marchantia polymorpha, is also controlled by an MLR and PTI1-like signaling module. Rhizoids, root hairs, and pollen tubes respond similarly to disruption of MLR and PTI1-like encoding genes. Thus, the MLR and PTI1-like signaling module that controls CWI during tip growth is conserved between M. polymorpha and A. thaliana, suggesting that it was active in the common ancestor of land plants.
Collapse
Affiliation(s)
| | - Susanna Streubel
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | | | - Roswitha Lentz
- University of Cologne, Biocenter, 50674 Cologne, Germany
| | - Liam Dolan
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | | |
Collapse
|
20
|
Brost C, Studtrucker T, Reimann R, Denninger P, Czekalla J, Krebs M, Fabry B, Schumacher K, Grossmann G, Dietrich P. Multiple cyclic nucleotide-gated channels coordinate calcium oscillations and polar growth of root hairs. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:910-923. [PMID: 31033043 DOI: 10.1111/tpj.14371] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/18/2019] [Accepted: 04/08/2019] [Indexed: 05/04/2023]
Abstract
Calcium gradients underlie polarization in eukaryotic cells. In plants, a tip-focused Ca2+ -gradient is fundamental for rapid and unidirectional cell expansion during epidermal root hair development. Here we report that three members of the cyclic nucleotide-gated channel family are required to maintain cytosolic Ca2+ oscillations and the normal growth of root hairs. CNGC6, CNGC9 and CNGC14 were expressed in root hairs, with CNGC9 displaying the highest root hair specificity. In individual channel mutants, morphological defects including root hair swelling and branching, as well as bursting, were observed. The developmental phenotypes were amplified in the three cngc double mutant combinations. Finally, cngc6/9/14 triple mutants only developed bulging trichoblasts and could not form normal root hair protrusions because they burst after the transition to the rapid growth phase. Prior to developmental defects, single and double mutants showed increasingly disturbed patterns of Ca2+ oscillations. We conclude that CNGC6, CNGC9 and CNGC14 fulfill partially but not fully redundant functions in generating and maintaining tip-focused Ca2+ oscillations, which are fundamental for proper root hair growth and polarity. Furthermore, the results suggest that these calmodulin-binding and Ca2+ -permeable channels organize a robust tip-focused oscillatory calcium gradient, which is not essential for root hair initiation but is required to control the integrity of the root hair after the transition to the rapid growth phase. Our findings also show that root hairs possess a large ability to compensate calcium-signaling defects, and add new players to the regulatory network, which coordinates cell wall properties and cell expansion during polar root hair growth.
Collapse
Affiliation(s)
- Christa Brost
- Molecular Plant Physiology, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstrasse 5, 91058, Erlangen, Germany
| | - Tanja Studtrucker
- Molecular Plant Physiology, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstrasse 5, 91058, Erlangen, Germany
| | - Ronny Reimann
- Molecular Plant Physiology, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstrasse 5, 91058, Erlangen, Germany
| | - Philipp Denninger
- CellNetworks Cluster of Excellence and Centre for Organismal Studies, Universität Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Jennifer Czekalla
- Molecular Plant Physiology, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstrasse 5, 91058, Erlangen, Germany
| | - Melanie Krebs
- Plant Developmental Biology, Centre for Organismal Studies, Universität Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Ben Fabry
- Department of Physics, Friedrich-Alexander Universität Erlangen-Nürnberg, Henkestrasse 91, 91052, Erlangen, Germany
| | - Karin Schumacher
- Plant Developmental Biology, Centre for Organismal Studies, Universität Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Guido Grossmann
- CellNetworks Cluster of Excellence and Centre for Organismal Studies, Universität Heidelberg, Im Neuenheimer Feld 230, 69120, Heidelberg, Germany
| | - Petra Dietrich
- Molecular Plant Physiology, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstrasse 5, 91058, Erlangen, Germany
| |
Collapse
|
21
|
Wang CX, Qi CY, Luo JH, Liu L, He Y, Chen LQ. Characterization of LRL5 as a key regulator of root hair growth in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:71-82. [PMID: 30556198 DOI: 10.1111/tpj.14200] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/05/2018] [Accepted: 11/21/2018] [Indexed: 05/27/2023]
Abstract
Root hair, a special type of tubular-shaped cell, outgrows from the root epidermal cell and plays important roles in the acquisition of nutrients and water, as well as interactions with biotic and abiotic stresses. Studies in the model plant Arabidopsis have revealed that root-hair initiation and elongation are hierarchically regulated by a group of basic helix-loop-helix (bHLH) transcription factors (TFs). However, knowledge regarding the regulatory pathways of these bHLH TFs in controlling root hair growth remains limited. In this study, RNA-seq analysis was conducted to profile the transcriptome in the elongating maize root hair and >1000 genes with preferential expression in root hair were identified. A consensus cis-element previously featured as the potential bHLH-TF binding sites was present in the regulatory regions for the majority of the root hair-preferentially expressed genes. In addition, an individual change in ZmLRL5, the highest-expressed bHLH-TF in maize root hair resulted in a dramatic reduction in the elongation of root hair, and rendered the growth of root hair hypersensitive to translational inhibition. Moreover, RNA-seq, yeast-one-hybrid and ribosome profile analysis suggested that ZmLRL5 may function as a key player in orchestrating the translational process by directly regulating the expression of translational processes/ribosomal genes during maize root hair growth.
Collapse
Affiliation(s)
- Chun-Xia Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Chuang-Ye Qi
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Jin-Hong Luo
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Lin Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yan He
- National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Li-Qun Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
22
|
Peng X, Pang H, Abbas M, Yan X, Dai X, Li Y, Li Q. Characterization of Cellulose synthase-like D (CSLD) family revealed the involvement of PtrCslD5 in root hair formation in Populus trichocarpa. Sci Rep 2019; 9:1452. [PMID: 30723218 PMCID: PMC6363781 DOI: 10.1038/s41598-018-36529-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/14/2018] [Indexed: 01/20/2023] Open
Abstract
Cellulose synthase-like D (CSLD) family was characterized for their expression and functions in Populus trichocarpa. Ten members, PtrCslD1-10, were identified in the P. trichocarpa genome, and they belong to 4 clades by phylogenetic tree analysis. qRT-PCR and promoter:GUS assays in Arabidopsis and P. trichocarpa displayed divergent expression patterns of these 10 PtrCSLD genes in root hairs, root tips, leaves, vascular tissues, xylem and flowers. Among PtrCslD2, PtrCslD4, PtrCslD5, PtrCslD6, and PtrCslD8 that all exhibited expression in root hairs, only PtrCslD5 could restore the root hairless phenotype of the atcsld3 mutant, demonstrating that PtrCslD5 is the functional ortholog of AtCslD3 for root hair formation. Our results suggest more possible functions for other PtrCslD genes in poplar.
Collapse
Affiliation(s)
- Xiaopeng Peng
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| | - Hongying Pang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| | - Manzar Abbas
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China.,National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaojing Yan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| | - Xinren Dai
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yun Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China. .,Research Institute of Forestry, Chinese Academy of Forestry, 100091, Beijing, China.
| |
Collapse
|
23
|
Moon S, Cho LH, Kim YJ, Gho YS, Jeong HY, Hong WJ, Lee C, Park H, Jwa NS, Dangol S, Chen Y, Park H, Cho HS, An G, Jung KH. RSL Class II Transcription Factors Guide the Nuclear Localization of RHL1 to Regulate Root Hair Development. PLANT PHYSIOLOGY 2019; 179:558-568. [PMID: 30545904 PMCID: PMC6426426 DOI: 10.1104/pp.18.01002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/03/2018] [Indexed: 05/19/2023]
Abstract
Root hairs are important for absorption of nutrients and water from the rhizosphere. The Root Hair Defective-Six Like (RSL) Class II family of transcription factors is expressed preferentially in root hairs and has a conserved role in root hair development in land plants. We functionally characterized the seven members of the RSL Class II subfamily in the rice (Oryza sativa) genome. In root hairs, six of these genes were preferentially expressed and four were strongly expressed. Phenotypic analysis of each mutant revealed that Os07g39940 plays a major role in root hair formation, based on observations of a short root hair phenotype in those mutants. Overexpression (OX) for each of four family members in rice resulted in an increase in the density and length of root hairs. These four members contain a transcription activation domain and are targeted to the nucleus. They interact with rice Root Hairless1 (OsRHL1), a key regulator of root hair development. When heterologously expressed in epidermal cells of Nicotiana benthamiana leaves, OsRHL1 was predominantly localized to the cytoplasm. When coexpressed with each of the four RSL Class II members, however, OsRLH1 was translocated to the nucleus. Transcriptome analysis using Os07g39940-OX plants revealed that 86 genes, including Class III peroxidases, were highly up-regulated. Furthermore, reactive oxygen species levels in the root hairs were increased in Os07g39940-OX plants but were drastically reduced in the os07g39940 and rhl1 mutants. Our results demonstrate that RSL Class II members function as essential regulators of root hair development in rice.
Collapse
Affiliation(s)
- Sunok Moon
- Department of Genetic Engineering and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea
| | - Lae-Hyeon Cho
- Department of Genetic Engineering and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea
| | - Yu-Jin Kim
- Department of Genetic Engineering and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea
| | - Yun-Shil Gho
- Department of Genetic Engineering and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea
| | - Ho Young Jeong
- Department of Plant and Environmental New Resources, Kyung Hee University, Yongin 17104, Korea
| | - Woo-Jong Hong
- Department of Genetic Engineering and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea
| | - Chanhui Lee
- Department of Plant and Environmental New Resources, Kyung Hee University, Yongin 17104, Korea
| | - Hyon Park
- Department of Sports Medicine, Kyung Hee University, Yongin 17104, Korea
| | - Nam-Soo Jwa
- Department of Molecular Biology, College of Life Sciences, Sejong University, Seoul 05006, Korea
| | - Sarmina Dangol
- Department of Molecular Biology, College of Life Sciences, Sejong University, Seoul 05006, Korea
| | - Yafei Chen
- Department of Molecular Biology, College of Life Sciences, Sejong University, Seoul 05006, Korea
| | - Hayeong Park
- Department of Systems Biology and Division of Life Sciences, Yonsei University, 50 Yonsei-ro, Seoul 03722 Korea
| | - Hyun-Soo Cho
- Department of Systems Biology and Division of Life Sciences, Yonsei University, 50 Yonsei-ro, Seoul 03722 Korea
| | - Gynheung An
- Department of Genetic Engineering and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea
| | - Ki-Hong Jung
- Department of Genetic Engineering and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea
| |
Collapse
|
24
|
Ding X, Zhang S, Liu J, Liu S, Su H. Arabidopsis FIM4 and FIM5 regulates the growth of root hairs in an auxin-insensitive way. PLANT SIGNALING & BEHAVIOR 2018; 13:e1473667. [PMID: 30148414 PMCID: PMC6204792 DOI: 10.1080/15592324.2018.1473667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 04/27/2018] [Indexed: 06/08/2023]
Abstract
Tip-growing cells provide a useful model system for studying the underlying mechanisms of plant cell growth. The apical growth of root hairs is dependent on the microfilament skeleton, and auxin is an important regulator of root hair development. We functionally characterized actin bundling proteins AtFIM4 and AtFIM5, which were preferentially expressed in tip-growing cells such as pollen tubes and root hairs. The morphology and length of root hairs in atfim4/atfim5 double mutant line had obvious defects. In addition, we found the growth of root hairs of atfim4/atfim5 double mutant was insensitive to exogenous IAA (indole-3-acetic acid) treatment. So we consider that AtFIM4 and AtFIM5 act together to regulate the growth of root hair in an auxin-insensitive way.
Collapse
Affiliation(s)
- X. Ding
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi’an, China
| | - S. Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi’an, China
| | - J. Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi’an, China
| | - S. Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi’an, China
| | - H. Su
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi’an, China
| |
Collapse
|
25
|
Arenas-Alfonseca L, Gotor C, Romero LC, García I. ß-Cyanoalanine Synthase Action in Root Hair Elongation is Exerted at Early Steps of the Root Hair Elongation Pathway and is Independent of Direct Cyanide Inactivation of NADPH Oxidase. PLANT & CELL PHYSIOLOGY 2018; 59:1072-1083. [PMID: 29490083 DOI: 10.1093/pcp/pcy047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/22/2018] [Indexed: 05/24/2023]
Abstract
In Arabidopsis thaliana, cyanide is produced concomitantly with ethylene biosynthesis and is mainly detoxified by the ß-cyanoalanine synthase CAS-C1. In roots, CAS-C1 activity is essential to maintain a low level of cyanide for proper root hair development. Root hair elongation relies on polarized cell expansion at the growing tip, and we have observed that CAS-C1 locates in mitochondria and accumulates in root hair tips during root hair elongation, as shown by observing the fluorescence in plants transformed with the translational construct ProC1:CASC1-GFP, containing the complete CAS-C1 gene fused to green fluorescent protein (GFP). Mutants in the SUPERCENTIPEDE (SCN1) gene, that regulate the NADPH oxidase gene ROOT HAIR DEFECTIVE 2 (RHD2)/AtrbohC, are affected at the very early steps of the development of root hair that do not elongate and do not show a preferential localization of the GFP accumulation in the tips of the root hair primordia. Root hairs of mutants in CAS-C1 or RHD2/AtrbohC, whose protein product catalyzes the generation of ROS and the Ca2+ gradient, start to grow out correctly, but they do not elongate. Genetic crosses between the cas-c1 mutant and scn1 or rhd2 mutants were performed, and the detailed phenotypic and molecular characterization of the double mutants demonstrates that scn1 mutation is epistatic to cas-c1 and cas-c1 is epistatic to rhd2 mutation, indicating that CAS-C1 acts in early steps of the root hair development process. Moreover, our results show that the role of CAS-C1 in root hair elongation is independent of H2O2 production and of a direct NADPH oxidase inhibition by cyanide.
Collapse
Affiliation(s)
- Lucía Arenas-Alfonseca
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, Sevilla 41092, Spain
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, Sevilla 41092, Spain
| | - Luis C Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, Sevilla 41092, Spain
| | - Irene García
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, Sevilla 41092, Spain
| |
Collapse
|
26
|
Franck CM, Westermann J, Boisson-Dernier A. Plant Malectin-Like Receptor Kinases: From Cell Wall Integrity to Immunity and Beyond. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:301-328. [PMID: 29539271 DOI: 10.1146/annurev-arplant-042817-040557] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plant cells are surrounded by cell walls protecting them from a myriad of environmental challenges. For successful habitat adaptation, extracellular cues are perceived at the cell wall and relayed to downstream signaling constituents to mediate dynamic cell wall remodeling and adapted intracellular responses. Plant malectin-like receptor kinases, also known as Catharanthus roseus receptor-like kinase 1-like proteins (CrRLK1Ls), take part in these perception and relay processes. CrRLK1Ls are involved in many different plant functions. Their ligands, interactors, and downstream signaling partners are being unraveled, and studies about CrRLK1Ls' roles in plant species other than the plant model Arabidopsis thaliana are beginning to flourish. This review focuses on recent CrRLK1L-related advances in cell growth, reproduction, hormone signaling, abiotic stress responses, and, particularly, immunity. We also give an overview of the comparative genomics and evolution of CrRLK1Ls, and present a brief outlook for future research.
Collapse
|
27
|
Julien JD, Boudaoud A. Elongation and shape changes in organisms with cell walls: A dialogue between experiments and models. ACTA ACUST UNITED AC 2018; 1:34-42. [PMID: 32743126 PMCID: PMC7388974 DOI: 10.1016/j.tcsw.2018.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/06/2018] [Accepted: 04/08/2018] [Indexed: 11/28/2022]
Abstract
The generation of anisotropic shapes occurs during morphogenesis of almost all organisms. With the recent renewal of the interest in mechanical aspects of morphogenesis, it has become clear that mechanics contributes to anisotropic forms in a subtle interaction with various molecular actors. Here, we consider plants, fungi, oomycetes, and bacteria, and we review the mechanisms by which elongated shapes are generated and maintained. We focus on theoretical models of the interplay between growth and mechanics, in relation with experimental data, and discuss how models may help us improve our understanding of the underlying biological mechanisms.
Collapse
Affiliation(s)
- Jean-Daniel Julien
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, 46 allée d'Italie, 69364 Lyon Cedex 07, France.,Laboratoire de Physique, Univ. Lyon, ENS de Lyon, UCB Lyon 1, CNRS, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| | - Arezki Boudaoud
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| |
Collapse
|
28
|
Arenas-Alfonseca L, Gotor C, Romero LC, García I. Role of mitochondrial cyanide detoxification in Arabidopsis root hair development. PLANT SIGNALING & BEHAVIOR 2018; 13:e1537699. [PMID: 30380363 PMCID: PMC6296436 DOI: 10.1080/15592324.2018.1537699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In non-cyanogenic plants, cyanide is produced during ethylene biosynthesis and is mainly detoxified by the ß-cyanoalanine synthase CAS-C1. Arabidopsis plants lacking CAS-C1 show abnormal root hairs, which stop growing at early stages. Root hair elongates by polarized cell expansion at the tip, and we have observed that CAS-C1-driven GFP fluorescence locates in mitochondria and accumulates in root hair tips during root hair elongation. Genetic crosses have been performed between cas-c1 plants and scn1-1 mutants, defective in the SCN1 protein that regulates the NADPH oxidase RHD2/AtrbohC, and between cas-c1 and rhd2-1, defective in the NADPH oxidase necessary for the generation of ROS and the Ca2+ gradient necessary for root hair elongation. The phenotypic and molecular analysis of these crosses indicates that cas-c1 is hypostatic to scn1-1 and epistatic to rhd2-1. Furthermore, the action of cyanide in root hair development is independent of ROS and of direct NADPH oxidase inhibition by cyanide.
Collapse
Affiliation(s)
- Lucía Arenas-Alfonseca
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Sevilla, Spain
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Sevilla, Spain
| | - Luis C. Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Sevilla, Spain
| | - Irene García
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Sevilla, Spain
- CONTACT Irene García Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio 49, Sevilla E-41092, Spain
| |
Collapse
|
29
|
Tan JJD, Ma Z, Xie Y, Yang L, Miao Y. Quantitative analysis of actin filament assembly in yeast and plant by live cell fluorescence microscopy. Micron 2017; 103:78-83. [PMID: 28992458 DOI: 10.1016/j.micron.2017.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/25/2017] [Accepted: 09/25/2017] [Indexed: 10/18/2022]
Abstract
Eukaryotic cells depend on a dynamic actin cytoskeleton to regulate many conserved intracellular events such as endocytosis, morphogenesis, polarized cell growth, and cytokinesis (Engqvist-Goldstein and Drubin, 2003; Salbreux et al., 2012; Pruyne et al., 2004; Pollard, 2010). These activities depend on a precise and well-organized spatiotemporal actin assembly that involves many conserved processes found in eukaryotic cells ranging from a unicellular organism, such as yeast, to multicellular organisms, such as plants and human. In particular, both budding yeast Saccharomyces cerevisiae and plant Arabidopsis thaliana have been proven to be the powerful and great model organisms to study the molecular mechanisms of the polymerization of the actin cytoskeleton and the actin-driven processes in walled-cells. Here we describe the methods in imaging and image processing to analyze dynamic actin filament assembly in budding yeast and Arabidopsis using a wide-field fluorescent microscope.
Collapse
Affiliation(s)
- Joseph Jun Dao Tan
- Ageing Research Institute for Society and Education, Interdisciplinary Graduate School, Nanyang Technological University, 639798, Singapore
| | - Zhiming Ma
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Ying Xie
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore
| | - Liang Yang
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore; Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 637551, Singapore
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore; School of Chemical and Biomedical Engineering, Nanyang Technological University, 637459, Singapore.
| |
Collapse
|
30
|
Kang E, Zheng M, Zhang Y, Yuan M, Yalovsky S, Zhu L, Fu Y. The Microtubule-Associated Protein MAP18 Affects ROP2 GTPase Activity during Root Hair Growth. PLANT PHYSIOLOGY 2017; 174:202-222. [PMID: 28314794 PMCID: PMC5411128 DOI: 10.1104/pp.16.01243] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 03/14/2017] [Indexed: 05/24/2023]
Abstract
Establishment and maintenance of the polar site are important for root hair tip growth. We previously reported that Arabidopsis (Arabidopsis thaliana) MICROTUBULE-ASSOCIATED PROTEIN18 (MAP18) functions in controlling the direction of pollen tube growth and root hair elongation. Additionally, the Rop GTPase ROP2 was reported as a positive regulator of both root hair initiation and tip growth in Arabidopsis. Both loss of function of ROP2 and knockdown of MAP18 lead to a decrease in root hair length, whereas overexpression of either MAP18 or ROP2 causes multiple tips or a branching hair phenotype. However, it is unclear whether MAP18 and ROP2 coordinately regulate root hair growth. In this study, we demonstrate that MAP18 and ROP2 interact genetically and functionally. MAP18 interacts physically with ROP2 in vitro and in vivo and preferentially binds to the inactive form of the ROP2 protein. MAP18 promotes ROP2 activity during root hair tip growth. Further investigation revealed that MAP18 competes with RhoGTPase GDP DISSOCIATION INHIBITOR1/SUPERCENTIPEDE1 for binding to ROP2, in turn affecting the localization of active ROP2 in the plasma membrane of the root hair tip. These results reveal a novel function of MAP18 in the regulation of ROP2 activation during root hair growth.
Collapse
Affiliation(s)
- Erfang Kang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (E.K., M.Z., Y.Z., L.Z., Y.F.); and
- Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel (S.Y.)
| | - Mingzhi Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (E.K., M.Z., Y.Z., L.Z., Y.F.); and
- Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel (S.Y.)
| | - Yan Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (E.K., M.Z., Y.Z., L.Z., Y.F.); and
- Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel (S.Y.)
| | - Ming Yuan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (E.K., M.Z., Y.Z., L.Z., Y.F.); and
- Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel (S.Y.)
| | - Shaul Yalovsky
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (E.K., M.Z., Y.Z., L.Z., Y.F.); and
- Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel (S.Y.)
| | - Lei Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (E.K., M.Z., Y.Z., L.Z., Y.F.); and
- Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel (S.Y.)
| | - Ying Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China (E.K., M.Z., Y.Z., L.Z., Y.F.); and
- Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel (S.Y.)
| |
Collapse
|
31
|
Vijayakumar P, Datta S, Dolan L. ROOT HAIR DEFECTIVE SIX-LIKE4 (RSL4) promotes root hair elongation by transcriptionally regulating the expression of genes required for cell growth. THE NEW PHYTOLOGIST 2016; 212:944-953. [PMID: 27452638 PMCID: PMC5111604 DOI: 10.1111/nph.14095] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/05/2016] [Indexed: 05/07/2023]
Abstract
ROOT HAIR DEFECTIVE SIX-LIKE4 (RSL4) is necessary and sufficient for root hair elongation in Arabidopsis thaliana. Root hair length is determined by the duration for which RSL4 protein is present in the developing root hair. The aim of this research was to identify genes regulated by RSL4 that affect root hair growth. To identify genes regulated by RSL4, we identified genes whose expression was elevated by induction of RSL4 activity in the presence of an inhibitor of translation. Thirty-four genes were identified as putative targets of RSL transcriptional regulation, and the results suggest that the activities of SUPPRESSOR OF ACTIN (SAC1), EXOCSYT SUBUNIT 70A1 (EXO70A1), PEROXIDASE7 (PRX7) and CALCIUM-DEPENDENT PROTEIN KINASE11 (CPK11) are required for root hair elongation. These data indicate that RSL4 controls cell growth by controlling the expression of genes encoding proteins involved in cell signalling, cell wall modification and secretion.
Collapse
Affiliation(s)
| | - Sourav Datta
- Department of Plant SciencesUniversity of OxfordOxfordOX1 3RBUK
| | - Liam Dolan
- Department of Plant SciencesUniversity of OxfordOxfordOX1 3RBUK
| |
Collapse
|
32
|
Van Norman JM. Asymmetry and cell polarity in root development. Dev Biol 2016; 419:165-174. [PMID: 27426272 DOI: 10.1016/j.ydbio.2016.07.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/09/2016] [Accepted: 07/13/2016] [Indexed: 01/08/2023]
Abstract
Within living systems, striking juxtapositions in symmetry and asymmetry can be observed and the superficial appearance of symmetric organization often gives way to cellular asymmetries at higher resolution. It is frequently asymmetry and polarity that fascinate and challenge developmental biologists. In multicellular eukaryotes, cell polarity and asymmetry are essential for diverse cellular, tissue, and organismal level function and physiology and are particularly crucial for developmental processes. In plants, where cells are surrounded by rigid cell walls, asymmetric cell divisions are the foundation of pattern formation and differential cell fate specification. Thus, cellular asymmetry is a key feature of plant biology and in the plant root the consequences of these asymmetries are elegantly displayed. Yet despite the frequency of asymmetric (formative) cell divisions, cell/tissue polarity and the proposed roles for directional signaling in these processes, polarly localized proteins, beyond those involved in auxin or nutrient transport, are exceedingly rare. Indeed, although half of the asymmetric cell divisions in root patterning are oriented parallel to the axis of growth, laterally localized proteins directly involved in patterning are largely missing in action. Here, various asymmetric cell divisions and cellular and structural polarities observed in roots are highlighted and discussed in the context of the proposed roles for positional and/or directional signaling in these processes. The importance of directional signaling and the weight given to polarity in the root-shoot axis is contrasted with how little we currently understand about laterally oriented asymmetry and polarity in the root.
Collapse
|
33
|
RSL Class I Genes Controlled the Development of Epidermal Structures in the Common Ancestor of Land Plants. Curr Biol 2015; 26:93-9. [PMID: 26725198 PMCID: PMC4712171 DOI: 10.1016/j.cub.2015.11.042] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/05/2015] [Accepted: 11/06/2015] [Indexed: 11/23/2022]
Abstract
The colonization of the land by plants, sometime before 470 million years ago, was accompanied by the evolution tissue systems [1-3]. Specialized structures with diverse functions-from nutrient acquisition to reproduction-derived from single cells in the outermost layer (epidermis) were important sources of morphological innovation at this time [2, 4, 5]. In extant plants, these structures may be unicellular extensions, such as root hairs or rhizoids [6-9], or multicellular structures, such as asexual propagules or secretory hairs (papillae) [10-12]. Here, we show that a ROOTHAIR DEFECTIVE SIX-LIKE (RSL) class I basic helix-loop-helix transcription factor positively regulates the development of the unicellular and multicellular structures that develop from individual cells that expand out of the epidermal plane of the liverwort Marchantia polymorpha; mutants that lack MpRSL1 function do not develop rhizoids, slime papillae, mucilage papillae, or gemmae. Furthermore, we discovered that RSL class I genes are also required for the development of multicellular axillary hairs on the gametophyte of the moss Physcomitrella patens. Because class I RSL proteins also control the development of rhizoids in mosses and root hairs in angiosperms [13, 14], these data demonstrate that the function of RSL class I genes was to control the development of structures derived from single epidermal cells in the common ancestor of the land plants. Class I RSL genes therefore controlled the generation of adaptive morphological diversity as plants colonized the land from the water.
Collapse
|
34
|
Balcerowicz D, Schoenaers S, Vissenberg K. Cell Fate Determination and the Switch from Diffuse Growth to Planar Polarity in Arabidopsis Root Epidermal Cells. FRONTIERS IN PLANT SCIENCE 2015; 6:1163. [PMID: 26779192 PMCID: PMC4688357 DOI: 10.3389/fpls.2015.01163] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/07/2015] [Indexed: 05/19/2023]
Abstract
Plant roots fulfill important functions as they serve in water and nutrient uptake, provide anchorage of the plant body in the soil and in some species form the site of symbiotic interactions with soil-living biota. Root hairs, tubular-shaped outgrowths of specific epidermal cells, significantly increase the root's surface area and aid in these processes. In this review we focus on the molecular mechanisms that determine the hair and non-hair cell fate of epidermal cells and that define the site on the epidermal cell where the root hair will be initiated (=planar polarity determination). In the model plant Arabidopsis, trichoblast and atrichoblast cell fate results from intra- and intercellular position-dependent signaling and from complex feedback loops that ultimately regulate GL2 expressing and non-expressing cells. When epidermal cells reach the end of the root expansion zone, root hair promoting transcription factors dictate the establishment of polarity within epidermal cells followed by the selection of the root hair initiation site at the more basal part of the trichoblast. Molecular players in the abovementioned processes as well as the role of phytohormones are discussed, and open areas for future experiments are identified.
Collapse
Affiliation(s)
| | | | - Kris Vissenberg
- Integrated Molecular Plant Physiology Research, Department Biology, University of AntwerpAntwerpen, Belgium
| |
Collapse
|
35
|
Shevchenko G. Participation of proteins binding both actin filaments and microtubules in higher plant cell growth. CYTOL GENET+ 2015. [DOI: 10.3103/s009545271504009x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Zhang Y, Kang E, Yuan M, Fu Y, Zhu L. PCaP2 regulates nuclear positioning in growing Arabidopsis thaliana root hairs by modulating filamentous actin organization. PLANT CELL REPORTS 2015; 34:1317-30. [PMID: 25929794 DOI: 10.1007/s00299-015-1789-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 03/23/2015] [Accepted: 03/31/2015] [Indexed: 05/10/2023]
Abstract
PCaP2 plays a key role in maintaining the nucleus at a relatively fixed distance from the apex during root hair growth by modulating actin filaments. During root hair growth, the nucleus localizes at a relatively fixed distance from the apex. In Arabidopsis thaliana, the position of the nucleus is mainly dependent on the configuration of microfilaments (filamentous actin). However, the mechanisms underlying the regulation of actin dynamics and organization for nuclear positioning are largely unknown. In the present study, we demonstrated that plasma membrane-associated Ca(2+) binding protein 2 (PCaP2) influences the position of the nucleus during root hair growth. Abnormal expression of PCaP2 in pcap2 and PCaP2 over-expression plants led to the disorganization of actin filaments, rather than microtubules, in the apex and sub-apical regions of root hairs, which resulted in aberrant root hair growth patterns and misplaced nuclei. Analyses using a PCaP2 mutant protein revealed that actin-severing activity is essential for the function of PCaP2 in root hairs. We demonstrated that PCaP2 plays a key role in maintaining nuclear position in growing root hairs by modulating actin filaments.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | | | | | | | | |
Collapse
|
37
|
Gardiner J. Use of Arabidopsis to Model Hereditary Spastic Paraplegia and Other Movement Disorders. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00075-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
38
|
Schmidt R, Schippers JHM. ROS-mediated redox signaling during cell differentiation in plants. Biochim Biophys Acta Gen Subj 2014; 1850:1497-508. [PMID: 25542301 DOI: 10.1016/j.bbagen.2014.12.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/18/2014] [Accepted: 12/19/2014] [Indexed: 12/19/2022]
Abstract
BACKGROUND Reactive oxygen species (ROS) have emerged in recent years as important regulators of cell division and differentiation. SCOPE OF REVIEW The cellular redox state has a major impact on cell fate and multicellular organism development. However, the exact molecular mechanisms through which ROS manifest their regulation over cellular development are only starting to be understood in plants. ROS levels are constantly monitored and any change in the redox pool is rapidly sensed and responded upon. Different types of ROS cause specific oxidative modifications, providing the basic characteristics of a signaling molecule. Here we provide an overview of ROS sensors and signaling cascades that regulate transcriptional responses in plants to guide cellular differentiation and organ development. MAJOR CONCLUSIONS Although several redox sensors and cascades have been identified, they represent only a first glimpse on the impact that redox signaling has on plant development and growth. GENERAL SIGNIFICANCE We provide an initial evaluation of ROS signaling cascades involved in cell differentiation in plants and identify potential avenues for future studies. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation.
Collapse
Affiliation(s)
- Romy Schmidt
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Jos H M Schippers
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| |
Collapse
|
39
|
Rishmawi L, Sun H, Schneeberger K, Hülskamp M, Schrader A. Rapid identification of a natural knockout allele of ARMADILLO REPEAT-CONTAINING KINESIN1 that causes root hair branching by mapping-by-sequencing. PLANT PHYSIOLOGY 2014; 166:1280-7. [PMID: 25248719 PMCID: PMC4226369 DOI: 10.1104/pp.114.244046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
In Arabidopsis (Arabidopsis thaliana), branched root hairs are an indicator of defects in root hair tip growth. Among 62 accessions, one accession (Heiligkreuztal2 [HKT2.4]) displayed branched root hairs, suggesting that this accession carries a mutation in a gene of importance for tip growth. We determined 200- to 300-kb mapping intervals using a mapping-by-sequencing approach of F2 pools from crossings of HKT2.4 with three different accessions. The intersection of these mapping intervals was 80 kb in size featuring not more than 36 HKT2.4-specific single nucleotide polymorphisms, only two of which changed the coding potential of genes. Among them, we identified the causative single nucleotide polymorphism changing a splicing site in ARMADILLO REPEAT-CONTAINING KINESIN1. The applied strategies have the potential to complement statistical methods in high-throughput phenotyping studies using different natural accessions to identify causative genes for distinct phenotypes represented by only one or a few accessions.
Collapse
Affiliation(s)
- Louai Rishmawi
- Botanical Institute (L.R., M.H., A.S.) and Cluster of Excellence on Plant Sciences (L.R., M.H.), University of Cologne, Cologne Biocenter, D-50674 Cologne, Germany; andDepartment for Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany (H.S., K.S.)
| | - Hequan Sun
- Botanical Institute (L.R., M.H., A.S.) and Cluster of Excellence on Plant Sciences (L.R., M.H.), University of Cologne, Cologne Biocenter, D-50674 Cologne, Germany; andDepartment for Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany (H.S., K.S.)
| | - Korbinian Schneeberger
- Botanical Institute (L.R., M.H., A.S.) and Cluster of Excellence on Plant Sciences (L.R., M.H.), University of Cologne, Cologne Biocenter, D-50674 Cologne, Germany; andDepartment for Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany (H.S., K.S.)
| | - Martin Hülskamp
- Botanical Institute (L.R., M.H., A.S.) and Cluster of Excellence on Plant Sciences (L.R., M.H.), University of Cologne, Cologne Biocenter, D-50674 Cologne, Germany; andDepartment for Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany (H.S., K.S.)
| | - Andrea Schrader
- Botanical Institute (L.R., M.H., A.S.) and Cluster of Excellence on Plant Sciences (L.R., M.H.), University of Cologne, Cologne Biocenter, D-50674 Cologne, Germany; andDepartment for Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany (H.S., K.S.)
| |
Collapse
|
40
|
Eng RC, Wasteneys GO. The microtubule plus-end tracking protein ARMADILLO-REPEAT KINESIN1 promotes microtubule catastrophe in Arabidopsis. THE PLANT CELL 2014; 26:3372-86. [PMID: 25159991 PMCID: PMC4176440 DOI: 10.1105/tpc.114.126789] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/30/2014] [Accepted: 08/05/2014] [Indexed: 05/18/2023]
Abstract
Microtubule dynamics are critically important for plant cell development. Here, we show that Arabidopsis thaliana ARMADILLO-REPEAT KINESIN1 (ARK1) plays a key role in root hair tip growth by promoting microtubule catastrophe events. This destabilizing activity appears to maintain adequate free tubulin concentrations in order to permit rapid microtubule growth, which in turn is correlated with uniform tip growth. Microtubules in ark1-1 root hairs exhibited reduced catastrophe frequency and slower growth velocities, both of which were restored by low concentrations of the microtubule-destabilizing drug oryzalin. An ARK1-GFP (green fluorescent protein) fusion protein expressed under its endogenous promoter localized to growing microtubule plus ends and rescued the ark1-1 root hair phenotype. Transient overexpression of ARK1-RFP (red fluorescent protein) increased microtubule catastrophe frequency. ARK1-fusion protein constructs lacking the N-terminal motor domain still labeled microtubules, suggesting the existence of a second microtubule binding domain at the C terminus of ARK1. ARK1-GFP was broadly expressed in seedlings, but mutant phenotypes were restricted to root hairs, indicating that ARK1's function is redundant in cells other than those forming root hairs.
Collapse
Affiliation(s)
- Ryan Christopher Eng
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Geoffrey O Wasteneys
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
41
|
Becker JD, Takeda S, Borges F, Dolan L, Feijó JA. Transcriptional profiling of Arabidopsis root hairs and pollen defines an apical cell growth signature. BMC PLANT BIOLOGY 2014; 14:197. [PMID: 25080170 PMCID: PMC4236730 DOI: 10.1186/s12870-014-0197-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 07/14/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND Current views on the control of cell development are anchored on the notion that phenotypes are defined by networks of transcriptional activity. The large amounts of information brought about by transcriptomics should allow the definition of these networks through the analysis of cell-specific transcriptional signatures. Here we test this principle by applying an analogue to comparative anatomy at the cellular level, searching for conserved transcriptional signatures, or conserved small gene-regulatory networks (GRNs) on root hairs (RH) and pollen tubes (PT), two filamentous apical growing cells that are a striking example of conservation of structure and function in plants. RESULTS We developed a new method for isolation of growing and mature root hair cells, analysed their transcriptome by microarray analysis, and further compared it with pollen and other single cell transcriptomics data. Principal component analysis shows a statistical relation between the datasets of RHs and PTs which is suggestive of a common transcriptional profile pattern for the apical growing cells in a plant, with overlapping profiles and clear similarities at the level of small GTPases, vesicle-mediated transport and various specific metabolic responses. Furthermore, cis-regulatory element analysis of co-regulated genes between RHs and PTs revealed conserved binding sequences that are likely required for the expression of genes comprising the apical signature. This included a significant occurrence of motifs associated to a defined transcriptional response upon anaerobiosis. CONCLUSIONS Our results suggest that maintaining apical growth mechanisms synchronized with energy yielding might require a combinatorial network of transcriptional regulation. We propose that this study should constitute the foundation for further genetic and physiological dissection of the mechanisms underlying apical growth of plant cells.
Collapse
Affiliation(s)
- Jörg D Becker
- Instituto Gulbenkian de Ciência, 2780-156, Oeiras, Portugal
| | - Seiji Takeda
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
- Present address: Cell and Genome Biology, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kitaina-Yazuma Oji 74, Seika-cho, Soraku-gun, Kyoto 619-0244, Japan
| | - Filipe Borges
- Instituto Gulbenkian de Ciência, 2780-156, Oeiras, Portugal
- Present address: Cold Spring Harbor Laboratory, Cold Spring Harbor 11724, NY, USA
| | - Liam Dolan
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - José A Feijó
- Instituto Gulbenkian de Ciência, 2780-156, Oeiras, Portugal
- Department of Cell Biology and Molecular Genetics, University of Maryland, 0118 BioScience Research Bldg, College Park 20742-5815, MD, USA
| |
Collapse
|
42
|
Hoffmann B, Proust H, Belcram K, Labrune C, Boyer FD, Rameau C, Bonhomme S. Strigolactones inhibit caulonema elongation and cell division in the moss Physcomitrella patens. PLoS One 2014; 9:e99206. [PMID: 24911649 PMCID: PMC4049778 DOI: 10.1371/journal.pone.0099206] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 05/12/2014] [Indexed: 11/18/2022] Open
Abstract
In vascular plants, strigolactones (SLs) are known for their hormonal role and for their role as signal molecules in the rhizosphere. SLs are also produced by the moss Physcomitrella patens, in which they act as signaling factors for controlling filament extension and possibly interaction with neighboring individuals. To gain a better understanding of SL action at the cellular level, we investigated the effect of exogenously added molecules (SLs or analogs) in moss growth media. We used the previously characterized Ppccd8 mutant that is deficient in SL synthesis and showed that SLs affect moss protonema extension by reducing caulonema cell elongation and mainly cell division rate, both in light and dark conditions. Based on this effect, we set up bioassays to examine chemical structure requirements for SL activity in moss. The results suggest that compounds GR24, GR5, and 5-deoxystrigol are active in moss (as in pea), while other analogs that are highly active in the control of pea branching show little activity in moss. Interestingly, the karrikinolide KAR1, which shares molecular features with SLs, did not have any effect on filament growth, even though the moss genome contains several genes homologous to KAI2 (encoding the KAR1 receptor) and no canonical homologue to D14 (encoding the SL receptor). Further studies should investigate whether SL signaling pathways have been conserved during land plant evolution.
Collapse
Affiliation(s)
- Beate Hoffmann
- Institut Jean-Pierre Bourgin, UMR1318 Institut National de la Recherche Agronomique-AgroParisTech, Versailles, France,
| | - Hélène Proust
- Institut Jean-Pierre Bourgin, UMR1318 Institut National de la Recherche Agronomique-AgroParisTech, Versailles, France,
| | - Katia Belcram
- Institut Jean-Pierre Bourgin, UMR1318 Institut National de la Recherche Agronomique-AgroParisTech, Versailles, France,
| | - Cécile Labrune
- Institut Jean-Pierre Bourgin, UMR1318 Institut National de la Recherche Agronomique-AgroParisTech, Versailles, France,
| | - François-Didier Boyer
- Institut Jean-Pierre Bourgin, UMR1318 Institut National de la Recherche Agronomique-AgroParisTech, Versailles, France,
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, UPR2301 CNRS, Gif-sur-Yvette, France
| | - Catherine Rameau
- Institut Jean-Pierre Bourgin, UMR1318 Institut National de la Recherche Agronomique-AgroParisTech, Versailles, France,
| | - Sandrine Bonhomme
- Institut Jean-Pierre Bourgin, UMR1318 Institut National de la Recherche Agronomique-AgroParisTech, Versailles, France,
| |
Collapse
|
43
|
Bai L, Ma X, Zhang G, Song S, Zhou Y, Gao L, Miao Y, Song CP. A Receptor-Like Kinase Mediates Ammonium Homeostasis and Is Important for the Polar Growth of Root Hairs in Arabidopsis. THE PLANT CELL 2014; 26:1497-1511. [PMID: 24769480 PMCID: PMC4036567 DOI: 10.1105/tpc.114.124586] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 03/30/2014] [Accepted: 04/09/2014] [Indexed: 05/19/2023]
Abstract
Ammonium (NH4+) is both a necessary nutrient and an important signal in plants, but can be toxic in excess. Ammonium sensing and regulatory mechanisms in plant cells have not been fully elucidated. To decipher the complex network of NH4+ signaling, we analyzed [Ca2+]cyt-associated protein kinase (CAP) genes, which encode signaling components that undergo marked changes in transcription levels in response to various stressors. We demonstrated that CAP1, a tonoplast-localized receptor-like kinase, regulates root hair tip growth by maintaining cytoplasmic Ca2+ gradients. A CAP1 knockout mutant (cap1-1) produced elevated levels of cytoplasmic NH4+. Furthermore, root hair growth of cap1-1 was inhibited on Murashige and Skoog medium, but NH4+ depletion reestablished the Ca2+ gradient necessary for normal growth. The lower net NH4+ influx across the vacuolar membrane and relatively alkaline cytosolic pH of cap1-1 root hairs implied that mutation of CAP1 increased NH4+ accumulation in the cytoplasm. Furthermore, CAP1 functionally complemented the npr1 (nitrogen permease reactivator protein) kinase yeast mutant, which is defective in high-affinity NH4+ uptake via MEP2 (methylammonium permease 2), distinguishing CAP1 as a cytosolic modulator of NH4+ levels that participates in NH4+ homeostasis-regulated root hair growth by modulating tip-focused cytoplasmic Ca2+ gradients.
Collapse
Affiliation(s)
- Ling Bai
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China
| | - Xiaonan Ma
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China
| | - Guozeng Zhang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China
| | - Shufei Song
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China
| | - Yun Zhou
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China
| | - Lijie Gao
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China
| | - Yuchen Miao
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China
| | - Chun-Peng Song
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China
| |
Collapse
|
44
|
Ichikawa M, Hirano T, Enami K, Fuselier T, Kato N, Kwon C, Voigt B, Schulze-Lefert P, Baluška F, Sato MH. Syntaxin of plant proteins SYP123 and SYP132 mediate root hair tip growth in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2014; 55:790-800. [PMID: 24642714 DOI: 10.1093/pcp/pcu048] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Root hairs are fast-growing tubular protrusions on root epidermal cells that play important roles in water and nutrient uptake in plants. The tip-focused polarized growth of root hairs is accomplished by the secretion of newly synthesized materials to the tip via the polarized membrane trafficking mechanism. Here, we report the function of two different types of plasma membrane (PM) Qa-SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors), SYP123 and SYP132, in the growth of root hair in Arabidopsis. We found that SYP123, but not SYP132, localizes in the tip region of root hairs by recycling between the brefeldin A (BFA)-sensitive endosomes and the PM of the expanding tip in an F-actin-dependent manner. The vesicle-associated membrane proteins VAMP721/722/724 also exhibited tip-focused localization in root hairs and formed ternary SNARE complexes with both SYP123 and SYP132. These results demonstrate that SYP123 and SYP132 act in a coordinated fashion to mediate tip-focused membrane trafficking for root hair tip growth.
Collapse
Affiliation(s)
- Mie Ichikawa
- Department of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamonakaragi-cho 1-5, Sakyo-ku, Kyoto, 606-8522 Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Ketelaar T. The actin cytoskeleton in root hairs: all is fine at the tip. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:749-56. [PMID: 24446547 DOI: 10.1016/j.pbi.2013.10.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Filamentous actin forms characteristic bundles in plant cells that facilitate cytoplasmic streaming. In contrast, networks of actin exhibiting fast turnover are found especially near sites of rapid cell expansion. These networks may serve various functions including delivering and retaining vesicles while preventing penetration of organelles into the area where cell growth occurs thereby allowing fast turnover of vesicles to and from the plasma membrane. Root hairs elongate by polarized growth at their tips and the local accumulation of fine F-actin near the tip has provided valuable insight into the organization of these networks. Here we will sequentially focus on the role of the actin cytoskeleton in root hair tip growth and on how activities of different actin binding proteins in the apical part of growing root hairs contribute to build the fine F-actin configuration that correlates with tip growth.
Collapse
|
46
|
Qi G, Hu R, Yu L, Chai G, Cao Y, Zuo R, Kong Y, Zhou G. Two poplar cellulose synthase-like D genes, PdCSLD5 and PdCSLD6, are functionally conserved with Arabidopsis CSLD3. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:1267-1276. [PMID: 23746994 DOI: 10.1016/j.jplph.2013.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 04/01/2013] [Accepted: 04/07/2013] [Indexed: 06/02/2023]
Abstract
Root hairs are tip-growing long tubular outgrowths of specialized epidermal cells, and are important for nutrient and water uptake and interaction with the soil microflora. Here we characterized two poplar cellulose synthase-like D (CSLD) genes, PdCSLD5 and PdCSLD6, the most probable orthologs to the Arabidopsis AtCSLD3/KOJAK gene. Both PdCSLD5 and PdCSLD6 are strongly expressed in roots, including in the root hairs. Subcellular localization experiments showed that these two proteins are located not only in the polarized plasma membrane of root hair tips, but also in Golgi apparatus of the root hair and non-hair-forming cells. Overexpression of these two poplar genes in the atcsld3 mutant was able to rescue most of the defects caused by disruption of AtCSLD3, including root hair morphological changes, altered cell wall monosaccharide composition, increased non-crystalline β-1,4-glucan and decreased crystalline cellulose contents. Taken together, our results provide evidence indicating that PdCSLD5 and PdCSLD6 are functionally conserved with AtCSLD3 and support a role for PdCSLD5 and PdCSL6 specifically in crystalline cellulose production in poplar root hair tips. The results presented here also suggest that at least part of the mechanism of root hair formation is conserved between herbaceous and woody plants.
Collapse
Affiliation(s)
- Guang Qi
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Gu F, Nielsen E. Targeting and regulation of cell wall synthesis during tip growth in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:835-46. [PMID: 23758901 DOI: 10.1111/jipb.12077] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 05/20/2013] [Indexed: 05/20/2023]
Abstract
Root hairs and pollen tubes are formed through tip growth, a process requiring synthesis of new cell wall material and the precise targeting and integration of these components to a selected apical plasma membrane domain in the growing tips of these cells. Presence of a tip-focused calcium gradient, control of actin cytoskeleton dynamics, and formation and targeting of secretory vesicles are essential to tip growth. Similar to cells undergoing diffuse growth, cellulose, hemicelluloses, and pectins are also deposited in the growing apices of tip-growing cells. However, differences in the manner in which these cell wall components are targeted and inserted in the expanding portion of tip-growing cells is reflected by the identification of elements of the plant cell wall synthesis machinery which have been shown to play unique roles in tip-growing cells. In this review, we summarize our current understanding of the tip growth process, with a particular focus on the subcellular targeting of newly synthesized cell wall components, and their roles in this form of plant cell expansion.
Collapse
Affiliation(s)
- Fangwei Gu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
48
|
Vaškovičová K, Žárský V, Rösel D, Nikolič M, Buccione R, Cvrčková F, Brábek J. Invasive cells in animals and plants: searching for LECA machineries in later eukaryotic life. Biol Direct 2013; 8:8. [PMID: 23557484 PMCID: PMC3663805 DOI: 10.1186/1745-6150-8-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 03/21/2013] [Indexed: 02/08/2023] Open
Abstract
Invasive cell growth and migration is usually considered a specifically metazoan phenomenon. However, common features and mechanisms of cytoskeletal rearrangements, membrane trafficking and signalling processes contribute to cellular invasiveness in organisms as diverse as metazoans and plants – two eukaryotic realms genealogically connected only through the last common eukaryotic ancestor (LECA). By comparing current understanding of cell invasiveness in model cell types of both metazoan and plant origin (invadopodia of transformed metazoan cells, neurites, pollen tubes and root hairs), we document that invasive cell behavior in both lineages depends on similar mechanisms. While some superficially analogous processes may have arisen independently by convergent evolution (e.g. secretion of substrate- or tissue-macerating enzymes by both animal and plant cells), at the heart of cell invasion is an evolutionarily conserved machinery of cellular polarization and oriented cell mobilization, involving the actin cytoskeleton and the secretory pathway. Its central components - small GTPases (in particular RHO, but also ARF and Rab), their specialized effectors, actin and associated proteins, the exocyst complex essential for polarized secretion, or components of the phospholipid- and redox- based signalling circuits (inositol-phospholipid kinases/PIP2, NADPH oxidases) are aparently homologous among plants and metazoans, indicating that they were present already in LECA. Reviewer: This article was reviewed by Arcady Mushegian, Valerian Dolja and Purificacion Lopez-Garcia.
Collapse
Affiliation(s)
- Katarína Vaškovičová
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Vinicna 7, 128 43, Prague 2, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
49
|
del Campillo E, Gaddam S, Mettle-Amuah D, Heneks J. A tale of two tissues: AtGH9C1 is an endo-β-1,4-glucanase involved in root hair and endosperm development in Arabidopsis. PLoS One 2012; 7:e49363. [PMID: 23173056 PMCID: PMC3500288 DOI: 10.1371/journal.pone.0049363] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 10/11/2012] [Indexed: 11/19/2022] Open
Abstract
Arabidopsis AtGH9C1 is an endo-β-1,4-glucanase possessing a carbohydrate-binding domain (CBM49). Analysis of AtGH9C1 expression by promoter-reporter GUS, RT-PCR, public transcriptome databases and GFP protein tagging demonstrated a high and selective expression of AtGH9C1 in root hairs and in the endosperm. Expression in root hair cells started prior to bulge formation and continued during hair elongation. AtGH9C1 expression increased with treatments that increase density (ACC) or length (sucrose) of root hairs. Expression in the endosperm extended sequentially to the micropylar, peripheral and chalazal compartments. A mutant with reduced AtGH9C1 expression had a delay in germination and a marked reduction in root hair presence. Complementation of the mutant partially improved both germination and root hair density. Experiments with ectopically expressed AtGH9C1-GFP with and without the CBM49, demonstrated that both forms of the protein are secreted and that CBM49 targets the protein to specific regions of the cell wall, but what makes these regions special is still unknown. The amino acid alignment of angiosperm GH9 genes with C-terminal extensions illustrate that AtGH9C1 belongs to a different clade than its tomato homolog, S1GH9C1. The latter has a CBM49 that was shown to bind crystalline cellulose. We suggest that AtGH9C1 is associated with the weakening of the cell wall during formation and growth of the root hair as well as with the sequential anterior-posterior breakdown of the endosperm cell wall that provides space for the growing embryo. Thus, is likely that the CBM49 of AtGH9C1 recognizes a form of cellulose or glucan polymer that is prevalent in the wall of these specialized tissues and that is different than the one recognized by S1GH9C1.
Collapse
Affiliation(s)
- Elena del Campillo
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America.
| | | | | | | |
Collapse
|
50
|
Brechenmacher L, Nguyen THN, Hixson K, Libault M, Aldrich J, Pasa-Tolic L, Stacey G. Identification of soybean proteins from a single cell type: the root hair. Proteomics 2012; 12:3365-73. [PMID: 22997094 DOI: 10.1002/pmic.201200160] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 07/18/2012] [Accepted: 08/31/2012] [Indexed: 12/16/2023]
Abstract
Root hairs (RH) are a terminally differentiated single cell type, mainly involved in water and nutrient uptake from the soil. The soybean RH cell represents an excellent model for the study of single cell systems biology. In this study, we identified 5702 proteins, with at least two peptides, from soybean RH using an accurate mass and time tag approach, establishing a comprehensive proteome reference map of this single cell type. We also showed that trypsin is the most appropriate enzyme for soybean proteomic studies by performing an in silico digestion of the soybean proteome using different proteases. Although the majority of proteins identified in this study are involved in basal metabolism, the function of others are more related to RH formation/function and include proteins involved in nutrient uptake (transporters) or vesicular trafficking (cytoskeleton and ras-associated binding proteins). Interestingly, some of these proteins appear to be specifically detected in RH and constitute promising candidates for further studies to elucidate unique features of this single-cell model.
Collapse
Affiliation(s)
- Laurent Brechenmacher
- Division of Plant Sciences, National Center for Soybean Biotechnology, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | | | | | |
Collapse
|